
1 Several complex variables
To think that the analysis of several complex variables is more or less the one variable
theory with some more indices turns out to be incorrect. Completely new phenom-
ena appear which will be exploited in the following. Many differences between the
one and several variables theories originate from the Cauchy Riemann differential
equations which constitute an overdetermined system of partial differential equa-
tions for several complex variables. We start with the basic definitions and complex
differential forms. Section 1.1 also presents the main differences between one and
several variables analysis, such as the Identity Theorem and Hartogs phenomenon.
Section 1.2 provides another important example for this difference, namely in the
analysis of the inhomogeneous Cauchy Riemann differential equations. In addition
the concept of the tangential Cauchy Riemann equation is introduced. This gives the
tools required for the famous Lewy example of a partial differential operator with-
out solution. In section 1.3 we discuss pseudoconvex domains and plurisubharmonic
functions and explain the concept of a domain of holomorphy.

1.1 Complex differential forms and holomorphic functions

Let Ω ⊆ Cn be an open subset and let f : Ω −→ C be a C1-function. We write
zj = xj + iyj and consider for P ∈ Ω the differential

dfP =
n∑
j=1

(
∂f

∂xj
(P ) dxj + ∂f

∂yj
(P ) dyj

)
.

We use the complex differentials

dzj = dxj + idyj , dzj = dxj − idyj

and the derivatives

∂

∂zj
= 1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
= 1

2

(
∂

∂xj
+ i

∂

∂yj

)
and rewrite the differential dfP in the form

dfP =
n∑
j=1

(
∂f

∂zj
(P ) dzj + ∂f

∂zj
(P ) dzj

)
= ∂fP + ∂fP .

A general differential form is given by

ω =
∑

|J|=p,|K|=q

′ aJ,K dzJ ∧ dzK ,



2 1 Several complex variables

where
∑
|J|=p,|K|=q
′ denotes the sum taken only over all increasing multiindices

J = (j1, . . . , jp), K = (k1, . . . , kq) and

dzJ = dzj1 ∧ · · · ∧ dzjp , dzK = dzk1 ∧ · · · ∧ dzkq .

We call ω a (p, q)-form and we write ω ∈ Ck(p,q)(Ω) if ω is a (p, q)-form with coefficients
belonging to Ck(Ω).
The derivative dω of ω is defined by

dω =
∑

|J|=p,|K|=q

′ daJ,K ∧ dzJ ∧ dzK =
∑

|J|=p,|K|=q

′ (∂aJ,K + ∂aJ,K) ∧ dzJ ∧ dzK ,

and we set

∂ω =
∑

|J|=p,|K|=q

′ ∂aJ,K ∧ dzJ ∧ dzK and ∂ω =
∑

|J|=p,|K|=q

′ ∂aJ,K ∧ dzJ ∧ dzK .

We have d = ∂ + ∂ and since d2 = 0 it follows that

0 = (∂ + ∂) ◦ (∂ + ∂)ω = (∂ ◦ ∂)ω + (∂ ◦ ∂ + ∂ ◦ ∂)ω + (∂ ◦ ∂)ω,

which implies ∂2 = 0 , ∂2 = 0 and ∂ ◦ ∂ + ∂ ◦ ∂ = 0, by comparing the types of the
differential forms involved.
Before we proceed we mention important domains in Cn and some basic facts about
them.

Definition 1.1. A polydisc with center a = (a1, . . . , an) ∈ Cn and multiradius r =
(r1, . . . , rn), rj > 0 is the set

P (a, r) = {z ∈ Cn : |zj − aj | < rj , 1 ≤ j ≤ n}.

A ball with center a = (a1, . . . , an) ∈ Cn and radius r > 0 is defined by

B(a, r) = {z ∈ Cn :
n∑
j=1
|zj − aj |2 < r2}.

We write B for the unit ball B(0, 1).
The Siegel 1 upper half-space U in Cn, n ≥ 2, is defined by

U = {z ∈ Cn : =zn >
n−1∑
j=1
|zj |2}.

In the sequel we will use the symbol bΩ for the boundary of a domain Ω in Cn. The
symbol ∂ is now reserved for differential forms.

1 Siegel, Carl Ludwig (1896–1981)
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Definition 1.2. A domain Ω ⊂ Rn, n ≥ 2, is said to have Ck (1 ≤ k ≤ ∞) boundary
at the boundary point p if there exists a real-valued function ρ defined in some open
neighborhood U of p such that ρ ∈ Ck(U) and U ∩Ω = {x ∈ U : ρ(x) < 0}, bΩ∩U =
{x ∈ U : ρ(x) = 0}, and dρ(x) 6= 0 on bΩ ∩ U. The function ρ is called a Ck local
defining function for Ω near p. If U is an open neighborhood of Ω, then ρ is called
a global defining function for Ω, simply a defining function for Ω.

In the following we consider the relationship between two defining functions.

Lemma 1.3. let ρ1 and ρ2 be two local defining functions of Ω of class Ck in a
neighborhood U of p ∈ bΩ. Then there exists a positive Ck−1 function h on U such
that ρ1 = hρ2 on U and dρ1(x) = h(x)dρ2(x) for x ∈ U ∩ bΩ.

Proof. Since dρ2 6= 0 on the boundary near p, we may assume that p = 0, xn =
ρ2(x) and U ∩ bΩ = {x ∈ U : xn = 0}, after a Ck change of coordinates. Let
x′ = (x1, . . . , xn−1). Then we have ρ1(x′, 0) = 0 and by the fundamental theorem of
calculus

ρ1(x′, xn) = ρ1(x′, xn)− ρ1(x′, 0) = xn

1∫
0

∂ρ1
∂xn

(x′, txn) dt.

Hence ρ1 = hρ2 for some Ck−1 function on U. If k−1 ≥ 1, we get dρ1(x) = h(x)dρ2(x)
for x ∈ U ∩ bΩ, as ρ2(x) = 0 for x ∈ U ∩ bΩ. If k = 1, we get the same conclusion
from the fact that for a function f differentiable at 0 ∈ Rn such that f(0) = 0
and for a function h continuous at 0, one has that f · h is differentiable at 0 and
d(hf)0 = h(0) df0.

Finally, as dρ1(x) 6= 0 and dρ2(x) 6= 0 for x ∈ U∩bΩ, we get h(x) 6= 0 for x ∈ U∩bΩ.
In addition, since h > 0 on U \ bΩ, and h is continuous, we obtain h > 0 on U.

Definition 1.4. Let Ω ⊆ Cn be open. A function f : Ω −→ C is called holomorphic
on Ω if f ∈ C1(Ω) and f satisfies the system of partial differential equations

∂f

∂zj
(z) = 0 for 1 ≤ j ≤ n and z ∈ Ω, (1.1)

equivalently, if f satisfies ∂f = 0.

We remark that there is no biholomorphic mapping between a polydisc and a ball in
Cn, n ≥ 2, see [6]. The Siegel upper half-space U is biholomorphic to the unit ball
B, by the so-called Cayley transform, so U is an unbounded realization of a bounded
symmetric domain. The boundary H of U carries the structure of the Heisenberg
group, see Exercises for more details.
Next we establish a Cauchy integral formula for holomorphic functions on polydiscs.

Theorem 1.5. Let P = P (a, r) be a polydisc in Cn. trose that f ∈ C1(P ) and that
f is holomorphic on P, i.e. for each z ∈ P and 1 ≤ j ≤ n, the function

ζ 7→ f(z1, . . . , zj−1, ζ, zj+1, . . . , zn)
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is holomorphic on {ζ ∈ C : |ζ − aj | < rj}. Then

f(z) = 1
(2πi)n

∫
γ1

. . .

∫
γn

f(ζ)
(ζ1 − z1) . . . (ζn − zn) dζ1 . . . dζn, (1.2)

for z ∈ P, where γj(t) = aj + rje
it, for t ∈ [0, 2π] and j = 1, . . . , n.

Proof. Induction over n. For n = 1 one has the classical Cauchy Formula, see Theo-
rem ??. trose that the theorem has been proven for n− 1 variables. For z ∈ P fixed
we apply the inductive hypothesis with respect to (z2, . . . , zn) and obtain

f(z1, z2, . . . , zn) = 1
(2πi)n−1

∫
γ2

. . .

∫
γn

f(z1, ζ2, . . . , ζn)
(ζ2 − z2) . . . (ζn − zn) dζ2 . . . dζn.

For ζ2, . . . , ζn fixed, we get from 1-dimensional case

f(z1, ζ2, . . . , ζn) = 1
2πi

∫
γ1

f(ζ1, . . . , ζn)
ζ1 − z1

dζ1

which can be substituted to the formula above to obtain (1.2).

Like in the case n = 1 we get also here that holomorphic functions in several variables
are C∞ functions, and all complex derivatives of holomorphic functions are again
holomorphic, differentiate under the integral sign in (1.2).
In addition, we get the Cauchy estimates: for f ∈ H(P (a, r)) and α = (α1, . . . , αn) ∈
Nn0 : let |α| = α1 + · · · + αn and α! = α1! . . . αn!, furthermore set rα = rα1

1 . . . rαnn ,

then
|Dαf(a)| =

∣∣∣∣ ∂|α|f

∂zα1
1 . . . ∂zαnn

(a)
∣∣∣∣ ≤ α!

rα
sup{|f(z)| : z ∈ P (a, r)}. (1.3)

Next we show that every holomorphic function can be represented locally by a
convergent power series:

Theorem 1.6. Let f ∈ H(P (a, r)). Then the Taylor series of f at a converges to f
uniformly on all compact subsets of P (a, r), that is

f(z) =
∑
α∈Nn0

Dαf(a)
α! (z − a)α, (1.4)

for z ∈ P (a, r).

Proof. Use the same method as in the proof of Theorem ?? for each of iterated
integrals in (1.2).

From this we get: let Ω ⊆ Cn be a domain and f ∈ H(Ω), suppose that there is
a ∈ Ω such that Dα(a) = 0 for all α ∈ Nn0 , then f(z) = 0 for z ∈ Ω. In particular, if
there is a nonempty open set U ⊂ Ω such that f(z) = 0 for z ∈ U, then f ≡ 0 on Ω
(Identity Theorem).
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But Theorem ?? is not valid for n > 1 : let f(z1, z2) = z1. Then this function is zero
on {(0, z2) : z2 ∈ C}, but f is not identically zero.
The following result is also an easy consequence of the corresponding one variable
result.

Theorem 1.7. Let Ω be a domain in Cn and suppose that f ∈ H(Ω) is not constant.
Then f is an open mapping.

Proof. We refer to Theorem ??. It is enough to show that for any ball B(a, r) =
{z ∈ Cn :

∑n
j=1 |zj−aj |

2 < r2} the image f(B(a, r)) is a neighborhood of f(a). The
restriction of f to B(a, r) is not constant, otherwise f would have to be constant on
Ω. Choose p ∈ B(a, r) with f(p) 6= f(a) and define g(ζ) = f(a+ ζp) for ζ ∈ D1(0).
Then g is nonconstant and holomorphic onD1(0). By Theorem ??, g(D1(0)) contains
a neighborhood of g(0). As g(0) = f(a) and g(D1(0)) ⊂ f(B(a, r)), the image
f(B(a, r)) is a neighborhood of f(a).

The maximum principle follows from this result as for n = 1 : if Ω ⊆ Cn is a domain
and f ∈ H(Ω) such that |f | has a local maximum at a point a ∈ Ω, then f is constant
on Ω; if Ω is a bounded domain in Cn and f ∈ H(Ω)∩ C(Ω), then |f(z)| ≤ |f |bΩ for
all z ∈ Ω.
We remark that Weierstraß’ Theorem ?? and Montel’s Theorem ?? also hold for
holomorphic functions of several variables with an analogous proof.
A striking difference between one variable analysis and several variables analysis
appears in the next result, which gives a domain in Cn, n > 1, with the property
that each holomorphic function can be analytically extended to a larger domain,
compare Theorem ??.

Theorem 1.8 (Hartogs 2). Let n ≥ 2 and trose that 0 < rj < 1 for j = 1, . . . , n.
Then every function f holomorphic on the domain

H(r) = {z ∈ Cn : |zj | < 1 for j < n, rn < |zn| < 1}

∪{z ∈ Cn : |zj | < rj for j < n, |zn| < 1},

see Fig. 1.1, has a unique holomorphic extension f̃ to the polydisc P (0, 1).

Proof. The extension is unique because of the Identity theorem. Fix δ with rn <

δ < 1. Then we define
f̃(z′, zn) = 1

2πi

∫
γδ

f(z′, ζ)
ζ − zn

dζ, (1.5)

where z′ = (z1, . . . , zn−1) and γδ(t) = δeit for t ∈ [0, 2π]. In this way we defined a
function holomorphic on the polydisc P (0, (1′, δ)), where (1′, δ) = (1, . . . , 1, δ). For

2 Hartogs, Friedrich Moritz (1874–1943)



6 1 Several complex variables

|z1|

|z2|

1

1

r2

r10

H(r)

Fig. 1.1. The Hartogs domain H(r) in absolute space

z′ ∈ P (0, r′) the function f(z′, .) is holomorphic on |zn| < 1, hence (1.5) implies that
f̃(z′, zn) = f(z′, zn) for (z′, zn) ∈ P (0, (r′, δ)). The Identity Theorem implies f̃ = f

on H(r)∩P (0, (1′, δ)), so f̃ is the desired extension of f to the polydisc P (0, 1).

The reason for this phenomenon can be better understood by studying the inho-
mogeneous Cauchy Riemann differential equations in several complex variables (CR
equations).

1.2 The inhomogeneous CR equations

Let Ω ⊆ Cn be a domain and let

g =
n∑
j=1

gj dzj

be a (0, 1)-form with coefficients gj ∈ C1(Ω), for j = 1, . . . , n. We want to find a
function f ∈ C1(Ω) such that

∂f = g, (1.6)

in other words
∂f

∂zj
= gj , j = 1, . . . , n. (1.7)

f is called a solution to the inhomogeneous CR equation ∂f = g.
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Since ∂2 = 0, a necessary condition for solvability of (1.6) is that the right hand
side g satisfies ∂g = 0. So, the (0, 2)-form ∂g satisfies

∂g =
n∑
k=1

n∑
j=1

∂gj
∂zk

dzk ∧ dzj = 0,

which means that
∂gj
∂zk

= ∂gk
∂zj

, j, k = 1, . . . , n.

Theorem 1.9. Let n ≥ 2 and let g =
∑n
j=1 gj dzj be a (0, 1)-form with coefficients

gj ∈ Ck0 (Cn), j = 1, . . . , n, where 1 ≤ k ≤ ∞ and trose that ∂g = 0. Then there
exists f ∈ Ck0 (Cn) such that ∂f = g.

We shall see that this result enables us to explain the Hartogs phenomenon in a
rather general setting.
For n = 1 the above theorem is false:
Suppose that

∫
C g(ζ) dλ(ζ) 6= 0 and that there is a compactly trorted solution f

of the equation ∂f
∂z = g. Then there exists R > 0 such that f(ζ) = 0 for |ζ| ≥ R.

Applying Stokes’ Theorem (see ??) we obtain for γ(t) = Reit, t ∈ [0, 2π]

0 =
∫
γ

f(ζ) dζ

=
∫

DR(0)

∂f

∂ζ
dζ ∧ dζ

= 2i
∫

DR(0)

g(ζ) dλ(ζ)

6= 0,

whenever DR(0) contains the support of g. That is a contradiction.

Proof of 1.9. Define f on Cn by

f(z1, . . . , zn) = 1
2πi

∫
C

g1(ζ, z2, . . . , zn)
ζ − z1

dζ ∧ dζ. (1.8)

By Corollary ?? (a), f ∈ Ck(Cn) and ∂f
∂z1

= g1. Now let k > 1. By hypothesis we
have ∂g1

∂zk
= ∂gk

∂z1
. Since g1 has compact support we can interchange differentiation
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and integration when we take the derivative of (1.8) with respect to zk and get

∂f

∂zk
= 1

2πi

∫
C

∂g1
∂zk

(ζ, z2, . . . , zn) 1
ζ − z1

dζ ∧ dζ

= 1
2πi

∫
C

∂gk

∂ζ
(ζ, z2, . . . , zn) 1

ζ − z1
dζ ∧ dζ

= gk(z1, . . . , zn),

where we used Corollary ?? (b) for the last equality.
Hence ∂f = g. We still have to show that f is with compact support. Choose R > 1
such that gk(z) = 0 for

∑n
j=1 |zj |

2 ≥ R, k = 1, . . . , n. Then f is holomorphic on
the domain Ω = {z ∈ Cn :

∑n
j=1 |zj |

2 > R}. Since n ≥ 2, we can fix z2 such that
|z2| > R. Then g1(ζ, z2, . . . , zn) = 0 for all ζ ∈ C and all z3, . . . , zn ∈ C. From the
definition of f, it follows that f(z) = 0, if |z2| > R. The set {z ∈ Ω : |z2| > R} is
a nonempty open subset of the domain Ω. Since f ∈ H(Ω), the Identity Theorem
yields that f ≡ 0 on Ω. Therefore f has compact support.

Now we are able to describe the Hartogs phenomenon in a more general way.

Theorem 1.10. Let Ω be a bounded open set in Cn such that is connected. trose that
n > 1. Let U be an open neighborhood of the boundary bΩ = Ω\Ω. Then there exists
an open set V with bΩ ⊂ V ⊂ U having the following property: if f ∈ H(U), then
there exists F ∈ H(Ω) such that for the restriction to V ∩ Ω one has

f |V ∩Ω = F |V ∩Ω.

Proof. LetW be an open neighborhood of bΩ such thatW ⊂⊂ U. Choose α ∈ C∞0 (U)
such that α = 1 on W. For f ∈ H(U) we define

g =

{
αf on U ∩ Ω

0 on Ω \ U.

Since α = 0 in a neighborhood of bU, we have g ∈ C∞(Ω). Next, define

φk =


∂g

∂zk
on Ω

0 on Cn \ Ω.

Since ∂g
∂zk

= ∂f
∂zk

on W ∩ Ω, we have φk ∈ C∞(Cn). Furthermore φk = 0 on (Cn \
Ω) ∪W, which implies that supp(φk) ⊂ Ω and φk ∈ C∞0 (Cn).
Next we claim that the (0, 1)-form φ =

∑n
j=1 φj dzj satisfies ∂φ = 0. We have to

show that
∂φj
∂zk

= ∂φk
∂zj

,
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for all j, k = 1, . . . , n. Both, φj and φk are zero on (Cn \ Ω) ∪W, on Ω we have

∂φj
∂zk

= ∂2g

∂zj∂zk
= ∂φk
∂zj

.

By Theorem 1.9, there exists u ∈ C∞0 (Cn) such that ∂u = φ. Now we set F = g−u.
We have

∂F

∂zk
= ∂g

∂zk
− φk = 0

on Ω, for k = 1, . . . , n. Hence F ∈ H(Ω).
Let Ω0 be the connected component of (Cn \ Ω) ∪ W containing Cn \ Ω. Define
V := Ω0 ∩ U. We claim that f |V ∩Ω = F |V ∩Ω. Since V ∩ Ω ⊆ W ∩ Ω and α = 1
on W so that g = f on V ∩ Ω, it suffices to show that u|Ω0 = 0. Since φk = 0 on
Cn \ Ω and φk = ∂f

∂zk
= 0 on W, we have ∂u

∂zk
= 0 on Ω0. Hence u ∈ H(Ω0). And

since supp(u) is compact and Ω is bounded, Cn \Ω must intersect Cn \ supp(u). In
particular, the open set Ω1 = Ω0 ∩ (Cn \ tr(u)) 6= ∅, and u|Ω1 = 0. Since u ∈ H(Ω0),
the Identity Theorem implies that u = 0 on Ω0.

Corollary 1.11. Let Ω be a bounded open set in Cn such that Cn \ Ω is connected.
trose that n > 1. Let U be an open neighborhood of the boundary bΩ = Ω \ Ω.
Furthermore trose that U ∩ Ω is connected. If f ∈ H(U), then there exists G ∈
H(Ω ∪ U) such that G|U = f.

Proof. If F is as in Theorem 1.10, and Ω ∩ U is connected, the Identity Theorem
implies that F |Ω∩U = f |Ω∩U , and we may define G by G|Ω = F and G|U = f.

Example 1.12. Let |z|2 := |z1|2 + · · ·+ |zn|2, for z ∈ Cn. Let Ω = {z ∈ Cn : |z| < 1}
and let U = {z ∈ Cn : 1/2 < |z| < 3/2}. Then each f ∈ H(U) has a unique
holomorphic extension to Ω ∪ U = {z ∈ Cn : |z| < 3/2}, see Fig. 1.2 in absolute
space.

It is even possible to extend certain functions on the boundary of a domain to
holomorphic functions in the interior of the domain.

Theorem 1.13. Let Ω be a bounded open set in Cn, n > 1. trose that Cn \ Ω is
connected and bΩ ∈ C4, i.e. there exists a real-valued defining function ρ ∈ C4(Cn)
such that ρ vanishes precisely on bΩ and dρ 6= 0 on bΩ. If u ∈ C4(Ω) and ∂u∧∂ρ = 0
on bΩ, one can then find a function U ∈ C1(Ω) such that U ∈ H(Ω) and U = u on
bΩ.
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|z1|

|z2|

3/2

3/2

1/2

1/2
0

Fig. 1.2
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Remark 1.14. The condition ∂u ∧ ∂ρ = 0 on bΩ, can also be stated as
n∑
j=1

tj
∂u

∂zj
= 0 on bΩ,

for all (t1, . . . , tn) ∈ Cn with
∑n
j=1 tj

∂ρ
∂zj

= 0 on bΩ. We say that u satisfies the
tangential Cauchy-Riemann equations and that u is CR-function. Using Lemma 1.3
one easily sees that this definition does not depend on the choice of the defining
function ρ (see Exercises).

Proof of 1.13. First we construct U0 ∈ C2(Ω) such that U0 = u on bΩ and ∂U0 = ρ2v

where v is a (0, 1)-form with C1 coefficients on bΩ. First we claim that ∂u = h0∂ρ+
ρh1, where h0 ∈ C3(Ω) and h1 ∈ C2

(0,1)(Ω). For this aim we consider the coefficients
of the (0, 1)-form ∂u. Using the assumption that ∂u ∧ ∂ρ = 0 on bΩ, we see that
there exists h0 ∈ C3(Ω) such that

∂u

∂zj
− h0

∂ρ

∂zj
= 0, on bΩ, j = 1, . . . , n.

From the proof of Lemma 1.3 we get that there exist h1,j ∈ C2(Ω), j = 1, . . . , n such
that

∂u

∂zj
− h0

∂ρ

∂zj
= ρh1,j , j = 1, . . . , n.

Now define the (0, 1)-form h1 =
∑n
j=1 h1,jdzj . Then ∂u = h0∂ρ+ ρh1. Next we get

∂(u − h0ρ) = ρ(h1 − ∂h0) = ρh2, where h2 ∈ C2
(0,1)(Ω). Since 0 = ∂

2(u − h0ρ) =
∂(ρh2) = ∂ρ ∧ h2 + ρ∂h2, we have ∂ρ ∧ h2 = 0 on bΩ. As in the first part of the
proof, we can again write

h2 = h3∂ρ+ ρh4,

where h3 ∈ C2(Ω) and h4 ∈ C1
(0,1)(Ω). Now set U0 = u − h0ρ − h3ρ

2/2. An easy
computation shows that

∂U0 = ρ2(h4 − ∂h3/2),

which completes the construction of U0. Next we define the (0, 1)-form

f =

{
∂U0 on Ω

0 on Cn \ Ω.

Since f = ρ2v on bΩ we have f ∈ C1
(0,1)(C

n) and f has compact support. By Theorem
1.9 we can find a function V ∈ C1

0(Cn) with compact support, such that ∂V = f.

The definition of f implies that V is holomorphic in the connected set Cn \ Ω and,
as V has compact support, that V = 0 on Cn \ Ω. The function U = U0 − V is
therefore equal to U0 = u on bΩ, and ∂U = ∂U0 − ∂V = f − f = 0 in Ω.
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The tangential Cauchy-Riemann equations for the Siegel upper half-space U are of
special interest. Let n = 2. The function ρ(z1, z2) = − 1

2i (z2−z2)+z1z1 is a defining
function for bU. The boundary can be identified with H2 = C× R via the mapping
π : (z1, t+ i|z1|2) 7→ (z1, t), where z2 = t+ is. We call H2 the Heisenberg group, see
Exercises. If ∂u ∧ ∂ρ = 0 on bU, we have for a function u ∈ C1(U)

1
2i
∂u

∂z1
− z1

∂u

∂z2
= 0,

on bU. This means we have to consider the differential operator

L = ∂

∂x
+ i

∂

∂y
− 2i(x+ iy) ∂

∂t

on H2. This operator has a special property giving a partial differential operator
without solution.

Theorem 1.15 (H. Lewy 3). Let f be a continuous real-valued function depending
only on t. If there is a C1-function u on (x, y, t) ∈ H2 satisfying Lu = f in some
neighborhood of the origin, then f is analytic at t = 0, i.e. can be expanded into a
convergent Taylor series in a neighborhood of t = 0.

So if one takes a continuous function f being not analytic at 0, the partial differential
equation Lu = f has no solution.

Proof. Suppose Lu = f in the set where x2 + y2 < R2 and |t| < R, R > 0. Let
γ(θ) = reiθ, θ ∈ [0, 2π], 0 < r < R. Consider the line integral

V (r, t) =
∫
γ

u(x, y, t) dz = ir

2π∫
0

u(r cos θ, r sin θ, t) eiθ dθ.

By ?? and Stokes’ Theorem ??,

V (r, t) = i

∫
Dr(0)

(
∂u

∂x
+ i

∂u

∂y

)
(x, y, t) dλ(z)

= i

r∫
0

2π∫
0

(
∂u

∂x
+ i

∂u

∂y

)
(σ cos θ, σ sin θ, t)σ dσdθ,

where we used polar coordinates dλ(z) = σ dσdθ. Hence

∂V

∂r
= i

2π∫
0

(
∂u

∂x
+ i

∂u

∂y

)
(r cos θ, r sin θ, t) r dθ

=
∫
γ

(
∂u

∂x
+ i

∂u

∂y

)
(x, y, t) r dz

z
.

3 Lewy, Hans (1904–1988)
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Now set s = r2 and use Lu = f to get

∂V

∂s
= 1

2r
∂V

∂r
=
∫
γ

(
∂u

∂x
+ i

∂u

∂y

)
(x, y, t) dz2z

= i

∫
γ

∂u

∂t
(x, y, t) dz +

∫
γ

f(t) dz2z

= i
∂V

∂t
+ iπf(t).

Now we set F (t) =
∫ τ

0 f(τ) dτ, and U(t, s) = V (t, s) + πF (t), Then

∂U

∂t
+ i

∂U

∂s
= 0,

which is the Cauchy-Riemann equation. Hence U is a holomorphic function of w =
t + is for 0 < s < R2, and |t| < R, in addition, U is continuous up to the line
s = 0, and V = 0 when s = 0, therefore U(t, 0) = πF (t) is real-valued. We can
apply the Schwarz’ reflection principle (see Exercise 47b): the definition U(t,−s) =
U(t, s) gives a holomorphic continuation of U to a full neighborhood of the origin.
In particular, U(t, 0) = πF (t) is analytic in t, hence so is f = F ′.

1.3 Domains of holomorphy

In this section we describe domains for which the Hartogs extension phenomenon
does not occur; these are the so-called domains of holomorphy. First we study holo-
morphically convex domains, a concept which was of importance for the Runge type
theorems and which serves as an interesting concept where the difference between one
and several complex variables becomes apparent. It turns out that another general-
ization of convexity, so-called pseudoconvexity, is the appropriate geometric concept
to characterize domains of holomorphy in Cn, n ≥ 2. It is beyond the level of this
book to give all the details in this context and we refer to textbooks on several
complex variables for a thorough treatment ([1; 6; 3]).

Definition 1.16. Let Ω be a domain in Cn. A holomorphic function f on Ω is com-
pletely singular at p ∈ bΩ if for every connected neighborhood U of p there is no
h ∈ H(U) which agrees with f on some connected component of U ∩ Ω.
Ω is called a weak domain of holomorphy if for every p ∈ bΩ there is f ∈ H(Ω) which
is completely singular at p, and Ω is called a domain of holomorphy if there exists
f ∈ H(Ω) which is completely singular at every boundary point p ∈ bΩ.
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We already know that every domain in C is a domain of holomorphy, see Theorem
??. For n ≥ 2 we already know examples of domains which fail to be domains of
holomorphy.
The concept of weak domain of holomorphy is convenient at the introductory level;
it is, in fact, equivalent to the concept of domain of holomorphy, but this result is
not elementary.

Lemma 1.17. Every convex domain Ω in Cn is a weak domain of holomorphy.

Proof. Let p ∈ bΩ. The convexity implies that we can find an R-linear function
l : Cn −→ R such that the hyperplane {z ∈ Cn : l(z) = l(p)} separates Ω and p, i.e.
we may assume that l(z) < l(p) for z ∈ Ω. We can write

l(z) =
n∑
j=1

αjzj +
n∑
j=1

βjzj ,

where αj , βj ∈ C. Since l is real-valued, we have βj = αj , for j = 1, . . . , n. Set
h(z) = 2

∑n
j=1 αjzj . Then h is complex-linear and l(z) = <h(z). Now the function

fp(z) := 1
h(z)− h(p)

is holomorphic on Ω and completely singular at p.

In the following we consider the concept of holomorphically convex domains in Cn in
order to get further examples of domains of holomorphy. This concept was already
introduced in Chapter 4 for a general treatment of the Runge approximation theorem
in one complex variable.

Definition 1.18. A domain Ω in Cn is called holomorphically convex , if K̂Ω is
relatively compact in Ω for every compact set K ⊂ Ω, where K̂Ω = {z ∈ Ω :
|f(z)| ≤ |f |K for all f ∈ H(Ω)}. We call K holomorphically convex ( H(Ω)-convex),
if K = K̂Ω.

Remark. A domain in C is always holomorphically convex (see ?? (e)). The situation
is different in higher dimensions. Let Ω = {z ∈ Cn : 1/2 < |z| < 2} and K = {z ∈
Cn : |z| = 1}. Then K̂Ω = K, if n = 1, but if n > 1, Corollary 1.11 implies that
every f ∈ H(Ω) extends to a holomorphic function f̃ on B(0, 2). It follows from the
maximum principle applied to f̃ that for 1/2 < |z| ≤ 1, one has

|f(z)| = |f̃(z)| ≤ |f̃ |K = |f |K ,

hence {z ∈ Ω : |z| ≤ 1} ⊂ K̂Ω, and K̂Ω is not relatively compact in Ω.

Lemma 1.19. Let Ω be a holomorphically convex domain in Cn. Then there is a
compact exhaustion (Kj)j of Ω by holomorphically convex sets Kj .

Proof. Since Ω is holomorphically convex, one can use ?? (f).
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This can be used to construct unbounded holomorphic functions.

Lemma 1.20. Let (Kj)j be a compact exhaustion of Ω by holomorphically convex
sets Kj . trose that pj ∈ Kj+1 \Kj for j = 1, 2, . . . . Then there exists f ∈ H(Ω) such
that limj→∞ |f(pj)| =∞.

Proof. The desired function f is constructed as the limit of a series
∑
m fm, where

fm ∈ H(Ω) is chosen such that

|fm|Km < 2−m, m = 1, 2, . . . , (1.9)

and

|fj(pj)| > j + 1 +
j−1∑
m=1
|fm(pj)|, j = 2, 3, . . . . (1.10)

We construct the sequence (fm)m inductively: set f1 = 0, and if k ≥ 2, trose that
f1, . . . , fk−1 have already been found such that (1.9) and (1.10) hold. By ?? (g),
since pk /∈ (Kk )̂ Ω, there exists fk ∈ H(Ω) with |fk|Kk < 2−k and such that (1.10)
holds.
Now (1.9) implies that f =

∑∞
j=1 fj converges uniformly on all compact subsets of

Ω. Hence f ∈ H(Ω). Furthermore (1.10) implies

|f(pj)| ≥ |fj(pj)| −
∑
m 6=j

|fm(pj)| > j + 1−
∑
m>j

|fm(pj)|, j ≥ 2.

Then (1.9) implies that
∑
m>j |fm(pj)| <

∑
m>j 2−m ≤ 1, and hence that |f(pj)| >

j.

It is now easy to show that a domain Ω is holomorphically convex if and only if
for every sequence (pj)j in Ω without limit point in Ω there is f ∈ H(Ω) with
supj |f(pj)| = ∞. In addition, one can now use Lemma 1.17 to show that every
convex domain in Cn is holomorphically convex (see Exercises).
Now we introduce a class of domains which generalize the polydiscs.

Definition 1.21. An open set Ω ⊂⊂ Cn is called an analytic polyhedron if there are
a neighborhood U of Ω and finitely many functions f1, . . . , fk ∈ H(U), such that

Ω = {z ∈ U : |f1(z)| < 1, . . . , |fk(z)| < 1}.

Example 1.22. Let 0 < q < 1. Then

Ω = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1, |z1z2| < q}

is an analytic polyhedron which is not a convex domain, see Fig. 1.3.

Theorem 1.23. Every analytic polyhedron is holomorphically convex.
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|z1|

|z2|

1

1

q

q0

Fig. 1.3

Proof. Let Ω be like in 1.21. If K ⊂ Ω is compact, then rj := |fj |K < 1, for
j = 1, . . . , k. It follows that

K̂Ω ⊂ {z ∈ U : |f1(z)| ≤ r1, . . . , |fk(z)| ≤ rk},

and the set on the right hand side is relatively compact in Ω.

It is relatively easy to show that holomorphically convex domains are domains of
holomorphy. For this aim we need some preparations which are similar to the proof
of Theorem ??.

Lemma 1.24. Let Ω be a domain in Cn. Let U be a connected neighborhood of p ∈ bΩ
and let Ω1 ⊂ U ∩Ω be a nonempty connected component of U ∩Ω. Then bΩ1 ∩ (U ∩
bΩ) 6= ∅.

Proof. Since Ω1 is a component of the open set U ∩Ω, it follows that Ω1 is open in
Cn and closed in U ∩ Ω. Since U is connected and Ω1 6= U, one has that Ω1 cannot
be closed in U. Hence there exists q ∈ (bΩ1 ∩U) \Ω1. Since Ω1 ⊂ Ω and Ω1 is closed
in U ∩ Ω, we have q ∈ bΩ, and so q ∈ bΩ1 ∩ (U ∩ bΩ).

Lemma 1.25. Let (Km)m be a compact exhaustion of the domain Ω in Cn. Then
there are a subsequence (mj) of N and a sequence (pj)j of points in Ω such that
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(a) pj ∈ Kmj+1 \Kmj , for j = 1, 2, . . . , and
(b) for every p ∈ bΩ and every connected neighborhood U of p, each component Ω1
of U ∩ Ω contains infinitely many points from (pj)j .

Proof. Let (ak)k be an enumeration of the points of Ω with rational coordinates.
Let rk = dist(ak, bΩ). Then the balls Bk = B(ak, rk) are contained in Ω. Let (Qj)j
be a sequence of such balls Bk which contains each Bk infinitely many times; for
example the sequence B1, B1, B2, B1, B2, B3, B1, . . . . Now take Km1 = K1 and use
induction: assume that l > 1 and p1, . . . , pl−1 and Km1 , . . . ,Kml have been chosen
so that (a) holds for j = 1, . . . , l − 1. Since Ql is not contained in any compact
subset of Ω, we may choose pl ∈ Ql \Kml and ml+1 such that pl ∈ Kml+1 .Then (a)
holds for all j = 1, 2, . . . . We claim that the points (pj)j statisfy (b): given Ω1 as in
(b) there is a point q ∈ bΩ1 ∩ (U ∩ bΩ), see Lemma 1.24. Hence there is aν ∈ Ω1
with rational coordinates sufficiently close to q, so that Bν ⊂ Ω1. Since Bν occurs
infinitely many times in the sequence (Qj)j , and pj ∈ Qj for j = 1, 2, . . . , the ball
Bν contains infinitely many points of the sequence (pj)j , and we are done.

Theorem 1.26. Every holomorphically convex domain Ω in Cn is a domain of holo-
morphy.

Proof. We can choose a compact exhaustion (Kj)j of Ω with by holomorphically
convex sets Kj . We apply Lemma 1.20 to the sequences (pj)j and (Kmj )j given
by Lemma 1.25 to get f ∈ H(Ω) with limj→∞ |f(pj)| = ∞. We claim that f is
completely singular at every point p ∈ bΩ. If Ω1 is a component of U ∩Ω, where U is
a connected neighborhood of p, trose there exists h ∈ H(U) with f |Ω1 = h|Ω1 . Now
we replace U by U ′ ⊂⊂ U and we replace Ω1 by a component Ω′1 of U ′ ∩ Ω which
meets Ω1, then we may assume that |h|Ω′

1
≤ |h|U ′ <∞. Hence f would have to be

bounded on Ω′1, and this contradicts Lemma 1.25 (b) and limj→∞ |f(pj)| =∞.

Using 1.22 we have an example of a domain of holomorphy which is not convex. We
now introduce the suitable generalization of convexity to characterize domains of
holomorphy.

Definition 1.27. A C2 real valued function ϕ on Ω is plurisubharmonic, if

i∂∂ϕ(t, t)(p) :=
n∑

j,k=1

∂2ϕ

∂zj∂zk
(z) tjtk ≥ 0,

for all t = (t1, . . . , tn) ∈ Cn and all z ∈ Ω.
ϕ is strictly plurisubharmonic if

i∂∂ϕ(t, t)(p) :=
n∑

j,k=1

∂2ϕ

∂zj∂zk
(z) tjtk > 0,

for all t ∈ Cn, t 6= 0.
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Remark 1.28. (a) A C2 real valued function ϕ on Ω is plurisubharmonic, if and only
if for every a ∈ Ω and w ∈ Cn the function u 7→ ϕ(a + uw) is subharmonic on
{u ∈ C : a+ uw ∈ Ω}, see Exercises.
For technical reasons it is convenient to include upper semicontinuous functions and
to admit the value −∞ in the definition of plurisubharmonic functions, where one
has to take the general definition of subharmonicity ??.
(b) Suppose r ∈ C2(U) is a defining function for a domain Ω ⊂ Cn, where U is a
neighborhood of a point p ∈ bΩ. One can write the Taylor expansion of r at p in
complex form:

r(p+ t) = r(p) + 2<(∂rp(t) +Qp(r; t)) + i∂∂r(t, t)(p) + o(|t|2), (1.11)

where t = (t1, . . . , tn) ∈ Cn,

∂rp(t) =
n∑
j=1

∂r

∂zj
(p) tj , (1.12)

Qp(r; t) = 1
2

n∑
j,k=1

∂2r

∂zj∂zk
(p)tjtk. (1.13)

Definition 1.29. A bounded domain Ω in Cn is called strictly pseudoconvex if there
are a neighborhood U of bΩ and a strictly plurisubharmonic function r ∈ C2(U) such
that

Ω ∩ U = {z ∈ U : r(z) < 0}.

The simplest example of a strictly pseudoconvex domain is a ball B(p,R), the func-
tion r(z) = |z − p|2 − R2 is strictly plurisubharmonic , and B(p,R) = {z ∈ Cn :
r(z) < 0}.

In the following we shall show that a strictly pseudoconvex domain is (at least)
locally a domain of holomorphy.

Lemma 1.30. Let U be open in Cn and trose r ∈ C2(U) is strictly plurisubharmonic
on U. IfW ⊂⊂ U, there are positive constants c > 0 and ε > 0, such that the function
F (r)(ζ, z) defined on U × Cn by

F (r)(ζ, z) =
n∑
j=1

∂r

∂ζj
(ζ) (ζj − zj)−

1
2

n∑
j,k=1

∂2r

∂ζj∂ζk
(ζ)(ζj − zj)(ζk − zk) (1.14)

satisfies the estimate

2<F (r)(ζ, z) ≥ r(ζ)− r(z) + c|z − ζ|2 (1.15)

for ζ ∈W and |z − ζ| < ε.
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Proof. From (1.11) with p = ζ ∈ U and t = z − ζ, we obtain the Taylor expansion
of r(z) at ζ :

r(z) = r(ζ)− 2<F (r)(ζ, z) + i∂∂r(z − ζ, z − ζ)(ζ) + o(|z − ζ|2). (1.16)

Since r is strictly plurisubharmonic, we have i∂∂r(t, t)(p) ≥ κ|t|2 where κ =
min{i∂∂r(t, t)(p) : |t| = 1} is positive. So, if 0 < c < κ, the continuity of
the second derivatives of r implies i∂∂r(t, t)(z) ≥ c|t|2, for t ∈ Cn and all z
in some neighborhood of p. As W ⊂ U is compact there is c > 0 such that
i∂∂r(z − ζ, z − ζ)(ζ) ≥ 2c|z − ζ|2 for ζ ∈ W and z ∈ Cn. Now we use Taylor’s
theorem and the uniform continuity on Wof the derivatives of r up to order 2 to
show that there exists ε > 0 such that the error term o(|z − ζ|2) in (1.16) can be
estimated in the form o(|z − ζ|2) ≤ c|z − ζ|2 uniformly for ζ ∈W and if |z − ζ| < ε.

The desired estimates (1.15) now follows from (1.16).

Theorem 1.31. Let Ω be a strictly pseudoconvex domain. Then every point p ∈ bΩ
has a neighborhood V such that V ∩ Ω is a (weak) domain of holomorphy.

Proof. Let r ∈ C2(U) be strictly plurisubharmonic in a neighborhood U of bΩ so
that Ω∩U = {z ∈ U : r(z) < 0}. Choose c, ε as in Lemma 1.30 such that (1.15) holds
for ζ ∈ bΩ. For ζ ∈ bΩ we have r(ζ) = 0, and (1.15) implies that <F (r)(ζ, z) > 0 for
z ∈ Ω with |z − ζ| < ε (choose ε so small that B(ζ, ε) ⊂ U for ζ ∈ bΩ). If p ∈ bΩ is
fixed, set V = B(p, ε/2). We claim that V ∩Ω is a weak domain of holomorphy: for
ζ ∈ V ∩ bΩ the function

fζ(z) := 1
F (r)(ζ, z)

is holomorphic on V ∩ Ω and completely singular at ζ; for any of the remaining
boundary points ζ ∈ bV ∩ Ω of V ∩ Ω the convexity of V implies that there is
g ∈ H(V ) which is completely singular at ζ, see Lemma 1.17.

Remark 1.32. We mention different types of pseudoconvexity:
Let Ω be a bounded domain in Cn with n ≥ 2, and let r be a C2 defining function
for Ω. Ω is called Levi pseudoconvex at p ∈ bΩ, if the Levi form

i∂∂r(t, t)(p) :=
n∑

j,k=1

∂2r

∂zj∂zk
(p) tjtk ≥ 0

for all

t ∈ T 1,0
p (bΩ) = {t = (t1, . . . , tn) ∈ Cn :

n∑
j=1

tj(∂r/∂zj)(p) = 0},

where T 1,0
p (bΩ) is the space of type (1, 0) vector fields which are tangent to the

boundary at the point p.
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The domain Ω is said to be strictly Levi pseudoconvex at p, if the Levi form is
strictly positive for all such t 6= 0. Ω is called a Levi pseudoconvex domain if Ω is
Levi pseudoconvex at every boundary point of Ω.
A bounded domain Ω in Cn is pseudoconvex if Ω has a C2 strictly plurisubharmonic
exhaustion function ϕ : Ω −→ R, i.e. the sets {z ∈ Ω : ϕ(z) < c} are relatively
compact in Ω, for every c ∈ R. (Here there is no assumption on the boundary of Ω.)
It turns out that for bounded domains with C2 boundary the concepts of (strictly)
Levi pseudoconvex and (strictly) pseudoconvex domains coincide. Furthermore, the
following assertion holds:
Let Ω be a domain in Cn. The following are equivalent:
(1) Ω is pseudoconvex.
(2) The equation ∂u = f always has a solution u ∈ C∞(p,q)(Ω) for any form f ∈
C∞(p,q+1)(Ω) with ∂f = 0, q = 0, 1, . . . , n− 1.

(3) Ω is a domain of holomorphy.
The proof is beyond the scope of this book. The most difficult part is the solution of
the Levi problem, to prove that a pseudoconvex domain is a domain of holomorphy,
see [1; 6; 3].

1.4 Exercises

111) Show that the Cayley transform Φ(z1, . . . , zn) = (w1, . . . , wn), where wj =
zj/(1 + zn) for 1 ≤ j ≤ n− 1 and wn = i(1− zn)/(1 + zn) is a biholomorphic map
from B −→ U.

112) Let n > 1. Show that the boundary

bU = {(z′, t+ i|z′|2) : z′ ∈ Cn−1, t ∈ R}

of the Siegel upper half-space can be identified with Cn−1 ×R. Show that the mul-
tiplication

(z′, t) · (ζ ′, τ) = (z′ + ζ ′, t+ τ + 2=〈z′, ζ ′〉)

turns bU into a group which is non-abelian. This group is called the Heisenberg 4

group.

113) Let f be holomorphic in a neighborhood of the closed polydisc P (0, r) ⊂ Cn,
where n > 1, with the possible exception of the origin (0, . . . , 0) ∈ Cn. Suppose that

4 Heisenberg, Werner (1901–1976)
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not all zj , where 1 ≤ j ≤ n− 1, are zero. Prove that

f(z1, . . . , zn) = 1
2πi

∫
|ζn|=rn

f(z1, . . . zn−1, ζn)
ζn − zn

dζn,

and show that the integral on the right hand side depends holomorphically on
z1, . . . , zn for all z = (z1, . . . , zn) ∈ P (0, r). Therefore holomorphic functions of
several variables do not have isolated zeros.

114) Let Ω be a bounded domain in Cn, n > 1, with a defining function ρ ∈ C2 which
vanishes precisely on bΩ and dρ 6= 0 on bΩ. Show that the condition ∂u∧ ∂ρ = 0 on
bΩ, can also be stated as

n∑
j=1

tj
∂u

∂zj
= 0 on bΩ,

for all (t1, . . . , tn) ∈ Cn with
∑n
j=1 tj

∂ρ
∂zj

= 0 on bΩ.We say that u is a CR-function.
Show that this definition does not depend on the choice of the defining function ρ.

115) Use Lemma 1.17 and Lemma 1.20 in order to show that every convex domain
in Cn is holomorphically convex.

116) Let 0 < q < 1. Define

Ω = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1, |z1z2| < q}.

Show that Ω is a domain of holomorphy, which is not convex.

117) Let Ω be a domain in Cn. Show that a C2 real valued function ϕ on Ω is
plurisubharmonic, if and only if for every a ∈ Ω and w ∈ Cn the function u 7→
ϕ(a+ uw) is subharmonic on {u ∈ C : a+ uw ∈ Ω}.

118) Let Ω be a domain in Cn and let f ∈ H(Ω). Show that |f |α, α > 0, and log |f |
are plurisubharmonic on Ω.

119) Let Ω ⊆ Cn and G ⊆ Cm be domains and let F : G −→ Ω be a holomorphic
map. trose that u ∈ C2(Ω) is plurisubharmonic on Ω. Show that u ◦ F is plurisub-
harmonic on G.

1.5 Notes

In Section 1.2 we have followed the expositions of L. Hörmander [1] and R.M. Range
[6]. For a thorough treatment of Lewy’s theorem 1.15 including interesting conse-
quences for Hardy spaces the reader should consult E. Stein [7]. Pseudoconvexity is
also crucial for the inhomogeneous Cauchy Riemann equations, as well as plurisub-
harmonic functions, see Chapter 10 and 11. The Levi problem to construct a holo-
morphic function on a pseudoconvex domain which is completely singular at the
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boundary is solved by means of integral representations in [6]. Another proof uses
the powerful method of global solutions and estimates for the inhomogeneous Cauchy
Riemann equations [1], this method will be discussed and exploited in more details
in the following chapters.



2 Nuclear Fréchet spaces of holomorphic
functions

In this chapter we investigate the spaces H(Ω) of all holomorphic functions on a
domain Ω endowed with the topology of uniform convergence on all compact subsets
of Ω. This a complete metric space, a Fréchet space. We start with some general facts
about Frèchet spaces such as fundamental systems of seminorms and the Montel
property. We indicate that H(Ω) can be seen as a so-called projective limit of Hilbert
spaces, we introduce the concept of a nuclear Fréchet space and prove thatH(DR(0))
is a nuclear Fréchet space. In addition, the dual space of H(DR(0)) is determined, it
can be identified as a space of holomorphic functions on the complement of DR(0) -
Köthe duality (Section 2.2). The spacesH(Ω) of holomorphic functions together with
their dual spaces are described as so-called Köthe sequence spaces, which are spaces
of the sequences of the Taylor coefficients of the holomorphic functions together
with certain weights. The duality is used to prove a Runge type approximation
theorem. A similar approach was already the main idea for the proof of Theorem
??. Furthermore, it is pointed out that the spaces H(Ω) endowed with the topology
of uniform convergence on all compact subsets of Ω are not normable (see Exercises
Section 2.3).

2.1 General properties of Fréchet spaces

Assuming basic knowledge of general topology we collect important facts about
topological vector spaces.

A topological vector space X is a vector space endowed with a topology such that
the addition + : X × X −→ X and scalar multiplication . : C × X −→ X are
continuous.

X is a normed vector space if there is a norm ‖.‖ on X; each open set of X can be
written as a union of open balls {x ∈ X : ‖x− x0‖ < r}.

X is a metric topological vector space if there is a metric d : X ×X :−→ R+ on X,
each open set of X can be written as a union of open balls {x ∈ X : d(x, x0) < r}; we
will also suppose that the metric is translation invariant, i.e. d(x+u, y+u) = d(x, y),
for all x, y, z ∈ X.

A subset M of a vector space X is called absolutely convex , if λx + µy ∈ M for
each x, y ∈M and λ, µ ∈ C with |λ|+ |µ| ≤ 1.

A locally convex vector space X is a topological vector space for which each point
has neighborhood basis consisting of absolutely convex sets.
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Let X be a locally convex vector space and let U be an absolutely convex 0-
neighborhood in X. Then ‖.‖U : x 7→ inf{t > 0 : x ∈ tU} is a continuous seminorm
on X; we call ‖.‖U the Minkowski functional of U.

One can explain the topology of a locally convex vector space X in a different way:
a family U of 0-neighborhoods is a fundamental system of 0-neighborhoods, if for
each 0-neighborhood U there exists V ∈ U and there exists ε > 0 such that εV ⊂ U.
A family (pα)α∈A of seminorms is called a fundamental system of seminorms, if the
sets Uα = {x ∈ X : pα(x) < 1} constitute a fundamental system of 0-neighborhoods
of X. We will write (X, (pα)α∈A)) to refer to that.

Let X and Y be locally convex vector spaces with fundamental systems (pα)α∈A and
(qβ)β∈B of seminorms. A linear mapping T : X −→ Y is continuous if and only if
for each β ∈ B there exist α ∈ A and a constant C > 0 such that qβ(Tx) ≤ Cpα(x),
for all x ∈ X.

A linear functional x′ on X is continuous if and only if there exist α ∈ A and a
constant C > 0 such that |x′(x)| ≤ Cpα(x), for all x ∈ X.
We indicate that the consequences of the Hahn-Banach Theorem ?? and ?? are also
true for locally convex vector spaces, one has to replace the norm in the proof of
Theorem ?? by one of the seminorms defining the topology of a locally convex vector
space; a subspace Y of a locally convex vector space X is dense in X if and only if
each continuous linear functional on X, which vanishes on Y, also vanishes on the
whole of X.

The appropriate concept of a bounded subset in X reads as follows: a subset B of
a locally convex vector space is said to be bounded if to every 0-neighborhood U in
X corresponds a number s > 0 such that B ⊂ tU for every t > s. It is easily seen
that B is bounded if and only if supx∈B pα(x) <∞ for all α ∈ A, where (pα)α∈A is
a fundamental system of seminorms for the topology of X, compare with Definition
??.

Now letX ′ be the space of all continuous linear functionals on a locally convex vector
space (X, (pα)α∈A)). We endow the dual space X ′ with the topology of uniform
convergence on all bounded subsets of X; which can be expressed in the following
way: (X ′, (pB)B∈B), where pB(x′) = supx∈B |x′(x)| and B denotes the family of all
bounded subsets of X. It is called the strong topology on X ′.

2.2 The space H(DR(0)) and its dual space

Our main example is the the space H(Ω) of all holomorphic functions on a domain
Ω ⊆ Cn endowed with the topology of uniform convergence on all compact subsets
of Ω. Let (Km)m∈N be a compact exhaustion of Ω. The topology of H(Ω) can be
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described by the increasing system of norms |f |m := supz∈Km |f(z)|, for f ∈ H(Ω).
The system of norms (|.|m)m∈N is a fundamental system of (semi)norms. Let f, g ∈
H(Ω) and define

d(f, g) =
∞∑
m=1

1
2m

|f − g|m
1 + |f − g|m

. (2.1)

It is easily seen that d(., .) is a metric which generates the original topology of
uniform convergence on all compact subsets of Ω.
By Weierstraß’ Theorem, ?? H(Ω) is a complete metric vector space. These spaces
are called Fréchet spaces. Montel’s Theorem ?? indicates that all closed bounded
subsets of H(Ω) are compact subsets of H(Ω).
The topology of H(Ω) does not stem from a single norm, but from a countable
system of norms, see Exercises Section 2.3.

In sake of simplicity we describe the following properties of H(Ω) for 1-dimensional
discs DR(0), most of the results can be generalized to arbitrary domains in Cn using
standard functional analysis methods.
Take an increasing sequence rm ↗ R and define |f |m := sup|z|≤rm |f(z)| for f ∈
H(DR(0)). Using (??) we find out that for each m ∈ N there exists ` ∈ N and a
constant C, depending only on m and `, such that

|f |m ≤ C (
∫

Dr` (0)

|f(z)|2 dλ(z))1/2, (2.2)

for each f ∈ H(DR(0)); the inequality

‖f‖m := (
∫

Drm (0)

|f(z)|2 dλ(z))1/2 ≤ C′ |f |m (2.3)

is clear. Hence, using the Hilbert norms ‖.‖m, the space (H(DR(0)), (‖.‖m)m∈N)
carries the original topology of uniform convergence on all compact subsets ofDR(0).

Now we consider the Bergman spaces A2(Drm(0)) endowed with the norm ‖.‖m, see
Section ??. If rm < r` < R, we have the inclusions

H(DR(0)) ⊂ A2(Dr`(0)) ⊂ A2(Drm(0));

and we can show that the natural embedding

ι`,m : A2(Dr`(0)) ↪→ A2(Drm(0))

is a Hilbert-Schmidt operator.
Fix m ∈ N and set

φ`n(z) :=
√
n+ 1
π

zn

rn+1
`

,
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for n = 0, 1, 2, . . . . Then (φ`n)∞n=0 constitutes an orthonormal basis in A2(Dr`(0)),
see Section ??. By Theorem ?? we have to show that

∞∑
n=0
‖ι`,m(φ`n)‖2m <∞. (2.4)

An easy computation shows that

‖ι`,m(φ`n)‖2m = (rm/r`)2n+2,

and as r` > rm we get (2.4).
We just showed that for each m ∈ N there exists ` ∈ N such that the natural
embedding

ι`,m : A2(Dr`(0)) ↪→ A2(Drm(0))

is a Hilbert-Schmidt operator, we say that H(DR(0)) is a nuclear Fréchet space.

Using the Taylor series expansion and its uniqueness property it is shown that the
spaces H(DR(0)) are topologically isomorphic to certain sequence spaces (Köthe1

sequence spaces):

Theorem 2.1. Let rm ↗ R be an increasing sequence of positive numbers. Define

ΛR = {(ξn)∞n=0 : pm((ξn)∞n=0) :=
∞∑
n=0
|ξn|rnm <∞,∀m ∈ N}.

Then the spaces (H(DR(0)), (|.|m)m∈N) and (ΛR, (pm)m∈N) are topologically iso-
morphic, where the isomorphism T : ΛR −→ H(DR(0)) is given by

T ((ξn)∞n=0)(z) =
∞∑
n=0

ξnz
n , z ∈ DR(0),

and

T−1(f) =
(
f (n)(0)
n!

)∞
n=0

, f ∈ H(DR(0)).

Proof. For (ξn)∞n=0 ∈ ΛR we have

|T ((ξn)∞n=0|m = sup
|z|≤rm

|
∞∑
n=0

ξnz
n| ≤

∞∑
n=0
|ξn| rnm = pm((ξn)∞n=0).

On the other side, we get from Cauchy’s estimates ?? that∣∣∣∣f (n)(0)
n!

∣∣∣∣ ≤ |f |`rn` ,

1 Köthe, Gottfried (1905-1989)
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hence, if r` > rm, we get

pm(T−1(f)) =
∞∑
n=0

∣∣∣∣f (n)(0)
n!

∣∣∣∣ rnm
≤

∞∑
n=0

|f |`
rn`

rnm

=

( ∞∑
n=0

rnm
rn`

)
|f |`.

In a similar way, we can describe the dual space of H(DR(0)). Recall that L is
a continuous linear functional on (H(DR(0)), (|.|m)m∈N) if and only if there exist
m ∈ N and a constant C > 0 such that |L(f)| ≤ C |f |m for each f ∈ H(DR(0)).

Theorem 2.2. Let rm ↗ R be an increasing sequence of positive numbers. Define

Λ′R = {(ηn)∞n=0 : ∃m ∈ N with qm((ηn)∞n=0) := sup
n

|ηn|
rnm

<∞}.

Then the dual space H′(DR(0)) is isomorphic to the sequence space (Λ′R, (qm)m∈N).

Proof. We indicate that the seminorms (qm)m∈N are decreasing in m, and that
(Λ′R, (qm)m∈N) is not a metric space, but a dual metric space.
Let L ∈ H′(DR(0)). Then there exist m ∈ N and a constant C > 0 such that
|L(f)| ≤ C |f |m for each f ∈ H(DR(0)), in particular applying L to the monomials
z 7→ zn we obtain a sequence ηn := L(z 7→ zn) such that

|ηn| ≤ C rnm, n = 0, 1, 2, . . . .

This implies that (ηn)∞n=0 ∈ Λ′R.
If, for the other direction, (ηn)∞n=0 ∈ Λ′R is given with qm((ηn)∞n=0) = supn

|ηn|
rnm

<∞,
we define a linear functional on H(DR(0)) by

L(f) =
∞∑
n=0

ηn
f (n)(0)
n! ,

for an arbitrary function f(z) =
∑∞
n=0

f(n)(0)
n! zn inH(DR(0)).Again, from Cauchy’s

estimates ??, we obtain

|L(f)| ≤
∞∑
n=0
|ηn|
|f |m+1
rnm+1

= |f |m+1

∞∑
n=0

rnm|ηn|
rnmr

n
m+1

≤ qm((ηn)∞n=0) |f |m+1

∞∑
n=0

rnm
rnm+1

.
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Hence L ∈ H′(DR(0)).

Furthermore, we associate to each sequence (ηn)∞n=0 ∈ Λ′R a function F being holo-
morphic in a neighborhood of ∞, i.e. in a set {w ∈ C : |w| > `}, and with the
property F (∞) = limz→0 F (1/z) = 0. This is done in the following way: suppose
that supn

|ηn|
rnm

<∞, then ` := lim supn→∞ |ηn|1/n ≤ rm < R. Hence the function

F (w) =
∞∑
n=0

ηn
wn+1 ,

is holomorphic in {w : |w| > `} and satisfies F (∞) = 0.We know from the last proof
that the expression

L(f) =
∞∑
n=0

ηn
f (n)(0)
n! , f ∈ H(DR(0))

represents an arbitrary continuous linear functional on H(DR(0)). Let ` < ρ < R

and γρ(t) = ρeit, t ∈ [0, 2π]. Then

1
2πi

∫
γρ

F (w)f(w) dw = 1
2πi

∫
γρ

∞∑
n=0

ηn
wn+1 f(w) dw

=
∞∑
n=0

ηn
1

2πi

∫
γρ

f(w)
wn+1 dw

=
∞∑
n=0

ηn
f (n)(0)
n!

= L(f).

Given L ∈ H′(DR(0)), we obtain the corresponding holomorphic function F, repre-
senting L as before, by Cauchy’s integral formula

L

(
w 7→ 1

z − w

)
= 1

2πi

∫
γρ

F (w)
z − w

dw = F (z), (2.5)

and
L

(
w 7→ 1

(z − w)k+1

)
= F (k)(z)

k! , (2.6)

where |z| > ρ.

Let H0(R) be the space of all functions holomorphic in an open neighborhood of
{z ∈ C : |z| ≥ R}, such that F (∞) = 0. We have just shown that the dual space
H′(DR(0)) can be identified with H0(R), a space of holomorphic functions in a
neighborhood of the complement of DR(0), which is known as the Köthe duality.
This will now be used, together with the Hahn-Banach Theorem, to give a simple
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proof of a Runge type approximation theorem; compare with the proof of Theorem
?? where a similar method was used.
For this purpose we have to explain the concept of a subsetW ⊂ C with multiplicity
m : W −→ {1, 2, 3, . . . } ∪ {∞}. By a limit point of (W,m) we mean an ordinary
limit point of W or a point w ∈ W with m(w) = ∞. Given a set (W,m) with
multiplicity, let R(W ) denote the following collection of functions: if w ∈W, w 6=∞
and m(w) < ∞, then z 7→ 1/(z − w) belongs to R(W ); if w 6= ∞ and m(w) = ∞,
then the functions z 7→ 1/(z −w)k, for k = 1, 2, . . . belong to R(W ); if ∞ ∈W and
m(∞) =∞, then the functions z 7→ zk, for k = 0, 1, 2, . . . belong to R(W ).

Theorem 2.3. If W ⊂ C \DR(0) is a set with multiplicity which has a limit point
in C \DR(0), then the linear span of R(W ) is dense in H(DR(0)).

Proof. To show that the linear span of R(W ) is dense in H(DR(0)), we take a con-
tinuous linear functional L ∈ H′(DR(0)) which vanishes on the linear span of R(W ).
Using Corollary ??, we will be finish if we can show that L vanishes on H(DR(0)).
The assumptions on R(W ) imply that the holomorphic function F corresponding to
L by (2.5) vanishes on a set with limit point or, using (2.6), has the property that
F (k)(ζ) = 0, for k = 0, 1, 2, . . . and some ζ ∈ C \DR(0). In both cases, the Identity
Theorems ?? and ?? imply that F ≡ 0, and hence L = 0 on H(DR(0)).

2.3 Exercises

140) Let (Km)m∈N be a compact exhaustion of the domain Ω ⊆ Cn and let |f |m :=
supz∈Km |f(z)|, for f ∈ H(Ω). Show that

d(f, g) =
∞∑
m=1

1
2m

|f − g|m
1 + |f − g|m

defines a translation invariant metric on H(Ω).

141) Show that the metric d(., .) generates the original topology of uniform conver-
gence on all compact subsets of Ω.

142) Let X be a locally convex vector space and let U be an absolutely convex 0-
neighborhood inX. Show that the Minkowski functional ‖x‖U = inf{t > 0 : x ∈ tU}
is a continuous seminorm on X.

143) Let X be a locally convex vector space. A collection Λ of neighborhoods of a
point x ∈ X is called a local base at x if every neighborhood of x contains a member
of Λ. A set B ⊂ X is called balanced if cB ⊂ B for every c ∈ C with |c| ≤ 1. Show
that X has a local base consisting of balanced convex sets.
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144) Let X be a locally convex vector space and let U be a 0-neighborhhod in X.
Let (rj)j a strictly increasing sequence of positive numbers with rj →∞ as j →∞.
Show that

X =
∞⋃
j=1

rjU.

145) LetX be a locally convex vector space. Show that every compact subsetK ⊂ X
is bounded.
Hint: Choose a 0-neighborhood U and a balanced 0-neighborhood W such that
W ⊂ U and K ⊂

⋃∞
n=1 nW.

146) Let (sj)j be a strictly decreasing sequence of positive numbers such that
limj→∞ sj = 0 and V be a bounded subset of the locally convex vector space X.
Show that the collection {sjV : j ∈ N} is a local base for X.

147) Show that each finite dimensional subspace of a locally convex subspace is
closed.

148) X is locally compact if 0 has a neighborhood whose closure is compact. Show
that each locally compact locally convex vector space has finite dimension.
Hint: take a 0-neighborhood V whose closure is compact, since V is also bounded,
the sets 2−nV, n ∈ N form a local base for X. The compactness of V shows that
there exist x1, . . . , xm ∈ X such that

V ⊂ (x1 + 1
2V ) ∪ · · · ∪ (xm + 1

2V ).

Let Y be the vector space spanned by x1, . . . , xm. Show that Y = X.

149) Let Ω ⊆ Cn be a domain. Show that H(Ω) endowed with the topology of
uniform convergence on all compact subsets of Ω is not normable, i.e. has no bounded
0-neighborhood.
Hint: if U is a bounded 0-neighborhood, Montel’s Theorem ?? implies that H(Ω) is
locally compact, now use Exercise 148.

150) Show that the system of seminorms

pr(f) := sup
0≤k<∞

|ak| rk, r < R

where f ∈ H(DR(0)) has Taylor series expansion f(z) =
∑∞
k=0 akz

k, defines the
original topology of uniform convergence on all compact subsets of DR(0).

151) Show that for each 0 < r < R there exists 0 < ρ < R and a constant C,
depending on r, such that

∞∑
k=0

|ak| rk ≤ C sup
|z|≤ρ

|f(z)|,

for each f ∈ H(DR(0)) with Taylor series expansion f(z) =
∑∞
k=0 akz

k.
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2.4 Notes

For a thorough discussion of locally convex vector spaces related to real and complex
analysis, in particular of nuclear Fréchet spaces, the reader should consult [5] or [2].
The Köthe duality together with its applications is presented in [2]. Additional details
and applications to different problems in complex analysis are given in [4].
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