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Chapter 1

Bounded operators

1.1 The spectrum of bounded operators

Let H1 and H2 be separable Hilbert spaces. L(H1, H2) denote the space of all
bounded linear operators from H1 to H2 endowed with the topology generated
by the operator norm

‖A‖ = sup{‖Au‖ : ‖u‖ ≤ 1}.

In this way L(H1, H2) becomes a Banach space. We write L(H) for L(H,H).

Definition 1.1. The spectrum σ(T ) of an operator T ∈ L(H) is the set of
all λ ∈ C, such that λI − T has no inverse in L(H). The complement ρ(T ) =
C\σ(T ) is called the resolvent set. If λ ∈ ρ(T ) the operator (λI−T )−1 ∈ L(H)
is called the resolvent of T at λ and is denoted by RT (λ).We have an operator-
valued function

RT : ρ(T ) −→ L(H).

An operator T ∈ L(H) is called normal if TT ∗ = T ∗T.

Proposition 1.2. Let T ∈ L(H). Then the spectrum σ(T ) of T is a compact
subset of C and |λ| ≤ ‖T‖, for every λ ∈ σ(T ).

Proof. First we show that ρ(T ) is open. Let λ ∈ ρ(T ). Then

α = ‖RT (λ)‖−1 > 0.

Let µ ∈ C with |µ| < α. We will show that (λ+µ)I−T has a bounded inverse.
Then we proved that ρ(T ) is open. We have

(λ+ µ)I − T = λI − T + µI

= (λI − T )[I + µ(λI − T )−1]
= (λI − T )(I + µRT (λ)).

Formally

(I + µRT (λ))
−1 = I +

∞∑
k=1

(−1)k(µRT (λ))k,
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but as |µ| < α we have

‖
∞∑
k=1

(−1)k(µRT (λ))k‖ ≤
∞∑
k=1

|µ|k ‖RT (λ)‖k =
∞∑
k=1

(|µ|/α)k <∞,

therefore the partial sums of
∑∞

k=1(−1)k(µRT (λ))k form a Cauchy sequence in
L(H). Since L(H) is complete, we obtain that

∞∑
k=1

(−1)k(µRT (λ))k ∈ L(H),

and ρ(T ) is open.
If η ∈ C with |η| > ‖T‖, then I − T/η has a bounded inverse, since

(I − T/η)−1 = I +

∞∑
k=1

(T/η)k.

This implies that ηI − T has a bounded inverse. Hence, if λ ∈ σ(T ), then
|λ| ≤ ‖T‖, and σ(T ) is a bounded set.

The resolvent has the following properties:

Lemma 1.3. If λ, µ ∈ ρ(T ), then

RT (λ)−RT (µ) = (µ− λ)RT (λ)RT (µ). (1.1)

If λ ∈ ρ(T ) and |λ− µ| < ‖RT (λ)‖−1, then

RT (µ) =
∞∑
k=0

(λ− µ)k[RT (λ)]k+1, (1.2)

therefore one says that RT is a holomorphic operator valued function.

Proof. (1.1) follows from

RT (λ) = RT (λ)(µI − T )RT (µ) = RT (λ)[(λI − T ) + (µ− λ)I]RT (µ)
= RT (µ) + (µ− λ)RT (λ)RT (µ).

(1.2) follows immediately from the proof of Proposition 1.2.
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1.2 Compact operators

Let H1 and H2 be separable Hilbert spaces and A : H1 −→ H2 a bounded
linear operator. The operator A is compact, if the image A(B1) of the unit
ball B1 in H1 is a relatively compact subset of H2, since H2 is complete this
is equivalent to the concept of a totally bounded set, i.e. for each ε > 0 there
exists a finite number of elements v1, . . . , vm ∈ H2 such that

A(B1) ⊂
m⋃
j=1

B(vj , ε),

where B(vj , ε) = {v ∈ H2 : ‖v − vj‖ < ε}.
Another equivalent definition of compactness is : for each bounded sequence

(uk)k in H1 the image sequence (A(uk))k has a convergent subsequence in H2.
Let K(H1, H2) denote the subspace of all compact operators from H1 to H2.
The following characterization of compactness is useful for the special oper-

ators in the text, see for instance [2]:

Proposition 1.4. Let H1 and H2 be Hilbert spaces, and assume that S : H1 →
H2 is a bounded linear operator. The following three statements are equivalent:

• S is compact.

• For every ε > 0 there is a C = Cε > 0 and a compact operator T = Tε : H1 →
H2 such that

‖Sv‖ ≤ C ‖Tv‖+ ε ‖v‖ . (1.3)

• For every ε > 0 there is a C = Cε > 0 and a compact operator T = Tε : H1 →
H2 such that

‖Sv‖2 ≤ C ‖Tv‖2 + ε ‖v‖2 . (1.4)

Proposition 1.5. K(H1, H2) is a closed subspace of L(H1, H2) endowed with
the operator norm.

Proof. Let A ∈ L(H1, H2). Suppose, for each ε > 0, there is a compact operator
Aε such that ‖A−Aε‖ ≤ ε. Then for each u ∈ H1 we have

‖Au−Aεu‖ ≤ ε‖u‖.

Now we get

‖Au‖ = ‖Au−Aεu+Aεu‖
≤ ‖Au−Aεu‖+ ‖Aεu‖
≤ ε‖u‖+ ‖Aεu‖.

Proposition 1.4 implies that A is compact.
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Proposition 1.6. Suppose that A ∈ K(H1, H2), and that S ∈ L(H1, H1) and
T ∈ L(H2, H2) is a bounded operator on H2. Then both AS and TA are compact.

Proof. If (uk)k is a bounded sequence in H1, then (S(uk))k is also bounded,
because S is a bounded operator. A is compact, so (A(S(uk)))k has a convergent
subsequence. Thus AS is compact.

To show that TA is compact we use Proposition 1.4:

‖TAu‖ ≤ ‖T‖ ‖Au‖ ≤ ‖T‖(ε‖u‖+ C‖Au‖)
≤ ε ‖T‖ ‖u‖+ C ‖T‖ ‖Au‖.

Corollary 1.7. Let H be a Hilbert space. K(H,H) forms a two-sided, closed
ideal in L(H,H).

Theorem 1.8. Let A : H1 −→ H2 be a bounded linear operator.
The following properties are equivalent:
(i) A is compact;
(ii) the adjoint operator A∗ : H2 −→ H1 is compact;
(iii) A∗A : H1 −→ H1 is compact.

The following characterization of compactness uses the uniform boundedness
principle and the concept of weak convergence.

Definition 1.9. A sequence (xk)k in a Hilbert spaceH is a weak null-sequence,
if (xk, x) → 0 for each x ∈ H. A sequence (xk)k converges weakly to x0, if
(xk − x0)k is a weak null-sequence.

Remark 1.10. A weakly convergent sequence (xk)k in a Hilbert space is always
bounded: we have

sup
k
|(xk − x0, x)| <∞,

for all x ∈ H, then, by the uniform boundedness principle,

sup
k
‖xk − x0‖ = sup

k
sup
‖x‖≤1

|(xk − x0, x)| <∞

and therefore ‖xk‖ ≤ ‖xk − x0‖+ ‖x0‖ <∞, for all k ∈ N.
In the same way we can show that each weak Cauchy sequence is bounded.
If A ∈ L(H1, H2) and (xk)k is a weakly convergent sequence in H1, then

(Axk)k converges weakly in H2, which follows from

(Axk −Ax0, y)2 = (xk − x0, A∗y)1,

where y ∈ H2.
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Proposition 1.11. Let A ∈ L(H1, H2) be a bounded operator between Hilbert
spaces. A is compact if and only if (Axk)k converges to 0 in H2 for each weak
null-sequence (xk)k in H1.

The following theorem is the spectral theorem for compact, self adjoint op-
erators:

Theorem 1.12. Let A : H −→ H be a compact, self-adjoint operator on a
separable Hilbert space H. Then there exists a real zero-sequence (µn)n and an
orthonormal system (en)n in H such that for x ∈ H

Ax =

∞∑
n=0

µn(x, en)en,

where the sum converges in the operator norm, i.e.

sup
‖x‖≤1

‖Ax−
N∑
n=0

µn(x, en)en‖ → 0,

as N →∞.

Proposition 1.13. A bounded operator A : H −→ H is compact if and only if
there exists a sequence (Ak)k of linear operators with finite-dimensional range
such that ‖A−Ak‖ → 0 as k →∞.

Proposition 1.14. Let A be a compact self-adjoint operator on a separable
Hilbert space H of infinite dimension. Let (λk)k≥1 denote the eigenvalues of A.
Then the spectrum σ(A) of A has the form

σ(A) = {λk : k ∈ N} ∪ {0}.

Proof. We have λk ∈ σ(A), for all k ∈ N; if 0 /∈ σ(A), then A−1 exists and is
continuous and I = AA−1 is a compact operator. Hence the unit ball in H is
compact and H must be of finite dimension, which is a contradiction.

Now let µ 6= λk, 0 , ∀k and

Ax =

∞∑
k=1

λk(x, xk)xk,

and (yj)j the supplementation of (xk)k to a complete orthonormal system of
H. Then we have

Ix =
∞∑
k=1

(x, xk)xk +
∑
j

(x, yj)yj ,
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and the operator

Bx =

∞∑
k=1

1

λk − µ
(x, xk)xk −

1

µ

∑
j

(x, yj)yj

has norm ‖B‖ = sup{1/|λk−µ|, 1/|µ|}, and is therefore a continuous operator.
In addition, B is the inverse of A − µI, because for each k and j we have
B(A − µI)xk = B(λk − µ)xk = xk and B(A − µI)yj = −Bµyj = yj . Hence
B = (A− µI)−1 and µ /∈ σ(A).

Now we drop the assumption of self-adjointness and obtain

Proposition 1.15. Let A : H1 −→ H2 be a compact operator. There exists a
decreasing zero-sequence (sn)n in R+ and orthonormal systems (en)n≥0 in H1

and (fn)n≥0 in H2, such that

Ax =

∞∑
n=0

sn(x, en)fn , ∀x ∈ H1,

where the sum converges again in the operator norm.

Proof. In order to show this one applies the spectral theorem for the self-adjoint,
compact operator A∗A : H1 −→ H1 and gets

A∗Ax =

∞∑
n=0

s2n(x, en)en, (1.5)

where s2n are the eigenvalues of A∗A. If sn > 0, we set fn = s−1n Aen and get

(fn, fm) =
1

snsm
(Aen, Aem) =

1

snsm
(A∗Aen, em) =

s2n
snsm

(en, em) = δn,m.

For y ∈ H1 with y ⊥ en for each n ∈ N0 we have by (1.5) that

‖Ay‖2 = (Ay,Ay) = (A∗Ay, y) = 0.

Hence we have

Ax = A

(
x−

∞∑
n=0

(x, en)en

)
+A

( ∞∑
n=0

(x, en)en

)

=
∞∑
n=0

(x, en)Aen =
∞∑
n=0

sn(x, en)fn.
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Similar, as in the last theorem, we get

‖Ax−
n∑
k=1

sk(x, ek)fk‖2 =
∞∑

k=n+1

|sk(x, ek)|2 ≤ (‖x‖ sup
k>n
|sk|)2,

which implies that the series converges in the operator norm.

The numbers sn are called the s-numbers of A. They are uniquely determined
by the operator A, since they are the square roots of the eigenvalues of A∗A.

Let 0 < p < ∞. The operator A belongs to the Schatten-class Sp, if its
sequence (sn)n of s-numbers belongs to lp. The elements of the Schatten class
S2 are called Hilbert-Schmidt operators.

Proposition 1.16. Let A : H1 −→ H2 be a bounded linear operator between
Hilbert spaces. The following conditions are equivalent:
(i) there is an orthonormal basis (ei)i∈I of H1, such that

∑
i∈I ‖Aei‖2 <∞;

(ii) for each orthonormal basis (fj)j∈J of H1 one has
∑

j∈J ‖Afj‖2 <∞;
(iii) A is a Hilbert-Schmidt operator.

1.3 Bergman spaces and ∂

In the following we describe the spectral representation of a compact operator
closely related to the Cauchy-Riemann equations. To investigate the solution
to the inhomogeneous ∂-equation ∂u = g, we will first consider the case where
the right hand side g is a holomorphic function. Therefore we need an appro-
priate Hilbert space of holomorphic functions - the Bergman space. We will
use standard basic facts about Hilbert spaces, such as the Riesz representation
theorem for continuous linear functionals, facts about orthogonal projections,
and complete orthonormal basis.

Let Ω ⊆ Cn be a domain and the Bergman space

A2(Ω) = {f : Ω −→ C holomorphic : ‖f‖2 =
∫

Ω

|f(z)|2 dλ(z) <∞},

where λ is the Lebesgue measure of Cn. The inner product is given by

(f, g) =

∫
Ω

f(z) g(z) dλ(z),

for f, g ∈ A2(Ω).
For sake of simplicity we first restrict to domains Ω ⊆ C.We consider special

continuous linear functionals on A2(Ω) : the point evaluations. Let f ∈ A2(Ω)
and fix z ∈ Ω. By Cauchy’s integral theorem we have

f(z) =
1

2πi

∫
γs

f(ζ)

ζ − z
dζ,
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where γs(t) = z+seit, t ∈ [0, 2π], 0 < s ≤ r and D(z, r) = {w : |w−z| < r} ⊂
Ω. Using polar coordinates and integrating the above equality with respect to
s between 0 and r we get

f(z) =
1

πr2

∫
D(z,r)

f(w) dλ(w). (1.6)

Then, by Cauchy-Schwarz,

|f(z)| ≤ 1

πr2

∫
D(z,r)

1 . |f(w)| dλ(w)

≤ 1

πr2

(∫
D(z,r)

12 dλ(w)

)1/2 (∫
D(z,r)

|f(w)|2 dλ(w)

)1/2

≤ 1

π1/2r

(∫
Ω

|f(w)|2 dλ(w)
)1/2

≤ 1

π1/2r
‖f‖.

If K is a compact subset of Ω, there is an r(K) > 0 such that for any z ∈ K
we have D(z, r(K)) ⊂ Ω and we get

sup
z∈K
|f(z)| ≤ 1

π1/2r(K)
‖f‖.

If K ⊂ Ω ⊂ Cn we can find a polycylinder

P (z, r(K)) = {w ∈ Cn : |wj − zj | < r(K), j = 1, . . . , n}

such that for any z ∈ K we have P (z, r(K)) ⊂ Ω. Hence by iterating the above
Cauchy integrals we get

Proposition 1.17. Let K ⊂ Ω be a compact set. Then there exists a constant
C(K), only depending on K such that

sup
z∈K
|f(z)| ≤ C(K) ‖f‖, (1.7)

for any f ∈ A2(Ω).

Proposition 1.18. A2(Ω) is a Hilbert space.

Proof. If (fk)k is a Cauchy sequence in A2(Ω), by (1.7), it is also a Cauchy
sequence with respect to uniform convergence on compact subsets of Ω. Hence
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The sequence (fk)k has a holomorphic limit f with respect to uniform conver-
gence on compact subsets of Ω. On the other hand, the original L2-Cauchy
sequence has a subsequence, which converges pointwise almost everywhere to
the L2-limit of the original L2-Cauchy sequence (see for instance [8]), and so
the L2-limit coincides with the holomorphic function f . Therefore A2(Ω) is a
closed subspace of L2(Ω) and itself a Hilbert space.

For fixed z ∈ Ω, (1.7) also implies that the point evaluation f 7→ f(z) is
a continuous linear functional on A2(Ω), hence, by the Riesz representation
theorem, there is a uniquely determined function kz ∈ A2(Ω) such that

f(z) = (f, kz) =

∫
Ω

f(w) kz(w) dλ(w). (1.8)

We set K(z, w) = kz(w). Then w 7→ K(z, w) = kz(w) is an element of A2(Ω),
hence the function w 7→ K(z, w) is anti-holomorphic on Ω and we have

f(z) =

∫
Ω

K(z, w)f(w) dλ(w) , f ∈ A2(Ω).

The function of two complex variables (z, w) 7→ K(z, w) is called Bergman
kernel of Ω and the above identity represents the reproducing property of the
Bergman kernel.

Now we use the reproducing property for the holomorphic function z 7→
ku(z), where u ∈ Ω is fixed:

ku(z) =

∫
Ω

K(z, w)ku(w) dλ(w) =

∫
Ω

kz(w)K(u,w) dλ(w)

=

(∫
Ω

K(u,w)kz(w) dλ(w)

)−
= kz(u),

hence we have ku(z) = kz(u), or K(z, u) = K(u, z).
It follows that the Bergman kernel is holomorphic in the first variable and

anti-holomorphic in the second variable.

Proposition 1.19. The Bergman kernel is uniquely determined by the proper-
ties that it is an element of A2(Ω) in z and that it is conjugate symmetric and
reproduces A2(Ω).

Proposition 1.20. Let K ⊂ Ω be a compact subset and {φj} be an orthonor-
mal basis of A2(Ω). Then the series

∞∑
j=1

φj(z)φj(w)

sums uniformly on K ×K to the Bergman kernel K(z, w).
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Now let φ ∈ L2(Ω). Since A2(Ω) is a closed subspace of L2(Ω) there exists a
uniquely determined orthogonal projection P : L2(Ω) −→ A2(Ω).

For the function Pφ ∈ A2(Ω) we use the reproducing property and obtain

Pφ(z) =

∫
Ω

K(z, w)Pφ(w) dλ(w) = (Pφ, kz) = (φ, Pkz) = (φ, kz); (1.9)

where we still have used that P is a self-adjoint operator and that Pkz = kz.
Hence

Pφ(z) =

∫
Ω

K(z, w)φ(w) dλ(w). (1.10)

P is called the Bergman projection.
Example. The functions φn(z) =

√
n+1
π zn , n = 0, 1, 2, . . . constitute an

orthonormal basis in A2(D) , D = {z ∈ C : |z| < 1}.
This follows from∫

D
zn zm dλ(z) =

∫ 2π

0

∫ 1

0
rneinθ rme−imθ r dr dθ =

2π

n+m+ 2
δn,m.

For each f ∈ A2(D) with Taylor series expansion f(z) =
∑∞

n=0 anz
n we get

(f, zn) =

∫
D
f(z)zn dλ(z) =

∫ 1

0

∫ 2π

0
f(reiθ)rne−inθr dr dθ

=

∫ 1

0

∫ 2π

0

f(reiθ)

rn+1ei(n+1)θ
reiθ dθ r2n+1 dr = 2πan

∫ 1

0
r2n+1 dr = π

an
n+ 1

,

where we used the fact that

an =
1

2πi

∫
γr

f(z)

zn+1
dz,

for γr(θ) = reiθ. Hence, by the uniqueness of the Taylor series expansion, we
obtain that (f, φn) = 0, for each n = 0, 1, 2, . . . implies f ≡ 0. This means that
(φn)

∞
n=0 constitutes an orthonormal basis for A2(D) and we get

‖f‖2 =
∞∑
n=0

|(f, φn)|2,

which is equivalent to

‖f‖2 = π
∞∑
n=0

|an|2

n+ 1
, f(z) =

∞∑
n=0

anz
n.

Hence each f ∈ A2(D) can be written in the form f =
∑∞

n=0 cn φn, where
the sum converges in A2(D), but also uniformly on compact subsets of D. For
the coefficients cn we have : cn = (f, φn).
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Now we compute an explicit formula for the Bergman kernel K(z, w) of D.
The function z 7→ K(z, w), with w ∈ D fixed, belongs to A2(D). Hence we get
from the above formula that

K(z, w) =
∞∑
n=0

cn φn(z),

where cn = (K(., w), φn), in other words

cn = (φn,K(., w)) =

∫
D
φn(z)K(w, z) dλ(z) = φn(w),

by the reproducing property of the Bergman kernel. This implies that the
Bergman kernel is of the form

K(z, w) =
∞∑
n=0

φn(z)φn(w), (1.11)

where the sum converges uniformly in z on all compact subsets of D. (This
is true for any complete orthonormal system, as is shown above.) A simple
computation now gives

K(z, w) =
∞∑
n=0

φn(z)φn(w) =
1

π

∞∑
n=0

(n+ 1)(zw)n =
1

π

1

(1− zw)2
. (1.12)

Hence for each f ∈ A2(D) we have

f(z) =
1

π

∫
D

1

(1− zw)2
f(w) dλ(w).

If we fix z ∈ D and set f(w) = 1/(1−wz)2, then we get the interesting formula

1

π

∫
D

1

|1− zw|4
dλ(w) =

1

(1− |z|2)2
.

We will use properties of the Bergman kernel to solve the inhomogeneous
Cauchy-Riemann equation

∂u

∂z
= g or ∂u = g,

where
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
, z = x+ iy (1.13)

and g ∈ A2(D).
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Let
S(g)(z) =

∫
D
K(z, w)g(w)(z − w)−dλ(w). (1.14)

Using the Bergman projection

P : L2(D) −→ A2(D)

we get
S(g)(z) = zg(z)− P (g̃)(z),

where g̃(w) = wg(w). We claim that S(g) is a solution of the inhomogeneous
Cauchy-Riemann equation:

∂

∂z
S(g)(z) =

∂z

∂z
g(z) + z

∂g

∂z
+
∂P (g̃)

∂z
= g(z),

because g and P (g̃) are holomorphic functions, therefore ∂S(g) = g. In addition
we have S(g) ⊥ A2(D), because for arbitrary f ∈ A2(D) we get

(Sg, f) = (g̃−P (g̃), f) = (g̃, f)−(P (g̃), f) = (g̃, f)−(g̃, Pf) = (g̃, f)−(g̃, f) = 0.

The operator S : A2(D) −→ L2(D) is called the canonical solution operator to
∂.

Now we want to show that S is a compact operator. For this purpose we
consider the adjoint operator S∗ and prove that S∗S is compact, which implies
that S is compact (Theorem 1.8).

For g ∈ A2(D) and f ∈ L2(D) we have

(Sg, f) =

∫
D

(∫
D
K(z, w)g(w)(z − w)− dλ(w)

)
f(z) dλ(z)

=

∫
D

(∫
D
K(w, z)(z − w)f(z) dλ(z)

)−
g(w) dλ(w) = (g, S∗f),

hence
S∗(f)(w) =

∫
D
K(w, z)(z − w)f(z) dλ(z). (1.15)

Now set
c2n =

∫
D
|z|2n dλ(z) = π

n+ 1
,

and φn(z) = zn/cn , n ∈ N0, then the Bergman kernel K(z, w) can be expressed
in the form

K(z, w) =
∞∑
k=0

zkwk

c2k
.



14 Chapter 1 Bounded operators

Next we compute

P (φ̃n)(z) =

∫
D

∞∑
k=0

zkwk

c2k
w
wn

cn
dλ(w) =

∞∑
k=1

zk−1

c2k−1

∫
D

wkwn

cn
dλ(w) =

cnz
n−1

c2n−1
,

hence we have

S(φn)(z) = z φn(z)−
cnz

n−1

c2n−1
, n ∈ N.

Now we apply S∗ and get

S∗S(φn)(w) =

∫
D

∞∑
k=0

wkzk

c2k
(z − w)

(
zzn

cn
− cnz

n−1

c2n−1

)
dλ(z).

The last integral is computed in two steps: first the multiplication by z∫
D

∞∑
k=0

wkzk

c2k

(
zzn+1

cn
− cnz

n

c2n−1

)
dλ(z)

=

∫
D

zn+1

cn

∞∑
k=0

wkzk+1

c2k
dλ(z)− cn

c2n−1

∫
D
zn
∞∑
k=0

wkzk

c2k
dλ(z)

=
wn

c3n

∫
D
|z|2n+2 dλ(z)− wn

c2n−1cn

∫
D
|z|2n dλ(z)

=

(
c2n+1

c3n
− cn
c2n−1

)
wn.

Next the multiplication by w

w

∫
D

∞∑
k=0

wkzk

c2k

(
zzn

cn
− cnz

n−1

c2n−1

)
dλ(z)

= w

∫
D

zn

cn

∞∑
k=0

wkzk+1

c2k
dλ(z)− w

∫
D

cnz
n−1

c2n−1

∞∑
k=0

wkzk

c2k
dλ(z)

= w

(
cnw

n−1

c2n−1
− cnw

n−1

c2n−1

)
= 0,

it follows that

S∗S(φn)(w) =

(
c2n+1

c2n
− c2n
c2n−1

)
φn(w) , n = 1, 2, . . . ,



Section 1.4 Resolutions of the identity 15

for n = 0 an analogous computation shows

S∗S(φ0)(w) =
c21
c20

φ0(w).

Finally we get

Proposition 1.21. Let S : A2(D) −→ L2(D) be the canonical solution operator
for ∂ and (φk)k the normalized monomials. Then

S∗Sφ =
c21
c20

(φ, φ0)φ0 +
∞∑
n=1

(
c2n+1

c2n
− c2n
c2n−1

)
(φ, φn)φn (1.16)

for each φ ∈ A2(D).

Since
c2n+1

c2n
− c2n
c2n−1

=
1

(n+ 2)(n+ 1)
→ 0 as n→∞,

it follows that S∗S is compact and S too.

We have also shown that the s-numbers of S are
(
c2n+1

c2n
− c2n

c2n−1

)1/2
and since

∞∑
n=1

(
c2n+1

c2n
− c2n
c2n−1

)
<∞

it follows that S is Hilbert-Schmidt.

1.4 Resolutions of the identity

We start with some definitions and basic facts.

Definition 1.22. Let Ω be a subset of C and M be a σ-algebra in Ω and let
H be a Hilbert space. A resolution of the identity is a mapping

E : M −→ L(H)

of M to the algebra L(H) of bounded linear operators on H with the following
properties

(a) E(∅) = 0 (zero-operator), E(Ω) = I (identity on H).
(b) For each ω ∈ M the image E(ω) is an orthogonal projection on H.
(c) E(ω′ ∩ ω′′) = E(ω′)E(ω′′).
(d) If ω′ ∩ ω′′ = ∅, then E(ω′ ∪ ω′′) = E(ω′) + E(ω′′).
(e) For every x ∈ H and y ∈ H, the set function Ex,y defined by

Ex,y(ω) = (E(ω)x, y)

is a complex measure on M.
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We collect some immediate consequences of these properties.
Since each E(ω) is an orthogonal (i.e. self-adjoint) projection, we have for

x ∈ H

Ex,x(ω) = (E(ω)x, x) = (E(ω)2x, x) = (E(ω)x,E(ω)x) = ‖E(ω)x‖2, (1.17)

hence each Ex,x is a positive measure on M with total variation

Ex,x(Ω) = ‖x‖2. (1.18)

By (c), any two of the projections E(ω) commute with each other; if ω∩ω′ =
∅, (a) and (c) show that im(E(ω)) ⊥ im(E(ω′)), which follows form

(E(ω)x,E(ω′)y) = (E(ω)2x,E(ω′)y) = (E(ω)x,E(ω)E(ω′)y) = 0.

By (d), E is finitely additive. Concerning countable additivity we have the
following result

Proposition 1.23. If E is a resolution of the identity, and if x ∈ H, then

ω 7→ E(ω)x

is a countably additive H-valued measure on M.
If ωn ∈ M and E(ωn) = 0 for n ∈ N, and if ω =

⋃∞
n=1 ωn, then E(ω) = 0.

Proof. By (d), ω 7→ (E(ω)x, y) is a complex measure, hence

∞∑
n=1

(E(ωn)x, y) = (E(ω)x, y), (1.19)

for every y ∈ H.
For n 6= m we have E(ωn)x ⊥ E(ωm)x. Let

ΛN (y) =
N∑
n=1

(y,E(ωn)x).

By (1.18), the sequence (ΛN (y))N converges for every y ∈ H. The uniform
boundedness principle implies that (‖ΛN‖)N is bounded, where

‖ΛN‖ = ‖E(ω1)x+ · · ·+E(ωN )x‖ = (‖E(ω1)x‖2 + · · ·+ ‖E(ωN )x‖2)1/2,

hence, using the orthogonality, the partial sums

N∑
n=1

E(ωn)x
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form a Cauchy sequence in H, so

∞∑
n=1

E(ωn)x = E(ω)x

and ω 7→ E(ω)x is countably additive and therefore a complex measure on M.
For the second claim, observe that E(ωn) = 0 implies Ex,x(ωn) = 0 for

every x ∈ H. Since Ex,x is countably additive, it follows that Ex,x(ω) = 0. But
‖E(ω)x‖2 = Ex,x(ω). Hence E(ω) = 0.

Definition 1.24. Let E be a resolution of the identity on M and let f be a
complex M-measurable function on Ω. There is a countable family (Dk)k of
open discs forming a base for the topology of C. Let V be the union of those
Dk for which E(f−1(Dk)) = 0. By Proposition 1.23, E(f−1(V )) = 0. Also,
V is the largest open subset of C with this property. The essential range of
f is, by definition, the complement of V. It is the smallest closed subset of C
that contains f(z) for all z ∈ Ω except those that lie in some set ω ∈ M with
E(ω) = 0. We say f is essentially bounded if its essential range is bounded,
hence compact. The largest value of |λ|, as λ runs through the essential range
of f, is called the essential supremum ‖f‖∞ of f.

Let B be the algebra of all bounded complex M-measurable functions on Ω

with the norm
‖f‖ = sup

z∈Ω

|f(z)|,

and let
N = {f ∈ B : ‖f‖∞ = 0},

which, by Propositon 1.23, is a closed ideal. Hence B/N is a Banach algebra,
which is denoted by L∞(E). The norm of a coset [f ] = f + N is ‖f‖∞, and
the spectrum σ([f ]) is the essential range of f, the spectrum of an element g in
a Banach algebra is the set of all complex numbers λ such that λe − g is not
invertible.

In the next step we describe that a resolution of the identity induces an
isometric isomorphism of the Banach algebra L∞(E) onto a closed normal
subalgebra A of L(H), the algebra of all bounded linear operators from H
to H, a normal subalgebra is a commutative one which contains T ∗ for every
T ∈ A.

For this purpose let {ω1, . . . , ωn} be a partition of Ω, with ωj ∈ M and let s
be a simple function, such that s = αj on ωj . Define Ψ(s) ∈ L(H) by

Ψ(s) =

n∑
j=1

αjE(ωj).
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Since each E(ωj) is self-adjoint, Ψ(s)∗ = Ψ(s). If t is another simple function
and α, β ∈ C, we have

Ψ(s)Ψ(t) = Ψ(st) and Ψ(αs+ βt) = αΨ(s) + βΨ(t).

For x, y ∈ H we get

(Ψ(s)x, y) =
n∑
j=1

αj(E(ωj)x, y) =
n∑
j=1

αjEx,y(ωj) =

∫
Ω

s dEx,y.

In addition we have

Ψ(s)∗Ψ(s) = Ψ(|s|2) and ‖Ψ(s)x‖2 =
∫

Ω

|s|2 dEx,x.

By (1.18) this implies
‖Ψ(s)x‖ ≤ ‖s‖∞‖x‖, (1.20)

and if x ∈ im(E(ωj)), then

Ψ(s)x = αjE(ωj)x = αjx,

since the projections E(ωj) have mutually orthogonal ranges. If j is chosen so
that |αj | = ‖s‖∞ it follows by (1.20) that

‖Ψ(s)‖ = sup
‖x‖≤1

‖Ψ(s)x‖ = ‖s‖∞. (1.21)

Now suppose that f ∈ L∞(E). There is a sequence of simple measurable
functions sk that converges to f in the norm of L∞(E). By (1.21), the corre-
sponding operators Ψ(sk) form a Cauchy sequence in L(H), which is therefore
norm-convergent to an operator that we call Ψ(f). By (1.21), we get

‖Ψ(f)‖ = ‖f‖∞. (1.22)

Thus Ψ is an isometric isomorphism of L∞(E) into L(H). Since L∞(E) is
complete, A = Ψ(L∞(E)) is closed in L(H). In addition we have

(Ψ(f)x, y) =

∫
Ω

f dEx,y and ‖Ψ(f)x‖2 =
∫

Ω

|f |2 dEx,x,

which justifies the notation

Ψ(f) =

∫
Ω

f dE.

The spectral theorem indicates that every bounded normal operator T on a
Hilbert space induces a resolution E of the identity on the Borel subsets of its
spectrum σ(T ) and that T can be reconstructed from E by an integral of the
type discussed before.

Using Banach algebra techniques such as the Gelfand transform (see [9]) one
obtains the spectral decomposition for a single normal operator
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Proposition 1.25. If T ∈ L(H) and T is normal, then there exists a uniquely
determined resolution of the identity E on the Borel subsets of the spectrum
σ(T ) which satisfies

T =

∫
σ(T )

λ dE(λ) and (Tx, y) =

∫
σ(T )

λ dEx,y(λ). (1.23)

Furthermore, every projection E(ω) commutes with every S ∈ L(H) which
commutes with T.
We shall refer to this E as the spectral decomposition of T.

We list a few consequences of the spectral decomposition.
If ω ⊆ σ(T ) is a nonempty open set, then E(ω) 6= 0.
If f is a bounded Borel function on σ(T ), it is customary to denote the

operator

Ψ(f) =

∫
σ(T )

f dE

by f(T ).
The mapping f 7→ f(T ) establishes a homomorphism of the algebra of all

bounded Borel functions on σ(T ) into L(H), which carries the function 1 to I
and the identity function on σ(T ) to T, and satisfies

f(T ) = f(T )∗ and ‖f(T )‖ ≤ sup{|f(λ)| : λ ∈ σ(T )}.

The procedure explained above is also called symbolic calculus.
If f ∈ C(σ(T )), then f 7→ f(T ) is an isomorphism on C(σ(T )) satisfying

‖f(T )x‖2 =
∫
σ(T )
|f |2 dEx,x.

The eigenvalues of a normal operator can be characterized in terms of the
spectral decomposition. For this purpose we mention the following applications
of the symbolic calculus.

Proposition 1.26. Let T ∈ L(H) be a normal operator and E its spectral
decomposition. If f ∈ C(σ(T )) and ω0 = f−1(0), then

ker(f(T )) = im(E(ω0)).

Proof. We set h(λ) = 1 on ω0 and h(λ) = 0 on ω̃ = σ(T )\ω0. Then fh = 0 and
by the symbolic calculus f(T )h(T ) = 0. Since h(T ) = E(ω0), it follows that

im(E(ω0)) ⊆ ker(f(T )).

For the opposite inclusion we define for n ∈ N the set

ωn = {λ ∈ σ(T ) : 1/n ≤ |f(λ)| < 1/(n− 1)}.
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Then ω̃ is the union of the disjoint Borel sets ωn. We define fn(λ) = 1/f(λ) on
ωn and fn(λ) = 0 on σ(T ) \ ωn. Then each fn is a bounded Borel function on
σ(T ) and

fn(T )f(T ) = E(ωn), n ∈ N.

If f(T )x = 0, it follows that E(ωn)x = 0. Since the mapping ω 7→ E(ω)x is
countably additive (Proposition 1.23), we obtain E(ω̃)x = 0. But we also have
that

E(ω̃) + E(ω0) = I.

Hence E(ω0)x = x and therefore

ker(f(T )) ⊆ im(E(ω0)).

Proposition 1.27. Let T ∈ L(H) be a normal operator and E its spectral
decomposition. Let λ0 ∈ σ(T ) and E0 = E({λ0}). Then
(a) ker(T − λ0I) = im(E0),
(b) λ0 is an eigenvalue of T if and only if E0 6= 0,
(c) every isolated point of σ(T ) is an eigenvalue of T,
(d) if σ(T ) = {λ1, λ2, . . . } is a countable set, then every x ∈ H has a unique

expansion of the form

x =
∞∑
j=1

xj ,

where Txj = λjxj , and xj ⊥ xk for j 6= k.
(e) If σ(T ) has no limit point except possibly 0 and if dim ker(T − λI) <∞,

for λ 6= 0, then T is compact (compare with Section 2.1).

Proof. (a) Is an immediate consequence of Proposition 1.26 with f(λ) = λ−λ0.
(b) follows from (a).
(c) If λ0 is an isolated point of σ(T ), then {λ0} is a nonempty open subset

of σ(T ) and, by the properties of the spectral decomposition listed above, we
get E0 6= 0, therefore (c) follows from (b).

(d) Let Ej = E({λj}) for j ∈ N. The projections Ej have pairwise orthogonal
ranges and the mapping ω 7→ E(ω)x is countably additive (Proposition 1.23),
hence for each x ∈ H we have

∞∑
j=1

Ejx = E(σ(T ))x = x,

and the series converges in the norm of H. Now set xj = Ejx and observe that
uniqueness follows from the orthogonality of the vectors xj and that Txj = λjxj
follows from (a).
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(e) Let {λj} be an enumeration of the nonzero points of σ(T ) such that
|λ1| ≥ |λ2| ≥ . . . and define fn(λ) = λ if λ = λj and j ≤ n, and put fn(λ) = 0
at the other points of σ(T ). We set again Ej = E({λj}) and obtain

fn(T ) = λ1E1 + · · ·+ λnEn.

Since dim im(Ej) = dimker(T − λjI) <∞, each fn(T ) is a compact operator.
We have |λ− fn(λ)| ≤ |λn| for all λ ∈ σ(T ) and, by the symbolic calculus,

‖T − fn(T )‖ ≤ |λn| → 0 as n→∞.

By Proposition 1.5, T is compact.

The symbolic calculus is powerful tool in operator theory. Finally we mention
important applications to positive operators:

Definition 1.28. An operator T ∈ L(H) is called positive if (Tx, x) ≥ 0 for
every x ∈ H. We write T ≥ 0.

Proposition 1.29. (a) T ∈ L(H) is positive if and only if T = T ∗ and σ(T ) ⊂
[0,∞).
(b) Every positive T ∈ L(H) has a unique positive square root S ∈ L(H), i.e.

S2 = T.
(c) If T ∈ L(H), then T ∗T is positive and the positive square root P of T ∗T

is the only positive operator in L(H) which satisfies ‖Px‖ = ‖Tx‖ for every
x ∈ H.
(d) If T ∈ L(H) is normal, then T has a polar decomposition T = UP, where

U is unitary and P is positive.

Proof. (a) (Tx, x) and (x, Tx) are complex conjugates of each other. If T is
positive, (Tx, x) is real, so that

(x, T ∗x) = (Tx, x) = (x, Tx),

for every x ∈ H. Hence T = T ∗ (by the proof of Theorem 1.12). Let λ =
α+ iβ ∈ σ(T ) and put Tλ = T − λI. Then

‖Tλx‖2 = ‖Tx− αx‖2 + β2‖x‖2,

so that ‖Tλx‖ ≥ |β| ‖x‖. If β 6= 0, it follows that Tλ is invertible, which means
λ /∈ σ(T ). So we get that σ(T ) lies in the real axis. If λ > 0, we obtain

λ‖x‖2 = (λx, x) ≤ ((T + λI)x, x) ≤ ‖(T + λI)x‖ ‖x‖,
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so that ‖(T + λI)x‖ ≥ λ‖x‖, which implies that T + λI is invertible in L(H),
and −λ /∈ σ(T ), hence σ(T ) ⊂ [0,∞).

Now assume that T = T ∗ and σ(T ) ⊂ [0,∞). Let E be the spectral decom-
position of T. We have

(Tx, x) =

∫
σ(T )

λ dEx,x(λ).

Since Ex,x is a positive measure and λ ≥ 0 on σ(T ), we obtain that T is positive.
(b) By (a), Proposition 1.2 and the symbolic calculus, we have σ(T ) is a

compact subset of R+ and there exists a uniquely determined spectral measure
E such that

T =

∫
σ(T )

λ dE(λ).

Define
S =

∫
σ(T )

λ1/2 dE(λ).

Then S is a positive self-adjoint operator with S2 = T. In addition there is a
sequence of polynomials pn such that pn(λ)→ λ1/2 uniformly on σ(T ) (Stone-
Weierstraß) and

lim
n→∞

‖pn(T )− S‖ = 0.

Let S̃ be an arbitrary positive self-adjoint operator with S̃2 = T. Since T S̃ =
S̃3 and S̃T = S̃3, the operator S̃ commutes with T and so with polynomials of
T. Hence also with S = limn→∞ pn(T ). Let x ∈ H and put y = (S− S̃)x. Using
that S̃S = SS̃ and S2 = S̃2, we obtain

(Sy, y) + (S̃y, y) = ((S + S̃)(S − S̃)x, y) = ((S2 − S̃2)x, y) = 0.

Since S and S̃ are positive, (Sy, y) = (S̃y, y) = 0. Hence Sy = S̃y = 0, because
(S., .) is a positive semidefinite sesquilinearform, for which the Cauchy-Schwarz
inequality applies

|(Sy, z)|2 ≤ (Sy, y)(Sz, z),

for all z ∈ H. Now we get

‖(S − S̃)x‖2 = ((S − S̃)2x, x) = ((S − S̃)y, x) = 0,

which yields Sx = S̃x and S = S̃.
(c) Note first that

(T ∗Tx, x) = (Tx, Tx) = ‖Tx‖2 ≥ 0, for x ∈ H,

so that T ∗T is positive. If P ∈ L(H) and P ∗ = P, then

(P 2x, x) = (Px, Px) = ‖Px‖2.
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Then, by the proof of Theorem 1.12 , it follows that ‖Px‖ = ‖Tx‖ for every
x ∈ H if and only if P 2 = T ∗T.

(d) Put p(λ) = |λ| and u(λ) = λ/|λ| for λ 6= 0 and u(0) = 1. Then p and u
are bounded Borel functions on σ(T ). Put P = p(T ) and U = u(T ). As p ≥ 0
we get from (a) that P ≥ 0. Since uu = 1, we get UU∗ = U∗U = I, and since
λ = u(λ)p(λ), the relation T = UP follows from the symbolic calculus.
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Spectral analysis of unbounded operators

2.1 Closed operators

Definition 2.1. Let H1, H2 be Hilbert spaces and T : dom(T ) −→ H2 be a
densely defined linear operator, i.e. dom(T ) is a dense linear subspace of H1.
Let dom(T ∗) be the space of all y ∈ H2 such that x 7→ (Tx, y)2 defines a con-
tinuous linear functional on dom(T ). Since dom(T ) is dense in H1 there exists
a uniquely determined element T ∗y ∈ H1 such that (Tx, y)2 = (x, T ∗y)1 (Riesz
representation theorem). The map y 7→ T ∗y is linear and T ∗ : dom(T ∗) −→ H1

is the adjoint operator to T.
T is called a closed operator, if the graph

G(T ) = {(f, Tf) ∈ H1 ×H2 : f ∈ dom(T )}

is a closed subspace of H1 ×H2.
The inner product in H1 ×H2 is

((x, y), (u, v)) = (x, u)1 + (y, v)2.

If Ṽ is a linear subspace of H1 which contains dom(T ) and T̃ x = Tx for all
x ∈ dom(T ) then we say that T̃ is an extension of T.

An operator T with domain dom(T ) is said to be closable if it has a closed
extension T̃ .

Lemma 2.2. Let T be a densely defined closable operator. Then there is a
closed extension T , called its closure, whose domain is smallest among all closed
extensions.

Proof. Let V be the set of x ∈ H1 for which there exist xk ∈ dom(T ) and
y ∈ H2 such that limk→∞ xk = x and limk→∞ Txk = y. Since T̃ is a closed
extension of T it follows that x ∈ dom(T̃ ) and T̃ x = y. Therefore y is uniquely
determined by x. We define Tx = y with dom(T ) = V. Then T is an extension
of T and every closed extension of T is also an extension of T . The graph of T
is the closure of the graph of T in H1 ×H2. Hence T is a closed operator.

Lemma 2.3. Let T1 : dom(T1) −→ H2 be a densely defined operator and
T2 : H2 −→ H3 be a bounded operator. Then (T2 T1)

∗ = T ∗1 T
∗
2 , which includes

that dom((T2 T1)
∗) = dom(T ∗1 T

∗
2 ).
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Proof. Note that

dom(T ∗1 T
∗
2 ) = {f ∈ dom(T ∗2 ) : T ∗2 (f) ∈ dom(T ∗1 )}.

Let f ∈ dom(T ∗1 T
∗
2 ) and g ∈ dom(T2 T1). Then

(T ∗1 T
∗
2 f, g) = (T ∗2 f, T1g) = (f, T2 T1g),

hence dom(T ∗1 T
∗
2 ) ⊆ dom((T2 T1)

∗).
Now let f ∈ dom((T2 T1)

∗). As T ∗2 is bounded and everywhere defined on H3,
and for all g ∈ dom(T2 T1) = dom(T1) we have

((T2 T1)
∗f, g) = (f, T2 T1g) = (T ∗2 f, T1g).

Hence T ∗2 f ∈ dom(T ∗1 ) and f ∈ dom(T ∗1 T
∗
2 ).

Lemma 2.4. Let T be a densely defined operator on H and let S be a bounded
operator on H. Then (T + S)∗ = T ∗ + S∗.

Proof. Let f ∈ dom(T ∗ + S∗) = dom(T ∗). Then for all g ∈ dom(T + S) =
dom(T ) we have

((T ∗ + S∗)f, g) = (T ∗f, g) + (S∗f, g) = (f, Tg) + (f, Sg) = (f, (T + S)g),

hence f ∈ dom((T + S)∗) and (T + S)∗f = T ∗f + S∗f.
If f ∈ dom((T + S)∗), then for all g ∈ dom(T + S) = dom(T ) we have

([(T + S)∗ − S∗]f, g) = (f, (T + S)g)− (f, Sg) = (f, Tg),

therefore f ∈ dom(T ∗) and dom((T + S)∗) = dom(T ∗ + S∗) = dom(T ∗).

Lemma 2.5. Let T : dom(T ) −→ H2 be a densely defined linear operator and
define V : H1 ×H2 −→ H2 ×H1 by V ((x, y)) = (y,−x). Then

G(T ∗) = [V (G(T ))]⊥ = V (G(T )⊥);

in particular T ∗ is always closed.

Proof. (y, z) ∈ G(T ∗)⇔ (Tx, y)2 = (x, z)1 for each x ∈ dom(T )
⇔ ((x, Tx), (−z, y)) = 0 for each x ∈ dom(T ) ⇔ V −1((y, z)) = (−z, y) ∈
G(T )⊥. Hence G(T ∗) = V (G(T )⊥) and since V is unitary we have V ∗ = V −1

and [V (G(T ))]⊥ = V (G(T )⊥).

Lemma 2.6. Let T : dom(T ) −→ H2 be a densely defined, closed linear oper-
ator. Then

H2 ×H1 = V (G(T ))⊕ G(T ∗).
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Proof. G(T ) is closed, therefore, by Lemma 2.5: G(T ∗)⊥ = V (G(T )).

Lemma 2.7. Let T : dom(T ) −→ H2 be a densely defined, closed linear oper-
ator. Then dom(T ∗) is dense in H2 and T ∗∗ = T.

Proof. Let z⊥dom(T ∗). Hence (z, y)2 = 0 for each y ∈ dom(T ∗). We have

V −1 : H2 ×H1 −→ H1 ×H2

where V −1((y, x)) = (−x, y), and V −1V = Id. Now, by Lemma 2.6, we have

H1 ×H2
∼= V −1(H2 ×H1) = V −1(V (G(T ))⊕ G(T ∗)) ∼= G(T )⊕ V −1(G(T ∗)).

Hence (z, y)2 = 0 ⇔ ((0, z), (−T ∗y, y)) = 0 for each y ∈ dom(T ∗) implies
(0, z) ∈ G(T ) and therefore z = T (0) = 0, which means that dom(T ∗) is dense
in H2.

Since T and T ∗ are densely defined and closed we have by Lemma 2.5

G(T ) = G(T )⊥⊥ = [V −1G(T ∗)]⊥ = G(T ∗∗),

where −V −1 corresponds to V in considering operators from H2 to H1.

Lemma 2.8. Let T : dom(T ) −→ H2 be a densely defined linear operator.
Then kerT ∗ = (imT )⊥, which means that kerT ∗ is closed.

Proof. Let v ∈ kerT ∗ and y ∈ imT, which means that there exists u ∈ dom(T )
such that Tu = y. Hence

(v, y)2 = (v, Tu)2 = (T ∗v, u)1 = 0,

and kerT ∗ ⊆ (imT )⊥.
And if y ∈ (imT )⊥, then (y, Tu)2 = 0 for each u ∈ dom(T ), which implies

that y ∈ dom(T ∗) and (y, Tu)2 = (T ∗y, u)1 for each u ∈ dom(T ). Since each
dom(T ) is dense in H1 we obtain T ∗y = 0 and (imT )⊥ ⊆ kerT ∗.

Lemma 2.9. Let T : dom(T ) −→ H2 be a densely defined, closed linear oper-
ator. Then kerT is a closed linear subspace of H1.

Proof. We use Lemma 2.8 for T ∗ and get kerT ∗∗ = (imT ∗)⊥. Since, by Lemma
2.7, T ∗∗ = T we obtain kerT = (imT ∗)⊥ and that kerT is a closed linear
subspace of H1.
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2.2 Self-adjoint operators

In the following we introduce the fundamental concept of an unbounded self-
adjoint operator, which will be crucial for both spectral theory and its applica-
tions to complex analysis.

Definition 2.10. Let T : dom(T ) −→ H be a densely defined linear operator.
T is symmetric if (Tx, y) = (x, Ty) for all x, y ∈ dom(T ). We say that T
is self-adjoint if T is symmetric and dom(T ) = dom(T ∗). This is equivalent to
requiring that T = T ∗ and implies that T is closed. We say that T is essentially
self-adjoint if it is symmetric and its closure T is self-adjoint.

Remark 2.11. (a) If T is a symmetric operator, there are two natural closed
extensions. We have dom(T ) ⊆ dom(T ∗) and T ∗ = T on dom(T ). Since T ∗ is
closed (Lemma 2.6), T ∗ is a closed extension of T, it is the maximal self-adjoint
extension. T is also closable, by Lemma 2.2, therefore T exists, it is the minimal
closed extension.

(b) If T is essentially self-adjoint, then its self-adjoint extension is unique. To
prove this, let S be a self-adjoint extension of T. Then S is closed and, being
an extension of T, it is also an extension of its smallest extension T . Hence

T ⊂ S = S∗ ⊂ (T )∗ = T ,

and S = T .

Lemma 2.12. Let T be a densely defined, symmetric operator.
(i) If dom(T ) = H, then T is self-adjoint and T is bounded.
(ii) If T is self-adjoint and injective, then im(T ) is dense in H, and T−1 is

self-adjoint.
(iii) If im(T ) is dense in H, then T is injective.
(iv) If im(T ) = H, then T is self-adjoint, and T−1 is bounded.

Proof. (i) By assumption dom(T ) ⊆ dom(T ∗). If dom(T ) = H, it follows that T
is self-adjoint, therefore also closed (Lemma 2.5) and continuous by the closed
graph theorem.

(ii) Suppose y⊥Im(T ). Then x 7→ (Tx, y) = 0 is continuous on dom(T ),
hence y ∈ dom(T ∗) = dom(T ), and (x, Ty) = (Tx, y) = 0 for all x ∈ dom(T ).
Thus Ty = 0 and since T is assumed to be injective, it follows that y = 0. This
proves that Im(T ) in dense in H.
T−1 is therefore densely defined, with dom(T−1) = im(T ), and (T−1)∗ exists.

Now let U : H × H −→ H × H be defined by U((x, y)) = (−y, x). It easily
follows that U2 = −I and U2(M) = M for any subspace M of H × H, and
we get G(T−1) = U(G(−T )) and U(G(T−1)) = G(−T )). Being self-adjoint, T
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is closed; hence −T is closed and T−1 is closed. By Lemma 2.6 applied to T−1

and to −T we get the orthogonal decompositions

H ×H = U(G(T−1))⊕ G((T−1)∗)

and
H ×H = U(G(−T ))⊕ G(−T )) = G(T−1)⊕ U(G(T−1)).

Consequently
G((T−1)∗) = [U(G(T−1))]⊥ = G(T−1),

which shows that (T−1)∗ = T−1.
(iii) Suppose Tx = 0. Then (x, Ty) = (Tx, y) = 0 for each y ∈ dom(T ). Thus

x⊥im(T ), and therefore x = 0.
(iv) Since im(T ) = H, (iii) implies that T is injective, dom(T−1) = H. If

x, y ∈ H, then x = Tz and y = Tw, for some z ∈ dom(T ) and w ∈ dom(T ), so
that

(T−1x, y) = (z, Tw) = (Tz,w) = (x, T−1y).

Hence T−1 is symmetric. (i) implies that T−1 is self-adjoint (and bounded),
and now it follows from (ii) that T = (T−1)−1 is also self-adjoint.

Lemma 2.13. Let T be a densely defined closed operator, dom(T ) ⊆ H1 and
T : dom(T ) −→ H2. Then B = (I + T ∗T )−1 and C = T (I + T ∗T )−1 are
everywhere defined and bounded, ‖B‖ ≤ 1, ‖C‖ ≤ 1; in addition B is self-
adjoint and positive.

Proof. Let h ∈ H1 be an arbitrary element and consider (h, 0) ∈ H1×H2. Form
the proof of Lemma 2.7 we get

H1 ×H2 = G(T )⊕ V −1(G(T ∗)), (2.1)

which implies that (h, 0) can be written in a unique way as

(h, 0) = (f, Tf) + (−T ∗(−g),−g),

for f ∈ dom(T ) and g ∈ dom(T ∗), which gives h = f + T ∗g and 0 = Tf − g.
We set Bh := f and Ch := g. In this way we get two linear operators B and C
everywhere defined on H1. The two equations from above can now be written
as

I = B + T ∗C, 0 = TB − C,

which gives
C = TB and I = B + T ∗TB = (I + T ∗T )B. (2.2)

The decomposition in (2.1) is orthogonal, therefore we obtain

‖h‖2 = ‖(h, 0)‖2 = ‖(f, Tf)‖2+‖(T ∗g,−g)‖2 = ‖f‖2+‖Tf‖2+‖T ∗g‖2+‖g‖2,
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and hence
‖Bh‖2 + ‖Ch‖2 = ‖f‖2 + ‖g‖2 ≤ ‖h‖2,

which implies ‖B‖ ≤ 1 and ‖C‖ ≤ 1.
For each u ∈ dom(T ∗T ) we get

((I + T ∗T )u, u) = (u, u) + (Tu, Tu) ≥ (u, u)

hence, if (I + T ∗T )u = 0 we get u = 0. Therefore (I + T ∗T )−1 exists and (2.2)
implies that (I + T ∗T )−1 is defined everywhere and B = (I + T ∗T )−1. Finally
let u, v ∈ H1. Then

(Bu, v) = (Bu, (I + T ∗T )Bv) = (Bu,Bv) + (Bu, T ∗TBv)

= (Bu,Bv) + (T ∗TBu,Bv) = ((I + T ∗T )Bu,Bv) = (u,Bv)

and

(Bu, u) = (Bu, (I + T ∗T )Bu) = (Bu,Bu) + (TBu, TBu) ≥ 0,

which proves the lemma.

At this point we can describe the concept of the core of an operator, which
will be very useful later for spectral analysis.

Definition 2.14. Let T be a closable operator with domain dom(T ). A sub-
space D ⊂ dom(T ) is called a core of the operator T if the closure of the
restriction T |D is an extension of T.

Remark 2.15. If T is a closed operator, then T |D = T.

Lemma 2.16. Let T be a densely defined closed operator, dom(T ) ⊆ H1 and
T : dom(T ) −→ H2. Then dom(T ∗T ) is a core of the operator T.

Proof. We have to show that G(T ) = G(T |dom(T ∗T )). For this purpose we con-
sider elements (x, Tx) in the graph of T. We suppose that (x, Tx) ⊥ (y, Ty) for
each y ∈ dom(T ∗T ). Then

(x, (I + T ∗T )y) = (x, y) + (Tx, Ty) = ((x, Tx), (y, Ty)) = 0,

and as im(I + T ∗T ) = H1 (Lemma 2.13) we conclude that x = 0, which means
that G(T |dom(T ∗T )) is dense in G(T ).
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2.3 The ∂-Neumann operator

Let Ω ⊆ Cn be an open subset and f : Ω −→ C be a C1-function. We write
zj = xj + iyj and consider for P ∈ Ω the differential

dfP =

n∑
j=1

(
∂f

∂xj
(P ) dxj +

∂f

∂yj
(P ) dyj

)
.

We use the complex differentials

dzj = dxj + idyj , dzj = dxj − idyj

and the derivatives

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
and rewrite the differential dfp in the form

dfP =
n∑
j=1

(
∂f

∂zj
(P ) dzj +

∂f

∂zj
(P ) dzj

)
= ∂fP + ∂fP .

A general differential form is given by

ω =
∑

|J |=p,|K|=q

′ aJ,K dzJ ∧ dzK ,

where
∑
|J |=p,|K|=q

′ denotes the sum taken only over all increasing multiindices
J = (j1, . . . , jp), K = (k1, . . . , kq) and

dzJ = dzj1 ∧ · · · ∧ dzjp , dzK = dzk1 ∧ · · · ∧ dzkq .

The derivative dω of ω is defined by

dω =
∑

|J |=p,|K|=q

′ daJ,K ∧ dzJ ∧ dzK =
∑

|J |=p,|K|=q

′ (∂aJ,K + ∂aJ,K) ∧ dzJ ∧ dzK ,

and we set

∂ω =
∑

|J |=p,|K|=q

′ ∂aJ,K ∧ dzJ ∧ dzK and ∂ω =
∑

|J |=p,|K|=q

′ ∂aJ,K ∧ dzJ ∧ dzK .

We have d = ∂ + ∂ and since d2 = 0 it follows that

0 = (∂ + ∂) ◦ (∂ + ∂)ω = (∂ ◦ ∂)ω + (∂ ◦ ∂ + ∂ ◦ ∂)ω + (∂ ◦ ∂)ω,

which implies ∂2 = 0 , ∂
2
= 0 and ∂ ◦ ∂ + ∂ ◦ ∂ = 0, by comparing the types

of the differential forms involved.
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Definition 2.17. Let

L2
(0,1)(Ω) := {u =

n∑
j=1

uj dzj : uj ∈ L2(Ω), j = 1, . . . , n}

be the space of (0, 1)- forms with coefficients in L2(Ω). For u, v ∈ L2
(0,1)(Ω) we

define the inner product by

(u, v) =
n∑
j=1

(uj , vj).

In this way L2
(0,1)(Ω) becomes a Hilbert space. (0, 1) forms with compactly

supported C∞ coefficients are dense in L2
(0,1)(Ω).

Definition 2.18. Let f ∈ C∞0 (Ω) and set

∂f :=
n∑
j=1

∂f

∂zj
dzj ,

then
∂ : C∞0 (Ω) −→ L2

(0,1)(Ω).

∂ is a densely defined unbounded operator on L2(Ω). It does not have closed
graph.

Definition 2.19. The domain dom(∂) of ∂ consists of all functions f ∈ L2(Ω)
such that ∂f, in the sense of distributions, belongs to L2

(0,1)(Ω), i.e. ∂f = g =∑n
j=1 gj dzj , and for each φ ∈ C∞0 (Ω) we have∫

Ω

f

(
∂φ

∂zj

)−
dλ = −

∫
Ω

gj φdλ , j = 1, . . . , n. (2.3)

It is clear that C∞0 (Ω) ⊆ dom(∂), hence dom(∂) is dense in L2(Ω). Since
differentiation is a continuous operation in distribution theory we have

Lemma 2.20. ∂ : dom(∂) −→ L2
(0,1)(Ω) has closed graph and Ker∂ is a closed

subspace of L2(Ω).

Proof. Let (fk)k be a sequence in dom(∂) such that fk → f in L2(Ω) and
∂fk → g in L2

(0,1)(Ω). We have to show that ∂f = g. We know that ∂fk → ∂f

as distributions. As ∂fk → g in L2
(0,1)(Ω), it follows that f ∈ dom(∂) and

∂f = g.
Now we can apply Lemma 2.9 and get that Ker∂ is a closed subspace of

L2(Ω).
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Now we consider the ∂-complex

L2(Ω)
∂−→ L2

(0,1)(Ω)
∂−→ . . .

∂−→ L2
(0,n)(Ω)

∂−→ 0 , (2.4)

where L2
(0,q)(Ω) denotes the space of (0, q)-forms on Ω with coefficients in L2(Ω).

The ∂-operator on (0, q)-forms is given by

∂

(∑
J

′
aJ dzJ

)
=

n∑
j=1

∑
J

′ ∂aJ
∂zj

dzj ∧ dzJ , (2.5)

where
∑′

means that the sum is only taken over strictly increasing multi-indices
J = (j1, . . . , jq).

The derivatives are taken in the sense of distributions, and the domain
of ∂ consists of those (0, q)-forms for which the right hand side belongs to
L2
(0,q+1)(Ω). So ∂ is a densely defined closed operator, and therefore has an

adjoint operator from L2
(0,q+1)(Ω) into L2

(0,q)(Ω) denoted by ∂∗.
We consider the ∂-complex

L2
(0,q−1)(Ω)

∂−→
←−
∂
∗

L2
(0,q)(Ω)

∂−→
←−
∂
∗

L2
(0,q+1)(Ω), (2.6)

for 1 ≤ q ≤ n− 1.

Proposition 2.21. The complex Laplacian � = ∂ ∂
∗
+ ∂

∗
∂, defined on the

domain dom(�) = {u ∈ L2
(0,q)(Ω) : u ∈ dom(∂)∩dom(∂

∗
), ∂u ∈ dom(∂

∗
), ∂
∗
u ∈

dom(∂)} acts as an unbounded, densely defined, closed and self-adjoint operator
on L2

(0,q)(Ω), for 1 ≤ q ≤ n, which means that � = �∗ and dom(�) = dom(�∗).

Proof. dom(�) contains all smooth forms with compact support, hence � is
densely defined. To show that � is closed depends on the fact that both ∂ and
∂
∗ are closed : note that

(�u, u) = (∂ ∂
∗
u+ ∂

∗
∂u, u) = ‖∂u‖2 + ‖∂∗u‖2, (2.7)

for u ∈ dom(�). We have to prove that for every sequence uk ∈ dom(�)
such that uk → u in L2

(0,q)(Ω) and �uk converges, we have u ∈ dom(�) and
�uk → �u. It follows from (2.7) that

(�(uk − u`), uk − u`) = ‖∂(uk − u`)‖2 + ‖∂
∗
(uk − u`)‖2,

which implies that ∂uk converges in L2
(0,q+1)(Ω) and that ∂∗uk converges in

L2
(0,q−1)(Ω). Since ∂ and ∂∗ are closed operators, we get u ∈ dom(∂)∩ dom(∂

∗
)

and ∂uk → ∂u in L2
(0,q+1)(Ω) and ∂∗uk → ∂

∗
u in L2

(0,q−1)(Ω).
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To show that ∂u ∈ dom(∂
∗
) and ∂∗u ∈ dom(∂), we first notice that ∂ ∂∗uk

and ∂∗ ∂uk are orthogonal which follows from

(∂ ∂
∗
uk, ∂

∗
∂uk) = (∂

2
∂
∗
uk, ∂uk) = 0.

Therefore the convergence of �uk = ∂ ∂
∗
uk + ∂

∗
∂uk implies that both ∂ ∂∗uk

and ∂
∗
∂uk converge. Now use again that ∂ and ∂

∗ are closed operators to
obtain that ∂ ∂∗uk → ∂ ∂

∗
u and ∂∗ ∂uk → ∂

∗
∂u. This implies that �uk → �u.

Hence � is closed.
In order to show that � is self-adjoint we use Lemma 2.13. Define

R = ∂ ∂
∗
+ ∂

∗
∂ + I

on dom(�). By Lemma 2.13 both (I + ∂ ∂
∗
)−1 and (I + ∂

∗
∂)−1 are bounded,

self-adjoint operators. Consider

L = (I + ∂ ∂
∗
)−1 + (I + ∂

∗
∂)−1 − I.

Then L is bounded and self-adjoint. We claim that L = R−1. Since

(I + ∂ ∂
∗
)−1 − I = (I − (I + ∂ ∂

∗
))(I + ∂ ∂

∗
)−1 = −∂ ∂∗(I + ∂ ∂

∗
)−1,

we have that the range of (I + ∂ ∂
∗
)−1 is contained in dom(∂ ∂

∗
). Similarly, we

have that the range of (I + ∂
∗
∂)−1 is contained in dom(∂

∗
∂) and we get

L = (I + ∂
∗
∂)−1 − ∂ ∂∗(I + ∂ ∂

∗
)−1.

Since ∂2 = 0, we have that the range of L is contained in dom(∂
∗
∂) and

∂
∗
∂L = ∂

∗
∂(I + ∂

∗
∂)−1.

Similarly, we have that the range of L is contained in dom(∂ ∂
∗
) and

∂ ∂
∗
L = ∂ ∂

∗
(I + ∂ ∂

∗
)−1.

This implies that the range of L is contained in dom(�). In addition we have

RL = ∂ ∂
∗
(I + ∂ ∂

∗
)−1 + ∂

∗
∂(I + ∂

∗
∂)−1 + L = I.

If Ru = 0, we get �u = −u and 0 ≤ (�u, u) = −(u, u), which implies that
u = 0. Hence R is injective and we have that L = R−1. By Lemma 2.13 we
know that L is self-adjoint. Apply Lemma 2.12 to get that R is self-adjoint.
Therefore � = R− I is self-adjoint.
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For the rest of this section we will now suppose that Ω is a smoothly bounded
pseudoconvex domain in Cn. It can be shown that

‖∂u‖2 + ‖∂∗u‖2 ≥ c ‖u‖2, (2.8)

for each u ∈ dom(∂) ∩ dom(∂
∗
), c > 0 (see for instance [10]).

The next result describes the implication of the basic estimates (2.8) for the
�-operator.

Proposition 2.22. Let Ω ⊂ Cn be a smoothly bounded pseudoconvex domain.
Then � : dom(�) −→ L2

(0,q)(Ω) is bijective and has a bounded inverse

N : L2
(0,q)(Ω) −→ dom(�).

N is called ∂-Neumann operator. In addition

‖Nu‖ ≤ 1

c
‖u‖. (2.9)

Proof. Since (�u, u) = ‖∂u‖2+‖∂∗u‖2, it follows that for a convergent sequence
(�un)n we get

‖�un −�um‖ ‖un − um‖ ≥ (�(un − um), un − um) ≥ c‖un − um‖2,

which implies that (un)n is convergent and since � is a closed operator we
obtain that � has closed range. If �u = 0, we get ∂u = 0 and ∂∗u = 0 and by
(2.8) that u = 0, hence � is injective. By Lemma 2.12 (ii) the range of � is
dense, therefore � is surjective.

We showed that
� : dom(�) −→ L2

(0,q)(Ω)

is bijective and therefore, by Lemma 2.12 (iv), has a bounded inverse

N : L2
(0,q)(Ω) −→ dom(�).

For u ∈ L2
(0,q)(Ω) we use (2.8) for Nu to obtain

c‖Nu‖2 ≤ ‖∂Nu‖2 + ‖∂∗Nu‖2

= (∂
∗
∂Nu,Nu) + (∂∂

∗
Nu,Nu)

= (u,Nu) ≤ ‖u‖ ‖Nu‖,

which implies (2.9).
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For u ∈ L2
(0,q)(Ω) and v ∈ dom(∂) ∩ dom(∂

∗
) we get

(u, v) = (�Nu, v) = ((∂∂
∗
+ ∂

∗
∂)Nu, v) = (∂

∗
Nu, ∂

∗
v) + (∂Nu, ∂v). (2.10)

Now we discuss a different approach to the ∂-Neumann operator, which is
related to the quadratic form

Q(u, v) = (∂u, ∂v) + (∂
∗
u, ∂

∗
v).

For this purpose we consider the embedding

j : dom(∂) ∩ dom(∂
∗
) −→ L2

(0,q)(Ω),

where dom(∂) ∩ dom(∂
∗
) is endowed with the graph-norm

u 7→ (‖∂u‖2 + ‖∂∗u‖2)1/2.

The graph-norm stems from the inner product

Q(u, v) = (u, v)Q = (�u, v) = (∂u, ∂v) + (∂
∗
u, ∂

∗
v).

The basic estimates (2.8) imply that j is a bounded operator with operator
norm

‖j‖ ≤ 1√
c
.

By (2.8) it follows in addition that dom(∂)∩dom(∂
∗
) endowed with the graph-

norm u 7→ (‖∂u‖2 + ‖∂∗u‖2)1/2 is a Hilbert space.
Since (u, v) = (u, jv), we have that (u, v) = (j∗u, v)Q. Equation (2.10) sug-

gests that as an operator to dom(∂) ∩ dom(∂
∗
), N coincides with j∗ and as an

operator to L2
(0,q)(Ω), N should be equal to j ◦ j∗. For this purpose set

Ñ = j ◦ j∗, (2.11)

and note that Ñ∗ = (j ◦ j∗)∗ = j ◦ j∗ = Ñ , i.e. Ñ is self-adjoint (of course also
bounded). We claim that the range of Ñ is contained in dom(�). To show this
we use an approach due to F. Berger (see [1]): since � is self-adjoint it suffices
to show that Ñu ∈ dom(�∗) for all u ∈ L2

(0,q)(Ω), which means to show that
the functional v 7→ (�v, Ñu) is bounded on dom(�) :

|(�v, Ñu)| = |((∂ ∂∗ + ∂
∗
∂)v, Ñu)| = |(∂v, ∂Ñu) + (∂

∗
v, ∂
∗
Ñu)|

= |Q(v, j∗u)| = |(jv, u)| = |(v, u)| ≤ ‖v‖ ‖u‖.

For v ∈ dom(∂) ∩ dom(∂
∗
) we have

(�Ñu, v) = (Ñu, v)Q = (j∗u, v)Q = (u, jv) = (u, v),
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hence �Ñu = u, in a similar way we obtain for u ∈ dom(�)

(Ñ�u, v) = (�u, Ñv) = (u, Ñv)Q = (u, j∗v)Q = (ju, v) = (u, v),

which implies that Ñ�u = u. Altogether we obtain that N = Ñ .

Proposition 2.23. The operators

∂N : L2
(0,q)(Ω) −→ L2

(0,q+1)(Ω) and ∂∗N : L2
(0,q)(Ω) −→ L2

(0,q−1)(Ω)

are both bounded.

Proof. From the above considerations on N we get

‖∂Nu‖2 + ‖∂∗Nu‖2 = (j∗u, j∗u)Q ≤ ‖j∗‖2 ‖u‖2,

for u ∈ L2
(0,q)(Ω), which implies the result.

Proposition 2.24. Let Nq denote the ∂-Neumann operator on L2
(0,q)(Ω). Then

Nq+1∂ = ∂Nq, (2.12)

on dom(∂) and
Nq−1∂

∗
= ∂

∗
Nq, (2.13)

on dom(∂
∗
).

In addition we have that ∂∗Nq is zero on (ker∂)⊥.

Proof. For u ∈ dom(∂) we have ∂u = ∂∂
∗
∂Nqu and

Nq+1∂u = Nq+1∂ ∂
∗
∂Nqu = Nq+1(∂ ∂

∗
+ ∂

∗
∂)∂Nqu = ∂Nqu,

which proves (2.12). In a similar way we get (2.13).
Now let k ∈ (ker∂)⊥ and u ∈ dom(∂), then

(∂
∗
Nqk, u) = (Nqk, ∂u) = (k,Nq∂u) = (k, ∂Nq−1u) = 0,

since ∂Nq−1u ∈ ker(∂), which gives ∂∗Nqk = 0.

Since we already know that both operators ∂Nq and ∂
∗
Nq are bounded,

we can extend both operators Nq+1∂ and Nq−1∂
∗ to bounded operators on

L2
(0,q)(Ω).

Proposition 2.25. Let α ∈ L2
(0,q)(Ω), with ∂α = 0. Then u0 = ∂

∗
Nqα is the

canonical solution of ∂u = α, this means ∂u0 = α and u0⊥ ker ∂, and

‖∂∗Nqα‖ ≤ c−1/2 ‖α‖. (2.14)
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Proof. For α ∈ L2
(0,q)(Ω) with ∂α = 0 we get

α = ∂ ∂
∗
Nqα+ ∂

∗
∂Nqα. (2.15)

If we apply ∂ to the last equality we obtain:

0 = ∂α = ∂∂
∗
∂Nqα,

and since ∂Nqα ∈ dom(∂
∗
) we have

0 = (∂ ∂
∗
∂Nqα, ∂Nqα) = (∂

∗
∂Nqα, ∂

∗
∂Nqα) = ‖∂

∗
∂Nqα‖2. (2.16)

Finally we set u0 = ∂
∗
Nqα and derive from (2.15) and (2.16) that for ∂α = 0

α = ∂u0,

and we see that u0⊥ ker ∂, since for h ∈ ker ∂ we get

(u0, h) = (∂
∗
Nqα, h) = (Nqα, ∂h) = 0.

It follows that

‖∂∗Nqα‖2 = (∂ ∂
∗
Nqα,Nqα)

= (∂ ∂
∗
Nqα,Nqα) + (∂

∗
∂Nqα,Nqα)

= (α,Nqα) ≤ ‖α‖ ‖Nqα‖

and using (2.9) we obtain

‖∂∗Nqα‖ ≤ c−1/2 ‖α‖.

We showed that the canonical solution operator Sq for ∂ coincides with ∂∗Nq

as operator on
L2
(0,q)(Ω) ∩ ker∂

and is a bounded operator.
The ∂-Neumann operator N can be expressed in terms of the canonical so-

lution operators:

Proposition 2.26.
Nq = S∗q Sq + Sq+1 S

∗
q+1. (2.17)
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Proof. We use (2.12) and (2.13) to show that

∂
∗
Nq = ∂

∗
N∗q = (Nq∂)

∗ and (∂
∗
Nq)

∗ = Nq∂,

and

∂Nq = ∂
∗∗
N∗q = (Nq∂

∗
)∗ = (∂

∗
Nq+1)

∗ and ∂∗Nq+1 = (∂Nq)
∗ = Nq∂

∗
,

where we applied Lemma 2.3. Hence it follows that for u ∈ L2
(0,q)(Ω) we have

Nqu = Nq(∂ ∂
∗
+ ∂

∗
∂)Nqu

= (Nq∂)(∂
∗
Nq)u+ (Nq∂

∗
)(∂Nq)u

= (∂
∗
Nq)

∗(∂
∗
Nq)u+ (∂

∗
Nq+1)(∂

∗
Nq+1)

∗u

= S∗q Squ+ Sq+1 S
∗
q+1u.

Proposition 2.27. Let Pq : L2
(0,q)(Ω) −→ ker∂ denote the orthogonal projec-

tion, which is the Bergman projection for q = 0. Then

Pq = I − ∂∗Nq+1∂, (2.18)

on dom(∂).

Proof. First we show that the range of the right hand side of (2.18), which we
denote by P̃ , coincides with ker∂ : for u ∈ dom(∂) we have

∂u− ∂ ∂∗Nq+1∂u = ∂u−�Nq+1∂u+ ∂
∗
∂Nq+1∂u = ∂u− ∂u = 0,

where we used (2.12) to show that ∂Nq+1∂u = Nq+2∂ ∂u = 0, and since

u− ∂∗Nn+1∂u = u

for u ∈ ker∂, we have shown the first claim. Now we obtain

P̃ ∗ = (I − ∂∗Nq+1∂)
∗ = I − ∂∗Nq+1∂

∗∗
= P̃ ,

and

P̃ 2u = P̃ u− ∂∗Nq+1∂P̃u

= P̃ u− ∂∗Nq+1∂u+ ∂
∗
Nq+1∂ ∂

∗
Nq+1∂u

= P̃ u− ∂∗Nq+1∂u+ ∂
∗
Nq+1(�− ∂

∗
∂)Nq+1∂u

= P̃ u.

This means that P̃ coincides with Pq on dom(∂).
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Finally we remark that P̃ can be extended to a unique bounded operator
on L2

(0,q)(Ω), with coincides with Pq : for u ∈ dom(∂) we have by (2.12) that
∂
∗
Nq+1∂u = ∂

∗
∂Nqu and u = �Nqu = ∂ ∂

∗
Nqu + ∂

∗
∂Nqu is an orthogonal

decomposition, which follows from

(∂ ∂
∗
Nqu, ∂

∗
∂Nqu) = (∂ ∂ ∂

∗
Nqu, ∂Nqu) = 0.

Hence
‖∂∗Nq+1∂u‖ = ‖∂

∗
∂Nqu‖ ≤ ‖u‖, u ∈ dom(∂),

which proves the claim since dom(∂) is dense in L2
(0,q)(Ω).

Remark 2.28. Using the symbolic calculus for bounded self-adjoint operators
we are able to interpret the basic estimate (2.8) in the following way:

Suppose that
� : dom(�) −→ L2

(0,1)(Ω)

is bijective and has a bounded inverse N, then the basic estimate

‖u‖2 ≤ C (‖∂u‖2 + ‖∂∗u‖2), u ∈ dom(�) (2.8)

must hold.
N is self-adjoint and bounded and, by Proposition 1.29, therefore has a

bounded self-adjoint root N1/2 which is again injective. By Lemma 2.12 N1/2

has a self-adjoint inverse which will be denoted by N−1/2. Let u ∈ dom(�).
Then there exists w ∈ L2

(0,1)(Ω) such that Nw = u. Hence we have N1/2v = u,

where v = N1/2w and N−1/2v = w = N−1/2N−1/2u is well defined. Now we
get

‖u‖2 = ‖N1/2v‖2 ≤ C‖v‖2 = C (N−1/2u,N−1/2u)

= C (N−1/2N−1/2u, u) = C (N−1/2N−1/2Nw,Nw)

= C (w,Nw) = C (�u, u)

≤ C (‖∂u‖2 + ‖∂∗u‖2),

which is the basic estimate (2.8).

2.4 Spectral decomposition of unbounded
self-adjoint operators

Let Ω be a subset of C and M be a σ-algebra in Ω and let H be a Hilbert space.
Let

E : M −→ L(H)
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be a resolution of the identity. The symbolic calculus associates to every f ∈
L∞(E) an operator Ψ(f) ∈ L(H) by the formula

(Ψ(f)x, y) =

∫
Ω

f dEx,y , x, y ∈ H.

Now we will extend this for unbounded measurable functions f.

Lemma 2.29. Let f : Ω −→ C be a measurable function. Put

Df = {x ∈ H :
∫

Ω

|f |2 dEx,x <∞}.

Then Df is a dense subspace of H. If x, y ∈ H, then∫
Ω

|f | d|Ex,y| ≤ ‖y‖
[∫

Ω

|f |2 dEx,x
]1/2

. (2.19)

If f is bounded and u = Ψ(f)v, for v ∈ H, then

dEx,u = f dEx,v , x ∈ H. (2.20)

Proof. Let z = x+ y and ω ∈ M. Then

‖E(ω)z‖2 ≤ (‖E(ω)x‖+ ‖E(ω)y‖)2 ≤ 2(‖E(ω)x‖2 + ‖E(ω)y‖2).

Recall that Ex,x(ω) = (E(ω)x, x) = (E(ω)2x, x) = ‖E(ω)x‖2, so we get from
above

Ez,z(ω) ≤ 2(Ex,x(ω) + Ey,y(ω)),

which implies that Df is closed under addition. It is clear that Df is also closed
under scalar multiplication. Therefore Df is a subspace of H.

For n ∈ N, let ωn be the subset of Ω where |f | < n. If x ∈ im(E(ωn)), then

E(ω)x = E(ω)E(ωn)x = E(ω ∩ ωn)x , ω ∈ M.

Hence
Ex,x(ω) = Ex,x(ω ∩ ωn),

therefore ∫
Ω

|f |2 dEx,x =

∫
ωn

|f |2 dEx,x ≤ n2 ‖x‖2 <∞.

Thus im(E(ωn)) ⊂ Df . Since Ω =
⋃∞
n=1 ωn, the countable additivity of ω 7→

E(ω)y implies that y = limn→∞E(ωn)y for every y ∈ H. Hence y lies in the
closure of Df and Df is dense in H.
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If x, y ∈ H and f is bounded and measurable, the Radon-Nikodym Theorem
(see for instance [8]) implies that there is a measurable function g on Ω such
that |g| = 1 on Ω and

gf dEx,y = |f | d|Ex,y|.
Hence ∫

Ω

|f | d|Ex,y| = (Ψ(gf)x, y) ≤ ‖Ψ(gf)x‖ ‖y‖. (2.21)

As in Chapter 9.1. we get

‖Ψ(gf)x‖2 =
∫

Ω

|gf |2 dEx,x =

∫
Ω

|f |2 dEx,x,

which implies (2.19) for a bounded function f. The general case is done as in
the first assertion of this proposition.

To show (2.20) we consider an arbitrary bounded measurable function h and
have ∫

Ω

h dEx,u = (Ψ(h)x, u) = (Ψ(h)x,Ψ(f)v)

= (Ψ(f)Ψ(h)x, v) = (Ψ(fh)x, v)

=

∫
Ω

hf dEx,v.

In the next step we carry over the results of Section 9.1 (symbolic calculus)
for unbounded measurable functions.

Proposition 2.30. Let E be a resolution of identity on Ω.
(a) To every measurable f : Ω −→ C corresponds a densely defined closed

operator Ψ(f) on H, with domain dom(Ψ(f)) = Df , which is characterized by

(Ψ(f)x, y) =

∫
Ω

f dEx,y , x ∈ Df , y ∈ H (2.22)

and which satisfies

‖Ψ(f)x‖2 =
∫

Ω

|f |2 dEx,x , x ∈ Df . (2.23)

(b) If f and g are measurable, then

Ψ(f)Ψ(g) ⊂ Ψ(fg),

which means that dom(Ψ(f)Ψ(g)) ⊂ dom(Ψ(fg)) and Ψ(f)Ψ(g) = Ψ(fg) on
dom(Ψ(f)Ψ(g)), and

dom(Ψ(f)Ψ(g)) = Dg ∩ Dfg.
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Hence Ψ(f)Ψ(g) = Ψ(fg) if and only if Dfg ⊆ Dg.
(c) For every measurable f : Ω −→ C,

Ψ(f)∗ = Ψ(f) and Ψ(f)Ψ(f)∗ = Ψ(|f |2) = Ψ(f)∗Ψ(f).

Proof. Fix x ∈ Df , then the conjugate-linear functional y 7→
∫

Ω
f dEx,y is

bounded on H (Lemma 2.29). Hence there is a unique element Ψ(f)x ∈ H
satisfying (2.22) and

‖Ψ(f)x‖2 ≤
∫

Ω

|f |2 dEx,x , x ∈ Df . (2.24)

The linearity of Ψ(f) on Df follows from (2.22) and the fact that Ex,y is linear
in x.

Now we associate with each f its truncations fn = fφn, where φn(p) = 1 if
|f(p)| ≤ n, and φn(p) = 0, if |f(p)| > n.

Then Df−fn = Df , since each fn is bounded, and therefore (2.24) shows,
using the dominated convergence theorem, that

‖Ψ(f)x−Ψ(fn)x‖2 ≤
∫

Ω

|f − fn|2 dEx,x → 0 , as n→∞, (2.25)

for every x ∈ Df . Since fn is bounded, (2.23) holds for fn. Hence (2.25) implies
(2.23) for f.

This proves (a), except for the assertion that Ψ(f) is closed. This will follow
from (c) (to be proved) and Lemma 2.5 with f instead of f.

(b) First assume that f is bounded. ThenDfg ⊂ Dg. If v ∈ H and u = Ψ(f)v,
we get from Section 9.1 and (2.20) that

(Ψ(f)Ψ(g), v) = (Ψ(g)x,Ψ(f)v) = (Ψ(g)x, u)

=

∫
Ω

g dEx,u =

∫
Ω

fg dEx,v

= (Ψ(fg)x, v)

So we have shown that

Ψ(f)Ψ(g)x = Ψ(fg)x , x ∈ Dg , f ∈ L∞.

The last line implies that for y = Ψ(g)x∫
Ω

|f |2 dEy,y =
∫

Ω

|fg|2 dEx,x , x ∈ Dg , f ∈ L∞. (2.26)

Using truncation we see that (2.26) also holds for arbitrary f (possibly un-
bounded). Since dom(Ψ(f)Ψ(g)) consists of all x ∈ Dg such that y = Ψ(g)x ∈
Df and since (2.26) shows that y ∈ Df if and only if x ∈ Dfg, we see that

dom(Ψ(f)Ψ(g)) = Dg ∩ Dfg.
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If x ∈ Dg ∩Dfg, and y = Ψ(g)x, and if the truncations fn are defined as above,
we obtain fn → f in L2(Ex,x) and fng → fg in L2(Ey,y) and finally

Ψ(f)Ψ(g)x = Ψ(f)y = lim
n→∞

Ψ(fn)y = lim
n→∞

Ψ(fng)x = Ψ(fg)x.

This proves (b).
(c) Suppose that x ∈ Df and y ∈ Df = Df . It follows from (2.25) and Section

9.1 that

(Ψ(f)x, y) = lim
n→∞

(Ψ(fn)x, y) = lim
n→∞

(x,Ψ(fn)y) = (x,Ψ(f)y).

Hence y ∈ dom(Ψ(f)∗), and dom(Ψ(f) ⊆ dom(Ψ(f)∗). If we can show that each
u ∈ dom(Ψ(f)∗) lies in Df , we obtain Ψ(f)∗ = Ψ(f). Fix u for this purpose
and put v = Ψ(f)∗u. Since fn = fφn, the multiplication theorem yields

Ψ(fn) = Ψ(f)Ψ(φn).

Since Ψ(φn) is self-adjoint and bounded, we have by Lemma 2.3 and Section
9.1 that

Ψ(φn)Ψ(f)∗ = [Ψ(f)Ψ(φn)]
∗ = Ψ(fn)

∗ = Ψ(fn).

Hence
Ψ(φn)v = Ψ(fn)u , n ∈ N.

Since |φn| ≤ 1 we have now∫
Ω

|fn|2 dEu,u =

∫
Ω

|φn|2 dEv,v ≤ Ev,v(Ω) , n ∈ N.

Hence u ∈ Df .
Finally, since Dff ⊂ Df , another application of the multiplication theorem

gives the last assertion of (c).

Definition 2.31. The resolvent set of a linear operator T : dom(T ) −→ H is
the set of all λ ∈ C such that λI − T is an injective mapping of dom(T ) onto
H whose inverse belongs to L(H). The spectrum σ(T ) of T is the complement
of the resolvent set of T.

First we collect some informations about the spectrum of an unbounded
operator.

Lemma 2.32. If the spectrum σ(T ) of an operator T does not coincide with the
whole of the complex plane C then T must be a closed operator. The spectrum of
a linear operator is always closed. Moreover, if ζ /∈ σ(T ) and c := ‖RT (ζ)‖ =
‖(ζI − T )−1‖, then the spectrum σ(T ) does not intersect the ball {w ∈ C :
|ζ − w| < c−1}. The resolvent operator RT is a holomorphic operator valued
function.
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Proof. For ζ /∈ σ(T ) let S = (ζI − T )−1 which is a bounded operator. Let
xn ∈ dom(T ) with x = limn→∞ xn = x and limn→∞ Txn = y and set un =
(ζI − T )xn. Then

lim
n→∞

un = lim
n→∞

(ζxn − Txn) = ζx− y,

therefore
S(ζx− y) = lim

n→∞
Sun = lim

n→∞
xn = x.

This implies x ∈ dom(T ) and (ζI−T )x = ζx−y, or Tx = y. Hence T is closed.
The remainder of the proof is similar to the case when T is bounded, see

Lemma 1.3.

In the next proposition we refer to the concept of the essential range of a
function with respect to a given resolution of the identity (Definition 1.24).

Proposition 2.33. Let E be a resolution of the identity on Ω and f : Ω −→ C
a measurable function. For α ∈ C put

ωα = {p ∈ Ω : f(p) = α}.

(a) If α is in the essential range of f and E(ωα) 6= 0, then αI −Ψ(f) is not
injective.
(b) If α is in the essential range of f but E(ωα) = 0, then αI − Ψ(f) is an

injective mapping of Df onto a proper dense subspace of H, and there exists
vectors xn ∈ H, with ‖xn‖ = 1, such that

lim
n→∞

[αxn −Ψ(f)xn] = 0.

(c) σ(Ψ(f)) is the essential range of f.

One says that α lies in the point spectrum of Ψ(f) in case (a) and in the
continuous spectrum of Ψ(f) in case (b).

Proof. Without loss of generality we can assume that α = 0.
(a) If E(ω0) 6= 0, there exists x0 ∈ im(E(ω0)) with ‖x0‖ = 1. Let φ0 be

the characteristic function of ω0. Then fφ0 = 0, and Ψ(f)Ψ(φ0) = 0. Since
Ψ(φ0) = E(ω0), it follows that

Ψ(f)x0 = Ψ(f)E(ω0)x0 = Ψ(f)Ψ(φ0)x0 = 0.

(b) Now we have E(ω0) = 0 but E(ωn) 6= 0 for n ∈ N where

ωn = {p ∈ Ω : |f(p)| < 1/n}.
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Let xn ∈ im(E(ωn)) with ‖xn‖ = 1 and let φn be the characteristic functions
of ωn. As in (a) we obtain

‖Ψ(f)xn‖ = ‖Ψ(fφn)xn‖ ≤ ‖Ψ(fφn)‖ = ‖fφn‖∞ ≤ 1/n.

Thus Ψ(f)xn → 0 although ‖xn‖ = 1.
If Ψ(f)x = 0 for some x ∈ Df , then∫

Ω

|f |2 dEx,x = ‖Ψ(f)x‖2 = 0.

Since |f | > 0 almost everywhere (Ex,x), we must have Ex,x(Ω) = 0. But
Ex,x(Ω) = ‖x‖2. Hence Ψ(f) is injective. Similarly Ψ(f)∗ = Ψ(f) is injec-
tive. If y ⊥ im(Ψ(f)), then x 7→ (Ψ(f)x, y) = 0 is continuous in Df , hence
y ∈ dom(Ψ(f)∗), and

(x,Ψ(f)y) = (Ψ(f)x, y) = 0 , x ∈ Df .

Hence Ψ(f)y = 0 and y = 0. Therefore im(Ψ(f)) is dense in H.
Since Ψ(f) is closed, so is Ψ(f)−1. If im(Ψ(f)) = H, the closed graph theorem

would imply that Ψ(f)−1 ∈ L(H). This is impossible in view of the sequence
(xn)n constructed above. Hence (b) is proved.

(c) It follows from (a) and (b) that the essential range of f is a subset of
σ(Ψ(f)). Now assume that 0 is not in the essential range of f. Then g =
1/f ∈ L∞(E), and fg = 1, hence Ψ(f)Ψ(g) = Ψ(1) = I, which proves that
im(Ψ(f)) = H. Since |f | > 0, we have that Ψ(f) is injective, as in the proof of
(b). By the closed graph theorem, Ψ(f)−1 ∈ L(H). Therefore 0 /∈ σ(Ψ(f)) and
(c) is proved.

In the following proposition we describe the change of measure principle.

Proposition 2.34. Let M and M′ be σ-algebras in the sets Ω,Ω′ ⊆ C and let
E : M −→ L(H) be a resolution of identity, and suppose that Φ : Ω −→ Ω′ has
the property that Φ−1(ω′) ∈ M for every ω′ ∈ M′.
If E′(ω′) = E(Φ−1(ω′)), then E′ : M′ −→ L(H) is a resolution of the identity,

and ∫
Ω′
f dE′x,y =

∫
Ω

(f ◦Φ) dEx,y (2.27)

for every M′-measurable f : Ω′ −→ C for which either of these integrals exists.

Proof. A straightforward verification gives that E′ is again a resolution of the
identity For characteristic functions (2.27) is just the definition of E′. So (2.27)
follows for simple functions and also in the general case.
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In order to derive the general spectral theorem for unbounded self-adjoint
operators we will use the Cayley transform.

The mapping

t 7→ t− i
t+ i

sets up a bijection between the real line and the unit circle minus the point
1. The symbolic calculus developed in Section 9.2 therefore shows that every
self-adjoint operator T ∈ L(H) gives rise to a unitary operator

U = (T − iI)(T + iI)−1,

and that every unitary U whose spectrum does not contain the point 1 is ob-
tained in this way. This relation will now be extended to unbounded symmetric
operators.

If T is a symmetric operator, we have

‖Tx+ ix‖2 = (Tx+ ix, Tx+ ix) = ‖x‖2 + ‖Tx‖2 = ‖Tx− ix‖2,

for x ∈ dom(T ). This implies that (T + iI) is injective, and that there is an
isometry U with dom(U) = im(T + iI), and im(U) = im(T − iI), defined by

U(Tx+ ix) = T − ix , x ∈ dom(T ).

Since (T + iI)−1 maps dom(U) onto dom(T ), we can write

U = (T − iI)(T + iI)−1.

This operator U is called the Cayley transform of T.

Lemma 2.35. Let U be an isometry, i.e. ‖Ux‖ = ‖x‖ for all x ∈ dom(U).
(a) For x, y ∈ dom(U), we have (Ux,Uy) = (x, y).
(b) If im(I − U) is dense in H, then I − U is injective.
(c) If any one of the three spaces dom(U), im(U) and G(U) is closed, so are

the other two.

Proof. (a) Follows from the polarization identity:

(x, y) =
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2) (2.28)

(b) Let x ∈ dom(U) and (I − U)x = 0. Then x = Ux and

(x, (I − U)y) = (x, y)− (x, Uy) = (Ux,Uy)− (x, Uy) = 0

for every y ∈ dom(U). This implies x ⊥ im(I − U), so that x = 0 if im(I − U)
is dense in H.
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(c) follows from

‖Ux− Uy‖ = ‖x− y‖ = 1√
2
‖(x, Ux)− (y, Uy)‖ , x, y ∈ dom(U),

where in the last term (x, Ux), (y, Uy) ∈ G(U) are elements of the graph of U
and

‖(x, Ux)− (y, Uy)‖ = (‖x− y‖2 + ‖Ux− Uy‖2)1/2.

Proposition 2.36. Let T be a symmetric operator on H (not necessarily
densely defined) and let U be its Cayley transform. The following statements
are true:
(a) U is closed if and only if T is closed.
(b) im(I − U) = dom(T ), and I − U is injective, and T can be reconstructed

from U by
T = i(I + U)(I − U)−1.

The Cayley transforms of distinct symmetric operators are distinct.
(c) U is unitary if and only if T is self-adjoint.
Conversely, if V is an operator in H which is an isometry, and if I − V is

injective, then V is the Cayley transform of a symmetric operator in H.

Proof. (a) The identity ‖Tx+ ix‖2 = ‖x‖2 + ‖Tx‖2 implies that (T + iI)x↔
(x, Tx) is an isometric one-to-one correspondence between im(T + iI) and the
graph G(T ) of T. Hence T is closed if and only if im(T + iI) is closed. By
Lemma 2.35, U is closed if and only if dom(U) is closed. But, by the definition
of the Cayley transform, dom(U) = im(T + iI), which proves (a).

(b) The one-to-one correspondence x ↔ z between dom(T ) and dom(U) =
im(T + iI), given by

z = Tx+ ix , Uz = Tx− ix

can be written in the form

(I − U)z = 2ix , (I + U)z = 2Tx.

Hence (I −U) is injective and im(I −U) = dom(T ), therefore (I −U)−1 maps
dom(T ) onto dom(U), and

2Tx = (I + U)z = (I + U)(I − U)−1(2ix) , x ∈ dom(T ).

This proves (b).
(c) Assume that T is self-adjoint. Then, by Lemma 2.13,

im(I + T ∗T ) = im(I + T 2) = H. (2.29)
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We have
(T + iI)(T − iI) = T 2 + I = (T − iI)(T + iI),

where all operators have domain dom(T 2). Hence, (2.29) implies that

dom(U) = im(T + iI) = H (2.30)

and
im(U) = im(T − iI) = H. (2.31)

Now (U∗Ux, x) = (Ux,Ux) = (x, x) for every x ∈ H, which implies U∗U = I
and U is unitary.

Now assume that U is unitary. Then

(im(I − U))⊥ = ker(I − U)∗ = {0},

and dom(T ) = im(I − U) is dense in H. Thus T ∗ is defined and T ⊂ T ∗. Fix
y ∈ dom(T ∗). Since im(T + iI) = dom(U) = H, there exists y0 ∈ dom(T ) such
that

(T ∗ + iI)y = (T + iI)y0 = (T ∗ + iI)y0.

Set y1 = y − y0. Then y1 ∈ dom(T ∗) and, for every x ∈ dom(T ) we have

((T − iI)x, y1) = (x, (T ∗ + iI)y1) = (x, 0) = 0.

Thus y1 ⊥ im(T − iI) = im(U) = H, so y1 = 0 and y = y0 ∈ dom(T ). Hence
dom(T ) = dom(T ∗) and (c) is proved.

Finally, let V be as in the statement of the converse. Then there is a one-to-
one correspondence z ↔ x between dom(V ) and im(I − V ), given by

x = z − V z.

Define S on dom(S) = im(I − V ) by

Sx = i(z + V z) if x = z − V z. (2.32)

If x, y ∈ dom(S), then x = z − V z and y = u − V u for some z, u ∈ dom(V ).
Since V is an isometry, it follows from Lemma 2.35 that

(Sx, y) = i(z + V z, u− V u) = i(V z, u)− i(z, V u)
= (z − V z, iu+ iV u) = (x, Sy).

Hence S is symmetric. For z ∈ dom(V ), (2.32) can be written in the form

2iV z = Sx− ix , 2iz = Sx+ ix,

hence, if x ∈ dom(S), we obtain

V (Sx+ ix) = Sx− ix

and that dom(V ) = im(S + iI). Therefore V is the Cayley transform of S.
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At this point we use the methods developed above to prove a key result about
the spectrum of an unbounded self-adjoint operator. It transfers properties of
unbounded self-adjoint operators to the bounded resolvent operators.

Let T ∈ L(H) be a self-adjoint operator. If =λ 6= 0, then

|=λ| ‖u‖2 = |=((T − λI)u, u)| ≤ ‖(T − λI)u‖ ‖u‖, (2.33)

for all u ∈ H, where we used that (Tu, u) = (u, Tu) is real.
This implies that T − λI is injective and has closed range. As

(im(T − λI))⊥ = ker(T − λI)

and this kernel reduces to {0}, we obtain that T − λI is bijective.
This follows also from the Lax-Milgram Theorem, once one has observed that

|((T − λI)u, u)| ≥ |=λ| ‖u‖2. (2.34)

Theorem 2.37. Let T be a bounded self-adjoint operator. Then σ(T ) is con-
tained in [m,M ], where

m = inf
u6=0

(Tu, u)

(u, u)
and M = sup

u6=0

(Tu, u)

(u, u)
.

Moreover m and M belong to the spectrum of T .

Proof. We already know that the spectrum is real. If λ Is real and λ > M, we
can apply the Lax-Milgram Theorem for the sesquilinear form

(u, v) 7→ λ(u, v)− (Tu, v),

to see that λ /∈ σ(T ). To show that M ∈ σ(T ), we apply the Cauchy-Schwarz
inequality to the scalar product

(u, v) 7→M(u, v)− (Tu, v).

We get
|(Mu− Tu, v)| ≤ (Mu− Tu, u)1/2(Mv − Tv, v)1/2.

In particular

‖Mu− Tu‖ ≤ ‖MI − T‖1/2(Mu− Tu, u)1/2. (2.35)

Now let (un)n be a sequence in H such that ‖un‖ = 1 for each n ∈ N and
(Tun, un)→M as n→∞. By (2.35)

lim
n→∞

(MI − T )un = 0,

and this implies M ∈ σ(T ), otherwise

un = (MI − T )−1(MI − T )un
would tend to 0 in contradiction to ‖un‖ = 1.
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Corollary 2.38. Let T ∈ L(H) be a self-adjoint operator such that σ(T ) = {0}.
Then T = 0.

Proof. By Theorem 2.37 we have m = M = 0, hence (Tu, u) = 0, for each
u ∈ H. As (Tu, v) can be written as a linear combination of terms of the type
(Tw,w), we obtain T = 0.

Proposition 2.39. The spectrum σ(T ) of any self-adjoint operator T is real
and non-empty. If ζ /∈ R then

‖(ζI − T )−1‖ ≤ |=ζ|−1. (2.36)

Moreover,
(ζI − T )−1 = ((ζI − T )−1)∗. (2.37)

Proof. Let ζ = ξ + iη and η 6= 0 and set K = 1
η (T − ξI). Using Lemma 2.4,

it follows that K∗ = K. Let f ∈ dom(K) such that Kf = K∗f = if, then
i(f, f) = (Kf, f) = (f,Kf) = −i(f, f), which implies f = 0 and that K − iI
is injective. In a similar way one shows that K + iI is injective. The proof
of Proposition 2.36 part (a) implies that im(K ± iI) is closed. Now we obtain
from Lemma 2.8 that im(K ± iI)⊥ = ker(K ± iI) = {0}. Therefore (K ± iI)−1
is defined on the whole of H. Since we have

‖Kx± ix‖2 = ‖Kx‖2 + ‖x‖2 , x ∈ dom(K),

we get

‖(K ± iI)−1y‖ = ‖(K ± iI)−1(K ± iI)x‖ = ‖x‖ ≤ ‖(K ± iI)x‖ = ‖y‖,

for each y ∈ H, which implies that

‖(K ± iI)−1‖ ≤ 1. (2.38)

Thus ±i /∈ σ(K) and hence ζ /∈ σ(T ). In addition (2.38) implies (2.36).
Now let x1, x2 ∈ dom(T ). Then

((T − ζI)x1, x2) = (x1, (T − ζI)x2).

Putting y1 = (T − ζI)x1 and y2 = (T − ζI)x2 and rewriting the last equation
in terms of y1 and y2 yields (2.37).

Suppose T has empty spectrum. Then T−1 is a bounded self-adjoint operator.
We claim that σ(T−1) = {0}. For λ 6= 0 we can write the inverse of T−1 − λI
in the form

(T−1 − λI)−1 = λ−1T (λ−1I − T )−1 = −λ−1I + λ−2(λ−1I − T )−1,

which is a bounded operator. Now Corollary 2.38 gives that T−1 = 0, which
contradicts that T ◦ T−1 = I.
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The Cayley transform is now used to reduce the construction of the spectral
decomposition of an unbounded self-adjoint operator to the spectral decompo-
sition of a unitary operator.

Proposition 2.40. Let T be an unbounded self-adjoint operator (T = T ∗ and
dom(T ) = dom(T ∗)). Then there exists a uniquely determined resolution of the
identity E on the Borel subsets of R, such that

(Tx, y) =

∫ ∞
−∞

t dEx,y(t) , x ∈ dom(T ) , y ∈ H. (2.39)

Moreover, E is concentrated on the spectrum σ(T ) ⊂ R of T, in the sense that
E(σ(T )) = I.

Proof. Let U be the Cayley transform of T and let Ω be the unit circle with the
point 1 removed. Let E′ be the spectral decomposition of U (Proposition 1.25).
By Proposition 2.36 I − U is injective and, by Proposition 1.27 E′({1}) = 0.
Hence

(Ux, y) =

∫
Ω

λ dE′x,y(λ) , x, y ∈ H. (2.40)

Define
f(λ) =

i(1 + λ)

(1− λ)
, λ ∈ Ω.

We define Ψ(f) as in Proposition 2.30 with E′ in place of E.

(Ψ(f)x, y) =

∫
Ω

f dE′x,y , x ∈ Df , y ∈ H. (2.41)

Since f is real-valued, Ψ(f) is self-adjoint (Proposition 2.30). Since

f(λ)(1− λ) = i(1 + λ),

the symbolic calculus gives

Ψ(f)(I − U) = i(I + U). (2.42)

This implies in particular

im(I − U) ⊂ dom(Ψ(f)). (2.43)

By Proposition 2.36
T (I − U) = i(I + U) (2.44)

and dom(T ) = im(I − U) ⊂ dom(Ψ(f)). (2.43) and (2.44) imply that Ψ(f) is
a self-adjoint extension of the self-adjoint operator T. Thus we have T ⊂ Ψ(f)
and Ψ(f) = Ψ(f)∗ ⊂ T ∗ = T, hence Ψ(f) = T. In addition we get

(Tx, y) =

∫
Ω

f dE′x,y , x ∈ dom(T ) , y ∈ H. (2.45)
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By Proposition 2.33 (c) , σ(T ) is the essential range of f. Thus σ(T ) ⊂ R.
Since f is injective in Ω, we can define E(f(ω)) = E′(ω) for every Borel set
ω ⊂ Ω, to obtain the desired resolution E which converts (2.45) into (2.39).The
uniqueness of E follows from the uniqueness of the representation (2.40).

The symbolic calculus is now used to prove the following assertions.

Proposition 2.41. Let T be a self-adjoint operator on H.
(a) (Tx, x) ≥ 0 for every x ∈ dom(T ) (briefly T ≥ 0) if and only if σ(T ) ⊂

[0,∞).
(b) If T ≥ 0, there exists a unique self-adjoint operator S ≥ 0 such that

dom(S) ⊇ dom(T ) and S2 = T on dom(T ), The symbolic calculus implies that
x ∈ dom(T ) if and only if x ∈ dom(S) and also Sx ∈ dom(S). In addition
dom(T ) is a core of S.

Proof. (a) see Proposition 1.29 (a).
(b) Assume T ≥ 0, so that σ(T ) ⊂ [0,∞), and

(Tx, y) =

∫ ∞
0

t dEx,y(t) , x ∈ dom(T ) , y ∈ H, (2.46)

where dom(T ) = {x ∈ H :
∫∞
0 t2 dEx,x(t) < ∞}. Let s(t) be the nonnegative

square root of t ≥ 0 and put Ψ(s) = S, explicitly

(Sx, y) =

∫ ∞
0

s(t) dEx,y(t) , x ∈ Ds , y ∈ H. (2.47)

By Proposition 2.30 we obtain that S2 = T on dom(T ) and S ≥ 0.
To prove uniqueness, suppose R is self-adjoint, R ≥ 0 and R2 = T, and ER

is its spectral decomposition:

(Rx, y) =

∫ ∞
0

t dERx,y(t) , x ∈ dom(R) , y ∈ H. (2.48)

We apply Proposition 2.34 with Ω = [0,∞) , φ(t) = t2 , f(t) = t, and

E′(φ(ω)) = ER(ω) for ω ⊂ [0,∞), (2.49)

to obtain

(Tx, y) = (R2x, y) =

∫ ∞
0

t2 dERx,y(t) =

∫ ∞
0

t dE′x,y(t). (2.50)

(2.46) and (2.50) and the uniqueness statement in Proposition 2.40 show that
E′ = E. By (2.49), E determines ER, and hence R.
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The statement about the domains of the operators S and T follows from
the symbolic calculus and the definition of the domains there (see Proposition
2.30). As S∗ = S, Lemma 2.16 immediately implies that dom(T ) is a core of
S.

As applications of these results we prove a useful characterization of self-
adjoint and essentially self-adjoint operators.

Proposition 2.42. Let T be a closed symmetric operator. Then the following
statements are equivalent:
(i) T is self-adjoint;
(ii) ker(T ∗ + iI) = {0} and ker(T ∗ − iI) = {0};
(iii) im(T + iI) = H and im(T − iI) = H.

Proof. (i) implies (ii): by Proposition 2.39 ±i /∈ σ(T ).
(ii) implies (iii): Notice that ker(T ∗ ± iI) = {0} if and only if im(T ∓ iI) is

dense in H. This follows easily from

(Tu± iu, v) = (u, T ∗ ∓ iv),

for u, v ∈ dom(T ). So it remains to show that im(T ∓ iI) is closed. The
symmetry of T implies that

‖(T ∓ iI)u‖2 = ‖Tu‖2 + ‖u‖2, (2.51)

for u ∈ dom(T ). Now, since T is closed, we easily obtain that im(T ∓ iI) is
closed.

(iii) implies (i): Let u ∈ dom(T ∗). By (iii) there exists v ∈ dom(T ) such that

(T − iI)v = (T ∗ − iI)u.

Since T is symmetric, we have also (T ∗ − iI)(v − u) = 0. But, if (T + iI) is
surjective, then (T ∗ − iI) is injective (Lemma 2.8) and we obtain u = v. This
proves that u ∈ dom(T ) and that T is self-adjoint.

We proved during the assertion (ii) implies (iii) that

Lemma 2.43. If T is closed and symmetric, then im(T ± iI) is closed.

In a similar way we obtain a characterization for essentially self-adjoint op-
erators.

Proposition 2.44. Let A be a symmetric operator. Then the following state-
ments are equivalent:
(i) A is essentially self-adjoint;
(ii) ker(A∗ + iI) = {0} and ker(A∗ − iI) = {0};
(iii) im(A+ iI) and im(A− iI) are dense in H.
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Proof. We apply Proposition 2.42 to A and notice that A is symmetric and
that Lemma 2.5 implies that A∗ = (A)∗. In addition we use Lemma 2.43.

If A is also a positive operator, we get

Proposition 2.45. Let A be a positive, symmetric operator. Then the follow-
ing statements are equivalent:
(i) A is essentially self-adjoint;
(ii) ker(A∗ + bI) = {0} for some b > 0;
(iii) im(A+ bI) is dense in H.

Proof. We proceed in a similar way as before and notice that for a positive,
symmetric operator A we have

((A+ bI)u, u) ≥ b‖u‖2, (2.52)

for u ∈ dom(A), which is a good substitute for (2.51).
By Lemma 2.8, (ii) and (iii) are equivalent. Since the closure of a positive,

symmetric operator is again positive and symmetric, it remains to show that a
closed, positive symmetric operator T is self-adjoint if and only if ker(T ∗+bI) =
{0} for some b > 0.

We can suppose that b = 1. If T is self-adjoint, then the spectrum σ(T ) ⊆ R+,
hence ker(T + I) = ker(T ∗ + I) = {0}.

For the converse, we first show that im(T +I) is closed: let (yk)k ⊂ im(T +I)
be a convergent sequence. There exists a sequence (xk)k ⊂ dom(T ) such that
yk = (T + I)xk. Then

(xk, yk) = (xk, Txk) + ‖xk‖2 ≥ ‖xk‖2,

and, by Cauchy-Schwarz,
‖xk‖ ≤ ‖yk‖. (2.53)

Since (yk)k is convergent, supk ‖yk‖ <∞, and, by (2.53), supk ‖xk‖ <∞. Now,
positivity implies

‖xk − x`‖2 ≤ ((xk − x`, (T + I)(xk − x`))
≤ (‖xk‖+ ‖x`‖)‖yk − y`‖
≤ C‖yk − y`‖.

Hence (xk)k is a Cauchy sequence. Since we supposed that T is closed, there
exists x ∈ dom(T ) such that x = limk→∞ xk and (T + I)x = y = limk→∞ yk.
Hence im(T + I) is closed.
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The assumption ker(T ∗ + I) = {0} now gives im(T + I) = H. In order to
show that T is self-adjoint. it suffices to show that dom(T ∗) ⊆ dom(T ). Let
x ∈ dom(T ∗). There exists y ∈ dom(T ) such that

(T + I)y = (T ∗ + I)y = (T ∗ + I)x,

since dom(T ) ⊆ dom(T ∗). This implies (T ∗+ I)(x− y) = 0, and hence x = y ∈
dom(T ).

Finally we mention that every self-adjoint operator is unitarily equivalent to
a multiplication operator, which is important for applications to the solution of
other spectral problems. We omit the proof, as we will not use this version of
the spectral theorem in the sequel. Using the Riesz representation theorem in
measure theory (see for instance [8]), this version follows easily from Proposition
2.40.

Theorem 2.46. Let T be a self-adjoint operator on H with spectrum σ(T ).
Then there exists a finite measure µ on σ(T )× N and a unitary operator

U : H −→ L2(σ(T )× N, dµ)

with the following properties: if

g : σ(T )× N −→ R

is the function g(t, n) = t, then x ∈ H lies in dom(T ) if and only if g · Ux ∈
L2(σ(T )× N, dµ). In addition we have

UTU−1h = gh

for all h ∈ U(dom(T )), and

Uf(T )U−1h = f(g)h

for all bounded Borel functions f on σ(T ).
In particular, f(T ) is a bounded operator and

‖f(T )‖ = ‖f‖∞. (2.54)

In the proof of this version of the spectral theorem one starts with a function
f ∈ C0(σ(T )), a continuous function which vanishes at infinity. Then one
considers the linear functional

Λ(f) := (f(T )x, x),
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where x ∈ H is an appropriate vector (a cyclic vector). The Riesz representation
theorem (see [8]) implies that there exists a finite countably additive measure
µ on R such that

(f(T )x, x) =

∫
σ(T )

f(t) dµ(t).

This is the main step. The rest of the proof consists of an application of the
symbolic calculus (see [3] for all details).

2.5 Determination of the spectrum

In this part we prove some results of the spectral theory of unbounded self-
adjoint operators, which are used later on for the applications to the�-operator,
to Schrödinger operators with magnetic field, and to Pauli and Dirac opera-
tors. These results enable us to determine the spectrum of the �-operator in
some special cases and they yield methods to decide whether the corresponding
differential operators are with compact resolvent.

First we prove some general results about the spectrum of an unbounded
self-adjoint operator.

Lemma 2.47. Let T be an unbounded self-adjoint operator. Then λ ∈ σ(T ) if
and only if there exists a sequence (xk)k in dom(T ) such that ‖xk‖ = 1 for each
k ∈ N and

lim
k→∞

‖(T − λI)xk‖ = 0.

If T and S are self-adjoint operators such that T = U−1SU for some unitary
operator U, where dom(T ) = U−1(dom(S)), then σ(T ) = σ(S).

Proof. If λ ∈ σ(T ), then T − λI is not injective and one can find x ∈ dom(T )
such that ‖x‖ = 1 and (T −λI)x = 0. So the constant sequence xk = x has the
desired property.

Conversely, suppose that λ /∈ σ(T ). Then (T − λI)−1 is a bounded operator.
If there exists a sequence (xk)k in dom(T ) such that ‖xk‖ = 1 for each k ∈ N
and limk→∞ ‖(T − λI)xk‖ = 0, then

lim
k→∞

(T − λI)−1(T − λI)xk = lim
k→∞

xk = 0

yields a contradiction to ‖xk‖ = 1 for each k ∈ N.
To prove the second assertion take λ ∈ σ(S) and a sequence (yk)k in dom(S)

such that ‖yk‖ = 1 for each k ∈ N and

lim
k→∞

‖(S − λI)yk‖ = 0.
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Then for U−1yk = zk ∈ dom(T ) we have ‖zk‖ = 1, since U is unitary and

‖(T − λI)zk‖ = ‖U−1(Syk − λyk)‖ = ‖(S − λI)yk‖.

This shows that λ ∈ σ(T ).

Lemma 2.48. Let T be an unbounded self-adjoint operator and E the uniquely
determined resolution of the identity E on the Borel subsets of R, such that

(Tx, y) =

∫ ∞
−∞

t dEx,y(t) , x ∈ dom(T ) , y ∈ H

(see Proposition 2.40).
Then

σ(T ) = {λ ∈ R : E((λ− ε, λ+ ε)) 6= 0, ∀ε > 0}. (2.55)

Proof. Let λ ∈ σ(T ). Suppose that there exists ε0 > 0 such that E((λ− ε0, λ+
ε0)) = 0. Then there exists a continuous function f on R such that f(t) =
(t − λ)−1 on the support of the measure dE(t). By the symbolic calculus, we
obtain a bounded operator (T − λI)−1 and hence a contradiction.

Conversely, let λ belong to the right hand side of (2.55). For each k ∈ N we
can now find xk ∈ dom(T ) such that ‖xk‖ = 1 and

E((λ− 1/k, λ+ 1/k))xk = xk.

Consider the bounded Borel functions

fk(t) = (t− λ)χ(λ−1/k,λ+1/k)(t), t ∈ R, k ∈ N,

where χ(λ−1/k,λ+1/k) is the characteristic function of the intervall (λ− 1/k, λ+
1/k). Then, by (2.54),

‖(T − λI)xk‖ = ‖(T − λI)E((λ− 1/k, λ+ 1/k))xk‖ ≤ 1/k ‖xk‖ = 1/k.

Using Lemma 2.47, we get λ ∈ σ(T ).

Lemma 2.49. Let T be a symmetric operator on H with domain dom(T ), and
suppose that (xk)k is a complete orthonormal system in H. If each xk lies in
dom(T ), and there exist λk ∈ R such that

Txk = λkxk

for every k ∈ N, then T is essentially self-adjoint. Moreover the spectrum of T
is the closure in R of the set of all λk.
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Proof. If x =
∑∞

k=1 αkxk belongs to dom(T ), and

y = Tx =

∞∑
k=1

βkxk,

then
βk = (y, xk) = (Tx, xk) = (x, Txk) = λk(x, xk) = λkαk.

Since x, y ∈ H we have

∞∑
k=1

|αk|2 <∞ ,

∞∑
k=1

|βk|2 <∞

and hence
∞∑
k=1

(1 + λ2k)|αk|2 <∞.

We define an operator T̃ as follows: let

dom(T̃ ) = {x ∈ H : x =
∞∑
k=1

αkxk with
∞∑
k=1

(1 + λ2k)|αk|2 <∞}

and define

T̃ x =
∞∑
k=1

αkλkxk

for x ∈ dom(T̃ ). It follows that T̃ is an extension of T.
Let Σ be the closure of the set {λk : k ∈ N}. Each λk is an eigenvalue of T̃

and, by Lemma 2.32, σ(T̃ ) is closed, so Σ ⊆ σ(T̃ ). For z /∈ Σ and x =
∑∞

k=1 αkxk
we define the operator S on H by

Sx = S

( ∞∑
k=1

αkxk

)
:=

∞∑
k=1

αk(z − λk)−1xk.

It follows that S is injective and that

‖S(
∞∑
k=1

αkxk)‖ ≤ sup
k
|z − λk|−1

( ∞∑
k=1

|αk|2
)1/2

= C ‖x‖,

which implies that the operator S is bounded. Its range is precisely dom(T̃ )
and (zI − T̃ )Sx = x for all x ∈ H. Thus z /∈ σ(T̃ ) and S = (zI − T̃ )−1. This
implies Σ = σ(T̃ ).
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Now we claim that T̃ is the closure of T. Since σ(T̃ ) is not equal to C, Lemma
2.32 implies that T̃ is a closed operator. Let

u =
∞∑
k=1

αkxk ∈ dom(T̃ )

and put um =
∑m

k=1 αkxk. Then limm→∞ um = u and

lim
m→∞

Tum = lim
m→∞

m∑
k=1

αkλkxk =
∞∑
k=1

αkλkxk = T̃ u.

Hence T̃ = T .
Finally we prove that T̃ is self-adjoint. For x ∈ dom(T̃ ∗) and T̃ ∗x = y we

have
(y, xk) = (T̃ ∗x, xk) = (x, T̃xk) = λk(x, xk).

If x =
∑∞

k=1 αkxk the above implies that y =
∑∞

k=1 αkλkxk. Hence x ∈ dom(T̃ ),
thus dom(T̃ ∗) = dom(T̃ ), and T̃ = T̃ ∗.

Definition 2.50. Let T be a self-adjoint operator on H. The discrete spectrum
σd(T ) of T is the set of all eigenvalues λ of finite multiplicity which are isolated
in the sense that the intervals (λ − ε, λ) and (λ, λ + ε) are disjoint from the
spectrum for some ε > 0. The non-discrete part of the spectrum of T is called
the essential spectrum of T, and is denoted by σe(T ).

A closed linear subspace L of H is called invariant if

(ζI − T )−1(L) ⊆ L,

for all ζ /∈ R.

Lemma 2.51. Let T be a self-adjoint operator. Then

σd(T ) = {λ ∈ σ(T ) : ∃ε > 0, dim im(E((λ− ε, λ+ ε))) <∞}. (2.56)

Proof. Let λ belong to the right hand side of (2.56). Then there exists ε0 > 0
such that for each ε ∈ (0, ε0) the projection E((λ−ε, λ+ε)) becomes a projection
with finite range independent of ε. This is actually the projection E({λ}) and
we observe that E((λ − ε0, λ)) = 0 and E((λ, λ + ε0)) = 0. This shows that
λ ∈ σd(T ).

If λ ∈ σd(T ), then λ is an eigenvalue of finite multiplicity and there exists
ε > 0 such that the intervals (λ − ε, λ) and (λ, λ + ε) are disjoint from the
spectrum, which means that dim im(E((λ− ε, λ+ ε))) <∞.
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As the whole spectrum of a self-adjoint operator is closed, it now follows
that the essential spectrum is closed. The following characterization of the
essential spectrum of a self-adjoint operator is similar to the characterization
of the whole spectrum, compare with Lemma 2.47.

Lemma 2.52. Let T be a self-adjoint operator. λ belongs to the essential
spectrum σe(T ) if and only if there exists a sequence (xk)k in dom(T ) such that
‖xk‖ = 1 for each k ∈ N, such that xk converges weakly to 0 and

lim
k→∞

‖(T − λI)xk‖ = 0.

Proof. The sequence appearing in the lemma is called a Weyl sequence. We say
that λ belongs to the Weyl spectrum W (T ) if there exists an associated Weyl
sequence. By Lemma 2.47, we already know that

W (T ) ⊆ σ(T ).

Let λ ∈ W (T ) and suppose that λ ∈ σd(T ). Then the spectral projection
E({λ}) has finite dimensional range and hence is compact. So, by Proposition
1.11,

lim
k→∞

E({λ})xk = 0

inH. Now let yk := (I−E({λ}))xk. Then, as E({λ})T = TE({λ}) (Proposition
2.40), we get limk→∞ ‖yk‖ = 1 and

lim
k→∞

(T − λI)yk = lim
k→∞

(I − E({λ}))(T − λI)xk = 0.

But (T − λI) is invertible on im(I − E({λ})), so we obtain limk→∞ yk = 0,
which is a contradiction. Hence λ ∈ σe(T ).

Conversely, let λ ∈ σe(T ). Then, by Lemma 2.51,

dim im(E((λ− ε, λ+ ε))) =∞

for any ε > 0. Let εk be a decreasing sequence of positive numbers such that
limk→∞ εk = 0. We can now choose an orthonormal system (xk)k such that

xk ∈ im(E((λ− εk, λ+ εk))).

Then, by Bessel’s inequality, xk converges weakly to 0 and the same reasoning
as in Lemma 2.48 yields

lim
k→∞

‖(T − λI)xk‖ = 0.
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2.6 The Laplacian

Consider the Laplace operator

−4 = −
n∑
j=1

∂2

∂x2j

on Rn. We extend its domain as

dom(−4) = {f ∈ L2(Rn) : Dαf ∈ L2(Rn) , |α| ≤ 2} =W 2(Rn),

and obtain, by a similar reasoning as before, a closed operator from dom(−4)
to L2(Rn), which is in addition symmetric and positive, since we have

(−4u, u) =
n∑
j=1

(Dju,Dju),

for u ∈ dom(−4). We will show that this operator is essentially self-adjoint
and hence has a unique self-adjoint extension.

Using the Fourier transform

f̂(ξ) =

∫
Rn

f(x)e−2πix.ξ dλ(x),

one can show thatW 2(Rn) coincides with the space of all functions f ∈ L2(Rn)
such that (1 + |ξ|2)f̂ belongs to L2(Rn).

The operator −4+ I has a bounded inverse

B : L2(Rn) −→W 2(Rn)

given by
B̂f(ξ) = (1 + 4π2|ξ|2)−1f̂(ξ).

It is easily seen that im(B) =W 2(Rn) and im(−4+ I) = L2(Rn).
We will now determine the spectrum of −4 on Rn and show that σe(−4) =

[0,∞).
Let µ ∈ [0,∞) and choose w ∈ Rn such that 4π|w|2 = µ. Let χ ∈ C∞0 (Rn) be

a cut-off function such that χ = 1 on the unit ball B(0, 1) of Rn and χ = 0 on
Rn \ B(0, 2). Let

νw(x) = e2πix.w, x ∈ Rn,

and
fk(x) = ckχ(x/k)νw(x), k ∈ N,

where the normalizing constant is

ck = (kn/2‖χ‖L2)−1.
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We compute

(µ+4)fk(x) =

ck(µνw +4νw)χ(x/k) + (2ck/k)∇νw(x) · ∇χ(x/k) + (ck/k
2)νw(x)4χ(x/k).

The first term vanishes pointwise because 4νw = −4π|w|2νw. The function νw
is bounded, and since, by a change of variable

ck
k2
‖4χ(·/k)‖L2 =

1

k2
‖4χ‖L2

‖χ‖L2

,

the L2-norm of the third term tends to 0 as k →∞. In a similar way one shows
that the L2-norm of the second term vanishes as k →∞. Hence

‖(µI +4)fk‖L2 → 0, as k →∞.

Since |νw(x)| = 1 for all x, the definition of ck gives

‖fk‖L2 = 1, k ∈ N.

Now we show that (fk)k converges weakly to 0. For this purpose we decompose
an arbitrary function f ∈ L2(Rn) in the form f = g+h, where g = f on B(0, R)
and g = 0 elsewhere, and h = f on Rn \ B(0, R) and h = 0 elsewhere, R > 0.
Then we have

(f, fk) = (g, fk) + (h, fk),

and
|(g, fk)| ≤ ck‖χ‖L∞‖g‖L1 → 0, as k →∞.

By Cauchy-Schwarz we see

lim sup
k→∞

|(h, fk)| ≤ ‖h‖L2 .

The last term can be made arbitrarily small by letting R→∞, and so

lim
k→∞

(f, fk) = 0.

Now, by Lemma 2.52, we have µ ∈ σe(−4).
Assume that µ ∈ C\[0,∞) and let δ = dist(µ, [0,∞)) so that δ > 0. Let (fk)k

be a corresponding Weyl sequence, which means that limk ‖(−4−µI)fk‖L2 = 0
and ‖fk‖L2 = 1, k ∈ N. We set gk = (−4 − µI)fk. Taking Fourier transforms
we observe that

ĝk(ξ) = (4π2|ξ|2 − µ)f̂k(ξ),

so that
|f̂k(ξ)| ≤ δ−1 |ĝk(ξ)|.
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This implies

‖fk‖L2 = ‖f̂k‖L2 ≤ δ−1 ‖ĝk‖L2 = δ−1 ‖gk‖L2 → 0,

which contradicts ‖fk‖L2 = 1, k ∈ N. Therefore µ /∈ σe(−4). We have now
shown that σe(−4) = [0,∞). The calculation from above shows that µ ∈
ρ(−4), when µ /∈ [0,∞), so

σ(−4) = σe(−4) = [0,∞).

If we consider −4 as an unbounded operator on L2(Ω), where Ω is a bounded
domain with C2-boundary, we first remark that −4 fails to be essentially self-
adjoint. The Dirichlet realization −4D corresponds to the zero boundary con-
dition and its domain is

dom(−4D) = H2(Ω) ∩H1
0 (Ω).

In this case the spectrum σ(−4D) ⊂ (0,∞) is discrete and consists of positive
eigenvalues tending to ∞. (see [6])

2.7 Compact resolvents

Next, we will characterize the situation when σe(T ) = ∅. For this purpose we
need some preparations.

Lemma 2.53. Let T be a self-adjoint operator on H and let λ ∈ R be an
eigenvalue of T. Then

Lλ = {x ∈ dom(T ) : Tx = λx}

is a closed invariant subspace of H.
If L is an invariant subspace of T, then L⊥ is also invariant.

Proof. Lλ = ker(T − λI), and T − λI is a closed operator, hence, by Lemma
2.4, Lλ is a closed subspace. Now let x ∈ Lλ and ζ /∈ R. Then

(ζI − T )−1x = (λ− ζ)−1(ζI − T )−1(λ− ζ)x
= (λ− ζ)−1(ζI − T )−1(T − ζI)x
= −(λ− ζ)−1x,

hence (ζI − T )−1(Lλ) ⊆ Lλ.
Let L be an invariant subspace and y ∈ L⊥. Then, by (2.37)

((ζI − T )−1y, x) = (y, (ζI − T )−1x) = 0

for all x ∈ L and ζ /∈ R. Therefore (ζI − T )−1y ∈ L⊥ and L⊥ is invariant.
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For the following results we always suppose that the underlying Hilbert space
H is separable and infinite-dimensional, i.e. each complete orthonormal system
is countably infinite.

Proposition 2.54. Let T be a self-adjoint operator on H. The essential spec-
trum σe(T ) of T is empty if and only if there exists a complete orthonormal
system of eigenvectors {xn}n of T such that the corresponding eigenvalues λn
converge in absolute value to ∞ as n→∞.

Proof. If σe(T ) = ∅, then the spectrum σ(T ) consists of a set {rn}n of isolated
eigenvalues of finite multiplicity, which can only converge to ±∞.We enumerate
the eigenvalues in order of increasing absolute values and repeat each eigenvalue
according to its multiplicity. In this way we get an associated orthonormal
system of eigenvectors {xn}n of T. Suppose that this system is not complete.
Then, by Lemma 2.53, the subspace

L = {x ∈ H : (x, xn) = 0 , n ∈ N}

is invariant with respect to T in the sense of Definition 2.49. If x ∈ dom(T )∩L,
then

(Tx, xn) = (x, Txn) = rn(x, xn) = 0,

hence T (dom(T ) ∩ L) ⊆ L. The essential spectrum of the restriction of T to L
is also empty. But the spectrum of this restriction is non-empty (Proposition
2.39), therefore T has further eigenvalues and eigenvectors not accounted for in
the above list.

Conversely suppose that a sequence of eigenvalues and eigenvectors with the
stated properties exists, and let {sn}n be the set of distinct eigenvalues. By
the assumption that λn converge in absolute value to ∞ as n→∞, we deduce
that sn are isolated eigenvalues of finite multiplicity. It follows from Lemma
2.49 that

σ(T ) =
∞⋃
n=1

{sn}.

Thus σe(T ) = ∅.

Proposition 2.55. Let T be an unbounded self-adjoint operator on H which
is non-negative in the sense that σ(T ) ⊆ [0,∞). Then the following conditions
are equivalent:
(i) The resolvent operator (I + T )−1 is compact.
(ii) σe(T ) = ∅.
(iii) There exists a complete orthonormal system of eigenvectors {xn}n of T

with corresponding eigenvalues µn ≥ 0 which converge to +∞ as n→∞.
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Proof. (i) ⇒ (iii): The operator (I + T )−1 : H −→ dom(T ) is compact and
self-adjoint and has dense image. By Proposition 1.12 there exists a complete
orthonormal system of eigenvectors xn of (I+T )−1 and eigenvalues λn (of finite
multiplicity) tending to 0 such that

(I + T )−1x =

∞∑
n=1

λn(x, xn)xn.

Since all xn ∈ dom(T ), we have T (I+T )−1xn = λnTxn. If we add (I+T )−1xn
to this equality we get

λnTxn+(I+T )−1xn = T (I+T )−1xn+(I+T )−1xn = (I+T )(I+T )−1xn = xn,

which implies that
λnTxn + λnxn = xn,

and therefore
Txn =

1− λn
λn

xn.

Setting µn = 1−λn
λn

we get (iii).
Now suppose that (iii) holds. We rearrange the eigenvectors xn so that the

sequence {µn}n is non-decreasing. Each x ∈ H can be written in the form
x =

∑∞
n=1(x, xn)xn and we obtain

(I + T )−1x =

∞∑
n=1

(x, xn)(I + T )−1xn =

∞∑
n=1

1

1 + µn
(x, xn)xn.

Let

AN =
N∑
n=1

1

1 + µn
(x, xn)xn.

Then the operators AN are of finite rank and, by Bessel’s inequality, we obtain

‖((I + T )−1 −AN )x‖ = ‖
∞∑

n=N+1

1

1 + µn
(x, xn)xn‖ ≤

1

1 + µN
‖x‖,

from which we see that AN converges in operator norm to (I+T )−1 as N →∞.
Now, by Proposition 1.13, (I + T )−1 is a compact operator.

The equivalence of (ii) and (iii) is a consequence of Proposition 2.54.

The following general result explains the approach to the ∂-Neumann oper-
ator (2.11) by means of the embedding

j : dom(∂) ∩ dom(∂
∗
) ↪→ L2

(0,q)(Ω),
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where dom(∂) ∩ dom(∂
∗
) is endowed with the graph-norm

u 7→ (‖∂u‖2 + ‖∂∗u‖2)1/2.

It will also be crucial for the question of compactness of the ∂-Neumann oper-
ator, which will be discussed in the following chapters.

Proposition 2.56. Let A be a non-negative self-adjoint operator (i.e. σ(A) is
contained in [0,∞)). There exists a unique self-adjoint square root A1/2 of A
and dom(A1/2) ⊇ dom(A). In addition dom(A) endowed with the norm

‖f‖D := (‖A1/2f‖2 + ‖f‖2)1/2

becomes a Hilbert space, the norm ‖.‖D stems from the inner product

(f, g)D = (A1/2f,A1/2g) + (f, g).

Let dom(A) be endowed with the norm ‖.‖D. Then, A has compact resolvent
if and only if the canonical imbedding

j : dom(A) ↪→ H

is a compact linear operator.
Furthermore, A has compact resolvent if and only if A1/2 has compact resol-

vent.

Proof. In Proposition 2.41 we proved existence and uniqueness of the square
root of A.

For n ∈ N we define the functions

qn(t) =
nt

n+ t
, t ∈ [0,∞).

These are continuous functions with qn(t) ≤ qn+1(t) and limn→∞ qn(t) = t.
Moreover qn(t) ≤ n for each t ∈ [0,∞). By Theorem 2.46 the operator nA(nI+
A)−1 is bounded on H and the function

Qn(x) := (nA(nI +A)−1x, x) , x ∈ H

is bounded on the unit ball of H and continuous. The functional calculus
implies that Qn(x) increases monotonically to Q(x), where

Q(x) =

{
(A1/2x,A1/2x) for x ∈ dom(A),

+∞ otherwise.
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A function Θ : H −→ (−∞,+∞] is said to be lower semicontinuous if for every
convergent sequence xn → x in H we have

Θ(x) ≤ lim inf
n→∞

Θ(xn).

It is easily seen that a function Θ is lower semicontinuous if and only if

{x : Θ(x) > α}

is open for every real α, and that the pointwise limit of an increasing sequence of
continuous functions is a lower semicontinuous function. Therefore the function
Q is lower semicontinuous.

Now let {xn}n be a Cauchy sequence with respect to ‖.‖D. Then {xn}n is
also a Cauchy sequence with respect to ‖.‖ and therefore converges to x ∈ H.
Given ε > 0 there exists N ∈ N such that

Q(xm − xn) + ‖xm − xn‖2 < ε2

for all m,n ≥ N. Letting m→∞ and using the lower semicontinuity of Q, we
deduce that x ∈ dom(A) and

Q(x− xn) + ‖x− xn‖2 ≤ ε2

for all n > N. Hence ‖x− xn‖D ≤ ε and dom(A) endowed with the norm ‖.‖D
is complete.

Since −1 /∈ σ(A), we know that (I + A)−1 is a bounded operator on H.
From (1.1) we get that RA(−1) = (I +A)−1 is compact if and only if RA(z) is
compact for any z /∈ σ(A).

Let u ∈ H and v ∈ dom(A). Then

(j∗u, v)D = (u, jv) = (u, v) = ((I +A)(I +A)−1u, v)

= ((I +A)−1u, (I +A)v)

= ((I +A)−1u,Av) + ((I +A)−1u, v)

= (A1/2(I +A)−1u,A1/2v) + ((I +A)−1u, v)

= ((I +A)−1u, v)D,

This implies that j∗ = (I+A)−1 as operator on dom(A) and j ◦ j∗ = (I+A)−1

as operator on H. So we deduce the desired conclusion by the fact that j is
compact if and only if j ◦ j∗ is compact (Theorem 1.8).

The last statement follows from (iI +A1/2)∗ = −iI +A1/2 and

(I +A) = (iI +A1/2)(−iI +A1/2).
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Our next aim is to compare two self-adjoint, strictly positive operators and
to prove Ruelle’s Lemma.

Remark 2.57. Let S be a self-adjoint operator. Suppose that (Sx, x) ≥ 0 for
each x ∈ dom(S). We say that S is strictly positive, if (Sx, x) > 0 for each
x ∈ dom(S) \ {0}. Using the fact that dom(S) is a core of S1/2 (Proposition
2.41), one can easily show that S is strictly positive if and only if ‖S1/2x‖ > 0
for each x ∈ dom(S1/2) \ {0}. We also indicate that a strictly positive self-
adjoint operator S is injective and im(S) is dense in H and S−1 is self-adjoint
(Lemma 2.12).

Lemma 2.58. Let S and T be strictly positive self-adjoint operators. Then the
following assertions are equivalent.
(a) dom(T 1/2) ⊂ dom(S1/2) and ‖S1/2x‖ ≤ ‖T 1/2x‖ for x ∈ dom(T 1/2);
(b) dom(T 1/2) ⊂ dom(S1/2) and ‖S1/2T−1/2x‖ ≤ ‖x‖ for x ∈ dom(T−1/2);
(c) dom(S−1/2) ⊂ dom(T−1/2) and ‖T−1/2S1/2x‖ ≤ ‖x‖ for x ∈ dom(S1/2);
(d) dom(S−1/2) ⊂ dom(T−1/2) and ‖T−1/2x‖ ≤ ‖S−1/2x‖ for x ∈ dom(S−1/2).

Proof. We show that (a) and (b) are equivalent and that (b) implies (c). The
rest of the implications follows by symmetry and by replacing S and T by S−1

and T−1.
Suppose that (a) holds. If x ∈ dom(T−1/2), then T−1/2x ∈ dom(T 1/2), so we

get ‖S1/2T−1/2x‖ ≤ ‖x‖.
If (b) holds and x ∈ dom(T 1/2), we have T 1/2x ∈ dom(T−1/2) and hence

‖S1/2x‖ = ‖S1/2T−1/2T 1/2x‖ ≤ ‖T 1/2x‖.

Suppose that (b) holds. We observe that dom(S−1/2) = im(S1/2) and that
we have to show

im(S1/2) ⊂ dom(T−1/2) and ‖T−1/2S1/2x‖ ≤ ‖x‖ for x ∈ dom(S1/2).

If x ∈ dom(S1/2), then S1/2x ∈ im(S1/2). We consider the linear functional

ψx(y) := (S1/2x, T−1/2y) for y ∈ dom(T−1/2).

Then
|ψx(y)| = |(S1/2x, T−1/2y)| = |(x, S1/2T−1/2y)| ≤ ‖x‖ ‖y‖.

This implies that S1/2x ∈ dom((T−1/2)∗) = dom(T−1/2). Finally we get

|(T−1/2S1/2x, y)| ≤ ‖x‖ ‖y‖, for y ∈ dom((T−1/2).

And as dom(T−1/2) is dense in H, we obtain ‖T−1/2S1/2x‖ ≤ ‖x‖.
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For Ruelle’s Lemma we consider strictly positive, self-adjoint operators S and
T and we write S ≤ T, if and only if dom(T ) ⊆ dom(S) and (Sx, x) ≤ (Tx, x)
for each x ∈ dom(T ). By Proposition 2.41 the square roots of S and T exist
and are themselves positive, self-adjoint operators.

Lemma 2.59 (Ruelle’s Lemma). Let S and T be strictly positive self-adjoint
operators. Suppose that S ≤ T and that 0 ∈ ρ(S). Then T−1 ≤ S−1.

Proof. We have dom(T ) ⊆ dom(S) and

‖S1/2x‖2 = (Sx, x) ≤ (Tx, x) = ‖T 1/2x‖2, (2.57)

for all x ∈ dom(T ).
Next we show that dom(T 1/2) ⊂ dom(S1/2). Let x ∈ dom(T 1/2). By Propo-

sition 2.41, dom(T ) is a core of dom(T 1/2). Hence there exists a sequence (xk)k
in dom(T ) such that xk → x and T 1/2xk → T 1/2x. By (2.57) we have

‖S1/2(xm − xk)‖ ≤ ‖T 1/2(xm − xk)‖,

which implies that (S1/2xk)k is a Cauchy sequence. But S1/2 is also a closed
operator, and so x ∈ dom(S1/2) and S1/2xk → S1/2x. In addition, by (2.57),
we have

‖S1/2x‖ = lim
k→∞

‖S1/2xk‖ ≤ lim
k→∞

‖T 1/2xk‖ = ‖T 1/2x‖,

for each x ∈ dom(T 1/2).
Now we can apply Lemma 2.58 (d) and get dom(S−1/2) ⊂ dom(T−1/2) and
‖T−1/2x‖ ≤ ‖S−1/2x‖ for x ∈ dom(S−1/2). Our assumption 0 ∈ ρ(S) implies
that H = dom(S−1) = dom(S−1/2), which proves the lemma.

Example 2.60. Let ϕ : Cn −→ R+ be a plurisubharmonic C2-weight function
and define the space

L2(Cn, e−ϕ) = {f : Cn −→ C :
∫
Cn

|f |2 e−ϕ dλ <∞},

where λ denotes the Lebesgue measure, the space L2
(0,1)(C

n, e−ϕ) of (0, 1)-forms
with coefficients in L2(Cn, e−ϕ) and the space L2

(0,2)(C
n, e−ϕ) of (0, 2)-forms

with coefficients in L2(Cn, e−ϕ). Let

(f, g)ϕ =

∫
Cn

f ge−ϕ dλ

denote the inner product and

‖f‖2ϕ =

∫
Cn

|f |2e−ϕ dλ
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the norm in L2(Cn, e−ϕ).
We define dom(∂) to be the space of all functions f ∈ L2(Cn, e−ϕ) such that

∂f, in the sense of distributions, belongs to L2
(0,1)(C

n, e−ϕ), and consider the
weighted ∂-complex

L2(Cn, e−ϕ) ∂−→
←−
∂
∗
ϕ

L2
(0,1)(C

n, e−ϕ)
∂−→
←−
∂
∗
ϕ

L2
(0,2)(C

n, e−ϕ), (2.58)

where ∂∗ϕ is the adjoint operator to ∂ with respect to the weighted inner product.
For a smooth (0, 1)-form u =

∑n
j=1 ujdzj ∈ dom(∂

∗
ϕ) one has

∂
∗
ϕu = −

n∑
j=1

(
∂

∂zj
− ∂ϕ

∂zj

)
uj . (2.59)

The complex Laplacian on (0, 1)-forms is defined as

�ϕ := ∂ ∂
∗
ϕ + ∂

∗
ϕ∂,

and dom(�ϕ) is the space of all f ∈ L2
(0,1)(C

n, e−ϕ) such that

f ∈ dom(∂) ∩ dom(∂
∗
ϕ)

and ∂f ∈ dom(∂
∗
ϕ) and ∂

∗
ϕf ∈ dom(∂).

Let

Mϕ =

(
∂2ϕ

∂zj∂zk

)
jk

denote the Levi - matrix of ϕ. The Kohn-Morrey formula follows from integar-
tion by parts

(Mϕu, u)ϕ ≤ (�ϕu, u)ϕ

for a (0, 1)-form u ∈ dom (∂) ∩ dom (∂
∗
ϕ). Using Ruelle’s Lemma 2.59 we see

that
(Nϕu, u)ϕ ≤ (M−1ϕ u, u)ϕ.

Setting ∂v = u we get

‖v‖2ϕ = (v, v)ϕ = (v, ∂
∗
ϕNϕu)ϕ = (∂v,Nϕu)ϕ = (u,Nϕu)ϕ ≤ (M−1ϕ ∂v, ∂v)ϕ

for each v ∈ dom (∂) orthogonal to ker (∂).
This gives a different proof of Hörmander’s L2-estimates similar to the Bras-

camp-Lieb inequality (see [5] and [7]).
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2.8 Variational characterization of the discrete
spectrum

Here we explain the max-min principle to describe the lowest part of the spec-
trum of a self-adjoint operator when it is discrete. This is done in the setting
of semibounded operators.

Definition 2.61. Let T be a symmetric unbounded operator with dom(T ).
We say that T is semibounded (from below) if there exists a constant C > 0
such that

(Tu, u) ≥ −C‖u‖2, ∀u ∈ dom(T ).

See the next chapter for examples of semibounded operators.
One can show that a symmetric semibounded operator T admits a self-adjoint

extension (Friedrichs’ extension).

Proposition 2.62. Let A be a self-adjoint semibounded operator. Let

Σ = infσe(A).

The set σ(A) ∩ (−∞,Σ) can be described as a sequence (finite or infinite) of
eigenvalues λj ordered increasingly. Then one has

λ1 = inf{(Aφ, φ) ‖φ‖−2 : φ ∈ dom(A), φ 6= 0}, (2.60)

and for k ≥ 2

λk = inf{(Aφ, φ) ‖φ‖−2 : φ ∈ dom(A) ∩ K⊥k−1, φ 6= 0}, (2.61)

where
Kj =

⊕
m≤j

ker(A− λmI).

Proof. Let µ1 denote the right hand side of (2.60). If φ1 is an eigenfunction
for the eigenvalue λ1, we get µ1 ≤ λ1. On the other side we have σ(A− λ1I) ⊆
[0,∞), hence, by Proposition 2.41,

(Aφ− λ1φ, φ) ≥ 0,

for each φ ∈ dom(A), which implies λ1 ≤ µ1.
Actually, we have shown that if µ1 < Σ, then the spectrum below Σ is not

empty. In particular the bottom of the spectrum is an eigenvalue equal to µ1.
For k = 2, 3, . . . , we apply the first step of the proof to A |dom(A)∩K⊥k−1

and
use the spectral theorem.
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Our next aim is to generalize the following minmax-Lemma for positive,
compact operators:

Lemma 2.63. Let A : H −→ H be a positive, compact operator (i.e. (Ax, x) ≥
0 , ∀x ∈ H) with spectral decomposition

Ax =

∞∑
n=0

λn(x, xn)xn,

where λ0 ≥ λ1 ≥ . . . . Then
(i)

λ0 = max
x∈H

(Ax, x)

(x, x)
,

where the maximum is attained by an eigenvector with eigenvalue λ0.
(ii)

λj = min
L∈Nj

max
x∈L⊥

(Ax, x)

(x, x)
, j ≥ 1,

where Nj denotes the set of all j-dimensional subspaces of H. The minimum is
attained by the subspace L = Lj = 〈x0, . . . , xj−1〉, i.e.

λj = max
x∈L⊥j

(Ax, x)

(x, x)
.

Proof. (i) follows directly from the proof of the spectral theorem 1.12.
For j ≥ 1 we have λj = (Axj , xj)/(xj , xj). The assertion follows, if we can

show that for each j-dimensional subspace L there exists z0 ⊥ L with z0 6= 0
and z0 =

∑j
k=0(z0, xk)xk. Because then we have

(Az0, z0)

(z0, z0)
=

∑j
k=0 λk|(z0, xk)|

2∑j
k=0 |(z0, xk)|2

≥ λj ,

as λj ≤ λi for 0 ≤ i ≤ j and

max
x∈L⊥

(Ax, x)

(x, x)
≥ λj .

The existence of z0 follows from the fact that for a basis {yk : k = 0, . . . , j−1}
of L the system of linear equations

j∑
i=0

ai(xi, yk) = 0 , k = 0, . . . j − 1,

has a non-trivial solution. Set z0 =
∑j

i=0 aixi, then z0 ⊥ L.
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So if one has positive compact operators A and B such that A ≤ B, which
means (Ax, x) ≤ (Bx, x), then the eigenvalues of A and B satisfy

λj(A) ≤ λj(B), j = 0, 1, 2, . . .

The corresponding result for unbounded operator yields information about
the bottom of the spectrum and of the essential spectrum.

Proposition 2.64. Let H be a Hilbert space of infinite dimension. Let A be a
self-adjoint semibounded operator with domain dom(A). Let

µ1(A) = inf{(Aφ, φ) : φ ∈ dom(A), ‖φ‖ = 1}

and for n ≥ 2

µn(A) = sup
L∈Nn−1

inf{(Aφ, φ) : φ ∈ L⊥ ∩ dom(A), ‖φ‖ = 1} (2.62)

where Nn−1 denotes the set of all subspaces of H of dimension ≤ n− 1. Then
either
(a) µn(A) is the n-th eigenvalue when the eigenvalues are increasingly ordered

(counting the multiplicities) and A has a discrete spectrum in (−∞, µn(A)], or
(b) µn(A) corresponds to the bottom of the essential spectrum. In this case

we have µj(A) = µn(A) for all j ≥ n.

Proof. Let E be the uniquely determined resolution of identity on the Borel
subsets of R. First we show that

dim imE((−∞, a)) < n, if a < µn(A), (2.63)

dim imE((−∞, a)) ≥ n, if a > µn(A). (2.64)

To prove (2.63) let a < µn(A) and suppose that

dim imE((−∞, a)) ≥ n.

If y ∈ imE((−∞, a)), we get y = E((−∞, a))x, for some x ∈ H and therefore

Ey,y(ω) = (E(ω)y, y) = (E(ω)E((−∞, a))x,E((−∞, a))x) = 0, (2.65)

for each Borel subset ω of R such that (−∞, a) ∩ ω = ∅. Since A is bounded
from below we have (Ax, x) ≥ −C‖x‖2 for all x ∈ dom(A) and Proposition
2.41 and Lemma 2.29 imply that

dom(A) = {u ∈ H :
∫ ∞
−C

t2 dEu,u(t) <∞},
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so we obtain for y ∈ imE((−∞, a)) by (2.65) that∫ ∞
−C

t2 dEy,y(t) ≤ C ′max(C2, a2) <∞,

which implies that imE((−∞, a)) ⊆ dom(A). So we can find an n-dimensional
subspace L ⊂ dom(A), such that

(Au, u) =

∫ a

−C
t dEu,u ≤ a(u, u), ∀u ∈ L. (2.66)

But then, given any ψ1, . . . , ψn−1 ∈ H, we can find

φ ∈ L ∩ 〈ψ1, . . . , ψn−1〉⊥

such that ‖φ‖ = 1 and (Aφ, φ) ≤ a. Returning to the definition of µn(A) we
would have µn(A) ≤ a, which is a contradiction. Hence we have shown (2.63).

To prove (2.64), let a > µn(A) and suppose that

dim imE((−∞, a)) ≤ n− 1.

Then we can find (n− 1) generators ψ1, . . . , ψn−1 of this space and any

φ ∈ dom(A) ∩ 〈ψ1, . . . , ψn−1〉⊥

is in imE([a,+∞)), so
(Aφ, φ) ≥ a‖φ‖2,

which is again a contradiction, and we get (2.64).
In the next step we will show that µn(A) < +∞ for each n ∈ N. Since A

is semibounded from below µn(A) has a uniform lower bound. Suppose that
µn(A) = +∞. By (2.63), this means that

dim imE((−∞, a)) < n,

for all a ∈ R. Hence H must be of finite dimension and we arrive at a contra-
diction.(If H is finite dimensional, we have µn(A) ≥ ‖A‖.)

For the rest of the poof we distinguish between the following two cases:

dim imE((−∞, µn(A) + ε)) =∞, ∀ε > 0; (2.67)

and
dim imE((−∞, µn(A) + ε0)) <∞, for some ε0 > 0. (2.68)

Assuming (2.67) we claim that the assertion (b) of the proposition holds: using
(2.63) in this case we obtain

dim imE((µn(A)− ε, µn(A) + ε)) =∞ ,∀ε > 0.
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By Lemma 2.51, this shows that µn(A) ∈ σe(A).
Using (2.63) once more, we see that the intervall (−∞, µn(A)) does not con-

tain any point of the essential spectrum. Hence

µn(A) = inf{λ : λ ∈ σe(A)}.

From (2.62) we obtain that µn+1(A) ≥ µn(A). But if µn+1(A) > µn(A), (2.63)
would also be satisfied for µn+1(A). This is a contradiction to (2.67). Hence
assertion (b) is proved.

Finally suppose that (2.68) holds. By Lemma 2.51 it is clear that the spec-
trum of A is discrete in (−∞, µn(A) + ε0). Then, for ε1 > 0 small enough

imE((−∞, µn(A)]) = imE((−∞, µn(A) + ε1)),

and by (2.64)
dim imE((−∞, µn(A)]) ≥ n.

So, there are at least n eigenvalues

λ1 ≤ λ2 ≤ . . . λn ≤ µn(A)

for A. If λn were strictly less than µn(A), then

dim imE((−∞, λn]) = n,

which yields a contradiction to (2.63). So λn = µn(A), and µn(A) is an eigen-
value. This proves assertion (a).

We note that the proof of (2.63) gives

Proposition 2.65. Suppose that there exists an a and an n-dimensional sub-
space L ⊂ dom(A) such that (2.66) is satisfied. Then µn(A) ≤ a.

Using Proposition 2.64 we now get

Corollary 2.66. Under the same assumptions as in Proposition 2.65, if a is
below the bottom of the essential spectrum of A, then A has at least n eigenvalues
(counted with multiplicities).

The last results permit to compare the spectra of two operators. If (Au, u) ≤
(Bu, u) for all u ∈ dom(B) ⊆ dom(A), then λn(A) ≤ λn(B).
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Schrödinger operators

3.1 Magnetic field

Let z ∈ C. Define

sgnz =

{
z/|z| z 6= 0

0 z = 0.

Proposition 3.1. Suppose that f ∈ L1
loc(Rn) with ∇f ∈ L1

loc(Rn). Then

∇|f | ∈ L1
loc(Rn)

and
∇|f |(x) = <[sgn(f(x))∇f(x)] (3.1)

almost everywhere. In particular, we have

|∇|f || ≤ |∇f |, (3.2)

almost everywhere.

Proof. Let z ∈ C and ε > 0. We define

|z|ε :=
√
|z|2 + ε2 − ε

and observe that
0 ≤ |z|ε ≤ |z| and lim

ε→0
|z|ε = |z|.

If u ∈ C∞(Rn), then |u|ε ∈ C∞(Rn) and as |u|2 = uu we get

∇|u|ε =
<(u∇u)√
|u|2 + ε2

. (3.3)

Now let f be as assumed, take an approximation to the identity (χδ)δ and
define

fδ = f ∗ χδ.

Then fδ → f, |fδ| → |f |, and ∇fδ → ∇f in L1
loc(Rn) as δ → 0.
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Let φ ∈ C∞0 (Rn) be a test function. There exists a subsequence δk → 0 such
that fδk(x) → f(x) for almost every x ∈ suppφ. For simplicity we omit the
index k now. Using the dominated convergence theorem and (3.3) we get∫

(∇φ) |f | dλ = lim
ε→0

∫
(∇φ) |f |ε dλ

= lim
ε→0

lim
δ→0

∫
(∇φ) |fδ|ε dλ

= − lim
ε→0

lim
δ→0

∫
φ
<(f δ∇fδ)√
|fδ|2 + ε2

dλ.

Since ∇fδ → ∇f in L1
loc(Rn), we get taking the limit δ → 0 that∫

(∇φ) |f | dλ = − lim
ε→0

∫
φ
<(f∇f)√
|f |2 + ε2

dλ,

and since φ∇f ∈ L1(Rn and f/
√
|f |2 + ε2 → sgnf as ε→ 0 we get the desired

result by applying once more dominated convergence.

We consider differential operators H(A, V ) of the form

H(A, V ) = −∆A + V, (3.4)

where V : Rn −→ R is the electric potential and

A =

n∑
j=1

Ajdxj

is a 1-form, and

∆A = −
n∑
j=1

(
∂

∂xj
− iAj

)2

.

The 2-form
B = dA =

∑
j<k

(
∂Ak
∂xj

− ∂Aj
∂xk

)
dxj ∧ dxk

is the magnetic field, which is responsible for specific spectral properties of the
operator H(A, V ), as will be seen later.

Under appropriate assumptions on A and V the operator H(A, V ) acts as
an unbounded self-adjoint operator on L2(Rn). In many aspects of the spectral
theory of the Schrödinger operator with magnetic fieldH(A, V ), it is convenient
to compare this operator with the ordinary Schrödinger operator

H(0, V ) = −∆ + V,
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and then to employ well-known properties of H(0, V ).
Let Xj = (−i ∂

∂xj
−Aj) for j = 1, . . . , n. Then

−4A =
n∑
j=1

X2
j , (3.5)

and for u ∈ C∞0 (Rn) we have

(−4Au, u) =

n∑
j=1

‖Xju‖2. (3.6)

Proposition 3.2. Let A ∈ C2(Rn,Rn) and V be a continuous real-valued func-
tion on Rm, such that

V (x) ≥ −C, ∀x ∈ Rm,

where C > 0 is a positive constant. Let dom(H(A, V )) = C∞0 (Rm). Then
H(A, V ) is a symmetric, semibounded operator on L2(Rn).

Proof. For u ∈ C∞0 (Rn) we have

(H(A, V )u, u) =

∫
Rn

(−4Au+ V u)u dλ

=

∫
Rn

n∑
j=1

|Xju|2 dλ+

∫
Rn

V |u|2 dλ

≥ −C ‖u‖2.

Recall that a function g ∈ L1
loc(Rn) is the distributional derivative of f ∈

L1
loc(Rn) with respect to xj (formally g = ∂f/∂xj), if

(g, φ) = −
(
f,
∂φ

∂xj

)
,

for each φ ∈ C∞0 (Rn).
Let fk, f ∈ L1

loc(Rn). We say that fk converges to f in the distributional
sense, if

(fk, φ)→ (f, φ)

for each φ ∈ C∞0 (Rn).
Let f, g ∈ L1

loc(Rn). We say that f ≥ g in the distributional sense, if

(f, φ) ≥ (g, φ),
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for all positive φ ∈ C∞0 (Rn).

A useful tool for spectral analysis of Schrödinger operators is Kato’s inequal-
ity sometimes also called the diamagnetic inequality:

Proposition 3.3. Let A ∈ C2(Rn,Rn). Then, for all f ∈ L1
loc(Rn) with (−i∇+

A)2f ∈ L2
loc(Rn), we have

4|f | ≥ −<(sgn(f)(−i∇+A)2f) = <(sgn(f)4Af), (3.7)

in the distributional sense, where sgn is defined in Chapter 5.

Proof. Let A1, . . . , An be the components of A. Notice that

−4Af = (−i∇+A)2f =
n∑
j=1

(−i ∂

∂xj
+Aj)

2f.

The assumption (−i∇+A)2f ∈ L2
loc(Rn), and the standard regularity property

of second-order elliptic operators (see [4]) imply that f ∈W 2
loc(Rn), in particular

4f,∇f ∈ L1
loc(Rn).

First suppose that u is smooth.Then, with |u|ε =
√
|u|2 + ε2 − ε, we get

∇|u|ε =
<(u∇u)√
|u|2 + ε2

=
<(u(∇+ iA)u)√
|u|2 + ε2

. (3.8)

A straightforward calculation shows that for a smooth function g we have

g4g = div(g∇g)− |∇g|2.

Hence we obtain√
|u|2 + ε24|u|ε = div(

√
|u|2 + ε2 ∇|u|ε)− |∇|u|ε|2

= <
[
∇u · (∇+ iA)u+ u div((∇+ iA)u)

]
− |∇|u|ε|2

= <[(∇u+ iAu) · (∇+ iA)u

+iAu · (∇+ iA)u+ u div((∇+ iA)u)]− |∇|u|ε|2

= |(∇+ iA)u|2 − |∇|u|ε|2

+< [iAu · (∇+ iA)u+ u div((∇+ iA)u)] .

An easy calculation shows that

iAu · (∇+ iA)u+ u div((∇+ iA)u) = u (∇+ iA)2.

Using the Cauchy-Schwarz inequality for (3.8) we get

|(∇+ iA)u|2 ≥ |∇|u|ε|2 . (3.9)
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So we finally see that

4|u|ε ≥ <
u (∇+ iA)2u√
|u|2 + ε2

. (3.10)

The rest of the proof uses approximative units and follows the same lines as
the proof of the Proposition 3.1.

Using Kato’s inequality and a criterion for essential self-adjointness we obtain

Proposition 3.4. Let A ∈ C2(Rn,Rn) and V ∈ L2
loc(Rn) and V ≥ 0. Then

the Schrödinger operator H(A, V ) = −4A + V is essentially self-adjoint on
C∞0 (Rn). In this case the Friedrichs extension is the uniquely determined self-
adjoint extension (see [6]).

Proof. By Proposition 2.42, it is sufficient to show that

ker(H(A, V )∗ + I) = {0}.

Since dom(H(A, V )∗) ⊆ L2(Rn), the triviality of the kernel follows from the
statement: if

−4Au+ V u+ u = 0, (3.11)

for u ∈ L2(Rn), then u = 0.
If u ∈ L2(Rn) and V ∈ L2

loc(Rn), one has uV ∈∈ L1
loc(Rn). In addition we

have the inclusion
L2(Rn) ⊂ L2

loc(Rn) ⊂ L1
loc(Rn),

which follows from the estimate∫
K
|u| dλ ≤ |K| (

∫
K
|u|2 dλ)1/2.

Hence we have u ∈ L1
loc(Rn), and, by (3.11), that 4u ∈ L1

loc(Rn), where the
derivative is taken in the sense of distributions.

From (3.7) and (3.11) we obtain

4|u| ≥ <(sgn(u)4Au)

= <(sgn(u) (V + 1)u)

= |u| (V + 1) ≥ 0.

If (χε)ε is an approximate unit, we get

4(χε ∗ |u|) = χε ∗ 4|u| ≥ 0. (3.12)

Since χε ∗ |u| ∈ dom(4), we have

(4(χε ∗ |u|), χε ∗ |u|) = −‖∇(χε ∗ |u|)‖2 ≤ 0. (3.13)

By (3.12), the left side of (3.13) is nonnegative, so ∇(χε ∗ |u|) = 0 and hence
χε ∗ |u| = c ≥ 0. But |u| ∈ L2(Rn) and χε ∗ |u| → |u| in L2(Rn), and so c = 0.
Hence χε ∗ |u| = 0, so |u| = 0 and u = 0.
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3.2 Properties of the spectrum

Proposition 3.5. Let A ∈ C2(Rn,Rn) and V ∈ L2
loc(Rn) and V ≥ 0. Then

infσ(H(A, V )) ≥ infσ(H(0, V )). (3.14)

Proof. By Kato’s inequality (3.7), we have

4|f | ≤ <(sgn(f)(−4Af)),

so we get

(|f |, H(0, V )|f |) ≤
∫
Rn

|f | <(sgn(f)(−4Af)) dλ

= <
∫
Rn

fH(A, V )f dλ

= (H(A, V )f, f).

Now we can apply Proposition 2.64 to obtain the desired result.

Finally we still mention the gauge invariance of the spectrum of H(A, V ) :

Proposition 3.6. Let A,A′ ∈ C2(Rn,Rn) and V ∈ L2
loc(Rn) and V ≥ 0 be

such that dA = dA′. Then σ(H(A, V )) = σ(H(A′, V )).

Proof. By the Poincaré lemma, we have A′ = A+ dg, where g ∈ C1(Rn).
Let Xj = (−i ∂

∂xj
−Aj) and X ′j = (−i ∂

∂xj
−A′j) for j = 1, . . . , n. Then

X ′j = e−igXj e
ig.

Hence
H(A′, V ) = e−igH(A, V ) eig.

Therefore the operators H(A′, V ) and H(A, V ) are unitarily equivalent, hence,
by Lemma 2.47 have the same spectrum.
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