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Abstract. Branch and bound methods for finding all zeros of a nonlinear system of equations in
a box frequently have the difficulty that subboxes containing no solution cannot be easily eliminated
if there is a nearby zero outside the box. This has the effect that near each zero many small boxes
are created by repeated splitting, whose processing may dominate the total work spent on the global
search.

This paper discusses the reasons for the occurrence of this so-called cluster effect and how to
reduce the cluster effect by defining exclusion regions around each zero found that are guaranteed to
contain no other zero and hence can safely be discarded.

Such exclusion regions are traditionally constructed using uniqueness tests based on the Krawczyk
operator or the Kantorovich theorem. These results are reviewed; moreover, refinements are proved
that significantly enlarge the size of the exclusion region. Existence and uniqueness tests are also
given.
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1. Introduction. Branch and bound methods for finding all zeros of a nonlinear
system of equations in a box [10, 23] frequently have the difficulty that subboxes
containing no solution cannot be easily eliminated if there is a nearby zero outside
the box. This has the effect that near each zero many small boxes are created by
repeated splitting, whose processing may dominate the total work spent on the global
search.

This paper discusses in section 3 the reasons for the occurrence of this so-called
cluster effect and how to reduce the cluster effect by defining exclusion regions around
each zero found that are guaranteed to contain no other zero and hence can safely be
discarded. Such exclusion boxes (possibly first used by Jansson [4]) are the basis for
the backboxing strategy by van Iwaarden [24] (see also Kearfott [8, 9]) that eliminates
the cluster effect near well-conditioned zeros.

Exclusion regions are traditionally constructed using uniqueness tests based on the
Krawczyk operator (see, e.g., Neumaier [16, Chapter 5]) or the Kantorovich theorem
(see, e.g., Ortega and Rheinboldt [19, Theorem 12.6.1]); both provide existence and
uniqueness regions for zeros of systems of equations. Shen and Neumaier [22] proved
that the Krawczyk operator with slopes always provides an existence region which is
at least as large as that computed by Kantorovich’s theorem. Deuflhard and Heindl
[2] proved an affine invariant version of the Kantorovich theorem.

In section 2, these results are reviewed, together with recent works on improved
preconditioning by Hansen [3] and on Taylor models by Berz and Hoefkens [1] that
are related to our present work. In sections 4–7, we discuss componentwise and affine
invariant existence, uniqueness, and nonexistence regions given a zero or any other
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point of the search region. They arise from a more detailed analysis of the properties
of the Krawczyk operator with slopes used in [22].

Numerical examples given in section 8 show that the refinements introduced in
this paper significantly enlarge the sizes of the exclusion regions.

In the following, the notation is as in the book [17]. In particular, inequalities
are interpreted componentwise, I denotes the identity matrix, intervals and boxes (=
interval vectors) are in boldface, and radx = 1

2
(x − x) denotes the radius of a box

x = [x, x] ∈ IR
n. The interior of a set S ⊆ R

n is denoted by int(S) and the interval
hull by ��S.

We consider the nonlinear system of equations

F (x) = 0,(1)

where F : D ⊆ R
n → R

n is twice continuously differentiable in a convex domain D.
(For some results, weaker conditions suffice; it will be clear from the arguments used
that continuity and the existence of the quantities in the hypothesis of the theorems
are sufficient.)

Since F is twice continuously differentiable, we can always (e.g., using the mean
value theorem) write

F (x) − F (z) = F [z, x](x− z)(2)

for any two points x and z with a suitable matrix F [z, x] ∈ R
n×n, continuously

differentiable in x and z; any such F [z, x] is called a slope matrix for F . While (in
dimension n > 1) F [z, x] is not uniquely determined, we always have (by continuity)

F [z, z] = F ′(z).(3)

Thus F [z, x] is a slope version of the Jacobian. There are recursive procedures to
calculate a slope F [z, x], given x and z; see Krawczyk and Neumaier [14], Rump [20],
and Kolev [13]; a Matlab implementation is in Intlab [21].

Since the slope matrix F [z, x] is continuously differentiable, we can write similarly

F [z, x] = F [z, z′] +
∑

(xk − z′k)Fk[z, z
′, x](4)

with second order slope matrices Fk[z, z
′, x], continuous in z, z′, x. Here, as throughout

this paper, the summation extends over k = 1, . . . , n. Second order slope matrices
can also be computed recursively; see Kolev [13]. Moreover, if F is quadratic, the
slope is linear in x and z, and the coefficients of x determine constant second order
slope matrices without any work.

If z = z′ the formula above somewhat simplifies, because of (3), to

F [z, x] = F ′(z) +
∑

(xk − zk)Fk[z, z, x].(5)

Throughout the paper we shall make the following assumption, without mentioning
it explicitly.

Assumption A. The point z and the convex subset X lie in the domain of definition
of F . The center, z ∈ X, and the second order slope (5) are fixed. Moreover, for a
fixed preconditioning matrix C ∈ R

m×n, the componentwise bounds

b ≥ |CF (z)| ≥ b,

B0 ≥ |CF ′(z) − I|,
B′

0 ≥ |CF ′(z)|,
Bk(x) ≥ |CFk[z, z, x]| (k = 1, . . . , n)

(6)
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are valid for all x ∈ X.
Example 1.1. We consider the system of equations

x2
1 + x2

2 = 25,

x1x2 = 12.
(7)

The system has the form (1) with

F (x) =

(
x2

1 + x2
2 − 25

x1x2 − 12

)
.(8)

With respect to the center z = ( 3
4 ), we have

F (x) − F (z) =

(
x2

1 − 32 + x2
2 − 42

x1x2 − 3 · 4

)
=

(
(x1 + 3)(x1 − 3) + (x2 + 4)(x2 − 4)

x2(x1 − 3) + 3(x2 − 4)

)

so that we can take

F [z, x] =

(
x1 + 3 x2 + 4

x2 3

)

as a slope. (Note that other choices would be possible.) The interval slope F [z,x] in
the box x = [2, 4] × [3, 5] is then

F [z, x] =

(
[5, 7] [7, 9]

[3, 5] 3

)
.

The slope can be put in form (5) with

F ′(z) =

(
6 8

4 3

)
, F1 =

(
1 0

0 0

)
, F2 =

(
0 1

1 0

)
,

and we obtain

B1 =
1

14

(
3 0

4 0

)
, B2 =

1

14

(
8 3

6 4

)
.

Since we calculated without rounding errors and z happens to be a zero of F , both
B0 and b vanish.

2. Known results. The oldest semilocal existence theorem for zeros of systems
of equations is due to Kantorovich [7], who obtained as a by-product of a convergence
guarantee for Newton’s method (which is not of interest in our context) the following
result.

Theorem 2.1 (Kantorovich). Let z be a vector such that F ′(z) is invertible, and
let α and β be constants with

‖F ′(z)−1‖∞ ≤ α, ‖F ′(z)−1F (z)‖∞ ≤ β.(9)

Suppose further that z ∈ x and that there exists a constant γ > 0 such that for all
x ∈ x,

max
i

∑
j,k

∣∣∣∣∂2Fi(x)

∂xj∂xk

∣∣∣∣ ≤ γ.(10)

If 2αβγ < 1, then ∆ :=
√

1 − 2αβγ is real and we have the following:
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1. There is no zero x ∈ x with

r < ‖x− z‖∞ < r,

where

r =
2β

1 + ∆
, r =

1 + ∆

αγ
.

2. At most one zero x is contained in x with

‖x− z‖∞ <
2

αγ
.

3. If

max
x∈x

‖x− z‖∞ < r,

then there is a unique zero x ∈ x, and this zero satisfies

‖x− z‖∞ ≤ r.

The affine invariant version of the Kantorovich theorem given in Deuflhard and
Heindl [2] essentially amounts to applying the theorem to F ′(z)−1F (x) in place of
F (x). In practice, rounding errors in computing F ′(z)−1 are made, which requires
the use of a preconditioning matrix C ≈ F ′(z)−1 and CF (x) in place of F (x) to get
the benefits of affine invariance in floating point computations.

Kahan [5] used the Krawczyk operator, which needs only first order slopes, to
make existence statements. Together with later improvements using slopes, his result
is contained in the following statement.

Theorem 2.2 (Kahan). Let z ∈ z ⊆ x. If there is a matrix C ∈ R
n×n such that

the Krawczyk operator

K(z,x) := z − CF (z) − (CF [z,x] − I)(x − z)(11)

satisfies K(z,x) ⊆ x, then x contains a zero of (1). Moreover, if K(x,x) ⊆ int(x),
then x contains a unique zero of (1).

Shen and Neumaier [22] proved that the Krawczyk operator with slopes always
provides existence regions which are at least as large as those computed by Kan-
torovich’s theorem, and, since the Krawczyk operator is affine invariant, this also
covers the affine invariant Kantorovich theorem.

Recent work by Hansen [3] shows that there is scope for gain in Krawczyk’s
method by improved preconditioning; but he gives only heuristic recipes for how to
proceed. For quadratic problems, where the slope is linear in x, his recipe suggests
evaluating CF [z, x] term by term before substituting intervals. Indeed, by subdis-
tributivity, we always have

CA0 +
∑

CAk(xk − zk) ⊆ C
(
A0 +

∑
Ak(xk − zk)

)
so that, for quadratic functions, Hansen’s recipe is never worse than the traditional
recipe. We adapt it as follows to general functions, using second order slopes; in the
general case, the preconditioned slope takes the form

CF [z, x] = CF [z, z′] +
∑

(xk − z′k)CFk[z, z
′, x](12)
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or, with z = z′, as we use it most of the time,

CF [z, x] = CF ′(z) +
∑

(xk − zk)CFk[z, z, x].(13)

In the following, the consequences of this formulation, combined with ideas from Shen
and Neumaier [22], are investigated in detail.

Recent work on Taylor models by Berz and Hoefkens [1] (see also Neumaier [18])
uses expansions to even higher than second order, although at a significantly higher
cost. This may be of interest for systems suffering a lot from cancellation, where using
low order methods may incur much overestimation, leading to tiny inclusion regions.
Another recent paper on exclusion boxes is Kalovics [6].

3. The cluster effect. As explained by Kearfott and Du [11], many branch and
bound methods used for global optimization suffer from the so-called cluster effect.
As is apparent from the discussion below, this effect is also present for branch and
bound methods using constraint propagation methods to find and verify all solutions
of nonlinear systems of equations. (See, e.g., Van Hentenryck, Michel, and Deville
[23] for constraint propagation methods.)

The cluster effect consists of excessive splitting of boxes close to a solution and
failure to remove many boxes not containing the solution. As a consequence, these
methods slow down considerably once they reach regions close to the solutions. The
mathematical reason for the cluster effect and how to avoid it will be investigated in
this section.

Let us assume that for arbitrary boxes x of maximal width ε the computed ex-
pression F (x) overestimates the range of F over x by O(εk):

F (x) ∈ (1 + Cεk)��{F (x) | x ∈ x}(14)

for k ≤ 2 and ε sufficiently small. The exponent k depends on the method used for
the computation of F (x).

Let x∗ be a regular solution of (1) (so that F ′(x∗) is nonsingular), and assume
(14). Then any box of diameter ε that contains a point x with

‖F ′(x∗)(x− x∗)‖∞ ≤ ∆ = Cεk(15)

might contain a solution. Therefore, independent of the pruning scheme used in a
branch and bound method, no box of diameter ε can be eliminated. The inequality
(15) describes a parallelepiped of volume

V =
∆n

detF ′(x∗)
.

Thus, any covering of this region by boxes of diameter ε contains at least V/εn boxes.
The number of boxes of diameter ε which cannot be eliminated is therefore pro-

portional to at least

Cn

detF ′(x∗)
if k = 1,

(Cε)n

detF ′(x∗)
if k = 2.
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For k = 1 this number grows exponentially with the dimension, with a growth
rate determined by the relative overestimation C and a proportionality factor related
to the condition of the Jacobian.

In contrast, for k = 2 the number is guaranteed to be small for sufficiently small
ε. The size of ε, the diameter of the boxes most efficient for covering the solution,
is essentially determined by the nth root of the determinant, which, for a well-scaled
problem, reflects the condition of the zero. However, for ill-conditioned zeros (with
a tiny determinant in naturally scaled coordinates), one already needs quite narrow
boxes before the cluster effect subsides.

So, to avoid the cluster effect, we need at least the quadratic approximation
property k = 2. Hence, Jacobian information is essential, as well as techniques to
discover the shape of the uncertainty region.

A comparison of the typical techniques used for box elimination shows that con-
straint propagation techniques lead to overestimation of order k = 1; hence they suffer
from the cluster effect. Centered forms using first order information (Jacobians) as
in Krawczyk’s method provide estimates with k = 2 and are therefore sufficient to
avoid the cluster effect, except near ill-conditioned or singular zeros. Second order
information as used, e.g., in the theorem of Kantorovich still provides only k = 2 in
estimate (15); the cluster effect is avoided under the same conditions.

For singular (and hence for sufficiently ill-conditioned) zeros, the argument does
not apply, and no technique is known to remove the cluster effect in this case. A
heuristic that limits the work in this case by retaining a single but larger box around
an ill-conditioned approximate zero is described in Algorithm 7 (Step 4(c)) of Kearfott
[10].

4. Componentwise exclusion regions close to a zero. Suppose that x∗ is a
solution of the nonlinear system of equations (1). We want to find an exclusion region
around x∗ with the property that in the interior of this region x∗ is the only solution
of (1). Such an exclusion region need not be further explored in a branch and bound
method for finding all solutions of (1); hence we get the name.

In this section we take an approximate zero z of F , and we choose C to be
an approximation of F ′(z)−1. Suitable candidates for z can easily be found within
a branch and bound algorithm by trying Newton steps from the midpoint of each
box, iterating while x� remains in a somewhat enlarged box and either ‖x�+1 − x�‖
or ‖F (x�)‖ decreases by a factor of, say, 1.5 below the best previous value in the
iteration. This works locally well even at nearly singular zeros and gives a convenient
stop in case no nearby solution exists.

Proposition 4.1. For every solution x ∈ X of (1), the deviation

s := |x− z|

satisfies

0 ≤ s ≤
(
B0 +

∑
skBk(x)

)
s + b.(16)

Proof. By (2) we have F [z, x](x−z) = F (x)−F (z) = −F (z), because x is a zero.
Hence, using (5), we compute

−(x− z) = −(x− z) + C(F [z, x](x− z) + F (z) + F ′(z)(x− z) − F ′(z)(x− z))
= C(F [z, x] − F ′(z))(x− z) + (CF ′(z) − I)(x− z) + CF (z)

=
(
CF ′(z) − I +

∑
(xk − zk)CFk[z, z, x]

)
(x− z) + CF (z).
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Now we take absolute values, use (6), and get

s = |x− z| ≤
(
|CF ′(z) − I| +

∑
|xk − zk| |CFk[z, z, x]|

)
|x− z| + |CF (z)|

≤
(
B0 +

∑
skBk(x)

)
s + b.

Using this result we can give a first criterion for existence regions.
Theorem 4.2. Let 0 < u ∈ R

n be such that(
B0 +

∑
ukBk

)
u + b ≤ u(17)

with Bk(x) ≤ Bk for all x ∈ Mu, where

Mu := {x | |x− z| ≤ u} ⊆ X.(18)

Then (1) has a solution x ∈ Mu.
Proof. For arbitrary x in the domain of definition of F we define

K(x) := x− CF (x).

Now take any x ∈ Mu. We get

K(x) = x− CF (x) = z − CF (z) − (CF [z, x] − I)(x− z)

= z − CF (z) −
(
C
(
F ′(z) +

∑
Fk[z, z, x](xk − zk)

)
− I

)
(x− z);

hence

K(x) = z − CF (z) −
(
CF ′(z) − I +

∑
CFk[z, z, x](xk − zk)

)
(x− z).(19)

Taking absolute values we find

|K(x) − z| =
∣∣∣−CF (z) −

(
CF ′(z) − I +

∑
CFk[z, z, x](xk − zk)

)
(x− z)

∣∣∣
≤ |CF (z)| +

(
|CF ′(z) − I| +

∑
|CFk[z, z, x]| |xk − zk|

)
|x− z|

≤ b +
(
B0 +

∑
ukBk

)
u.

(20)

Now assume (17). Then (20) gives

|K(x) − z| ≤ u,

which implies by Theorem 2.2 that there exists a solution of (1) which lies in
Mu.

Note that (17) implies B0u ≤ u; thus the spectral radius ρ(B0) ≤ 1. In the
applications, we can make both B0 and b very small by choosing z as an approximate
zero and C as an approximate inverse of F ′(z).

Now the only thing that remains is the construction of a suitable vector u for
Theorem 4.2.

Theorem 4.3. Let S ⊆ X be any set containing z, and take

Bk ≥ Bk(x) for all x ∈ S.(21)



390 HERMANN SCHICHL AND ARNOLD NEUMAIER

For 0 < v ∈ R
n, set

w := (I −B0)v, a :=
∑

vkBkv.(22)

We suppose that

Dj = w2
j − 4ajbj > 0(23)

for all j = 1, . . . , n, and we define

λe
j :=

wj +
√
Dj

2aj
, λi

j :=
bj

ajλe
j

,(24)

λe := min
j=1,...,n

λe
j , λi := max

j=1,...,n
λi
j .(25)

If λe > λi, then there is at least one zero x∗ of (1) in the (inclusion) region

Ri := [z − λiv, z + λiv] ∩ S.(26)

The zeros in this region are the only zeros of F in the interior of the (exclusion) region

Re := [z − λev, z + λev] ∩ S.(27)

Proof. Let 0 < v ∈ R
n be arbitrary, and set u = λv. We check for which λ the

vector u satisfies property (17) of Theorem 4.2. The requirement

λv ≥
(
B0 +

∑
ukBk

)
u + b =

(
B0 +

∑
λvkBk

)
λv + b

= b + λB0v + λ2
∑

vkBkv = b + λ(v − w) + λ2a

leads to the sufficient condition λ2a−λw+b ≤ 0. The jth component of this inequality
requires that λ lies between the solutions of the quadratic equation λ2aj−λwj+bj = 0,
which are λi

j and λe
j . Hence, for every λ ∈ [λi, λe] (this interval is nonempty by

assumption), the vector u satisfies (17).
Now assume that x is a solution of (1) in int(Re) \ Ri. Let λ be minimal with

|x − z| ≤ λv. By construction, λi < λ < λe. By the properties of the Krawczyk
operator, we know that x = K(z, x); hence

|x− z| ≤ |CF (z)| +
(
|CF ′(z) − I| +

∑
|CFk[z, z, x]| |xk − zk|

)
|x− z|

≤ b + λB0v + λ2
∑

vkBkv < λv,
(28)

since λ > λi. But this contradicts the minimality of λ. So there are indeed no
solutions of (1) in int(Re) \Ri.

This is a componentwise analogue of the Kantorovich theorem. We show in Ex-
ample 8.1 that it is best possible in some cases.

We observe that the inclusion region from Theorem 4.3 can usually be further
improved by noting that x∗ = K(z, x∗) and (19) imply

x∗ ∈ K(z,xi)

= z − CF (z) −
(
CF ′(z) − I +

∑
CFk[z, z,x

i](xi
k − zk)

)
(xi − z)

⊂ int(xi).
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An important special case is when F (x) is quadratic in x. For such a function F [z, x]
is linear in x, and therefore all Fk[z, z, x] are constant in x. This, in turn, means
that Bk(x) = Bk is constant as well. So we can set Bk = Bk, and the estimate (21)
becomes valid everywhere.

Corollary 4.4. Let F be a quadratic function. For arbitrary 0 < v ∈ R
n define

w := (I −B0)v, a :=
∑

vkBkv.(29)

We suppose that

Dj = w2
j − 4ajbj > 0(30)

for all j = 1, . . . , n, and we set

λe
j :=

wj +
√
Dj

2aj
, λi

j :=
bj

ajλe
j

,(31)

λe := min
j=1,...,n

λe
j , λi := max

j=1,...,n
λi
j .(32)

If λe > λi, then there is at least one zero x∗ of (1) in the (inclusion) box

xi := [z − λiv, z + λiv].(33)

The zeros in this region are the only zeros of F in the interior of the (exclusion) box

xe := [z − λev, z + λev].(34)

The examples later will show that the choice of v greatly influences the quality of
the inclusion and exclusion regions. The main difficulty for choosing v is the positivity
requirement for every Dj . In principle, a vector v, if it exists, could be found by local
optimization. A method worth trying could be to choose v as a local optimizer of the
problem

max n log λe +

n∑
j=1

log vj

s.t. Dj ≥ η (j = 1, . . . , n),

where η is the smallest positive machine number. This maximizes locally the volume
of the excluded box. However, since λe is nonsmooth, solving this needs a nonsmooth
optimizer (such as SolvOpt [15]).

The Bk can be constructed using interval arithmetic for a given reference box x
around z. Alternatively, they could be calculated once in a bigger reference box xref

and later reused on all subboxes of xref. Saving the Bk (which needs the storage of n3

numbers per zero) provides a simple exclusion test for other boxes. This takes O(n3)
operations, while recomputing the Bk costs O(n4) operations.

5. Exclusion polytopes. Instead of boxes, we can use more general polytopes
to describe exclusion and inclusion regions. With the notation as in the introduction,
we assume the upper bounds

Bk ≥ |Bk(x)| for all x ∈ X.(35)
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Theorem 5.1. For 0 ≤ v ≤ w ∈ R
n, define

P (w) = (B1
Tw, . . . , Bn

Tw) ∈ R
n×n,(36)

Πi = {x ∈ R
n | (w − v)T |x− z| ≤ b Tw}.(37)

Then any zero x ∈ X of (1) contained in the polytope

Πe = {x ∈ R
n | P (w)|x− z| + BT

0 w ≤ v}(38)

lies already in Πi.
Proof. Suppose x ∈ Πe satisfies F (x) = 0. By Proposition 4.1, s = |x−z| satisfies

sTw ≤ sT
(
BT

0 w +
∑

skBk
Tw

)
+ b Tw

= sT (BT
0 w + P (w)s) + b Tw

≤ sT v + b Tw.

Hence sT (w − v) ≤ b Tw, giving

(w − v)T |x− z| ≤ b Tw;(39)

hence x ∈ Πi.
Corollary 5.2. Let x ⊆ X be a box and z ∈ x be an approximate zero. If there

is a vector 0 ≤ w ∈ R
n with

v := P (w)u + BT
0 w ≤ w,(40)

where u := |x − z|, then all solutions x ∈ x of (1) satisfy (39), and, in particular,

|x− z|i ≤ b Tw (wi − vi)
−1 for all i with wi > vi.(41)

Proof. Let x ∈ x be a solution of (1). Then x ∈ Πe by (40), and, due to
Theorem 5.1, x ∈ Πi. Therefore (39) holds. In particular, (w − v)i|x − z|i ≤ b Tw.
This implies the result.

In contrast to (32), the test (40) needs only O(n2) operations (once P (w) is
computed) and the storage of n2 +n numbers per zero. Since P (w) can be calculated
columnwise, it is not even necessary to keep all Bk in store.

Since B0 and b usually are very tiny (they contain only roundoff errors), this is a
powerful box reduction technique if we can find a suitable vector w.

The result is most useful, of course, if w > v, but in some cases this is not possible.
In these cases boxes are at least reduced in some components.

A suitable choice for w may be an approximation w > 0 to a Perron eigenvector
[16, section 3.2] of the nonnegative matrix

M =
∑
k

ukBk
T ,

where u > 0 is proportional to the width of the box of interest. Then

λw = Mw =
∑

ukBk
Tw = P (w)u.
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If

max(BT
0 w)i

wi
< α < 1, µ := (1 − α)λ−1,

we can conclude from Corollary 5.2 (with µu in place of u) that the box [z−µu, z+µu]
can be reduced to [z − û, z + û], where (with c/0 = ∞)

ûi := min

(
µui,

b
T
w

max(0, αwi − (BT
0 w))i

)
.

6. Uniqueness regions. Regions in which there is a unique zero can be found
most efficiently as follows. First, one verifies as in the previous sections an exclusion
box xe which contains no zero except in a much smaller inclusion box xi. The inclusion
box can usually be refined further by some iterations with Krawczyk’s method, which
generally converges quickly if the initial inclusion box is already verified. Thus we
may assume that xi is really tiny, with width determined by rounding errors only.

Clearly, int(xe) contains a unique zero iff xi contains at most one zero. Thus it
suffices to have a condition under which a tiny box contains at most one zero. This
can be done even in fairly ill-conditioned cases by the following test.

Theorem 6.1. Take an approximate solution z ∈ X of (1), and let B be a matrix
such that

|CF [z,x] − I| +
∑

|xk − zk| |CFk[x, z,x]| ≤ B.(42)

If ‖B‖ < 1 for some monotone norm, then x contains at most one solution x of (1).
Proof. Assume that x and x′ are two solutions. Then we have

0 = F (x′) − F (x) = F [x, x′](x′ − x) =
(
F [x, z] +

∑
(x′

k − zk)Fk[x, z, x
′]
)
(x′ − x).

(43)

Using an approximate inverse C of F ′(z) we further get

x− x′ =
(
(CF [z, x] − I) +

∑
(x′

k − zk)CFk[x, z, x
′]
)
(x′ − x).(44)

Applying absolute values, and using (42), we find

|x′ − x| ≤
(
|CF [z, x] − I| +

∑
|CFk[x, z, x

′]| |x′
k − zk|

)
|x′ − x| ≤ B|x′ − x|.(45)

This, in turn, implies ‖x′ − x‖ ≤ ‖B‖ ‖x′ − x‖. If ‖B‖ < 1 we immediately conclude
‖x′ − x‖ ≤ 0; hence x = x′.

Since B is nonnegative, ‖B‖ < 1 holds for some norm iff the spectral radius of B
is less than one (see, e.g., Neumaier [16, Corollary 3.2.3]); a necessary condition for
this is that maxBkk < 1, and a sufficient condition is that |B|u < u for some vector
u > 0.

So one first checks whether maxBkk < 1. If this holds, one checks whether
‖B‖∞ < 1; if this fails, one computes an approximate solution u of (I − B)u = e,
where e is the all-one vector, and checks whether u > 0 and |B|u < u. If this fails, the
spectral radius of B is very close to 1 or larger. (Essentially, this amounts to testing
I −B for being an H-matrix; cf. [16, Proposition 3.2.3].)
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We can find a matrix B satisfying (42) by computing B̂k ≥ |CFk[x, z,x]|, for
example by interval evaluation, using (5), and observing

|CF [z,x] − I| ≤ |CF ′(z) − I| +
∑

|xk − zk| |CFk[z, z,x]|
≤ |CF ′(z) − I| +

∑
|xk − zk| |CFk[x, z,x]|.

Then, using (6), we get

|CF [z,x] − I| +
∑

|xk − zk| |CFk[x, z,x]| ≤ B0 + 2
∑

|xk − zk| B̂k =: B,(46)

where B can be computed using rounding towards +∞.
If F is quadratic, the results simplify again. In this case all Fk[x

′, z, x] =: Fk are
constant, and we can replace B̂k by Bk := |CFk|. Hence (46) becomes

B = B0 + 2
∑

|xk − zk|Bk.

7. Componentwise exclusion regions around arbitrary points. In a
branch–and–bound-based method for finding all solutions to (1), we not only need
to exclude regions close to zeros but also boxes far away from all solutions. This is
usually done by interval analysis on the range of F , by constraint propagation meth-
ods (see, e.g., Van Hentenryck, Michel, and Deville [23]), or by Krawczyk’s method
or preconditioned Gauss–Seidel iteration (see, e.g., [16]). An affine invariant, compo-
nentwise version of the latter is presented in this section.

Let z be an arbitrary point in the region of definition of F . Throughout this
section, C ∈ R

m×n denotes an arbitrary rectangular matrix. Mu is as in (18).
Theorem 7.1. Let 0 < u ∈ R

n, and take Bk ≥ Bk(x) for all x ∈ Mu. If there is
an index i ∈ {1, . . . , n} such that the inequality

bi − (B′
0u)i −

∑
uk(Bku)i > 0(47)

is valid, then (1) has no solution x ∈ Mu.
Proof. We set x = [z− u, z + u]. For a zero x ∈ Mu of F , we calculate, using (5),

similar to the proof of Theorem 4.2,

0 = |K(x) − x| =
∣∣∣− CF (z) −

(
CF ′(z) −

∑
CFk[z, z, x](xk − zk)

)
(x− z)

∣∣∣
≥ |CF (z)| −

∣∣∣(CF ′(z) − I)(x− z) +
∑

(xk − zk)CFk[z, z, x](x− z)
∣∣∣.

(48)

Now we use (6) and (47) to compute

|CF (z)|i ≥ bi > (B′
0u)i +

∑
(ukBku)i

≥
(
|CF ′(z)|u

)
i
+
∑(

uk|CFk[z, z, x] |u
)
i

≥
∣∣∣CF ′(z)(x− z)

∣∣∣
i
+
∑∣∣∣(xk − zk)CFk[z, z, x](x− z)

∣∣∣
i

≥
∣∣∣(CF ′(z) − I)(x− z) +

∑
(xk − zk)CFk[z, z, x](x− z)

∣∣∣
i
.

This calculation and (47) imply

|CF (z)|i −
∣∣∣CF ′(z)(x− z) +

∑
(xk − zk)CFk[z, z, x](x− z)

∣∣∣
i

≥ bi − (B′
0u)i −

∑
(ukBku)i > 0,
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contradicting (48).
Again, we need a method to find good vectors u satisfying (47). The following

theorem provides that.
Theorem 7.2. Let S ⊆ X be a set containing z, and take Bk ≥ Bk(x) for all

x ∈ S. If for any 0 < v ∈ R
n we define

w× := B′
0v,

a× :=
∑

vkBkv,

D×
i := w×

i

2
+ 4bia

×
i ,

λ×
i :=

bi

w×
i +

√
D×

i

,

λ× := max
i=1,...,n

λ×
i ,

(49)

then F has no zero in the interior of the exclusion region

R× := [z − λ×v, z + λ×v] ∩ S.(50)

Proof. We set u = λv and check the result (47) of Theorem 7.1:

0 < bi − (B′
0u)i −

∑
(ukBku)i = bi − λ(B′

0v)i − λ2
∑

(vkBkv)i.

This quadratic inequality has to be satisfied for some i ∈ {1, . . . , n}. The ith inequality
is true for all λ ∈ [0, λ×

i [, so we can take the maximum of all these numbers and still
have the inequality satisfied for at least one i. Bearing in mind that the estimates are
only true in the set S, the result follows from Theorem 7.1.

As in the last section, a vector v could be calculated by local optimization, e.g.,
as a local optimizer of the problem

max n log λ× +

n∑
j=1

log vj .

This maximizes locally the volume of the excluded box. Solving this also needs a
nonsmooth optimizer since λ× is nonsmooth like λe. However, in contrast to the v
needed in Theorem 4.3, there is no positivity requirement which has to be satisfied.
In principle, every choice of v leads to some exclusion region.

Finding a good choice for C is a subtle problem and could be attacked by methods
similar to Kearfott, Hu, and Novoa [12]. Example 8.3 below shows that a pseudoin-
verse of F ′(z) usually yields reasonable results. However, improving the choice of C
sometimes widens the exclusion box by a considerable amount.

Again, for quadratic F the result can be made global, due to the fact that the
Fk[z, z, x] are independent of x.

Corollary 7.3. Let F be quadratic, and 0 < v ∈ R
n. Choose Bk ≥ |CFk|, w×

i ,
a×i , D×

i , λ×
i , and λ× as in Theorem 7.2. Then F has no zero in the interior of the

exclusion box

x× := [z − λ×v, z + λ×].(51)

Proof. This is a direct consequence of Theorem 7.2 and the fact that all Fk[z, z, x]
are constant in x.
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Results analogous to Theorems 4.3, 5.1, 6.1, and 7.2 can be obtained for exclusion
regions in global optimization problems by applying the above techniques to the first
order optimality conditions. Since nothing new happens mathematically, we refrain
from giving details.

8. Examples. We illustrate the theory with a few examples.
Example 8.1. We continue Example 1.1, doing all calculations symbolically, hence

free of rounding errors, assuming a known zero. (This idealizes the practically relevant
case where a good approximation of a zero is available from a standard zero-finder.)

Fig. 1. Maximal exclusion boxes around ( 1
2
) and the total excluded region for Example 8.1.

We consider the system of equations (7), which has the four solutions ±( 3
4 ) and

±( 4
3 ); cf. Figure 1. The system has the form (1) with F given by (8). If we take the

solution x∗ = ( 3
4 ) as center z, we can use the slope calculations from the introduction.

From (29) we get

wj = vj , Dj = v2
j (j = 1, 2),

a1 = 1
14 (3v2

1 + 8v1v2 + 3v2
2), a2 = 1

14 (4v2
1 + 6v1v2 + 4v2

2),

and, for the particular choice v = ( 1
1 ), we get from (31)

λi = 0, λe = 1.(52)
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Thus, Corollary 4.4 implies that the interior of the box

[x∗ − v, x∗ + v] =

(
[2, 4]

[3, 5]

)

contains no solution apart from (3
4 ). This is best possible, since there is another

solution (4
3 ) at a vertex of this box. The choice v = ( 1

2 ), ω(v) = 8
7 , gives another

exclusion box, neither contained in nor containing the other box.
If we consider the point z = ( 1

2 ), we find

F (z) =

(
−20

−10

)
, F ′(z) =

(
2 4

2 1

)
, C =

1

6

(
−1 4

2 −2

)
,

b =
10

3

(
1

1

)
, B0 = 0, B1 =

1

6

(
1 0

2 0

)
, B2 =

1

6

(
4 1

2 2

)
,

w× = v, a× =
1

6

(
v2
1 + 4v1v2 + v2

2

2v2
1 + 2v1v2 + 2v2

2

)
,

D×
1 =

1

9
(29v2

1 + 80v1v2 + 20v2
2), D×

2 =
1

9
(40v2

1 + 40v1v2 + 49v2
2).

Since everything is affine invariant and v > 0, we can set v = (1, v2), and we
compute

λ× =

⎧⎨
⎩

20

3v2+
√

40+40v2+49v2
2

if v2 ≤ 1,

30

3+
√

29+80v2+20v2
2

if v2 > 1.

Depending on the choice of v2, the volume of the exclusion box varies. There are
three locally best choices v2 ≈ 1.97228, v2 ≈ 0.661045, and v2 = 1, the first providing
the globally maximal exclusion box.

For any two different choices of v2 the resulting boxes are never contained in one
another. Selected maximal boxes are depicted in Figure 1 (left) in solid lines; the
total region which can be excluded by Corollary 7.3 is shown in solid lines in the right
part of the figure.

The optimal preconditioner for exclusion boxes, however, does not need to be an
approximate inverse to F ′(z). In this case, it turns out that C = (0 1) is optimal for
every choice of v. Two clearly optimal boxes and the total excluded region for every
possible choice of v with C = (0 1) can be found in Figure 1 in dashed lines.

Example 8.2. The system of equations (1) with

F (x) =

(
x2

1 + x1x2 + 2x2
2 − x1 − x2 − 2

2x2
1 + x1x2 + 3x2

2 − x1 − x2 − 4

)
(53)

has the solutions (1
1 ), ( 1

−1 ), (−1
1 ); cf. Figure 2. It is easily checked that

F [z, x] =

(
x1 + x2 + z1 − 1 2x2 + z1 + 2z2 − 1

2x1 + x2 + 2z1 − 1 3x2 + z1 + 3z2 − 1

)
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Fig. 2. Two quadratic equations in two variables; Example 8.2.

satisfies (2). Thus (5) holds with

F ′(z) =

(
2z1 + z2 − 1 z1 + 4z2 − 1

4z1 + z2 − 1 z1 + 6z2 − 1

)
, F1 =

(
1 0

2 0

)
, F2 =

(
1 2

1 3

)
.

We consider boxes centered at the solution z = x∗ = ( 1
1 ). For

x = [x∗ − εu, x∗ + εu] =

(
[1 − ε, 1 + ε]

[1 − ε, 1 + ε]

)
,

we find

F ′[x∗,x] =

(
[2 − 2ε, 2 + 2ε] [4 − 2ε, 4 + 2ε]

[4 − 3ε, 4 + 3ε] [6 − 3ε, 6 + 3ε]

)
,

F ′(x) =

(
[2 − 3ε, 2 + 3ε] [4 − 5ε, 4 + 5ε]

[4 − 5ε, 4 + 5ε] [6 − 7ε, 6 + 7ε]

)
.

The midpoint of F ′(x) is here F ′(z), and the optimal preconditioner is

C := F ′(x∗)−1 =

(
−1.5 1

1 −0.5

)
;

from this, we obtain

B1 =

(
0.5 0

0 0

)
, B2 =

(
0.5 0

0.5 0.5

)
.

The standard uniqueness test checks for a given box x whether the matrix F ′(x)
is strongly regular (Neumaier [16]). But given the zero x∗ (or, in finite precision
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calculations, a tiny enclosure for it), it suffices to show strong regularity of F [x∗,x].
We find

|I − CF ′(x)| =
ε

2

(
19 29

11 17

)
,

with spectral radius ε(9 + 4
√

5) ≈ 17.944ε. Thus F ′(x) is strongly regular for ε <
1/17.944 = 0.0557. The exclusion box constructed from slopes is better, since

|I − CF [x∗,x]| = ε

(
6 6

3.5 3.5

)

has spectral radius 9.5ε. Thus F [x∗,x] is strongly regular for ε < 1/9.5, and we get
an exclusion box of radius 1/9.5.

The Kantorovich theorem, Theorem 2.1, yields the following results:

F ′′ =

((
2 1

4 1

) (
4 1

1 6

))
,

α = 2.5, β = 0, γ = 12, ∆ = 1,

r = 0, r =
2

2.5 · 12
=

1

15
;

hence it provides an even smaller (i.e., inferior) exclusion box of radius 1
15 .

If we apply Kahan’s theorem, Theorem 2.2, with F ′(x), we have to check that
K(x,x) ⊆ int(x). Now

K(x,x) =

(
1

1

)
− ε

2

(
19 29

11 17

)(
[−ε, ε]

[−ε, ε]

)

is in int(x) if (
[1 − 24ε2, 1 + 24ε2]

[1 − 14ε2, 1 + 14ε2]

)
⊆

(
[1 − ε, 1 + ε]

[1 − ε, 1 + ε]

)
,

which holds for ε < 1/24. This result can be improved if we use slopes instead of
interval derivatives. Indeed,

K(z,x) =

(
1

1

)
− ε

(
6 6

3.5 3.5

)(
[−ε, ε]

[−ε, ε]

)

is in int(x) if (
[1 − 12ε2, 1 + 12ε2]

[1 − 7ε2, 1 + 7ε2]

)
⊆

(
[1 − ε, 1 + ε]

[1 − ε, 1 + ε]

)
,

i.e., for ε < 1/12.
Now we consider the new results. From (31) we get

λe =
2

v1 + v2
.(54)
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Fig. 3. xe and xi calculated for Example 8.2 with three significant digits for v = (1, 1) and
v = (1, 7) at z = (0.99, 1.05).

In exact arithmetic, we find λe = 1 so that Corollary 4.4 implies that the interior
of the box

[x∗ − v, x∗ + v] =

(
[0, 2]

[0, 2]

)
(55)

contains no solution apart from z. In this example, the box is not as large as desirable,
since in fact the larger box

[x∗ − 2v, x∗ + 2v] =

(
[−1, 3]

[−1, 3]

)

contains no other solution. However, the box (55) is still one order of magnitude larger
than that obtained from the standard uniqueness tests or the Kantorovich theorem.

If we use inexact arithmetic (we used Mathematica with three significant digits,
using this artificially low precision to make the inclusion regions visible in the pictures)
and only approximative zeros, the results do not change too much, which can be seen
in the pictures of Figure 3.

Corollary 7.3 also gives very promising results. The size of the exclusion boxes
again depends on the center z and the vector v. The results for various choices can
be found in Figure 4.

To utilize Corollary 5.2 at the exact zero z = ( 1
1 ) we first choose for u = ( 1

1 ) the

Perron eigenvector wp = ( 1
0 ). Its eigenvalue is λ = 1, and, since B0 = 0 and b = 0,

we conclude that Corollary 5.2 reduces the first component of every box x in the
parallelogram P ,

|x1 − 1| + |x2 − 1| < 2,(56)

to the thin value [1, 1]. That the second component is not reduced is caused by the
degeneracy of u. If we choose instead a positive approximation w = ( 1

ε ) to wp and
consider any box x ⊆ P , there is α < 1 with

|x1 − 1| + |x2 − 1| < 2α < 2,
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Fig. 4. x× for Example 8.2 and various choices of z and v = (1, 1).

because x is compact. For ε ≤ 1/α− 1, we therefore get

v =
1

2

(
|x1 − 1| + (1 + ε)|x2 − 1|

ε|x2 − 1|

)
≤ 1

2

(
(1 + ε)(|x1 − 1| + |x2 − 1|)

ε|x2 − 1|

)
< w.

Then Corollary 5.2 implies that |xi − 1| ≤ 0 for i = 1, 2.

The parallelogram P is best possible in the sense that it contains the other two
solutions on its boundary. (But, for general systems, the corresponding maximal
exclusion set need not reach another zero and has no simple geometric shape.)

For a nonquadratic polynomial function, all calculations become more complex,
and the exclusion sets found are usually far from optimal, though still much better
than those from the traditional methods. The Fk[z, z, x] are no longer independent
of x, so Theorems 4.3 and 7.2 have to be applied. This involves the computation of a
suitable upper bound Bk of Fk[z, z, x] by interval arithmetic.

Example 8.3. Figure 5 displays the following system of equations F (x) = 0 in
two variables, with two polynomial equations of degree 2 and 8:

F1(x) = x2
1 + 2x1x2 − 2x2

2 − 2x1 − 2x2 + 3,

F2(x) = x4
1x

4
2 + x3

1x
4
2 + x4

1x
3
2 + 15x2

1x
4
2 − 8x3

1x
3
2 + 10x4

1x
2
2 + 3x1x

4
2 + 5x2

1x
3
2

+ 7x3
1x

2
2 + x4

1x2 − 39x4
2 + 32x1x

3
2 − 57x2

1x
2
2 + 21x3

1x2 − 17x4
1 − 27x3

2 − 17x1x
2
2

− 8x2
1x2 − 18x3

1 − 478x2
2 + 149x1x2 − 320x2

1 − 158x2 − 158x1 + 1062.

(57)
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Fig. 5. Two polynomial equations in two variables; Example 8.3.

The system (57) has 8 solutions, at approximately(
1.0023149901708083

1.0011595047756938

)
,

(
0.4378266929701329

−1.3933047617799774

)
,

(
0.9772028387127761

−1.0115934531170049

)
,

(
−0.9818234823156266

0.9954714636375825

)
,

(
−3.7502535429488344

1.8585101451403585

)
,

(
2.4390986061035260

2.3174396617957018

)
,

(
5.3305903297000243

−1.7161362016394848

)
,

(
−2.0307311621763933

−4.3241016906293375

)
.

We consider the approximate solution z = ( 0.99
1.01 ). For the set S we choose the box

[z − u, z + u] with u = (1
1 ). In this case we have

F (z) ≈
(
−0.0603

−1.170

)
, F ′(z) ≈

(
2 −4.06

−717.55 −1147.7

)
,

F1[z, z, x] =

(
1 0

f1 0

)
, F2[z, z, x] =

(
2 −2

f2 f3

)
,

where

f1 ≈− 405.63 − 51.66x1 − 17x2
1 + 36.52x2 + 23x1x2 + x2

1x2

− 13.737x2
2 + 26.8x1x

2
2 + 10x2

1x
2
2 − 7.9x3

2 − 6.02x1x
3
2 + x2

1x
3
2

+ 19.92x4
2 + 2.98x1x

4
2 + x2

1x
4
2,

f2 ≈ 191.04 − 7.6687x2 + 62.176x2
2 + 39.521x3

2,

f3 ≈− 588.05 − 36.404x2 − 19.398x2
2.
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We further compute

C =

(
0.22035 −0.00077947

−0.13776 −0.00038397

)
,

B0 = 10−5

(
0 1

1 1

)
, B1 =

(
1.0636 0

0.5027 0

)
, B2 =

(
0.3038 0.1358

0.5686 0.5596

)
, b =

(
0.0124

0.0088

)
.

If we use Theorem 4.3 for v = ( 1
1 ), we get

w =

(
0.99999

0.99998

)
, a =

(
1.5032

1.6309

)
, D =

(
0.925421

0.942575

)
,

λi = 0.0126403, λe = 0.604222,

so we may conclude that there is exactly one zero in the box

xi =

(
[0.97736, 1.00264]

[0.99736, 1.02264]

)
,

and this zero is the only zero in the interior of the exclusion box

xe =

(
[0.385778, 1.59422]

[0.405778, 1.61422]

)
.

In Figure 6 the two boxes are displayed.

Fig. 6. Exclusion and inclusion boxes for Example 8.3 at z = (0.99, 1.01).

Next we consider the point z = ( 1.5
−1.5 ) to test Theorem 7.2. We compute

F (z) ≈
(

−3.75

−1477.23

)
, F1[z, z, x] ≈

(
1 0

g1 0

)
,



404 HERMANN SCHICHL AND ARNOLD NEUMAIER

Fig. 7. Exclusion boxes for Example 8.3 at z = (1.5,−1.5).

F ′(z) ≈
(

−2 7

−1578.73 1761.77

)
, F2[z, z, x] =

(
2 −2

g2 g3

)
,

with

g1 ≈− 488.75 − 69x1 − 17x2
1 + 61.75x2 + 24x1x2 + x2

1x2

+ 31.5x2
2 + 37x1x

2
2 + 10x2

1x
2
2 − 12.25x3

2 − 5x1x
3
2 + x2

1x
3
2

+ 24.75x4
2 + 4x1x

4
2 + x2

1x
4
2,

g2 ≈ 73.1563 + 138.063x2 − 95.875x2
2 + 68.25x3

2,

g3 ≈− 536.547 − 12.75x2 + 7.6875x2
2.

Performing the necessary computations, we find for x = [z − u, z + u] with u = 1
2 ( 1

1 )

F ′(z)−1 ≈
(

0.234 −0.00093

0.21 −0.000266

)
, b =

(
0.496

0.3939

)
,

B1 =

(
1.2895 0

0.5113 0

)
, B′

0 =

(
1 10−5

10−5 1.00001

)
, B2 =

(
1.5212 0.0215

0.7204 0.2919

)
.

Now we use Theorem 7.2 for v = ( 1
1 ) and C = F ′(z)−1 and get

w× =

(
1.00001

1.00002

)
, a× =

(
2.8322

1.5236

)
, D× =

(
6.6191

3.4006

)
, λ× = 0.277656;

so we conclude that there are no zeros of F in the interior of the exclusion box
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Fig. 8. Exclusion boxes for Example 8.3 in various regions of R
2.

x× =

(
[1.22234, 1.77766]

[−1.77766,−1.22234]

)
.

However, the choice C = F ′(z)−1 is not best possible in this situation. If we take

C =
(
1 0.002937

)
,

we compute λ× = 0.367223 and find the considerably larger exclusion box

x× =

(
[1.13278, 1.86722]

[−1.86722,−1.13278]

)
.

Figure 7 shows both boxes, the bigger one in dashed lines.
Finally, Figure 8 shows various exclusion boxes for nonzeros, and Figure 9 contains

exclusion boxes and some inclusion boxes for all of the zeros of F .
While the previous examples were low dimensional, our final example shows that

the improvements over traditional results may even be more pronounced for higher
dimensional problems with poorly conditioned zeros.
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Fig. 9. Exclusion boxes for all zeros of F in Example 8.3.

Example 8.4. We consider the set of equations

n∑
k=1

xi
k = H(n,−i) for i = 1, . . . , n,

where the harmonic numbers H(n,m) are defined as

H(n,m) :=

n∑
k=1

k−m.

Clearly, x∗
k = k is a solution, and the complete set of solutions is given by all permu-

tations of this vector.
We compare the results provided by Theorem 4.3 with the exclusion box obtained

by strong regularity of the slope F [z,x] (which in the previous examples was the best
among the traditional choices). The vector v needed in Theorem 4.3 was chosen as
the all-one vector e. All numerical calculations were performed in double precision
arithmetic.

The results are collected in Table 1; R denotes the radius of the exclusion box
computed by Theorem 4.3, r the radius of the exclusion box implied by strong regu-
larity of F [z,x], and κ the condition number of F ′(x∗). All numbers are approximate.

From the logarithmic plot in Figure 10, we see that the radii of the exclusion boxes
decrease in both cases exponentially with n. However, the quotient of the two radii
increases exponentially with n. This shows that our new method suffers much less
from the double deterioration due to the increase of both dimension and the Jacobian
condition number at the zero.
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Table 1

n R r R/r κ

2 1 1 1.000 10.91

3 0.41316 0.127017 3.253 153.155

4 0.197355 0.0206925 9.538 3021.56

5 0.082 0.00359092 22.835 76819.8

6 0.034 0.00063524 53.523 2.38489 · 106

7 0.013 0.00011303 115.007 8.7331 · 107

8 0.005 0.000020137 248.296 3.68207 · 109

9 0.00185847 3.58494 · 10−6 518.408 1.75585 · 1011

10 0.00068 6.3732199 · 10−7 1066.960 9.34062 · 1012

11 0.00025 1.1311565 · 10−7 2210.130 5.48274 · 1014

12 0.000092 2.00428 · 10−8 4590.190 3.52073 · 1016

13 0.000034 3.5455649 · 10−9 9589.450 2.46174 · 1018

14 0.0000125 6.26252 · 10−10 19960.000 5.6081 · 1019

15 4.5043 · 10−6 1.1045 · 10−10 40781.400 2.64518 · 1020

16 1.6527 · 10−6 1.94493 · 10−11 84975.400 9.40669 · 1021

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. · 10-9

1. · 10-7

0.00001

0.001

0.1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

10

100

1000

10000

100000.

Fig. 10. Radii of the exclusion boxes and quotient of the radii for Example 8.4.
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