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Abstract.

A directed acyclic graph (DAG) representation of optimization problems represents each
variable, each operation, and each constraint in the problem formulation by a node of the
DAG, with edges representing the flow of the computation.

Using bounds on ranges of intermediate results, represented as weights on the nodes and a
suitable mix of forward and backward evaluation, it is possible to give efficient implementa-
tions of interval evaluation and automatic differentiation. It is shown how to combine this
with constraint propagation techniques to produce narrower interval derivatives and slopes
than those provided by using only interval automatic differentiation preceded by constraint
propagation.

The implementation is based on earlier work by Kolev [18] on optimal slopes and by Bliek
[6] on backward slope evaluation. Care is taken to ensure that rounding errors are treated
correctly.

Interval techniques are presented for computing from the DAG useful redundant constraints,
in particular linear underestimators for the objective function, a constraint, or a Lagrangian.

The linear underestimators can be found either by slope computations, or by recursive back-
ward underestimation.

For sufficiently sparse problems the work is proportional to the number of operations in the
calculation of the objective function (resp. the Lagrangian).

Keywords: global optimization, directed acyclic graphs, automatic differentiation,
constraint propagation, slope, interval analysis
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1 Introduction

Deterministic algorithms for solving factorable global optimization problems [11, 20] usually
use branch-and-bound like schemes [2, 12, 17, 24, 27]. The success of such a method heavily
relies on the quality of the range estimates computed for the functions involved.

This paper discusses a new representation technique for global optimization problems us-
ing directed acyclic graphs (DAGs). Traditionally, DAGs have been used in automatic
differentiation [6, 14] and in the theory of parallel computing [9]. We will show that the
DAG representation of a global optimization problem serves many purposes. In some global
optimization algorithms [17] and constraint propagation engines (e.g., ILOG solver), the
computational trees provided by the parsers of high-level programming language compilers
(FORTRAN 90, C++) are used, in others the parsers of modelling languages like AMPL [13] or
GAMS [8] provide the graph representation of the mathematical problem.

In Sections 2 and 3 we will introduce the special DAGs used in problem representation and
talk about different interpretations and simplification, and about the difference to compu-
tational trees. Section 4 explains the basic evaluation algorithms for computing function
values, ranges, derivatives, and slopes, using the DAG representation of a function.

One of the strengths of the DAG concept is that it is suitable both for efficient evaluation and
for performing constraint propagation (CP). This method for solving constraint satisfaction
problems (CSPs) and global optimization problems (GLOPs) was first developed in the
discrete case [15] and later transferred to the continuous case [7, 10, 16, 28]. The basics of
constraint propagation on DAGs are outlined in Section 5.

The results of constraint propagation, especially the ranges of the inner nodes, can be used
to improve the ranges of the standard evaluation methods for interval derivatives, and slopes.
The principles are outlined in Section 6. For global optimization algorithms not only range
estimates are relevant but also relaxations by models which are easier to solve. Section 7
describes methods for generating linear relaxations using the DAG representation. (Second
order information such as Hessians, second order slopes, quadratic enclosures and convex
quadratic relaxations can also be efficiently computed from the DAG representation. Details
will be presented elsewhere.) Finally, in Section 8 we will make some statements about
implementation issues and performance.

Our notation follows the notation suggested in [22]. In particular, inequalities between
vectors are interpreted component-wise, I denotes the identity matrix, intervals and boxes
are written in bold face, and radx = 1

2
(x− x) denotes the radius of a box x = [x, x] ∈ IRn.

2 Directed acyclic graphs

This section is devoted to the definition of the graphs used to represent the global optimiza-
tion problems. Although we will use the term directed acyclic graph (DAG) throughout
this paper to reference the graph structure of the problem representation, the mathematical
structure used is actually a bit more specialized. Here we will describe the basic properties
of the graphs.
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2.1 Definition. A directed multigraph Γ = (V,E, f) consists of a finite set of vertices
(nodes) V , a finite set of edges E, and a mapping f : E → V × V . For every edge e ∈ E we
define the source of e as s(e) := Pr1 ◦ f(e) and the target of e as t(e) := Pr2 ◦ f(e). An
edge e with s(e) = t(e) is called a loop. Edges e, e′ ∈ E are called multiple, if f(e) = f(e′).

For every vertex v ∈ V we define the set of in-edges

Ei(v) := {e ∈ E | t(e) = v}

as the set of all edges, which have v as their target, and the set of out-edges analogously
as the set

Eo(v) := {e ∈ E | s(e) = v}
of all edges with soure v. The indegree of a vertex v ∈ V is defined as the number
of in-edges indeg(v) = |Ei(v)|, and the the outdegree of v as the number of out-edges
outdeg(v) = |Eo(v)|.

A vertex v ∈ V with indeg(v) = 0 is called a (local) source or leaf of the graph, and a
vertex v ∈ V with outdeg(v) = 0 is called a (local) sink or root of the graph.

The termini “root” and “leaf” come from directed trees, special directed graphs, which are
usually used to represent expressions or functions in algorithms. They are not usually used
in the context of directed graphs.

2.2 Definition. Let Γ = (V,E, f) be a directed multigraph. A directed path from v ∈ V
to v′ ∈ V is a sequence {e1, . . . , en} of edges with t(ei) = s(ei+1) for i = 1, . . . , n − 1,
v = s(e1), and v′ = t(en). A directed path is called closed or a cycle, if v = v ′. The
multigraph Γ is called acyclic if it does not contain a cycle.

An acyclic graph contains at least one source and at least one sink.

2.3 Definition. A directed multigraph with ordered edges (DMGoe) Γ = (V,E, f,≤
) is a quadruple such that (V,E, f) is a directed multigraph and (E,≤) is a linearly ordered
set. As subsets of E, the in-edges Ei(v) and out-edges Eo(v) for every vertex become linearly
ordered as well.

We will represent the global optimization problems as directed acyclic computational multi-
graphs with ordered edges (in short DAG), where every vertex corresponds to an elementary
operation and every edge represents the computational flow. For later use, we define the
relationship between different vertices.

The reasons that we need multigraphs is the fact that expression (e.g. xx) can take the same
input more than once. The ordering of the edges is primarily needed for non-commutative
operators like division. However, we will see in Section 8 that this also has a consequence
for certain commutative operations.

2.4 Definition. Consider the directed acyclic multigraph Γ = (V,E, f). For two edges
v, v ∈ V we say that v is a parent of v′ if there exists an edge e ∈ E with s(e) = v′ and
t(e) = v, and then we call v′ a child of v. Furthermore, v will be named an ancestor of v ′

if there is a directed path from v′ to v, and v′ is then a descendant of v.

Now we have all the notions at hand that we will use to represent the optimization problems.
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2.5 Proposition. For every directed acyclic multigraph Γ = (V,E, f) there is a linear order
¹ on V such that for every vertex v and every ancestor v′ of v we have v ¹ v′.

3 Representing global optimization problems

In this section we will describe how we represent a global optimization problem as a DAG.
In Section 3.1 we will talk about simplifying the representation without changing the math-
ematical model. Later, in Section 3.2 we will show that DAGs can be used to transfer the
mathematical problem to various different structures which are needed by specialized opti-
mization and constraint satisfaction algorithms like ternary structure, semi-separable form,
and the like. Also sparsity-issues can be tackled by the reinterpretation method described
there.

Consider the factorable optimization problem

min f(x)

s.t. F (x) ∈ F . (1)

Since it is factorable, the functions f and F can be expressed by sequences of arithmetic
expressions and elementary functions. For every arithmetic operation ◦ or elementary func-
tion involved we introduce a vertex in the graph. Every constant and variable becomes a
leaf. If f ◦ g is part of one function, we introduce an edge from g to f . The results of f and
F become root nodes, of which the result of f is distinguished as the result of the objective
function. So with every vertex we associate an arithmetic operation {+, ∗, /,̂ } or elementary
function {1/, exp, log, sin, cos, . . . }. For every edge e ∈ E we call the vertex t(e) the result
node and the vertex s(e) the argument node.

x1 x2 x3

∗ ∗

+ +

∗

4

−1

ut2 ut2
√

+

exp

+

+

min [−1, 1][0, 0]

[0,∞) [0,∞) [−1, 8]

Figure 1: DAG representation of problem 2

When we draw DAG pictures, we write the operation in the interior of the circle representing
the node, and mathematically we introduce a map op : V → O to the set O of elementary
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operations. We also introduce a mapping rg : V → IR, the range map, which defines the
feasible range of every vertex. In the pictures representing the graphs in this paper, we will
write the result of the range map next to every vertex (and leave it out if r(v) = (−∞,∞)).

Consider for example the optimization problem

min (4x1 − x2x3)(x1x2 + x3)

s.t. x2
1 + x2

2 + x1x2 + x2x3 + x2 = 0

exp(x1x2 + x2x3 + x2 +
√
x3) ∈ [−1, 1].

(2)

This defines the DAG depicted in Figure 1. Here, we have introduced further notation, the
coefficient map cf : E → R. It multiplies the value of the source of e with cf(e) before feeding
it to the operation (or elementary function) t(e). If the coefficient cf(e) is different from 1,
we write it over the edge in the picture. In some sense, the DAG in Figure 1 is optimally
small, because it contains every subexpression of the functions f and F only once.

3.1 DAG Transformations - Simplification

If we start translating a function to a DAG, we introduce for every variable, every constant,
and every operation involved a vertex and connect them by the necessary edges. The resulting
DAG, however, usually is too big. Every subexpression of f which appears more than once
will be represented by more than one node (e.g. v1 and v2). So, the subexpression will
be recomputed too often in the evaluation routines, and during constraint propagation (see
Secton 5) the algorithms will not make use of the implicit equation v1 = v2.

Of course, variables usually appear more than once, and many algorithms for constraint
propagation [1, 3, 25] use the principle that the variable nodes of identical variables can be
identified, hereby reducing the size of the graph. However, this principle can be generalized.

3.1 Definition. Two vertices v1 and v2 of the DAG Γ = (V,E, f,≤) are called simply
equivalent if they represent the same operation or elementary function (i.e. op(v1) =
op(v2)), and there is a monotone increasing bijectiv map g : Ei(v1) → Ei(v2) with the
property s(e) = s(g(e)) for all e ∈ Ei(v1). If there are no distinct simply equivalent vertices
in the DAG Γ, we call Γ a reduced DAG.

The existence of the map g means nothing else than the fact that v1 and v2 represent the
same expression. They are the same operation taking the same arguments in the same
order. Therefore, any two simply equivalent vertices can be identified without changing the
functions represented by Γ.

In particular, every DAG Γ can be transformed to an equivalent reduced DAG. We can start
by identifying the equivalent leafs and continue to identify distinct simply equivalent nodes
of Γ until all nodes are pairwise simply inequivalent. The resulting DAG Γ′ is reduced. Note
that this does not mean that the graph does not contain any mathematically equivalent
subexpressions. This only implies that no computationally equivalent subexpressions exist.

These simple graph theoretic transformations can be complemented by additional mathe-
matical transformations. These come in three categories:
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Constant Evaluation/Propagation: If all children v1, . . . , vk of a vertex v are leafs rep-
resenting constants, it can be replaced by a leaf representing the constant which is the
result of evaluating the operation op(v) on the children: v ′ := const(op(v)(v1, . . . , vk)).
In a validated computation context, however, you have to make very sure that no
roundoff errors are introduced in this step.

Mathematical Equivalences: Typically, properties of elementary functions are used to
change the DAG layout. E.g., the rule

log(v1 . . . vk) = log(v1) + · · ·+ log(vk)

replaces one log–node and one ∗–node by a +–node and a number of log–nodes (or
vice versa).

Substitution: Equations of the form

−v0 + v1 + · · ·+ vk = 0

can be used to replace the node v0 by v1 + · · ·+ vk.

3.2 DAG Interpretation

One strength of the DAG representation is that the mathematical formulation of a problem
can be transformed to an equivalent mathematical description which serves the specific
needs of some optimization algorithms without having to change the DAG itself; just its
interpretation is changed.

Consider again problem (2). The following problem is an equivalent formulation

min x10

s.t. x2
1 + x2

2 + x7 = 0

exp(x7 +
√
x3) ∈ [−1, 1]

x2x3 − x4 = 0

x6 + x3 − x5 = 0

x1x2 − x6 = 0

x8 + x2 − x7 = 0

x4 + x6 − x8 = 0

4x1 − x4 − x9 = 0

x9x5 − x10 = 0

(3)

of much higher dimension but with the property that the objective function is linear and
that all constraints are ternary, i.e. involve at most three variables. This is the required
problem formulation for a variety of CP algorithms.

Without changing the DAG we can get this representation just by changing the interpretation
of the nodes. All intermediate nodes with more than one child and the objective function
node are just regarded as variables, and an equation is added which connects the value of
the variable with the value of the node as it is computed from its children. No change of the
data structure is necessary.

6



Adding equations and changing the interpretation of intermediate nodes to variable nodes
increases the dimension of the problem but also increases the sparsity. By carefully balancing
the number of variables this method can be used, e.g., to optimize the sparsity structure of
the Hessian of the Lagrangian.

4 Evaluation

There are several pieces of information which have to be computed for the functions involved
in the definition of an optimization problem:

• function values at points,

• function ranges over boxes,

• gradients at points,

• interval gradients over boxes,

• slopes over boxes with fixed center,

• linear enclosures.

To illustrate the techniques, we will use throughout the simple example

min f(x1, x2, x3) = (4x1 − x2x3)(x1x2 + x3)

s.t. x1 ∈ [1, 2], x2 ∈ [3, 4], x3 ∈ [3, 4],
(4)

whose DAG representation can be found in Figure 2.

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4][1, 2] [3, 4] [3, 4]

Figure 2: Directed Acyclic Graph representation of (4)
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4.1 Forward Evaluation Scheme

The standard method of evaluating expressions works by feeding values to the leafs and
propagating these values through the DAG in direction of the edges. This is the reason why
this evaluation method is called forward mode.

Computing the function value f(2, 4, 4) proceeds as depicted in Figure 3. Here, we have
written the results for all nodes to the right of the circle representing them.

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

2 4 4

16

−8 12

−96

8

Figure 3: Function evaluation for (4)

In a completely analogous way we can compute a range estimate of f on the initial box
[1, 2] × [3, 4] × [3, 4]. Instead of using real numbers we plug intervals into the leafs and use
interval arithmetic instead of real arithmetic and interval extensions of elementary functions
instead of their real versions. Again, we show the process in Figure 4 by placing the ranges
computed for the nodes next to them

4.2 Backward Evaluation Scheme

Calculating derivatives or slopes could be done by the forward mode as well but then we
would need to propagate vectors through the graph, and at every node we would have to
perform at least one full vector addition, so the effort to calculate a gradient would be number
of variables times the effort of calculating a function value.

However, it is well known from automatic differentiation that the number of operations
can be reduced to be of the order of one function evaluation by reversing the direction of
evaluation.
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x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[3, 8] [9, 16]

[−12,−1] [6, 12]

[−144,−6]

Figure 4: Interval evaluation for (4)

First, we consider the well known fact that the chain rule

∂

∂xi
(f ◦ g)(x) =

∑

k

∂

∂xk
f(g(x)) · ∂

∂xi
g(x).

holds. So in a first step, during the computation of the function value, we construct a map
dm : E → R which associates with each edge the value of the partial derivative of the result
node with respect to the corresponding argument node. Then we start at the root nodes and
walk towards the leafs in the opposite direction of the graph edges, multiplying by dm(e)
as we traverse e. When we reach the leaf representing variable xi, we add the resulting
product to the ith component of the gradient vector. The gradient at (2, 4, 4) is calculated
as in Figure 5. Here the values of dm are written next to the edges, and the results are
next to the nodes. The components of the gradient can be found next to the leafs. We have
∇f(2, 4, 4) = (16,−64,−56).

There is hardly any difference in computing the interval gradient of f over a given box x.
Since the chain rule looks exactly the same as for real gradients, the evaluation scheme
is the same, as well. We only have to replace real arithmetic by interval arithmetic, and
the map idm : E → IR becomes interval valued. In Figure 6 we compute ∇f(x) for
x = [1, 2]× [3, 4]× [3, 4].

A very useful tool for calculating enclosures of the range of f over a box is a slope. This is
a linear approximation of the form

f(x) = f(z) + f [z, x](x− z), (5)

see [26, 18]. In one dimension the slope is unique, if it is continuous, and we have

f [z, x] =





f(x)− f(z)

x− z x 6= z

f ′(z) x = z.
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x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

12 −8

4 1

4 2 4 4

−1 1

4 · 12− 4 · 8 = 16 −16− 48 −48− 8

−8 −12

12 −8

1

Figure 5: Gradient evaluation for (4)

In higher dimensions the slope is non-unique (see, e.g., Section 8), but it exists always if f
is locally Lipschitz.

Using (5) we find an enclosure of the range of f over the box x by

f(x) ∈ f(z) + f [z,x](x− z), for all x ∈ x.

This is a centered form and has the quadratic approximation property (cf. [21]). The
most general slope definition is the one with interval center

f(x) ⊆ f(z) + f [z,x](x− z),

and the special case x = z gives f [z, z] = f ′(z) the interval derivative. Slopes can be
calculated automatically like derivatives, and a chain rule holds:

(f ◦ g)[z,x] = f [g(z), g(x)] · g[z,x]. (6)

So, as was noticed by Bliek [6] for computational trees, we can use the backward mode to
compute the slopes on the DAG. The arithmetic operations and the elementary functions
look like depicted in Figure 7. There zf denotes the center of f , and sf the slope of f .

We see from the pictures that for the elementary functions, the slopes ϕ[z,x] have to be
computed. It was shown by Kolev [18] that for convex and concave functions the optimal
slope is given by

ϕ[z,x] = ut{ϕ[z, x], ϕ[z, x]}.
For the other functions, the case is more difficult, but we always have

ϕ[z,x] ⊆ ϕ′(x).

To compute general slopes, we first compute the values of the centers in forward mode, which
is an ordinary (interval) function evaluation. Then we change the map dm to slm : E → IR
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x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[6,12] [−12,−1]

4 1

[3,4]

[1,2] [3,4] [3,4]

−1
1

=[−24,45]

[3,4][−12,−1]

4[6,12]+

[−72,−19] [−60,−19]

[−12,−1] [−12,−6]

[6,12] [−12,−1]

[1,1]

Figure 6: Interval gradient evaluation for (4)

f g f g f g

∗+ / ϕ

f

λ µλ µ

zf ,sf zg ,sg

λzf+µzg ,λsf+µsg

zf ,sf ,f zg ,sg

zg f

zf zg ,zgsf+fsg

zf ,sf ,f zg ,sg ,g

1
zg

1
zg

f
g

zf ,sf ,f

ϕ[zf , f ]

zf
zg
,
sf
zg

+
sg
zg

f
g

ϕ(zf ),ϕ[zf ,f ]sf

Figure 7: Slopes for elementary operations

storing the slope of the result node with respect to the argument node during the forward
pass, and then we use interval arithmetic to compute the slope in backward mode. This can
be seen in Figure 8, where we keep at each node the centers and the slopes separated by a
comma.

The result f [z,x] = ([−8, 24], [−64,−34], [−56,−32]) is clearly slimmer than the interval
derivative f ′(x) = ([−24, 45], [−72,−19], [−60,−19]) as it was expected, since slopes provide
better enclosures than interval derivatives.

5 Constraint Propagation on DAGs

As already mentioned, one strength of the DAG concept for global optimization is that
knowlege of feasible points and the constraints can be used to narrow the possible ranges of
the variables, cf. [3, 25, 28].

If we have a feasible point xbest with function value fbest we can introduce the new constraint
f(x) ≤ fbest without changing the solution of the optimization problem (1). Then the ranges
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x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[6,12] −8

4 1

[3,4]
2 [3,4] 4

−1
1

=2,[−8,24]

[3,4](−8)

4[6,12]+

4,[−64,−34] 4,[−56,−32]

8,−8 16,[−12,−6]

−8,[6,12] 12,−8

−96,[1,1]

Figure 8: Slope evaluation for (4)

of the nodes can be propagated through the DAG, refining the range map rg : V → IR in
every step of the constraint propagation (i.e. rg(n+1)(v) ⊆ rg(n)(v) forall v, if rg(n) denotes
the range map at step n). We stop when the reductions become too small.

Constraint propagation has two directions, forward and backward. For the elementary func-
tions the propagation steps are as follows.

h = λf + µg:
forward propagation

h(n+1) := (λf (n+1) + µg(n+1)) ∩ h(n),

backward propagation

f (n+1) := 1
λ
(h(n+1) − µg(n)) ∩ f (n),

g(n+1) := 1
µ
(h(n+1) − λf (n)) ∩ g(n).

h = fg:
forward propagation

h(n+1) := (f (n+1)g(n+1)) ∩ h(n),

backward propagation
f (n+1) := (h(n+1)/g(n)) ∩ f (n),

g(n+1) := (h(n+1)/f (n)) ∩ g(n).

h = f/g:
forward propagation

h(n+1) := (f (n+1)/g(n+1)) ∩ h(n),

backward propagation
f (n+1) := (h(n+1)g(n)) ∩ f (n),

g(n+1) := (f (n)/h(n+1)) ∩ g(n).
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h = ϕ(f):
forward propagation

h(n+1) := ϕ(f (n+1)) ∩ h(n),

backward propagation
f (n+1) := ϕ−1(h(n+1)) ∩ f (n).

Note that for the DAG representation we refine the range map for all nodes not only for the
leaf nodes. This is an important step because that will help us in Section 6 to improve the
ranges of interval derivatives, slopes, interval Hessians, and second order slopes.

In Figure 9 we show the result of constraint propagation to our example, if we use the function
value −96 of the feasible point (2, 4, 4) to introduce the constraint f(x) ≤ −96. Note that
the ranges of the variable nodes do not change, so the traditional method of calculating
interval related results is not improved. The new ranges are printed in the picture in bold
face.

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[4,8] [12,16]

[−12,−8] [8,12]

[−144,−96]

[3,8] [9,16]

[−12,−1] [6,12]

[−144,−6]

Figure 9: Constraint propagation for (4)

6 Combining CP and Evaluation

In this section we will use the range map rg : V → IR improved by constraint propagation
to recompute the interval derivative, the slope, and the interval Hessians. This improves the
ranges, in some examples tested the improvement was several orders of magnitude.

Figure 10 contains the result of the interval gradient after constraint propagation, and in
Figure 11 we recompute the slope.
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x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[4,8] [12,16]

[−12,−8] [8,12]

[−144,−96]

[8,12] [−12,−8]

4 1

[3,4]

[1,2] [3,4] [3,4]

−1
1

=[−16,24]

[3,4][−12,−8]

4[8,12]+

[−72,−32] [−60,−32]

[−12,−8] [−12,−8]

[8,12] [−12,−8]

[1,1]

Figure 10: Interval gradient evaluation for (4) after constraint propagation

Both results are clearly an improvement over what we had before:

f ′(x) ⊆




[−16, 24]

[−72,−32]

[−60,−32]


 (




[−24, 45]

[−72,−19]

[−60,−19]


 , f [z,x] ⊆




[0, 24]

[−64,−48]

[−56,−32]


 (




[−8, 24]

[−64,−34]

[−56,−32]


 .

7 Slopes and linear enclosures

The linear approximation (5) of a function f provided by slopes can be used to construct an
enclosure of f by linear functions. This in turn can be used to construct a linear relaxation
of the original problem.

7.1 Proposition. Let s := f [z,x] be a slope of the function f : Rn → R. If z ∈ x then the
function

f(x) = f +
∑

si(xi − zi) +
si(xi − zi)− si(xi − zi)

xi − xi
(xi − xi)

is a linear function which underestimates f on x, i.e.,

f(x) ≤ f(x) for all x ∈ x,

and the function

f(x) = f +
∑

si(xi − zi) +
si(xi − zi)− si(xi − zi)

xi − xi
(xi − xi)

is a linear overestimating function for f over x.

Proof. Everything can be reduced to a series of one dimensional problems, and for those
the proof is easy. ut
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Figure 11: Slope evaluation for (4) after constraint propagation

For problem (1) we have to consider the constraints componentwise. For every component
Fj(x) ∈ F j the constraints F j(x) ≤ F j and F j(x) ≥ F j are valid linear constraints. They
can be added as redundant constraints to the problem without affecting the solution.

Alternatively, one could also compute the underestimating function l for the objective func-
tion f . Then the linear program

min f(x)

s.t. F (x) ≤ F

f(x) ≥ F

x ∈ x,
where F (x) denotes the vector of all underestimating functions F j for all components Fj, is
a linear relaxation of (1).

For the example given by (2), we already computed the slope for center (2, 4, 4) in Sec-
tion 6. Calculating a linear underestimating function for the objective, as above, leads to
the constraint

−24(x1 − 2)− 48(x2 − 4)− 32(x3 − 4) ≤ 0.

Performing constraint propagation again on the problem with this additional redundant
constraint leads to the domain reduction x2,3 ∈ [3.4, 4]. With previously known techniques
but without (expensive) higher order consistency, such a reduction would have required a
split of the box.

Alternatively, it is possible to construct linear enclosures of the form

f(x) ∈ f + s(x− z), for x ∈ x,

with thin slope s ∈ Rn and thick constant term. This approach corresponds to first order
Taylor arithmetic as, e.g., presented in [4, 5, 23]. Since linear Taylor expression also obey a
chain rule similar to slopes, these enclosures can be computed by backward evaluation with
little effort quite similar to “thick” slopes. Kolev [19] showed that propagating them in
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forward mode leads to better enclosures; however, the effort for computing in forward mode
is n times higher.

8 Implementation Issues

8.1 Multiplication and Division

As has been mentioned earlier, slopes in dimensions greater than one are usually not unique.
Two elementary operations, multiplication and division, therefore provide us with a choice
for implementation.

All possible slopes for multiplication are

x1x2 ∈ z1z2 +

(
λx2 + (1− λ)z2

λz1 + (1− λ)x1

)
·
(
x1 − z1

x2 − z2

)

for some λ ∈ R (possibly dependent on the arguments), and for division they are

x1

x2

∈ z1

z2

+




λ

z2

+
1− λ
x2

− λ
z2

x1

x2

− 1− λ
x2

z1

z2


 ·

(
x1 − z1

x2 − z2

)
.

The best choice for division is λ = 1, because we can use the term x1

x2
after constraint

propagation, which is the range enclosure of the division node, for which the slope is being
computed, and in addition there is no subdistributivity problem during slope backward
evaluation. So the proper choice for division is

s/ =
1

z2

(
1

−x1

x2

)
.

For multiplication we can choose λ such that it minimizes the width of the resulting range.
A short computation shows that the minimal width is produced for

λ =

{
0 if rad (x1)|z2| ≤ rad (x2)|z1|,
1 otherwise.

To avoid a case distinction in computing products, it is advisible to find a good heuristics.
Considering the Horner scheme for polynomial evaluation gives the following hint: Sort the
product by ascending complexity of the factors (i.e., roughly, by increasing overestimation).
Then set λ = 0, hence choose the slope

s∗ =

(
z2

x1

)
.

8.2 Rounding errors

Since enclosures of the form

f(x) ∈ f(z) + f [z,x](x− z),
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are computed numerically, the direct evaluation of the thin term f(z) generally does not
produce guaranteed enclosures. Hence, it is important to take care for the rounding errors,
in order to avoid the occasional loss of solutions in a branch and bound scheme. There are
two possible approaches.

The first possibility is to change all calculations involving the center into interval operations,
providing a linear interval enclosure

f(x) ∈ f(z) + f [z,x](x− z)

with generally thick center z. This needs slopes of the form f [z,x] with z ⊆ x for all
elementary operations.

The second possibility is to allow approximate point evaluations at the centers and elemen-
tary slopes with point centers f [z,x], but to take care of the rounding errors in computing
f(z) during propagation, by adapting the chain rule appropriately. If

f(x) ∈ f + f [zf ,x](x− zf ), f(zf ) ∈ f , x ∈ x
g(y) ∈ g + g[zg,y](y − zg), g(zg) ∈ g, y ∈ y,

then, for arbitrary zg ≈ f(zf ),

g(f(x)) ∈ g + g[zg, f(x)](f + f [zf ,x](x− zf )− zg)
⊆ g + g[zg, f(x)](f − zg) + g[zg, f(x)]f [zf ,x](x− zf ).

The remaining decision is what to compute in forward, and what in backward mode. Taking
a third component provides the important hint:

h(t) ∈ h+ h[zh, t](t− zh),

and we find

h(g(f(x))) ∈ h+ h[zh, g(f(x))](g − zh + g[zg, f(x)](f − zg))
+ h[zh, g(f(x))]g[zg, f(x)]f [zf ,x](x− zf )

if the center term is computed in forward mode. If it is computed backward, the term is

h[zh, g(f(x))](g(f(x))− zh) + h[zh, g(f(x))]g[zg, f(x)](f − zg).

Because of subdistributivity, this is a worse (or identical) enclosure of the center. Therefore,
computing the center in forward mode gives generally tighter result.
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[11] L.C.W. Dixon and G.P. Szegö. Towards global optimization. Elsevier, New York, 1975.

[12] C. A. Floudas, Deterministic Global Optimization: Theory, Algorithms and Applica-
tions, Kluwer, Dordrecht 1999.

[13] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL — A Mathematical
Programming Language. Thomson, second edition, 2003.

[14] A. Griewank and G. F. Corliss. Automatic Differentiation of Algorithms. SIAM Publi-
cations, Philadelphia, 1991.

[15] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. Journal
of Logic Programming, 19/20:503–581, 1994.

[16] R. B. Kearfott. Decomposition of Arithmetic Expressions to Improve the Behavior of
Interval Iteration for Nonlinear Systems, Computing, 47:169-191, 1991.

[17] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1996.

[18] L.V. Kolev. Use of interval slopes for the irrational part of factorable functions. Reliable
Computing, 3:83–93, 1997.

[19] L.V. Kolev An improved interval linearization for solving non-linear problems,
Manuscript (2002)

18



[20] G. P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I – Convex underestimating problems Math. Programming, 10:147–175, 1976.

[21] A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press,
Cambridge, 1990.

[22] A. Neumaier. Introduction to Numerical Analysis. Cambridge Univ. Press, Cambridge,
2001.

[23] A. Neumaier. Taylor forms - use and limits. Reliable Computing, 9:43–79, 2002.

[24] N.V. Sahinidis. BARON: A general purpose global optimization software package. J.
Global Optim., 8:201–205, 1996.

[25] D. Sam-Haroud and B. Faltings. Consistency techniques for continuous constraints.
Constraints, 1(1&2):85–118, Sep 1996.

[26] Z. Shen and A. Neumaier. The krawczyk operator and kantorovich’s theorem. J. Math.
Anal. Appl., 149:437–443, 1990.

[27] M. Tawarmalani. and N.V. Sahinidis, Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications, Kluwer, Dordrecht 2002.

[28] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica - A Modeling Language for
Global Optimization. MIT Press, Cambridge, MA, 1997.

19


