Numerical algorithms for nonsmooth optimization

An introduction to nonsmooth convex optimization: numerical algorithms

Masoud Ahookhosh

Faculty of Mathematics, University of Vienna Vienna, Austria

Convex Optimization I

January 29, 2014

Τ.Ι.Ι (
Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References

- Definitions
- Applications of nonsmooth convex optimization
- Basic properties of subdifferential

2 Numerical algorithms for nonsmooth optimization

- Nonsmooth black-box optimization
- Proximal gradient algorithm
- Smoothing algorithms
- Optimal complexity algorithms

3 Conclusions

Properties:

- f(x) can be smooth or nonsmooth;
- Solving nonsmooth convex optimization problems is much harder than solving differentiable ones;
- For some nonsmooth nonconvex cases, even finding a decent direction is not possible;
- The problem is involving linear operators.

Introduction 000000		Numerical algorithms for nonsmooth optimization	Conclusions O	References 00
A 11	-			

Applications

Applications of convex optimization:

- Approximation and fitting;
 - Norm approximation;
 - Least-norm problems;
 - Regularized approximation;
 - Robust approximation;
 - Function fitting and interpolation;
- Statistical estimation;
 - Parametric and nonparametric distribution estimation;
 - Optimal detector design and hypothesis testing;
 - Chebyshev and Chernoff bounds;
 - Experiment design;
- Global optimization;
 - Find bounds on the optimal value;
 - Find approximation solutions;
 - Convex relaxation;

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
000000			

• Geometric problems;

- Projection on and distance between sets;
- Centering and classification;
- Placement and location;
- Smallest enclosed elipsoid;
- Image and signal processing;
 - Optimizing the number of image models using convex relaxation;
 - Image fusion for medical imaging;
 - Image reconstruction;
 - Sparse signal processing;
- Design and control of complex systems;
- Machine learning;
- Financial and mechanical engineering;
- Computational biology;

Dfinition: subgradient and subdifferential

Definition 2 (Subgradient and subdifferential).

• A vector $g \in \mathbf{R}^n$ is a subgradient of $f: \mathbf{R}^n \to \mathbf{R}$ at $x \in \mathrm{dom} f$ if

$$f(z) \ge f(x) + g^T(z - x), \tag{2}$$

for all $z \in \text{dom} f$.

• The set of all subgradients of f at x is called the subdifferential of f at x and denoted by $\partial f(x)$.

Definition 3 (Subdifferentiable functions).

- A function f is called subdifferentiable at x if there exists at least one subgradient of f at x.
- A function f is called subdifferentiable if it is subdifferentiable at all $x \in \text{dom} f$.

 Introduction
 Numerical algorithms for nonsmooth optimization
 Conclusions
 References

 Subgradient and subdifferential
 Conclusions
 Concl

Examples:

• if *f* is convex and differentiable, then the following first order condition holds:

$$f(z) \ge f(x) + \nabla f(x)^T (z - x), \tag{3}$$

for all $z \in \text{dom} f$. This implies: $\partial f(x) = \nabla f(x)$;

• Absolute value. Consider f(x) = |x|, then we have

$$\partial f(x) = \begin{cases} 1 & x > 0; \\ [-1,1] & x = 0; \\ -1 & x < 0. \end{cases}$$

Thus, $g = \operatorname{sign}(x)$ is a subgradient of f at x.

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
0000000		O	00
Basic pro	perties		

Basic properties of subdifferential are as follows:

- The subdifferential $\partial f(x)$ is a closed convex set, even for a nonconvex function f.
- If f is convex and $x \in int \text{ dom} f$, then $\partial f(x)$ is nonempty and bounded.

•
$$\partial(\alpha f(x)) = \alpha \partial f(x)$$
, for $\alpha \ge 0$.

•
$$\partial(\sum_{i=1}^n f_i(x)) = \sum_{i=1}^n \partial f_i(x).$$

• If h(x) = f(Ax + b), then $\partial h(x) = A^T \partial f(Ax + b)$.

• If
$$h(x) = \max i = 1, \cdots, nf_i(x)$$
, then
 $\partial h(x) = \operatorname{conv} \bigcup \{ \partial f_i(x) \mid f_i(x) = h(x) \ i = 1, \cdots, n \}.$

• If
$$h(x) = \sup_{\beta} f_{\beta}(x)$$
, then
 $\partial h(x) = \operatorname{conv} \bigcup \{ \partial f_{\beta}(x) \mid f_{\beta}(x) = h(x) \ \beta \in B \}.$

How to calculate subgradients

Example: consider $f(x) = ||x||_1 = \sum_{i=1}^n |x_i|$. It is clear that

$$f(x) = max\{s^T x \mid s_i \in \{-1, 1\}\}$$

We have s^Tx is differentiable and $g=\nabla f_i(x)=s.$ Thus, for active $s^Tx=\|x\|_1,$ we should have

$$s_i = \begin{cases} 1 & s > 0;\\ \{-1,1\} & s = 0;\\ -1 & s < 0. \end{cases}$$
(4)

This clearly implies

$$\partial f(x) = \operatorname{conv} \bigcup \{ g \mid g \text{ of the form } (4), g^T x = \|x\|_1 \} \\ = \{ g \mid \|g\|_{\infty} \le 1, g^T x = \|x\|_1 \}.$$

Thus, $g = \operatorname{sign}(x)$ is a subgradient of f at x.

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
0000000		0	00
Optimality	y condition:		

• First-order condition: A point x^* is a minimizer of a convex function f if and only if f is subdifferentiable at x^* and

$$0 \in \partial f(x^*),\tag{5}$$

i.e., g = 0 is a subgradient of f at x^* .

- The condition (5) reduces to $\nabla f(x^*) = 0$ if f is differentiable at x^* .
- Analytical complexity: The number of calls of oracle, which is required to solve a problem up to the accuracy ε . This means the number of calls of oracle such that

$$f(x_k) - f(x^*) \le \varepsilon; \tag{6}$$

 Arithmetical complexity: The total number of arithmetic operations which is required to solve a problem up to the accuracy ε;

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
0000000		O	00
Numerical a	lgorithms		

The algorithms for solving nonsmooth convex optimization problems are commonly divided into the following classes:

- The nonsmooth balck-box optimization;
- Proximal mapping technique;
- Smoothing methods;

We here will not consider derivative-free and heuristic algorithms for solving nonsmooth convex optimization problems.

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
	000000000000000000000000000000000000000		

Nonsmooth black-box optimization: subgradient algorithms

The subgradient scheme for unconstrained problems:

 $x_{k+1} = x_k - \alpha_k g_k,$

where g_k is a subgradient of the function f at x_k , and is a step size determined by:

- Constant step size: $\alpha_k = \alpha$;
- Constant step length: $\alpha_k = \gamma/\|g_k\|_2$;
- Square summable but not summable: $\alpha_k \ge 0, \ \sum_{k=1}^n = \alpha_k^2 < \infty, \ \sum_{k=1}^n = \alpha_k = \infty;$
- Nonsummable diminishing step size:
 - $\alpha_k \ge 0$, $\lim_{k\to\infty} \alpha_k = 0$, $\sum_{k=1}^n = \alpha_k = \infty$;
- Nonsummable diminishing step length: $\alpha_k = \gamma_k / ||g_k||$ such that $\gamma \ge 0$, $\lim_{k\to\infty} \gamma_k = 0$, $\sum_{k=1}^n = \gamma_k = \infty$.

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
	000000000000000000000000000000000000000		

The subgradient algorithm: properties

Main properties:

- The subgradient method is simple for implementations and applies directly to the nondifferentiable *f*;
- The step sizes are not chosen via line search, as in the ordinary gradient method;
- The step sizes are determined before running the algorithm and do not depend on any data computed during the algorithm;
- Unlike the ordinary gradient method, the subgradient method is not a descent method;
- The function vale is nonmonotone meaning that it can even increase;
- The subgradient algorithm is very slow for solving practical problems.

Bound on function values error:

If the Euclidean distance of the optimal set is bounded, $||x_0 - x_*||_2 \le R$, and $||g_k||_2 \le G$, then we have

$$f_k - f^* \le \frac{R^2 + G^2 \sum_{i=1}^k \alpha_k^2}{2 \sum_{i=1}^k \alpha_k} := RHS.$$
(7)

- Constant step size: $k \to \infty \Rightarrow RHS \to G^2 \alpha/2;$
- Constant step length: $k \to \infty \Rightarrow RHS \to G\gamma/2;$
- Square summable but not summable: $k \to \infty \Rightarrow RHS \to 0$;
- Nonsummable diminishing step size: $k \to \infty \Rightarrow RHS \to 0$;
- Nonsummable diminishing step length: $k \to \infty \Rightarrow RHS \to 0$.

Example: we now consider the LASSO problem

where \boldsymbol{A} and \boldsymbol{b} are randomly generated.

Numerical algorithms for nonsmooth optimization

Conclusions

References 00

Numerical experiment: $f(x) = ||Ax - b||_2^2 + \lambda ||x||_1$

Figure 1: A comparison among the subgradient algorithms when they stopped after 60 seconds of the running time (dense, m = 2000 and n = 5000) 15/35

Introduction Numerical algorithms for nonsmooth optimization Conclusions References

Numerical experiment: $f(x) = ||Ax - b||_2^2 + \lambda ||x||_1$

Figure 2: A comparison among the subgradient algorithms when they stopped after 20 seconds of the running time (sparse, m = 2000 and n = 5000)

Numerical algorithms for nonsmooth optimization

Conclusions

References 00

Numerical experiment: $f(x) = ||Ax - b||_2^2 + \lambda ||x||_2^2$

after 60 seconds of the running time (dense, m=2000 and n=5000)

Numerical algorithms for nonsmooth optimization

Conclusions

References 00

Numerical experiment: $f(x) = ||Ax - b||_2^2 + \lambda ||x||_2^2$

Figure 4: A comparison among the subgradient algorithms when they stopped after 20 seconds of the running time (sparse, m = 2000 and n = 5000)

Introduction Numerical algorithms for nonsmooth optimization

Numerical experiment: $f(x) = ||Ax - b||_2^2 + \lambda ||x||_1$

Figure 5: The nonmonotone behaviour of the original subgradient algorithms when they stopped after 20 seconds of the running time (sparse, m = 2000 and n = 5000)

 Introduction
 Numerical algorithms for nonsmooth optimization
 Conclusions
 References

 Opposed
 Subgradient algorithm
 Subgradient algorithm
 Subgradient
 Subgradient

Consider the following constrained problem

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C, \end{array} \tag{9}$$

where ${\boldsymbol{C}}$ is a simple convex set. Then the projected subgradient scheme is given by

$$x_{k+1} = P(x_k - \alpha_k g_k), \tag{10}$$

where

$$P(y) = \operatorname{argmin}_{x \in C} \frac{1}{2} \|x - y\|_2^2.$$
(11)

- Nonnegative orthant;
- Affine set;
- Box or unit ball;
- Unit simplex;
- An ellipsoid;
- Second-order cone;
- Positive semidefinite cone;

 Introduction
 Numerical algorithms for nonsmooth optimization
 Conclusions
 References

 Projected subgradient algorithm
 0
 0
 0
 0

Example: Let us to consider

$$\begin{array}{ll} \text{minimize} & \|x\|_1\\ \text{subject to} & Ax = b, \end{array} \tag{12}$$

where $x \in \mathbb{R}^n$, $x \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$. Considering the set $C = \{x \mid Ax = b\}$, we have

$$P(y) = y - A^{T} (AA^{T})^{-1} (Ay - b).$$
(13)

The projected subgradient algorithm can be summarized as follows

$$x_{k+1} = x_k - \alpha_k (I - A^T (AA^T)^{-1} A) g_k.$$
 (14)

By setting $g_k = \operatorname{sign}(x_k)$, we obtain

$$x_{k+1} = x_k - \alpha_k (I - A^T (AA^T)^{-1}A)\operatorname{sign}(x_k).$$

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
0000000		O	00
Proximal g	radient algorithm		

Consider a composite function as follows

$$h(x) = f(x) + g(x).$$
 (16)

Characteristics of the considered convex optimization:

- Appearing in many applications in science and technology: signal and image processing, machine learning, statistics, inverse problems, geophysics and so on.
- In convex optimization \rightarrow every local optimum is global optimizer.
- Most of the problems are combination of both smooth and nonsmooth functions:

$$h(x) = f(Ax) + g(Bx),$$

where $f(A\boldsymbol{x})$ and $g(A\boldsymbol{x})$ are respectively smooth and nonsmooth functions.

Function and subgradient evaluations are so costly: Affine transformations are the most costly part of the computation.
They are involving high-dimensional data.

0000000	000000000000000000000000000000000000000	0	00					
Proximal	Proximal gradient algorithm							

The algorithm involve two step, namely forward and backward, as follows:

Algorithm 1: PGA proximal gradient algorithm

```
Input: \alpha_0 \in (0, 1]; y_0; \epsilon > 0;
```

begin

while stopping criteria are not hold do $\begin{vmatrix} y_{k+1} = x_k - \alpha_k g_k; \\ x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} ||x - y_{k+1}||_2^2 + g(x); \\ \text{end} \\ end \\ end$

- First step called forward because it aims to go toward the minimizer, and the second step called backward step because it remind us feasibility step of the projected gradient method.
- It is clear that the projected gradient method is a spacial case of PGA.

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
0000000		O	00
Smoothing	algorithms		

The smoothing algorithms involve the following steps:

- Reformulate the problem in the appropriate form for smoothing processes;
- Make the problem smooth;
- Solve the problem with smooth convex solvers.

Nesterov's smoothing algorithm:

- Reformulate the problem in the form of the minimax problem (saddle point representation);
- Add a strongly convex prox function to the reformulated problem to make it smooth;
- Solve the problem with optimal first-order algorithms.

Optimal complexity for first-order methods

Nemirovski and Yudin in 1983 proved the following complexity bound for smooth and nonsmooth problems:

Theorem 4 (Complexity analysis).

Suppose that f is a convex function. Then complexity bounds for smooth and nonsmooth problems are

- (Nonsmooth complexity bound) If the point generated by the algorithm stays in bounded region of the interior of C, or f is Lipschitz continuous in C, then the total number of iterations needed is $O\left(\frac{1}{\epsilon^2}\right)$. Thus the asymptotic worst case complexity is $O\left(\frac{1}{\epsilon^2}\right)$.
- (Smooth complexity bound) If f has Lipschitz continuous gradient, the total number of iterations needed for the algorithm is $O\left(\frac{1}{\sqrt{\epsilon}}\right)$.

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
0000000		O	00
Optimal f	irst-order algorithms		

Some popular optiml first-order algorithms:

- Nonsummable diminishing subgradient algorithm;
- Nesterov's 1983 smooth algorithm;
- Nesterov and Nemiroski's 1988 smooth algorithm;
- Nesterov's constant step algorithm;
- Nesterov's 2005 smooth algorithm;
- Nesterov's composite algorithm;
- Nesterov's universal gradient algorithm;
- Fast iterative shrinkage-thresholding algorithm
- Tseng's 2008 single projection algorithm;
- Lan's 2013 bundle-level algorithm;
- Neumaier's 2014 fast subgradient algorithm;

Algorithm 2: NES83 Nesterov's 1983 algorithm

Input: select z such that $z \neq y_0$ and $g_{y_0} \neq g_z$; y_0 ; $\epsilon > 0$; **begin**

$$\begin{vmatrix} a_0 \leftarrow 0; & x_{-1} \leftarrow y_0; \\ \alpha_{-1} \leftarrow ||y_0 - z|| / ||g_{y_0} - g_z||; \\ \text{while stopping criteria are not hold do} \\ | & \hat{\alpha}_k \leftarrow \alpha_{k-1}; & \hat{x}_k \leftarrow y_k - \hat{\alpha}_k g_{y_k}; \\ \text{while } f(\hat{x}_k) < f(y_k) - \frac{1}{2} \hat{\alpha}_k ||g_{y_k}||^2 \text{ do} \\ | & \hat{\alpha}_k \leftarrow \rho \hat{\alpha}_k; & \hat{x}_k \leftarrow y_k - \hat{\alpha}_k g_{y_k}; \\ \text{end} \\ & x_{k+1} \leftarrow \hat{x}_k; & \alpha_k \leftarrow \hat{\alpha}_k; \\ & a_{k+1} \leftarrow \left(1 + \sqrt{4a_k^2 + 1}\right)/2; \\ & y_{k+1} \leftarrow x_k + (a_k - 1)(x_k - x_{k-1})/a_{k+1}; \\ \text{end} \\ end \\ end \\ \end{vmatrix}$$

Algorithm 3: FISTA fast iterative shrinkage-thresholding algorithm

Input: select z such that $z \neq y_0$ and $g_{y_0} \neq g_z$; y_0 ; $\epsilon > 0$; **begin**

while stopping criteria are not hold do $\begin{vmatrix} \alpha_k \leftarrow 1/L; \\ z_k \leftarrow y_k - \alpha_k g_{y_k}; \\ x_k = \operatorname{argmin}_x \frac{L}{2} ||x - z_k||_2^2 + g(x); \\ a_{k+1} \leftarrow \left(1 + \sqrt{4a_k^2 + 1}\right)/2; \\ y_{k+1} \leftarrow x_k + (a_k - 1)(x_k - x_{k-1})/a_{k+1}; \\ end$

end

By this adaptation, FISTA obtains the optimal complexity of smooth first-order algorithms

Introduction Numerical algorithms for nonsmooth optimization Conclusions References

Numerical experiment: $f(x) = ||Ax - b||_2^2 + \lambda ||x||_1$

Figure 6: A comparison among the subgradient algorithms when they stopped after 60 seconds of the running time (dense, m = 2000 and n = 5000)

Introduction Numerical algorithms for nonsmooth optimization Conclusions References

Numerical experiment: $f(x) = ||Ax - b||_2^2 + \lambda ||x||_1$

Figure 7: A comparison among the subgradient algorithms when they stopped after 20 seconds of the running time (sparse, m = 2000 and n = 5000)

Numerical experiment: $f(x) = ||Ax - b||_2^2 + \lambda ||x||_2^2$

Figure 8: A comparison among the subgradient algorithms when they stopped after 60 seconds of the running time (dense, m = 2000 and n = 5000)

Numerical experiment: $f(x) = ||Ax - b||_2^2 + \lambda ||x||_2^2$

Figure 9: A comparison among the subgradient algorithms when they stopped after 20 seconds of the running time (sparse, m = 2000 and n = 5000)

Conclusion	c		
	000000000000000000000000	•	
Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References

Summarizing our discussion:

- They are appearing in applications much more than smooth optimization;
- Solving nonsmooth optimization problems is much harder than common smooth optimization;
- The most efficient algorithms for solving them are first-order methods;
- There are no normal stopping criterion in corresponding algorithms;
- The algorithms are divided into three classes:
 - Nonsmooth back-box algorithms;
 - Proximal mapping algorithms;
 - Smoothing algorithms;
- Analytical complexity of the algorithms is the most important part of theoretical results;
- Optimal complexity algorithms are so efficient to solve practical problems.

0000000	000000000000000000000000000000000000000	0	0
References			

- [1] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183–202.
- [2]Boyd, S., Xiao, L., Mutapcic, A.: Subgradient methods, (2003).
- [3] Nemirovski, A.S., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley- Interscience Series in Discrete Mathematics. Wiley, XV (1983).
- [4] Nesterov, Y.E.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Massachusetts (2004).
- **[5]** Nesterov, Y.: A method of solving a convex programming problem with convergence rate $O(1/k^2)$, Doklady AN SSSR (In Russian), 269 (1983), 543-547. English translation: Soviet Math. Dokl. 27 (1983), 372–376.

Introduction	Numerical algorithms for nonsmooth optimization	Conclusions	References
			00

Thank you for your consideration

Novel optimal algorithms

Numerical experiments

Conclusions 000

Optimal subgradient methods for large-scale convex optimization

Masoud Ahookhosh

Faculty of Mathematics, University of Vienna Vienna, Austria

Convex Optimization I

January 30, 2014

Numerical experiments

Table of contents

Introduction

- Definition of the problem
- State-of-the-art solvers

Novel optimal algorithms

- Optimal SubGradient Algorithm (OSGA)
- Algorithmic structure: OSGA

3 Numerical experiments

- Numerical experiments: linear inverse problem
- Comparison with state-of-the-art software

Conclusions

Introd	uction
0	

Novel optimal algorithms

Numerical experiments

Conclusions 000

(1)

Definition of problems

Definition 1 (Structural convex optimization).

- Consider the following a convex optimization problem
 - $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$
 - f(x) is a convex function;
 - C is a closed convex subset of vector space V;

Properties:

- f(x) can be smooth or nonsmooth;
- Solving nonsmooth convex optimization problems is much harder than solving differentiable ones;
- For some nonsmooth nonconvex cases, even finding a decent direction is not possible;
- The problem is involving linear operators.

Which kind of algorithms can deal with these problems?

Appropriate algorithms for this class of problems: First-order methods

- Gradient and Subgradient projection algorithms;
- Conjugate gradient algorithms;
- Optimal gradient and subgradient algorithms;
- Proximal mapping and Soft-thresholding algorithms;

Optimal complexity for COP (Nemirovski and Yudin 1983):

- Smooth problems $\rightarrow O\left(\frac{1}{\sqrt{\epsilon}}\right)$.
- Nonsmooth problems $\rightarrow O\left(\frac{1}{\epsilon^2}\right)$.

Some examples:

- N83: Nesterovs single-projection (1983);
- N07: Nesterovs dual-projection (2007);
- FISTA: Beck and Teboulle optimal proximal algorithm (2009);
- N07: Nesterovs universal gradient (2013);
- OSGA & ASGA: Ahookhosh and Neumaier affine subgradient (2013).

Optimal SubGradient Algorithm (OSGA): Motivation

The primary aim:

$$0 \le f(x_b) - f(x^*) \le \text{Bound} \to 0 \tag{2}$$

To do so, we consider:

• First-order oracle: black-box unit that computes f(x) and $\nabla f(x)$ for the numerical method at each point x:

$$\mathcal{O}(x) = (f(x), \nabla f(x)). \tag{3}$$

- Linear relaxation: $f(z) \ge \gamma + \langle h, z \rangle$
- Prox function: Q is continuously differentiable, $Q_0 = \inf_{z \in C} Q(z) > 0$ and

$$Q(z) \ge Q(x) + \langle q_Q(x), z - x \rangle + \frac{1}{2} ||z - x||^2, \forall x, z \in C.$$

Introduction	Novel optimal algorithms	Numerical experiments	Conclusions
	0000		

• Auxiliary subproblem:

$$E(\gamma, h) = \inf_{z \in C} \frac{\gamma + \langle h, z \rangle}{Q(z)}$$
(5)

where $z=U(\gamma,h)\in C$ and $E(\gamma,h)$ and $U(\gamma,h)$ are computable.

• Error bound: from the definition of $E(\gamma,h),$ the linear relaxation and some manipulations, it can be concluded

$$0 \le f(x_b) - f(x^*) \le \eta Q(x^*).$$
 (6)

- How to use in algorithm:
 - If $Q(x^*)$ is computable, then the error bound $\eta Q(x^*)$ is appliable.
 - Otherwise, we will search for decreasing $\{\eta_k\}$ satisfying

$$0 \le f(x_b) - f(x^*) \le \epsilon Q(x^*).$$

for some constant $\epsilon > 0$.

(7)

Novel optimal algorithms

Numerical experiments

Conclusions

Algorithmic structure

Algoritm 2: Optimal SubGradient Algorithm (OSGA) Input: λ , $\alpha_{max} \in (0 \ 1)$, $0 < \kappa' \le \kappa$, $\mu \ge 0$, $\epsilon > 0$ and f_{target} . Begin

Choose x_b ; Stop if $f(x_b) < f_{target}$; $h = q(x_h)$: $\gamma = f(x_h) - \langle h, x_h \rangle$: $\gamma_b = \gamma - f(x_b); \ u = U(\gamma_b, h); \ \eta = E(\gamma_b, h) - \mu; \ \alpha_{max};$ While $n > \epsilon$ $x = x_h + \alpha(u - x_h); q = q(x); h = h + \alpha(q - h);$ $\bar{\gamma} = \gamma + \alpha (f(x) + \langle q, x \rangle - \gamma); x'_{b} = \operatorname{argmin} \{ f(x_{b}), f(x) \};$ $\gamma'_{b} = \bar{\gamma} - f(x'_{b}); \ u' = U(\gamma'_{b}, \bar{h}); \ x' = x_{b} + \alpha(u' - x_{b});$ Choose $\bar{x}_b = \operatorname{argmin} \{ f(x_b), f(x') \}$; $\bar{\gamma}_b = \bar{\gamma} - f(\bar{x}_b); \ u' = U(\bar{\gamma}_b, \bar{h}); \ \eta = E(\bar{\gamma}_b, \bar{h}) - \mu;$ $x_h = \bar{x_h}$: Stop if $f(x_h) < f_{taraet}$; Update α , h, γ, n, u : End

End

Theoretical Analysis

Theorem 2 (Complexity analysis).

Suppose that f is a convex function. Then complexity bounds for smooth and nonsmooth problems are

- (Nonsmooth complexity bound) If the point generated by Algorithm 2 stay in bounded region of the interior of C, or f is Lipschitz continuous in C, then the total number of iterations needed is O (¹/_{ε²}). Thus the asymptotic worst case complexity is O (¹/_{ε²}).
- (Smooth complexity bound) If f has Lipschitz continuous gradient, the total number of iterations needed for the algorithm is $O\left(\frac{1}{\sqrt{\epsilon}}\right)$.
- \Rightarrow OSGA IS AN OPTIMAL METHOD

Novel optimal algorithms

Numerical experiments

Conclusions 000

Prox function and subproblem solving

Quadratic norm:

$$\|z\| := \sqrt{\langle Bz, z \rangle}$$

• Dual norm:

$$\|h\|_*:=\|B^{-1}h\|=\sqrt{\langle h,B^{-1}h\rangle}$$

Prox function:

$$Q(z) := Q_0 + \frac{1}{2} \|z - z_0\|^2$$

• Subproblem solution:

$$U(\gamma,h) = z_0 - E(\gamma,h)^{-1}B^{-1}h$$

• $E(\gamma,h) = \frac{-\beta + \sqrt{\beta^2 + 2Q_0 \|h\|_*^2}}{2Q_0} = \frac{\|h\|_*^2}{\beta + \sqrt{\beta^2 + 2Q_0 \|h\|_*^2}}.$

Introd	

Novel optimal algorithms

Numerical experiments

Conclusions

Numerical experiments: linear inverse problem

Definition 3 (Linear inverse problem).

We consider the following convex optimization problems:

$$Ax = b + \delta \tag{8}$$

• $A \in R^{m imes n}$ is a matrix or a linear operator, $x \in R^n$ and $b, \delta \in R^m$

Examples:

- Signal and image processing
- Machine learning and statistics
- Compressed sensing
- Geophysics

• • • •

Introd	

Novel optimal algorithms

Numerical experiments

Conclusions

(9)

Approximate solution

Definition 4 (Least square problem).

$$\text{Minimize } \frac{1}{2} \|Ax - b\|_2^2$$

- The problem includes high-dimensional data
- The problem is usually ill-conditioned and singular

Alternative problems: Tikhonov regularization:

minimize
$$\frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_2^2$$
. (10)

General case:

minimize
$$\frac{1}{2} \|Ax - b\|_2^2 + \lambda g(x),$$

where g(x) is a regularization term like $g(x) = ||x||_p$ for $p \ge 1$ or $0 \le p < 1$ and $g(x) = ||x||_{ITV}$ or $||x||_{ATV}$.

Novel optimal algorithms

Numerical experiments

Conclusions

Isotropic and anisotropic total variation

Two standard choices of discrete TV-based regularizers, namely **isotropic total variation** and **anisotropic total variation**, are popular in signal and image processing, where they are respectively defined by

$$||X||_{ITV} = \sum_{i}^{m-1} \sum_{j}^{n-1} \sqrt{(X_{i+1,j} - X_{i,j})^2 + (X_{i,j+1} - X_{i,j})^2} + \sum_{i}^{m-1} |X_{i+1,n} - X_{i,n}| + \sum_{i}^{n-1} |X_{m,j+1} - X_{m,j}|,$$
(12)

and

$$||X||_{ATV} = \sum_{i}^{m-1} \sum_{j}^{n-1} \{|X_{i+1,j} - X_{i,j}| + |X_{i,j+1} - X_{i,j}|\} + \sum_{i}^{m-1} |X_{i+1,n} - X_{i,n}| + \sum_{i}^{n-1} |X_{m,j+1} - X_{m,j}|,$$
(13)

where $X \in \mathbb{R}^{m \times n}$.

Novel optimal algorithms

Numerical experiments

Conclusions 000

Denising of the noisy image

(a) Original image

(b) Noisy image

 $\begin{array}{c|c} \begin{array}{c} \begin{array}{c} \text{Novel optimal algorithms} \\ \text{occ} \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Numerical experiments} \\ \text{occ} \end{array} & \begin{array}{c} \begin{array}{c} \text{Conclusion} \\ \text{occ} \end{array} \end{array} \\ \end{array} \\ \hline \begin{array}{c} \begin{array}{c} \text{Denising by solving} \\ \end{array} & \begin{array}{c} \min_{x} & \frac{1}{2} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{ITV} \end{array} \end{array} \end{array}$

(c) OSGA

(d) IST

(e) TwIST

(f) FISTA

Novel optimal algorithms

Numerical experiments

Conclusions 000

Inpainting images with missing data

(a) Original image

(b) Noisy image

Novel optimal algorithms

Numerical experiments

Conclusions 000

Inpainting by solving $\min_x \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_{ITV}$

(c) OSGA

(d) IST

(e) TwIST

(f) FISTA

Novel optimal algorithms

Numerical experiments

Conclusions 000

Deblurring of the blurred/noisy image

(a) Original image

(b) Noisy image

Introduction
ooNovel optimal algorithmsNumerical experiments
occooccocceConclusio
occoDeblurring by solving \min_x $\frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_{ITV}$

(d) IST

(e) TwIST

(f) FISTA

20 / 26

(a) step vs. iter

(b) Func vs. time

Conclusions and references

Summarizing our discussion:

- OSGA is optimal algorithms for both smooth and nonsmooth convex optimization problems;
- OSGA is feasible and avoid using the Lipschitz information;
- Low memory requirement OSGA makes them to be appropriate for solving high-dimensional problems;
- OSGA is efficient and robust in applications and practice and superior to some state-of-the-art solvers.

Introduction 00	Novel optimal algorithms	Numerical experiments	Conclusions 000
References			

- [1] A. Neumaier, OSGA: fast subgradient algorithm with optimal complexity, *Manuscript*, University of Vienna, 2014.
- [5] M. Ahookhosh, A. Neumaier, Optimal subgradient methods with application in large-scale linear inverse problems, *Manuscript*, University of Vienna, 2014.
- [3] M. Ahookhosh, A. Neumaier, Optimal subgradient-based methods for convex constrained optimization I: theoretical results, *Manuscript*, University of Vienna, 2014.
- [4] M. Ahookhosh, A. Neumaier, Optimal subgradient-based methods for convex constrained optimization II: numerical results, *Manuscript*, University of Vienna, 2014.

Thank you for your consideration

