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Definition of problems

Definition 1 (Structural convex optimization).

Consider the following a convex optimization problem
minimize  f(z)
(1)

subject to z € C

e f(z) is a convex function;

@ (' is a closed convex subset of vector space V;

Properties:
e f(z) can be smooth or nonsmooth;
@ Solving nonsmooth convex optimization problems is much harder
than solving differentiable ones;
@ For some nonsmooth nonconvex cases, even finding a decent
direction is not possible;
@ The problem is involving linear operators. 3/35
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Applications

Applications of convex optimization:

@ Approximation and fitting;

o Norm approximation;

Least-norm problems;

o Regularized approximation;

o Robust approximation;

o Function fitting and interpolation;

@ Statistical estimation;

o Parametric and nonparametric distribution estimation;
o Optimal detector design and hypothesis testing;

o Chebyshev and Chernoff bounds;

o Experiment design;

o Global optimization;

o Find bounds on the optimal value;
e Find approximation solutions;
o Convex relaxation;
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o Geometric problems;
e Projection on and distance between sets;
o Centering and classification;
e Placement and location;
e Smallest enclosed elipsoid;

Image and signal processing;

e Optimizing the number of image models using convex relaxation;
o Image fusion for medical imaging;

e Image reconstruction;

e Sparse signal processing;

Design and control of complex systems;
Machine learning;

Financial and mechanical engineering;

e 6 o6 ¢

Computational biology;
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Dfinition: subgradient and subdifferential

Definition 2 ( ).

@ A vector g € R" is a subgradient of f : R™ — R at x € domf if

f(2) > f(@) + 9" (2 — 2), (2)

for all z € domf.

@ The set of all subgradients of f at x is called the subdifferential of f
at = and denoted by df(x).

v

Definition 3 (

o A function f is called subdifferentiable at x if there exists at least
one subgradient of f at x.

@ A function f is called subdifferentiable if it is subdifferentiable at all |
x € domf. >
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Subgradient and subdifferential

Examples:

e if f is convex and differentiable, then the following first order
condition holds:

f(2) 2 f(2) + V()" (2 - 2), (3)

for all z € domf. This implies: 0f(z) = Vf(x);

@ Absolute value. Consider f(z) = |z|, then we have

1 x> 0;
Of(x) =4 L1 ==0;
-1 z < 0.

Thus, g = sign(z) is a subgradient of f at x.
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Basic properties

Basic properties of subdifferential are as follows:

The subdifferential df(x) is a closed convex set, even for a
nonconvex function f.

If fis convex and = € int domf, then 0f(z) is nonempty and
bounded.

d(af(x)) = adf(x), for a > 0.

Oy filx)) = 320, Ofi(x).

If h(x) = f(Ax +b), then Oh(z) = ATOf(Az +b).

If h(z) = maxi=1,--- ,nf;j(z), then

Oh(z) = conv | J{0fi(x) | fi(z) =h(z) i=1,--- ,n}.
If h(z) = supg fp(), then

Oh(z) = conv {0 fs(x) | fs(z) = h(z) € B}.
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How to calculate subgradients

Example: consider f(z) = ||z|li = Y ;= |=il|. It is clear that
f(z) =mazx{sTz | s; € {~1,1}}

We have s”z is differentiable and g = V fi(x) = s. Thus, for active

sTx = ||z||1, we should have

1 s> 0;
si=«¢ {-1,1} s=0; (4)
-1 s < 0.

This clearly implies

Jf(z) = conv U{g | g of the form (4), g7z = ||z|1}
={9 1 llgllo < 1.g"x = ||z[l1}.

Thus, g = sign(x) is a subgradient of f at x.



Numerical algorithms for nonsmooth optimization
°0

Optimality condition:

o First-order condition: A point z* is a minimizer of a convex function
f if and only if f is subdifferentiable at z* and

0 € df(a*), (5)

i.e., g =0 is a subgradient of f at x*.
@ The condition (5) reduces to V f(z*) = 0 if f is differentiable at z*.

@ Analytical complexity: The number of calls of oracle, which is
required to solve a problem up to the accuracy €. This means the
number of calls of oracle such that

flae) = f(@%) <& (6)

@ Arithmetical complexity: The total number of arithmetic operatio
which is required to solve a problem up to the accuracy ¢;

10/35
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Numerical algorithms

The algorithms for solving nonsmooth convex optimization problems are
commonly divided into the following classes:

@ The nonsmooth balck-box optimization;
@ Proximal mapping technique;

@ Smoothing methods;

We here will not consider derivative-free and heuristic algorithms for
solving nonsmooth convex optimization problems.

11/35
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Nonsmooth black-box optimization: subgradient algorithms

The subgradient scheme for unconstrained problems:

Th+1 = Tk — OkJk,

where g;, is a subgradient of the function f at x, and is a step size
determined by:

Constant step size: ap = «;

Constant step length: ax = v/||gx|2;

Square summable but not summable:

ap >0, Yp = ai <00, D op_y = Qp = 00;

Nonsummable diminishing step size:

ap >0, limgoar =0, Y | =ag =00

Nonsummable diminishing step length: ap = v /||gk|| such that
¥ >0, limgooyk =0, > p_y =7 = .

12/35
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The subgradient algorithm: properties

Main properties:

The subgradient method is simple for implementations and applies
directly to the nondifferentiable f;

The step sizes are not chosen via line search, as in the ordinary
gradient method;

The step sizes are determined before running the algorithm and do
not depend on any data computed during the algorithm;

Unlike the ordinary gradient method, the subgradient method is not
a descent method;

The function vale is nonmonotone meaning that it can even increase;

The subgradient algorithm is very slow for solving practical problems.

13/35



Numerical algorithms for nonsmooth optimization
00®0000000

Bound on function values error:

If the Euclidean distance of the optimal set is bounded, ||zg — z4|2 < R,
and [|gk|l2 < G, then we have

RZ4 G2k 42
foo pr< TG 2im 0% _ ppg (7)
2> i ak

o Constant step size: k — o0 = RHS — G?a/2;

o Constant step length: k - 00 = RHS — Gv/2;

@ Square summable but not summable: £k - 00 = RHS —0;
@ Nonsummable diminishing step size: k - o0 = RHS — 0;

o Nonsummable diminishing step length: k - o0 = RHS — 0.

Example: we now consider the LASSO problem

1
minimizeyern o | Az = b3 + ||z,

where A and b are randomly generated.

14 /35
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Figure 1. A comparison among the subgradient algorithms when they stopped
after 60 seconds of the running time (dense. m = 2000 and 1. = 5000)
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Numerical experiment: f(x) = ||Az — b||3 z||1
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Figure 2: A comparison among the subgradient algorithms when they stopped
after 20 seconds of the running time (sparse, m = 2000 and n = 5000)
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Numerical experiment: f(x) = ||Az — b||3
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Figure 3: A comparison among the subgradient algorithms when they stopped
after 60 seconds of the running time (dense, m = 2000 and n = 5000) 17/35
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Numerical experiment: f(x) = ||Az — b||3

5
10 T T T

== SCS5
SGCSL

== = 8G-NSDS8
SG-NSDSL

function values

] 2 4
10 10 10 10 10
itzrations

Figure 4. A comparison among the subgradient algorithms when they stopped
after 20 seconds of the running time (sparse, m = 2000 and n = 5000)
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Numerical experiment: f(x) = ||Az — b||3
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Figure 5: The nonmonotone behaviour of the original subgradient algorithms
when they stopped after 20 seconds of the running time (sparse, m = 2000 a

n = 5000)
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Projected subgradient algorithm

Consider the following constrained problem
minimize  f(z) (9)
subject to = € C,

where C' is a simple convex set. Then the projected subgradient scheme
is given by

Tr+1 = P2 — akgr), (10)
where 1

P(y) = argmin e o = y5. (11)
@ Nonnegative orthant;
o Affine set;
@ Box or unit ball;
o Unit simplex;
o An ellipsoid;
@ Second-order cone;
o Positive semidefinite cone; 2035
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Projected subgradient algorithm

Example: Let us to consider

minimize  ||z|;

subject to Ax = b, (12)
where z € R", z € R™ and A € R™*™. Considering the set
C = {z | Az = b}, we have
P(y) =y — AT(AAT) "} (Ay —b). (13)
The projected subgradient algorithm can be summarized as follows
Tpp1 =z — ap(I — AT(AAT) 1 A)gy. (14)

By setting gr = sign(xy), we obtain

Ty = — ap(l — AT(AAT) "L A)sign(xy,).

21/35
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Proximal gradient algorithm

Consider a composite function as follows

hz) = f(z) + g(x). (16)

Characteristics of the considered convex optimization:

Appearing in many applications in science and technology: signal
and image processing, machine learning, statistics, inverse problems,
geophysics and so on.

In convex optimization — every local optimum is global optimizer.
Most of the problems are combination of both smooth and
nonsmooth functions:

hzx) = f(Az) + g(Bx),

where f(Az) and g(Ax) are respectively smooth and nonsmooth
functions.

Function and subgradient evaluations are so costly: Affine
transformations are the most costly part of the computation.
They are involving high-dimensional data.

22 /35
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Proximal gradient algorithm

The algorithm involve two step, namely forward and backward, as follows:

Algorithm 1: PGA proximal gradient algorithm
Input: o € (0,1]; yo; €>0;
begin
while stopping criteria are not hold do
Yk+1 = Tk — OkGk;
Ts1 = argming e 31z — g3 + g(a);
end

end

o First step called forward because it aims to go toward the minimizer,
and the second step called backward step because it remind us
feasibility step of the projected gradient method.

@ It is clear that the projected gradient method is a spacial case of
PGA.

23 /35
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Smoothing algorithms

The smoothing algorithms involve the following steps:

@ Reformulate the problem in the appropriate form for smoothing
processes;

@ Make the problem smooth;

@ Solve the problem with smooth convex solvers.

Nesterov's smoothing algorithm:

@ Reformulate the problem in the form of the minimax problem
(saddle point representation);

@ Add a strongly convex prox function to the reformulated problem to
make it smooth;

@ Solve the problem with optimal first-order algorithms.

24 /35
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Optimal complexity for first-order methods

Nemirovski and Yudin in 1983 proved the following complexity bound for
smooth and nonsmooth problems:

Theorem 4 (Complexity analysis).

Suppose that f is a convex function. Then complexity bounds for
smooth and nonsmooth problems are

@ (Nonsmooth complexity bound) If the point generated by the
algorithm stays in bounded region of the interior of C, or f is
Lipschitz continuous in C, then the total number of iterations
needed is O (%) Thus the asymptotic worst case complexity is

O (2)-

e (Smooth complexity bound) If f has Lipschitz continuous gradient,

the total number of iterations needed for the algorithm is O (ﬁ) >

25 /35
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Optimal first-order algorithms

Some popular optiml first-order algorithms:
@ Nonsummable diminishing subgradient algorithm;
Nesterov's 1983 smooth algorithm;
Nesterov and Nemiroski's 1988 smooth algorithm;
Nesterov's constant step algorithm;
Nesterov’s 2005 smooth algorithm;
Nesterov's composite algorithm;
Nesterov’s universal gradient algorithm;
Fast iterative shrinkage-thresholding algorithm
Tseng's 2008 single projection algorithm;
Lan’s 2013 bundle-level algorithm;

Neumaier's 2014 fast subgradient algorithm;

26 /35
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Algorithm 2: NES83 Nesterov's 1983 algorithm
Input: select z such that z # yo and gy, # g.; vo; € > 0;
begin
ap — 0; x_1 < yo;
a1 < |lyo = 2|/ll9yo — 9-1I;
while stopping criteria are not hold do
Qf — Qg—1; Tk < Yk — QkGy,;
while f(2x) < f(yx) — 36%llgy,|I* do
| Gg — phy; B — Yk — Qrgy,
end
Tyl < Tps Qg Qg

Qi1 — <1+ \/4az+1> /2;

Yk1 — 2 + (ap — 1) (2 — 2p-1) /a1,
end
end
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Algorithm 3: FISTA fast iterative shrinkage-thresholding algorithm
Input: select z such that z # yo and gy, # g.; Yo, € > 0;

begin

while stopping criteria are not hold do

ap — 1/L;

Rk < Yk — OkGys

), = argmin, 2|z — 23 + g(=);

Ay — <1+ \/4(1%—4—1) /2;

Ykr1 — 2 + (ap — 1) (2 — 2p-1) /aRy1;
end

end

By this adaptation, FISTA obtains the optimal complexity of smooth
first-order algorithms

28 /35
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Figure 6: A comparison among the subgradient algorithms when they stopped
after 60 seconds of the running time (dense, m = 2000 and n = 5000)
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Numerical experiment: f(x) = ||Az — b||3 z||1
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Figure 7: A comparison among the subgradient algorithms when they stopped
after 20 seconds of the running time (sparse, m = 2000 and n = 5000)
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Figure 8: A comparison among the subgradient algorithms when they stopped
after 60 seconds of the running time (dense, m = 2000 and n = 5000)
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Numerical experiment: f(x) = ||Az — b||3

function values
=

o ] 1 2 s a
10 10 10 10 10
iterations

Figure 9: A comparison among the subgradient algorithms when they stopped
after 20 seconds of the running time (sparse, m = 2000 and n = 5000)
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Conclusions

Summarizing our discussion:

@ They are appearing in applications much more than smooth
optimization;
@ Solving nonsmooth optimization problems is much harder than
common smooth optimization;
@ The most efficient algorithms for solving them are first-order
methods;
@ There are no normal stopping criterion in corresponding algorithms;
@ The algorithms are divided into three classes:
o Nonsmooth back-box algorithms;
o Proximal mapping algorithms;
e Smoothing algorithms;
@ Analytical complexity of the algorithms is the most important part
of theoretical results;
@ Optimal complexity algorithms are so efficient to solve practical
problems.
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Definition of problems

Definition 1 (Structural convex optimization).

Consider the following a convex optimization problem
minimize  f(z)
(1)

subject to z € C

e f(z) is a convex function;

@ (C'is a closed convex subset of vector space V;

Properties:
@ f(z) can be smooth or nonsmooth;
@ Solving nonsmooth convex optimization problems is much harder
than solving differentiable ones;
@ For some nonsmooth nonconvex cases, even finding a decent
direction is not possible;
@ The problem is involving linear operators. 3/26
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Which kind of algorithms can deal with these problems?

Appropriate algorithms for this class of problems: First-order methods

Gradient and Subgradient projection algorithms;
Conjugate gradient algorithms;
Optimal gradient and subgradient algorithms;

@ Proximal mapping and Soft-thresholding algorithms;
Optimal complexity for COP (Nemirovski and Yudin 1983):

@ Smooth problems — O (ﬁ)

@ Nonsmooth problems — O (}2)
Some examples:
@ NB83: Nesterovs single-projection (1983);
@ NO7: Nesterovs dual-projection (2007);
@ FISTA: Beck and Teboulle optimal proximal algorithm (2009);
o NO7: Nesterovs universal gradient (2013);
@ OSGA & ASGA: Ahookhosh and Neumaier affine subgradient
(2013).
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Optimal SubGradient Algorithm (OSGA): Motivation

The primary aim:
0 < f(zp) — f(2*) < Bound — 0 (2)

To do so, we consider:

o First-order oracle: black-box unit that computes f(x) and V f(x)
for the numerical method at each point x:

O(z) = (f(2), Vf(2)). (3)

e Linear relaxation: f(z) >~ + (h, 2)

@ Prox function: () is continuously differentiable,
Qo =inf,cc Q(z) > 0 and

Q) 2 Q) + {ag(w), 2 — 2} + lle — 2> ¥, 2 € €.
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@ Auxiliary subproblem:

oY+ (h2)
g TN

e Q)

where z = U(vy,h) € C and E(v,h) and U(~v, h) are computable.

@ Error bound: from the definition of E(v,h), the linear relaxation
and some manipulations, it can be concluded

E(y,h) = (5)

0< flap) — f2") <nQ(z"). (6)

o How to use in algorithm:

o If Q(z*) is computable, then the error bound nQ(z*) is appliable.
o Otherwise, we will search for decreasing {1} satisfying

0< flap) — f(27) < eQ(a™). (7)

for some constant ¢ > 0.
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Algorithmic structure

Algoritm 2: Optimal SubGradient Algorithm (OSGA)
Input: A, Qmaz € (01), 0 <K <k, £ >0, €>0and fiarget.
Begin
Choose xy; Stop if f(xb) < ftarget;
h=g(xp); v = f(zp) — (h,0);
W=7~ f(@); u=Uw h); n=E(w h) — & tmaz;
While n > ¢
x=xp+a(u—xp); g=g(x); h=h+alg—h);
y=7+alf(z)+ <9, x) —7); xp, = argmin{ f(z), f(2)};

V=7 — flay); v =U(y,h); o' = xp + au — );
Choose 7j, = argmln{f (), f(2")}; _

Yo =7 — f(@); v = U, h); 1= E Y, h) — p;
XTp = Tp; Stop if f(acb) < fa,rgetr

Update «, h, v, 7, u;
End
End
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Theoretical Analysis

Theorem 2 (Complexity analysis).

Suppose that f is a convex function. Then complexity bounds for
smooth and nonsmooth problems are

e (Nonsmooth complexity bound) If the point generated by Algorithm
2 stay in bounded region of the interior of C', or f is Lipschitz
continuous in C', then the total number of iterations needed is
O (&). Thus the asymptotic worst case complexity is O ().

e (Smooth complexity bound) If f has Lipschitz continuous gradient,
the total number of iterations needed for the algorithm is O (ﬁ)

= OSGA IS AN OPTIMAL METHOD
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Prox function and subproblem solving

@ Dual norm:

Quadratic norm:
2] == v/ (Bz, 2)

1]l == 1B~ hll = v/ (h, B~h)

Prox function:

Q=) = Qo+ 5z — 2ol

Subproblem solution:

U(y,h) =20 — E(y,h)"'B™1h

B24+2QollRlIZ P11

_ =B+
E(y,h) = Qo T BB 2Qo IR
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Numerical experiments: linear inverse problem

Definition 3 (Linear inverse problem).

We consider the following convex optimization problems:

Az =b+6 (8)

o A€ R™ ™ is a matrix or a linear operator, z € R"™ and b,0 € R™

v

Examples:
@ Signal and image processing
@ Machine learning and statistics
o Compressed sensing
@ Geophysics

10/26
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Approximate solution

Definition 4 (Least square problem).

1
Minimize 5 | Az — b||3 (9)

@ The problem includes high-dimensional data

@ The problem is usually ill-conditioned and singular

Alternative problems: Tikhonov regularization:
1
minimize §HAx—ng+)\HxH% (10)

General case: 1
minimize §||A;1: —b|13 + Ag(),

where g(z) is a regularization term like g(z) = ||z||, for p > 1 or
0<p<1landg(z)=|zlirv or [[z|arv. 112
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Isotropic and anisotropic total variation

Two standard choices of discrete TV-based regularizers, namely isotropic
total variation and anisotropic total variation, are popular in signal
and image processing, where they are respectively defined by

m—1n—1

1 X[y = Z Z \/ i+1,5 — Xij)? + (Xij+1 — Xij)?

(12)

—1
+ Z | Xiv1n — Xin| + Z | Xmj+1 — X jl,
i i

and
m—1n—1

XNz =D > {1 Xir1; — Xigl + [ Xij — Xijl}

m—1 n—1
+ ) Xivin = Xinl + ) [ Xinjr1 = Ximgl,
% %

where X c RMXn 12 /26
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Denising of the noisy image

(a) Original image (b) Noisy image

13/26
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Denising by solving min, 1|4z — b3+ A|z||rrv
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Denising by solving min, %HAx — b||3 + Al|z||rrv

E)

(a) step vs. iter (b) Func vs. time

5w m % ® 4 % S s m s w ® W

(c) Func vs. iter (d) ISNR vs. iter
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Inpainting images with missing data

(a) Original image
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Inpainting by solving min, 1[|Az — b||3 + A||z|/;rv
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Inpainting by solving Az — bl)3 + Nz 17y

(a) step vs. iter (b) Func vs. time

(c) Func vs. iter (d) ISNR vs. iter
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Deblurring of the blurred/noisy image

(a) Original image (b) Noisy image
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Deblurring by solving min, 3| Az — b||3 + Al|z| v

(c) OSGA (d) IST

(e) TwiIST (f) FISTA
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Deblurring by solving min, %HA:U — b3 + A||z|| v

(a) step vs. iter (b) Func vs. time

(c) Func vs. iter (d) ISNR vs. iter 21/26
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A comparison among first-order methods for a sparse
signal recovery by solving min, || Az — b||3 + \|z||x

(a) step vs. iter (b) Func vs. time

22/26
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Conclusions and references

Summarizing our discussion:

@ OSGA is optimal algorithms for both smooth and nonsmooth convex
optimization problems;

@ OSGA is feasible and avoid using the Lipschitz information;
@ Low memory requirement OSGA makes them to be appropriate for
solving high-dimensional problems;

o OSGA is efficient and robust in applications and practice and
superior to some state-of-the-art solvers.
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