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Definition of problems

Definition 1 (Structural convex optimization).

Consider the following a convex optimization problem

minimize f(x)
subject to x ∈ C (1)

f(x) is a convex function;

C is a closed convex subset of vector space V ;

Properties:

f(x) can be smooth or nonsmooth;
Solving nonsmooth convex optimization problems is much harder
than solving differentiable ones;
For some nonsmooth nonconvex cases, even finding a decent
direction is not possible;
The problem is involving linear operators. 3 / 35
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Applications

Applications of convex optimization:

Approximation and fitting;

Norm approximation;
Least-norm problems;
Regularized approximation;
Robust approximation;
Function fitting and interpolation;

Statistical estimation;

Parametric and nonparametric distribution estimation;
Optimal detector design and hypothesis testing;
Chebyshev and Chernoff bounds;
Experiment design;

Global optimization;

Find bounds on the optimal value;
Find approximation solutions;
Convex relaxation;
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Geometric problems;

Projection on and distance between sets;
Centering and classification;
Placement and location;
Smallest enclosed elipsoid;

Image and signal processing;

Optimizing the number of image models using convex relaxation;
Image fusion for medical imaging;
Image reconstruction;
Sparse signal processing;

Design and control of complex systems;

Machine learning;

Financial and mechanical engineering;

Computational biology;
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Dfinition: subgradient and subdifferential

Definition 2 (Subgradient and subdifferential).

A vector g ∈ Rn is a subgradient of f : Rn → R at x ∈ domf if

f(z) ≥ f(x) + gT (z − x), (2)

for all z ∈ domf .

The set of all subgradients of f at x is called the subdifferential of f
at x and denoted by ∂f(x).

Definition 3 (Subdifferentiable functions).

A function f is called subdifferentiable at x if there exists at least
one subgradient of f at x.

A function f is called subdifferentiable if it is subdifferentiable at all
x ∈ domf .
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Subgradient and subdifferential

Examples:

if f is convex and differentiable, then the following first order
condition holds:

f(z) ≥ f(x) +∇f(x)T (z − x), (3)

for all z ∈ domf . This implies: ∂f(x) = ∇f(x);

Absolute value. Consider f(x) = |x|, then we have

∂f(x) =


1 x > 0;
[-1,1] x = 0;
−1 x < 0.

Thus, g = sign(x) is a subgradient of f at x.
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Basic properties

Basic properties of subdifferential are as follows:

The subdifferential ∂f(x) is a closed convex set, even for a
nonconvex function f .

If f is convex and x ∈ int domf , then ∂f(x) is nonempty and
bounded.

∂(αf(x)) = α∂f(x), for α ≥ 0.

∂(
∑n

i=1 fi(x)) =
∑n

i=1 ∂fi(x).

If h(x) = f(Ax+ b), then ∂h(x) = AT∂f(Ax+ b).

If h(x) = max i = 1, · · · , nfi(x), then
∂h(x) = conv

⋃{∂fi(x) | fi(x) = h(x) i = 1, · · · , n}.
If h(x) = supβ fβ(x), then
∂h(x) = conv

⋃{∂fβ(x) | fβ(x) = h(x) β ∈ B}.
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How to calculate subgradients

Example: consider f(x) = ‖x‖1 =
∑n

i=1 |xi|. It is clear that

f(x) = max{sTx | si ∈ {−1, 1}}
We have sTx is differentiable and g = ∇fi(x) = s. Thus, for active
sTx = ‖x‖1, we should have

si =


1 s > 0;
{-1,1} s = 0;
−1 s < 0.

(4)

This clearly implies

∂f(x) = conv
⋃
{g | g of the form (4), gTx = ‖x‖1}

= {g | ‖g‖∞ ≤ 1, gTx = ‖x‖1}.
Thus, g = sign(x) is a subgradient of f at x.
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Optimality condition:

First-order condition: A point x∗ is a minimizer of a convex function
f if and only if f is subdifferentiable at x∗ and

0 ∈ ∂f(x∗), (5)

i.e., g = 0 is a subgradient of f at x∗.
The condition (5) reduces to ∇f(x∗) = 0 if f is differentiable at x∗.
Analytical complexity: The number of calls of oracle, which is
required to solve a problem up to the accuracy ε. This means the
number of calls of oracle such that

f(xk)− f(x∗) ≤ ε; (6)

Arithmetical complexity: The total number of arithmetic operations,
which is required to solve a problem up to the accuracy ε;
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Numerical algorithms

The algorithms for solving nonsmooth convex optimization problems are
commonly divided into the following classes:

The nonsmooth balck-box optimization;

Proximal mapping technique;

Smoothing methods;

We here will not consider derivative-free and heuristic algorithms for
solving nonsmooth convex optimization problems.
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Nonsmooth black-box optimization: subgradient algorithms

The subgradient scheme for unconstrained problems:

xk+1 = xk − αkgk,

where gk is a subgradient of the function f at xk, and is a step size
determined by:

Constant step size: αk = α;

Constant step length: αk = γ/‖gk‖2;

Square summable but not summable:
αk ≥ 0,

∑n
k=1 = α2

k <∞,
∑n

k=1 = αk =∞;

Nonsummable diminishing step size:
αk ≥ 0, limk→∞ αk = 0,

∑n
k=1 = αk =∞;

Nonsummable diminishing step length: αk = γk/‖gk‖ such that
γ ≥ 0, limk→∞ γk = 0,

∑n
k=1 = γk =∞.
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The subgradient algorithm: properties

Main properties:

The subgradient method is simple for implementations and applies
directly to the nondifferentiable f ;

The step sizes are not chosen via line search, as in the ordinary
gradient method;

The step sizes are determined before running the algorithm and do
not depend on any data computed during the algorithm;

Unlike the ordinary gradient method, the subgradient method is not
a descent method;

The function vale is nonmonotone meaning that it can even increase;

The subgradient algorithm is very slow for solving practical problems.

13 / 35



Introduction Numerical algorithms for nonsmooth optimization Conclusions References

Bound on function values error:

If the Euclidean distance of the optimal set is bounded, ‖x0 − x∗‖2 ≤ R,
and ‖gk‖2 ≤ G, then we have

fk − f∗ ≤ R2 +G2
∑k

i=1 α
2
k

2
∑k

i=1 αk
:= RHS. (7)

Constant step size: k →∞ ⇒ RHS → G2α/2;

Constant step length: k →∞ ⇒ RHS → Gγ/2;

Square summable but not summable: k →∞ ⇒ RHS → 0;

Nonsummable diminishing step size: k →∞ ⇒ RHS → 0;

Nonsummable diminishing step length: k →∞ ⇒ RHS → 0.

Example: we now consider the LASSO problem

minimizex∈Rn
1
2
‖Ax− b‖22 + ‖x‖1, (8)

where A and b are randomly generated.
14 / 35
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Numerical experiment: f(x) = ‖Ax− b‖22 + λ‖x‖1

Figure 1: A comparison among the subgradient algorithms when they stopped
after 60 seconds of the running time (dense, m = 2000 and n = 5000) 15 / 35
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Numerical experiment: f(x) = ‖Ax− b‖22 + λ‖x‖1

Figure 2: A comparison among the subgradient algorithms when they stopped
after 20 seconds of the running time (sparse, m = 2000 and n = 5000)
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Numerical experiment: f(x) = ‖Ax− b‖22 + λ‖x‖22

Figure 3: A comparison among the subgradient algorithms when they stopped
after 60 seconds of the running time (dense, m = 2000 and n = 5000) 17 / 35
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Numerical experiment: f(x) = ‖Ax− b‖22 + λ‖x‖22

Figure 4: A comparison among the subgradient algorithms when they stopped
after 20 seconds of the running time (sparse, m = 2000 and n = 5000)
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Numerical experiment: f(x) = ‖Ax− b‖22 + λ‖x‖1

Figure 5: The nonmonotone behaviour of the original subgradient algorithms
when they stopped after 20 seconds of the running time (sparse, m = 2000 and
n = 5000)
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Projected subgradient algorithm

Consider the following constrained problem

minimize f(x)
subject to x ∈ C, (9)

where C is a simple convex set. Then the projected subgradient scheme
is given by

xk+1 = P (xk − αkgk), (10)

where

P (y) = argminx∈C
1
2
‖x− y‖22. (11)

Nonnegative orthant;
Affine set;
Box or unit ball;
Unit simplex;
An ellipsoid;
Second-order cone;
Positive semidefinite cone; 20 / 35
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Projected subgradient algorithm

Example: Let us to consider

minimize ‖x‖1
subject to Ax = b,

(12)

where x ∈ Rn, x ∈ Rm and A ∈ Rm×n. Considering the set
C = {x | Ax = b}, we have

P (y) = y −AT (AAT )−1(Ay − b). (13)

The projected subgradient algorithm can be summarized as follows

xk+1 = xk − αk(I −AT (AAT )−1A)gk. (14)

By setting gk = sign(xk), we obtain

xk+1 = xk − αk(I −AT (AAT )−1A)sign(xk). (15)
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Proximal gradient algorithm

Consider a composite function as follows

h(x) = f(x) + g(x). (16)

Characteristics of the considered convex optimization:

Appearing in many applications in science and technology: signal
and image processing, machine learning, statistics, inverse problems,
geophysics and so on.
In convex optimization → every local optimum is global optimizer.
Most of the problems are combination of both smooth and
nonsmooth functions:

h(x) = f(Ax) + g(Bx),

where f(Ax) and g(Ax) are respectively smooth and nonsmooth
functions.
Function and subgradient evaluations are so costly: Affine
transformations are the most costly part of the computation.
They are involving high-dimensional data.
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Proximal gradient algorithm

The algorithm involve two step, namely forward and backward, as follows:

Algorithm 1: PGA proximal gradient algorithm

Input: α0 ∈ (0, 1]; y0; ε > 0;
begin

while stopping criteria are not hold do
yk+1 = xk − αkgk;
xk+1 = argminx∈Rn

1
2‖x− yk+1‖22 + g(x);

end

end

First step called forward because it aims to go toward the minimizer,
and the second step called backward step because it remind us
feasibility step of the projected gradient method.

It is clear that the projected gradient method is a spacial case of
PGA.
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Smoothing algorithms

The smoothing algorithms involve the following steps:

Reformulate the problem in the appropriate form for smoothing
processes;

Make the problem smooth;

Solve the problem with smooth convex solvers.

Nesterov’s smoothing algorithm:

Reformulate the problem in the form of the minimax problem
(saddle point representation);

Add a strongly convex prox function to the reformulated problem to
make it smooth;

Solve the problem with optimal first-order algorithms.
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Optimal complexity for first-order methods

Nemirovski and Yudin in 1983 proved the following complexity bound for
smooth and nonsmooth problems:

Theorem 4 (Complexity analysis).

Suppose that f is a convex function. Then complexity bounds for
smooth and nonsmooth problems are

(Nonsmooth complexity bound) If the point generated by the
algorithm stays in bounded region of the interior of C, or f is
Lipschitz continuous in C, then the total number of iterations
needed is O

(
1
ε2

)
. Thus the asymptotic worst case complexity is

O
(

1
ε2

)
.

(Smooth complexity bound) If f has Lipschitz continuous gradient,

the total number of iterations needed for the algorithm is O
(

1√
ε

)
.
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Optimal first-order algorithms

Some popular optiml first-order algorithms:

Nonsummable diminishing subgradient algorithm;

Nesterov’s 1983 smooth algorithm;

Nesterov and Nemiroski’s 1988 smooth algorithm;

Nesterov’s constant step algorithm;

Nesterov’s 2005 smooth algorithm;

Nesterov’s composite algorithm;

Nesterov’s universal gradient algorithm;

Fast iterative shrinkage-thresholding algorithm

Tseng’s 2008 single projection algorithm;

Lan’s 2013 bundle-level algorithm;

Neumaier’s 2014 fast subgradient algorithm;
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Algorithm 2: NES83 Nesterov’s 1983 algorithm

Input: select z such that z 6= y0 and gy0 6= gz; y0; ε > 0;
begin

a0 ← 0; x−1 ← y0;
α−1 ← ‖y0 − z‖/‖gy0 − gz‖;
while stopping criteria are not hold do

α̂k ← αk−1; x̂k ← yk − α̂kgyk
;

while f(x̂k) < f(yk)− 1
2 α̂k‖gyk

‖2 do
α̂k ← ρα̂k; x̂k ← yk − α̂kgyk

;
end
xk+1 ← x̂k; αk ← α̂k;

ak+1 ←
(
1 +

√
4a2

k + 1
)
/2;

yk+1 ← xk + (ak − 1)(xk − xk−1)/ak+1;

end

end
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Algorithm 3: FISTA fast iterative shrinkage-thresholding algorithm

Input: select z such that z 6= y0 and gy0 6= gz; y0; ε > 0;
begin

while stopping criteria are not hold do
αk ← 1/L;
zk ← yk − αkgyk

;

xk = argminx
L
2 ‖x− zk‖22 + g(x);

ak+1 ←
(
1 +

√
4a2

k + 1
)
/2;

yk+1 ← xk + (ak − 1)(xk − xk−1)/ak+1;

end

end

By this adaptation, FISTA obtains the optimal complexity of smooth
first-order algorithms
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Numerical experiment: f(x) = ‖Ax− b‖22 + λ‖x‖1

Figure 6: A comparison among the subgradient algorithms when they stopped
after 60 seconds of the running time (dense, m = 2000 and n = 5000)
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Numerical experiment: f(x) = ‖Ax− b‖22 + λ‖x‖1

Figure 7: A comparison among the subgradient algorithms when they stopped
after 20 seconds of the running time (sparse, m = 2000 and n = 5000)
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Numerical experiment: f(x) = ‖Ax− b‖22 + λ‖x‖22

Figure 8: A comparison among the subgradient algorithms when they stopped
after 60 seconds of the running time (dense, m = 2000 and n = 5000)
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Numerical experiment: f(x) = ‖Ax− b‖22 + λ‖x‖22

Figure 9: A comparison among the subgradient algorithms when they stopped
after 20 seconds of the running time (sparse, m = 2000 and n = 5000)
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Conclusions

Summarizing our discussion:

They are appearing in applications much more than smooth
optimization;
Solving nonsmooth optimization problems is much harder than
common smooth optimization;
The most efficient algorithms for solving them are first-order
methods;
There are no normal stopping criterion in corresponding algorithms;
The algorithms are divided into three classes:

Nonsmooth back-box algorithms;
Proximal mapping algorithms;
Smoothing algorithms;

Analytical complexity of the algorithms is the most important part
of theoretical results;
Optimal complexity algorithms are so efficient to solve practical
problems.
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Thank you for your consideration
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Definition of problems

Definition 1 (Structural convex optimization).

Consider the following a convex optimization problem

minimize f(x)
subject to x ∈ C (1)

f(x) is a convex function;

C is a closed convex subset of vector space V ;

Properties:

f(x) can be smooth or nonsmooth;
Solving nonsmooth convex optimization problems is much harder
than solving differentiable ones;
For some nonsmooth nonconvex cases, even finding a decent
direction is not possible;
The problem is involving linear operators. 3 / 26
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Which kind of algorithms can deal with these problems?

Appropriate algorithms for this class of problems: First-order methods

Gradient and Subgradient projection algorithms;
Conjugate gradient algorithms;
Optimal gradient and subgradient algorithms;
Proximal mapping and Soft-thresholding algorithms;

Optimal complexity for COP (Nemirovski and Yudin 1983):

Smooth problems → O
(

1√
ε

)
.

Nonsmooth problems → O
(

1
ε2

)
.

Some examples:

N83: Nesterovs single-projection (1983);
N07: Nesterovs dual-projection (2007);
FISTA: Beck and Teboulle optimal proximal algorithm (2009);
N07: Nesterovs universal gradient (2013);
OSGA & ASGA: Ahookhosh and Neumaier affine subgradient
(2013).
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Optimal SubGradient Algorithm (OSGA): Motivation

The primary aim:

0 ≤ f(xb)− f(x∗) ≤ Bound→ 0 (2)

To do so, we consider:

First-order oracle: black-box unit that computes f(x) and ∇f(x)
for the numerical method at each point x:

O(x) = (f(x),∇f(x)). (3)

Linear relaxation: f(z) ≥ γ + 〈h, z〉
Prox function: Q is continuously differentiable,
Q0 = infz∈C Q(z) > 0 and

Q(z) ≥ Q(x) + 〈qQ(x), z − x〉+
1
2
‖z − x‖2,∀x, z ∈ C. (4)

5 / 26



Introduction Novel optimal algorithms Numerical experiments Conclusions

Auxiliary subproblem:

E(γ, h) = inf
z∈C

γ + 〈h, z〉
Q(z)

(5)

where z = U(γ, h) ∈ C and E(γ, h) and U(γ, h) are computable.

Error bound: from the definition of E(γ, h), the linear relaxation
and some manipulations, it can be concluded

0 ≤ f(xb)− f(x∗) ≤ ηQ(x∗). (6)

How to use in algorithm:
If Q(x∗) is computable, then the error bound ηQ(x∗) is appliable.
Otherwise, we will search for decreasing {ηk} satisfying

0 ≤ f(xb)− f(x∗) ≤ εQ(x∗). (7)

for some constant ε > 0.

6 / 26
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Algorithmic structure

Algoritm 2: Optimal SubGradient Algorithm (OSGA)
Input: λ, αmax ∈ (0 1), 0 < κ′ ≤ κ, µ ≥ 0, ε > 0 and ftarget.
Begin

Choose xb; Stop if f(xb) ≤ ftarget;
h = g(xb); γ = f(xb)− 〈h, xb〉;
γb = γ − f(xb); u = U(γb, h); η = E(γb, h)− µ; αmax;
While η > ε

x = xb + α(u− xb); g = g(x); h̄ = h+ α(g − h);
γ̄ = γ + α(f(x) + 〈g, x〉 − γ); x′b = argmin{f(xb), f(x)};
γ′b = γ̄ − f(x′b); u′ = U(γ′b, h̄); x′ = xb + α(u′ − xb);
Choose x̄b = argmin{f(x′b), f(x′)};
γ̄b = γ̄ − f(x̄b); u′ = U(γ̄b, h̄); η = E(γ̄b, h̄)− µ;
xb = x̄b; Stop if f(xb) ≤ ftarget;
Update α, h, γ, η, u;

End
End

7 / 26
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Theoretical Analysis

Theorem 2 (Complexity analysis).

Suppose that f is a convex function. Then complexity bounds for
smooth and nonsmooth problems are

(Nonsmooth complexity bound) If the point generated by Algorithm
2 stay in bounded region of the interior of C, or f is Lipschitz
continuous in C, then the total number of iterations needed is
O
(

1
ε2

)
. Thus the asymptotic worst case complexity is O

(
1
ε2

)
.

(Smooth complexity bound) If f has Lipschitz continuous gradient,

the total number of iterations needed for the algorithm is O
(

1√
ε

)
.

⇒ OSGA IS AN OPTIMAL METHOD

8 / 26
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Prox function and subproblem solving

Quadratic norm:
‖z‖ :=

√
〈Bz, z〉

Dual norm:
‖h‖∗ := ‖B−1h‖ =

√
〈h,B−1h〉

Prox function:

Q(z) := Q0 +
1
2
‖z − z0‖2

Subproblem solution:

U(γ, h) = z0 − E(γ, h)−1B−1h

E(γ, h) = −β+
√
β2+2Q0‖h‖2∗
2Q0

= ‖h‖2∗
β+
√
β2+2Q0‖h‖2∗

.

9 / 26
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Numerical experiments: linear inverse problem

Definition 3 (Linear inverse problem).

We consider the following convex optimization problems:

Ax = b+ δ (8)

A ∈ Rm×n is a matrix or a linear operator, x ∈ Rn and b, δ ∈ Rm

Examples:

Signal and image processing

Machine learning and statistics

Compressed sensing

Geophysics

· · ·
10 / 26
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Approximate solution

Definition 4 (Least square problem).

Minimize
1
2
‖Ax− b‖22 (9)

The problem includes high-dimensional data

The problem is usually ill-conditioned and singular

Alternative problems: Tikhonov regularization:

minimize
1
2
‖Ax− b‖22 + λ‖x‖22. (10)

General case:

minimize
1
2
‖Ax− b‖22 + λg(x), (11)

where g(x) is a regularization term like g(x) = ‖x‖p for p ≥ 1 or
0 ≤ p < 1 and g(x) = ‖x‖ITV or ‖x‖ATV . 11 / 26
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Isotropic and anisotropic total variation

Two standard choices of discrete TV-based regularizers, namely isotropic
total variation and anisotropic total variation, are popular in signal
and image processing, where they are respectively defined by

‖X‖ITV =
m−1∑
i

n−1∑
j

√
(Xi+1,j −Xi,j)2 + (Xi,j+1 −Xi,j)2

+
m−1∑
i

|Xi+1,n −Xi,n|+
n−1∑
i

|Xm,j+1 −Xm,j |,
(12)

and

‖X‖ATV =
m−1∑
i

n−1∑
j

{|Xi+1,j −Xi,j |+ |Xi,j+1 −Xi,j |}

+
m−1∑
i

|Xi+1,n −Xi,n|+
n−1∑
i

|Xm,j+1 −Xm,j |,
(13)

where X ∈ Rm×n. 12 / 26
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Denising of the noisy image

(a) Original image (b) Noisy image
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Denising by solving minx
1
2‖Ax− b‖2

2 + λ‖x‖ITV

(c) OSGA (d) IST

(e) TwIST (f) FISTA

Figure 1: A comparison.
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Denising by solving minx
1
2‖Ax− b‖2

2 + λ‖x‖ITV
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Figure 2: A comparison.
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Inpainting images with missing data

(a) Original image (b) Noisy image
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Inpainting by solving minx
1
2‖Ax− b‖2

2 + λ‖x‖ITV

(c) OSGA (d) IST

(e) TwIST (f) FISTA

Figure 3: A comparison.
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Inpainting by solving minx
1
2‖Ax− b‖2

2 + λ‖x‖ITV

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

IST
TwIST
FISTA
OSGA

(a) step vs. iter

0 10 20 30 40 50 60
10

−3

10
−2

10
−1

10
0

 

 

IST
TwIST
FISTA
OSGA

(b) Func vs. time

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

 

 

IST
TwIST
FISTA
OSGA

(c) Func vs. iter

0 100 200 300 400 500 600
0

5

10

15

20

25

 

 

IST
TwIST
FISTA
OSGA

(d) ISNR vs. iter

Figure 4: A comparison.
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Deblurring of the blurred/noisy image

(a) Original image (b) Noisy image
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Deblurring by solving minx
1
2‖Ax− b‖2

2 + λ‖x‖ITV

(c) OSGA (d) IST

(e) TwIST (f) FISTA

Figure 5: A comparison.
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Deblurring by solving minx
1
2‖Ax− b‖2

2 + λ‖x‖ITV
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(b) Func vs. time
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(c) Func vs. iter
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(d) ISNR vs. iter

Figure 6: A comparison.
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A comparison among first-order methods for a sparse
signal recovery by solving minx

1
2‖Ax− b‖2

2 + λ‖x‖1
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(b) Func vs. time
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Conclusions and references

Summarizing our discussion:

OSGA is optimal algorithms for both smooth and nonsmooth convex
optimization problems;

OSGA is feasible and avoid using the Lipschitz information;

Low memory requirement OSGA makes them to be appropriate for
solving high-dimensional problems;

OSGA is efficient and robust in applications and practice and
superior to some state-of-the-art solvers.
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Thank you for your consideration
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