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We establish long time soliton asymptotics for the nonlinear system of Maxwell
equations coupled to a charged particle. The coupled system has a six-dimensional
manifold of soliton solutions. We show that in the long time approximation, any
solution, with an initial state close to the solitary manifold, is a sum of a soli-
ton and a dispersive wave which is a solution of the free Maxwell equations. It is
assumed that the charge density satisfies the Wiener condition. The proof further
develops the general strategy based on the symplectic projection in Hilbert space
onto the solitary manifold, modulation equations for the parameters of the projec-
tion, and decay of the transversal component. C© 2011 American Institute of Physics.
[doi:10.1063/1.3567957]

I. INTRODUCTION

Our paper deals with an old and important problem of mathematical physics, namely, the problem
of particle-field interaction. The equations of motion of a charged particle in external electromagnetic
fields were introduced by Lorentz in 1892,1 though for the first time it was written down by Maxwell
in one of his investigations in the 1860s. On the other hand, formulas for the electromagnetic field
generated by a moving charge were obtained by Liénard and Wiechert independently in 1898,
respectively, in 1900. Thus the problem of the interaction of a charge with its self-generated field
arises. The Liénard–Wiechert potentials imply that the field generated by an accelerated charge
transports energy to infinity, hence the acceleration should tend to zero as t → ∞. This radiative
decay is known since Abraham2 and is claimed in most of manuals on electrodynamics. However, it
was proven only fairly recently in Refs. 3 and 4 for the model of the scalar field coupled to extended
charge, and in Refs. 5 and 6 for the Maxwell field coupled to extended charge, as introduced by
Abraham. The corresponding scalar or Maxwell fields converge to the static solutions in the models
with an external confining potentials,3, 6 or to the solitons (travelling wave solutions) in the translation
invariant models.4, 5 Here we refine the asymptotics5 for the Maxwell–Lorentz equations identifying
the outgoing dispersive wave and the rate of the convergence for initial states close to a soliton.

It is convenient to write the equations of motion in Hamiltonian form. The dynamical variables
come then in canonically conjugate pairs. They are the position, q, of the particle, together with its
momentum P , and the transverse vector potential, A, together with the transverse electric field E .
We refer to Ref. 7, Chap. 13 for details. In these variables the Hamiltonian function reads

H(E, A, q, P) = 1

2
〈E, E〉 + 1

2
〈∇ A,∇ A〉 + [

1 + (P − Aρ(q))2
]1/2

, (1.1)

on the subspace defined by the transversality conditions:

∇ · E(x) = 0, ∇ · A(x) = 0. (1.2)
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Here 〈·, ·〉 denotes the L2-scalar product and, written in components,

〈E, E〉 =
3∑

j=1

〈E j , E j 〉, 〈∇ A,∇ A〉 =
3∑

i, j=1

〈∇i A j ,∇i A j 〉.

The function ρ is the charge density and Aρ the convolution,

Aρ(x) =
∫

d3x ′ρ(x ′ − x)A(x ′).

The canonical equations of motion follow then as

Ė(x, t) = −�A(x, t) − �s(ρ(x − q(t))q̇(t)), Ȧ(x, t) = −E(x, t), (1.3)

q̇(t) = P(t) − Aρ(q(t))[
1 + (

P(t) − Aρ(q(t))
)2]1/2 , Ṗ(t) = [∇(q̇(t) · A)]ρ(q(t), t) (1.4)

with t ∈ IR; x, q, P ∈ IR3. Here and below all derivatives are understood in the sense of distributions.
The operator �̂s is the projection onto the space of solenoidal (divergence-free) vector fields, which
in Fourier space reads:

�̂s(k) a = a − a · k

k2
k.

It is easily checked that the transversality condition is preserved in time. We use units such that the
velocity of light c = 1, ε0 = 1, and the mechanical mass of the charge m = 1.

Let us write the system (1.2)–(1.4) as

Ẏ (t) = F(Y (t)), t ∈ IR, (1.5)

where Y (t) = (E(x, t), A(x, t), q(t), P(t)) and the phase space is defined through H < ∞. Below
we always deal with column vectors but often write them as row vectors. The system (1.2)–(1.4)
admits special solutions where the charge travels with constant velocity. In analogy with travelling
solutions of nonlinear wave equation we call them solitons. Explicitly they are given by

Ya,v(t) = (Ev(x − vt − a), Av(x − vt − a), vt + a, Pv), Pv = pv + 〈ρ, Av〉, (1.6)

for all a, v ∈ IR3 with |v| < 1, where Ev = �s Ev , Av = �s Av , and Ev , Av , pv are given by

Ev(x) = −∇φv(x) + v · ∇ Av(x), Av(x) = vφv(x),

φv(x) = γ
4π

∫
ρ(y)d3 y

|γ (y − x)‖ + (y − x)⊥| , pv = γ v

∣∣∣∣∣∣ . (1.7)

Here γ = 1/
√

1 − v2 and x = x‖ + x⊥ with x‖ the component parallel and x⊥ the component
orthogonal to v. The formulas (1.7) follow resolving the stationary equations which read

Ev(x) = v · ∇ Av(x), v · ∇Ev(x) = �Av(x) + �s(ρ(x)v),

v = Pv − 〈ρ, Av〉[
1 + (Pv − 〈ρ, Av〉)2

]1/2 , 0 =
∫

ρ(x)v · ∇ Av(x)d3x

∣∣∣∣∣∣ . (1.8)

The states Sa,v = Ya,v(0) form the solitary manifold,

S = {Sa,v : a, v ∈ IR3, |v| < 1}. (1.9)

For general initial data, one expects that for large times the solution splits up into two parts: one
piece consists of a soliton with a definite velocity and the second piece are scattered fields escaping
to infinity. In fact, this will be our main result. If the initial data are close to the solitary manifold,
then we will prove that for large t,

(E(x, t), A(x, t)) ∼ (Ev±(x − v±t − a±), Av± (x − v±t − a±)) + W 0(t)�±, t → ±∞. (1.10)
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Here W 0(t) is the dynamical group of the free wave equation [Eqs. (1.3) with ρ = 0 and (1.2)], �±
are the corresponding asymptotic scattered fields, and the remainder converges to zero in the global
energy norm, i.e., in the norm of the space F := H 0

s (IR3) ⊕ Ḣ 1
s (IR3), see Sec. II. For the particle

trajectory we prove that

q̇(t) → v±, q(t) ∼ v±t + a±, t → ±∞. (1.11)

The results are established under the following conditions on the charge distribution: ρ is a real-
valued function of the Sobolev class H 2(IR3), compactly supported, and spherically symmetric, i.e.,

ρ,∇ρ,∇∇ρ ∈ L2(IR3), ρ(x) = 0 for |x | ≥ Rρ, ρ(x) = ρ1(|x |). (1.12)

An essential point of our asymptotic analysis is the Wiener condition:

ρ̂(k) = (2π )−3/2
∫

eikxρ(x)d3x �= 0 for all k ∈ IR3 \ {0} . (1.13)

The Wiener condition was noted already in the previous works.4–6 It expresses that all modes of the
Maxwell field are coupled to the particle.

There is no restriction on
∫ |ρ(x)|d3x . However if

∫
ρ(x)d3x �= 0, then the soliton fields have

a slow decay at infinity, namely, Av(x) ∼ |x |−1 and Ev(x) ∼ |x |−2. With our methods such a decay
seems to be difficult to control and we have to impose the condition of vanishing the momenta of ρ

up to the fourth order: ∫
xαρ(x)d3x = 0, |α| ≤ 4. (1.14)

In particular, the total charge
∫

ρ(x)d3x equals zero (neutrality of the particle). Equivalently, ρ̂ has
a fifth order zero at k = 0,

ρ̂ (α)(0) = 0, |α| ≤ 4. (1.15)

We believe (1.14) to be a technical condition. Physically, one expects (1.10) to hold even without
imposing charge neutrality and it is of interest to extend our proof in this direction.

Let us briefly comment on earlier works. The first mathematical investigation is the contribution
of Bambusi and Galgani.8 They consider a nonrelativistic kinetic energy for the charge and prove
orbital stability of the solitons without Wiener condition. The asymptotics of type (1.10) for the
fields alone, without q, q̇ were proved under the Wiener condition for charged particle coupled to
scalar or Maxwell field with a potential in Refs. 3 and 6 and for the translation invariant systems
without potential in Refs. 4 and 5. However, the asymptotics were proved only in the local energy
seminorms and did not involve the dispersive term.

Full asymptotics (1.10), (1.11) were established under the weak coupling condition ‖ρ‖L2 � 1
for translation invariant Maxwell–Lorentz system in Ref. 9 and for Maxwell–Lorentz system with
a rotating particle in Ref. 10. In the present paper we establish the full asymptotics (1.10), (1.11)
without the weak coupling condition under the Wiener condition (1.13).

Long time asymptotics of type (1.10) also appear in nonlinear wave equations, such as the
Korteweg-deVries (Refs. 11 and 12) and the U (1)-invariant nonlinear Schrödinger equations.13–21

In these equations there are no particle degrees of freedom and the solitons (1.6) correspond to the
solitary wave solutions travelling at constant velocity.

Let us comment on basic peculiarity of our problem. Namely, the asymptotics (1.10), (1.11)
mean the asymptotic stability of the solitary manifold S in the dynamics (1.3)–(1.4). However, the
dynamics along the solitary manifold is unstable, and this is the main difficulty in the proofs. Namely,
for two soliton solutions with close but different velocities v1 and v2 and close initial positions q0

1
and q0

2 one has

q1(t) − q2(t) = q0
1 − q0

2 + (v1 − v2)t → ∞ as t → ∞.

Moreover, the fields (E1(x, t), A1(x, t)) and (E2(x, t), A2(x, t)) being close at t = 0 do not remain
so as t → ∞, since they are centered at q1(t) and q2(t), although their difference remains bounded.
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The nonlinear instability corresponds to the fact that tangent vectors ∂a j Sa,v and ∂v j Sa,v , j = 1, 2, 3
to the solitary manifold are the zero eigenvectors and root vectors for the generator of the linearized
equation. Respectively, the linearized equation admits linear in t secular solutions, see (8.6). The
existence of these runaway solutions prohibits the direct application of the Liapunov strategy and
requires significant modification of the classical stability theory.

Our approach relies on and further develops the general strategy introduced in the cited papers in
the context of the U (1)-invariant Schrödinger equation. The approach uses (i) symplectic projection
of the dynamics in the Hilbert phase space onto the symplectic orthogonal directions to the solitary
manifold to kill the runaway secular solutions, (ii) the modulation equations for the motion along
the solitary manifold, and (iii) freezing of the dynamics in the nonautonomous linearized equation.
See more details in Introduction22 where the general strategy has been developed for the case of
the Klein–Gordon equation. The Maxwell–Lorentz equations (1.3)–(1.4) differ significantly from
the Klein–Gordon case because of slow Coulombic decay of the solitons and presence of the
embedded eigenvalue in the continuous spectrum of the linearized equation (see the comments
below).

Developing the general strategy for the Maxwell–Lorentz equations (1.3)–(1.4), we obtain our
main result in Secs. III–IX and Appendix A of the paper. The main novelty in our case is thorough
establishing the appropriate decay of the linearized dynamics in Secs. X–XIII and Appendixes B
and C:

I. We do not postulate any spectral properties of the linearized equation, calculating all the
properties from the Wiener condition (1.13). Namely, we show that (i) the full zero spectral space
of the linearized equation is spanned by the tangent vectors, and moreover, (ii) there are no others
(nonzero) discrete eigenvalues (see Lemmas 12.5, 12.6 and Proposition 11.1).

II. Using these spectral properties, we prove that the linearized equation is stable in the sym-
plectic orthogonal complement to the tangent space TS spanned by the tangent vectors ∂a j Sa,v and
∂v j Sa,v , j = 1, 2, 3. We exactly calculate in Lemma 12.6 the corresponding symplectic orthogonality
conditions for initial data of the linearized dynamics.

III. One of the main peculiarities of the Maxwell–Lorentz equations is the presence of em-
bedded eigenvalue λ = 0 in the continuous spectrum σc = IR of the linearized equation. This
situation never happens in all previous works on the asymptotic stability of the solitary waves
for the Schrödinger and Klein–Gordon equations. Thus, the symplectic orthogonality condition is
imposed now at the interior point of the continuous spectrum in contrast to all previous works in
the field. Respectively, the integrand at this point in the spectral representation of the solution is
not smooth even if the symplectic orthogonality condition holds. Hence, the integration by parts
in this spectral representation, as in the case of the Schrödinger and Klein–Gordon equation, is
impossible. For the proof of the decay in this new situation, we transform the spectral represen-
tation in the proofs of Propositions 12.2 and 12.4, and develop new more subtle technique of
convolutions.

Our paper is organized as follows. In Sec. II, we formulate the main result. In Sec. III, we
introduce the symplectic projection onto the solitary manifold. The linearized equation is defined
and studied in Secs. IV–V. In Sec. VI, we split the dynamics in two components: along the solitary
manifold and in transversal directions. In Sec. VII, we justify the slow motion of the longitudinal
component, and in Sec. VIII the decay of the transversal component assuming the corresponding
decay in the linearized dynamics, which is proved in Secs. X–XIII. In Sec. IX, we prove the main
result. In Appendixes A, B, and C we collect routine calculations.

II. MAIN RESULTS

A. Existence of dynamics

Let us introduce a phase space for the system (1.2)–(1.4) and state the existence of dy-
namics. Set H 0 = L2(IR3, IR3), Ḣ 1 is the closure of C∞

0 (IR3, IR3) with respect to the norm
‖A‖1 = |||∇ A||| = ‖∇ A‖L2(IR3,IR3). Let H 0

s , Ḣ 1
s be the subspaces constituted by solenoidal vector fields,

namely, the closure in H 0, Ḣ 1, respectively, of C∞
0 vector fields with vanishing divergence. Define the
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phase space

E = H 0
s ⊕ Ḣ 1

s ⊕ IR3 ⊕ IR3, Y = (E, A, q, P), ‖Y‖E = |||E ||| + ‖A‖1 + |q| + |P|.
Let us define the corresponding space for fields alone:

F = H 0
s ⊕ Ḣ 1

s , ‖(E, A)‖F = |||E ||| + ‖A‖1.

We write the Cauchy problem for the system (1.2)–(1.4) as

Ẏ = F(Y (t)), t ∈ IR; Y (0) = Y 0. (2.1)

Proposition 2.1 (Ref. 5): Let (1.12) holds, let Y 0 = (E0, A0, q0, P0) ∈ E . Then
(i) there exists a unique solution Y (t) ∈ C(IR, E) to the Cauchy problem (2.1).
(ii) The energy conserves,

H (Y (t)) = H (Y 0), t ∈ IR.

(iii) The estimate holds,

|q̇(t)| ≤ v < 1, t ∈ IR. (2.2)

B. The main result

To state our main result we have to introduce the following weighted Sobolev spaces. Let H 0
s,α ,

H 1
s,α be the subspaces of H 0

s , respectively, Ḣ 1
s consisting of all the fields E , respectively, A with the

finite norms:

‖E‖0,α = |||(1 + |x |)α E |||, ‖A‖1,α = ‖A‖0,α + |||(1 + |x |)α∇ A|||.
Let us define

Eα = H 0
s,α+1 ⊕ H 1

s,α ⊕ IR3 ⊕ IR3, ‖Y‖α = ‖E‖0,α+1 + ‖A‖1,α + |q| + |P|, Y ∈ Eα.

For the fields we set

Fα = H 0
s,α+1 ⊕ H 1

s,α, ‖(Es, A)‖α = ‖E‖0,α+1 + ‖A‖1,α.

Definition 2.2: A soliton state is S(σ ) := (Ev(x − b), Av(x − b), b, Pv), where σ := (b, v) with
b, v ∈ IR3 and |v| < 1.

Obviously, the soliton solution admits the representation S(σ (t)), where

σ (t) = (b(t), v(t)) = (vt + a, v). (2.3)

Definition 2.3: A solitary manifold is the set S := {S(b, v) : b ∈ IR3, |v| < 1}.
By (1.7) and the condition (1.14) we obtain that

Av(y) = O(|y|−6), Ev(y) = O(|y|−7), |y| → ∞.

Thus,

Ev ∈ H 0
s,α for α < 11/2, Av ∈ Ḣ 1

s,α for α < 9/2,

and we have for the soliton states:

S(σ ) ∈ Eα, for α < 9/2. (2.4)

The main result of our paper is the following theorem.

Theorem 2.4: Let the condition (1.12), Wiener condition (1.13), and the condition (1.14) hold,
let β = 4 + δ, 0 < δ < 1/2. Suppose that the initial state Y 0 ∈ Eβ and is sufficiently close to the
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solitary manifold:

Y 0 = Sa0,v0 + Z0, dβ := ‖Z0‖β � 1. (2.5)

Let Y (t) ∈ C(IR, E) be the solution to the Cauchy problem (2.1). Then the asymptotics hold for
t → ±∞,

q̇(t) = v± + O(|t |−1−δ), q(t) = v±t + a± + O(|t |−2δ), (2.6)

(E(x, t), A(x, t)) = (Ev± (x − v±t − a±), Av± (x − v±t − a±)) + W 0(t)�± + r±(x, t) (2.7)

with

‖r±(t)‖F = O(|t |−δ). (2.8)

It suffices to prove the asymptotics (2.6), (2.7) for t → +∞ since the system (1.2)–(1.4) is time
reversible.

III. SYMPLECTIC PROJECTION

A. Symplectic structure

The system (1.2) to (1.4) reads as the Hamiltonian system,

Ẏ = JDH(Y ), J :=

⎛
⎜⎜⎝

0 E3 0 0
−E3 0 0 0

0 0 0 E3

0 0 −E3 0

⎞
⎟⎟⎠ , Y = (E, A, q, P) ∈ E, (3.1)

where DH is the Fréchet derivative of the Hamilton functional (1.1), E3 is the 3 × 3 identity matrix.
Let us identify the tangent space to E , at every point, with E . Consider the symplectic form � defined
on E by

� =
∫

d E(x)∧d A(x) dx + dq ∧ d P, i.e. �(Y1, Y2) =
∫

(E1 · A2−E2 · A1)dx + q1 · P2 − q2 · P1,

(3.2)

for Yk = (Ek, Ak, qk, Pk) ∈ E , k = 1, 2 if the integral converges.

Definition 3.1: (i) Y1 � Y2 means that Y1 ∈ E is symplectic orthogonal to Y2 ∈ E , i.e., �(Y1, Y2)
= 0.

(ii) A projection operator P : E → E is called symplectic orthogonal if Y1 � Y2 for Y1 ∈ Ker P
and Y2 ∈ Im P.

B. Symplectic projection onto solitary manifold

Let us consider the tangent space TS(σ )S to the manifold S at a point S(σ ). The vectors
τ j := ∂σ j S(σ ), where ∂σ j := ∂b j and ∂σ j+3 := ∂v j with j = 1, 2, 3, form a basis in TσS. In detail,

τ j = τ j (v) := ∂b j S(σ ) = (−∂ j Ev(y) , −∂ j Av(y) , e j , 0)

τ j+3 = τ j+3(v) := ∂v j S(σ ) = (∂v j Ev(y) , ∂v j Av(y) , 0 ,∂v j Pv)

∣∣∣∣∣ j = 1, 2, 3, (3.3)

where y := x − b is the moving coordinate frame, e1 = (1, 0, 0), etc. Let us stress that the functions
τ j will be considered always as the functions of y, not of x .

By (2.4) we have for the tangent vectors:

τ j (v) ∈ Eα, for α < 9/2, j = 1, . . . , 6. (3.4)

Lemma 3.2: The matrix with the elements �(τl (v), τ j (v)) is nondegenerate for |v| < 1.
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The proof is made by a straightforward computation, see Appendix A.
Let us show that in a small neighborhood of the soliton manifold S a “symplectic or-

thogonal projection” onto S is well defined. Introduce the translations Ta : (ψ(·), π (·), q, p) �→
(ψ(· − a), π (· − a), q + a, p), a ∈ IR3. The manifold S is invariant with respect to the translations.

Definition 3.3: Put v(Y ) := P/
√

1 + P2, where P ∈ IR3 is the last component of the vector Y .

Lemma 3.4: Let (1.12) hold, −9/2 < α and v < 1. Then

(i) there exists a neighborhood Oα(S) of S in Eα and a map � : Oα(S) → S such that � is
uniformly continuous on Oα(S) ∩ {Y ∈ Eα : v(Y ) ≤ v} in the metric of Eα ,

�Y = Y for Y ∈ S, and Y − S � TSS, where S = �Y. (3.5)

(ii) Oα(S) is invariant with respect to the translations Ta , and

�TaY = Ta�Y, for Y ∈ Oα(S) and a ∈ IR3. (3.6)

(iii) For any v < 1 there exists a ṽ < 1 s.t. |v(�Y )| < ṽ when |v(Y )| < v.
(iv) For any ṽ < 1 there exists an rα(ṽ) > 0 s.t. S(σ ) + Z ∈ Oα(S) if |v(S(σ ))| < ṽ and
‖Z‖α < rα(ṽ).
The proof is similar to that of Lemma 3.4 in Ref. 22.
We will call � the symplectic orthogonal projection onto S.

Corollary 3.5: The condition (2.5) implies that Y0 = S + Z0, where S = S(σ0) = �Y0, and

‖Z0‖β � 1. (3.7)

IV. LINEARIZATION ON THE SOLITARY MANIFOLD

Let us consider a solution to the system (1.2)–(1.4), and split it as the sum,

Y (t) = S(σ (t)) + Z (t), (4.1)

where σ (t) = (b(t), v(t)) ∈ IR3 × {|v| < 1} is an arbitrary smooth function of t ∈ IR. In detail, denote
Y = (E, A, q, P) and Z = (e, a, r, π ). Then (4.1) means that

E(x, t) = Ev(t)(x − b(t)) + e(x − b(t), t), q(t) = b(t) + r (t)

A(x, t) = Av(t)(x − b(t)) + a(x − b(t), t), P(t) = Pv(t) + π (t)

∣∣∣∣∣ . (4.2)

Let us substitute (4.2) to (1.2)–(1.4) and linearize the equations in Z . Later we will choose S(σ (t))
= �Y (t), i.e., Z (t) is symplectic orthogonal to TS(σ (t))S. However, this orthogonality condition is
not needed for the formal process of linearization. The orthogonality condition will be important in
Secs. VI–VII, where we derive “modulation equations” for the parameters σ (t).

Let us proceed to linearization. Setting y = x − b(t) which is the moving coordinate frame, we
obtain from (4.2) and (1.3)–(1.4) that

Ė = v̇ · ∇v Ev(t)(y)−ḃ · ∇Ev(t)(y) + ė(y, t)−ḃ ·∇e(y, t) = −�(Av(y) + a(y, t)) − �s(ρ(y − r )q̇),

(4.3)

Ȧ = v̇ · ∇v Av(t)(y) − ḃ · ∇ Av(t)(y) + ȧ(y, t) − ḃ · ∇a(y, t) = −Ev(t)(y) − e(y, t), (4.4)

q̇ = ḃ + ṙ = Pv(t) + π − 〈ρ(y − r ), Av(t)(y) + a(y, t)〉
(1 + (Pv(t) + π − 〈ρ(y − r ), Av(t)(y) + a(y, t)〉)2)1/2

, (4.5)
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Ṗ = v̇ · ∇v Pv(t) + π̇ = 〈ρ(y − r ),∇(q̇ · (Av(t)(y) + a(y, t))〉. (4.6)

Step (i): First we linearize Eq. (4.5). Note that

ρ(y − r ) = ρ(y) − r · ∇ρ(y) + N2(r ), (4.7)

where

‖N2(r )‖0,α ≤ Cα(r )r2, (4.8)

uniformly in |r | ≤ r for any fixed r , for an arbitrary α > 0. Then (let us write v instead of v(t) and
omit the other arguments for simplicity),

〈ρ(y − r ), Av + a〉 = 〈ρ, Av〉 + 〈ρ, a〉 − 〈r · ∇ρ, Av〉 + N ′
2 = 〈ρ, Av〉 + 〈ρ, a〉 + N ′

2, (4.9)

where N ′
2(r, a) = −〈r · ∇ρ, a〉 + 〈N2, Av + a〉. Here we use the equality 〈r · ∇ρ, Av〉 = 0 which

holds, since Av is even and ∇ρ is odd. Further, since Pv − 〈ρ, Av〉 = pv by (1.6), we get Pv + π −
〈ρ(y − r ), Av + a〉 = Pv + π − 〈ρ, Av〉 − 〈ρ, a〉 − N ′

2 = pv + π − 〈ρ, a〉 − N ′
2 = pv + s, where

s := π − 〈ρ, a〉 − N ′
2. Applying Taylor expansion we obtain

(1 + (pv + s)2)−1/2 = 1

(1 + p2
v)1/2

− pv · s

(1 + p2
v)3/2

+ N ′
3 = 1

(1 + p2
v)1/2

− v · s

1 + p2
v

+ N ′
3,

since pv/(1 + p2
v)1/2 = v. Finally,

Pv + π − 〈ρ(y − r ), Av + a〉
(1 + (Pv + π − 〈ρ(y − r ), Av(y) + a〉)2)1/2

= pv + s

(1 + (pv + s)2)1/2

= v − (v, s)v

(1 + (pv)2)1/2
+ s

(1 + (pv)2)1/2
+ N ′′

3 = v + ν(s − (v · s)v) + N ′′
3 ,

where ν = (1 − v2)1/2 = (1 + p2
v)−1/2. Insert the expression for s, then Eq. (4.5) becomes

ṙ = v − ḃ + Bv(π − 〈ρ, a〉) + N3, (4.10)

where Bv := ν(E − v ⊗ v), and

|N3(Z )| ≤ C(ṽ)‖Z‖2
−α, (4.11)

uniformly in |v| ≤ ṽ < 1, for an arbitrary α > 0.
Step (ii): Next we linearize Eq. (4.3). By (4.7) and (4.10) we obtain

ρ(y − r )q̇ = ρv + ρBv(π − 〈ρ, a〉) − r · ∇ρv + N ′
1.

Substitute to Eq. (4.3) and take (1.8) into account, then we get

ė = ḃ · ∇e − �a + (ḃ − v) · ∇Ev − v̇ · ∇v Ev − �s(ρBv(π − 〈ρ, a〉) − r · ∇ρv) + N1,

(4.12)
where for N1 the same bound holds,

‖N1(Z )‖ ≤ C(ṽ)‖Z‖2
−α, ∀α > 0. (4.13)

Step (iii): Further, by (1.8) Eq. (4.4) becomes

ȧ = −e + ḃ · ∇a + (ḃ − v) · ∇ Av − v̇ · ∇v Av. (4.14)

Step (iv): Let us proceed to Eq. (4.6). We have

Ṗ = v̇ · ∇v Pv + π̇ = 〈ρ(y − r ),∇(q̇ · (Av + a))〉

= 〈ρ − r · ∇ρ + N2,∇((v + Bv(π − 〈ρ, a〉) + N3) · (Av + a))〉 = 〈ρ, v · ∇a〉
−〈r · ∇ρ,∇(v · Av)〉 + N4,

since 〈ρ, v · ∇ Av〉 = 0 and 〈ρ, Bv(π − 〈ρ, a〉) · ∇ Av〉 = 0. Finally, the equation becomes

π̇ = 〈ρ,∇(v · a)〉 − 〈r · ∇ρ,∇(v · Av)〉 − v̇ · ∇v Pv + N4, (4.15)
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where for N4(v, Z ) the estimate such as (4.11) holds. We write Eqs. (4.10), (4.12)–(4.15) as

Ż (t) = A(t)Z (t) + T (t) + N (t), t ∈ IR. (4.16)

Here the operator A(t) depends on σ (t) = (b(t), v(t)). We will use the parameters v = v(t) and
w := ḃ(t). Then A(t) = Av,w can be written in the form:

Av,w

⎛
⎜⎜⎝

e
a
r
π

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

w · ∇ −� + �s(ρBv〈ρ, ·〉) �s(·∇ρv) −�s(ρBv·)
−1 w · ∇ 0 0
0 −Bv〈ρ, ·〉 0 Bv

0 〈ρ,∇(v·)〉 −〈·∇ρ,∇(v · Av)〉 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

e
a
r
π

⎞
⎟⎟⎠ .

(4.17)

Furthermore, T (t) and N (t) in (4.16) stand for

T (t) = Tv,w =

⎛
⎜⎜⎝

(w − v) · ∇Ev − v̇ · ∇v Ev

(w − v) · ∇ Av − v̇ · ∇v Av

v − w

−v̇ · ∇v Pv

⎞
⎟⎟⎠ , N (t) = N (v, Z ) =

⎛
⎜⎜⎝

N1(v, Z )
0
N3(v, Z )
N4(v, Z )

⎞
⎟⎟⎠ , (4.18)

where v = v(t), w = w(t), and Z = Z (t). The estimates (4.8), (4.11), and (4.13) imply the following.

Lemma 4.1: For any α > 0,

‖N (v, Z )‖α ≤ C(ṽ)‖Z‖2
−α, (4.19)

uniformly in v and Z with ‖Z‖−α ≤ r−α(ṽ) and |v| < ṽ < 1.

Remarks 4.2: (i) The term A(t)Z (t) in the right-hand side of Eq. (4.16) is linear in Z (t), and
N (t) is a high order term in Z (t).

(ii) Formulas (3.3) and (4.18) imply:

T (t) = −
3∑

l=1

[(w − v)lτl + v̇lτl+3], (4.20)

and hence T (t) ∈ TS(σ (t))S, t ∈ IR. The term T (t) vanishes if S(σ (t)) is a soliton solution since in
this case v̇ = 0 and w = ḃ = v. Otherwise T (t) is a zero order term which does not vanish although
S(σ (t)) belongs to the solitary manifold. In our context we will show that T (t) rapidly decays as
t → ∞ [see (8.2) below].

V. THE LINEARIZED EQUATION

Here we study some properties of the operator (4.17). First, let us compute the action of Av,w

on the tangent vectors τ j to the solitary manifold S.

Lemma 5.1: The operator Av,w acts on the tangent vectors τ j (v) to the solitary manifold as
follows,

Av,w[τ j (v)] = (w − v) · ∇τ j (v), Av,w[τ j+3(v)] = (w − v) · ∇τ j+3(v) + τ j (v), j = 1, 2, 3.

(5.1)

Proof : To get (5.1), differentiate the stationary equations (1.8) in x j and v j , cf. Ref. 22. �
Consider the linear equation

Ẋ (t) = Av,w X (t), t ∈ IR (5.2)

with an arbitrary fixed v such that |v| < 1 and w ∈ IR3. Let us define the space:

E+ = H 1
s ⊕ Ḣ 2

s ⊕ IR3 ⊕ IR3.
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Lemma 5.2: (i) For any v, |v| < 1, w ∈ IR3 Eq. (5.2) formally can be written as the Hamiltonian
system [cf. (3.1)],

Ẋ (t) = J DHv,w(X (t)), t ∈ IR, (5.3)

where DHv is the Fréchet derivative of the Hamilton functional:

Hv,w(X ) = 1

2

∫ [
|e|2 + |∇a|2

]
dy +

∫
a(w · ∇)edy + 1

2
(Bv〈ρ, a〉) · 〈ρ, a〉

+ 1

2
π · Bvπ + 〈r · ∇ρv, a〉 − 〈ρBvπ, a〉 + 1

2
〈r · ∇ρ, v · (∇ Av)〉, X = (e, a, r, π ) ∈ E .

(5.4)
(ii) Energy conservation law holds for the solutions X (t) ∈ C(IR, E),

Hv,w(X (t)) = const, t ∈ IR. (5.5)

(iii) The skew-symmetry relation holds,

�(Av,w X1, X2) = −�(X1, Av,w X2), X1 ∈ E, X2 ∈ E+. (5.6)

The proof is similar to that in Ref. 22. We will apply Lemma 5.2 mainly to the operator Av,v

corresponding to w = v. In that case the linearized equation has the following additional essential
features.

Lemma 5.3: Let us assume that w = v and |v| < 1. Then
(i) the tangent vectors τ j (v) with j = 1, 2, 3 are eigenvectors, and τ j+3(v) are root vectors of

the operator Av,v , corresponding to zero eigenvalue, i.e.,

Av,v[τ j (v)] = 0, Av,v[τ j+3(v)] = τ j (v), j = 1, 2, 3. (5.7)

(ii) The Hamilton function (5.4) is positive definite,

Hv,v(X ) ≥ 0. (5.8)

Proof: The first statement follows from (5.1). To prove the second statement note that for
X = (e, a, r, π ) ∈ E one has

Hv,v(X ) = 1

2

∫ [
|e|2 + |∇a|2

]
dy +

∫
a(v · ∇)edy + 1

2
(Bv〈ρ, a〉) · 〈ρ, a〉

+1

2
π · Bvπ + 〈r · ∇ρv, a〉 − 〈ρBvπ, a〉 + 1

2
〈r · ∇ρ, v · (∇ Av)〉

= 1

2
(Bv(π − 〈ρ, a〉)) · (π − 〈ρ, a〉) + 1

2
(〈e, e〉 + 〈(v · ∇)a, (v · ∇)a〉 − 〈e, (v · ∇)a〉)

+1

2
(〈(−� + (v · ∇)2)a, a〉 + 〈(r · ∇)ρv, a〉 + 〈(r · ∇)ρ, v · (∇ Av)〉).

Here the first line is clearly non-negative, since Bv is non-negative definite. The last line in Fourier
space by (A3) equals,

1

2

∫ (
(k2 − (kv)2)|â|2 − 2i(kr )ρ̂(v · â) + (kr )2|ρ̂|2v2

k2 − (kv)2

)
dk.

The integrand is non-negative, since |Re [i(kr )ρ̂(v · â)]| ≤ |(kr )||ρ̂||v||â|. �
Remark 5.4: For a soliton solution of the system (1.2)–(1.4) we have ḃ = v, v̇ = 0, and hence

T (t) ≡ 0. Thus, Eq. (5.2) is the linearization of the system (1.2)–(1.4) on a soliton solution. In fact,
we do not linearize (1.2)–(1.4) on a soliton solution but on a trajectory S(σ (t)) with σ (t) being
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nonlinear in t . We will show later that T (t) is quadratic in Z (t) if we choose S(σ (t)) to be the
symplectic orthogonal projection of Y (t). Then (5.2) is again the linearization of (1.2)–(1.4).

VI. SYMPLECTIC DECOMPOSITION OF THE DYNAMICS

Here we decompose the dynamics in two components: along the manifold S and in transversal
directions. Equation (4.16) is obtained without any assumption on σ (t) in (4.1). We are going to
choose S(σ (t)) := �Y (t) but then we need to know that

Y (t) ∈ Oα(S), t ∈ IR, (6.1)

with some Oα(S) defined in Lemma (3.5). It is true for t = 0 and α = β by our main assumption
(2.5) with sufficiently small dβ > 0. Then S(σ (0)) = �Y (0) and Z (0) = Y (0) − S(σ (0)) are well
defined. We will prove below that (6.1) holds with α = −β if dβ is sufficiently small. First, the a priori
estimate (2.2) together with Lemma 3.4 (iii) imply that �Y (t) = S(σ (t)) with σ (t) = (b(t), v(t)),
and

|v(t)| ≤ ṽ < 1, t ∈ IR, (6.2)

if Y (t) ∈ O−β(S). Denote by r−β(ṽ) the positive number from Lemma 3.4 (iv) which corresponds
to α = −β. Then S(σ ) + Z ∈ O−β(S) if σ = (b, v) with |v| < ṽ and ‖Z‖−β < r−β(ṽ). Note that
(2.2) implies ‖Z (0)‖−β < r−β(ṽ) if dβ is sufficiently small. Therefore, S(σ (t)) = �Y (t) and Z (t)
= Y (t) − S(σ (t)) are well defined for t ≥ 0 so small that ‖Z (t)‖−β < r−β(ṽ). This is formalized by
the following standard definition.

Definition 6.1: t∗ is the “exit time,”

t∗ = sup{t > 0 : ‖Z (s)‖−β < r−β(ṽ), 0 ≤ s ≤ t}, Z (s) = Y (s) − S(σ (s)). (6.3)

One of our main goals is to prove that t∗ = ∞ if dβ is sufficiently small. This would follow if we
show that

‖Z (t)‖−β < r−β(ṽ)/2, 0 ≤ t < t∗. (6.4)

Note that

|r (t)| ≤ r := r−β(ṽ), 0 ≤ t < t∗. (6.5)

Now N (t) in (4.16) satisfies, by (4.19) with α = −β, the following estimate,

‖N (t)‖β ≤ Cβ(ṽ)‖Z (t)‖2
−β, 0 ≤ t < t∗. (6.6)

VII. LONGITUDINAL DYNAMICS: MODULATION EQUATIONS

From now on we fix the decomposition Y (t) = S(σ (t)) + Z (t) for 0 < t < t∗ by setting
S(σ (t)) = �Y (t), which is equivalent to the symplectic orthogonality condition of type (3.5),

Z (t) � TS(σ (t))S, 0 ≤ t < t∗. (7.1)

This allows us to simplify drastically the asymptotic analysis of the dynamical equations (4.16)
for the transversal component Z (t). As the first step, we derive the longitudinal dynamics, i.e.,
the “modulation equations” for the parameters σ (t). Let us derive a system of ordinary differential
equations for the vector σ (t). For this purpose, let us write (7.1) in the form,

�(Z (t), τ j (t)) = 0, j = 1, . . . , 6, 0 ≤ t < t∗, (7.2)

where the vectors τ j (t) = τ j (σ (t)) span the tangent space TS(σ (t))S. Note that σ (t) = (b(t), v(t)),
where

|v(t)| ≤ ṽ < 1, 0 ≤ t < t∗, (7.3)
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by Lemma 3.4 (iii). It would be convenient for us to use some other parameters (c, v) instead of

σ = (b, v), where c(t) = b(t) −
∫ t

0
v(τ )dτ and

ċ(t) = ḃ(t) − v(t) = w(t) − v(t), 0 ≤ t < t∗. (7.4)

We do not need an explicit form of the equations for (c, v) but the following statement.

Lemma 7.1: (cf. Ref. 22, Lemma 6.2:): Let Y (t) be a solution to the Cauchy problem (2.1),
and (4.1), (7.2) hold. Then (c(t), v(t)) satisfies the equation(

ċ(t)
v̇(t)

)
= N (σ (t), Z (t)), 0 ≤ t < t∗, (7.5)

where

N (σ, Z ) = O(‖Z‖2
−β), (7.6)

uniformly in σ ∈ {(b, v) : |v| ≤ ṽ}.

Proof: We differentiate (7.2) in t and take Eq. (4.16) into account. Then [see details of compu-
tation in Ref. 22, Lemma 6.2] we obtain, in the vector form [Ref. 22, (6.18)]

0 = �(v)

(
ċ
v̇

)
+ M0(σ, Z )

(
ċ
v̇

)
+ N0(σ, Z ), N0 j (σ, Z ) = �(N , τ j ). (7.7)

Here the matrix �(v) has the matrix elements �(τl, τ j ) and hence is invertible by Lemma 3.2. The
6 × 6 matrix M0(σ, Z ) has the matrix elements ∼ ‖Z‖−β and hence we can resolve Eq. (7.7) with
respect to (ċ, v̇). Then (7.6) follows from Lemma 4.1 with α = β, since N0 = O(‖Z‖2

−β ). �
Remark 7.2: Equations (7.5), (7.6) imply that the soliton parameters c(t) and v(t) are adiabatic

invariants [see Ref. 23].

VIII. DECAY FOR THE TRANSVERSAL DYNAMICS

Here we prove the following time decay of the transversal component Z (t).

Proposition 8.1: Let all conditions of Theorem 2.4 hold. Then t∗ = ∞, and

‖Z (t)‖−β ≤ C(ρ, ṽ, dβ )

(1 + |t |)1+δ
, t ≥ 0. (8.1)

In next section, we will show that our main Theorem 2.4 can be derived from the transversal
decay (8.1). We will derive this decay from Eq. (4.16) for the transversal component Z (t). This
equation can be specified using Lemma 7.1. Namely, by (4.20) and (7.4),

T (t) = −
3∑

l=1

[ċlτl + v̇lτl+3].

Then Lemma 7.1 implies that

‖T (t)‖β ≤ C(ṽ)‖Z (t)‖2
−β, 0 ≤ t < t∗. (8.2)

Note that the norm ‖T (t)‖β is well defined by the condition (1.14). Thus, in (4.16) we should
combine the terms T (t) and N (t) and obtain

Ż (t) = A(t)Z (t) + Ñ (t), 0 ≤ t < t∗, (8.3)

where A(t) = Av(t),w(t), and Ñ (t) := T (t) + N (t). By (8.2) and (6.6) we have

‖Ñ (t)‖β ≤ C‖Z (t)‖2
−β, 0 ≤ t < t∗. (8.4)
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In all remaining part of our paper we will analyze mainly the basic equation (8.3) to establish
the decay (8.1). We are going to derive the decay using the bound (8.4) and the orthogonality
condition (7.1).

Let us comment on two main difficulties in proving (8.1). The difficulties are common for
the problems studied in Refs. 14 and 24. First, the linear part of the equation is nonautonomous,
hence we cannot apply directly the known methods of scattering theory. Similarly to the approach of
Refs. 14 and 24, we reduce the problem to the analysis of the frozen linear equation,

Ẋ (t) = A1 X (t), t ∈ IR, (8.5)

where A1 is the operator Av1,v1 defined in (4.17) with v1 = v(t1) and a fixed t1 ∈ [0, t∗). Then we
estimate the error by the method of majorants.

Second, even for the frozen equation (8.5), the decay of type (8.1) for all solutions does not
hold without the orthogonality condition of type (7.1). Namely, by (5.7) Eq. (8.5) admits the secular
solutions,

X (t) =
3∑
1

C jτ j (v1) +
3∑
1

D j [τ j (v1)t + τ j+3(v1)], (8.6)

which arise also by differentiation of the soliton (1.6) in the parameters a and v1 in the moving
coordinate y = x − v1t . Hence, we have to take into account the orthogonality condition (7.1) in
order to avoid the secular solutions. For this purpose we will apply the corresponding symplectic
orthogonal projection, which kills the “runaway solutions” (8.6).

Definition 8.2: (i) Denote by �v , |v| < 1, the symplectic orthogonal projection of E onto the
tangent space TS(σ )S, and Pv = I − �v .

(ii) Denote by Zv = PvE the space symplectic orthogonal to TS(σ )S with σ = (b, v) (for an
arbitrary b ∈ IR).

Note that by the linearity,

�v Z =
∑

� jl(v)τ j (v)�(τl(v), Z ), Z ∈ E, (8.7)

with some smooth coefficients � jl(v). Hence, the projector �v , in the variable y = x − b, does not
depend on b, and this explains the choice of the subindex in �v and Pv .

Now we have the symplectic orthogonal decomposition

Eβ = TS(σ )S + Zv, σ = (b, v), (8.8)

and the symplectic orthogonality (7.1) can be written in the following equivalent forms:

�v(t) Z (t) = 0, Pv(t) Z (t) = Z (t), 0 ≤ t < t∗. (8.9)

Remark 8.3: The tangent space TS(σ )S is invariant under the operator Av,v by Lemma 5.3 (i),
hence the space Zv is also invariant by (5.6): Av,v Z ∈ Zv for sufficiently smooth Z ∈ Zv .

The following proposition is one of the main ingredients for proving (8.1). Let us consider
the Cauchy problem for Eq. (8.5) with A1 = Av1,v1 for a fixed v1, |v1| < 1. Recall that β = 4 + δ,
0 < δ < 1/2.

Proposition 8.4: Let the Wiener condition (1.13) and the condition (1.14) hold, |v1| ≤ ṽ < 1,
and X0 ∈ E . Then

(i) Equation (8.5), with A1 = Av1,v1 , admits the unique solution eA1t X0 := X (t) ∈ Cb(IR, E)
with the initial condition X (0) = X0.

(ii) For X0 ∈ Zv1 ∩ Eβ , the the following decay holds,

‖eA1t X0‖−2−δ ≤ C(ṽ)

(1 + |t |)1+δ
‖X0‖β, t ∈ IR. (8.10)

Part (i) follows by standard arguments using the positivity (5.8) of the Hamilton functional. Part
(ii) will be proved in Secs. X–XIII developing general strategy.22 Namely, Eq. (8.5) is a system of
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four equations involving field components, E and A as well as vector components, r and π . We apply
Fourier–Laplace transform, express the field components in terms of the vector components from
the first two equations and substitute to the third and the fourth equations. Then we obtain a closed
system for the vector components alone and prove their decay. Finally, for the field components we
come to a wave equation with a right-hand side which has the established decay. This implies the
corresponding decay for the field components.

A. Frozen form of transversal dynamics

Now let us fix an arbitrary t1 ∈ [0, t∗), and rewrite Eq. (8.3) in a “frozen form,”

Ż (t) = A1 Z (t) + (A(t) − A1)Z (t) + Ñ (t), 0 ≤ t < t∗, (8.11)

where A1 = Av(t1),v(t1) and

A(t)− A1 =

⎛
⎜⎜⎝

[w−v1] · ∇ �s(ρ(Bv − Bv1 )〈ρ, ·〉) �s(·∇ρ(v − v1)) −�s(ρ(Bv − Bv1 )·)
0 [w−v1] · ∇ 0 0
0 −(Bv − Bv1 )〈ρ, ·〉 0 Bv−Bv1

0 〈ρ, (v − v1)∇·〉 −〈·∇ρ, (v∇ Av − v1∇ Av1 )〉 0

⎞
⎟⎟⎠,

(8.12)

where w = w(t), v = v(t), v1 = v(t1). The next trick is important since it allows us to kill the “bad
terms” [w(t)−v(t1)] · ∇ in the operator A(t) − A1.

Definition 8.5: Let us change the variables (y, t) �→ (y1, t) = (y + d1(t), t), where

d1(t) :=
∫ t

t1

(w(s) − v(t1))ds, 0 ≤ t ≤ t1. (8.13)

Next define

Z1(t) = (e1(y1, t), a1(y1, t), r (t), π (t)) := (e(y, t), a(y, t), r (t), π (t))

= (e(y1 − d1(t), t), a(y1 − d1(t), t), r (t), π (t)). (8.14)

Then we obtain the final form of the “frozen equation” for the transversal dynamics

Ż1(t) = A1 Z1(t) + B1(t)Z1(t) + N1(t), 0 ≤ t ≤ t1, (8.15)

where N1(t) = Ñ (t) is expressed in terms of y = y1 − d1(t), and

B1(t)=

⎛
⎜⎜⎝

0 �s(ρ(Bv(t) − Bv(t1))〈ρ, ·〉) �s(·∇ρ(v(t) − v(t1))) −�s(ρ(Bv(t) − Bv(t1))·)
0 0 0 0
0 −(Bv(t) − Bv(t1))〈ρ, ·〉 0 Bv(t)−Bv(t1)

0 〈ρ, (v(t) − v(t1)) · ∇·〉 −〈·∇ρ, (v(t)∇ Av(t) − v(t1)∇ Av(t1))〉 0

⎞
⎟⎟⎠.

Let us derive appropriate bounds for the “remainder terms” B1(t)Z1(t) and N1(t) in (8.15).

Lemma 8.6 (Ref. 22, Corollaries 7.3 and 7.4): The following bounds hold:

‖N1(t)‖β ≤ ‖Z1(t)‖2
−β(1 + |d1(t)|)3β, 0 ≤ t ≤ t1, (8.16)

‖B1(t)Z1(t)‖β ≤ C‖Z1(t)‖−β

∫ t1

t
(1 + |d1(τ )|)2β‖Z1(τ )‖2

−βdτ, 0 ≤ t ≤ t1. (8.17)

B. Integral inequality

Equation (8.15) can be written in the integral form:

Z1(t) = eA1t Z1(0) +
∫ t

0
eA1(t−s)[B1 Z1(s) + N1(s)]ds, 0 ≤ t ≤ t1. (8.18)
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We apply the symplectic orthogonal projection P1 := Pv(t1) to both sides, and get

P1 Z1(t) = eA1t P1 Z1(0) +
∫ t

0
eA1(t−s) P1[B1 Z1(s) + N1(s)]ds.

We have used here that P1 commutes with the group eA1t since the space Z1 := P1E is invariant
with respect to eA1t , see Remark 8.3. Applying (8.10) we obtain that

‖P1 Z1(t)‖−2−δ ≤ C

(1 + t)1+δ
‖P1 Z1(0)‖β + C

∫ t

0

1

(1 + |t − s|)1+δ
‖P1[B1 Z1(s) + N1(s)]‖βds.

(8.19)

The operator P1 = I − �1 is continuous in Eβ by (8.7). Hence, from (8.16), (8.17), and (8.19) we
obtain that

‖P1 Z1(t)‖−2−δ ≤ C

(1 + t)1+δ
‖Z1(0)‖β

+C(d1)
∫ t

0

1

(1 + |t − s|)1+δ

[
‖Z1(s)‖−β

∫ t1

s
‖Z1(τ )‖2

−βdτ + ‖Z1(s)‖2
−β

]
ds, 0 ≤ t ≤ t1, (8.20)

where d1 := sup0≤t≤t1 |d1(t)|. Since ‖Z1(t)‖±β ≤ C(d1)‖Z (t)‖±β , we can rewrite (8.20) as

‖P1 Z1(t)‖−2−δ ≤ C(d1)

(1 + t)1+δ
‖Z (0)‖β

+C(d1)
∫ t

0

1

(1 + |t − s|)1+δ

[
‖Z (s)‖−β

∫ t1

s
‖Z (τ )‖2

−βdτ + ‖Z (s)‖2
−β

]
ds, 0 ≤ t ≤ t1. (8.21)

Let us introduce the majorant,

m(t) := sup
s∈[0,t]

(1 + s)1+δ‖Z (s)‖−β, t ∈ [0, t∗). (8.22)

To estimate d1(t) by m(t1) we note that

w(s) − v(t1) = w(s) − v(s) + v(s) − v(t1) = ċ(s) +
∫ t1

s
v̇(τ )dτ, (8.23)

by (7.4). Hence, (8.13), Lemma 7.1 and Definition (8.22) imply:

|d1(t)| = |
∫ t

t1

(w(s) − v(t1))ds| ≤
∫ t1

t

(
|ċ(s)| +

∫ t1

s
|v̇(τ )|dτ

)
ds

≤Cm2(t1)
∫ t1

t

(
1

(1 + s)2+2δ
+

∫ t1

s

dτ

(1 + τ )2+2δ

)
ds ≤ Cm2(t1), 0 ≤ t ≤ t1. (8.24)

We can replace in (8.21) the constants C(d1) by C if m(t1) is bounded for t1 ≥ 0. In order to do
this replacement, we reduce the exit time. Let us denote by ε a fixed positive number which we will
specify below.

Definition 8.7: t ′
∗ is the exit time,

t ′
∗ = sup{t ∈ [0, t∗) : m(s) ≤ ε, 0 ≤ s ≤ t}. (8.25)

Now (8.21) implies that for t1 < t ′
∗,

‖P1 Z1(t)‖−2−δ ≤ C

(1 + t)1+δ
‖Z (0)‖β

+ C
∫ t

0

1

(1 + |t − s|)1+δ

[
‖Z (s)‖−β

∫ t1

s
‖Z (τ )‖2

−βdτ + ‖Z (s)‖2
−β

]
ds, 0 ≤ t ≤ t1, (8.26)
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C. Symplectic orthogonality

The following important bound (8.27) allows us to change the norm of P1 Z1(t) in the left hand
side of (8.26) by the norm of Z (t).

Lemma 8.8 (cf. Ref. 25, Lemma 10.2): For sufficiently small ε > 0, we have for t1 < t ′
∗,

‖Z (t)‖−2−δ ≤ C‖P1 Z1(t)‖−2−δ, 0 ≤ t ≤ t1, (8.27)

where C depends only on ρ and v.

D. Decay of transversal component

Here we complete the proof of Proposition 8.1.
Step (i) We fix ε, 0 < ε < r−β(ṽ), and t ′

∗ = t ′
∗(ε) for which Lemma 8.8 holds. Then the bound

of type (8.26) holds with ‖P1 Z1(t)‖−2−δ in the left-hand side replaced by ‖Z (t)‖−β :

‖Z (t)‖−β ≤ ‖Z (t)‖−2−δ ≤ C‖P1 Z1(t)‖−2−δ ≤ C

(1 + t)1+δ
‖Z (0)‖β

+ C
∫ t

0

1

(1 + |t − s|)1+δ

[
‖Z (s)‖−β

∫ t1

s
‖Z (τ )‖2

−βdτ + ‖Z (s)‖2
−β

]
ds, 0 ≤ t ≤ t1, (8.28)

for t1 < t ′
∗. This implies an integral inequality for the majorant m(t) introduced by (8.22). Namely,

multiplying both sides of (8.28) by (1 + t)1+δ , and taking the supremum in t ∈ [0, t1], we get

m(t1) ≤ C‖Z (0)‖β +C sup
t∈[0,t1]

∫ t

0

(1 + t)1+δ

(1 + |t − s|)1+δ

[
m(s)

(1 + s)1+δ

∫ t1

s

m2(τ )dτ

(1 + τ )2+2δ
+ m2(s)

(1 + s)2+2δ

]
ds,

for t1 ≤ t ′
∗. Taking into account that m(t) is a monotone increasing function, we get

m(t1) ≤ C‖Z (0)‖β + C[m3(t1) + m2(t1)]I (t1), t1 ≤ t ′
∗, (8.29)

where

I (t1)= sup
t∈[0,t1]

∫ t

0

(1 + t)1+δ

(1 + |t − s|)1+δ

[
1

(1 + s)1+δ

∫ t1

s

dτ

(1 + τ )2+2δ
+ 1

(1 + s)2+2δ

]
ds ≤ I < ∞, t1 ≥ 0.

Therefore, (8.29) becomes

m(t1) ≤ C‖Z (0)‖β + C I [m3(t1) + m2(t1)], t1 < t ′
∗. (8.30)

This inequality implies that m(t1) is bounded for t1 < t ′
∗, and moreover,

m(t1) ≤ C1‖Z (0)‖β, t1 < t ′
∗ , (8.31)

since m(0) = ‖Z (0)‖β is sufficiently small by (3.7).
Step (ii) The constant C1 in the estimate (8.31) does not depend on t∗ and t ′

∗ by Lemma 8.8. We
choose dβ in (2.5) so small that ‖Z (0)‖β < ε/(2C1). It is possible due to (3.7). Then the estimate
(8.31) implies that t ′

∗ = t∗ and therefore (8.31) holds for all t1 < t∗. Then the bound (8.24) holds for
all t < t∗. Therefore, (8.31) holds for all t1 < t∗ and (6.4) holds as well. Finally, this implies that
t∗ = ∞, hence also t ′

∗ = ∞ and (8.31) holds for all t1 > 0 if dβ is small enough. �
The transversal decay (8.1) is proved.

IX. SOLITON ASYMPTOTICS

Here we prove our main Theorem 2.4 relying on the decay (8.1). First we will prove the
asymptotics (2.6) for the vector components, and afterward the asymptotics (2.7) for the fields.

Asymptotics for the vector components: From (4.2) we have q̇ = ḃ + ṙ , and from (8.3), (8.4),
(4.17) it follows that ṙ = −Bv(t)〈ρ, a〉 + Bv(t)π + O(‖Z‖2

−β ). Recall that β = 4 + δ, 0 < δ < 1/2.

Thus,

q̇ = ḃ + ṙ = v(t) + ċ(t) − Bv(t)〈ρ, a〉 + Bv(t)π + O(‖Z‖2
−β ). (9.1)
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Equation (7.5) and the estimates (7.6), (8.1) imply that

|ċ(t)| + |v̇(t)| ≤ C1(ρ, v, dβ )

(1 + t)2+2δ
, t ≥ 0. (9.2)

Therefore, c(t) = c+ + O(t−1−2δ) and v(t) = v+ + O(t−1−2δ), t → ∞. Since ‖a‖−2−δ and |π | de-
cay, such as (1 + t)−1−δ , the estimate (8.1), and (9.2), (9.1) imply that

q̇(t) = v+ + O(t−1−δ). (9.3)

Similarly,

b(t) = c(t) +
∫ t

0
v(s)ds = v+t + a+ + O(t−2δ), (9.4)

hence the second part of (2.6) follows:

q(t) = b(t) + r (t) = v+t + a+ + O(t−2δ), (9.5)

since r (t) = O(t−1−δ) by (8.1).
Asymptotics for the fields: We apply the approach developed in Ref. 26, see also Refs. 27 and 28.

For the field part of the solution, F(t) = (E(x, t), A(x, t)) let us define the accompanying soliton field
as Fv(t)(t) = (Ev(t)(x − q(t)), Av(t)(x − q(t))), where v(t) := q̇(t). Then for the difference Z (t) =
F(t) − Fv(t)(t), we obtain easily the equation,28 Eq. (2.5),

Ż (t) = AZ (t) − v̇ · ∇v Fv(t)(t), A(E, A) = (−�A,−E).

Then

Z (t) = W 0(t)Z (0) −
∫ t

0
W 0(t − s)[v̇(s) · ∇v Fv(s)(s)]ds. (9.6)

To obtain the asymptotics (2.7) it suffices to prove that Z (t) = W 0(t)�+ + r+(t) with some �+ ∈ F
and ‖r+(t)‖F = O(t−δ). This is equivalent to

W 0(−t)Z (t) = �+ + r ′
+(t), (9.7)

where ‖r ′
+(t)‖F = O(t−δ) since W 0(t) is a unitary group in the Sobolev space F by the energy

conservation for the free wave equation. Finally, (9.7) holds since (9.6) implies that

W 0(−t)Z (t) = Z (0) +
∫ t

0
W 0(−s)R(s)ds, R(s) = v̇(s) · ∇v Fv(s)(s), (9.8)

where the integral in the right-hand side of (9.8) converges in the Hilbert space F with the rate
O(t−δ). The latter holds since ‖W 0(−s)R(s)‖F = O(s−1−δ) by the unitarity of W 0(−s) and the
decay rate ‖R(s)‖F = O(s−1−δ), which follows from the asymptotics for the vector components.
More precisely, differentiating the first equation (1.4) in t and using the asymptotics (9.3), (8.1) we
obtain an estimate for v̇(t) = q̈(t) providing the mentioned decay rate of R(s). �
X. SOLVING THE LINEARIZED EQUATION

In Secs. X–XIII, we prove Proposition 8.4 in order to complete the proof of the main result.
First, let us make a change of variables in Eq. (8.5) to simplify its structure. Equation (8.5) reads

ė = v · ∇e − �a + �s(r · ∇ρv − ρBv(π − 〈ρ, a〉)), ȧ = −e + v · ∇a,

ṙ = Bv(π − 〈ρ, a〉), π̇ = 〈ρ,∇(v · a)〉 − 〈r · ∇ρ,∇(v · Av)〉.
(10.1)

Put ϕ = π − 〈ρ, a〉. Then π = ϕ + 〈ρ, a〉. If we prove a decay of ϕ and a, then π has the correspond-
ing decay as well. Further, ϕ̇ = π̇ − 〈ρ, ȧ〉 = π̇ − 〈ρ,−e + v · ∇a〉 = 〈ρ, e〉 + 〈ρ,∇(v · a) − (v ·
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∇)a〉 − 〈r · ∇ρ,∇(v · Av)〉 by the last equation of (10.1). Thus, the system (10.1) is equivalent to
the following system:

ė = v · ∇e − �a + �s(r · ∇ρv − ρBvϕ), ȧ = −e + v · ∇a,

ṙ = Bvϕ, ϕ̇ = 〈ρ, e〉 + 〈ρ, v ∧ (∇ ∧ a)〉 − 〈r · ∇ρ,∇(v · Av)〉.
(10.2)

For the last equation we have applied the identity ∇(v · a) − (v · ∇)a = v ∧ (∇ ∧ a). Denote by the
same letter A the operator,

A

⎛
⎜⎜⎝

e
a
r
ϕ

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

v · ∇e − �a + �s(r · ∇ρv − ρBvϕ)
−e + v · ∇a
Bvϕ,

〈ρ, e〉 + 〈ρ, v ∧ (∇ ∧ a)〉 − 〈r · ∇ρ,∇(v · Av)〉

⎞
⎟⎟⎠ . (10.3)

Below we prove the decay for the solution X = (e, a, r, ϕ) to the equation,

Ẋ (t) = AX (t). (10.4)

So, now we construct and study the resolvent of A.
Let us apply the Laplace transform,

�X = X̃ (λ) =
∫ ∞

0
e−λt X (t)dt, Re λ > 0, (10.5)

to (8.5). The integral converges in E , since ‖X (t)‖E is bounded by Proposition 8.4, (i). The analyticity
of X̃ (λ) and Paley–Wiener arguments should provide the existence of a E-valued distribution X (t) =
(�(t),�(t), Q(t), P(t)), t ∈ IR, with a support in [0,∞). Formally,

�−1 X̃ = X (t) = 1

2π

∫
IR

eiωt X̃ (iω + 0)dω, t ∈ IR. (10.6)

To prove the decay (8.10), we have to study the smoothness of X̃ (iω + 0) at ω ∈ IR. After the
Laplace transform Eq. (8.5) becomes:

λX̃ (λ) = AX̃ (λ) + X0, Re λ > 0. (10.7)

To justify the representation (10.6), we construct the resolvent as a bounded operator in E for
Re λ > 0. We shall write (e(y), a(y), r, ϕ) instead of (ẽ(y, λ), ã(y, λ), r̃ (λ), ϕ̃(λ)) to simplify the
notations. Then (10.7) reads:

v · ∇e − �a + �s(r · ∇ρv − ρBvϕ) − λe = −e0, −e + v · ∇a − λa = −a0

Bvϕ − λr = −r0, 〈ρ, e〉 + 〈ρ, v ∧ (∇ ∧ a)〉 − 〈r · ∇ρ,∇(v · Av)〉 − λϕ = −ϕ0

∣∣∣∣∣∣ . (10.8)

Step (i): Let us consider the first two equations. After Fourier transform they become,

− i(kv)ê + k2â − �̂s(i(kr )ρ̂v + ρ̂Bvϕ) − λê = −ê0, −ê − i(kv)â − λâ = −â0. (10.9)

From the last equation we have ê = −(λ + i(kv))â + â0. Substitute to the first equation of (10.9)
and obtain

â = 1

D̂
((λ + ikv)â0 − ê0 + �̂), �̂ := ρ̂�̂s(i(kr )v + Bvϕ)), (10.10)

where

D̂ = D̂(λ) = k2 + (λ + ikv)2. (10.11)

It is easy to see that D̂(λ) �= 0 for Re λ > 0. Finally,

ê = k2â0 + (λ + ikv)ê0 − (λ + ikv)�̂

D̂
. (10.12)
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Step (ii): Let us proceed to the fourth equations of (10.8). The equation reads:

〈ρ, e〉 + 〈ρ, v ∧ (∇ ∧ a)〉 − 〈r · ∇ρ,∇(v · Av)〉 − λϕ = −ϕ0.

From now on we use the system of coordinates in x-space in which v = (|v|, 0, 0), hence vk = |v|k1.
By (10.12) and a straightforward computation we obtain

〈ρ, e〉 = � − C1r + F1ϕ,

where

� = �(λ, e0, a0) :=
∫

(k2â0 + (λ + ikv)ê0)ρ̂/D̂ dk (10.13)

and C1, F1 are the following diagonal 3 × 3-matrices:

C1(λ) =
⎛
⎝c11(λ) 0 0

0 c12(λ) 0
0 0 c13(λ)

⎞
⎠ , F1(λ) =

⎛
⎝ f11(λ) 0 0

0 f12(λ) 0
0 0 f13(λ)

⎞
⎠ , (10.14)

c11(λ) = i |v|
∫

k1(λ + ik1|v|)|ρ̂|2
D̂(λ)

(1 − k2
1

k2
)dk, c1 j (λ) = −i |v|

∫ k1k2
j (λ + ik1|v|)|ρ̂|2

k2 D̂(λ)
dk, j = 2, 3,

(10.15)

f11(λ) = ν3
∫

(λ + ik1|v|)|ρ̂|2
D̂(λ)

(
k2

1

k2
− 1)dk, f1 j (λ) = ν

∫
(λ + ik1|v|)|ρ̂|2

D̂(λ)
(
k2

j

k2
− 1)dk, j = 2, 3,

(10.16)

recall that ν = √
1 − v2. By the change of variables k2 �→ k3, we obtain that c12 = c13. Moreover,

c11 + c12 + c13 = 0 and thus, c11 = −c12 − c13 = −2c12. The matrix C1(λ) simplifies to

C1(λ) =
⎛
⎝ c1(λ) 0 0

0 c12(λ) 0
0 0 c12(λ)

⎞
⎠ , c1(λ) := −2c12(λ), c12(λ)

= − i |v|
2

∫
k1(λ + ik1|v|)|ρ̂|2

D̂(λ)
(1 − k2

1

k2
)dk. (10.17)

Similarly, f12 = f13 and

f12(λ) = ν

∫
(λ + ik1|v|)|ρ̂|2

D̂(λ)
(
k2

2 + k2
3

2k2
− 1)dk = ν

∫
(λ + ik1|v|)|ρ̂|2

D̂(λ)
(
k2 − k2

1

2k2
− 1)dk

= −ν

2

∫
(λ + ik1|v|)|ρ̂|2

D̂(λ)
(1 + k2

1

k2
)dk. (10.18)

Further, 〈ρ, v ∧ (∇ ∧ a)〉 = � − C2r + F2ϕ, where

� = �(λ, e0, a0) :=
∫

dk v ∧ (−ik ∧ (λ + ikv)â0 − ê0

D̂(λ)
)ρ̂ (10.19)

and

C2(λ) =
⎛
⎝0 0 0

0 c22(λ) 0
0 0 c23(λ)

⎞
⎠ , F2(λ) =

⎛
⎝0 0 0

0 f22(λ) 0
0 0 f23(λ)

⎞
⎠ , (10.20)

where

c2 j (λ) = −v2
∫

dk
|ρ̂|2k2

j

D̂(λ)
, f2 j (λ) = iν|v|

∫
dk

|ρ̂|2k1

D̂(λ)
, j = 2, 3. (10.21)
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Remark 10.1: Note that

�(λ) = �〈W 1(t)(e0, a0), ρ〉, (10.22)

where W 1(t) is the first component of the dynamical group W (t) defined below by (13.5). Similarly,

�(λ) = �〈v ∧ (∇ ∧ W 2(t)(e0, a0)), ρ〉, (10.23)

where W 2(t) is the second component of the same dynamical group.
Further, c22 = c23, f22 = f23, and

c22(λ) = −v2

2

∫
dk

|ρ̂|2(k2
2 + k2

3)

D̂(λ)
= −v2

2

∫
dk

|ρ̂|2(k2 − k2
1)

D̂(λ)
. (10.24)

At last, 〈r · ∇ρ,∇(v · Av)〉 = Gr , where

G =
⎛
⎝g1 0 0

0 g2 0
0 0 g3

⎞
⎠ , g j = v2

∫ (k2 − k2
1)k2

j |ρ̂|2
k2(k2 − k2

1v
2)

dk, j = 1, 2, 3. (10.25)

Again,

g2 = g3 and we set g := g2 = g3. (10.26)

Put

C(λ) = C1(λ) + C2(λ), F(λ) = F1(λ) + F2(λ). (10.27)

In detail, by (10.14), (10.17), and (10.20),

C(λ) =
⎛
⎝c1(λ) 0 0

0 c(λ) 0
0 0 c(λ)

⎞
⎠ , c(λ) := c12(λ) + c22(λ), (10.28)

F(λ) =
⎛
⎝ f1(λ) 0 0

0 f (λ) 0
0 0 f (λ)

⎞
⎠ , f1(λ) := f11(λ), f (λ) := f12(λ) + f22(λ). (10.29)

Finally, the fourth equation becomes (C(λ) + G)r + (λE − F(λ))ϕ = ϕ0 + �(λ) + �(λ). We write
this equation and the third equation of (10.8) together in the form:

M(λ)

(
r
ϕ

)
=

(
r0

ϕ0 + �(λ) + �(λ)

)
, where M(λ) =

(
λE −Bv

C(λ) + G λE − F(λ)

)
. (10.30)

Assume for a moment that the matrix M(λ) is invertible for Re λ > 0 (see below). Then(
r
ϕ

)
= M−1(λ)

(
r0

ϕ0 + �(λ) + �(λ)

)
, Re λ > 0. (10.31)

Formulas (10.10), (10.12), and (10.31) give the expression of the resolvent R(λ) = (A − λ)−1,
Re λ > 0, in Fourier representation.

Further, the operator D(λ) defined in Fourier space as multiplication by the symbol (10.11)
is invertible in L2(IR3) for Re λ > 0 and its fundamental solution gλ(y) exponentially decays as
|y| → ∞.

Lemma 10.2: (i) The distribution gλ(·) admits an analytic continuation in λ from the domain
Re λ > 0 to the entire complex plane C.

(ii) The matrix function M(λ) (M−1(λ)) admits an analytic (respectively, meromorphic) contin-
uation in the parameter λ from the domain Re λ > 0 to the entire complex plane.

Proof: The fundamental solution gλ(y) is given by

gλ(y) = e−κ|ỹ|−κ1 ỹ1

4π |ỹ| , ỹ := (γ y1, y2, y3), (10.32)
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where

γ := 1/
√

1 − v2, κ = γ λ, κ1 := |v|κ. (10.33)

Thus, the statement (i) follows from the formulas (10.33) and (10.32). To prove the statement (ii)
we first need to show, according to (10.30), that the matrices C(λ) and F(λ) admit an analytic
continuation to the entire complex plane. Consider the matrix C(λ), for F(λ) the argument is similar.
The analytic continuation of C(λ) then exists by the expression of type (B3) for the entries of
the matrix C(λ), and the statement (i) of the present lemma since the function ρ(x) is compactly
supported by (1.12). The inverse matrix M−1(λ) is then meromorphic, since it is well defined for
large |λ| by (B6)–(B8) and Corollary B.3. �
XI. REGULARITY IN CONTINUOUS SPECTRUM

By Lemma 10.2, the limit matrix

M(iω) := M(iω + 0) =
(

iωE −Bv

C(iω + 0) + G iωE − F(iω + 0)

)
, ω ∈ IR, (11.1)

exists, and its entries are analytic functions of ω ∈ IR. Recall that the point λ = 0 belongs to the
discrete spectrum of the operator A by Lemma 5.3 (i), hence M(iω + 0) (probably) is also not
invertible at ω = 0.

Proposition 11.1: The matrix M−1(iω) is analytic in ω ∈ IR \ {0}.

Proof: It suffices to prove that the limit matrix M(iω) := M(iω + 0) is invertible for ω �= 0,
ω ∈ IR if ρ satisfies the Wiener condition (1.13), and |v| < 1. Since v = (|v|, 0, 0), the matrix Bv is
also diagonal:

Bv := ν(E − v ⊗ v) =
⎛
⎝ν3 0 0

0 ν 0
0 0 ν

⎞
⎠ . (11.2)

By (10.30), (10.26), (10.28), (10.29), (11.2), for ω ∈ IR,

det M(iω) = det

(
iωE −Bv

C(iω) + G iωE − F(iω)

)
= d1d2,

where

d1 = −ω2 − iω f1(iω) + ν3(c1(iω) + g1), (11.3)

d = −ω2 − iω f (iω) + ν(c(iω) + g). (11.4)

The formula for the determinant is obvious since all of the matrices C , F , G, and Bv are diagonal.
Then for |ω| > 0 the invertibility of M(iω) follows from (11.3), (11.4) by the following lemma.

Lemma 11.2: If (1.13) holds and |ω| > 0, then the imaginary parts of d1 and d are positive:
Im d1 > 0, Im d > 0.

Proof: Let ω > 0, the case ω < 0 is similar. Note that Im d1 = −ωRe f1(iω + 0) +
ν3Im c1(iω + 0). For ε > 0 we have

f1(iω + ε) = ν3
∫

(iω + ε + ik1|v|)|ρ̂(k)|2
D̂(iω + ε, k)

(
k2

1

k2
− 1)dk. (11.5)

By Sokhotsky–Plemelj formula for C1-functions, [Ref. 29, Chap. VII, formula (58)],

Re f1(iω + 0) = πν3
∫

Tω

(ω + k1|v|)|ρ̂(k)|2
|∇ D̂(iω, k)| (

k2
1

k2
− 1)d S, (11.6)
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where

Tω = {k : k2 − (ω + k1|v|)2 = 0}
is the ellipsoid on which D̂(iω, k) = 0. Similarly,

Re c1(iω + 0) = π |v|
∫

Tω

k1(ω + k1|v|)|ρ̂(k)|2
|∇ D̂(iω, k)| (1 − k2

1

k2
)d S. (11.7)

Then

Im d1 = ν3π

∫
Tω

(ω + k1|v|)2|ρ̂(k)|2
|∇ D̂(iω, k)| (1 − k2

1

k2
)d S > 0,

by the Wiener condition (1.13). Further,

Im d = −ωRe f (iω + 0) + νIm c(iω + 0)

= −ωRe f12(iω + 0) + νIm c12(iω + 0) − ωRe f22(iω + 0) + νIm c22(iω + 0).

By (10.18) we have

f12(iω + ε) = −ν

2

∫
(iω + ε + ik1|v|)|ρ̂(k)|2

D̂(iω + ε, k)
(1 + k2

1

k2
)dk.

Then

Re f12(iω + 0) = −πν

2

∫
Tω

(ω + k1|v|)|ρ̂(k)|2
|∇ D̂(iω, k)| (1 + k2

1

k2
)d S

= −πν

2

∫
Tω

(ω + k1|v|)|ρ̂(k)|2
|∇ D̂(iω, k)|

(ω + k1|v|)2 + k2
1

k2
d S,

since k2 = (ω + k1|v|)2 on Tω. By (10.17) we obtain that

c12(iω + ε) = |v|
2

∫
k1(ω − iε + k1|v|)|ρ̂(k)|2

D̂(iω + ε, k)
(1 − k2

1

k2
)dk.

Then

Im c12(iω + 0) = −π |v|
2

∫
Tω

k1(ω + k1|v|)|ρ̂(k)|2
|∇ D̂(iω, k)| (1 − k2

1

k2
)d S

= −π |v|
2

∫
Tω

k1(ω + k1|v|)|ρ̂(k)|2
|∇ D̂(iω, k)|

(ω + k1|v|)2 − k2
1

k2
d S

and

− ωRe f12 + νIm c12 = νπ

2

∫
Tω

|ρ̂(k)|2(ω2 + k2
1(1 − v2))

|∇ D̂(iω, k)| dk. (11.8)

Further, by (10.21)

Re f22(iω + 0) = πν|v|
∫

Tω

d S
|ρ̂(k)|2k1

|∇ D̂(iω, k)| ,

by (10.24)

Im c22(iω + 0) = πv2

2

∫
Tω

d S
|ρ̂(k)|2(k2 − k2

1)

|∇ D̂(iω, k)| ,
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thus,

−ωRe f22(iω + 0) + νIm c22(iω + 0) = πν

2

∫
Tω

d S
|ρ̂(k)|2(v2((ω + k1|v|)2 − k2

1) − 2ωk1|v|)
|∇ D̂(iω, k)| .

Finally, combining with (11.8) we obtain

Im d̂ = πν

2

∫
Tω

d S
|ρ̂(k)|2((k1(v2 − 1) + ω|v|)2 + ω2)

|∇ D̂(iω, k)| > 0,

by the Wiener condition. This completes the proofs of the lemma and Proposition 11.1. �
Remark 11.3: The proof of Lemma 11.2 is the unique point in the paper where the Wiener

condition is indispensable.

XII. TIME DECAY OF THE VECTOR COMPONENTS

Let us prove the decay (8.10) for the vector components r (t) and φ(t) of the solution eAt X0.
Formula (10.31) expresses the Laplace transforms r̃ (λ), ϕ̃(λ). Hence, the components are given by
the Fourier integral:(

r (t)

ϕ(t)

)
= 1

2π

∫
eiωt M−1(iω)

(
r0

ϕ0 + �(iω) + �(iω)

)
dω. (12.1)

Recall that in Proposition 8.4 we assume that

X0 ∈ Zv ∩ Eβ, β = 4 + δ, 0 < δ < 1/2. (12.2)

Theorem 12.1: The functions r (t), ϕ(t) are continuous for t ≥ 0, and

|r (t)| + |ϕ(t)| ≤ C(ρ, ṽ, dβ )

(1 + |t |)1+δ
‖X0‖β, t ≥ 0. (12.3)

Proof: Proposition 11.1 alone is not sufficient for the proof of the convergence and decay of the
integral. Namely, we need an additional information about a regularity of the matrix L(iω) and of
�(iω) + �(iω). Let us split the Fourier integral (12.1) into two terms using the partition of unity
ζ1(ω) + ζ2(ω) = 1, ω ∈ IR:(

r (t)

ϕ(t)

)
= 1

2π

∫
eiωt (ζ1(ω) + ζ2(ω))

(
r̃ (iω)

ϕ̃(iω)

)
dω

=
(

r1(t)

ϕ1(t)

)
+

(
r2(t)

ϕ2(t)

)
= I1(t) + I2(t), (12.4)

where the functions ζk(ω) ∈ C∞(IR) are supported by

supp ζ1 ⊂ {ω ∈ IR : |ω| < r + 1}, supp ζ2 ⊂ {ω ∈ IR : |ω| > r}, (12.5)

where r is introduced below in Lemma 12.3. We prove the decay (12.3) for (r1, ϕ1) and (r2, ϕ2) in
Propositions 12.4 and 12.2, respectively.

Proposition 12.2: The function I2(t) is continuous for t ≥ 0 and

|I2(t)| ≤ C(ρ, ṽ)(1 + |t |)−3−δ‖X0‖β. (12.6)
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Proof: First, we need the asymptotic behavior of M−1(λ) at infinity. Let us recall that M−1(λ)
was originally defined for Re λ > 0, but it admits a meromorphic continuation to the entire complex
plane C(see Lemma 10.2).

Lemma 12.3: There exist a matrix R0 and a matrix-function R1(ω), such that

M−1(iω) = R0

ω
+ R1(ω), |ω| > r > 0, ω ∈ IR, (12.7)

where, for every k = 0, 1, 2, . . . ,

|∂k
ω R1(ω)| ≤ Ck

|ω|2 , |ω| > r > 0, ω ∈ IR, (12.8)

r is sufficiently large.

Proof: The statement follows from the explicit formulas (B2), (B6)–(B8) for the inverse matrix
M−1(iω) and from Lemma B.2. �

Further, (12.1) implies that

I2(t) = 1

2π

∫
eiωtζ2(ω)M−1(iω)

[(
r0

ϕ0

)
+

(
0

�(iω) + �(iω)

)]
dω

= s(t)

(
r0

ϕ0

)
+ s ∗

(
0

f + ψ

)
, (12.9)

where [see (10.6)]

s(t) := �−1
[
ζ2(ω)M−1(iω)

]
and

f (t) := �−1�(iω) = 〈W 1(t)(e0, a0), ρ〉, ψ(t) := �−1�(iω) = 〈v ∧ (∇ ∧ W 1(t)(e0, a0)), ρ〉,
(12.10)

since �, � are given by (10.13), (10.19), (10.22), (10.23). Recall that (e0, a0, r0, π0) = X0 ∈ Fβ

with β = 4 + δ, where δ > 0 under conditions of Proposition 8.4 and Theorem 2.4. Hence, applying
Lemma 13.2 (see below) with α = 4 + δ, we obtain that

| f (t)| + |ψ(t)| ≤ C(ρ, ṽ)(1 + t)−3−δ‖X0‖β. (12.11)

On the other hand, (12.7)–(12.8) imply that

|s(t)| = O(t−N ), |t | → ∞, ∀ N > 0.

Hence, all the terms in (12.9) are continuous for t ≥ 0 and decay such as Ct−3−δ‖X0‖β . �
Now let us prove the decay for I1(t). In this case the proof will rely substantially on the

symplectic orthogonality conditions. Namely, (12.2) implies that

�(X0, τ j ) = 0, j = 1, . . . , 6. (12.12)

Proposition 12.4: The function I1(t) is continuous for t ≥ 0 and

|I1(t)| ≤ C(ρ, ṽ)(1 + t)−1−δ‖X0‖β, t ≥ 0. (12.13)

Proof: First, let us calculate the Fourier transforms r̃1(iω) and ϕ̃1(iω).

Lemma 12.5: The matrix M−1(iω) can be represented as follows:

M−1(iω) =
⎛
⎝ 1

ωL11
1
ω2 L12

L21
1
ωL22

⎞
⎠ , (12.14)
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where Li j (ω), i, j = 1, 2 are smooth diagonal 3 × 3-matrices, Li j (ω) ∈ C∞(−r − 1, r + 1).
Moreover,

L11 = iL12 B−1
v + iL3, (12.15)

where L3 is defined by (B21), L3 is a smooth diagonal 3 × 3-matrix, L3(ω) ∈ C∞(−r − 1, r + 1).
For proof see Appendix B. Then the vector components are given by

r̃ (iω) = 1

ω
L11(ω)r0 + 1

ω2
L12(ω)(ϕ0 + �(iω) + �(iω)), (12.16)

ϕ̃(iω) = L21(ω)r0 + 1

ω
L22(ω)(ϕ0 + �(iω) + �(iω)). (12.17)

Next we calculate the symplectic orthogonality conditions (12.12).

Lemma 12.6: The symplectic orthogonality conditions (12.12) read:

ϕ0 + �(0) + �(0) = 0 and (B−1
v + L−1

12 (0)L3(0))r0 + �′(0) + � ′(0) = 0. (12.18)

For proof see Appendix C.
Now we can prove Proposition 12.4.
Step (i):Let us prove (12.13) for ϕ1(t) relying on the representation (12.17). Namely, (12.4)

and (12.17) imply:

ϕ1(t) = �−1ζ1(ω)L21(ω)r0 + �−1ζ1(ω)L22(ω)
ϕ0 + �(iω) + �(iω)

ω
= ϕ′

1(t) + ϕ′′
1 (t).

The first term ϕ′
1(t) decays such as Ct−∞‖X0‖β by Lemma 12.5. The second term admits the

convolution representation ϕ′′
1 (t) = �−1ζ1L22 ∗ g(t), where

g(t) := �−1 ϕ0 + �(iω) + �(iω)

ω
.

Now we use the symplectic orthogonality conditions (12.18) and obtain

g(t) = �−1 �(iω) + �(iω) − �(0) − �(0)

ω
= i

t∫
∞

( f (s) + ψ(s))ds.

Finally, g(t) decays such as Ct−2−δ‖X0‖β for t ≥ 0 by (12.11), hence ϕ′′
1 (t) decays such as

Ct−2−δ‖X0‖β for t ≥ 0.
Step (ii): Now let us prove (12.13) for r1(t). By (12.16), (12.15), and the symplectic orthogonality

conditions (12.18),

r̃ (iω) = 1

ω
i(L12 B−1

v + L3)r0 + 1

ω2
L12(ϕ0 + �(iω) + �(iω))

= L12

ω

[
i(B−1

v + L−1
12 L3)r0 + ϕ0 + �(iω) + �(iω)

ω

]
= L12

ω

[
i(B−1

v + L−1
12 L3)r0 + g̃(ω)

]

= L12
i(B−1

v + L−1
12 L3)r0 + g̃(0) + g̃(ω) − g̃(0)

ω
= L12

g̃(ω) − g̃(0)

ω
,

since i(B−1
v + L−1

12 L3(0))r0 + g̃(0) = 0 by the symplectic orthogonality conditions (12.18), because
g̃(0) = i(�′(0) + � ′(0)). Thus, r1(t) = �−1ζ1(ω)L12 ∗ h(t) by (12.4), where

h(t) := �−1 g̃(iω) − g̃(0)

ω
= i

t∫
∞

g(s)ds.
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This integral decays such as Ct−1−δ‖X0‖β for t ≥ 0 by (12.11), hence |r1(t)| ≤ Ct−1−δ‖X0‖β for
t ≥ 0. �

Now Theorem 12.1 is proved.

XIII. TIME DECAY OF FIELDS

Here we construct the field components e(x, t), a(x, t) of the solution X (t) and prove their
decay corresponding to (8.10). Let us denote F(t) = (e(·, t), a(·, t)). We will construct the fields
solving the first two equations of (10.4), where A is given by (10.3). These two equations have the
form:

Ḟ(t) =
(

v · ∇ −�

−1 v · ∇
)

F +
(

�(t)
0

)
, �(t) := �s(r (t)∇ρv − ρBvϕ(t)). (13.1)

By Theorem 12.1 we know that r (t) and ϕ(t) are continuous and

|r (t)| + |ϕ(t)| ≤ C(ρ, ṽ)‖X0‖β

(1 + t)1+δ
, t ≥ 0. (13.2)

Hence, Proposition 8.4 is reduced now to the following.

Proposition 13.1: (i) Let functions r (t), ϕ(t) ∈ C([0,∞); IR3), and F0 ∈ F . Then Eq. (13.1)
admits a unique solution F(t) ∈ C[0,∞;F) with the initial condition F(0) = F0.

(ii) If X0 = (F0; r0, ϕ0) ∈ Eβ and the decay (13.2) holds, the corresponding fields also decay
uniformly in v:

‖F(t)‖−2−δ ≤ C(ρ, ṽ)‖X0‖β

(1 + t)1+δ
, t ≥ 0, (13.3)

for |v| ≤ ṽ with any ṽ ∈ (0; 1).

Proof: Both statements follow from the Duhamel representation,

F(t) = W (t)F0 +
[∫ t

0
W (t − s)

(
�(s)
0

)
ds

]
, t ≥ 0, (13.4)

where W (t) is the dynamical group of the modified wave equation,

Ḟ(t) =
(

v · ∇ −�

−1 v · ∇
)

F(t), (13.5)

and from the following decay properties of the group W (t).

Lemma 13.2: For ṽ < 1 and F0 ∈ Fα , α > 1, the following decay holds,

‖W (t)F0‖−α ≤ C(α, ṽ)

(1 + t)α−1
‖F0‖α, t ≥ 0, (13.6)

for the dynamical group W (t) corresponding to the modified wave equation (13.5) with |v| < ṽ.
Cf. the proof of (Ref. 22, Lemma 18.2). Proposition 8.4 is proved.
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APPENDIX A: COMPUTING SYMPLECTIC FORM

Here we compute the matrix elements �(τ j , τl ) of the matrix � and prove that the matrix is
nondegenerate. For j, l = 1, 2, 3 it follows from (3.3) and (3.2) that

�(τ j , τl ) = 〈∂ j Ev, ∂l Av〉 − 〈∂ j Av, ∂l Ev〉, �(τ j+3, τl+3) = 〈∂v j Ev, ∂vl Av〉 − 〈∂v j Av, ∂vl Ev〉,
(A1)

�(τ j , τl+3) = −〈∂ j Ev, ∂vl Av〉 + 〈∂ j Av, ∂vl Ev〉 + e j · ∂vl Pv. (A2)

In Fourier representation the solitons read:

Êv(k) = i(kv)ρ̂

D̂0

(
(kv)

k2
k − v

)
, Âv(k) = −ρ̂

D̂0

(
(kv)

k2
k − v

)
, (A3)

Pv = pv + 〈Av, ρ〉 = pv + v

∫ |ρ̂|2dk

D̂0
−

∫ |ρ̂|2dk

k2 D̂0
(kv)k, (A4)

where D̂0 := k2 − (kv)2; D̂0 is non-negative and even in k. Differentiating in v we obtain for
j = 1, 2, 3:

∂v j Êv = i ρ̂

D̂0

(
2k j (kv)

D̂0
k − k j (k2 + (kv)2)

D̂0
v − (kv)e j

)
,

∂vl Âv = ρ̂

D̂0

(
2kl(kv)

D̂0
v − kl(k2 + (kv)2)

k2 D̂0
k + el

)
, (A5)

∂vl Pv = ∂vl pv + 〈∂vl Av, ρ〉

= B−1
v el +

∫ |ρ̂|2dk

D̂0
el + 2

∫ |ρ̂|2(kv)kldk

D̂2
0

v −
∫ |ρ̂|2(k2 + (kv)2)kldk

k2 D̂2
0

k. (A6)

Then for j, l = 1, 2, 3 we get from (A1) by the Parseval identity,

〈∂ j Ev, ∂l Av〉 = −i
∫

k j kl(kv)|ρ̂|2
D̂2

0

(
(kv)

k2
k − v

)2

dk = 0,

since the integrand function is odd in k. Similarly, 〈∂ j Av, ∂l Ev〉 = 0 and thus �(τ j , τl) = 0. Further,
by (A1),

〈∂v j Ev, ∂vl Av〉 = i
∫ |ρ̂|2

D̂2
0

(
4k j kl(kv)3

D̂2
0

+ 2k j kl(kv)

D̂0

−2k j kl(kv)(k2 + (kv)2)

D̂2
0

− 2k j kl(kv)(k2 + (kv)2)v2

D̂2
0

− k j (k2 + (kv)2)vl

D̂0

+ k j kl(kv)(k2 + (kv)2)2

k2 D̂2
0

− 2kl(kv)2v j

D̂0
− (kv)δ jl + k j kl(kv)(k2 + (kv)2)

k2 D̂0

)
dk = 0,

since the integrand function is odd in k. Note that the integral converges by the neutrality condition
(1.14). Similarly, 〈∂v j Av, ∂vl Ev〉= 0 and thus, �(τ j+3, τl+3) = 0. Now let us compute �(τ j , τl+3).
First,

−〈∂ j Ev, ∂vl Av〉 =
∫

k j (kv)|ρ̂|2dk

D̂2
0

(
vl + 2kl(kv)v2

D̂0
− kl(kv)(k2 + (kv)2)

k2 D̂0

)
.
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Second,

〈∂ j Av, ∂vl Ev〉 =
∫

k j |ρ̂|2dk

D̂2
0

(
(kv)vl + kl(k2 + (kv)2)v2

D̂0
− 2kl(kv)2

D̂0

)
.

And third,

e j · ∂vl Pv = e j · B−1
v el +

∫ |ρ̂|2dk

D̂0
δ jl + 2

∫ |ρ̂|2(kv)kldk

D̂2
0

v j −
∫ |ρ̂|2(k2 + (kv)2)k j kldk

k2 D̂2
0

.

By a straightforward computation we obtain that the matrix �+(v) = ‖�(τ j , τl+3)‖| j,l=1,2,3 is posi-
tive definite and hence nondegenerate. Finally, the matrix,

‖�(τ j , τl )‖| j,l=1,...,6 =
(

0 �+(v)
−�+(v) 0

)
, (A7)

is also nondegenerate.

APPENDIX B: BOUNDS FOR THE MATRIX M−1(iω)

Proposition B.1: The following bound holds:

‖M−1(iω)‖ = O
(

1

|ω|
)

, ω → ∞. (B1)

Proof: Recall that

M(iω) =
(

iωE −Bv

C(iω) + G iωE − F(iω)

)
,

where

Bv =
⎛
⎝ ν3 0 0

0 ν 0
0 0 ν

⎞
⎠ , C(iω) =

⎛
⎝ c1(iω) 0 0

0 c(iω) 0
0 0 c(iω)

⎞
⎠ ,

G =
⎛
⎝ g1 0 0

0 g 0
0 0 g

⎞
⎠ , F(iω) =

⎛
⎝ f1(iω) 0 0

0 f (iω) 0
0 0 f (iω)

⎞
⎠ .

Here ν = √
1 − v2 and c1, c; g1, g; f1, f are defined by (10.17), (10.25), (10.26), (10.28), (10.29),

respectively. Further,
det M(iω) = d1d2, d1 = iω(iω − f1) + ν3(c1 + g1), d = iω(iω − f ) + ν(c + g). (B2)

Lemma B.2: The functions c1(iω), c(iω), f1(iω), f (iω) are bounded for ω ∈ IR with large |ω|.

Proof: Let us consider only the first function c1(iω) in detail, for the rest three functions the
argument is similar. By (10.17),

c1(iω) = i |v|
∫

k1
(iω + ik1|v|)|ρ̂|2

D̂(iω)
(1 − k2

1

k2
)dk

= i |v|
∫

k1
(iω + ik1|v|)|ρ̂|2

D̂(iω)
dk − i |v|

∫
k1

(iω + ik1|v|)|ρ̂|2
D̂(iω)

k2
1

k2
dk =: C1(iω) + C2(iω).

Let us study C1(iω), for C2(iω) the argument is similar. In the x-space we obtain:

C1(iω) = |v|〈−∂1(iω − |v|∂1)ρ, D−1(iω)ρ〉, (B3)
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where D(iω) = −� + (iω − v∇)2 is the differential operator with the symbol (10.11). Hence,
C1(iω) is bounded by the decay,

|〈∂2
1 ρ, D−1(iω)ρ〉| = O(

1

|ω| ), |ω| → ∞, (B4)

which follows from the Agmon estimates [Ref. 30, (A.2′)] (see also Appendix in Ref. 31). The
Agmon estimates are applicable to the operator D(iω) because of representation,

D(iω) = e−iγ v1x1 [−(1 − v2
1)∂2

1 − ∂2
2 − ∂2

3 − ω2]eiγ v1x1 , (B5)

with (1 − v2
1)γ = ω in the coordinates, where v = (v1, 0, 0). �

Corollary B.3: The determinants d1(iω) and d(iω) are nonzero for ω ∈ IR with large |ω|.
Further, the inverse matrix reads:

M−1(iω) =
(

L11 L12

L21 L22

)
, (B6)

where

L11(iω) =
⎛
⎝ (iω − f1)/d1 0 0

0 (iω − f )/d 0
0 0 (iω − f )/d

⎞
⎠ , L12(iω) =

⎛
⎝ ν3/d1 0 0

0 ν/d 0
0 0 ν/d

⎞
⎠ ,

(B7)

L21(iω) =
⎛
⎝−(c1 + g1)/d1 0 0

0 −(c + g)/d 0
0 0 −(c + g)/d

⎞
⎠ , L22(iω) =

⎛
⎝ iω/d1 0 0

0 iω/d 0
0 0 iω/d

⎞
⎠ .

(B8)

Now Proposition B.1 follows from (B2), (B6)–(B8), and Lemma B.2. �
1. Proof of Lemma 12.5

By Lemma 10.2 the functions c1(λ), c(λ); f1(λ), f (λ) are analytic in C. Thus,

c1(λ) = c1(0) + c′
1(0)λ + c′′

1(0)

2
λ2 + . . . , c(λ) = c(0) + c′(0)λ + c′′(0)

2
λ2 + . . . ,

f1(λ) = f1(0) + f ′
1(0)λ + . . . , f (λ) = f (0) + f ′(0)λ + . . . .

Below we write v instead of |v| for simplicity of notations. By (10.16), (10.17), (10.29),

c′
1(λ) = iv

∫
dk|ρ̂|2k1

(
1 − k2

1

k2

)
k2 − (λ + ik1v)2

D̂2(λ)
,

f ′
1(λ) = ν3

∫
dk|ρ̂|2

(
k2

1

k2
− 1

)
k2 − (λ + ik1v)2

D̂2(λ)
. (B9)

Further, c′(λ) = (c12)′(λ) + (c22)′(λ), f ′(λ) = ( f12)′(λ) + ( f22)′(λ). By (10.16), (10.17), (10.21),

(c12)′(λ) = − iv

2

∫
dk|ρ̂|2k1(1 − k2

1

k2
)
k2 − (λ + ik1v)2

D̂2(λ)
, (c22)′(λ) = v2

∫
dk|ρ̂|2 (k2 − k2

1)(λ + ik1v)

D̂2(λ)
,

( f12)′(λ) = −ν

2

∫
dk|ρ̂|2

(
1 + k2

1

k2

)
k2 − (λ + ik1v)2

D̂2(λ)
, ( f22)′(λ) = −2iνv

∫
dk|ρ̂|2k1

(λ + ik1v)

D̂2(λ)
.

(B10)
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Further,

c′′
1(λ) = −2iv

∫
dk|ρ̂|2k1

(
1 − k2

1

k2

)
(λ + ik1v)(3k2 − (λ + ik1v)2)

D̂3(λ)
(B11)

and c′′(λ) = (c12)′′(λ) + (c22)′′(λ), where

(c12)′′(λ) = iv
∫

dk|ρ̂|2k1(1 − k2
1

k2
)
(λ + ik1v)(3k2 − (λ + ik1v)2)

D̂3(λ)
, (B12)

(c22)′′(λ) = v2
∫

dk|ρ̂|2 (k2 − k2
1)(k2 − 3(λ + ik1v)2)

D̂3(λ)
. (B13)

Note that c1(0) = −g1, c(0) = −g, c′
1(0) = c′(0) = 0, then

c1(λ) = −g1 + λ2 I1(λ), c(λ) = −g + λ2 I (λ),

where the functions I1(λ), I (λ) are analytic in C and I1(0) = c′′
1(0)/2, I (0) = c′′(0)/2. By (B11)–

(B13) we have

c′′
1(0) = 2v2

∫
dk|ρ̂|2k2

1

(
1 − k2

1

k2

)
3k2 + (k1v)2

(k2 − (k1v)2)3
, (B14)

c′′(0) = v2
∫

dk|ρ̂|2 (k2 − k2
1)(k2(k2 + 3(k1v)2) − k2

1(3k2 + (k1v)2))

k2(k2 − (k1v)2)3
. (B15)

Similarly, f1(0) = f (0) = 0 and

f1(λ) = λJ1(λ), f (λ) = λJ (λ),

where the functions J1(λ), J (λ) are analytic in Cand J1(0) = f ′
1(0), J (0) = f ′(0). By (B10) we have

f ′
1(0) = ν3

∫
dk|ρ̂|2(

k2
1

k2
− 1)

k2 + (k1v)2

(k2 − (k1v)2)2
, (B16)

f ′(0) = ν

2

∫
dk|ρ̂|2 (3k2(k1v)2 − k2

1(k1v)2 − k2(k2 + k2
1))

k2(k2 − (k1v)2)2
. (B17)

We put λ = iω and obtain

c1(iω) + g1 = −ω2 I1(iω), c(iω) + g = −ω2 I (iω), f1(iω) = iωJ1(iω), f (iω) = iωJ (iω).

(B18)

Then

d1(iω) = −ω2(1 − J1(iω) + ν3 I1(iω)), d(iω) = −ω2(1 − J (iω) + ν I (iω)). (B19)

Substitute (B18), (B19)–(B7), (B8) and obtain

L11(iω) = 1

ω
L11(iω), L12(iω) = 1

ω2
L12(iω), L21(iω) = L21(iω), L22(iω) = 1

ω
L22(iω),

where (we omit the dependance on iω for simplicity of notations)

L11 =

⎛
⎜⎜⎜⎝

i(J1 − 1)
1 − J1 + ν3 I1

0 0

0 i(J − 1)
1 − J + ν I 0

0 0 i(J − 1)
1 − J + ν I

⎞
⎟⎟⎟⎠ ,
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L12 =

⎛
⎜⎜⎝

−ν3

1 − J1 + ν3 I1
0 0

0 −ν
1 − J + ν I 0

0 0 −ν
1 − J + ν I

⎞
⎟⎟⎠ ,

L21 =

⎛
⎜⎜⎝

−I1
1 − J1 + ν3 I1

0 0

0 −I
1 − J + ν I 0

0 0 −I
1 − J + ν I

⎞
⎟⎟⎠ ,

L22 =

⎛
⎜⎜⎝

−i
1 − J1 + ν3 I1

0 0

0 −i
1 − J + ν I 0

0 0 −i
1 − J + ν I

⎞
⎟⎟⎠ .

Note that

L11(ω) = iL12(ω)B−1
v + iL3, (B20)

where

L3 =

⎛
⎜⎜⎜⎝

J1
1 − J1 + ν3 I1

0 0

0 J
1 − J + ν I1

0

0 0 J
1 − J + ν I1

⎞
⎟⎟⎟⎠ . (B21)

Finaly, we prove that the denominators of the matrix elements of each matrix L11 to L22 and L3 are
nonzero at ω = 0. Indeed, −J1(0) + ν3 I1(0) > 0, since I1(0) > 0 and J1(0) < 0 by (B14), (B16).
Further, by a straightforward computation we obtain that

−J (0) + ν I (0) = ν

2

∫
dk

|ρ̂|2(k6(1 + v2) + k4k2
1(1 + 3v4 − 8v2) + k2k4

1v
2(3 − v2))

k2(k2 − (k1v)2)3
.

It is easy to check that k6(1 + v2) + k4k2
1(1 + 3v4 − 8v2) + k2k4

1v
2(3 − v2) ≥ 0. This completes the

proof of Lemma 12.5. �
APPENDIX C: SYMPLECTIC ORTHOGONALITY CONDITIONS

For j = 1, 2, 3 we have

0 = �(Z0, τ j ) = −〈e0, ∂ j Av〉 + 〈a0, ∂ j Ev〉 − (ϕ0 + 〈a0, ρ〉) · e j

= −
∫

dk ê0
−ik j (−ρ̂)

D̂
(
kv

k2
k − v) +

∫
dk â0

−ik j i(kv)ρ̂

D̂
(
kv

k2
k − v) − (ϕ + 〈a0, ρ〉) · e j .

Since ê0⊥k and â0⊥k, the condition simplifies to

−i
∫

dk ê0
k j ρ̂

D̂
v −

∫
dk â0

k j (kv)ρ̂

D̂
v −

∫
dkâ0ρ̂ · e j − ϕ0 · e j = 0,

or, in the vector form,

ϕ0 +
∫

dk
ρ̂

D̂
[i(ê0v)k + (â0v)(kv)k + k2â0 − (kv)2â0] = 0. (C1)

On the other hand,

ϕ0 + �(0) = ϕ0 +
∫

dk
ρ̂

D̂
[i(kv)ê0 + k2â0]. (C2)
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Subtract (C1) from (C2) and obtain

ϕ0 + �(0) = −i
∫

dk
ρ̂

D̂
[(ê0v)k − (kv)ê0] −

∫
dk

(kv)ρ̂

D̂
[(â0v)k − (kv)â0]

=
∫

dk
ρ̂

D̂
v ∧ ((−ik) ∧ ê0) +

∫
dk

ρ̂

D̂
(−ikv)v ∧ ((−ik) ∧ â0) = −�(0).

Thus, (C1) reads ϕ0 + �(0) + �(0) = 0.
Further, the symplectic orthogonality conditions �(Z0, τ j+3), j = 1, 2, 3 in the vector form read:

0 =
∫

dk
ρ̂

D̂

[
2(kv)(ê0v)

D̂
k + ê0

]
− i

∫
dk

ρ̂

D̂

[
k2 + (kv)2

D̂
(â0v)k + (kv)â0

]

+ B−1
v r0 +

∫
dk

|ρ̂|2
D̂

r0 + 2
∫

dk
|ρ̂|2(kv)(r0v)

D̂2
k −

∫
dk

|ρ̂|2(k2 + (kv)2)(r0k)

k2 D̂2
k. (C3)

The second line involving r0, in the coordinate system, where v = (v, 0, 0), simplifies to B−1
v r0+⎛

⎜⎝
∫

dk |ρ̂|2((k2−k2
1 )(k2+(kv )2))

k2 D2 0 0

0
∫

dk |ρ̂|2(k2(k2+k2
1 )+k2

1 (kv)2−3k2(k1v)2)
2k2 D2 0

0 0
∫

dk |ρ̂|2(k2(k2+k2
1 )+k2

1 (kv)2−3k2(k1v)2)
2k2 D2

⎞
⎟⎠ r0.

And this is exactly (B−1
v + L12L3(0))r0, since

L12L3(0) = B−1
v

⎛
⎜⎝

−J1(0) 0 0

0 −J (0) 0

0 0 −J (0)

⎞
⎟⎠ ,

where J1(0) = f ′
1(0), J (0) = f ′(0), see (B16), (B17).

Finally, by (10.13), (10.19),

�′(0) + � ′(0)

=
∫

dk
ρ̂[Dê0 − i(kv)Dâ0 + 2(kv)(v · ê0)k − i(k2 + (kv)2)(v · â0)k]

D2
,

which coincides with the first line of (C3) involving ê0, â0.
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