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Abstract

We review recent results on global attractorstdgfl)-invariant dispersive Hamiltonian systems. We study
several models based on the Klein-Gordon equation andtskieécproof that in these models, under certain
generic assumptions, the weak global attractor is repreddoy the set of all solitary waves. In general, the
attractors may also contain multifrequency solitary wawes give examples of systems which contain such
solutions.

1 Introduction

The long time asymptotics for nonlinear wave equations lmeen the subject of intensive research, starting with
the pioneering papers by Sedal [Sed63a, Seg63b], Stfau8][Sand Morawetz and Strauss [M$72], where the
nonlinear scattering and local attraction to zero were idemsd. Global attraction (for large initial data) to zero
may not hold if there argquasistationary solitary wave solution§the form

P(z,t) = d(z)e” ™, with w € R, | llim o(r) = 0. (1.2)
We will call such solutionsolitary waves Other appropriate names atenlinear eigenfunctionand quantum
stationary stategthe solution[(T.11) is not exactly stationary, but certdis@rvable quantities, such as the charge
and current densities, are time-independent indeed).

Existence of such solitary waves was addressed by StrafS&1¥], and then the orbital stability of solitary
waves has been studied [n [Sha83, S$85, SHa85, GSS87]. Viimetatic stability of solitary waves has been
studied by Soffer and Weinstein [SW90, SW92], Buslaev anélRan [BP93, BP95], and then by others.

The existing results suggest that the set of orbitally stablitary waves typically formslacal attractor, that
is, attracts any finite energy solutions that were initiallyse to it. Moreover, a natural hypothesis is that the get fo
all solitary waves forms global attractorof all finite energy solutions. This question is addressetthis paper.
We state the results on the global attraction in several lsdsesed on the Klein-Gordon equation, and describe
the developed techniques.

We sketch the development of the subject of long-time ggliteave asymptotics fotJ(1)-invariant Hamilto-
nian systems in Sectidnh 2. The definitions and results oredttraction to solitary waves from the recent papers
[KKO7a,[KKO78,[KKO7¢] are presented in Sectigh 3. We alsaeghere a very brief sketch of the proof. In Sec-
tion[4, we give a description of all the steps (omitting esbestechnical points) of the argument for the simplest
model: Klein-Gordon equation interacting with a nonlineacillator. The key parts of the proof are presented in
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full detail. The examples of (untypical) multifrequencyitary waves are given in Secti@h 5. Finally, in Secfion 6
we present the numerical simulations which illustrate thbiszation of the Klein-Gordon field interacting with a
nonlinear oscillator.

2 History of solitary asymptotics for U(1)-invariant Hamiltonian systems

2.1 Quantum theory
Bohr’s stationary orbits as solitary waves

Let us focus on the behavior of the electron in the HydrogematAccording to Bohr’s postulatels [BoH13], an
unperturbed electron runs forever along cersationary orbit which we denotéE) and callquantum stationary
state Once in such a state, the electron has a fixed value of ed&rggt losing the energy via emitting radiation.
The electron can jump from one quantum stationary statedthan

|E_) — |EL), (2.1)

emitting or absorbing a quantum of light with the energy égoi#he difference of the energids,. andE_. The
old quantum theory was based on the quantization condition

j{p -dq = 2whn, n € N. (2.2)
This condition leads to the values
me4

for the energy levels in Hydrogen, in a good agreement witlettperiment. Apparently, the conditién (2.2) did not
explain the perpetual circular motion of the electron. Addang to the classical Electrodynamics, such a motion
would be accompanied by the loss of energy via radiation.

In terms of the wavelength = %‘1 of de Broglie’sphase wavefBro24], the condition[(2]2) states that the
length of the classical orbit of the electron is the integeitiple of \. Following de Broglie’s ideas, Schrodinger
identified Bohr'sstationary orbits or quantum stationary statgs), with the wave functions that have the form

Y(x,t) = P, (x)e ™t w=E/h, (2.4)

whereh is Planck’s constant. Physically, the charge and curremsites
— . e - —
plxt) = el j(x.t) = (- Vo = Vi), (2.5)

with e < 0 being the charge of the electron, which correspond to thaqijgtationary states of the forix, t) =
b, (x)e~™! do not depend on time, and therefore the generated eleqgrutia field is also stationary and does
not carry the energy away from the system, allowing the sdeatloud to flow forever around the nucleus.

Bohr’s transitions as global attraction to solitary waves

Bohr’s second postulate states that the electrons can juonpdne quantum stationary state (Bolstationary
orbit) to another. This postulate suggests the dynamical irg&fion of Bohr’s transitions as long-time attraction

U(t) — |Ey), t — +o0 (2.6)

for any trajectory¥ (¢) of the corresponding dynamical system, where the limitiages| £+ ) generally depend
on the trajectory. Then the quantum stationary st&teshould be viewed as the points of thebal attractor.e/.
The attraction[(2]6) takes the form of the long-time asynigso

W(x,t) ~ Gy (x)e_i“’it, t — +oo0, (2.7)
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Figure 1: S is the set of quantum stationary statés) = ¢n(x)e‘iET"t, represented by dashed circles. Under a
perturbation, the electron wave functidt) leaves the initial statg?_ ) and approaches some final stglig ) as
t — +o00. The outgoing photon of the energy = E_ — E. is not pictured.

that hold for each finite energy solution. See Fidure 1. Hangyecause of the superposition principle, the asymp-
totics of type[(2.7) are generally impossible for the lineatonomous equation, be it the Schrodinger equation

e2

2
o = —1— Ay — <y, 2.8)
2m |x|

or relativistic Schrodinger or Dirac equation in the Caulofield. An adequate description of this process requires

to consider the equation for the electron wave function (&imger or Dirac equation) coupled to the Maxwell

system which governs the time evolution of the four-pomix,t) = (o(x,t), A(z,t)):
(ih0y — ep)?) = (C%V —eA)%yY + mQC‘fz/J, ) 2.9)
Oy = dme(Pt) — §(x)), DA = 4red¥Ve-Vow, ‘

Consideration of such a system seems inevitable, becagam by Bohr's postulates, the transitiohs {2.1) are
followed by electromagnetic radiation responsible fordt@mic spectra. Moreover, the Lamb shift (the energy of
25, /2 state being slightly higher than the energy2éf, ,, state) can not be explained in terms of the linear Dirac
equation in the external Coulomb field. Its theoretical argkion within the Quantum Electrodynamics takes into
account the higher order interactions of the electron wawnetfon with the electromagnetic field, referred to as
the vacuum polarization and the electron self-energy ctioe.
The coupled Maxwell-Schrddinger system was initiallyaatuced in[[Sch26]. Itis & (1)-invariant nonlinear

Hamiltonian system. Its global well-posedness was conaitie [GNS95]. One might expect the following gen-
eralization of asymptotic§ (2.7) for solutions to the cagpMaxwell-Schrodinger (or Maxwell-Dirac) equations:

((z,t), Az, 1) ~ (¢, (x)e™ ™+, Ay, (2)) t — +oo. (2.10)
The asymptotic$ (2.10) would mean that the set of all sglitzaves
{(gbwe_i“’t, Aw) cw e R}

forms a global attractor for the coupled system. The asytigstof this form are not available yet in the context of
coupled systems. Let us mention that the existence of tltarsolvaves for the coupled Maxwell-Dirac equations
was established in [EGSDP6].
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2.2 Solitary waves as global attractors for dispersive sysms

Convergence to a global attractor is well known for dissygesystems, like Navier-Stokes equations (see [EV92,
[Hen81 Tem97]). For such systems, the global attractorriméd by thestatic stationary statesand the corre-
sponding asymptoticE(2.7) only hold for— +co.

We would like to know whether dispersive Hamiltonian systerould, in the same spirit, possess finite di-
mensional global attractors, and whether such attracterfoamed by the solitary waves. Although there is no
dissipation per se, we expect that the attraction is caugeetain friction mechanism via the dispersion (local
energy decay). Because of the difficulties posed by the sysfenteracting Maxwell and Dirac (or Schrodinger)
fields (and, in particular, absence of the a priori estimftiesuch systems), we will work with simpler models that
share certain key properties of the coupled Maxwell-DiraMaxwell-Schrodinger systems. Let us try to single
out these key features:

(i) The system i®J(1)-invariant.
This invariance leads to the existence of solitary wavetsms ¢, (z)e .

(i) The linear part of the system has a dispersive character.

This property provides certain dissipative features in antitanian system, due to local energy decay via
the dispersion mechanism.

(i) The system is nonlinear.

The nonlinearity is needed for the convergence to a singte sf the formy,, (z)e~**. Bohr type transitions
to pure eigenstates of the energy operator are impossitddiirear system because of the superposition
principle.

We suggest that these are the very features are respormitiefglobal attraction, such s (2.7), (2.10), to “gquan-
tum stationary states”.

Remark2.1 The global attractior (21 7). {2.110) f&F(1)-invariant equations suggests the corresponding extensio
to generalG-invariant equations being the Lie group):

V(x,t) ~py(x,t) = enit(bi(:r), t — oo, (2.11)

where 2. belong to the corresponding Lie algebra anitt! are the one-parameter subgroups. Respectively,
the global attractor would consist of the solitary wafed72. On a seemingly related note, let us mention that
according to Gell-Mann — Ne’eman theofy [GMNG64] there is arespondence between the Lie algebras and the
classification of the elementary particles which are theatgum stationary states”. The correspondence has been
confirmed experimentally by the discovery of the omega-midyperon.

Besides Maxwell-Dirac system, naturally, there are vazioonlinear systems under consideration in the Quan-
tum Physics. One of the simpler nonlinear models is the neali Klein-Gordon equation which takes its origin
from the articles by Schiff [Sch5la, Sch51b], in his reskane the classical nonlinear meson theory of nuclear
forces. The mathematical analysis of this equation isedfeny Jorgens and Segal [Jar61, Se63a], who studied
its global well-posedness in the energy space. Since thisrgdquation (alongside with the nonlinear Schrodinger
equation) has been the main playground for developing todi&ndle more general nonlinear Hamiltonian sys-
tems. The nonlinear Klein-Gordon equation is a natural ichatd for exhibiting solitary asymptotids (2.7).

Now let us describe the existing results on attractors irctmext of dispersive Hamiltonian systems.

Local and global attraction to zero

The asymptotics of typ€(2.7) were discovered first with= 0 in the scattering theory. Namely, Segal, Morawetz,
and Strauss studied the (nonlinear) scattering for salstid nonlinear Klein-Gordon equationiy [Seg66/ Stre8,
[MS72Z]. We may interpret these resultslasal (referring to small initial data) attraction to zero:

P(x,t) ~ 1y =0, t — doo. (2.12)
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The asymptotic§(2.12) hold on an arbitrary compact set apcesent the well-known local energy decay. These
results were further extended [n [G$F79, KIA82, GM85, Hir&bparently, there could be nglobal attraction to
zero @lobalreferring to arbitrary initial data) if there are solitaryave solutionsp,, (x)e .

Solitary waves

The existence of solitary wave solutions of the form
Yo (2,1) = ¢y, (x)e™ ™", weR, ¢, HY(RY), (2.13)

with H!(R™) being the Sobolev space, to the nonlinear Klein-Gordontimuéand nonlinear Schrodinger equa-
tion) in R™, in a rather generic situation, was establishedin [$tra7inore general result was obtained in
[BL834,[BL83h]). Typically, such solutions exist far from an interval or a collection of intervals of the real
line. We denote the set of all solitary waves&y

Due to theU(1)-invariance of the equations, the factor-sp&ggU(1) in a generic situation is isomorphic to a
finite union of intervals. Let us mention that there are nwusresults on the existence of solitary wave solutions
to nonlinear Hamiltonian systems with(1) symmetry. See e.d. [BL84, CVB6, ES95].

While all localized stationary solutions to the nonlineaw equations in spatial dimensions> 3 turn out
to be unstable (the result known as “Derrick’s Theorem” 21y, quasistationarysolitary waves can be orbitally
stable. Stability of solitary waves takes its origin frdmi{¥3] and has been extensively studied by Strauss and his

school in [Sha83. SS85. Sha8g5. GSS87].

Local attraction to solitary waves

First results on the asymptotics of type{2.7) with # 0 were obtained for nonlinedd (1)-invariant Schrodinger
equations in the context of asymptotic stability. This bshes asymptotics of typE(2.7) but only for solutions
close to the solitary waves, proving the existence lofcal attractor. This was first done by Soffer and Weinstein
and by Buslaev and Perelman n [SW90, BF93, SW92, BP95], laewd developed il [PW97, SW99, CucD1a,
[CucOIb[BS03, Cuc03] and other papers.

Global attraction to solitary waves

Theglobal attractionof type [2.T) withy) # 0 andw, = 0 was established in certain models[in [Korn91, Kom95,
[KV96, [KSK97,[Kom99| KS0D] for a number of nonlinear wave deshs. There the attractor is the set ofsifitic
stationary states. Let us mention that this set could beif@famd contain continuous components.

In [Kom03] and [KKO74], the attraction to the set of solitamaves (see Figuild 2) is proved for the Klein-
Gordon field coupled to a nonlinear oscillator. In [KKO7Hjist result has been generalized for the Klein-Gordon
field coupled to several oscillators. The paper [KKI07c] gitlee extension to the higher-dimensional setting for
a model with the nonlinear self-interaction of the mean figlate. We are going to describe these results in this
survey.

We are aware of but one recent advance [Tao07] in the fieldwfiveal (nonzero) global attractors for Hamil-
tonian PDEs. In that paper, the global attraction for thelinear Schrodinger equation in dimensions> 5 was
considered. The dispersive (outgoing) wave was explisjilgcified using the rapid decay of local energy in higher
dimensions. The global attractor was proved to be compattt lvas neither identified with the set of solitary
waves nor was proved to be finite-dimensiohal [Tao07, Rerhdr].

3 Assumptions and results

In [KKO74d, [KKO76,[KKO7¢] we introduce the models which possehe key properties we mentioned above:
U(1)-invariance, dispersive character, and the nonlineaifitye models allow to prove the global attraction to
solitary waves and to develop certain techniques which vpe lvall allow us to approach more general systems.



Alexander Komech, Andrew Komecllobal Attraction to Solitary Waves 6

o \Il|t—>—oo

Figure 2: Fort — +o0, a finite energy solutio® (¢) approaches the global attractet which coincides with the
set of all solitary waves.

Model 1: Klein-Gordon field with a nonlinear oscillator

We consider the Cauchy problem for the Klein-Gordon equatith the nonlinearity concentrated at the origin:

b(x,t) =9 (2,1) = m*(x,t) + 5(@) F(¥(0,1)),  w€R,

! (3.1)
1/1|t:0 = ¢0(5€)= wlt:o = Fo(l‘).

Above,m > 0 andF is a function describing an oscillator at the paint 0. The dots stand for the derivativestin

and the primes for the derivativesin All derivatives and the equation are understood in theesehdistributions.
We assume that equatidn (3.1)UK1)-invariant; that is,

F(e'%) = e F(v), R, ¢eC. (3.2)

If we identify a complex numbep = u + iv € C with the two-dimensional vectdw, v) € R?, then, physically,
equation [(311) describes small crosswise oscillationshefinfinite string in three-dimensional spage u, v)
stretched along the-axis. The string is subject to the action of an “elastic &re m?v(x,t) and coupled to a
nonlinear oscillator of forcd" (1) attached at the point = 0. We assume that the oscillator foréeadmits a
real-valued potential,

F()=-VyU(¥), veC, UeC*C), (3.3)
where the gradient is taken with respecRioy andIm .
Remark3.1 Viewing the model as an infinite string ik*, the assumptior {3.2) means that the poteifiab) is
rotation-invariant with respect to theaxis.

Model 2: Klein-Gordon field with several nonlinear oscillators

More generally, we consider the Cauchy problem for the kfdordon equation with the nonlinearity concentrated
at the pointsX; < X5 < ... < Xn:

{ G, t) = 9" (@, t) = mPp(x,t) + Y0, 6z — X)) Fs(p(Xs,1),  z€R, (3.4)
w|t:0 = wO(x)a w|t:0 = 7T0($C).
Model 3: Klein-Gordon field with the mean field interaction

We also consider the Klein-Gordon equation with the mead figkraction:

{ (o) =00 o) £ o). R m2 @5
1/1|t:0 = ¢0(5€)7 w|t:o = 7T0($).
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Above,p is a smooth real-valued coupling function from the Schweldss:p € . (R™), p # 0, and

(Pl 1)) = / ()2, 1) di.

n

Hamiltonian structure
Equations[(3}4)[(3]5) formally can be written as a Hamitorsystem,

U(t) = T DH(Y), T = { O ] , (3.6)

where¥ = (¢, 7) and DH is the Fréchet derivative of the Hamilton functionals

Hosc(dja 7T) = %/ (|7T|2 + |’L/Jl|2 + m2|¢|2) dx + Z UJ(’L/J(XJ))7 (37)
R J
1 2 2 2 2
Hon g (07) = 5 [ (17 + V0 + m2l0P) do + U (. ). 38)
Rn

Since [(3#) and(315) ar®(1)-invariant, the Nother theorem formally implies that theue of thecharge func-
tional

Qy,m) = %/(%—W) dx (3.9)

is conserved for solution&(t) = (¢(t), n(¢)) to (3.8).
Let us introduce the phase spatef finite energy states for equatiois (3.4).13.5). Denoté bj;- the norm
in the complex Hilbert spacé?(R™) and by]|| - 2 the norm inL?(B7%), whereB?, is a ball of radiusk > 0.

Denote by| - [|z; the norm in the Sobolev spadé’(B7) (which is the dual to the Sobolev spabig *(BY;) of
functions supported in the ball of radiiy.

Definition 3.2 (The phase space) (i) & = H*(R") @ L*(R"), n > 1, is the Hilbert space of the states, ),
with the norm
1, 1% = 77 + [VOlIZe + m?|l]Z.. (3.10)

(i) &= H'"(R") & H~<(R") is the space with the norm
1, )l = 111 = A)~2(y, )| s (3.11)
(iii) &% ° is the space with the Fréchet topology defined by the semmigor
1@ Ee = 7l + IV +m? |0l R>0. (3.12)

Remark3.3. The spac&’; © is metrizable (but not complete). The metric can be intreduzy

oo

1@l ge = D 27 @ m)lls-cn,  0<e<1 (3.13)

R=1

Equations[(314)[(3]5) are formally Hamiltonian systemthwhe Hamilton functional$t,,. and™H,, r., re-
spectively, and with the phase spatérom Definition[3:2 (for equationi (314), the dimensiomis= 1). BothH,,.
(or Hy,.r.) andQ are continuous functionals afi
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Global well-posedness

Theorem 3.4(Global well-posedness)Assume that the nonlinearity i (8.4) is givenBy(z) = —VU ;(z) with
inf,ec Uy(z) > —00,1 < J < N (or F(z) = =VU(z) withinf,ec U(z) > —oc in (38), respectively). Then:

(i) Forevery(o,m) € & the Cauchy probleni(3.4)((3.5), respectively) has a unigjobal solutiony(t)
such that(y, ) € C(R, &).

(i) The mapV (t) : (vo,m0) — (¥(t),%(t)) is continuous irg for eacht € R.

(i) The energy and charge are conservét(«(t), ¢ (t)) = const, Q((t),1(t)) = const, t € R.
(iv) The followinga prioribound holds:

(1), ¥()|le < Cto,m0),  tER. (3.14)

(v) Foranye € [0, 1], )
(1)) € COR, &), (3.15)

whereC(©) denotes the space ofttier-continuous functions.

The proofis contained i [KKO7a], [KKO7b], and [KKO7c].

Solitary waves
Definition 3.5 (Solitary waves) (i) The solitary waves of equation (3.4) are solutions of thenfo

Y(x,t) = ¢ (x)e ™", where w€R, ¢, € HY(R"). (3.16)

(i) The set of all solitary waves iS) = {¢.: w € R, ¢, € H'(R")}.
(i) The solitary manifold is the s& = {(¢.,, —iw¢.): w € R, ¢, € H(R™)} C &.

Remark3.6. (i) TheU(1) invariance of[(34) and(3.5) implies that the s&¢sS are invariant under multipli-
cation bye®, § € R.

(if) Letus note that for any € R there is a zero solitary wave with, (z) = 0 sinceF;(0) = 0.
The following proposition provides a concise descriptibalbsolitary wave solutions td (3.1).

Proposition 3.7. There are no nonzero solitary waves fof > m.
For a particularw € (—m,m), there is a nonzero solitary wave solution [0 (3.1) if andyoifithere exists
C € C\0 so that
2k(w) = F(C)/C. (3.17)

The solitary wave solution is given by
bo(x) = Ce W2l Klw) =vVm? — w2 (3.18)
Remark3.8. There could be more than one valtie> 0 satisfying [3.117).
Remark3.9. By (3.18),w = +m can not correspond to a nonzero solitary wave.
Proof. When we substitute the ansatize " into (3.1), we get the following relation:
— o (2) = ¢ (x) — m*du(x) + 6(2)F(¢u(2)), x€R. (3.19)

The phase factar—** has been canceled out. Equation (8.19) implies that away fine origin we have

¢:/;(‘T) = (m2 - w2)¢w($)a x#0,
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henceg,, () = Cre "+l for +2 > 0, wherery satisfyx2 = m? — w?. Sinceg,(r) € H', it is imperative
thatkxy > 0; we conclude thafw| < m and thatc,. = vm? —w? > 0. Moreover, since the functiog,, (x) is
continuous(C'_ = Cy = C # 0 (since we are looking for nonzero solitary waves). We sek tha

bo(z) =Ce "l C£0,  k=vm2-w?>0. (3.20)

Equation [[3.1B) implies the following jump conditionzat= 0:
0= ¢, (04) — ¢,(0—) + F(¢.,(0)), (3.21)
which is satisfied due t§ (3.117) aid (3.20). O

Global attraction to solitary waves
We will combine the results for the Klein-Gordon equatiothane and several oscillators ((3.1) abhd1(3.4)).

Theorem 3.10(Global attraction for[(3}4), Klein-Gordon equation with oscillators) Assume that all the oscil-
lators are strictly nonlinear: foralll < J < N,

pJ
Fy(¢) = =VU;(¥), where Us(@)=> upl¢f, wy€R, wusp, >0, and p;>2.  (3.22)
=0

Further, if N > 2, assume that the intervalX ;, X ;11], 1 < J < N — 1, are small enough so that

7T2

IS,IIHSIZI\l]fl (lXJ+1 - XJ|2

=

J
1/2
2 : _
+m ) >m1£nJa<XNm1n(l_[l(2pl 1),l

(2p1 — 1)), (3.23)

J

wherep ; are exponentials froni (3:22). Then for afiyy, m9) € & the solution(¢) to the Cauchy probleni(3.4)
converges ta:

Jimdist e, ((1), 9(t)), ) = 0. (3.24)

Theorem 3.11(Global attraction for[(3]5), Klein-Gordon equation witream field interaction) Assume that the
nonlinearity F'(z) is strictly nonlinear:

P
F(z)=—-VU(z), where U(z)= Zul|z|2l, u €R, u,>0, and p>2. (3.25)
1=0

Further, assume that the set

Z, = {w € R\[-m,m]: p(¢) = 0 for all & € R™ such that m? + £* = w?} (3.26)
is finite and that
__1 1p(&)? n
o(w):= G /Rn 2 dré (3.27)

does not vanish at the poinis € Z,. Then for any(y, m9) € & the solutiom)(t) € C(R, &) to the Cauchy
problem [3.5) converges 8 in the spaces;. ¢, for anye > 0:

Jimdist - (¥(2), ) = 0. (3.28)
Above, dist gge(\IJ,S) = ql)Ielg o — q>|\£;e, with || - Hg; is defined in[(3.13).

Theoreni:3.10 is proved in [KKO7b]; Theorédm 3.11 is provedkK07c]. We present the sketch of the proof
of Theoreni 3,710 for one oscillator in Sectidn 4.
Let us mention several important points.
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0]

(i)

(iii)

(iv)

v)

(Vi)

(vii)

(viii)

In the linear case, the global attractor contains the fisgan of points of the solitary manifoldS). In
[KKQ7a], we prove that for the model of one linear oscillatdtached to the Klein-Gordon field the global
attractor indeed coincides witls).

The condition[(3.23) allows to avoid “trapped modes”, whiould also be characterized as multifrequency
solitary waves. In Propositidn 5.2 below, we give an exangflsuch solutions in the situation when the
condition [3.2B) is violated.

Similarly, the condition of Theorefn 3111 thafw) does not vanish fow € Z, allows to avoid multifre-
quency solitary waves.

We prove the attraction of any finite energy solution to thitary manifoldsS:
(W), () — S,  t— oo, (3.29)

where the convergence holds in local seminorms. In thiseséhis aweak(convergence is local in space)
global (convergence holds for arbitrary initial data) attractor.

S can be at most weakattractor because we need to keep forgetting about the iogtdspersive waves,
so that the dispersion plays the role of frictions#hongattractor would have to consist of the direct sum of
S and the space of outgoing waves.

We interpret the local energy decay caused by dispersi@ncastain friction effect in order to clarify the
cause of the convergence to the attractor in a Hamiltoniadeiorhis “friction” does not contradict the
time reversibility: if the system develops backwards indjnone observes the same local energy decay
which leads to the convergence to the attractdr-as—oc.

Although we proved the attraction (3129)§owe have not proved the attraction to a particular soliteayay
falling short of proving[[217). Hypothetically, /U(1) contains continuous components, a solution can be
drifting alongS, keeping asymptotically close to it, but never approachimarticular solitary wave. This
could be viewed as the adiabatic modulation of solitary wesmameters. Apparently,&/U(1) is discrete,

a solution converges to a particular solitary wave.

The requirement that the nonlinearity is polynomial akaws to apply the Titchmarsh convolution theorem.
This step is vital in our approach. We do not know whether thigromiality requirement could be dropped.

For the real initial data, we obtain a real-valued solutid). Therefore, the convergence(3.24), (3.28) of

U(t) = (¢(t),(t)) to the set of pairgs.,, —iwe,,) with w € R\0 implies thaty(t) locally converges to
zero.

Sketch of the proof

First, we introduce a concept of the omega-limit trajectéfy, ¢) which plays a crucial role in the proof.

Definition 3.12 (Omega-limit trajectory) The functiong(x,t) is an omega-limit trajectory if there is a global
solutiony € C(R, &) and a sequence of timgs,: j € N} with lim;_., s; = oo so that

Pzt +55) = B(x,1),

where the convergence is@,([—1, 7] x B%) foranyT > 0 andR > 0.

We are going to prove that all omega-limit trajectories aléay waves:;3(z,t) = ¢, (x)e . It suffices to
prove that the time spectrum of any omega-limit traject®igonsists of at most one frequency.

To complete this program, we study the time spectrum of &wist that is, their complex Fourier-Laplace
transform in time. First, we prove that the spectral densftp solution is absolutely continuous fs| > m
hence the corresponding component of the solution dispesepletely. It follows that the time-spectrum of
omega-limit trajectorys is contained in a finite intervghm, m,



Alexander Komech, Andrew Komecllobal Attraction to Solitary Waves 11

Second, we notice that also satisfies the original nonlinear equation. Since theetsal support of3 is
compact and the nonlinearity is polynomial, we may apply Tiiehmarsh convolution theorem. This theorem
allows to conclude that the spectral support of the nontibeaould be strictly larger than the spectral support
of the linear terms in the equation (which would be a contitémin!) except in the case when the spectrum of the
omega-limit trajectory consists of a single frequengy e [—m, m].

Since any omega-limit trajectory is a solitary wave, theaation [3.29) follows.

Open problems

(i) As we mentioned, we prove the attractionpas stated in(3.29), but have not proved the attraction to a
particular solitary wave likd (21 7). It would be interegfito find solutions with multiple omega-limit points,
that is, the situation when the frequency parametkeeps changing adiabatically.

(i) Our argument does not apply to the Schrodinger equatiome ifportant feature of the Klein-Gordon
equation is that the continuous spectrum corresponfis|te m, hence the spectral density of the solution
is absolutely continuous fdw| > m, while the spectrum of the omega-limit trajectory is witktie compact
set[—m,m|. This is not so for the Schrodinger equation: since theinants spectrum corresponds to
w > 0, the resulting restriction on the spectrum of the omegadt-lirajectory isw < 0. As a result, we
do not know whether the spectrum is compact; the Titchmarshv@ution Theorem does not apply, and
the proof breaks down. It would be extremely interestingiteestigate whether the convergence to solitary
waves is no longer true, or instead certain modification ef Tiichmarsh theorem allows to reduce the
spectrum to a point.

(iii) Similarly, the Titchmarsh Theorem does not apply when th@inearity is not polynomial, and it would be
interesting to investigate what could happen in such a case.

4 Proof of attraction to solitary waves for the Klein-Gordon field with one
nonlinear oscillator

We will sketch the proof of Theorem 3110 for the systéml(3.h)ol describes one nonlinear oscillator located at
the origin.

Proposition 4.1(Compactness. Existence of omega-limit trajectories)i) For any sequence; — +oo there
exists a subsequensg — +oo such that

U(z, s +1t) — B(x, 1), reR, tekR, (4.1)
for somes € C(R x R), where the convergence is@®,([-7, 7] x [-R, R]), foranyT > 0 andR > 0.
(i)
sup [|8(-, )| g1 < oo. (4.2)
teR
Proof. By Theoreni:34\), for anye € [0, 1],
¢ e COR, H¢(R)). (4.3)

Takinge = 1/4, we see thatr € C(*) (R xR), for anya < 1/4. Now the first statement of the Proposition follows
by the Ascoli-Arzela Theorem. The bouhd(4.2) follows fr@ad), the bound (3.14), and the Fatou Lemmd.]

We callomega-limit trajectonyany function3(z, t) that can appear as a limit in_(4.1) (Cf. Definition 3.12). We
are going to prove that every omega-limit traject@rigelongs to the set of solitary waves; that is,

B(x,t) = P, (x)e ! for some w, € [—m, m|. (4.4)



Alexander Komech, Andrew Komecllobal Attraction to Solitary Waves 12

Remark4.2. The fact that any omega-limit trajectory turns out to be éagl wave implies the following state-
ment:
if there is a sequence t; — oo so that (¥(t;),4(t;)) P, e H' x L?, then ® € S. (4.5)

In turn, (4.5) implies the convergence to the attractor ertfetric [3.1B) o © for e > 0:

—e

W), d(1) 5 S, >0, t— +oo. (4.6)

This is weaker than the convergence to the attractor in thaldgy of & stated in Theorefn 3.110. For the proof of
the convergence to the attractor in the topology’pf see[[KKO7a)].

Let us split the solution)(z, ¢) into two components)(z,t) = x(z,t) + ¢(z,t), which are defined for all
t € R as solutions to the following Cauchy problems:

j{(l‘,t) = X”(.”L‘,t) _mQX(x’t)v (X?X)|t:0 = (wo(ff)aWO(fﬂ))a (4-7)
¢(Ia t) = <P//(Ia t) - m2</7(x7 t) + 5($)f(t), ((pv ¢)|t:0 - (Ov 0)7 (48)

where (o (), 7 (z)) is the initial data from[(3]1), and
f(@) := F(0,t)), teR. (4.9)

Lemma 4.3(Local energy decay of the dispersive componeft)ere is the following decay for:
B (8 XCE)llg =0, VR >0, (4.10)

For the proof, seé [KKO7a, Lemma 3.1]. Lemimal4.3 means teadigpersive componertdoes not give any
contribution to the omega-limit trajectories (see DefonfB.12).

k(w+i0)=—vw2—m? —m 0 m k(w+i0)=+vw2—m?2

............................. S e
k(w—i0)=+vw2—m? k(w—i0)=—vw2—m?

k(wiiO):fi\/ m?2—w?

Figure 3: DomainD and the values df(w £ i0), w € R.

Let k(w) be the analytic function with the domain := C\ ((—oo, —m] U [m, +00)) such that
k(w) = Vw2 —m?,  Imk(w)>0, weD. (4.11)
See Figur€l3. Let us also denote the limitdd) for w + 0, w € R, by
ki(w) := k(w +140), weR. (4.12)
The functiony(x, t) = ¥ (z,t) — x(z, t) satisfies the following Cauchy problem:
$(x,t) = ¢"(x,t) = m*p(a,t) + 6(2) f(t),  (9,9)|.- = (0,0), (4.13)

with f(t) defined in[4B). Note thap(0,-) € C,(R) by the Sobolev embedding, sin¢e, ) € Cy(R, &) by
Theoren{34i¢). Hence,f(t) € C,(R). On the other hand, sincgz, ) is a finite energy solution to the free
Klein-Gordon equation;y, x) € Cy(R, &). It follows thaty = ¢ — x is also of finite energy norm:

~_

(p,¢) € Cp(R, &). (4.14)
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We denote
(P-l-(‘ra t) = 9@)90(% t)? f_;,_(f) = e(t)f(t) = 9(f)(¢(07f))' (4.15)
The functionp (z, t) satisfies the equation
Pi(x,t) = Rpi(a,t) —mPoi(n,t) + 8(x) f+(t), (04,94l = (0,0), teR. (4.16)

We setF; ., [g(t)](w) = / e™*q(t) dt for a functiong(t) from the Schwartz spac# (R). The Fourier transform
R

Ot (z,w) = Frowlpr(x,t)] = /000 e“to(x, t) dt, (z,w) € R? (4.17)

is a continuous function of € R with values in tempered distributions of € R, which satisfies the following
equation (Cf.[(4.16)):
2

—w2¢+(:1c,w) :(919274_(,@,(4]) _m2¢+($aw) +5(x)f+(w), (x,w) ERQ' (418)
Proposition 4.4(Spectral representatianT here is the following relation:
Pr(z,w) = @y (0,w)e el peRr. (4.19)

Proof. Let us analyze the complex Fourier transformpqf(z, t):
O (x,w) = Fiowlps(x,t)] = / e“to(x,t)dt, z€R, weCT, (4.20)
0

whereC* := {z € C: Imz > 0}. Due to [4I¥)5, (-,w) are H'-valued analytic functions b € C*.
Equation[[4.16) implies that. satisfies

— W@y (z,w) = 54 (1,0) —mPPy (z,0) + 6(2) fr(w), weCT. (4.21)
The fund | solutior@ M st
e fundamental solutiorG.. (z,w) = o) satisfy

G (x,w) + (w? = m?)Gy(z,w) = 6(x), weCt.

Note that for eacku € C™T the functionG. (-,w) is in H'(R) by definition [4I1), whileG_(-,w) is not. The
solutiong, (z,w) can be written as a linear combination of these fundamentatisns. We use the standard
“limiting absorption principle” for the selection of the ppriate fundamental solution: Singe (-, w) € H'(R)
forw € C*, soisG(-,w), while G_(-,w) is not, we have:

) i _ eik)lal .
Pr(z,w) = = f+(W)G4(z,w) = — f+(w) 2ik(w) ’ weCT. (4.22)

The relation[(4.22) yields
5 Fow) e kel (0 R ct 4.23
(p+((E,Cd)——f+(W) 2zk(w) =e 90-1‘( 7w)7 relk, we . ( . )

Now we extend the relatioh (4.23) o< R. Sincep € Cy(R, H'(R)) by (4.13), we have

0(t)p(x,t) = Elirél+ O(t)p(x,t)e ", (4.24)

where the convergence holds in the spaceiofvalued tempered distributionsy” (R, H*(R)). The Fourier
transformp, (z,w) = Fiulos(z,t)] = Fimu[0(t)p(z,t)] is defined as a temperdd’-valued distribution
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of w € R. As follows from [4:2%) and the continuity of the Fouriernsiorm7;_., in .7’ (R), ¢4 (z,w) is the
boundary value of the analytic functign, (x,w), in the following sense:

Py(zyw) = 62fg1+ Ot (z,w+ic) = E1_1}1%1_‘_ Fiow[0t)p(z,t)e™c, weR. (4.25)

Again, the convergence is in the spagé(R, H' (R)).

We use [(4.25) to take the limlinw — 0+ in the expressior (4.23) fap, (v, w), and keep in mind that
¢+ (z,w) is a quasimeasure (see Renfark 4.5) for eaehR, while the exponential factor i (4.23) is a multipli-
cator in the space of quasimeasures. The forniulal(4.1@)well

Remark4.5. A tempered distribution(w) € ./(R) is called aquasimeasuré ji(t) = .7, [u(w)] € Cy(R).

w—t

For more details on quasimeasures and multiplicators isfihee of quasimeasures, see [KK07a, Appendix B].
(|

Proposition 4.6 (Absolute continuity of the spectrum)rhe distributiong_ (0, w) is absolutely continuous for
|w| > m, and moreover

k
/ - 240D gy < oo (4.26)

wherek (w)/w > 0 for w € R\[—m, m] (see[[4IR) and Figuid 3).

Proof. We use the Paley-Wiener arguments. Namely, the Parsevditidand [4.1#) imply that

oo

/ 1B (-0 + )22 duo = 2 / M (1) 22 dt <
R 0

C

On the other hand, we can calculate the term in the left-hatedc$ (4.27) exactly. According t§¢ (4.23),
Gy (z,w +ig) = §y (0, w + ie)etr@riollal

hencel(4.27) results in
5/ |61 (0,w + ie)|?||e* @tz 2, dv < 0,  e>0. (4.28)
R

Here is a crucial observation about the norngéfwtie)l=l,
Lemma4.7. (i) Forw € R\(—m,m),

ik(wtie)|z[2  _ M
sh%lJr elle 172 - (4.29)

(i) Foranyd > 0 there existgs > 0 such that folw| > m + ¢ ande € (0, ¢5),

h(wti ki (w)
ik(wtie)z])2 + ) 4.30
glle 72 > R (4.30)
Remark4.8. The asymptotic behavior of the?-norm ofe?*(“ i) stated in the lemma is easy to understand: for
w € R\[—m,m], this norm is finite for > 0 due to the small positive imaginary partiafv + ic), but it becomes
unboundedly large when— 0+. Let us also mention that the integfal (4.29) is easy to etalin the momentum
space.

Substituting[(4.30) intd (4.28), we get:

k
/||> 6|¢+(0,w+i€)l2# dw <2C,  0<e<es, (4.31)
w|>m-+
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with the same&”' as in [4:28). We conclude that for eath- 0 the set of functions

ky(w)

w

1/2
, e € (0,¢e5),

9s.e(w) = ¢4 (0,w + i)

defined forw € (25, is bounded in the Hilbert spade?(R\[—-m — &,m + ¢]), and, by the Banach Theorem,
is weakly compact. The convergence of the distributibn85@implies the following weak convergence in the
Hilbert spacel.?(R\[—m — §, m + §]):

9s5,e =7 95, g — O+a (432)

1/2
where the limit functiorys (w) coincides with the distributios . (0, w) k*yﬁ“) } restricted ont®\ [—m — 4§, m+

§]. It remains to note that, by {4B1), the norms of all functign 6 > 0, are bounded il ?(R\[—m — &, m + 4])
by a constant independent phencel(4.26) follows. O

By Lemmal4.3B, the dispersive componeitt, t) converges to zero ifr ast — oo. On the other hand, by
@1J), ¢(x,t + s;) converges tgd(z,t) asj’ — oo, uniformly on every compact set of the plaRé. Hence,
oz, t+s5) =z, t+s5) — x(z,t+ s;,) also converges t(x, t), uniformly in every compact set of the plane
R%:

o(z, s +1) — Bz, t), reR, telR. (4.33)

Therefore, taking the limit in equatioh (4.8), we concluldettthe omega-limit trajectorg(x, ¢) also satisfies the
same equation; )
Bz, t) = 8" (x,t) — m?B(x,t) + 0(x)F(B), reR, teR. (4.34)

Taking the Fourier transform ¢f in time, we see by (411) thﬁ(:z:, w) is a continuous function af € R, with
values in tempered distributions ©fc R, and that it satisfies the corresponding stationary equatio

~ W B(z,w) = §"(,w) = m?B(z,w) +8(2)§(w),  (zw) €R? (4.35)
valid in the sense of tempered distributiongofw) € R?, whereg(w) are the Fourier transforms of the function
g(t) := F(5(0,1)). (4.36)
For brevity, we denote
B(t) := B(0,¢). (4.37)
Lemma 4.9(Boundedness of spectrum)

supp p C [—m,m).

Proof. By (4.33), we have

o (x,s5 +1) — B(z,1), reR, teR, (4.38)
with the same convergence as[in{4.1) dnd (4.33). We have:
1

oi(z,s; +1) = o / e WheT S g (7, w) dw, reR, teR,
7T
where the integral is understood as the pairing of a smoaibtiion (oscillating exponent) with a compactly

supported distribution. Hencé, (4]138) implies that
e G (2, w) — B(:v,w), reR, s — o0, (4.39)

in the sense of quasimeasures (the convergence in the quuaaimeasures is equivalent to the Ascoli-Arzela
type convergence of corresponding Fourier transforms[§€67al Appendlx B]). Smc&ur(o w) is locally L?
for |w| > m by PropositiofiZ}6, the convergenEe(3.39) at 0 shows thap (w) := (0, w) vanishes fotw| > m.
This proves the lemma. O
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We denote
R(w) = —ikt(w), w e R, (4.40)
wherek (w) was introduced in{4.12). We then hale x(w) > 0, and also
Ew)=+vVw?2—m2>0 for —m<w<m,
in accordance witH(3.18).

Proposition 4.10(Spectral representation fo). The distribution@(:z:, w) admits the following representation:

Bz, w) = p(w)e @l xR (4.41)
Proof. This follows by taking the limit in the first line of {4.19),rsiesupp 8 C [—m, m] by LemmdZ.D, while
k(w) = ik(w) for —m < w < m (Cf. (440)). O

Proposition 4.11(Reduction to point spectrumkithersupp p = {w, } for someuv, € [—-m,m] or = 0.

Proof. By LemmaZ.®, we know thatupp p C [—m,m]. According to equatiod{Z.35), the functighsatisfies
the following jump condition at the point = 0:

B(0+,w) — 3 (0-,w) =j(w), weR. (4.42)
Sincesupp 4/ (0+, -) C supp p by PropositiofiZ.10, it follows that

supp () C supp p. (4.43)
On the other hand, by (3.22), the Fourier transf@im) of g(¢) := F(5(0,1)) is given by
g:—22nun([§*§)**([§*§)*[§ (4.44)
n=1 n—1

Now we will use the Titchmarsh Convolution Theorém [TIt26&¢ also [Lev96, p.119] anld [H6K90, Theorem
4.3.3]) which could be stated as follows:

For any compactly supported distributionsandv, sup supp(u * v) = sup supp u + sup supp v.

Applying the Titchmarsh Convolution Theorem to the contiolos in [4.44), we obtain the following equality:

supsupp § > supsupp B + (p — 1)(sup supp p — inf supp B), (4.45)
where we used the relaticmup suppé = —infsupp B. We wrote “>" because of possible cancellations in the
summation in the right-hand side 6f(4144). Note that thehritarsh theorem is applicable [0 (4.44) sisapp 3
is compact by Lemmia4.9.

Comparing[(4.43) witH {4.45), we conclude that
(p — 1)(sup supp B — inf supp B) =0. (4.46)
Sincep > 2 by (3.22) (which means that the oscillatorat= 0 is nonlinear), we conclude thatipp p consists of
at most a single point; C [—m,m]. O

By PropositionZMsupp f € {wy }, with wy € [—m, m]. Therefore,
B(w) =a16(w —wy), with some a; € C. (4.47)

Note that the derivative&*) (w — w,), k > 1 do not enter the expression ff(w) sinceB(t) = 3(0,t) is a
bounded continuous function ofdue to the bound(41.2). Propositibn 4.10 aihd (4.47) imply the omega-limit
trajectoryf(x, t) is a solitary wave:

Blz,t) = gla)e™ !
whereg € H'(R) by (£.2). This completes the proof &I (#.4).
Remark4.12 w, = 4m could only correspond to the zero solution by Renfiark 3.9.
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5 Multifrequency solitons

5.1 Linear degeneration
Let us consider equation (3.4) wifit = 2, under condition[(3.23).

Proposition 5.1. If in (8:22) one hag; = 1 for some.J, then the conclusion of Theorém 3.10 may no longer be
correct.

Proof. We are going to construct the multifrequency solitary wa¥asnsider the equation

) =" —m*+ 8(2)Fy () + 8( — L) F(¥), (5.1)

where
Fi(¢) =ap+ B[y,  F@)=v, a8, yeR. (5.2)
Note that the functiod is linear, failing to satisfy[(3.22) (where one now has= 1). The function

(Ae”"(‘“)x + Be®(@)?) sinwt + C'sinh(k(3w)x) sin 3wt, x € [0, L],

(A + B)e®«) sinwt, x <0,
P(x,t) =
(Ae™"«) 4 Ber@)L=2)ygin it + e rBW)@=L) gin 3wt x>L

)

___ ¢
sinh(x(3w)L)

wherew € (0,m/3), will be a solution if the jump conditions are satisfiedrat 0 and atz = L:

—1/11(0+7t) +wl(0_7t) = a¢(07f) +51/13(07t)7 (53)
= (L, 1) + 4 (L=, t) = anp(L, 1) + By (L, t). (5.4)
Using the identity
sin® 0 = Zsin@ — isin 36, (5.5)
we see that
a(A+ B)sinwt + B((A + B)sinwt)® = (a(A + B) + ﬁ@) sinwt — ﬁ@ sin 3wt.

Collecting the terms atin wt and atsin 3wt, we write the condition(513) as the following system of etijrzs:

2(w)A = (a4 + B) + ﬁ@), (5.6)
—k(3w)C = — @ (5.7)
Similarly, the condition[(514) is equivalent to the follavg two equations:
2Brk(w)e Wl = n(Ae "L 4 Ber@Ily, (5.8)
% + k(3w)C cosh(k(3w)L) = vC'sinh(k(3w)L). (5.9)

Equations[(516) [(517)[.(5.8), arld (b.9) could be satisfeedafbitrary. > 0. Namely, for anyw € (0,m/3), one
uses[(5.0) to determing For anygs # 0, there is always a solutiod, and B to the nonlinear systeri (5.6}, (5.8).
Finally, C is obtained from[(5]7). O
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5.2 Wide gaps
Let us consider equation (3.4) wifii = 2. Assume tha{{3.22) is satisfied.
Proposition 5.2. If the condition[[3.2B) is violated, then the conclusion bédreni 3.0 may no longer be correct.

Proof. We will show that if L := X5 — X, is sufficiently large, then one can tak&(v) and F»(v) satisfying
(3:22) such that the global attractor of the equation casttie multifrequency solutions which do not converge to
solitary waves of the forni_(3.16). For our convenience, veia® that\;, = 0, X, = L. We consider the model

@3) with

F(Y) = F(Y)=F(),  where F())=ay+BYf’y, o feR (5.10)
In terms of the conditior (3.22p; = p» = 2. We takeL to be large enough:
™
L> CEETe (5.11)

Consider the function
Y(x,t) = A(e "Wlel L emrl@le=Llygip ot 4 Bxo,r)() sin(k(3w)x) sin 3wt, A, BeC. (5.12)
Theny(z,t) solves[3H) forr away from the points( ;. We require that

o ™
=7
so thaty)(z, t) is continuous inc € R and symmetric with respect to= L/2:

k(3w) (5.13)

Yt =y(z 1), e

We needw| < m to havex(w) > 0, and3|w| > m to havek(3w) € R. We takew > 0, and thusn < 3w < 3m.

By (5.13), this means that we need
2
m < \/%+m2<3m.

The second inequality is satisfied by (3.11).
Due to the symmetry ofy(z, t) with respect tar = L/2, the jump condition both at = X; = 0 and at
x = X, = L takes the following identical form:

2Ak(w) sinwt — Bk(3w) sin 3wt = F(A(1 + e mwL) sinwt). (5.14)
We use the following relation which follows frorm (5.5):
F(A(l + e ")) sin wt)
= (aA(l 4 e Ry 4 25|A|2A(1 + e_“(“)L)3) sinwt — £ﬁ|A|2A(1 + e @) gin 3wt. (5.15)

Collecting in [5.1#) the terms ain wt and atsin 3wt, we obtain the following system:

24K(w) = @ A(1l + e <L) 4 2B AP A1 + (L), (5.16)
Bk(3w) = 18]APA(1 + e~ #@L)3, '
Assuming thatd # 0, we divide the first equation by:
2(w) = a1 + e F@)) 4 25|A|2(1 emR@Dys, (5.17)
The condition for the existence of a solutidn 0 is
2k(w)

Once we found4, the second equation il (5]16) can be used to exgdaagerms ofA.
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Remark5.3. Condition [5.18) shows that we can chogse: 0 taking largea: > 0. The corresponding potential
Uy) = —al|?/2 — Bly|* /4 satisfies[(3.22).
(I
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6 Numerical illustration

On Figure %, we give the numerical simulation illustratihg stabilization of the Klein-Gordon field interacting
with the nonlinear oscillator to the set of solitary wavestivprofiles~ e~*(«)I=l), The simulation is done on a
finite string with the transparent boundary conditiodg) = 0, at the left end and,y = —0,.¢ at the right
one. The “snapshots” are taken far apart in time (the evaius from the left to the right). Let us mention that
one could by no means take such numerical simulations asificatson of a particular long-time behavior.

The Octave codes for these simulations are available at 0Zgm

T TN T T

Figure 4: The Klein-Gordon field interacting with a nonlineacillator stabilizes to the set of solitary waves.
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