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Abstract The long-time asymptotics is analyzed for all finite energy solutions to a model U(1)-
invariant nonlinear Klein-Gordon equation in one dimension, with the nonlinearity concentrated at a
point. Our main result is that each finite energy solution converges as t→ ±∞ to the set of “nonlinear
eigenfunctions” ψ(x)e−iωt.

Résumé. Attraction Globale vers des Ondes Solitaires pour l’Équation de Klein-

Gordon Couplé à un Oscillateur non Linéaire . On s’intéresse aux solutions d’énergie
finie d’une équation non linéaire de Klein-Gordon U(1)-invariante monodimensionnelle, avec une non
linéarité ponctuelle, et on analyse leur comportement asymptotique aux temps longs. Le principal
résultat que nous avons obtenu est que toute solution d’énergie finie converge pour t → ±∞ vers un
ensemble de ”fonctions propres non linéaires” ψ(x)e−iωt.

1 Introduction

We consider the global attractor, that is, the attracting set for all finite energy solutions to a model
system. For the first time, we prove that in a particular U(1)-invariant dispersive Hamiltonian system
the global attractor is finite-dimensional and is formed by solitary waves. The investigation is inspired
by Bohr’s quantum transitions (“quantum jumps”). Namely, according to Bohr’s postulates, an
unperturbed electron lives forever in a quantum stationary state |E〉 that has a definite value E
of the energy. Under an external perturbation, the electron can jump from one state to another:
|E−〉 7−→ |E+〉. The postulate suggests the dynamical interpretation of the transitions as long-time
attraction

Ψ(t) −→ |E±〉, t→ ±∞ (1.1)

for any trajectory Ψ(t) of the corresponding dynamical system, where the limiting states |E±〉 generally
depend on the trajectory. Then the quantum stationary states should be viewed as the points of the
global attractor S which is the set of all limiting states. See Figure 1. Similar convergence to a global
attractor is well-known for dissipative systems, like Navier-Stokes equations (see [BV92, Tem97]). In
this context, the global attractor is formed by the static stationary states, and the corresponding
asymptotics (1.2) only holds for t→ +∞ (and with ω+ = 0).

∗On leave from Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia. Sup-
ported in part by Max-Planck Institute for Mathematics in the Sciences (Leipzig), the Wolfgang Pauli Institute and the
Faculty of Mathematics, Vienna University, and by DFG Grant (436 RUS 113/615/0-1).

†Supported in part by Max-Planck Institute for Mathematics in the Sciences (Leipzig) and by the NSF Grant DMS-
0434698.

1



o

o

oo

|E−〉

S

Ψ(0)
Ψ(t)

|E+〉

Figure 1: Attraction of any trajectory Ψ(t) to the set of solitary waves as t→ ±∞.

Following de Broglie’s ideas, Schrödinger identified the stationary states |E〉 as the solutions of the
wave equation that have the form ψ(x, t) = φω(x)e−iωt, where ω = E/~, and ~ is Planck’s constant.
Then the attraction (1.1) takes the form of the long-time asymptotics

ψ(x, t) ∼ ψ±(x, t) = φω±(x)e−iω±t, t→ ±∞, (1.2)

that hold for each finite energy solution. Our main impetus for considering this problem was the
natural question whether dispersive Hamiltonian systems could, in the same spirit, possess finite
dimensional global attractors, and whether such attractors are formed by the solitary waves. We
prove such a global attraction for a model nonlinear Klein-Gordon equation

ψ̈(x, t) = ψ′′(x, t) −m2ψ(x, t) + δ(x)F (ψ(0, t)), x ∈ R. (1.3)

Here m > 0, ψ(x, t) is a continuous complex-valued wave function, and F is a nonlinearity. The dots
stand for the derivatives in t, and the primes for the derivatives in x. We assume that equation (1.3)
is U(1)-invariant; that is, F (eiθψ) = eiθF (ψ), θ ∈ R.

Let S be the set of all functions φω(x) ∈ H1(R) with ω ∈ C, so that φω(x)e−iωt is a solution to (1.3).
Our main result is the following long-time asymptotics (cf. (1.2)) for nonlinear polynomial functions
F (ψ):

ψ(·, t) −→ S, t→ ±∞, (1.4)

where the convergence holds in local energy seminorms. In the linear case, when F (ψ) = aψ with
a ∈ R, there is no global attraction to S if a > 0, although the attraction holds if a ≤ 0 (see
Remark 2.5). Although we proved the attraction (1.4) to S, we have not proved the attraction to a
particular point of S, falling short of proving (1.2). Hypothetically, a solution can be drifting along
S, keeping asymptotically close to it, but never stopping at a single point of S. Let us comment on
related earlier results:
i) The asymptotics of type (1.1) with |E±〉 = 0 were discovered in the scattering theory [Str68, MS72,
Kla82, GV85]. In this case, the attractor S consists of the zero solution only, and the asymptotics
mean well-known local energy decay.
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ii) The global attraction (1.1) with |E±〉 6= 0 was established first in [Kom91, KSK97, Kom99, KS00]
for a number of nonlinear wave problems. There the attractor S is the set of all static stationary
states. Let us mention that this set could be infinite and contain continuous components.
iii) First results on the asymptotics of type (1.2), with ω± 6= 0 were obtained for nonlinear U(1)-
invariant Schrödinger equations in the context of asymptotic stability. This establishes asymptotics of
type (1.2) but only for solutions close to the solitary waves, proving the existence of a local attractor.
This was first done in [SW90], and then developed in [BP92, SW99, Cuc01] and others.

Let us mention that the global attraction (1.2) for equation (1.3) with m = 0 follows from [Kom91];
In that case, ω± = 0. Our proofs for the case m > 0 are quite different from the approach used in
[Kom91], and are based on a nonlinear spectral analysis of omega-limit trajectories at t→ ±∞.

2 Main Results

We consider the Cauchy problem for the equation (1.3) We define Ψ(t) =
[

ψ(x, t)
π(x, t)

]

and write the

Cauchy problem in the vector form:

Ψ̇(t) =

[

0 1
∂2
x −m2 0

]

Ψ(t) + δ(x)

[

0
F (ψ)

]

, Ψ|
t=0

= Ψ0 ≡
[

ψ0

π0

]

. (2.1)

Definition 2.1. (i) E is the Hilbert space of the states Ψ = (ψ(x), π(x)), with the norm

‖Ψ‖2
E := ‖ψ′‖2

L2 + ‖ψ‖2
L2 + ‖π‖2

L2 , where L2 = L2(R).

(ii) EF is the space E endowed with the Fréchet topology defined by the seminorms

‖Ψ‖2
E ,R := ‖ψ′‖2

L2

R

+ ‖ψ‖2
L2

R

+ ‖π‖2
L2

R

, where L2
R = L2(−R,R), R > 0.

We assume that the oscillator force F admits a real-valued potential: F (ψ) = −∇U(ψ), ψ ∈ C,
where U ∈ C2(C), and the gradient is taken with respect to Reψ and Imψ. Then equation (2.1)
formally can be written as a Hamiltonian system. We assume that the potential U(ψ) is U(1)-
invariant, where U(1) stands for the unitary group eiθ, θ ∈ R mod2π: Namely, we assume that there
exists u ∈ C2(R) such that U(ψ) = u(|ψ|2), ψ ∈ C.

Theorem 2.2. Assume that U(ψ) ≥ A − B|ψ|2, where A, B ∈ R and B < m. Then for every Ψ0 ∈ E
the Cauchy problem (2.1) has a unique solution Ψ(t) = (ψ(x, t), π(x, t)) ∈ C(R, E). The energy is
conserved:

1

2

∫

R

(

|π(x, t)|2 + |ψ′(x, t)|2 +m2|ψ(x, t)|2
)

dx+ U(ψ(0, t)) = const, t ∈ R,

and a priori bound ‖Ψ(t)‖E ≤ C(‖Ψ0‖E ) holds for t ∈ R.

Definition 2.3. (i) The solitary waves of equation (2.1) are solutions of the form

Ψ(t) = Φωe
−iωt, where ω ∈ C, Φω =

[

φω(x)
−iωφω(x)

]

, φω ∈ H1(R). (2.2)

(ii) The solitary manifold is the set S = {Φω: ω ∈ C} of all amplitudes Φω.
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The profiles of the solitary waves have the form φω(x) = Ce−κ|x|, where C ∈ C, κ ≥ 0, and ω ∈ C

are related by the linear dispersion relation ω2 = m2 − κ2 and the coupling identity 2κC = F (C).
Thus, S is generically a two-dimensional real submanifold of E that can be parametrized by the
corresponding complex amplitudes C.

Theorem 2.4. Let the nonlinearity F (ψ) satisfy F (ψ) = −∇U(ψ), where

U(ψ) =

N
∑

n=0

un|ψ|2n, N ≥ 2; un ∈ R, uN > 0. (2.3)

Then for any Ψ0 ∈ E the solution Ψ(t) ∈ C(R, E) to the Cauchy problem (2.1) with Ψ(0) = Ψ0

converges to the set S in the space EF :

Ψ(t)
EF−→ S, t→ ±∞. (2.4)

The assumption (2.3) that the nonlinearity is polynomial is crucial in our argument: It will allow
to apply the Titchmarsh convolution theorem. Under this assumption, nonzero solitary waves (2.2)
correspond only to real values of ω ∈ (−m,m).

Remark 2.5. In the linear case, when F (ψ) = aψ and a > 0, the equation admits two linearly
independent solutions ψ±(x, t) = e−a|x|/2e−iω±t with ω± = ±

√

m2 − a2/4 if m 6= a/2, and e−m|x|,
te−m|x| if m = a/2. Hence the global attraction (2.4) fails because of the superposition principle. For
a ≤ 0 we have S = {0}, and the attraction (2.4) holds.

Strategy of the proof of Theorem 2.4 For the Klein-Gordon equation with m > 0, the dispersive
relation ω2 = k2 + m2 results in the group velocities v = ω ′(k) = k/

√
k2 +m2, so every velocity

0 ≤ |v| < 1 is possible. This complicates considerably the investigation of the energy propagation, so
the approach of [Kom91] built on the fact that the group velocity was |v| = 1 no longer works.

We prove the absolute continuity of the spectrum of the solution for |ω| > m. This observation
is similar to the well-known Kato Theorem. The proof is not obvious and relies on the complex
Fourier-Laplace transform and the Wiener-Paley arguments.

We then split the solution into two components: Dispersive and bound, with the frequencies
|ω| > m and ω ∈ [−m,m], respectively. The dispersive component is an oscillatory integral of
plane waves, while the bound component is a superposition of exponentially decaying functions. The
stationary phase argument leads to a local decay of the dispersive component, due to the absolute
continuity of its spectrum. This reduces the long-time behavior of the solution to the behavior of the
bound component.

Next, we establish the spectral representation for the bound component. For this, we need to know
an optimal regularity of the corresponding spectral measure; We have found out that the spectral
measure belongs to the space of quasimeasures which are Fourier transforms of bounded continuous
functions. The spectral representation implies compactness in the space of quasimeasures, which in
turn leads to the existence of omega-limit trajectories at t→ ±∞.

Further, we prove that an omega-limit trajectory itself satisfies the nonlinear equation (1.3), and
this implies the crucial spectral inclusion: The spectrum of the nonlinear term is included in the
spectrum of the omega-limit trajectory. We then reduce the spectrum of this limiting trajectory to
a single harmonic ω± ∈ [−m,m] using the Titchmarsh convolution theorem [Tit26] (see also [Hör90,
Theorem 4.3.3]). In turn, this means that any omega-limit trajectory lies in the manifold S of the
solitary waves, proving that S is the global attractor.

4



References

[BL83] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I; II. Existence of a ground
state. Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345; 347–375.

[BP92] V. S. Buslaev and G. S. Perel′man, Scattering for the nonlinear Schrödinger equation: states
that are close to a soliton. Algebra i Analiz 4 (1992), no. 6, 63–102.

[BV92] A. V. Babin and M. I. Vishik, Attractors of evolution equations, vol. 25 of Studies in
Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1992.

[Cuc01] S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations. Comm. Pure
Appl. Math. 54 (2001), no. 9, 1110–1145.

[GV85] J. Ginibre and G. Velo, Time decay of finite energy solutions of the nonlinear Klein-Gordon
and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43 (1985), no. 4, 399–442.
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