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We consider the dynamics of a harmonic crystal ind dimensions withn compo-
nents,d,n arbitrary,d,n>1, and study the distributionm t of the solution at time
tPR. The initial measurem0 has a translation-invariant correlation matrix, zero
mean, and finite mean energy density. It also satisfies a Rosenblatt—resp.
Ibragimov–Linnik type mixing condition. The main result is the convergence ofm t

to a Gaussian measure ast→`. The proof is based on the long time asymptotics of
the Green’s function and on Bernstein’s ‘‘room-corridors’’ method. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1571658#

I. INTRODUCTION

Despite considerable efforts, the convergence to equilibrium for a mechanical syste
remained as an extremely difficult problem. It has been recognized early on that for an infi
extended system, possibly on top of local hyperbolicity, the flow of statistical informatio
infinity serves as a mechanism for relaxation. The two prime examples are the ideal gas a
harmonic crystal. We consider here the latter case. In the harmonic approximation the cry
characterized by the displacement fieldu(x), where xPG, G is a regular lattice inRd, and
u(x)PRn with n depending on the number of atoms in the unit cell. The fieldu(x) is governed by
a discrete wave equation. We will consider arbitraryd,n and for notational simplicity setG
5Zd.

Our motivation to return to a well studied model is to a much wider class of initial meas
than before. This project requires novel mathematical techniques. They have been develo
the wave and Klein–Gordon equation onRd in Refs. 6–8, but the discrete structure poses ex
difficulties.

Let us briefly comment on previous work. In Ref. 14 a general criterion is given w
ensures mixing and Bernoulliness of the corresponding mechanical flow. Thereby the conve
to equilibrium is established for initial measures which are absolutely continuous with resp
the canonical Gaussian measure. In Ref. 14 moments of the displacement field are studie
allows us to reduce the spectral analysis of the Liouvillian flow to the spectral properties o
dynamical group defined on solutions of finite energy. Since the crystal is assumed to be
geneous, these spectral properties are determined by the dispersion relationsvk(u), k
51, . . . ,n. The Liouvillian flow is mixing and even Bernoulli, if, except for crossing points, ea
vk(u) is a real-analytic function which is not identically constant. In particular, the Lebes
measure of the set$uPTd: “vk(u)50% is equal to zero. In Ref. 20, for the cased5n51, initial
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measures are considered which have distinct temperatures to the left and to the right. In
again d5n51, the convergence to equilibrium is proved for a more general class of in
measures characterized by a mixing condition of Rosenblatt—resp. Ibragimov–Linnik typ
which are asymptotically translation-invariant to the left and to the right.

The detailed stationary phase analysis of Ref. 2 does not directly generalize tod>2. Rather,
we have to develop a novel ‘‘cutoff strategy’’ which more carefully exploits the mixing condi
in Fourier space. This approach allows us to alld within essence the same conditions for t
dispersion relations as in Ref. 14. Our extension requires the technique of holomorphic fun
of several complex variables.

In parentheses we remark that, for the ideal gas, Dobrushin and Suhov3 first realized the
importance of a mixing condition on the initial measure. In Ref. 9 it is replaced by the cond
of finite entropy per unit volume thus establishing convergence whenever the specific p
number, energy, and entropy are finite. No such general result seems to be available
harmonic crystal.

We outline our main result and strategy of proof. The displacement fieldu(x) is the deviation
of the configuration of crystal atoms from their equilibrium positions. Assuming them to be s
and expanding the forces to linear order yields the discrete linear wave equation,

ü~x,t !52( yPZdV~x2y!u~y,t !; uu t505u0~x!, u̇u t505v0~x!, xPZd. ~1.1!

Here u(x,t)5„u1(x,t), . . . ,un(x,t)…,u05(u01, . . . ,u0n)PRn and correspondingly forv0 . V(x)
is the interaction~or force! matrix, „Vkl(x)…, k,l 51, . . . ,n. The dynamics~1.1! is invariant under
lattice translations.

Let us denote byY(t)5„Y0(t),Y1(t)…[„u(•,t),u̇(•,t)…, Y05(Y0
0 ,Y0

1)[„u0(•),v0(•)…. Then
~1.1! takes the form of an evolution equation,

Ẏ~ t !5AY~ t !, tPR; Y~0!5Y0 . ~1.2!

Formally, this is the Hamiltonian system since

AY5JS V 0

0 1DY5J ¹H~Y!, J5S 0 1

21 0D . ~1.3!

HereV is a convolution operator with the matrix kernelV andH is the Hamiltonian functional,

H~Y!5 1
2 ^v,v&1 1

2 ^Vu,u&, Y5~u,v !, ~1.4!

where^v,v&5(xPZduv(x)u2 and^Vu,u&5(x,yPZd„V(x2y)u(y),u(x)…,(• ,•) being the real sca-
lar product in the Euclidean spaceRn.

We assume that the initial datumY0 is a random element of the Hilbert spaceHa of real
sequences; see Definition 2.1.Y0 is distributed according to the probability measurem0 of mean
zero and satisfying the conditionsS1–S3 below. GiventPR, denote bym t the probability mea-
sure forY(t), the solution to~1.2! with random initial dataY0 . We study the asymptotics ofm t as
t→6`.

The correlation matrices of the initial data are supposed to be translation-invariant, i.e
i , j 50,1,

Q0
i j ~x,y!ªE„Y0

i ~x! ^ Y0
j ~y!…5q0

i j ~x2y!, x,yPZd, ~1.5!

though our methods require in fact much weaker conditions. We also assume that the initia
‘‘energy’’ density is finite,

e0ªE@ uu0~x!u21uv0~x!u2#5tr q0
00~0!1tr q0

11~0!,`, xPZd. ~1.6!
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Finally, it is assumed that the measurem0 satisfies a mixing condition of a Rosenblatt—res
Ibragimov–Linnik type, which means that

Y0~x! and Y0~y! are asymptotically independent asux2yu→`. ~1.7!

Our main result is the~weak! convergence of the measuresm t on the Hilbert spaceHa with a
,2d/2,

m t⇁m` as t→`. ~1.8!

m` is a Gaussian measure onHa . A similar convergence result holds fort→2`. Explicit
formulas for the correlation functions of the limit measurem` are given in~2.18!–~2.22!. As an
application of the results, we show that the initial ‘‘white noise’’-correlations provide the l
measurem` which coincides with the Gibbs canonical measure with the temperature;e0 . Re-
spectively,m` is close to the canonical measure if the initial correlations are close to the w
noise.

To prove the convergence~1.8! we follow general strategy.2,4,6,7There are three steps.

I. The family of measuresm t , t>0, is weakly compact inHa with a,2d/2.

II. The correlation functions converge to a limit, fori , j 50,1,

Qt
ij~x,y!5EYi~x!^Yj~y! mt~dY!→Q`

ij ~x,y! as t→`. ~1.9!

III. The characteristic functionals converge to a Gaussian one,

m̂ t~C!ªE exp~ i ^Y,C&!m t~dY!→expH 2
1

2
Q`~C,C!J as t→`. ~1.10!

Here C5(C0,C1)PD5D % D, D5C0(Zd) ^ Rn, whereC0(Zd) denotes the space of the re
sequences with finite support,^Y,C&5( i 50,1(xPZd„Yi(x),C i(x)… andQ` is the quadratic form
with the matrix kernel„Q`

i j (x,y)…i , j 50,1,

Q`~C,C!5 (
i , j 50,1

(
x,yPZd

„Q`
i j ~x,y!,C i~x! ^ C j~y!…. ~1.11!

Note that~1.1! is the translation-invariant convolution equation and admits a simple structu
the Fourier space. As a consequence, Fourier representation plays a central role in our pr
propertiesI and II . On the other hand, Fourier transform alone does not suffice in provingIII ,
since our main condition~1.7! is stated in the coordinate space and its equivalent interpretatio
Fourier space is obscure.

PropertyI follows by the method:22 we prove a uniform bound for the covariance ofm t and
refer to the Prokhorov Theorem. PropertyII is deduced from an analysis of the oscillatory integ
representation of the correlation function in Fourier space. An important role is attribute
Lemma 3.1 reflecting the properties of the Fourier transformed correlation functions wh
derived from the mixing condition. To proveIII we exploit the dispersive properties of th
dynamics~1.1! in coordinate space. The dispersion follows from a stationary phase metho
plied to the oscillatory integral representation of the Green’s function in Fourier space
dispersion allows us to represent the solution as a sum of weakly dependent random varia
the Bernstein-type ‘‘room-corridor’’ partition.

Let us explain in more detail the main idea for the proof ofIII . First let us consider the cas
n51 and the nearest neighbor crystal for which the potential energy has the form
 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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1

2 (
x,yPZd

„V~x2y!u~y!,u~x!…5
1

2 (
xPZd

S (
i 51

d

uu~x1ei !2u~x!u21m2uu~x!u2D , ~1.12!

where m>0 and ei5(d i1 , . . . ,d id). The solution is represented through the Green’s funct
G(t,x),

Y~x,t !5 (
yPZd

G~ t,x2y!Y0~y!. ~1.13!

The long-time asymptotics of the Green’s function is analyzed by the stationary phase m
based on the dispersion relation

v~u!ªV̂1/2~u!5S 2(
j 51

d

~12cosu j !1m2D 1/2

, uPTd, ~1.14!

whereTd is the reald-torus andV̂(u) stands for the Fourier transform ofV(x). The main features
of v for m.0 are

~ i! v~u!Þ0, uPTd , and ~ ii ! mesC50, ~1.15!

whereC is thecritical set$uPTd:det Hessv(u)50% and ‘‘mes’’ stands for the Lebesgue measu
in Td. The Green’s function has distinct asymptotic behavior in three zones of (x,t)-space: inside,
resp., outside the light cone and in the ‘‘buffer zone,’’ which is a small conical neighborhood o
boundary of the light cone. The light cone is determined by the group velocities¹v~u! of the
phonons, and its boundary is determined by the group velocities¹v~u! with ‘‘critical’’ uPC, since
they correspond to the maximal values ofu¹v(u)u with a fixed direction of¹v(u) @cf. ~1.16!#.
Therefore, the buffer zone is determined by the velocities¹v~u! with the u from a small neigh-
borhood of the critical setC. The Green’s function decays rapidly outside the light cone, ast2d/2

inside the light cone except for the buffer zone, and more slowly in the buffer zone; cf.~1.18!.
Now let us discuss the general case whenn>1. For n.1 an additional important featur

occurs. In this case we haven dispersion relationsvk(u), k51, . . . ,n, which are the eigenvalue
of the matrixV̂1/2(u). Thus there can be ‘‘crossing points’’ where two or more dispersion relat
vk(u) coincide which implies that they are not differentiable, in general. In this case the dec
the Green’s function generally is slower thant2d/2 everywhere in (x,t)-space. We estimate th
decay by the stationary phase method, hence we need smooth branches of the dispersion
vk(u) at least locally inu. We establish the existence of the branches outside a set of the Leb
measure zero inTd ~see Lemma 2.2!. For the proof we use the advanced variant of the Weierst
Preparation Theorem from Ref. 15 and the analytic stratification of analytic sets.12

For n>1 we define the critical setC as the subset ofTd which is the union overk
51, . . . ,n of all the pointsu either with a nondifferentiablevk(u), or with a degenerate Hessia
of vk(u), or with vk(u)50. Lemmas 2.2, 2.3 imply that mesC50 which plays the central role in
all proofs in the paper. The critical set is never empty. For example, let us fixk51, . . . ,n and
consider the pointuPTd with the maximal group velocityu¹vk(u)u.0. Then det Hessvk(u)
50 since Hessvk(u) ¹vk(u)50:

„Hessvk~u! ¹vk~u!…i5(
j

]2vk~u!

]u i ]u j

]vk~u!

]u j
5

1

2

]

]u i
(

j
U]vk~u!

]u j
U2

50, i 51, . . . ,d,

~1.16!

provided the derivatives exist. Thus even ford5n51 theuniform in xPR decay of the Green’s
function is slower thant21/2 sincev9(u) vanishes in some points. To overcome this difficulty,
Ref. 2 it is required thatv-(u)Þ0 at points withv9(u)50. Then the uniform decay of the
Green’s function ist21/3 which suffices in the cased51 together with an additional assumption o
 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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the higher moments of the initial measure. In contrast, the critical set and the slow decay
Green’s function do not occur for the Klein–Gordon equation analyzed in Refs. 4, 6.

For d,n>1 Suhov and Shuhov have proved in Ref. 19 the convergence of the covar
~1.9!, for a simple singularityof vk(u) ~in Arnold’s terminology1! in the pointsuPC with the
degenerate Hessian. However, a similar detailed analysis of all degenerate points ford,n>1
seems to be impossible. We avoid it by a novel ‘‘cutoff’’ strategy which allows us to cover
general case when the Lebesgue measure of the critical setC is zero. Namely, we choose an«
.0 and split the Fourier transform of the solution in two componentsŶ(u,t)5Ŷf(u,t)
1Ŷg(u,t) where Ŷf(u,t)50 outside the«-neighborhood of the critical setC while Ŷg(u,t)50
inside the«/2-neighborhood ofC. First, we use the mixing condition to estimate the contribut
from the ‘‘critical’’ componentŶf : we prove that it is small in the mean, i.e., its dispersion
negligible uniformly int>0, if «.0 is sufficiently small. This follows from the identity mesC
50 since the Fourier transforms of the initial correlation functions are absolutely continuou
to the mixing condition. A further step is to develop a Bernstein type argument to prov
Gaussian limit for the main ‘‘noncritical’’ componentYg . We write it in the form~1.13!:

Yg~x,t !5 (
yPZd

Gg~ t,x2y!Y0~y!, ~1.17!

whereGg(t,x2y) is the ‘‘truncated’’ Green’s function which is defined similarly toYg(x,t): its
Fourier transformĜg(t,u) is zero inside the«/2-neighborhood ofC. Then all the dispersion rela
tionsvk(u) are smooth and nondegenerate on the support ofĜg(t,u), hence the truncated Green
function has the standard decay,

Gg~ t,x2y!<H Ct2d/2, uy2xu<ct,

Cp~ utu1ux2yu11!2p, uy2xu>ct,
~1.18!

with somec.0 and anyp.0; cf. ~5.2!, ~5.3!. Therefore, the representation~1.17! demonstrates
that for a fixedxPZd, the main contribution toYg(x,t) comes from the sectionBt(x)5$y
PZd: uy2xu<ct% of the light cone at timet. The ‘‘volume’’ of the section@i.e., the number of the
pointsyPZdùBt(x)] is uBt(x)u;td. Therefore,~1.17! becomes, roughly speaking,

Yg~x,t !;
(yPBt(x)Y0~y!

AuBtu
, t→`. ~1.19!

This implies the Gaussian limit by the Ibragimov–Linnik Central Limit Theorem,13 since the
random valuesY0(y) are weakly dependent because of the mixing condition~1.7!.

Remarks 1.1:~i! Physically, the asymptotics~1.18! reflects the isotropic propagation o
phonons in the noncritical spectrum. The isotropy provides a ‘‘dynamical mixing’’ which lead
the Gaussian behavior by the statistical mixing condition~1.7!. So the convergence to the stati
tical equilibrium ~1.8! is provided by both kinds of the mixing simultaneously: the statisti
mixing condition~1.7! and the dynamical mixing~1.18!.

~ii ! The degree2d/2 in ~1.18! is related to the energy conservation since the Hamilton
~1.4! is a quadratic form. Roughly speaking,~1.18! means the ‘‘energy diffusion,’’ and the degre
2d/2 resembles the diffusion kernel.

Finally, let us comment on our conditions concerning the interaction matrixV(x). We assume
the conditionsE1–E4 below which in a similar form appear also in Refs. 2, 14.E1 means the
exponential space-decay of the interaction in the crystal.E2, resp.E3, means that the potentia
energy is real, resp. non-negative.E4 eliminates the constant part of the spectrum and ensures
mesC50 @cf. ~1.15!#. We also introduce a new simple conditionE5 for the casen.1 which
eliminates thediscretepart of the spectrum for the covariance dynamics. It can be conside
weakened to the conditionE58 from Remark 2.10 (i i i ). For example, the conditionE58 holds for
 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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the canonical Gaussian measures which are considered in Ref. 14. We show that the conditE4
andE5 hold for ‘‘almost all’’ matrix-functionsV(•) with the finite range of the interaction.

Furthermore, we do not require thatvk(u)Þ0, uPTd: note thatv(0)50 for the elastic lattice
~1.14! in the casem50. Our results hold whenever mes$uPTd:vk(u)50%50. To cover this case
we impose the new conditionES which is roughly speaking necessary and sufficient for
uniform bounds of the covariance. It can be simplified to the stronger condition

iV̂21~u!iPL1~Td!, ~1.20!

from Ref. 14, which holds for the elastic lattice~1.14! if either d>3 or m.0. The condition~1.20!
is equivalent toES for the canonical Gibbs measures considered in Ref. 14. However,~1.20! does
not hold in some particular interesting cases: for instance, for the elastic lattice~1.14! in the case
d51,2 andm50, as it is pointed out in Ref. 14.

The main results of our paper are stated in Sec. II: TheoremA in Sec. II D, and its application
in Sec. II E 4. The convergence~1.9! and the compactnessI are established in Sec. III, and th
convergence~1.10! in Secs. IV–VIII. Section IX concerns the ergodicity and the mixing proper
of the limit measure. In the Appendix we analyze the crossing points of the dispersion rela

II. MAIN RESULTS

A. Dynamics

We assume that the initial dateY0 belongs to the phase spaceHa , aPR, defined below.
Definition 2.1:Ha is the Hilbert space of pairs Y5„u(x),v(x)… of Rn-valued functions of

xPZd endowed with the norm

iYia
25 (

xPZd
„uu~x!u21uv~x!u2

…~11uxu2!a,`. ~2.1!

We impose the following conditionsE1–E5 on the matrixV.
E1 There exist constantsC,a.0 such that uVkl(z)u<Ce2auzu, k,l PInª$1, . . . ,n%, z

PZd.
Let us denote byV̂(u)ª„V̂kl(u)…k, l PIn

, where V̂kl(u)[(zPZdVkl(z)eizu, uPTd, and Td

denotes thed-torusTd5Rd/2pZd.
E2 V is real and symmetric, i.e.,Vlk(2z)5Vkl(z)PR, k,l PIn , zPZd.
The condition implies thatV̂(u) is a real-analytic Hermitian matrix-function inuPTd.
E3 The matrixV̂(u) is non-negative definite for eachuPTd.
The condition means that Eq.~1.1! is a hyperbolic like wave and Klein–Gordon equatio

considered in Refs. 6–8. Let us define the Hermitian non-negative definite matrix,

V~u!ª„V̂~u!…1/2>0, ~2.2!

with the eigenvaluesvk(u)>0, kPIn , the dispersion relations. For eachuPTd the Hermitian
matrix V~u! has the diagonal form in the basis of the orthogonal eigenvectors$ek(u):kPIn%:

V~u!5B~u!S v1~u! ¯ 0

0 � 0

0 ¯ vn~u!
D B* ~u!, ~2.3!

whereB(u) is a unitary matrix. It is well known that the functionsvk(u) and B(u) are real-
analytic outside the set of the ‘‘crossing’’ pointsu* : vk(u* )5v l(u* ) for somelÞk. However,
generally the functions are not smooth at the crossing points ifvk(u)Óv l(u). Therefore, we need
the following lemma which we prove in the Appendix~cf. Ref. 21, Lemma 1.1!.
 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Lemma 2.2: Let the conditionsE1, E2 hold. Then there exists a closed subsetC* ,Td such
that we have the following:

(i) the Lebesgue measure ofC* is zero:

mesC* 50. ~2.4!

(ii) For any point QPTd\C* there exists a neighborhoodO(Q) such that each dispersion
relation vk(u) and the matrix B(u) can be chosen as the real-analytic functions inO(Q).

(iii) The eigenvaluesvk(u) have constant multiplicity inTd\C* , i.e., it is possible to enumerat
them so that we have foruPTd\C* ,

v1~u![¯[vr1
~u!, vr111~u![¯[vr2

~u!, . . . , vrs11~u![¯[vn~u!, ~2.5!

vrs
~u!Óvrn

~u! if sÞn, 1<r s ,r n<r s11ªn. ~2.6!

(iv) The spectral decomposition holds,

V~u!5(
1

s11

vrs
~u!Ps~u!, uPTd\C* , ~2.7!

wherePs(u) is the orthogonal projection inRn which is real-analytic function ofuPTd\C* .
Below we denote byvk(u) the local real-analytic functions from Lemma 2.2 (i i ). Our next
condition is the following:

E4 Dk(u)Ó0, ;kPIn , whereDk(u)ªdet(]2vk(u)/]ui ]uj)i,j51
d , uPTd\C* .

Let us denoteC0ª$uPTd:detV̂(u)50% and Ckª$uPTd\C* : Dk(u)50%, kPIn . The following
lemma is also proved in the Appendix.

Lemma 2.3: Let the conditionsE1–E4 hold. ThenmesCk50 for k50,1,. . . ,n.
Our last condition onV is the following:

E5 For eachkÞ l the identityvk(u)2v l(u)[const2 , uPTd does not hold with const2Þ0,
and the identityvk(u)1v l(u)[const1 does not hold with const1Þ0.

This condition holds trivially in the casen51.
We show that the conditionsE4 and E5 hold for ‘‘almost all’’ functions V satisfying the

conditionsE1, E2. More precisely, let us fix an arbitraryN>1 and denote byRN the set of the
‘‘finite range’’ interaction matricesV with V(x)50 for maxiuxiu.N, and satisfying the condition
E2. In the Appendix we prove the following lemma.

Lemma 2.4: For any N>1 the conditionsE4 andE5 hold for the matrix-functions V from an
open and dense subset ofRN .

The following proposition is proved in Ref. 14, p. 150 and Ref. 2, p. 128.
Proposition 2.5: LetE1 and E2 hold, andaPR. Then

(i) for any Y0PHa there exists a unique solution Y(t)PC(R,Ha) to the Cauchy problem
(1.2).

(ii) The operator U(t):Y0°Y(t) is continuous inHa .

Proof: Applying the Fourier transform to~1.2!, we obtain

Ẏ̂~u,t !5Â~u!Ŷ~u,t !, tPR, Ŷ~0!5Ŷ0 , ~2.8!

where

Â~u!5S 0 1

2V̂~u! 0D , uPTd. ~2.9!
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Note that Ŷ(•,t)PD8(Td) for tPR. On the other hand,V̂(u) is a smooth function byE1.
Therefore, the solutionŶ(u,t) of ~2.8! exists, is unique and admits the representationŶ(u,t)
5exp„Â(u)t…Ŷ0(u). It becomes~1.13! in the coordinate space, where the Green’s functionG(t,z)
admits the Fourier representation

G~ t,z!ªFu→z
21 @exp„Â~u!t…#5~2p!2dE

Td
e2 izu exp„Â~u!t…du. ~2.10!

Hence, by the partial integration,G(t,z);uzu2p as uzu→` for any p.0 and boundedutu since
Â(u) is the smooth function ofuPTd. Therefore, the convolution representation~1.13! implies
Y(t)PHa . h

B. The convergence to statistical equilibrium

Let (V,S,P) be a probability space with expectationE and let B(Ha) denote the Borel
s-algebra inHa . We assume thatY05Y0(v,•) in ~1.2! is a measurable random function wit
values in„Ha , B(Ha)…. In other words, for eachxPZd the mapv°Y0(v,x) is a measurable
mapV→R2n with respect to the~completed! s-algebrasS andB(R2n). ThenY(t)5U(t)Y0 is
again a measurable random function with values in„Ha ,B(Ha)… owing to Proposition 2.5. We
denote bym0(dY0) a Borel probability measure onHa giving the distribution of theY0 . Without
loss of generality, we assume (V,S,P)5„Ha ,B(Ha),m0… and Y0(v,x)5v(x) for
m0(dv)—almost allvPHa and eachxPZd.

Definition 2.6:m t is a Borel probability measure inHa which gives the distribution of Y(t):

m t~B!5m0~U~2t !B!, ;BPB~Ha!, tPR. ~2.11!

Our main goal is to derive the convergence of the measuresm t as t→`. We establish the
weak convergence ofm t in the Hilbert spacesHa with a,2d/2:

m t⇁Ha

m` as t→`, ~2.12!

wherem` is a limit measure on the spaceHa , a,2d/2. This means the convergence

E f ~Y!m t~dY!→E f ~Y!m`~dY!, t→`, ~2.13!

for any bounded continuous functionalf on Ha .
Definition 2.7: The correlation functions of the measurem t are defined by

Qt
i j ~x,y!5E„Yi~x,t ! ^ Yj~y,t !…, i , j 50,1, x,yPZd, ~2.14!

if the expectations on the rhs are finite. Here Yi(x,t) are the components of the random soluti
Y(t)5„Y0(•,t),Y1(•,t)….

For a probability measurem on Ha we denote bym̂ the characteristic functional~Fourier
transform!,

m̂~C!5E exp~ i ^Y,C&! m~dY!, CPD.

A measurem is called Gaussian~of zero mean! if its characteristic functional has the form

m̂~C!5exp$2 1
2Q~C,C!%, CPD, ~2.15!

whereQ is a real non-negative quadratic form inD. A measurem is called translation-invariant if
m(ThB)5m(B), BPB(Ha), hPZd, whereThY(x)5Y(x2h), xPZd.
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C. The mixing condition

Let O(r ) denote the set of all pairs of the subsetsA, B,Zd at distance dist(A, B)>r and
s(A) be thes-algebra inHa generated byY(x) with xPA. Define the Ibragimov–Linnik mixing
coefficient of a probability measurem0 on Ha by ~cf. Ref. 13, Definition 17.2.2!

w~r !ª sup
(A,B)PO(r )

sup
APs(A),BPs(B)

m0(B).0

um0~AùB!2m0~A!m0~B!u
m0~B!

. ~2.16!

Definition 2.8: The measurem0 satisfies a strong, uniform Ibragimov–Linnik mixing condition
if w(r )→0 as r→`.

Below, we specify the rate of decay ofw ~see conditionS3!.

D. Statistical conditions and results

We assume that the initial measurem0 satisfies the following conditionsS0–S3:
S0 m0 has zero expectation value,EY0(x)[0, xPZd.
S1 m0 has translation-invariant correlation matrices, i.e., Eq.~1.5! holds forx,yPZd.
S2 m0 has a finite mean energy density, i.e., Eq.~1.6! holds.
S3 m0 satisfies the strong uniform Ibragimov–Linnik mixing condition with

w̄ªE
0

1`

r d21w1/2~r ! dr,`. ~2.17!

We will deduce fromS0–S3 that q̂0
i j PC(Td), i , j 50,1 ~see Lemma 3.1!. This makes sense of ou

last conditionES concerning the initial covariance and the matrixV~u!. We need it only in the
case whenC0Þ0” , i.e., detV(u)50 for some pointsuPTd:
ES iV2 i(u)q̂0

i j (u)V2 j (u)iPL1(Td) for i , j 50,1.
This condition follows fromS0–S3 if i 5 j 50 or C050” .

Next introduce the correlation matrix of the limit measurem` . It is translation-invariant@cf.
~1.5!#:

Q`~x,y!5„q`
i j ~x2y!…i , j 50,1. ~2.18!

In the Fourier transform we have locally outside the critical setC* ~see Lemma 2.2!,

q̂`
i j ~u!5B~u!M`

i j ~u!B* ~u!, i , j 50,1, ~2.19!

whereB(u) is the smooth unitary matrix from Lemma 2.2 (i i ) andM`
i j (u) is ann3n-matrix with

the smooth entries„M`
i j (u)…kl5xkl„B* (u)M0

i j (u)B(u)…kl . Here we set@see~2.5!#

xkl5H 1, if k,l P~r s21 ,r s#, s51, . . . ,s11,

0, otherwise,
~2.20!

with r 0ª0, r s11ªn, and

M0~u!ª
1

2 S q̂0
00~u!1V21~u! q̂0

11~u! V21~u! q̂0
01~u!2V21~u! q̂0

10~u! V~u!

q̂0
10~u!2V q̂0

01~u! V21~u! q̂0
11~u!1V~u! q̂0

00~u! V~u!
D . ~2.21!

The local representation~2.19! can be expressed globally as

q̂`
i j ~u!5 (

s51

s11

Ps~u!M0
i j ~u!Ps~u!, uPTd\C* , i , j 50,1, ~2.22!
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wherePs(u) is the spectral projection from~2.7!.
Remark 2.9:The conditionES implies that (M0

i j )klPL1(Td), k,l PIn . Therefore,~2.22! and
~2.4! imply that also (q̂`

i j )klPL1(Td), k,l PIn .
Theorem A: Let d,n>1, a,2d/2 and assume that the conditionsE1–E5, S0–S3 hold. If

C0Þ0” , then we assume also thatES holds. Then

(i) the convergence in (2.12) holds.
(ii) The limit measurem` is a Gaussian translation-invariant measure onHa .
(iii) The characteristic functional ofm` is the Gaussian,

m̂`~C!5exp$2 1
2 Q`~C, C!%, CPD, ~2.23!

whereQ` is the quadratic form defined in (1.11).
(iv) The measurem` is invariant, i.e.,@U(t)#* m`5m` , tPR.

Remarks 2.10:~i! In the casen51, the formulas~2.21!, ~2.22! become

q̂`5M05
1

2 S q̂0
001v22 q̂0

11 q̂0
012q̂0

10

q̂0
102q̂0

01 q̂0
111v2 q̂0

00D .

~ii ! TheuniformRosenblatt mixing condition18 also suffices, together with a higher power.2
in the bound~1.6!: there existsd.0 such that

E„uu0~x!u21d1uv0~x!u21d
…,`.

Then ~2.17! requires a modification:*0
1`r d21ap(r )dr,`, with p5min(d/(21d),1/2), where

a(r ) is the Rosenblatt mixing coefficient defined as in~2.16! but withoutm0(B) in the denomi-
nator. With these modifications, the statements of TheoremA and their proofs remain essential
unchanged.

~iii ! The arguments with conditionE5 in Proposition 3.2@see~3.7!–~3.13! below# demonstrate
that the condition could be considerably weakened. Namely, it suffices to assumeE58. If for some
kÞ l we have eithervk(u)1v l(u)[const1Þ0 or vk(u)2v l(u)[const2Þ0, then

„B* ~u!q̂0
i j ~u!B~u!…kl50, uPTd, i , j 50,1. ~2.24!

The assertions~i!–~iii ! of TheoremA follow from Propositions 2.11 and 2.12.
Proposition 2.11: The family of the measures$m t , tPR% is weakly compact inHa with any

a,2d/2, and the bounds hold:

sup
t>0

EiU~ t !Y0ia
2,`. ~2.25!

Proposition 2.12: For everyCPD, the convergence (1.10) holds.
Proposition 2.11 ensures the existence of the limit measures of the family$m t , tPR%, while

Proposition 2.12 provides the uniqueness. Propositions 2.11 and 2.12 are proved in Secs.
IV–VIII, respectively.

Theorem A (iv) follows from ~2.12! since the groupU(t) is continuous inHa by Proposition
2.5 (i i ).

E. Examples and applications

Let us give the examples of the equations~1.1! and measuresm0 which satisfy all conditions
E1–E5, S0–S3, andES.
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1. Harmonic crystals

All conditionsE1–E5 hold for a one-dimensional~1-D! crystal withn51 considered in Ref.
2. For anyd>1 andn51 consider the simple elastic lattice corresponding to the quadratic
~1.12! with mÞ0. ThenV(x)5Fu→x

21 v2(u) with v~u! defined by~1.14!, satisfiesE1–E4 with
C* 50” . In these examples the setC0 is empty, hence the conditionES is superfluous. ConditionE5
holds trivially sincen51.

2. Gaussian measures

We considern51 and construct Gaussian initial measuresm0 satisfying S0–S3. We will
definem0 by the correlation functionsq0

i j (x2y) which are zero foriÞ j , while for i 50,1,

q̂0
i i ~u!ªFz→uq0

i i ~z!PL1~Td!, q̂0
i i ~u!>0. ~2.26!

Then by the Minlos theorem11 there exists a unique Borel Gaussian measurem0 on Ha , a,
2d/2, with the correlation functionsq0

i j (x2y). The measurem0 satisfiesS0–S2. Further, let us
provide, in addition to~2.26!, that

q0
i i ~z!50, uzu>r 0 . ~2.27!

Then the mixing conditionS3 follows with w(r )50, r>r 0 , since for Gaussian random values t
orthogonality implies the independence. For example,~2.26! and ~2.27! hold if we setq0

i i (z)
5 f (z1) f (z2)• ¯ • f (zd), where f (z)5n02uzu for uzu<n0 and f (z)50 for uzu>n0 with n0

ª@r 0 /Ad# ~the integer part!. Then by the direct calculation we obtainf̂ (u)5(12cosn0u)/(1
2cosu), uPT1, and ~2.26! holds. The measurem0 is nontrivial if r 0>Ad: otherwisen050, so
q0

i j (z)[0, and the measurem0(dY0) is concentrated at the pointY050.

3. Non-Gaussian measures

Let us choose some odd bounded nonconstant functionsf 0, f 1PC(R) and consider a random
function „Y0(x),Y1(x)… with the Gaussian distributionm0 from the previous example. Let u
definem0* as the distribution of the random function (f 0

„Y0(x)…, f 1
„Y1(x)…. ThenS0–S3hold for

m0* with corresponding mixing coefficientsw* (r )50 for r>r 0 . The measurem0* is not Gaussian
if the functionsf 0, f 1 are bounded and nonconstant.

4. From statistical chaos to the Gibbs measure

Let us consider the initial measures which satisfyS0–S3, and with the correlation functions

~q0
i j !kl~x2y!ªE„Yk

i ~x,0!Yl
j~y,0!…5Tid i j dkldxy , i , j 50,1, k,l PIn , x,yPZd, ~2.28!

whereT0,1>0. These correlations correspond to the ‘‘chaos’’ with the zero correlation radius
uncorrelated components. Such measures exist onHa with a,2d/2 by the Minlos Theorem:11

for example, the ‘‘white noise’’ which is the corresponding Gaussian measure. Let us consid
crystal satisfying the conditionsE1–E4 and ~1.20!. Then also the conditionsE58, ES hold, so
TheoremA is applicable@see Remark 2.10~iii !#: it implies the convergence~2.12! to the Gaussian
measurem` with the covariance~2.21!, ~2.22!.

Additionally, let us assume thatT050 which physically means that only the initial velocitie
contribute, and initial deviations are adjusted to zero. Then the formulas~2.21!, ~2.22! become

q̂`~u!5M0~u!5
T1

2 S V̂21~u! 0

0 ~dkl!k,l PIn
D . ~2.29!
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According to ~1.3!, this means that the limit measurem` coincides with theGibbs canonical
measurecorresponding to the temperature;T1 . In a more general framework, the limit measu
is close to the Gibbs measure if the radius of the initial correlations is small in a suitable s
limit ~cf. Ref. 6, Proposition 4.2!.

III. CONVERGENCE OF COVARIANCE AND COMPACTNESS

A. Mixing condition in terms of spectral density

The next Lemma reflects the mixing property in the Fourier transformsq̂0
i j of initial correla-

tion functionsq0
i j . ConditionS2 implies thatq0

i j (z) is a bounded function. Therefore, its Fouri
transform generally belongs to the Schwartz space of tempered distributions.

Lemma 3.1: Let the conditionsS0–S3 hold. Then qˆ 0
i j PC(Td), i , j 50,1.

Proof: It suffices to prove that

q0
i j ~z!P l 1~Zd!. ~3.1!

ConditionsS0–S3 imply by Ref. 13, Lemma 17.2.3@or Lemma 8.2 (i ) below#:

uq0
i j ~z!u<Ce0w1/2~ uzu!, zPZd, ~3.2!

wheree0 is defined by~1.6!. Therefore,~2.17! implies ~3.1!:

(
zPZd

uq0
i j ~z!u<Ce0 (

zPZd
w1/2~ uzu!,`.

h

B. Oscillatory integral arguments

In this section we uniformly estimate and check the convergence of the correlation matri
measuresm t with the help of the Fourier transform. The conditionS1and the translation-invarian
dynamics~1.1! imply that

Qt
i j ~x,y![E Yi~x! ^ Yj~y!m t~dY!5qt

i j ~x2y!, x,yPZd. ~3.3!

Proposition 3.2: (i) The correlation matrices qt
i j (z), i , j 50,1, are uniformly bounded,

sup
t>0

sup
zPZd

uqt
i j ~z!u,`. ~3.4!

(ii) The correlation matrices qt
i j (z), i , j 50,1, converge for each zPZd, and

qt
i j ~z!→q`

i j ~z!, t→`, ~3.5!

where the functions q̀i j (z) are defined above.
Proof: For brevity, we prove~3.4! and ~3.5! for i 5 j 50. In all other cases the proof of~3.5!

is similar. The solution to the Cauchy problem~1.1! is

u~x,t !5~2p!2dE
Td

e2 ix•u
„cosVt Ŷ0

0~u!1sinVt V21Ŷ0
1~u!…du,

whereV[V(u) is the non-negative definite Hermitian matrix defined by~2.2!. Furthermore, the
translation invariance~1.5! implies that

E„Ŷ0
i ~u! ^ Ŷ0

j ~u8!…5~2p!dd~u1u8!q̂0
i j ~u!, i , j 50,1. ~3.6!
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Hence,

qt
00~x2y!ªE„u~x,t ! ^ u~y,t !…

5~2p!2dE
Td

e2 iu(x2y)@cosVt q̂0
00~u!cosVt

1sinVt V21q̂0
10~u!cosVt1cosVt q̂0

01~u!V21 sinVt

1sinVt V21q̂0
11~u!V21 sinVt#du. ~3.7!

Therefore, the bound~3.4! with i 5 j 50 follows from Lemma 3.1 or conditionES if C0Þ0” .
Let us check that the convergence~3.5! with i 5 j 50 also follows since the oscillatory inte

grals in~3.7! tend to zero. Consider for example the last term in the integrand of~3.7!. We rewrite
it using ~2.3!, in the form

L0
11~u,t !ªsinVt V21q̂0

11~u! V21 sinVt5B~u!„sinvkt Akl
11~u!sinv l t…k,l PIn

B* ~u!,
~3.8!

whereA11(u)ªB* (u)V21q̂0
11(u)V21B(u). However, at this moment we have to choose cert

smooth branches of the functionsB(u) andvk(u) since we are going to apply the stationary pha
arguments which require a smoothness inu. To make it correctly, we cut off all singularities. Firs
we define the combinedcritical set,

CªøkCkøC* øC0 . ~3.9!

Then Lemmas 2.2, 2.3 imply the following lemma.
Lemma 3.3: Let conditionsE1–E4 hold. ThenmesC50.
Second, fix an«.0 and choose a finite partition of unity,

f ~u!1g~u!51, g~u!5 (
m51

M

gm~u!, uPTd, ~3.10!

wheref ,gm are non-negative functions fromC0
`(Td), the supports ofgm are sufficiently small and

supp f ,$uPTd: dist~u,C!,«%, suppgm,$uPTd: dist~u,C!>«/2%. ~3.11!

Now ~3.8! can be rewritten as

L0
11~u,t !5 f ~u!L0

11~u,t !1
1

2 (
m

gm~u!B~u!~„cos~vk2v l !t

2cos~vk1v l !t…Akl
11~u!!k,l PIn

B* ~u!. ~3.12!

By Lemma 2.2 and the compactness arguments, we can choose the supports ofgm so small that the
eigenvaluesvk(u) and the matrixB(u) are real-analytic functions inside the suppgm for everym:
we do not mark the functions by the indexm to not overburden the notations.

Let us substitute~3.12! into the last term of~3.7! and analyze the Fourier integrals withf and
gm separately. The integral withf converges to zero uniformly int>0, as «→0. Indeed, by
Lemma 3.3 we have

U E
Td

e2 iu(x2y) f ~u!L0
11~u,t ! duU<CE

dist(u,C),«
iV21~u!q̂0

11~u!V21~u!i du→0, «→0,

since the integrand is summable by Lemma 3.1 or conditionES if C0Þ0” .
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Below we will prove the convergence for the integrals withgm . We will deduce the conver-
gence from the fact that the identitiesvk(u)6v l(u)[const6 with the const6Þ0 are impossible
by the conditionE5. Furthermore, the oscillatory integrals withvk(u)6v l(u)Óconst vanish as
t→`. Hence, only the integrals withvk(u)2v l(u)[0 contribute to the limit sincevk(u)
1v l(u)[0 would imply vk(u)[v l(u)[0 which is impossible byE4. A similar analysis of the
three remaining terms in the integrand of~3.7! gives

qt
00~x2y!5~2p!2dE

Td
e2 iu(x2y) f ~u!L0

11~u,t ! du1~2p!2d(
m

E
Td

gm~u!

3e2 iu(x2y)F1

2
B~u!~xkl„Akl

00~u!1Akl
11~u!…!k,l PIn

B* ~u!1¯G du

5~2p!2dE
Td

e2 iu(x2y) f ~u!L0
11~u,t ! du1~2p!2dE

Td
g~u!e2 iu(x2y)q̂`

00~u! du1¯ ,

~3.13!

according to the notations~2.18!–~2.21!. HereA00(u)ªB* (u)q̂0
00(u)B(u) and ‘‘¯’’ stands for

the oscillatory integrals which contain cos„vk(u)6v l(u)…t and sin„vk(u)6v l(u)…t with vk(u)
6v l(u)Óconst.

The oscillatory integrals converge to zero by the Lebesgue–Riemann Theorem since
integrands in ‘‘̄ ’’ are summable and“„vk(u)6v l(u)…50 only on the set of the Lebesgu
measure zero. The summability follows from Lemma 3.1 or the conditionES since the matrices
B* (u) are unitary. The zero measure follows similarly to~2.4! sincevk(u)6v l(u)Óconst.

At last, let us prove the convergence~3.5! with i 5 j 50. From the last line of~3.13! we know
that qt

00(x2y) is close to the integral withg if « is small andt is large. Therefore, the limit of
qt

00(x2y) as t→` coincides with the limit of the integral as«→0. Finally, this limit coincides
with q`

00(x2y) sinceq̂`
00PL1(Td) by Remark 2.9. h

C. Compactness of measures family

Proof of Proposition 2.11:The compactness of the measures family$m t , tPR% will follow
from the bounds~2.25! by the Prokhorov Theorem~Ref. 22, Lemma II.3.1! using the method of
Ref. 22, Theorem XII.5.2 since the embeddingHa,Hb is compact ifa.b.

First, the translation invariance~3.3! and Proposition 3.2 (i ) imply that for xPZd we have

etªE @ uu0~x!u21uv0~x!u2# m t~dY0!5tr qt
00~0!1tr qt

11~0!<ē,`, t>0. ~3.14!

Hence by the definition~2.1! we get for anya,2d/2:

EiU~ t !Y0ia
25et (

xPZd
~11uxu2!a5C~a!et<C~a!ē,`, t>0.

h

IV. DUALITY ARGUMENT

To prove Theorem A, it remains to check Proposition 2.12. Let us rewrite~1.10! as follows:

E exp$ i ^Y~ t !,C&%→m̂`~C!, t→`. ~4.1!

We will prove it in Secs. V–VIII. In this section we evaluate^Y(t),C& by using the following
duality arguments. Remember thatY0PHa with a,2d/2. FortPR introduce a ‘‘formal adjoint’’
operatorU8(t) from spaceD to H2a :
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^Y,U8~ t !C&5^U~ t !Y,C&, CPD, YPHa . ~4.2!

Let us denote byF(•,t)5U8(t)C. Then~4.2! can be rewritten as

^Y~ t !,C&5^Y0 ,F~•,t !&, tPR. ~4.3!

The adjoint groupU8(t) admits the following convenient description. Lemma 4.1 below disp
that the action of groupU8(t) coincides with the action ofU(t), up to the order of the compo
nents.

Lemma 4.1: ForC5(C0,C1)PD we have

F~•,t !ªU8~ t !C5„ċ~•,t !,c~•,t !…, ~4.4!

wherec(x,t) is the solution of Eq. (1.1) with the initial data(u0 ,v0)5(C1,C0).
Proof: Differentiating~4.2! in t with Y,CPD, we obtain that̂Y,U̇8(t)C&5^U̇(t)Y,C&. The

groupU(t) has the generatorA from ~1.3!. The generator ofU8(t) is the conjugate operator toA:

A85S 0 2V
1 0 D . ~4.5!

Hence, the representation~4.4! holds with c̈(x,t)52(yPZdV(x2y)c(y,t). h

The lemma allows us to construct the oscillatory integral representation forF(x,t). Namely,
~4.4!, ~4.5! imply that in the Fourier representation forF(•,t)5U8(t)C we have

F̂
˙
~u,t !5Â* ~u!F̂~u,t !, F̂~u,t !5Ĝ* ~ t,u!Ĉ~u!.

Here we denote@see~2.9!#

Â* ~u!5S 0 2V̂~u!

1 0
D , Ĝ* ~ t,u!5eÂ* (u)t5S cosVt 2V sinVt

V21 sinVt cosVt D , ~4.6!

with V[V(u)5V* (u). Therefore,

F~x,t !5~2p!2dE
Td

e2 iuxĜ* ~ t,u!Ĉ~u!du, xPZd. ~4.7!

Since f (u)1g(u)[1 by ~3.10!, we can splitF in two components:

F~x,t !5~2p!2dE
Td

e2 iuxĜ* ~ t,u! f ~u!Ĉ~u!du1~2p!2dE
Td

e2 iuxĜ* ~ t,u!g~u!Ĉ~u!du

5F f~x,t !1Fg~x,t !, xPZd, ~4.8!

where each functionF f(x,t) andFg(x,t) admits the representation of type~4.4!. By ~3.11!, the
Fourier spectrum ofF f is concentrated near the critical setC, while the spectrum ofFg is
separated fromC.

V. STANDARD DECAY IN THE NONCRITICAL SPECTRUM

We prove the decay of type~1.18! for the ‘‘noncritical’’ componentFg . The functionFg can
be expanded similarly to~3.12!, in the form

Fg~x,t !5(
m

(
6, kPIn

E
Td

gm~u!e2 i (ux6vk(u)t)ak
6~u!Ĉ~u!du. ~5.1!
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By Lemma 2.2 and the compactness arguments, we can choose the eigenvaluesvk(u) and the
matricesak

6(u) as real-analytic functions inside the suppgm for every m: we do not mark the
functions by the indexm to not overburden the notations.

Lemma 4.1 means that each componentFg
i (x,t), i 50,1, is a solution to Eq.~1.1!. To prove

~4.1!, we analyze the radiative properties ofFg(x,t) in all directions. For this purpose, we app
the stationary phase method to the oscillatory integral~5.1! along the raysx5vt, t.0. Then the
phase becomes„uv6vk(u)…t, and its stationary points are the solutions to the equationv
57¹vk(u). We collect all necessary asymptotics in the following lemma@cf. ~1.18!#.

Lemma 5.1: For any fixedCPD and g(u)PC0
`(Td\C) the following bounds hold:

(i) sup
xPZd

uFg~x,t !u<Ct2d/2. ~5.2!

(ii) or any p.0 there exist Cp ,gg.0 such that

uFg~x,t !u<Cp~ utu1uxu11!2p, uxu>ggt. ~5.3!

Proof: ConsiderFg(x,t) along each rayx5vt with arbitraryvPRd. Substituting to~5.1!, we
get

Fg~vt,t !5(
m

(
6, kPIn

E
Td

gm~u!e2 i „uv6vk(u)…tak
6~u!Ĉ~u!du. ~5.4!

This is a sum of oscillatory integrals with the phase functionsfk
6(u)5uv6vk(u) and the am-

plitudes ak
6(u) which are real-analytic functions of theu inside the suppgm . Since vk(u) is

real-analytic, each functionfk
6 has no more than a finite number of stationary pointsu

Psuppgm , solutions to the equationv57¹vk(u). The stationary points are nondegenerate
uPsuppgm by ~3.11!, ~3.9!, andE4 since

detS ]2fk
6

]u i ]u j
D 56Dk~u!Þ0, uPsuppgm . ~5.5!

At last, Ĉ(u) is smooth sinceCPD. Therefore,Fg(vt,t)5O(t2d/2) according to the standar
stationary phase method.10,17This implies the bounds~5.2! in each coneuxu<ct with any finitec.

Further, denote byv̄gªmaxmmaxkPIn
maxuPsuppgm

u¹vk(u)u. Then for uvu. v̄g the stationary
points do not exist on the suppg. Hence, the integration by parts as in Ref. 17 yieldsFg(vt,t)
5O(t2p) for any p.0. On the other hand, the integration by parts in~5.1! implies similar bound
Fg(x,t)5O„(t/uxu) l

… for any l .0. Therefore,~5.3! follows with any gg. v̄g . Now the bounds
~5.2! follow everywhere. h

VI. CONTRIBUTION OF CRITICAL SET

We are going to prove~4.1!. Rewrite it using~4.3!:

E exp$ i ^Y0 ,F~•,t !&%2m̂`~C!→0, t→`. ~6.1!

The splitting~4.8! gives^Y0 ,F(•,t)&5^Y0 ,F f(•,t)&1^Y0 ,Fg(•,t)&. Our main argument is tha
the contribution of̂ Y0 ,F f(•,t)& to ~6.1! has a small dispersion. We will deduce this from Le
mas 3.1, 3.3. At first, let us estimate the difference in~6.1! by the triangle inequality:

uE exp$ i ^Y0 ,F~•,t !&%2m̂`~C!u<uE exp$ i ^U~ t !Y0 ,C&%2E exp$ i ^Y0 ,Fg~•,t !&%u1um̂`~Cg!

2m̂`~C!u1uE exp$ i ^Y0 ,Fg~•,t !&%2m̂`~Cg!u5I 1II 1III ,

~6.2!

whereCgªF21@g(u)Ĉ(u)#5Fg(•,0). Let us consider each of the three terms separately.
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I. The first termI 5I («,t) represents the contribution of the neighborhood of the critical
$uPTd: dist(u,C),«% and tends to zero as«→0 uniformly in t>0. Namely, by the
Cauchy–Schwartz inequality,

I5uEei^Y0,F(•,t)&2Eei^Y0,Fg(•,t)&u<Euei^Y0,Ff(•,t)&21u<C„Eu^Y0 ,F f~•,t !&u2…1/2. ~6.3!

Using the Parseval identity and~4.8!, we get

Eu^Y0,Ff~•,t!&u25~2p!22dEu^Ŷ0~u!,f~u!F̂~u,t!&u2

5~2p!22d^E„Ŷ0~u! ^ Ŷ0~u8!…, f ~u! f ~u8! Ĝ* ~ t,u!Ĉ~u! ^ Ĝ* ~ t,u8! Ĉ~u8! &.

~6.4!

Now take into account thatE„Ŷ0(u) ^ Ŷ0(u8)…5(2p)dd(u2u8)q̂0(u) similarly to ~3.6!.
Then ~6.4!, ~4.6!, ~3.11! and the bounds 0< f (u)<1 imply

Eu^Y0,Ff~•,t!&u2<C1 (
i,j50,1

E
dist(u,C),«

iV2 i~u!q̂0
i j ~u!V2 j~u!i du→0, «→0,

owing to Lemma 3.3 since the integrand is summable. The summability follows
Lemma 3.1 or conditionES if C0Þ0” .

II. The second termII 5II («) tends to zero as«→0. Indeed,

Q`~Cg ,Cg!5~2p!22d (
i , j 50

1 E
Td
„q̂`

i j ~u!,g~u!Ĉ i~u! ^ g~u!Ĉ j~u!… du→Q`~C,C!,

«→0,

by the Lebesgue Dominated Convergence Theorem since 0<g(u)<1 andq̂`
i j PL1(Td) by

Remark 2.9. Hence for the Gaussian measurem` , we get by~2.23!,

um̂`~Cg!2m̂`~C!u5uexp$2 1
2 Q`~Cg ,Cg!%2exp$2 1

2 Q`~C,C!%u→0, «→0.

III. To prove Proposition 2.12, it remains to check that for any fixed«.0, we have

III ~«,t!5uEexp$i^Y0,Fg~•,t!&%2m̂`~Cg!u→0, t→`. ~6.5!

We prove~6.5! in Sec. VIII using the Bernstein arguments of the next section.

VII. BERNSTEIN’S ‘‘ROOMS-CORRIDORS’’ PARTITION

Our proof of~6.5! is similar to the case of the continuous Klein–Gordon equation inRd:6 all
the integrals overRd become the series overZd, etc. Another novelty in the proofs is the follow
ing: in the case of the Klein–Gordon equation we haveF(x,t)50 for uxu>t1c(C), while for the
discrete crystal we have~5.3! instead.

Let us introduce a ‘‘room-corridor’’ partition of the ball$xPZd: uxu<ggt% with gg from ~5.3!.
For t.0 we choose belowD t ,r tPN ~we will specify the asymptotic relations betweent, D t , and
r t). Let us setht5D t1r t and

aj5 jht , bj5aj1D t , j PZ, Nt5@~ggt !/ht#. ~7.1!

We call the slabsRt
j5$xPZd:uxu<Ntht , aj<xd,bj% the ‘‘rooms,’’ Ct

j5$xPZd:uxu<Ntht , bj

<xd,aj 11% the ‘‘corridors’’ andLt5$xPZd:uxu.Ntht% the ‘‘tails.’’ Here x5(x1 , . . . ,xd), D t is
the width of a room, andr t is that of a corridor. Let us denote byx t

j the indicator of the roomRt
j ,

j t
j that of the corridorCt

j , andh t that of the tailLt . Then
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(
t

@x t
j~x!1j t

j~x!#1h t~x!51, xPZd, ~7.2!

where the sum( t stands for( j 52Nt

Nt21 . Hence we get the following Bernstein’s type representati

^Y0 ,Fg~•,t !&5(
t

@^Y0 ,x t
jFg~•,t !&1^Y0 ,j t

jFg~•,t !&#1^Y0 ,h tFg~•,t !&. ~7.3!

Let us introduce the random variablesr t
j , ct

j , l t by

r t
j5^Y0 ,x t

jFg~•,t !&, ct
j5^Y0 ,j t

jFg~•,t !&, l t5^Y0 ,h tFg~•,t !&. ~7.4!

Then ~7.3! becomes

^Y0 ,Fg~•,t !&5(
t

~r t
j1ct

j !1 l t . ~7.5!

Lemma 7.1: LetS0–S3 hold. The following bounds hold for t.1:

Eur t
j u2<C~Cg! D t /t, ; j , ~7.6!

Euct
j u2<C~Cg! r t /t, ; j , ~7.7!

Eu l tu2<Cp~Cg!~11t !2p, ;p.0. ~7.8!

Proof: We discuss~7.6!, and ~7.7!, ~7.8! can be done in a similar way@the proof of ~7.8!
additionally uses~5.3!#. ExpressEur t

j u2 in the correlation matrices. Definition~7.4! implies that

Eur t
j u25^x t

j~x!x t
j~y!q0~x2y!,Fg~x,t ! ^ Fg~y,t !&. ~7.9!

According to~5.2!, Eq. ~7.9! implies that

Eur t
j u2<Ct2d(

x,y
x t

j~x!iq0~x2y!i5Ct2d(
x

x t
j~x! (

z
iq0~z!i<CD t /t, ~7.10!

where iq0(z)i stands for the norm of a matrix (q0
i j (z)). Therefore,~7.10! follows as iq0(•)i

P l 1(Zd) by ~3.1!. h

VIII. IBRAGIMOV–LINNIK CENTRAL LIMIT THEOREM

In this section we prove the convergence~6.5!. As was said, we use a version of the Cent
Limit Theorem developed by Ibragimov and Linnik.13 If Q`(Cg ,Cg)50, ~6.5! is obvious. In-
deed, uE exp„i ^Y0 ,Fg(•,t)&…21u<Eu^Y0 ,Fg(•,t)&u<„E^Y0 ,Fg(•,t)&2

…

1/25„Qt(Cg ,Cg)…1/2,
whereQt(Cg ,Cg)→Q`(Cg ,Cg)50, ast→`. Thus, we may assume that for a givenCPD,

Q`~Cg ,Cg!Þ0. ~8.1!

Let us choose 0,d,1 and

r t;t12d, D t;
t

log t
, t→`. ~8.2!

Lemma 8.1: The following limit holds true:
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NtS w~r t!1S r t

t D 1/2D1Nt
2S w1/2~r t!1

r t

t D→0, t→`. ~8.3!

Proof: The functionw(r ) is nonincreasing; hence by~2.17!,

r dw1/2~r !5dE
0

r

sd21w1/2~r ! ds<dE
0

r

sd21w1/2~s! ds<Cw̄,`. ~8.4!

Furthermore,~8.2! implies thatht5D t1r t;t/ log t, t→`. Therefore,Nt;t/ht; log t. Then~8.3!
follows by ~8.4! and ~8.2!. h

Proof of (6.5):By the triangle inequality,

uE exp$ i ^Y0 ,Fg~•,t !&%2m̂`~Cg!u<UE exp$ i ^Y0 ,Fg~•,t !&%2E expH i(
t

r t
j J U

1UexpH 2
1

2 (
t

Eur t
j u2J 2expH 2

1

2
Q`~Cg ,Cg!J U

1UE expH i(
t

r t
j J 2expH 2

1

2 (
t

Eur t
j u2J U

[I 11I 21I 3 . ~8.5!

We are going to show that all the summandsI 1 , I 2 , I 3 tend to zero ast→`.
Step~i!: Equation~7.5! implies

I 15UE expH i(
t

r t
j J S expH i(

t
ct

j1 i l tJ 21D U<C(
t

Euct
j u1Eu l tu<C(

t
~Euct

j u2!1/21~Eu l tu2!1/2.

~8.6!

From ~8.6!, ~7.7!, ~7.8!, and~8.3! we obtain that

I 1<Cpt2p1CNt~r t /t !1/2→0, t→`. ~8.7!

Step~ii !: By the triangle inequality,

I 2<
1

2 U(t
Eur t

j u22Q`~Cg ,Cg!U
<

1

2
uQt~Cg ,Cg!2Q`~Cg ,Cg!u

1
1

2 UES (
t

r t
j D 2

2(
t

Eur t
j u2U1 1

2 UES (
t

r t
j D 2

2Qt~Cg ,Cg!U
[I 211I 221I 23, ~8.8!

whereQt is the quadratic form with the matrix kernel„Qt
i j (x,y)…. ~3.5! implies thatI 21→0. As for

I 22, we first obtain that

I 22< (
j Þk

u j u,uku<Nt

uErt
j r t

ku. ~8.9!

The next lemma is the corollary of Ref. 13, Lemma 17.2.3.
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Lemma 8.2: LetA, B be the subsets ofZd with the distancedist(A,B)>r .0, and letj, h be
random variables on the probability space„Ha ,B(Ha),m0…. Let j be measurable with respect t
the s-algebras~A!, and h with respect to thes-algebras~B!. Then

~i! uEjh2EjEhu<Cab w1/2(r ) if (Euju2)1/2<a and (Euhu2)1/2<b;
~ii ! uEjh2EjEhu<Cab w(r ) if uju<a and uhu<b, a.s.
We apply Lemma 8.2 to deduce thatI 22→0 ast→`. Note thatr t

j5^Y0(x),x t
j (x)Fg(•,t)& is

measurable with respect to thes-algebras(Rt
j ). The distance between the different roomsRt

j is
greater or equal tor t according to~7.1!. Then~8.9! and ~7.6!, S3 imply by Lemma 8.2 (i ), that

I 22<CNt
2w1/2~r t!, ~8.10!

which tends to 0 ast→` by ~8.3!. Finally, it remains to check thatI 23→0, t→`. We have

Qt~Cg ,Cg!5E^Y0 ,Fg~•,t !&25ES (
t

~r t
j1ct

j !1 l tD 2

,

according to~7.5!. Therefore, by the Cauchy–Schwartz inequality,

I 23<UES (
t

r t
j D 2

2ES (
t

r t
j1(

t
ct

j1 l tD 2U
<CNt(

t
Euct

j u21C1S ES (
t

r t
j D 2D 1/2

3S Nt(
t

Euct
j u21Eu l tu2D 1/2

1CEu l tu2. ~8.11!

Then ~7.6!, ~8.9!, and~8.10! imply

ES (
t

r t
j D 2

<(
t

Eur t
j u21 (

j Þk

u j u,uku<Nt

uErt
j r t

ku<CNtD t /t1C1Nt
2w1/2~r t!<C2,`.

Now ~7.7!, ~7.8!, ~8.11!, and~8.3! yield

I 23<C1Nt
2r t /t1C2Nt~r t /t !1/21C3t2p→0, t→`. ~8.12!

So, all the termsI 21, I 22, I 23 in ~8.8! tend to zero. Then~8.8! implies that

I 2<
1

2 U(t
Eur t

j u22Q`~Cg ,Cg!U→0, t→`. ~8.13!

Step~iii !: It remains to verify that

I 35UE expH i(
t

r t
j J 2expH 2

1

2
ES (

t
r t

j D 2J U→0, t→`. ~8.14!

Lemma 8.2,~ii ! with a5b51 yields
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UE expH i(
t

r t
j J 2 )

2Nt

Nt21

E exp$ ir t
j%U

<UE exp$ ir t
2Nt%expH i (

2Nt11

Nt21

r t
j J 2E exp$ ir t

2Nt%E expH i (
2Nt11

Nt21

r t
j J U

1UE exp$ ir t
2Nt%E expH i (

2Nt11

Nt21

r t
j J 2 )

2Nt

Nt21

E exp$ ir t
j%U

<Cw~r t!1UE expH i (
2Nt11

Nt21

r t
j J 2 )

2Nt11

Nt21

E exp$ ir t
j%U.

Then we apply Lemma 8.2, (i i ) recursively and get, according to Lemma 8.1,

UE expH i(
t

r t
j J 2 )

2Nt

Nt21

E exp$ ir t
j%U<CNtw~r t!→0, t→`. ~8.15!

It remains to check that

U )
2Nt

Nt21

E exp$ ir t
j%2expH 2

1

2 (
t

Eur t
j u2J U→0, t→`. ~8.16!

According to the standard statement of the Lindeberg Central Limit Theorem~see, e.g., Ref. 16
Theorem 4.7! it suffices to verify the Lindeberg condition:;d.0,

1

s t
(

t
EdAs t

ur t
j u2→0, t→`.

Heres t[( tEur t
j u2, andEafªE(Xaf ), whereXa is the indicator of the eventu f u.a2. Note that

~8.13! and ~8.1! imply that s t→Q`(Cg ,Cg)Þ0, t→`. Hence it remains to verify that

(
t

Eaur t
j u2→0, t→`, for any a.0.

This follows from the bounds for the fourth order moments as in Ref. 6, Sec. IX. This comp
the proof of Proposition 2.12. h

IX. ERGODICITY AND MIXING FOR THE LIMIT MEASURES

The limit measurem` is invariant by Theorem A~iv!. Let E` denote the integral overm` .
Theorem 9.1: Let all assumptions of Theorem A hold for the equation (1.1) and the in

measurem0 . Then U(t) is mixing with respect to the corresponding limit measurem` , i.e.,
; f ,gPL2(Ha ,m`),

lim
t→`

E` f „U~ t !Y…g~Y!5E` f ~Y!E`g~Y!. ~9.1!

In particular, the group U(t) is ergodic with respect to the measurem` :

lim
T→`

1

T E
0

T

f „U~ t !Y…dt5E` f ~Y! ~mod m`!. ~9.2!
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Proof: Sincem` is Gaussian, the proof of~9.1! reduces to the proof of the following conve
gence:;C1 ,C2PD,

lim
t→`

E`^U~ t !Y,C1&^Y,C2&50. ~9.3!

Using the Parseval identity and~4.8! we obtain similarly to~6.4! that

E`^U~ t !Y,C1&^Y,C2&5~2p!22dE
Td
„Ĝ~ t,u!q̂`~u!, f ~u!Ĉ1~u! ^ Ĉ2~u!… du

1~2p!22dE
Td
„Ĝ~ t,u!q̂`~u!,g~u!Ĉ1~u! ^ Ĉ2~u!… du

5I f~ t !1I g~ t !. ~9.4!

Lemma 9.2: The uniform bound holds:iĜ(t,u)q̂`(u)i<G(u), t>0, where G(u)PL1(Td).
Proof: ~4.6! implies that

Ĝ~ t,u!q̂`~u!5S cosVt sinVt

2sinVt•V cosVt•V
D S q̂`

00 q̂`
01

V21q̂`
10 V21q̂`

11D . ~9.5!

Therefore,

iĜ~ t,u!q̂`~u!i<C (
i , j 50,1

iV2 i q̂`
i j ~u!i . ~9.6!

It remains to prove thatV2 i q̂`
i j (u)PL1(Td). Sinceq̂`(u)PL1(Td) by Remark 2.9, it suffices to

verify that V21(u)q̂`
1 j (u)PL1(Td), j 50,1. This also follows from Remark 2.9 ifC050” . Other-

wise, we will use the conditionES. Namely, owing to~2.22!, we have

V21~u!q̂`
i j ~u!5 (

s51

s11

Ps~u!V21~u!M0
i j ~u!Ps~u!, ~9.7!

sinceV21(u) commutes with its spectral projectionPs(u). At last, ~2.21! andES imply

V21M0
105 1

2 ~V21q̂0
102q̂0

01V21!PL1~Td!,

V21M0
115 1

2~V21q̂0
111q̂0

00V!PL1~Td!.
h

The Lemma 9.2 together with~3.11! and Lemma 3.3 imply that;d.0 '«.0 such that

uI f~ t !u<d, t>0. ~9.8!

It remains to study the oscillatory integralI g(t). Rewrite it using~5.1!, in the form

I g~ t !5(
m

(
6, kPIn

E
Td

gm~u!e6 ivk(u)tak
6~u!„q̂`~u!,Ĉ1~u! ^ Ĉ2~u!… du. ~9.9!

Here all phase functionsvk(u) and the amplitudesak
6(u) are smooth functions in the suppgm .

Furthermore,¹vk(u)50 only on the set of the Lebesgue measure zero. This follows similar
~2.4! since¹vk(u)Óconst by the conditionE4. Hence,

I g~ t !→0 as t→`, ~9.10!
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by the Lebesgue–Riemann Theorem sinceq̂`PL1(Td). Finally, ~9.4!–~9.10! imply ~9.3! since
d.0 is arbitrary. h

Remark:A similar result for wave and Klein–Gordon equations has been proved in Refs.
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APPENDIX: CROSSING POINTS

1. Proof of Lemmas 2.2 and 2.3

Step 1:By the conditionE1 the matrix V̂(u) is an analytic function in a connected ope
~complex! neighborhoodOc(T

d) of Td in Tc
d
ªTd

% iRd. Consider the analytic functiond(u,v)
ªdet„V̂(u)2v2

… in Oc(T
d)ÃC and the analytic subset defined by the equationd(u,v)50 in

Oc(T
d)ÃC. The subset consists of the points„u,6vk(u)…, kPIn . It is important thatd(u,v)Ó0

for any fixed uPOc(T
d), hence the functiond satisfies theWeierstrass conditionof Ref. 15,

Section 2.1.1. Therefore, by the Weierstrass Preparation Theorem in Ref. 15, Thm 2.1, there
a proper analyticdiscriminant subsetD,Oc(T

d) s.t.: for QPOc(T
d)\D there exists a~complex!

neighborhoodOc(Q) of Q in Oc(T
d) where each ofvk(u) can be chosen as a holomorph

function. More precisely, this is established in the proof of Ref. 15, Proposition 2.1 which i
main step to the proof of the Weierstrass Theorem. We setC*ªDùTd andO(Q)5Oc(Q)ùTd

for QPTd\C* . Then Lemma 2.2 (i i ) follows for vk(u).
Step 2:The identity~2.4! will follow from the next general Proposition.
Proposition 10.1: LetM be a proper analytic subset ofOc(T

d). Then the Lebesgue measu
of the intersection M5MùTd is zero.

Proof: Let us use the analytic stratification of the analytic sets which is constructed in Re
Thm 19 of Chapter II.E and Thm 10 of Chapter III.A. Namely, for eachQPM there exists a
complex neighborhoodOc(Q) s.t. MùOc(Q)5ø0<d<d21Md , where eachMd is an analytic
submanifold of the complex dimensiond<d21: here we use thatM is the proper analytic subse
in Oc(Q). Now

MùOc~Q!5ø0<d<d21~MdùTd!.

Lemma 10.2: LetQPM andd50, . . . ,d21. Then there exists a (real) neighborhoodO~Q! of
Q in Td such that the intersectionMdùO(Q) is contained in a smooth submanifold ofTd of the
real dimension d21.

Proof: We may assume that~i! Md is defined by the equationshj (u)50, j 51, . . . ,d2d, with
the holomorphic functionshj in Oc(Q); and~ii ! ¹c hj (u)Þ0, uPOc(Q), where¹c stands for the
complex gradient. It is important thatd2d>1 so we have at least one functionh1(u). Then
h1(u)5 f 1(u)1 ig1(u) with the real smooth functionsf 1 ,g1 , and f 1(u)5g1(u)50, u
PM dùOc(Q). However,¹c hj (u)5¹r f 1(u)1 i¹r g1(u)Þ0, where¹r stands for the real gradi
ent. Therefore, either¹r f 1(Q)Þ0 or ¹rg1(Q)Þ0. h

Now Proposition 10.1 obviously follows. h

This proposition implies~2.4! sinceD is a proper analytic subset ofOc(T
d). Lemma 2.3 also

follows from Proposition 10.1 sinceE4 implies that detV̂(u)Ó0 in Td andDk(u)Ó0 in Td\C* .
Step 3:Lemma 2.2~iii ! follows from the construction in Ref. 15, Sec. 2.1. Lemma 2.2 (iv)

follows from ~2.6! since the projectionPs(u) can be expressed by the Cauchy integral over
contour surrounding the isolated eigenvaluev r s

(u).
Step 4:It remains to prove Lemma 2.2 (i i ). Let O~Q! denote a small real neighborhood of

point QPTd\C* and Es(u)5Ps(u)Rn. It suffices to construct an orthonormal basis$ek(u):k
P(r s21 ,r s#% in Es(u) which depends real-analytically onuPO(Q).
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Let us choose an arbitrary basis$bk(Q):kP(r s21 ,r s#% in Es(Q). ThenPs(u)bk(Q) depend
real-analytically onuPO(Q), and$Ps(u)bk(Q):kP(r s21 ,r s#% is a basis ofEs(u) for u from a
reduced neighborhoodO8(Q). Finally, construct the orthonormal basis$ek(u):kP(r s21 ,r s#% by
the standard Hilbert–Schmidt orthogonalization process applied to$Ps(u)bk(Q):k
P(r s21 ,r s#% for eachuPO8(Q). h

Remark 10.3:Lemma 2.2~iii ! also follows from Ref. 15, Sec. 2.1 since the enumeration~2.5!,
~2.6! corresponds to the factorization of the type in Ref. 15, Eq.~2.5! for the functiond(u,v), into
the product of the irreducible factors, with the multiplicitiesr s2r s21 , which is constructed in
Ref. 15, Thm 2.1.

2. Proof of Lemma 2.4

Step 1:Let us fix arbitraryk,l PIn and considervk(u) as the functions ofVPRN and ofu
PTd. It suffices to prove thatDk(u) and ¹„vk(u)6v l(u)… are analytic and are not zero in a
open dense subset inRNÃTd.

Let us considerVk8 l 8(x), k8,l 8PIn , uxi u<N, as the coordinates of the matrix-functionV in
the regionRN . ConditionE2 allows us to considerVk8 l 8(x) as independent real variables for an
k8,l 8PIn and the pointsx with eitherx1.0, orx150 andx2.0, orx15x250 andx3.0, etc. Let
us identifyRN with corresponding rangeRM of the independent real variablesVk8 l 8(x).

Step 2:Considervk(u) as the functions of$Vk8 l 8(x)% and u in CMÃTc
d . As above, each

vk(u) can be chosen as a holomorphic function outside a proper analytic discriminant s
D,CMÃTc

d . Lemma 10.2 implies that the regionOª(RMÃTd)\D is an open dense subset
RMÃTd. Therefore, it suffices to prove that the functionsDk and“(vk6v l) are not identically
zero in each connected open component ofO. However, the region of analyticityO
ª(CMÃTc

d)\D is connected. Hence, it remains to construct a point ofCMÃTc
d such that the

functionsDk and“(vk6v l) are holomorphic and nonidentically zero in a neighborhood of
point. It is easy to construct such point for anyn>1: we can choose an arbitraryuPTd and the
nearest neighbor crystal~1.12! repeatedn times with distinct massesmk , kPIn . h
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