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Abstract. We establish soliton-like asymptotics for finite energy solutions to clas-
sical particle coupled to a scalar wave field. Any solution that goes to infinity as
t → ∞ converges to a sum of traveling wave and of outgoing free wave. The con-
vergence holds in global energy norm. The proof uses a non-autonomous integral
inequality method.

1. Introduction. Consider a single charge coupled to a scalar wave field and sub-
ject to an external potential of compact support in 3-dimensional space. If q(t) ∈ IR3

denotes the position of the charge at a time t, then the coupled equations read

φ̇(x, t) = π(x, t), π̇(x, t) = ∆φ(x, t) − ρ(x − q(t)),

q̇(t) = p(t)/(1 + p2(t))1/2, ṗ(t) = −∇V (q(t)) +
∫

d3x φ(x, t)∇ρ(x − q(t)).
(1.1)

This is a Hamiltonian system with the Hamiltonian functional

H(φ, π, q, p) = (1 + p2)1/2 + V (q) +
1
2

∫
d3x

(
|π(x)|2 + |∇φ(x)|2

)

+
∫

d3xφ(x)ρ(x − q). (1.2)

We have set the mechanical mass of the particle and the speed of wave propagation
equal to one. In spirit the interaction term is simply φ(q). This would result
however in an energy which is not bounded from below. Therefore we smoothen
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out the coupling by the function ρ(x). In analogy to the Maxwell-Lorentz equations
we call ρ(x) the “charge distribution”. We assume the real-valued function ρ(x) to
be from the Sobolev space H1 and of compact support, i.e.

ρ,∇ρ ∈ L2(IR3) , ρ(x) = 0 for |x| ≥ Rρ . (C)

The further important assumption is that the norm of ρ in L2 is sufficiently
small,

γρ ≡ ‖ρ‖L2 � 1 (1.3)
that means weak field-particle interaction. We believe this to be an artifact of the
mathematical technique employed.

For the potential V we require that it is sufficiently smooth and has a compact
support,

V ∈ C2(IR3), V (x) = 0 for |x| > RV > 0. (P )
Consider the corresponding nonperturbed system with V ≡ 0:

φ̇(x, t) = π(x, t), π̇(x, t) = ∆φ(x, t) − ρ(x − q(t)),

q̇(t) = p(t)/(1 + p2(t))1/2, ṗ(t) =
∫

d3x φ(x, t)∇ρ(x − q(t))
(1.4)

with the Hamiltonian functional

H0(φ, π, q, p) = (1 + p2)1/2 +
1
2

∫
d3x

(
|π(x)|2 + |∇φ(x)|2

)

+
∫

d3xφ(x)ρ(x − q). (1.5)

The system (1.4) has the set of solutions that correspond to the charge traveling
with a uniform velocity, v. Up to translation they are of the form

Sv(t) = (φv(x − vt), πv(x − vt), vt, pv) (1.6)

with an arbitrary velocity v ∈ V = {v ∈ IR3 : |v| < 1}. The components of the
traveling solution can be calculated easily in Fourier transform, cf. [10]:

φv(x) = − 1
4π

∫
ρ(y)d3y

|v(y − x)‖ + λ(y − x)⊥| ,

πv(x) = −v · ∇φv(x), pv = v/λ. (1.7)

Here we set λ =
√

1 − v2 and x = vx‖ + x⊥, where x‖ ∈ IR and v⊥x⊥ ∈ IR3 for
x ∈ IR3. In further by “solitons” we mean these traveling solutions to (1.4).

Let us discuss and summarize now our main results, the precise theorems to be
stated in the following section.

Consider the set S of scattering solutions to (1.1) for which |q(t)| → ∞ as
t → ∞. Below we discuss the properties of the solutions of the class S. Since only
a finite amount of energy can be dissipated to infinity, we have the relaxation of
acceleration,

q̈(t) → 0, t → ±∞. (1.8)
Moreover, we establish the rate of the convergence |q̈(t)| ∼ t−1−σ with a σ > 0.
This is a crucial point of our asymptotic analysis. It follows that

q̇(t) → v±, t → ±∞ (1.9)
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and the fields are asymptotically Coulombic traveling waves in the sense

(φ(x, t), π(x, t)) ∼ (φv±(x− q(t)), πv±(x− q(t))), t → ±∞. (1.10)

Since energy is conserved, the convergence here is in the sense of local energy
seminorms, cf. Section 2. Further, we establish the corresponding asymptotics in
a global energy norm,

(φ(x, t), π(x, t)) ∼ (φv±(x − q(t)), πv±(x − q(t)) + U(t)F±, t → ±∞ (1.11)

where U(t) is the group of the free wave equation, and F± are scattering states.
At last we suggest simple sufficient conditions for solutions to belong to S.
Note that the results of [9] imply the long-time convergence to the set of solitons

(1.6) in the sense of local energy seminorms, as in (1.10). In [9] long-time conver-
gence to the set of solitons (1.6) is established. Here we essentially use the results
[9] on integral representation of solutions as well as the existence of dynamics for
(1.1) (see also [1]).

Soliton-like asymptotics was proved for some translation invariant completely in-
tegrable 1D equations, [13]. Soliton-like asymptotics in local energy seminorms was
proved for translation invariant system of a scalar field coupled to a particle [10] and
for translation invariant 1D kinetic-reaction systems, [6]. Soliton-like asymptotics
of type (1.11) in global energy norm was proved initially for small perturbations of
soliton-like solutions to 1D nonlinear Schrödinger translation invariant equations
[2, 3].

Soliton-like asymptotics of type (1.11) in energy norm for finite energy solutions
of the class S is proved here for the first time for coupled particle-field equations
(1.1).

The physical mechanism is radiation damping [12, 4, 5]: as long as the motion
of the particle is accelerated, it loses energy through radiation escaping to infinity.

Note that the orbital stability of the solitons for the system (1.1) was proved
in [10]. In [7] a general theory of orbital stability of solitons was developed for
general nonlinear relativistic-invariant equations. This orbital stability approach
is based on the Liapunov function method and does not take into account the
energy radiation to infinity which leads to an asymptotic stability of the solitons.
The analysis of the radiation and the convergence to solitons for general nonlinear
relativistic-invariant equations is an open problem.

2. Main results. First define a suitable phase space.
Let L2 be the real Hilbert space L2(IR3) with norm ||| · |||, and let Ḣ1 be the

completion of C∞
0 (IR3) with norm ‖φ(x)‖ = |||∇φ(x)|||. Equivalently, using Sobolev’s

embedding theorem, Ḣ1 = {φ(x) ∈ L6(IR3) : |∇φ(x)| ∈ L2}; see [11]. Let |||φ|||R
denote the norm in L2(BR) for R > 0, where BR = {x ∈ IR3 : |x| ≤ R}. Then the
seminorms ‖φ‖R = |||∇φ|||R are continuous on Ḣ1.

Definition 2.1. i) The phase space E is the Hilbert space Ḣ1 ⊕ L2 ⊕ IR3 ⊕ IR3 of
states Y = (φ, π, q, p) with finite norm

‖Y ‖E = ‖φ‖ + |||π||| + |q| + |p| .
ii) EF is the space E endowed with the Fréchet topology defined by the local energy
seminorms

‖Y ‖R = ‖φ‖R + |||π|||R + |q| + |p|, ∀R > 0 .
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iii) F is the Hilbert space Ḣ1 ⊕ L2 of the fields F = (φ, π) with finite norm

‖F‖F = ‖φ‖ + |||π||| .
iv) FF is the space F endowed with the Fréchet topology defined by the local energy
seminorms

‖F‖R = ‖φ‖R + |||π|||R, ∀R > 0 .

We write the Cauchy problem for the system (1.1) in the form

Ẏ (t) = F(Y (t)) , t ∈ IR , Y (0) = Y 0 , (2.1)

where Y (t) = (φ(t), π(t), q(t), p(t)) and Y 0 = (φ0, π0, q0, p0).

Definition 2.2. Eσ for 0 ≤ σ ≤ 1 is the set of the states (φ0(x), π0(x), q, p) ∈ E
such that∫

{R≤|x|}

d3x (|∇φ0(x)|2 + |φ0(x)|2 + |π0(x)|2) = O(R−2−2σ) as R → ∞ . (2.2)

Proposition 2.3. [8, 9, 10] Let (C), (P ) hold and Y 0 = (φ0(x), π0(x), q0, p0) ∈ E.
Then
(i) The system (1.1) has a unique solution Y (t) = (φ(x, t), π(x, t), q(t), p(t)) ∈
C(IR, E) with Y (0) = Y 0.
(ii) The energy is conserved, i.e.

H(Y (t)) = H(Y 0) for t ∈ IR. (2.3)

(iii) The bound holds
sup
t∈IR

|q̇(t)| ≤ v < 1 , (2.4)

where v depends on Y 0 and δρ := |〈ρ,∆−1ρ〉| =
∫

d3k |ρ̂(k)|2|k|−2.

Denote F (x, t) = (φ(x, t), π(x, t)) the field part of a solution to the system (1.1)
and Fv(x) = (φv(x), πv(x)) the field part of a soliton of the system (1.4). Denote by
U(t) the group of the free wave equation on F . The action of this group is isometric
on F according to the corresponding energy conservation law. Put γρ := |||ρ|||.
Remark. Note that there exist the functions ρ(x) with bounded values of Rρ, δρ

s.t. γρ → 0.

Our main result is the following theorem.

Theorem 2.4. Let δρ be bounded and γρ be sufficiently small, γρ ≤ γρ(v,Rρ)
Let Y (t) = (φ(x, t), π(x, t)), q(t), p(t)) ∈ C(IR, E) be a solution to the system

(1.1), let Y (0) ∈ Eσ with some σ ∈ (0, 1] and let Y (t) ∈ S. Then the relaxation of
the acceleration (1.8) holds, and the solution Y (t) admits the following long-time
asymptotics:

i) There exist v± = limt→±∞ q̇(t) ∈ V s.t.

|q̇(t) − v±| ≤ C (1 + |t|)−σ, (2.5)
‖F (x + q(t), t) − Fv±(x)‖R ≤ CR(1 + |t|)−σ, ∀R > 0. (2.6)

ii) There exist F± ∈ F such that

‖F (x, t) − Fv(t)(x − q(t)) − U(t)F±‖F ≤ C(1 + |t|)−σ. (2.7)
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Let us formulate sufficient conditions for a solution Y (t) to belong to S.

Put h(t) = 1
2

∫
d3x(|∇φ(x, t)|2 + |π(x, t)|2) — the energy of the field part of

a solution. Recall that supp V ⊂ {x : |x| ≤ RV }. Put G = supx∈IR3 |∇V (x)|,
v(t) := q̇(t).

Theorem 2.5. Consider solutions Y (t) to the system (1.1) with initial data Y (0) ∈
Eσ with some σ ∈ (0, 1], let q̇(0) = v(0). Let RV , G, |q(0)|, h(0) and δρ be bounded.
Then for |v(0)| close enough to 1 and sufficiently small γρ the solution Y (t) to the
system (1.1) belongs to S, that is

lim
t→±∞ |q(t)| = ∞.

3. Integral inequality argument. Consider a solution Y (t) ∈ S to the system
(1.1). If t is sufficiently large, then Y (t) obeys the nonperturbed equations (1.4).
Since the system (1.1) is invariant with respect to time translations, we may assume
that Y (t) obeys the equations (1.4) for t ≥ 0.

If the soliton-like asymptotics is approximately valid, then the field should be
close to the soliton centered at q(t) with velocity v(t) = q̇(t). We therefore consider
the difference

Z(x, t) = F (x, t) − Fv(t)(x − q(t)), (3.1)
where v(t) ≡ q̇(t). Defining ρ(x) = (0, ρ(x)) and A(φ, π) = (π,∆φ) we obtain that
F obeys the equations of motion

Ḟ (x, t) = AF (x, t) − ρ(x − q(t)). (3.2)

On the other hand, for the soliton field Fv with a fixed v, the equation holds

−v · ∇Fv(x − q(t)) = AFv(x − q(t)) − ρ(x − q(t)).

Then for Z we have the equation

Ż(x, t) = AZ(x, t) − ṗ(t) · ∇pFv(t)(x − q(t)). (3.3)

Here, according to the chain rule,

∇pFv = ∇vFv dv(p), (3.4)

where dv(p) is the differential of the map p �→ v(p) = p/
√

1 + p2. In the Cartesian
coordinate system dv(p) is represented by the Jacobi matrix ∂vi/∂pj .

Lemma 3.1. Under the assumptions of Theorem 2.4 the following bound holds for
any R > 0:

‖Z(· + q(t), t)‖R ≤ CR(1 + |t|)−1−σ, (3.5)
where CR depends also on initial data, v, and Rρ.

Proof: First, we prove the estimate with R = Rρ. Definition (3.1) imply Z(·, t) ∈ F .
Solving equations (3.3) we get the mild solution representation:

Z(t) = U(t)Z(0) −
∫ t

0

U(t − s)[ṗ(s) · ∇pFv(s)(· − q(s))] ds (3.6)

with U(t) the group generated by the free wave equation in Ḣ1 ⊕ L2.
Denote by Z1(x, t) = φ(x, t) − φv(t)(x − q(t)) the first component of Z(x, t) and

observe that 〈φv(x),∇ρ(x)〉 = 0 for |v| < 1 because the soliton (1.6) is a solution
to (1.4). Then (1.1) (coinciding to (1.4) for t ≥ 0) implies

ṗ(t) = 〈Z1(x + q(t), t),∇ρ(x)〉 . (3.7)
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Thus we obtain,
|ṗ(t)| ≤ C‖Z(· + q(t), t)‖Rρ

|||ρ|||. (3.8)

Let us denote πv = ∇pπv, φv = ∇pφv, St−s(x) = {y : |y − x| = t − s}, and

(φ(·, t, s), π(·, t, s)) = U(t − s)[∇pFv(s)(· − q(s))]. (3.9)

Then Kirchhoff’s formula for U(t − s) implies the representation

∇φ(x, t, s) =
∑
|α|≤1

(t − s)|α|−2

∫
St−s(x)

d2y aα(x − y)∂α
y πv(s)(y − q(s))

+
∑
|α|≤2

(t − s)|α|−3

∫
St−s(x)

d2y bα(x − y)∂α
y φv(s)(y − q(s)) (3.10)

and a similar representation for π(x, t, s). The coefficients aα(·), bα(·) are bounded
and the sums run over the multiindices α = (α1, α2, α3) with integers αj ≥ 0.
Therefore ∇φ(x + q(t), t, s) and π(x + q(t), t, s) can be represented as integrals of
type (3.10) over the shifted sphere St−s(x + q(t)) and with x + q(t) substituted to
aα(x − y) and bα(x − y) instead of x. If |x| ≤ Rρ, we have on this sphere

|y − q(s)| = |(y − x − q(t)) + (x + q(t) − q(s))|
≥ (t − s) − |x| − v(t − s) ≥ (1 − v)(t − s) − Rρ (3.11)

by the bound (2.4) on q̇(t). On the other hand, the integral representation (1.7)
yields by Cauchy-Schwarz

sup
|v|≤v

sup
|x|≥2Rρ

[
|x||φv(x)| + |x|2(|∇φv(x)| + |πv(x)|) +

|x|3(|∇∇φv(x)| + |∇πv(x)|)
]
≤ C(v,Rρ)|||ρ||| < ∞ . (3.12)

Inserting (3.12) and (3.11) in Kirchhoff’s formula for ∇φ(x + q(t), t, s), we obtain
the pointwise bound

|∇φ(x + q(t), t, s)| ≤
∑
|α|≤1

(t − s)|α|−2 C1(v,Rρ)|||ρ|||(t − s)2

(1 + |t − s|)|α|+2
(3.13)

+
∑
|α|≤2

(t − s)|α|−3 C1(v,Rρ)|||ρ|||(t − s)2

(1 + |t − s|)|α|+1
≤ C2(v,Rρ)|||ρ|||

1 + (t − s)2

for |x| ≤ Rρ and provided t − s ≥ 3Rρ/(1 − v). Therefore (3.13) implies for large
t − s, together with similar bound for π(x + q(t), t, s), the integral estimate

‖(φ(x + q(t), t, s), π(x + q(t), t, s)‖Rρ
≤ C3(v,Rρ)|||ρ|||

1 + (t − s)2
. (3.14)

On the other hand, for bounded t − s this integral estimate follows from (3.9) by
energy conservation for the map U(t − s) since ‖∇pFv‖F ≤ C(v,Rρ)|||ρ||| by (C).
Finally, (3.8) and (3.14) imply

‖ṗ(s) · (φ(x + q(t), t, s), π(x + q(t), t, s)‖Rρ
=

≤ C4(v,Rρ)|||ρ|||
‖Z(· + q(s), s)‖Rρ

|||ρ|||
1 + (t − s)2

. (3.15)

Now, let us bound the first term on right hand side of (3.6), more precisely,
we should estimate ‖[U(t)Z(0)](· + q(t), t)‖Rρ

. Since Y (0) ∈ Eσ by assumption,
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F (x, 0) = (φ0(x), π0(x)) satisfies the bounds (2.2) with a σ ∈ (0, 1]. Applying the
well-known energy inequality for the free wave equation, we get

‖[U(t)F (0)](· + q(t), t)‖Rρ
≤ ‖F (· + q(t), 0)‖t+Rρ

.

Further, from the strong Huygen’s principle it follows that for t > Rρ the solution
[U(t)F (0)](·+ q(t), t) does not change inside the ball BRρ

if one replaces F (x, 0) by
zero outside a small neighborhood of the spherical layer L := {t−Rρ ≤ |x− q(t)| ≤
t + Rρ}. Hence,

‖[U(t)F (0)](· + q(t), t)‖2
Rρ

≤ C

∫
L

d3x(|∇φ0(x)|2 + |φ0(x)|2 + |π0(x)|2).

Note that for x belonging to this layer of integration we have the following lower
bound due to (2.4):

|x| = |x− q(t) + q(t)| ≥ |x− q(t)| − |q(t)| ≥ t−Rρ − vt− |q0| ≥ (1− v)t− |q0| −Rρ.

Then the condition (2.2) for F (0) implies, for sufficiently large t,

‖[U(t)F (0)](· + q(t), t)‖Rρ
≤ C(F (0), q0, v̄, Rρ)

(1 + |t|)1+σ
. (3.16)

On the other hand, from (1.7) it follows by direct computation, cf. [9], that
U(t)Fv(0) satisfies the same bounds (3.16) with a σ = 1. Hence, U(t)Z = U(t)F −
U(t)Fv(0) satisfy the bound

‖[U(t)Z(0)](· + q(t), t)‖Rρ
≤ C

(1 + |t|)1+σ
(3.17)

with the same σ as in (3.16), where C depends on initial data, v̄, and Rρ. For
bounded t this estimate follows from the energy conservation for the free wave
equation. Combining (3.6) to (3.15) and (3.17) we arrive at

‖Z(· + q(t), t)‖Rρ
≤ C(Z(0), q0, v̄, Rρ)

(1 + |t|)1+σ
+

γ2
ρC4(v,Rρ)

∫ t

0

‖Z(· + q(s), s)‖Rρ

1 + (t − s)2
ds, t ≥ 0. (3.18)

Therefore, setting M(t) = max0≤s≤t(1 + |s|)1+σ‖Z(· + q(s), s)‖Rρ
, we have

M(t) ≤ C0(Z(0), q0, v, Rρ) + γ2
ρC(v,Rρ)IσM(t)

where

Iσ = sup
t≥0

(1 + |t|)1+σ

∫ t

0

(1 + |s|)−1−σ

(1 + |t − s|2) ds < ∞ for σ ∈ (0, 1] .

It remains to choose γ2
ρC(v,Rρ)Iσ < 1, then (3.5) with R = Rρ follows.

At last, we claim that the bound (3.5) with R = Rρ implies (3.5) for any R > 0.
Indeed, (3.14)-(3.18) hold with the norm ‖ · ‖R instead of ‖ · ‖Rρ

on the left hand
sides and with Ci(v, ρ,R) instead of Ci(v, ρ) on the right hand sides. Then (3.18)
with this generalization and (3.5) with R = Rρ imply (3.5) for any R > 0.

Proof of Theorem 2.4: i) (3.5) with R = Rρ and (3.8) imply

|ṗ(t)| ≤ C(1 + |t|)−1−σ ⇐⇒ |q̈(t)| ≤ C1(1 + |t|)−1−σ. (3.19)

Then there exist the limits (1.9), and (2.5) follows. Therefore, (3.5) implies (2.6).
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ii) We have to prove that ‖Z(x, t)−U(t)F±‖F ≤ C(1+ |t|)−σ. This is equivalent
to ‖U(−t)Z(x, t) − F±‖F ≤ C(1 + |t|)−σ since the group U(t) is isometric in F .
Apply U(−t) to integral equation (3.6) and get

U(−t)Z(t) = Z(0) −
∫ t

0

U(−s)[ṗ(s) · ∇pFv(s)(· − q(s))] ds.

The condition (2.4) provides that the norm of Fv(s)(· − q(s)) in F is bounded
uniformly with respect to s. Then (3.19) implies the convergence of the integral in
Fs at the stated rate. Theorem 2.4 is proved.

4. Constructing scattering solutions. In this section we prove Theorem 2.5.
Since the system (1.1) is time-invertible, we consider only the case t → +∞. Let
|q(0)| ≤ R. Without loss of generality we suppose that R > RV . Consider the
particle with initial data q(0), v(0). Introduce e = v(0)/|v(0)|. The orthogonal
projections of the vectors v(t), p(t), q(t) onto e read ve(t)e, pe(t)e, qe(t)e respectively
with ve(t) := v(t) · e, pe(t) := p(t) · e, qe(t) := q(t) · e, here dot means the scalar
product in IR3. Note that the vectors v(t) and p(t), ve(t) and pe(t) are of the
same directions and ve(0) = |v(0)|, pe(0) = |p(0)|. Introduce the layer in IR3,
L(e,RV ) := {x : |x · e| ≤ RV }, then suppV ⊂ L(e,RV ).

The statement of the Theorem follows from the three Propositions below. Since
the system (1.1) is invariant with respect to time translations, we start from t = 0
in each Proposition.

Proposition 4.1. Let |q(0)| > RV , |v(0)| be close enough to 1, let e be directed
toward L(e,RV ). Then the particle enters L(e,RV ) at a certain moment τ with
|ve(τ)| close to 1.

Proposition 4.2. Let |q(0)| ≤ RV , let |v(0)| be close to 1. Then the particle leaves
L(e,RV ) at a certain moment τ such that |ve(τ)| > 0 and ve(τ)e is directed outside
L(e,RV ).

Proposition 4.3. Let |q(0)| ≥ RV , |v(0)| > 0 and e is directed outside L(e,RV ).
Then the particle never enters L(e,RV ) and |qe(t)| → ∞ as t → +∞.

Proof of Proposition 4.1: For ve(t) we have the estimate

ve(t) ≥ ve(0) −
t∫

0

|v̇(s)|ds = |v(0)| −
t∫

0

|v̇(s)|ds.

Since outside L(e,Rv) the free equations (1.4) are satisfied, the following estimate
(see (3.5) and (3.8)) is valid:

|v̇(t)| ≤ Cγρ

(1 + |t|)σ+1
(4.1)

with a finite C determined by initial data, v, and Rρ. Thus,

ve(t) ≥ |v(0)| −
∞∫
0

Cγρdt

(1 + |t|)σ+1
= |v(0)| − Cγρ

σ
,

and we obtain the required result for sufficiently small γρ.

Proof of Proposition 4.2: First we check that the growth of the field energy is not

very fast. Recall that h(t) = 1
2

∫
d3x(|∇φ(x, t)|2 + |π(x, t)|2).
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Lemma 4.4.
h(t) ≤ (

√
h(0) +

√
2γρt)2. (4.2)

Proof: Multiply the equation φ̈ = ∆φ − ρ by φ̇ and integrate over IR3. We ob-

tain ḣ(t) = −
∫

d3xρφ̇ and hence ḣ(t) ≤ √
2γρ

√
h. Integrating this differential

inequality in t we come to
√

h(t) ≤ √
h(0) +

√
2γρt which proves (4.2).

Let us now prove the Proposition. Recall that v = p/
√

1 + p2 and hence, p =
v/

√
1 − v2. Thus, |v| is close to 1 if and only if |p| is large. From the equation

ṗ(t) = −∇V (q(t)) +
∫

d3x φ(x, t)∇ρ(x − q(t))

we obtain, due to (4.2), |ṗ| ≤ G + ‖φ‖γρ ≤ G + (2h(t))1/2γρ ≤ G + ((2h(0))1/2 +
2γρt)γρ = G1 + 2γ2

ρt with G1 := G + (2h(0))1/2γρ. The conditions of the theorem
imply that G1 is bounded. We obtain the following lower and upper bounds,

pe(t) ≥ pe(0) −
t∫

0

|ṗ(s)|ds ≥ |p(0)| − G1t − γ2
ρt2 = P − f(t),

|p(t)| ≤ |p(0)| +
t∫

0

|ṗ(s)|ds ≤ |p(0)| + G1t + γ2
ρt2 = P + f(t),

where P := |p(0)|, f(t) := G1t + γ2
ρt2. These estimates imply for ve(t)

ve(t) =
pe(t)
|p(t)|

(
1 +

1
|p(t)|2

)−1/2

≥ P − f(t)
P + f(t)

(
1 − 1

(P − f(t))2

)
=

1 − a2 − 2af(t) + a2f2(t)
1 − a2f2(t)

≥ (1 − a2 − 2af(t) + a2f2(t))(1 + a2f2(t)) = 1 − a2 + g(t), (4.3)

where a := P−1, g(t) := −2af(t) + (2a2 − a4)f2(t) − 2a3f3(t) + a4f4(t).
The corresponding estimate for qe(t) is

qe(t) ≥ qe(0) + (1 − a2)t +

t∫
0

g(s)ds. (4.4)

Take sufficiently large P , that is small a, then from the estimates (4.4), (4.3) the
statement of the proposition follows.

Proof of Proposition 4.3: We claim that there exist such small γρ > 0, v > 0 that
∀ t > 0 ve(t) ≥ v.

Indeed, put T = sup{t > 0 : ve(t) > v}. If v < ve(0)/2, then, by continuity,
T > 0.

Further, it is possible to choose such small γρ > 0, v > 0 that T = +∞. Note
that for t ∈ [0, T ] the free equations (1.4) are satisfied, hence the estimate (4.1) is
valid. Take

0 < v < ve(0) −
∞∫
0

Cγρ

(1 + |t|)σ+1
= ve(0) − Cγρ

σ
,



396 V. IMAIKIN, A. KOMECH, H. SPOHN

the choice is possible for sufficiently small γρ. If T < +∞, then ve(T ) > v, hence,
by continuity, ve(T + ε) > v for some ε > 0. This contradicts to the definition of
T . Thus, T = +∞. Hence, for t > 0 one obtains qe(t) ≥ qe(0) + vt.

REFERENCES
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