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Abstract: We consider a particle coupled to a scalar wave field and subject to the slowly
varying potentiall’(eq) with smalle. We prove that if the initial state is close, order

€2, to a soliton (=dressed particle), then the solution stays forever close to the soliton
manifold. This estimate implies that over a time span of ordéthe radiation losses are
negligible and that the motion of the particle is governed by the effective Hamiltonian
Heii(q, P) = E(P) + V(gq) with energy-momentum relatioB( P).

1. Introduction

When a particle interacts with a field its mechanical properties are renormalized, e.g. the
particle acquires an effective mass. In the context of charges interacting with the Maxwell
field such an effective energy-momentum relation is discussed at length already in the
classical work of Abraham [1] and Lorentz [16] with the implicit understanding that this
relation determines how the particle responds to external forces. Kramers [14] empha-
sizes the distinction between bare (appearing in the equation of motion) and physical
(observable by outside means) parameters of a charge. His vision has been implemented
through the renormalization of quantum electrodynamics. To our knowledge, even on
the classical level, it has never been properly settled in which sense and on what scale
the dynamics governed by the effective energy-momentum relation is an approximation
to the true solution of the coupled equations of motion. To gain some understanding
we study here the arguably simplest model, namely a single particle interacting with a
scalar wave field.
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Our second source of interest lies in the, by now, long list of examples we have for
the emergence of an effective dynamics, to mention only the Boltzmann and Vlasov
equation, hydrodynamics [21], homogenization in periodic and random environments
[3, 8], interface and vortex dynamics in Ginzburg—Landau theories [11], quantum sys-
tems weakly coupled to a heat bath [6], and a quantum particle in the semiclassical limit
[10, 18, 22]. Their common thread is a separation of space-time scales together with
some sort of local stationarity in such a way that the slowly varying dynamical vari-
ables are governed by an effective dynamics. However, the detailed mechanisms differ
notably from case to case. Here we add a novel item to the list. It is not covered by the
mathematical techniques developed so far.

We consider a scalar wave fiel¢lz), in three-dimensional space, coupled to a particle
with positiong, momentunp, governed by

¢(Jf, t) = 71-(1‘7 t)a 77(377 t) = A¢(x7 t) - p(l‘ - Q(t))a
(1.1)
q(t) = p()/ @ +p*)?, p(t) = / &>z (. 1) Vp(x — q(1)).
This is a Hamiltonian system with the Hamiltonian functional
Hoo,,4,) = (L+79Y2+ [ (ir@)P + (9o
+ [ ot~ o (L2)

We have set the mechanical mass of the particle and the speed of wave propagation
equal to one. In spirit the interaction term is simply). This would result however in

an energy that is not bounded from below. Therefore we smoothen out the coupling by
the functionp(x). In analogy to the Maxwell-Lorentz equations we ¢élt) the “charge
distribution”. We assume(x) to belong to the Sobolev spaé, radial, and compactly
supported, i.e.,

p,Vpe LA R%), p(x)=p(|z)), p(x)=0 for |z[> R,. ©)

The system (1.1) has solutions traveling with constant velacity| < 1. They are
given by

Sv(t) = (¢v(‘f17 —q—- Ut),ﬂ'v(.%' —q— Ut), q +Ut7pv)7 Pv = U/ Vv 1- U27 (13)
with

B p(y)d®y =
Pu(z) = — / (L= )y —2)2+ (v - (y — 2)D)2 Ty(z) = —v- V(bv(:c)(.lA)

To have a short name we cdl),(¢) the solitonwith velocity v centered a#(t) = ¢ + vt.
We define the normalized energy of a soliton as

Es(v) = Ho(Sy) — Ho(So), (1.5)
S, = 5,(0), which, using the rotational invariance afis given by

2 —? 1 1+|v|

20— 2] 91|

E@)=01-v)"Y2-1+3m, (1.6)
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Here 3n. = —(p, A~1p), with (-, -) the scalar product if>(R%); we havem, < oo by
assumption(). Since the system (1.1) is invariant under spatial translations, the total
momentum,

PG, mq.p)=p— / i n(z) Vo(a), 1.7)

is conserved. Inserting,,, the total momentum of a soliton is given by

1 Lot
202(1—v2)  4uf 91y w8

P,(v) =P(S,) =v(l— 112)71/2 + 3mev [

The map — Ps(v) is invertible fromV = {v € R3: |v| < 1} ontoR3 with the inverse
vs(P); see [12]. Therefore we obtain tleffective energy-momentum relation

E(P) = Eq(vs(P)). (1.9)

ThenE(P) is radial. In the nonrelativistic limitz(small) we have
Ey(v) ¥ %(1 +me)v? and Py(v) ¥ (L+m.)v for |u] < 1. (1.10)

Thusm, is the additional mass acquired by the particle through the coupling to the field.
For large| P| we have the relativistic dependenE¢P) = |P|.
Now let us assume that, at some timeve have the solitoty, (t) centered at(t),
v = ¢(t), and that an external force is acting on the particle. This force changes the
velocity tov’ # v andS,(t) is no longer a solution to the system (1.1). However, if the
force is small, so is the differeneé — v and, if the force is slowly varying, the wave
field has enough time to reestablish a soliton with new velacityn fact this happens
essentially with the speed of wave propagation (one in our case). Geometrically in
phase space, we have the 6-dimensional mangotd solitons labeled by their center
¢ and velocityv. For zero external force each point in this manifold moves on an orbit
t — (¢ +vt,v). Under a weak, slowly varying force, the true solution should remain
close to the soliton manifold thereby inducing on it an effectively 6-dimensional motion.
With this picture in mind, we add t# in (1.2) the slowly varying potentidl (cq),
ek,

Hel6.m0.0) = @AY s Vi) + 5 [ s (jn@) + (Do)

v [ o@pte - ) (L11)
For the potential” we require
V e C¥R®), inf V(g) > —oo, (P)
q€eR3
and
sup (IVV(9)| +|VVV(9)]) < oc. ©
q€eR3

We remark that, using the conservation of energy, condifignc@n be replaced by

V(g) = o0 as |q] — oo, (8]
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i.e., by the assumption thdt be confining. In the sequel we study the Hamiltonian
dynamics generated by (1.11),

d)(l‘v t) = 7T(;E, t)7 TI'(I7 t) = A¢(Ia t) - p(x - q(t))7
(1.12)
q(t) = p(t) /(L +p? ()2, p(t) = —eVV (eq(t)) + / &z ¢(a,1) Vp(z — g(t))-

The derivatives in (1.12) and below are understood in the sense of distributions. We
consider the Cauchy problem for the system (1.12) with initial conditions

(¢(x,0), 7(x, 0), 4(0), p(0)) = (¥°(x), 7%(x), ¢°, p°)- (1.13)

Under our assumptions, the global solution to the Cauchy problem (1.12), (1.13) exists
and is unique for initial data with finite energy. The solution depends thinough the
potential and possibly also through the initial conditions. In order as not to overburden
our notation, we will mostly suppress this dependence.

We assume the initial state to be close to a soliton. Since the force is slowly varying,
near the particle such a wave field should persist. Indeed, we prove that

[(@(q(®) + 2, 1), w(q(t) + 7, 1)) — (Do) (x), T (@)l < Cre, VR >0,(1.14)

uniformly int € R (with the norm|| - || , being defined by the field energy in a ball of
radiusR), provided a smallness condition gris satisfied. Presumably, this condition
is an artifact of our method.

In (1.12) the external force i®(c). So is the self-force, since according to (1.14)
the field ¢ deviates from the soliton only b§(c). Theng'is of ordere, whereas; is
of order 1. The effective energy-momentum relation should be visible on a time scale
O(1). Therefore we define the comparison dynamics through the effective Hamiltonian

Hert(Q, P) = E(P) +V(cQ)
with the corresponding equations of motion,
Q) = VE(P(t)), P(t)=—eVV(eQ()), (1.15)

suppressing again thredependence off(t), P(t)). Since the energy-momentum rela-

tion E(P) depends on the charge distribution only through the effective dynamics

is a structure independent property of the coupled system particle+field in the sense of
the Kramers [14].

The particle loses energy through radiation, which is proportionaf tand thus
O(£?). Therefore the comparison dynamics should be a valid approximation over a
time scale="1, i.e., overanytime interval of duratiorr—17. At time to the comparison
dynamics is adjusted to the true solution through the initial conditions

Q(to) = q(to),  P(to) = Ps(q(to))- (1.16)

Let (Q(¢), P(t)) be the solution to (1.15) with these initial values. We then establish that,
for |t — to| = O(e™1),

la(t) = Q) = O(L),  |a(t) — QM) = Oe), |i(t) — QM) = OE?)  (1.17)

uniformly in to. This is our main result.
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In the proof, we stick for a while to the traditional route. One solves the inhomoge-
neous wave equation and inserts the solution into the self-force. Thereby the force on
the particle depends on its past history, but not on the field. If one expands this force
atq(t) up to second order, one recovers the term missing in the full energy-momentum
relation. To justify such a procedure mathematically we have to lkanpwori that

li®)| ~e and  |q(t)]| ~ €? (1.18)

uniformly int, which requires an estimate of the field difference (1.14) and a similar one

to handleq (t). Our experience from the past is confirmed, namely a direct analysis of
the exact delay equation fgft) is hopeless. To make progress one has to switch back
and forth between particle and field.

2. Main Results

To formulate our results precisely, we need some definitions. We introduce the phase
space suitable for the Cauchy problem corresponding to (1.12) and (1.13).

Let L2 be the real Hilbert spack?(R?) with norm| - ||, and letf7* be the completion
of C5°(R3) with norm [|¢(z)|| = [V¢(x)|. Equivalently, using Sobolev's embedding
theorem,H! = {¢(z) € LS(R3) : |V¢(z)| € L?}; see [15]. Let|o],, denote the
norm in L?(Bg) for R > 0, whereBg = {z € R®: |z| < R}. Then the seminorms
léllr = |Vl are continuous o™,

Definition 2.1. i) The phase spacgis the Hilbert spacei’ @ L2 R3¢ R3 of states
Y = (¢, 7, q,p) with finite norm

1Y llg = lloll + Il + lal + Ip-

i) Er is the space& endowed with the ¢het topology defined by the local energy
seminorms

Y1z = 119llz + U7l g +lal +[pl, YR >O.

iii)y F is the Hilbert spaced® @ L2 of the fieldsb = (¢, 7) with finite norm

@l = lIgll + -

iv) Fr is the spaceF endowed with the &chet topology defined by the local energy
seminorms

@]z = 1¢lz * 7l g, VR >O.

A point in phase space is referred to as state. We write the Cauchy problem (1.12),
(1.13) in the form

Y()=F(Y (), teR, Y(©0)=Y°, (2.1)

whereY (t) = (¢(t), 7(t), q(t), p(t)) andY? = (40, 70, ¢°, pY). As already mentioned,
we mostly suppress thedependence of the solutions, of the vector fieJdnd of the
initial conditions.

The following lemma is proved analogously to the corresponding result in [13].
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Lemma 2.2. Let (C), (P), and(U), resp.(U’), hold. Then for every® € &, |¢| < 1,
the Cauchy problem (2.1) has a unique solufiore C(R, £) with speed bounded as

suplq(t)] <7 < 1 (2.2)
teR

The bounds = 5(Y?) is uniform in|¢| < 1 and for initial valuesY® in bounded subsets
of €.

If the effective dynamics is approximately valid, then the field should be close to the
soliton centered af(¢) with velocity v(t) = ¢(t). We therefore consider the difference

Z((E,t) = dJ(x,t) - ¢*($,t)7 (23)

where
(I)(x7 t) = (¢($7 t)v 7T(£C, t))a qD*(Ir t) = cI)U(t)(‘r - Q(t))

and®,(z) = (¢, (z), m,(z)) is the field part of the soliton. Defining(z) = (0, p(z)) and
A(o, ) = (7, Ag), it follows that® and Z satisfy the equations of motion

(r.1) = AD(z, 1) — pla — q(1). (2.4)
Z(w.1) = AZ(w.1) — Bla,t), B(e,1) = p(t) - V, ®uio(x — q(t).  (2.5)

Here, according to the chain rule,
V@, =V, P, du(p), (2.6)

whereduv(p) is the differential of the map — v(p) = p/+/1 +p2. In Cartesian coordi-
natesdv(p) is just the Jacobi matrigv; /9p;.

Theorem 2.3. Let the conditions of Lemma 2.2 hold and ||ef| be sufficiently small,
lpll < 6(w, R,). Then for evenyR > 0 there exist<'r such that

fgﬂg\lz(-+q(t)7t)||3 < Cr(1ZQ)]| £ + ). (2.7)

For the unperturbed, = 0, system our theorem states that the distance between the
true solution and the soliton manifold

S={(¢u(z —q), Tz — q),q,p) : g€ R® v eV} (2.8)

remains bounded in time. This property is called orbital stability, which has been estab-
lished for the system (1.1) in [12] and for related equations in [7, 2] using the Liapunov
method in combination with energy and momentum conservations Eor0 such an
argument breaks down, since the Hamiltonian vector field is no longer paraflello
have a stability result as (2.7) we therefore need to exploit that through radiation damp-
ing the solution is “pushed” towards. In other words, through the free wave equation
a small deviation from the soliton is transported to infinity, which also shows that we
are not allowed to replace the local energy normin (2.7) by the global one. An adequate
mathematical argument is provided by the nonautonomous integral equation method
[4, 5, 19, 20], which has been used to prove the convergence to the soliton manifold in
the context of the nonlinear Sadihger equation.

If we assume that initially| Z(0)|| = < Ce, then according to (2.7) the solution
remaing)(¢) close taS for all times. Thus it remains to characterize the motion alSng
as given by the particle trajectogyt). To obtain its approximate equation of motion we
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have to estimate the self-force. By Theorem 2.3 it i©¢f). To control the error)(£2),
the solution has to be slowly varying in time with outgoing fields, which we formalize
through the notion of aadiabatic familyof solutionsY; () = (¢.(t), 7=(t), g=(t), p<(2)).

We denote byJ(t) the dynamical group o generated by the free wave equation
and set

@0 = (¢:(0), 7 (0),  ($2(, 1), 72(, 1)) = U(t)@°. (2.9)

Definition 2.4. A family of solutiong(t) € C(R, ), 0 < ¢ < 1, to the system (1.12)
is called adiabatic, if there exist constantsiy > 0, andv < 1, such that the following
bounds hold:

sup [g=(8)| < 7, (2.10)
teR
sup |g=(t)| < ae, (2.11)
teR
sup [4.(t)| < ae?, (2.12)
teR

| < @2, 1), Vplz — q) > | < ac® for |q| < |t| - To. (2.13)

This definition is time-invariant, i.e., a family of solutios(¢ + 6) is adiabatic for
any# € R if it is for some#.
Our main result is the following

Theorem 2.5. Let the assumptions of Theorem 2.3 hold and’lét) € C(R, £) be an
adiabatic family of solutions to (1.12). LéR)(¢), P(t)) be the comparison dynamics
(1.15) with initial values (1.16). Then for any> 0 there exist€ = C(7) such that for
[t —to] < e 1T,

) — QM| < C, 14() — Q)| < Ce, () — Q)| < Ce%  (2.14)
The constan’(7) can be chosen independentlytgf

Of course, we still need a criterion for initial states, that ensures the corresponding
family of solution trajectories is adiabatic. The following theorem provides sufficient
conditions, which in particular show that any initial soliten (z —¢°), 7, (x—¢°), ¢°, p,)
defines an adiabatic family of solutions and that the set of adiabatic families of solutions
is nonempty and open in an appropriate topology.

We set (°(x),v°(x)) = Z°%=x) = Z(x,0) with corresponding Fourier transforms
(¢°(k), ¥°(k)), and we let

p(0) = —eVV(eq(0)) + / &z ¢(x,0) Vp(z — q(0)).

Theorem 2.6. Let there exista® > 0 such that for the initial state¥? = Y° =
(%, 70, ¢% p°) € &£, 0 < € < 1, the following bounds hold:

1Y)l < a°, (2.15)

12°)| 5 < a’, (2.16)

IV Z°%a)|| - + |p(0)] < a¢?, (2.17)

[ (g1 13°w) o) < % (@18

[ IR (I3 + [V100) < o (2.19)
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and let| p|| be sufficiently smallp| < §(a°, R,). Then the family of solutiong.(¢) €
C(R, &) to the Cauchy problem (2.1) is adiabatic.

Thus Theorem 2.6, in essence, requires that the deviation from the soliton has suffi-
cient smoothness and decay.

Our paper is organized as follows. Theorem 2.3 is proved in Sect. 3, and Theorem 2.6
is established in Sect. 4. In Sect. 5 we compute the self-force, and in Sect. 6 we complete
the proof of Theorem 2.5. Section 7 concerns the translation invariant system (1.1). In
Appendix A we collect Fourier space computations. Finally, in Appendix B, we list some
remarks on the Hamiltonian structure.

3. Stability of the Soliton Manifold

We prove Theorem 2.3 and establish first the required boun& forR,, from (C).
Lemma 3.1. Under the assumptions of Theorem 2.3, the bound (2.7) holds for,,
12(+q(®), Dl g, < CIZO)]| 7 +e)- 3.1)

Proof. Solving Eq. (2.5) by Fourier transform we get the mild solution representation
t
Z(t) =Ut)Z(0) - /0 U(t = $)[p(s) - VpPu(s)(- — q(s))] ds, (3.2)

with U(t) being the group generated by the free wave equatidﬂliﬂa L?. By conser-
vation of energy for the wave equation

IIU@AZO)C + g, < IIUDOZO]C+a@)l = [1ZQ)]| £- (33)

We denote byp(x,t) = ¢(x,t) — dur(z — ¢(t)) the first component o (z,t) and
observe thato,(x), Vp(x)) = 0 for |v| < 1 because the soliton (1.3) is a solution to
(1.1). Then (1.12) implies

p(t) = —eVV(eq(®)) + {p(z +q(?), 1), Vp(z)). (3.4)
Thus with assumption{) we obtain,
0] < C(=+12¢+ a0, Dl 5, I]). (35)

We further introducer, = V,m,, ¢, = Vpdy, Si—s(@) ={y : |y —z| =t — s}, and
(5(7 t7 S)vﬁ('v t7 S)) = U(t - S)[qu)v(s)( - Q(S))] (36)

Then Kirchhoff’s formula forU (¢ — s) implies the representation

Vit = 3 (=) [ et - 0T - )

‘OélSl St—s(l‘)
£ 3 (- 5)lels / 02y b (@ — )0 By — a(s)),
\a|§2 St_s(x)

(3.7)
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and a similar representation fa(z, ¢, s). The coefficients,,(-), b, (-) are bounded and
sums are taken over multiindices = (a1, ao, az) with integersa;; > 0. Therefore

Vo(z +q(t), t, s) and7w(z + (t), t, s) can be represented as integrals of type (3.7) over
the shifted spher8;_(x + (). If |z| < R,, we have on this sphere
ly —a(s)] = [(y — = — q(®)) + (z +q(t) — q(s))]
>(t—s)—lz[-v(t—5)=1-0)t—s)— R, (3.8)

by the bound (2.2) on(?). On the other hand, the integral representation (1.4) yields by
Cauchy—-Schwarz

sup sup [|al[, @) + |22V, @) + [Fu @) +

lv|<v [z|22R,
2(VV,@) + [VF@))] < CERIpl <00 (39)

Inserting (3.9) and (3.8) in Kirchhoff's formula fov ¢(x + ¢(t), t, s), we obtain the
pointwise bound

lal—2C1(@, R)lpl(t — 5)*

IVo(a +q(t), t, 8)| < Z (t —s) (L+]|t — s|)lal*2

lal<1

b3 (¢ gyt CT Rl — 5

_ al+l
2, (Tl — oD
Co(@, Ry)| el
< —F .
= 1+t — s)? (3.10)

for |z| < R, and provided — s > 3R,/(1 — ©). Therefore (3.10) implies for large
t — s, together with a similar bound far(z + ¢(¢), t, s), the integral estimate

Cs@, Ry)lpl
1+(@t—s)2 "
On the other hand, for bounded- s this integral estimate follows directly from (3.6)
by energy conservation for the méf{t — s), since||V,®,| < C(w, R,)|p| by (C).
Finally, (3.5) and (3.11) imply
15(s) - (@(x +q(t), 1, 5), (@ + q(t), 1, 5)| r,
e+[|Z(-+a(s), 9)llg, lrl

H(a(z+Q(t)at75)aﬁ(m+Q(t)at75)”Rﬂ < (311)

< Cu(v .
< Gl Bl —— =7 (312)
and combining (3.2) and (3.3) we arrive at
12 +a(®). 1)1, (3.13)
te+|Z(-+q(s). s)lg, Irl
< 0l 2 > 0.
<120) 5 + Can. Rl || g ds. £20

Thus, denotingV/(t) = max<.<: | Z(q(s) + z, 5)|| r,, we have

M(t) < | ZQ)l| = + Cs(, Ro)lpli(e + [ ol M (1))
We choose nowjp|| so small thaiCs(7, R,)|p|?> < 1. Then (3.1) follows for > 0.
(I
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We claim that the bound (3.1) implies (2.7) for aRy> 0. Indeed, (3.11)-(3.13)
hold with the norm| - ||z instead of| - ||z, on theleft hand sides and witt;(v, p, R)
instead of”; (v, p) on the right hand sides. Then (3.13) with this generalization and (3.1)

imply (2.7).

4. Adiabatic Solutions

We prove Theorem 2.6. The bound (2.10) is the assertion of Lemma 2.2. Concerning
(2.13), we have

U(t)0° = U) Py — ¢°) + U1 Z°. (4.1)

Moreover,U(t)®.,)(z — ¢°) = 0 for |z — ¢°| < |t| — R, by Kirchhoff's formula, since
we have the representation

0

Dy)(2) = — /_ [U(=9)a(- = ¢° = v(0)s))() ds. (4.2)

Therefore with the choicdy = 2R, + |¢°| (2.13) holds for the first component of
[U(@#)Dy(0)](z). With the choicelp = 0, (2.18) implies (2.13) for the first component of
U(t)Z°, as can be seen in Fourier space representation.

Thus it remains to prove (2.11) and (2.12).

Proposition 4.1. For small||p|, the following bounds hold:

suplo(t)| < C(a® R,)e, (4.3)
teR
sup[i(t)] < C(a® R,) €% (4.4)
teR

Proof. The estimate (4.3) follows from (3.5), (3.1), and (2.16). To obtain (4.4), we
differentiate (3.4) using(),

() = —%0(t) - V VV (eq(t)) + M(t), (4.5)
whereM (t) = (L(t)p(x + q(t), t), Vp(z)) and L(t) = 0; + v(t) - V. Then ) implies
B(t)] < C(e*+ | M@))). (4.6)
Therefore (4.4) will be a consequence of
Lemma 4.2. We have

sup|M(t)| < C(a, R,)e? 4.7
teR

for small||p|.
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Proof. We extend the method of the previous section. DencB(g, ¢) = L(t)Z(z, t),
we haveM (t) = (E(z, t), Vp.(x —q(t))), wherep,(z) = (o(x), 0). To obtain an equation
for E(t) we apply the differential operatdr(t) to (2.5) in the sense of distributions to
find

E(z,t) = AZ(z,t) — L) B(z, t) + 0(t) - VZ(x, t). (4.8)

Hereuv(t)-VZ(-,t) € C(R, F)dueto (3.2),(2.17), and)). Also L(t) B(-, t) € C(R, F)
because

L(t) Bz, t) = (t) - Vp@ui(@ — q(@) + 0(0) - V) Puy(z — q(t)).  (4.9)
Moreover, assumptions (2.17) ard)(imply E(-,0) € F, since

E(z,1) = Ad(z,t) — plx — q(t)) + v(t) - VO (2, 1) — p(t) - VpPury(z — q(?))
(4.10)

by definition of Z in (2.3) and by (2.5). Therefore, using the Fourier transform to solve
the linear nonhomogeneous equation (4.8), we get the following integral representation,
similar to (3.2),

t

E(z,t) =U@®)E(-,0) — /t U(t — s)L(s)B(s)ds + / v(s) - U(t — s)VZ(s)ds,
0 0 (4.11)
where both integrals converge f. Hence ) implies
M(t) = (U®)E(, 0), Vp.(- — q(t)))

t
- /0 (Ut — )L(s)BLs), Vul- — q(t)))ds

+ /O i) - (Ut — )V Z(s), Vpu - — q(t)) ds. (4.12)

We analyze the three summands separately.
(i) For the first summand we prove the bound

sup|(U(H)E(:, 0), V. (- — a(t)| < Cr(a®)]pl €* (4.13)

>0

Equation (4.10) implie§ (-, 0)|| » < C(a®)e? by assumptions (2.17) and’}. Energy
conservation then yields the uniform bound (4.13).
(i) For the second summand in (4.12) we will obtain

/0 (UG — )L B(), Vou (- — () ds

t 2
0 2 [1 7 |M(s)]
<G Rl | Tt s 120 (@14)
Equations (4.9), (4.6), and (4.3) resultlit) B(z, t) = e(x, t) + m(x, t), where again by
©),

fggIle(w,t)IIf < C@®, Ry)lpl e, m(z, )]l < Ca® Ry)lpll [M(2)] -
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Therefore (4.14) follows by repeating the arguments from (3.6)—(3.12).
(i) For the third summand in (4.12) we will prove

sup

/' B(s) - (UGt — )VZ(s). Vpu( — q(t) ds| < Ox(a®, p) 2. (4.15)
t>0|(J0

Taking the gradient of (3.2) yields
Ut —s)VZ(s)=U({t)VZ(0)— / '].D(T) U@t — T)VIVp Py (- — g(1)] dr.
0 (4.16)

For the firstterm, by partial integration in polar coordinates of the Fourier representation,
(2.19) and (2.18) imply that

UV Z(0), Voi(- — qt))| < C(a®)t  e.

The integral is oscillatory due to the bound (2.2). The justification for this partial in-
tegration comes from an appropriate averaging process. To bound the second term we
note, similarly to (3.11),

_ O, Rl

UG =)V, @ = a N, < 36 (4.17)

since the bounds of type (3.9) hold forv,®,,(z) with an additional power ofz| on
the left hand side. Then (4.16)-(4.17) and (4.3) imply (4.15).

Finally we substitute (4.13), (4.14), and (4.15) into (4.12) to obtain the integral
inequality

L+ M)
< 0 \.2 0 2 [ € > 0.
MO < C. e + O R | T ds. ¢20

Therefore (4.7) for > 0 follows, provided thafp|| < 6(a®, R,). O

5. Inertial Representation of the Self-Force

We study the self-action term
F0 = [ oe,t) Vot~ a(0)

Denotel; = 2Rp(1—@)*1, wherev < 1is the bound from (2.10), arid = max(lp, 1)
with T from (2.13). We also introduce the field part of the total momentum,

P (v) = Ps(v) — po, (5.1
cf. (1.8), (1.3). The corresponding “effective massi,(v), is given by the differential
dF(v) =1 ms (v).

Lemma 5.1. Let the assumptions of Theorem 2.5 hold. Then

Fy(t) = —me(@0)i(t) + s, |fs(O)] < Ce2, for [t| > T. (5.2)
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Proof. We note that by (1.12) and (2.9)(z, t) = ¢°(z,t) + ¢"(x, t), where¢®(x, t) is
a solution to the free wave equation defined in (2.9), whilés the retarded potential

= [ 2] GO (53)

We decompose accordingh,(t) = FO(t) + F"(t), with
FO1) = (@°C, 1), V(- — q(1)), FT(t) = (&"(-,t), V(- — (1)) (5.4)
From (2.10) we conclude thai(t) — ¢°| < t, and therefore
FO(t) = O(e?) for t>Tp (5.5)
by (2.13), since the solution is adiabatic. Hence
Fy(t) = F"(t) + O(e?) for t > To. (5.6)
Equations (5.3) and (5.4) imply

O e ) ot~ a) 67)

t
Now observe that for all, 7' > T} the/ ds(...)-integral in (5.7) may be changed to
0
t
a/ ds(...)-integral, since
t—T

p(y —q(s)) Vpx —qt)) =0 if |z —y|=t—s>T1. (5.8)
Indeed,p(y — ¢(s)) Vp(z — q(t)) 7 0 implies|y — ¢(s)] < R, and |z —q(t)| < R,.
Therefordz —y| < 2R, +9(t — s), since|q(t) — g(s)| < T(t — s) by (2.2). Substituting
|z — y| byt — s we obtaint — s < 2R,/(1—7) = T1.
Next we fixt, T > Ty and substitute in (5.7) the Taylor expansion

q(s) = q(t) — q(e)(t — s) + %c’i(t)(t — 5?2+ O(?)
according to (2.11)—(2.12). Then

t
Fr(t):‘irt /T ) K BRC I CRYORY OIS

lz—y|=t—s

~ 5O~ 92+ OVl ~ ).

Combining with (5.6) we finally obtain

R)= 5 / = fan [y g+ i - )

le—y|=t—s

—é(t = 8Y24(t) - Vply — q(t) + a(6)(t — 8))} Vplx —q(®) + fs(t)  (5.9)
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with f(¢) satisfying (5.2). The integral does not dependgprovidedT’, ¢t > T3, which
reflects the strong Huyghen’s principle. We will show in Appendix A by taking the limit
T — oo that the integral in (5.9) in fact equatan;(¢)g. Then (5.2) follows fort > T'.

O

6. The Adiabatic Limit
We complete the proof of Theorem 2.5. We first ensure the existence of the effective
dynamics.

Lemma 6.1. Define E(P) through (1.9), and let the potenti® satisfy(U). Then for
every initial statg(Q(0), P(0)) € R? x R3 the Hamiltonian system

Q) = VE(P(t), P(t)=—VV(=Q()) (6.1)
has a unique solutiofQ(t), P(t)) € C(R, R3 x R3). Moreover,|Q(t)| and |Q(t)| are
bounded uniformly irm.

Proof. Both VV E(P) and VVV(Q) are bounded andies(P, Q) is bounded from
below. O

Let m(v) = dP,(v). From Lemma 5.1, together with definitions (1.8), (5.1) and the
equations of motion (1.12), we conclude that

m(q(£)4(t) = —eVV(eq(®)) + fs(?). (6.2)

We want to rewrite (6.2) in a Hamiltonian form. For this purpose we introdui@g =
P;(q(t)), which yieldsm(q(t))g(t) = T1(¢). To obtaing as a function offl1 we have to
invert the map — P,(v).

Lemma 6.2. The inverse function t&,(v) is given by
vs(P) = VE(P). (6.3)
Proof. Using the chain rule, Eq. (9.1) states
v = VE,(v) (dP,(v))"' = VE(P,(v)). O
With these definitions, (6.2) becomes
q(t) = VE(TI(t)), TI(t) = —eVV(eq(t) + fo(D)- (6.4)

Let ¢°(t) = eq(e 1), Q°(t) = eQ(e~1t) andI1°(¢) = (e~ 1t), P(t) = P(e~t). Then
(6.4) and (6.1) read

(1) = VE(TI(1)), TI°(t) = —VV(eg* (1)) +e 1 fu(et),
Q°(t) = VE(Pe(1)), P=(t) =-VV(eQ*(?)).
SinceVVE andVVV are bounded, and,(st)| < Ce?for |t| > T, from a Gronwall
argument for(¢) = |¢°(t) — Q°(t)| + |I1°(¢) — P*(t)|, we conclude that
r(t) < C(rg +¢)eClt—tol, (6.5)

Hererg := 7(to) = 0 due to (1.16), iftg| > T, otherwiserq := r(+eT) = O(e), since

q° (), Q5(t), TI°(t), P4(t) change byO(c) over the time intervalt| < T. Therefore,
(6.5) implies the first two bounds of (2.14). The third bound follows from the second
order equation (6.2) fay &nd a similar equation fap.
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7. The Translation Invariant Case

For V' = 0 the velocityq(t) of the particle should, after a transient period, stabilize at
some definites dressed by the corresponding soliton field. Such a result was established
in [12], where we only had to assume the Wiener condip¢f) ¥ 0. The technique
developed here avoids this condition at the priz¢f << 1 and obtains even a bound

on the rate of convergence. We dengi@®) = (¢°(z), ¥°(x)).

Proposition 7.1. Let | p| be sufficiently small|p|] < (7, R,), and assume for some
o€ (0,1],

@) + |21V (@)] + [00@)]) + 221V VO (@) + [VYO()])
=0(z|77) as |z| = oo. (7.1)

Then the solution to (1.1) satisfies
1Z(-+a(t),D)llr < CrL+[t)™*7, VR>O0. (7.2)
Corollary 7.2. Under the same assumptions the acceleration is bounded as
lq@®) < C@+[th™. (7.3)
Therefore, the limitéim; ., ¢(t) = v+ € V exist, and
|q(t) —ve| < CA+]E)7. (7.4)
Proof. Equations (7.1) and (3.2)—(3.11) with= 0 imply, similarly to (3.13),

"11Z(a(s) + 2, 9) || r
L+t —s])?

1Z(- +a(®). B)llr, < CA+[E) 7 +C@, p)lol® A = ds

for ¢ > 0. Therefore, setting/(t) = maxo<,<¢(1 +[t))**7(| Z(q(s) + z, s)||r,, we find
M(t) < C+C(@, p)lplP 1o M),

where
CA+]s))r

I, = sugL + 1))+
t>0

It remains to choos€'(v, p)|p|°1, < 1, then (7.2) withk = R, follows for ¢t > 0. The
corollary is a consequence of (3.4) witgkr 0. [

Remark. Soliton-like asymptotics are established in [17] for some translation invariant
1D completely integrable equations, in [4, 5] for small perturbations of soliton solutions
to 1D translation invariant nonlinear Scliihger equations, and in [19, 20] for(1)-
invariant 2D and 3D nonlinear Sabdinger equations with a potential term decaying
like a power decay at infinity; [9] studies soliton-like asymptotics for 1D translation
invariant nonlinear reaction systems.
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8. Appendix A. Fourier Integrals

As usual, we denote bfi(k) = (2)~%/2 / d3z e'** f(x) the Fourier transform of (z).

Solitons:The soliton (1.4) has the Fourier transform

P p(k)

g -
2 (k) = ik -v p(k

7T’U( (k U)Z

Energy-momentum relatiomnserting (8.1) in (1.2) and (1.7), the energy and the total
momentum of a soliton with velocity are, respectively,

N2 1.2
Ho(S,) = (L)) Y2+ 5 [ @IpmE S 0. (8.2)
P,(v) :v(lfvz)*1/2+/d3k\ﬁ(k)|2[k2_k(+)z]zk. (8.3)

After some calculations, this yields (1.6) and (1.8).
Field massEquation (8.3) implies that the effective mass due to the coupling to the field
is given by

|2 k2 +3(k - v)?

e o skok, o<l (8.4)

mi(v) = dP(v) = / d*k | p(k)

Self-force:We compute the integral (5.9) by switching to Fourier space. The wave
propagator in Fourier space is multiplication &y~ sin |k|t. Hence

t
e 1
Fy(t) = / &k |p(k)| ik / dse”HaOt=9) |1 _ éq(t) (—ik)(t — s)z}
t—=T
x|k| "L sin|k|(t — s) + fs(2). (8.5)
We evaluate this integral by taking the limit &s— oo, recalling that the integral does
not depend off” providedT > T, We setF,(t) = I1(T) + I(T) + f.(t).

In (8.5) we integrate over. Settingv = ¢(t) andk+ = —k - v £ | k[, the first integral
reads

. t o inlkl(t —
By = [ @ripefin [ asemaoes SHEEZ) ]£| 9
t—T

1 k eth+ T ik T
. ks | ™ (2
—z/d k|p(k)| [kz—(k:-v)z 2|k| ( K k- >}

zk+ 6ik,T . 3
/d3k| p(k)[? 3] ( - ) = [}(T) + I (T).
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Introducing polar coordinates= |k|, § = k/|k|, we have

Ry =i [ Php0 S S
1) = PUOT 20 ks
:_z 2 4 - ~ 2 i(0-v+l)vT
2/9|:1d 99~v+1/o dvv |pwo)|? e . (8.6)

The integral converges absolutely, singg) is smooth with all derivatives ifi?(R3) by
assumption(). Therefore, integrating by parts twice in thentegral yieldg I (T))| <
CT~2 becausev| = [¢(t)| < 1.

The same argument appliesip(7") and it follows that

|L(T) <CT 20 as T — ooc. (8.7)
The second integral reads

1 . . k b sin|k|(t — s
Mﬂ=—2/fﬁmmﬁw®~ﬁ/T%ek“W‘W—®2|;)
t—

_ AN2 g s k2 +3(k - v)2 1 [T @ik T
== f i a0k gt s g (S~ )

iT eikﬁ+ T eik_ T TZ eik+ T eik_ T
() ()

The integrals containing” are again oscillatory and vanish @5 — oc. Therefore,
comparing with (8.4), we conclude

L(T) — —ms(g(t))g(t) as T — oo. (8.8)

Hence (5.2) follows from (8.7) and (8.8).

9. Appendix B. The Hamiltonian Structure

Energy-momentum relatiotn Sect. 6 we used the identity
vdPs(v) = VE(v), |v] <1l (9.1)

While obtained from the explicit expressions (8.2), (8.3), resp. (1.6), (1.8), this identity
should be understood as a direct consequence of the conservation of total momentum,
i.e., of the translation invariance of (1.1).

Our argument uses the canonical transformation [12]

T (7, q,p) = (®(2), (), Q, P)
= (¢(q + l’), 7T(q + SL’), qp—< 7'('(1(}), V(b(l’) >)'
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In new variables the Hamiltonian (1.2) reads

Hp(d, TT) = HO(CD(:C — Q). l(z — Q),Q, P+ < TI(z), Vd(z) > )

= [ s (FInE@)R+ STOWE + e(@p(o)
o 1/2
+(1 + (P+ < M(z), Vo(z) > ) > :

‘H p is bounded from below and has its uniqgue minimum at the pegints,), the soliton
at velocityv = v,(P), with minimal valueH p(¢,, m,) = Es(v) + Ho(So); see [12].
Differentiating inv we obtain

Hp dHp

VES(U) = <6T(¢v77rv)v vv¢v> + <671—[(¢v77rv)7 vv'”v>

+VPHP(¢1); 7711) dPs (U)
= vdPy(v),

since @, m,) is a critical point of{p and the first two terms vanish, while= Q=
VpHp(d,, ,) becausd is a canonical transformation.

Correspondence of the Hamiltonian structurBgfinitions (1.5), (1.8), and (1.9) imply
that the Hamiltonian functionat{. of (1.11) restricted to the solitof, = (¢,(x —
q), m(z — q), ¢, p,) becomes

He(Sv) = E(P) + V(eq) + Ho(S0) = Heii (4, P) + Ho(S0) (9.2)

with P = P,(v). Thus the effective Hamiltonian can be understood as the restriction of
‘H. to the soliton manifold. We need in addition the appropriate choice of the canonical
variables to write the Hamilton’s equations in standard form (1.15). For general reasons
one expects the conserved quantities to play a distinguished role. In our case this suggests
P andgq as canonical variables. The next lemma gives an inherent geometrical meaning
to this choice, which might be valuable in a more general context.

Lemma 9.1. The canonical structuré’ dq on the soliton manifold is the restriction
of the full canonical formp dg + < ¢, dm >, i.e.,

Pdq=(pdq+(¢,dr)) s

Proof. We havep dg+ (¢, dw) = P dQ+(®, dI1), sinceT is a canonical transformation,
and

(@, dIT) s = (v, dmy) = (¢y, Vymy)dv =0

by antisymmetry in Fourier space and singe-k)| = |p(k)|. O



Effective Dynamics for a Mechanical Particle Coupled to Wave Field 19

References

1. Abraham, M.:Theorie der Elektrizdat, Band 2: Elektromagnetische Theorie der Strahlubejpzig:
Teubner, 1905

2. Bambusi, D., Galgani, L.: Some rigorous results on the Pauli-Fierz model of classical electrodynamics.
Ann. Inst. H. Poincag, Phys. Theo58, 155-171 (1993)

3. Bensoussan, A., Lions, J.L., Papanicolaou,ASymptotic Analysis for Periodic Structuredtudies in
Mathematics and its Applications, Vd@, Amsterdam: North-Holland, 1978

4. Buslaev, V.S., Perelman, G.S.: On nonlinear scattering of states which are close to a soMéthdates
Semi-Classiques, Vol.2 Colloque International (Nantes, juin 19%tprisque208 1992, pp. 49-63

5. Buslaev, V.S., Perelman, G.S.: On the stability of solitary waves for nonlineao@ober equations.
Trans. Amer. Math. Sod.64, 75-98 (1995)

6. Davies, E.B.Quantum Theory of Open Systernsndon: Academic Press, 1976

7. Grillakis, M., Shatah, J., Strauss, W.A.: Stability theory of solitary waves in the presence of symmetry
land Il. J. Func. Anal74, 160-197 (1987)94, 308—348 (1990)

8. De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: An invariance principle for reversible Markov
processes. Application to random environments. J. Stat. BByg87-855 (1989)

9. Fleckinger, J., Komech, A.: On soliton-like asymptotics for 1D nonlinear reaction systems. Russian J.
Math. Phys5, 295-307 (1997)

10. Hagedorn, G.A.: Atime dependent Born—Oppenheimer approximation. Commun. Math7 RAy€.9
(1980)

11. Jerrard, R.L., Soner, H.M.: Dynamics of Ginzburg—Landau Vortices. Preprint, 1995

12. Komech, A., Spohn, H.: Soliton-like asymptotics for a classical particle interacting with a scalar wave
field. Nonlinear Anal33, 13-24 (1998)

13. Komech, A., Spohn, H., Kunze, M.: Long-time asymptotics for a classical particle interacting with a
scalar wave field. Comm. Partial Differential Equati@2s 307-335 (1997)

14. Kramers, H.A.: Non-relativistic Quantum-Electrodynamics and correspondence PrincifgelMay
Conference 1948, Rapport et Discussions, Bruxelles, pp5@41-265; in: Kramers, H.ACollected
Scientific PapersAmsterdam: North-Holland, 1956, pp. 845—-869

15. Lions, J.L.;Problemes aux Limites dans les Equations atetiiEes PartiellesMontréal: Presses de
I'Univ. Montreal, 1962

16. Lorentz, H.A.Theory of Electrons2nd edition 1915. Reprinted by New York: Dover, 1952

17. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, VItaeory of Solitons: The Inverse Scattering
Method Consultants Bureau, 1984

18. Robert, D.:Autour de I'Approximation Semi-ClassiquBrogress in Mathematics, Vo68 Basel:
Birkhauser, 1987

19. Soffer, A., Weinstein, M.l.: Multichannel nonlinear scattering for nonintegrable equations. Commun.
Math. Phys133 119-146 (1990)

20. Soffer, A., Weinstein, M.1.: Multichannel nonlinear scattering for nonintegrable equations Il. The case
of anisotropic potentials and data. J. Differ. E88.376-390 (1992)

21. Spohn, H.Large Scale Dynamics of Interacting Particl&erlin: Springer, 1991

22. Spohn, H.: Long time asymptotics for quantum particles in a periodic potential. Phys. Rev.7 ett.

1198-1201 (1996)

Communicated by A. Kupiainen



