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Abstract

We prove the asymptotic stability of kink for the nonlinear relativistic wave
equations of the Ginzburg–Landau type in one space dimension: for any odd ini-
tial condition in a small neighborhood of the kink, the solution, asymptotically in
time, is the sum of the kink and dispersive part described by the free Klein–Gordon
equation. The remainder converges to zero in a global norm.

1. Introduction

We prove the asymptotic stability of kinks for relativistic nonlinear wave equa-
tions with two-well potentials of Ginzburg–Landau type. We consider the equation

ψ̈(x, t) = ψ ′′(x, t)+ F(ψ(x, t)), x ∈ R (1.1)

where ψ(x, t) is real, and F(ψ) = −U ′(ψ). We assume U (ψ) similar to the
Ginzburg–Landau potential U0(ψ) = (ψ2 − 1)2/4 which corresponds to the cubic
equation with F(ψ) = ψ − ψ3.

Condition U1. U (ψ) is a real smooth even function which satisfies the following
conditions

U (ψ) > 0 for ψ �= ±a, (1.2)

U (ψ) = m2

2
(ψ ∓ a)2 + O(|ψ ∓ a|14), x → ±a (1.3)

with some a,m > 0. In a vector form, Equation (1.1) reads
{
ψ̇(x, t) = π(x, t),
π̇(x, t) = ψ ′′(x, t)+ F(ψ(x, t)), x ∈ R.

(1.4)
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214 E. Kopylova & A. I. Komech

Formally, this is a Hamiltonian system with the Hamilton functional

H(ψ, π) =
∫ [ |π(x)|2

2
+ |ψ ′(x)|2

2
+ U (ψ(x))

]
dx . (1.5)

The corresponding stationary equation reads

s′′ − U ′(s) = 0. (1.6)

There is an odd finite energy solution s(x) (a “kink”) to (1.6) such that

s(0) = 0, s(x) → ±a as x → ±∞. (1.7)

The condition U1 implies that (s(x)∓ a)′′ ∼ m2(s(x)∓ a) for x → ±∞, hence

s(x)∓ a ∼ Ce−m|x |, x → ±∞. (1.8)

The generator of linearized equations near the kink reads (see Section 2)

A =
(

0 1
−H 0

)

where H is the Schrödinger operator

H = − d2

dx2 − F ′(s) = − d2

dx2 + m2 + V (x), V (x) = −F ′(s(x))− m2

= U ′′(s(x))− m2. (1.9)

By (1.8), we have

V (x) ∼ C(s(x)∓ a)12 ∼ Ce−12m|x |, x → ±∞. (1.10)

The continuous spectrum of H coincides with [m2,∞). Not to overburden the
exposition, we consider only odd solutions ψ(−x, t) = −ψ(x, t). We assume the
following spectral condition:

Condition U2. The discrete spectrum of H, restricted to the subspace of odd func-
tions, consists of only one simple eigenvalue λ1 < m2 with 4λ1 > m2, and the edge
point λ = m2 is neither eigenvalue nor resonance for H.

We assume also a non-degeneracy condition, the “Fermi Golden Rule” intro-
duced by Sigal [24]. The condition provides a strong coupling of the nonlinear
term with the eigenfunctions of the continuous spectrum and the energy radiation.

Condition U3. The non-degeneracy condition holds (see condition (1.0.11) in [3])
∫ ∞

0
ϕ4λ1(x)F

′′(s(x))ϕ2
λ1
(x) dx �= 0, (1.11)

where ϕλ1(x) and ϕ4λ1(x) are the odd eigenfunctions of a discrete and continuous
spectrum corresponding to λ1 and 4λ1 respectively.
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On Asymptotic Stability of Kink for Relativistic Ginzburg–Landau Equations 215

The Ginzburg–Landau potential U0(ψ) = (ψ2 − 1)2/4 satisfies U1–U3 except
(1.3). In Appendix C we construct small perturbations of U0(ψ) which satisfy
U1–U3 including (1.3).

Our main result is the following asymptotics

(ψ(x, t), ψ̇(x, t)) ∼ (s(x), 0)+ W0(t)�±, t → ±∞ (1.12)

for solutions to (1.4) with odd initial data close to the kink S(x) = (s(x), 0).
Here W0(t) is the dynamical group of the free Klein–Gordon equation,�± are the
corresponding asymptotic states, and the remainder converges to zero ∼ t−1/3 in
H1(R)⊕ L2(R).

Remark 1.1. We consider the solutions close to the kink,ψ(x, t) = s(x)+φ(x, t),
with small perturbations φ(x, t). For such solutions, (1.3) and (1.8) mean that
Equation (1.1) is almost linear for large |x |. This fact is helpful for application of
dispersive properties of the corresponding linearized equation.

Let us comment on previous results in this field.

• The Schrödinger equation The asymptotics of type (1.12) were established for
the first time by Soffer and Weinstein [25,26] (see also [20]) for nonlinear
U (1)-invariant Schrödinger equation with a potential for small initial states, if
the nonlinear coupling constant is sufficiently small.

The results have been extended by Buslaev and Perelman [1] to the translation
invariant one-dimensional nonlinear U (1)-invariant Schrödinger equation. The ini-
tial states are sufficiently close to the solitary waves with the unique eigenvalue
λ = 0 in the discrete spectrum of the corresponding linearized dynamics. The
novel techniques [1] are based on the “separation of variables” along the solitary
manifold and in transversal directions. The symplectic projection allows exclusion
from the transversal dynamics of the unstable directions corresponding to the zero
discrete spectrum of the linearized dynamics. The extensions to higher dimensions
were obtained in [4,13,23,30].

Similar techniques were developed by Miller, Pego and Weinstein for the
one-dimensional modified KdV and RLW equations, [18,19]. These techniques
were motivated by the investigation of soliton asymptotics for integrable equations
(a survey can be found in [8,9]), and by the methods introduced in [25,26,32].

The techniques were developed in [2,3] for the Schrödinger equations in a more
complicated spectral situation with presence of a nonzero eigenvalue in the linear-
ized dynamics. In that case the transversal dynamics inherit the nonzero discrete
spectrum. Now the decay for the transversal dynamics is obtained by the reduction
to the Poincaré normal form, which makes obvious that the decay depends on the
Fermi Golden Rule condition [17,24]. The condition states a strong interaction of
the nonlinear term with the eigenfunctions of the continuous spectrum, which pro-
vides the dispersive energy radiation to infinity and the decay for the transversal
dynamics. The extensions to higher dimensions were obtained in [5,6,28]. Tsai
[31] developed the techniques in presence of an arbitrary finite number of discrete
eigenvalues in the linearized dynamics.
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216 E. Kopylova & A. I. Komech

• Nonrelativistic Klein–Gordon equations The asymptotics of type (1.12) were
extended to the nonlinear three-dimensional Klein–Gordon equations with a
potential [27], and for the translation invariant system of the three-dimensional
Klein–Gordon equation coupled to a particle [12].

• Wave front of three-dimensional Ginzburg–Landau equations The asymptotic
stability of wave front was proved for three-dimensional relativistic Ginzburg–
Landau equations with initial data which differ from the wave front on a compact
set [7]. The wave front is the solution which depends on one spatial variable, so
it is not a finite energy soliton. The equation differs from the one-dimensional
equation (1.1) by the additional two-dimensional Laplacian. The additional
Laplacian improves the dispersive decay for the corresponding linearized Klein–
Gordon equation in the continuous spectral space that provides the needed decay
for the transversal dynamics.

• Orbital stability of kinks For one-dimensional relativistic nonlinear Ginzburg–
Landau equations (1.1) the orbital stability of the kinks has been proved in
[11].

The proving of the asymptotic stability of the kinks for relativistic equations
remained an open problem until now. The main obstacle was the slow decay ∼ t−1/2

for the free one-dimensional Klein–Gordon equation (see the discussion in [7, Intro-
duction]).

Let us comment on our approach. We follow the general strategy of [1–7,12,
27,30,31]: linearization of the transversal equations and further Taylor expansion
of the nonlinearity, the Poincaré normal forms and Fermi Golden Rule, etc. We
develop, for relativistic equations, a general scheme which is common to almost all
papers in this area: dispersive and L1 − L∞ estimates for the linearized equation,
virial estimates for the nonlinear equation and the method of majorants. However,
the corresponding statements and their proofs in the context of relativistic equations
are completely new.

Let us comment on our novel techniques.

(i) The “virial type” estimate (A.1) for the nonlinear wave equation (1.1)
is a novel relativistic version of the bound [3, (1.2.5)] for the nonlinear
Schrödinger equations.

(ii) We establish an appropriate relativistic version (3.11) of L1 → L∞ esti-
mates.

(iii) We give the complete proof of the soliton asymptotics (1.12).
(iv) We construct examples of the potentials satisfying all our spectral conditions,

including the Fermi Golden Rule.

Our paper is organized as follows. In Section 2 we formulate the main theorem.
The linearization at the kink is carried out in Section 3. In Section 4 we derive
the dynamical equations for the “discrete” and “continuous” components of the
solution. In Section 5 we transform the dynamical equations to a Poincare “normal
form”. We apply the method of majorants in Section 6. In Section 7 we obtain the
soliton asymptotics (1.12). In the Appendices we prove some key estimates and
construct examples of the potentials.
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2. Main results

We consider the Cauchy problem for (1.4), which we write as

Ẏ (t) = F(Y (t)), t ∈ R : Y (0) = Y0. (2.1)

Here Y (t) = (ψ(t), π(t)), Y0 = (ψ0, π0). We will consider only odd states Y =
(ψ, π). The space of the odd states is invariant with respect to (2.1) since F(ψ) is
odd according to U1.

Let us introduce a suitable phase space. For σ ∈ R, and l = 0, 1, 2, . . . , p � 1,
denote by W p,l

σ the weighted Sobolev space of odd functions with finite norm

‖ψ‖
W p,l
σ

=
l∑

k=0

‖(1 + |x |)σψ(k)‖L p < ∞.

Denote Hl
σ := W 2,l

σ , and H0
σ = L2

σ .

Definition 2.1. (i) Eσ := H1
σ ⊕ L2

σ is the space of odd states Y = (ψ, π) with
finite norm

‖ Y‖Eσ = ‖ψ‖H1
σ

+ ‖π‖L2
σ
. (2.2)

(ii) The phase space E := S + E , where E = E0 and S = (s(x), 0). The metric
in E is defined as

ρE (Y1,Y2) = ‖Y1 − Y2‖E , Y1,Y2 ∈ E . (2.3)

(iii) W := W 1,2
0 ⊕ W 1,1

0 is the space of odd states Y = (ψ, π) with finite norm

‖ Y‖W = ‖ψ‖W 1,2
0

+ ‖π‖W 1,1
0
. (2.4)

Obviously, the Hamilton functional (1.5) is continuous on the phase space E .
The existence and uniqueness of the solutions to the Cauchy problem (2.1) follows
by methods [16,21,29]:

Proposition 2.2. (i) For any Y0 ∈ E there exists the unique solution Y (t) ∈
C(R, E) to (2.1).

(ii) For every t ∈ R, the map U (t) : Y0 �→ Y (t) is continuous in E .
(iii) The energy is conserved, that is

H(Y (t)) = H(Y0), t ∈ R. (2.5)

The main result of our paper is the following theorem

Theorem 2.3. Let the potential U satisfy U1–U3 with k = 7, and let Y (t) be the
solution to the Cauchy problem (2.1) with any initial state Y0 ∈ E which is suffi-
ciently close to the kink:

Y0 = S + X0, d0 := ‖X0‖Eσ∩W  1, (2.6)
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where σ > 5/2. Then the asymptotics hold

Y (x, t) = (s(x), 0)+ W0(t)�± + r±(x, t), t → ±∞, (2.7)

where�± ∈ E, and W0(t) = eA0t is the dynamical group of the free Klein–Gordon
equation (see (3.13)), while

‖r±(t)‖E = O(|t |−1/3). (2.8)

It suffices to prove the asymptotics (2.7) for t → +∞ since (1.4) is time reversible.

3. Linearization at the kink

3.1. Linearized equation

We linearize (1.4) at the kink S(x), splitting the solution as the sum

Y (t) = S + X (t), (3.1)

where Y = (ψ, π) and X = (
,�). We substitute (3.1) to (1.4) and using (1.6)
obtain that

Ẋ(t) = AX (t)+ N (X (t)), t ∈ R (3.2)

where the linear operator A reads

A =
(

0 1
−H 0

)
(3.3)

with

H = − d2

dx2 − F ′(s) = − d2

dx2 + m2 + V (x), (3.4)

and

V (x) = −F ′(s(x))− m2 = U ′′(s(x))− m2. (3.5)

N (X) is given by

N (x, X)=
(

0
N (x, 
)

)
, N (x, 
)= F(s(x)+
)−F(s(x))−F ′(s(x))
.

(3.6)
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3.2. Spectrum of linearized equation

Let us consider the eigenvalue problem for operator A:

A

(
u1
u2

)
=

(
0 1

−H 0

) (
u1
u2

)
= �

(
u1
u2

)
.

From the first equation we have u2 = �u1. Then the second equation implies that
(

H +�2
)

u1 = 0. (3.7)

By U2 operator A has two purely imaginary eigenvalues � = ±iμ, where μ =√
λ1. The corresponding eigenvectors

u =
(

u1
u2

)
=

(
ϕλ1

iμϕλ1

)
, u =

(
ϕλ1

−iμϕλ1

)
.

where we choose ϕλ1 to be a real function. This is possible since H is a differen-
tial operator with real coefficients. The continuous spectrum of A coincides with
C := (−i∞,−im] ∪ [im, i∞). The edge points � = ±im are neither eigenvalues
nor resonances for A, by condition U2.

3.3. Decay for linearized dynamics

We consider the linearized equation

Ẋ(t) = AX (t), t ∈ R. (3.8)

Let 〈·, ·〉 be the scalar product in L2(R,C2). Denote by Pd the symplectic projector
onto the eigenspace Ed generated by u and u:

Pd X = 〈X, ju〉
〈u, ju〉 u + 〈X, ju〉

〈u, ju〉 u, X ∈ Eσ , σ ∈ R, j =
(

0 −1
1 0

)
. (3.9)

Denote by Pc = 1 − Pd the projector onto the continuous spectrum of A, and by
Ec the continuous spectral subspace.

Next, decay estimates will play the key role in our proofs. The first estimate
follows by Theorem 3.9 of [14] since the condition of type [14, (3.1)] holds in our
case.

Proposition 3.1. Let U2 hold, and σ > 5/2. Then for any X ∈ Eσ the bound holds

‖eAt Pc X‖E−σ � C(1 + t)−3/2‖X‖Eσ , t ∈ R. (3.10)

Corollary 3.2. For X ∈ Eσ ∩ W with σ > 5/2 the bound holds

‖(eAt Pc X)1‖L∞ � C(1 + t)−1/2(‖X‖W + ‖X‖Eσ ), t ∈ R. (3.11)

Here (·)1 stands for the first component of the corresponding vector function.
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Proof. We apply the projector Pc to both sides of (3.8):

Pc Ẋ = APc X = A0 Pc X − V Pc X, (3.12)

where

A0 =
(

0 1
d2

dx2 − m2 0

)
, V =

(
0 0
V 0

)
. (3.13)

Then the Duhamel representation gives,

eAt Pc X = eA0t Pc X −
∫ t

0
eA0(t−τ)VeAτ Pc X dτ, t > 0. (3.14)

Applying estimate (265) from [22], the Hölder inequality and Proposition 3.1 we
obtain

‖(eAt Pc X)1‖L∞

� C(1 + t)−1/2‖Pc X‖W + C
∫ t

0
(1 + t − τ)−1/2‖V (eAτ Pc X)1‖W 1,1

0
dτ

� C(1 + t)−1/2‖X‖W + C
∫ t

0
(1 + t − τ)−1/2‖eAτ Pc X‖E−σ dτ

� C(1 + t)−1/2‖X‖W + C
∫ t

0
(1 + t − τ)−1/2(1 + τ)−3/2‖X‖Eσ dτ

� C(1 + t)−1/2(‖X‖W + ‖X‖Eσ ).

��
Proposition 3.3. For σ > 5/2 the bound holds

‖eAt (A ∓ 2iμ− 0)−1 Pc X‖E−σ � C(1 + t)−3/2‖X‖Eσ , t > 0. (3.15)

We will prove the proposition in Appendix B.

4. Decomposition of dynamics

We decompose the solution to (2.1) as Y (t) = S + X (t), where X (t) = w(t)+
f (t) with w(t) = z(t)u + z(t)u ∈ Ed and f (t) ∈ Ec.

Lemma 4.1. Let Y (t) = S + w(t) + f (t) be a solution to (2.1). Then functions
z(t) and f (t) satisfy the equations

(ż − iμz)〈u, ju〉 = 〈N , ju〉, (4.1)

ḟ = A f + PcN (4.2)

with N defined in (3.6).
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Proof. Applying Pd to (3.2), we obtain

żu + ż u = Aw + PdN . (4.3)

Using 〈u, ju〉 = 0 and Aw = iμ(zu − z u), we get (4.1), after taking the scalar
product of (4.3) with ju since (Pd)∗ j = j Pd . Applying Pc to (3.2), we obtain
(4.2) since Pc commutes with A. ��
Remark 4.2. In the remaining part of the paper we will prove the asymptotics

‖ f (t)‖E−σ ∼ t−1, z(t) ∼ t−1/2, ‖ f1(t)‖L∞ ∼ t−1/2, t → ∞. (4.4)

To justify these asymptotics, we will single out leading terms in the right-hand side
of (4.1)–(4.2). Namely, we shall expand the expressions for ż up to terms of the
order O(t−3/2), and for ḟ up to O(t−1) keeping in mind asymptotics (4.4). This
choice allows us to obtain the uniform bounds using the method of majorants.

We expand N (x, 
) from (3.6) in the Taylor series

N (x, 
) = N2(x, 
)+ · · · + N12(x, 
)+ NR(x, 
), (4.5)

where

N j (x, 
) = F ( j)(s(x))

j ! 
 j , j = 2, . . . , 12 (4.6)

and NR is the remainder. Condition U1 implies that F(ψ) = −m2(ψ ∓ a) +
O(|ψ ∓ a|13). Hence, N j (x, 
), j � 12 decrease exponentially as |x | → ∞ by
(1.8), while for NR we have

|NR | = R(|
|)|
|13 = R(|z| + ‖ f1‖L∞)|
|13, (4.7)

where R(A) is a general notation for a positive function which remains bounded
as A is sufficiently small.

DenoteN2[X1, X2] = (0, N2[
1, 
2]) andN3[X1, X2, X3] = (0, N3[
1, 
2,


3]) where

N2[
1, 
2] = F ′′(s)
2


1
2, N3[
1, 
2, 
3] = F ′′′(s)
6


1
2
3. (4.8)

4.1. Leading term in ż

Let us rewrite (4.1) in the form:

ż − iμz = 〈N , ju〉
〈u, ju〉 = 〈N2[w,w] + 2N2[w, f ]+N3[w,w,w], ju〉

〈u, ju〉 +Z R, (4.9)

where

|Z R | = R(|z| + ‖ f1‖L∞)(|z|2 + ‖ f ‖E−σ )
2. (4.10)
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Note that

N2[w,w] = (z2 + 2zz + z2)N2[u, u],
N3[w,w,w] = (z3 + 3z2z + 3zz2 + z3)N3[u, u, u]. (4.11)

Hence, (4.9) reads

ż = iμz+Z2(z
2+2zz+z2)+Z3(z

3 + 3z2z+3zz2+z3)+(z+z)〈 f, j Z ′
1〉+Z R,

(4.12)

where

Z2 = 〈N2[u, u], ju〉
〈u, ju〉 , Z3 = 〈N3[u, u, u], ju〉

〈u, ju〉 , Z ′
1 = 2

N2[u, u]
〈u, ju〉 . (4.13)

4.2. Leading term in ḟ

We now turn to (4.2), which we rewrite in the form

ḟ = A f + PcN = A f + PcN2[w,w] + FR . (4.14)

The remainder FR = FR(x, t) reads

FR = Pc(N (X)− N2[w,w]) = (1 − Pd)(N (X)− N2[w,w])
= FI + FII + FIII, (4.15)

where

FI = −Pd(N (X)− N2[w,w]), FII = N (X)− N2[w,w] − NR,

FIII = NR = (0, NR).
(4.16)

For FI + FII the bound holds

‖FI + FII‖Eσ∩W = R(|z| + ‖ f1‖L∞)(|z|3 + |z|‖ f ‖E−σ + ‖ f1‖L∞‖ f ‖E−σ ).

(4.17)

Indeed, FI admits the estimate by (3.9), since the function u(x) decays exponen-
tially. Further,

(FII)1 = 0, (FII)2 = 2N2(w1, f1)+ N2( f1, f1)+ N3(
)+ · · · + N12(
),

and each summand contains an exponentially decreasing factor by U1, (1.8) and
(4.6).

Similarly, we obtain

‖PcN2[w,w]‖Eσ∩W � C |z|2. (4.18)

It remains to estimate the term FIII.

Lemma 4.3. The bounds hold

‖FIII‖E5/2+ν = R(|z| + ‖ f1‖L∞)(1 + t)4+ν(|z|12 + ‖ f1‖12
L∞), 0 < ν < 1/2,

(4.19)
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‖FIII‖W = R(|z| + ‖ f1‖L∞)(|z|11 + ‖ f1‖11
L∞). (4.20)

Proof. Step (i) Bound (4.7) implies

‖NR‖L2
5/2+ν

= R(|z| + ‖ f1‖L∞)(|z|12 + ‖ f1‖12
L∞)‖
‖L2

5/2+ν
.

We will prove in Appendix A that

‖
(t)‖L2
5/2+ν

� C(d0)(1 + t)4+ν. (4.21)

Then (4.19) follows.
Step (ii) By the Cauchy formula,

NR(x, t) = 
13(x, t)

(12)!
∫ 1

0
(1 − ρ)12 F (13)(s + ρ
(x, t)) dρ. (4.22)

Therefore,

‖NR‖L1 = R(|z| + ‖ f1‖L∞)∫
|
|13 dx = R(|z| + ‖ f1‖L∞)(|z| + ‖ f1‖L∞)11‖
‖2

L2

= R(|z| + ‖ f1‖L∞)(|z|11 + ‖ f1‖11
L∞)

since ‖
(t)‖L2 � C(d0) by the results of [11]. Differentiating (4.22) in x , we
obtain

N ′
R = 
13

(13)!
∫ 1

0
(1−ρ)12(s′ + ρ
 ′)F (14)(s + ρ
) dρ

+

12
 ′

(12)!
∫ 1

0
(1−ρ)12 F (13)(s + ρ
) dρ.

Hence,

‖N ′
R‖L1 = R(|z| + ‖ f1‖L∞)(|z|11 + ‖ f1‖11

L∞)

since
∫ |
(x)
 ′(x)| dx � ‖
‖L2‖
 ′‖L2 � C(d0). Then (4.20) follows. ��

5. Poincare normal forms

Our goal is to transform the equations for z and f to a “normal form” removing
the “nonresonant terms”.
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5.1. Normal form for ḟ

We rewrite (4.14) in a more detailed form as

ḟ = A f + (z2 + 2zz + z2)F2 + FR, F2 = PcN2[u, u]. (5.1)

Now we extract the term of order z2 ∼ t−1 (see Remark 4.2). For this purpose we
expand f as

f = h + k + g, (5.2)

where

g(t) = −eAt k(0), k = a20z2 + 2a11zz + a02z2 (5.3)

with some a ji ≡ ai j (x) satisfying ai j (x) = ai j (x). Note that h(0) = f (0).

Lemma 5.1. There exist ai j ∈ Hs−σ with any s > 0 such that the equation for h
reads

ḣ = Ah + HR, (5.4)

where HR = FR + HI , with HI = ∑
ai j (x)R(|z| + ‖ f ‖E−σ )|z|(|z| + ‖ f ‖E−σ )

2.

Proof. Substituting (5.3) into (5.1), we get

ḣ = ḟ − (2a20z + 2a11z)ż − (2a11z + 2a02z)ż − ġ

= A f + (z2 + 2zz + z2)F2 + FR

−(2a20z + 2a11z)(iμz + R(|z| + ‖ f ‖E−σ )(|z| + ‖ f ‖E−σ )
2)

−(2a11z + 2a02z)(−iμz + R(|z| + ‖ f ‖E−σ )(|z| + ‖ f ‖E−σ )
2)− Ag.

On the other hand, (5.4) means that ḣ = A( f −a20z2 −2a11zz −a02z2 − g)+ HR .
Equating the coefficients of the quadratic powers of z, we get

F2 − 2iμa20 = −Aa20, F2 = −Aa11, F2 + 2iμa02 = −Aa02,

and

HR = FR +
∑

ai jR(|z| + ‖ f ‖E−σ )|z|(|z| + ‖ f ‖E−σ )
2.

Notice that F2 ∈ Ec is a smooth, exponentially decreasing function. Hence, there
exists a solution a11 in the form

a11 = −A−1 F2, (5.5)

where A−1 stands for the regular part of the resolvent R(λ) = (A −λ)−1 at λ = 0,
since the singular part of R(λ)F2 vanishes for F2 ∈ Ec. The function a11 is expo-
nentially decreasing at infinity.

For a20 and a02 we choose the following inverse operators:

a20 = −(A − 2iμ− 0)−1 F2, a02 = a20 = −(A + 2iμ− 0)−1 F2. (5.6)
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This choice is motivated by Lemma 3.3. The remainder HI can be written as

HI =
∑

m

(A − 2iμm − 0)−1Cm, m ∈ {−1, 0, 1} (5.7)

with Cm ∈ Ec, satisfying the estimate

‖Cm‖Eσ = R(|z| + ‖ f ‖E−σ )|z|(|z| + ‖ f ‖E−σ )
2. (5.8)

��

5.2. Normal form for ż

Substituting (5.2) into (4.12) and putting the contribution of f = h + k + g
into Z R , we obtain

ż = iμz + Z2(z
2 + 2zz + z2)+ Z3(z

3 + 3z2z + 3zz2 + z3)

+Z ′
30z3 + Z ′

21z2z + Z ′
12zz2 + Z ′

03z3 + Z̃ R, (5.9)

where

Z ′
30 = 〈a20, j Z ′

1〉, Z ′
21 = 〈a11 + a20, j Z ′

1〉, Z ′
03 = 〈a02, j Z ′

1〉,
Z ′

12 = 〈a02 + a11, j Z ′
1〉 (5.10)

by (5.2)–(5.3). We are specially interested in resonance term Z ′
21z2z = Z ′

21|z|2z.
Formulas (4.13), (5.5), (5.6) imply

Z ′
21 = −

〈
A−1 PcN2[u, u], 2 j

N2[u, u]
〈u, ju〉

〉

−
〈
(A − 2iμ− 0)−1 PcN2[u, u], 2 j

N2[u, u]
〈u, ju〉

〉
. (5.11)

For the 〈u, ju〉 we get

〈u, ju〉 = iδ, wi th δ > 0. (5.12)

Lemma 5.2. Let non-degeneracy condition U3 holds. Then

Re Z ′
21 < 0. (5.13)

Proof. Coefficient 〈A−1 Pc jN2[u, u], 2N2[u, u]〉 that appears in (5.11) is real
since operator A−12Pc j is selfadjoint. Hence (5.12) implies that Re Z ′

21 reduces
to

Re Z ′
21 = Re 2

〈(A − 2iμ− 0)−1 PcN2[u, u], jN2[u, u]〉
iδ

= 2

δ
Im〈R(2iμ+ 0)PcN2[u, u], jN2[u, u]〉.
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Since Pc commutes with R(2iμ + 0), then R(2iμ + 0)Pc = Pc R(2iμ + 0)Pc.
We have also that (Pc)∗ j = j Pc, hence

Re Z ′
21 = 2

δ
Im〈R(2iμ+ 0)α, jα〉

with α = PcN2[u, u]. Now we use the representation (see [3], Formula (2.1.9))

〈R(2iμ+ 0)α, jα〉 = 1

i

∞∫
b

θ(λ) dλ

( 〈α, ju(iλ)〉〈u(iλ), jα〉
iλ− 2iμ− 0

+〈α, ju(iλ)〉〈u(iλ), jα〉
−iλ− 2iμ− 0

)

=
∞∫

b

θ(λ) dλ

(
〈u(iλ), jα〉〈u(iλ), jα〉

λ− 2μ+ i0

+〈u(iλ), jα〉〈u(iλ), jα〉
λ+ 2μ− i0

)
. (5.14)

Since
1

ν + i0
= p.v.

1

ν
− iπδ(ν), where p.v. is the Cauchy principal value, we

have

〈R(2iμ+ 0)α, jα〉 =
∫ ∞

√
2
θ(λ) dλ

( |〈u(iλ), jα〉|2
λ− 2μ

+ |〈u(iλ), jα〉|2
λ+ 2μ

)

−iπθ(2μ)|〈u(2iμ), jα〉|2. (5.15)

The integral term in (5.15) is real. Thus,

Im〈RT (2iμT + 0)α, jα〉 = −πθ(2μ)|〈u(2iμ), jα〉|2 < 0

since θ(2μ) > 0, and condition U3 implies that

〈u(2iμ), jα〉 = 〈u(2iμ), j PcN2[u, u]〉 = 〈u(2iμ), jN2[u, u]〉
= −

∫
u1(2iμ)(x)N2[u, u](x) dx

= −1

2

∫
ϕ4λ1(x)F

′′(s(x))ϕ2
λ1
(x) dx �= 0.

��
Now we estimate Z̃ R .

Lemma 5.3. The bound holds

|Z̃ R | = R1(|z| + ‖ f ‖L∞)
[
(|z|2 + ‖ f ‖E−σ )

2 + |z|‖g‖E−σ + |z|‖h‖E−σ
]
.

(5.16)
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Proof. The remainder Z̃ R is given by

Z̃ R = Z R + (z + z)〈 f − k, j Z ′
1〉,

where Z R satisfies (4.10). Since f − k = g + h then |〈 f − k, Z ′
1〉| � C(‖g‖E−σ +

‖h‖E−σ ).
Hence, (5.16) follows. ��

Now we can apply the Poincaré method of normal coordinates to (5.9).

Lemma 5.4. (cf. [3, Proposition 4.9]) There exist coefficients ci j such that function
z1(t) defined by

z1 = z + c20z2 + c11zz + c02z2 + c30z3 + c12zz2 + c03z3 (5.17)

satisfies an equation of the form

ż1 = iμz1 + iK |z1|2z1 + Ẑ R, (5.18)

where Ẑ R satisfies estimates of the same type as Z̃ R, and

Re iK = Re Z ′
21 < 0. (5.19)

Proof. Substituting z1 in (5.9) and equating the coefficients, we get, in particular,

c20 = i

μ
Z2, c11 = −2i

μ
Z2, c02 = − i

3μ
Z2, (5.20)

and

iK = 3Z3 + Z ′
21 + (4c20 − c11 − 2c20)Z2. (5.21)

Since coefficients Z2 and Z3 defined in (4.13) are purely imaginary then (5.19)
follows. ��

It is easier to deal with y = |z1|2 rather than z1 because y decreases at infinity
while z1 is oscillating. Multiplying (5.18) by z1 and taking the real part, we obtain

ẏ = 2 Re(iK )y2 + YR, (5.22)

where

|YR | = R1(|z| + ‖ f ‖L∞)|z|
[
(|z|2 + ‖ f ‖E−σ )

2 + |z|‖g‖E−σ + |z|‖h‖E−σ
]
.

(5.23)
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5.3. Summary of normal forms

We summarize the main formulas of Sections 5.1–5.2. First we recall that

f = k + g + h,

where k and g are defined in (5.3). The equations satisfied by f and h are respec-
tively (see (4.14) and (5.4))

ḟ = A f + F̃R, (5.24)

ḣ = Ah + HR . (5.25)

Here F̃R = PcN2[w,w] + FR, FR = FI + FII + FIII, HR = FR + HI . The
remainders FI, FII, PcN2[w,w] and FIII are estimated in (4.17)–(4.19), (4.20).
The remainder HI is estimated in (5.7) and (5.8). Note, that

‖ f ‖E−σ � C(‖g‖E−σ + |z|2 + ‖h‖E−σ ). (5.26)

The second equation describes the evolution of z1 from (5.18):

ż1 = iμz1 + iK |z1|2z1 + Ẑ R, (5.27)

where the remainder Ẑ R admits (5.16). The fourth equation is the dynamics for
y = |z1|2

ẏ = 2 Re(iK )y2 + YR, (5.28)

where the remainder YR admits (5.23). Here Re iK < 0 by Lemma 5.2.

6. Majorants

We define the ’majorants’

M1(T ) = max
0�t�T

|z(t)|
(

ε

1 + εt

)−1/2

, (6.1)

M2(T ) = max
0�t�T

‖ f1(t)‖L∞
(

ε

1 + εt

)−1/2

log−1(2 + εt), (6.2)

M3(T ) = max
0�t�T

‖h(t)‖E−5/2−ν

(
ε

1 + εt

)−3/2

log−1(2 + εt), (6.3)

and denote by M the three-dimensional vector (M1,M2,M3). The goal of this
section is to prove that all these majorants are bounded uniformly in T for suffi-
ciently small ε > 0.
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6.1. Bound for g

Lemma 6.1. Function g(t) defined in (5.3) admits the bound

‖g(t)‖E−σ � c|z(0)|2 1

(1 + t)3/2
� c

ε

(1 + t)3/2
, σ > 5/2. (6.4)

Proof. By (5.3), we have g = −eAt k(0) and k(0) = a20z2(0) + a11z(0)z(0) +
a02z2(0) with ai j defined in (5.5)–(5.6). Then (6.4) follows by Lemma 3.3. ��

6.2. Bounds for remainders

Here we rewrite bounds for remainders in terms of majorants.

Lemma 6.2. The remainder YR defined in (5.23) admits the estimate

|YR | = R(ε1/2M)
ε5/2

(1 + εt)2
√
εt

log(2 + εt)(1 + |M|)5. (6.5)

Proof. Using the equality f = k + g + h and estimate (5.23), we obtain

|YR | = R2(|z|+‖ f ‖L∞)|z|
[
(|z|2+‖g‖E−σ +‖h‖E−σ )

2+|z|(‖g‖E−σ +‖h‖E−σ )
]

= R(ε1/2M)

(
ε

1 + εt

)1/2

M1

[(
ε

1 + εt
M2

1+ ε

(1 + t)3/2
+

(
ε

1 + εt

)3/2

× log(2 + εt)M3

)2

+
(

ε

1 + εt

)1/2

M1

(
ε

(1 + t)3/2
+

(
ε

1 + εt

)3/2

× log(2 + εt)M3

)]
.

Hence, (6.2) follows. ��

Now let us turn to the remainders FR = FI+FII+FIII, F̃R = PcN2[w,w]+FR ,
and HR = FR + HI in equations (5.24) and (5.25) for f and h respectively.

Lemma 6.3. For 0 < ν < 1/2 the remainder FR admits the bound

‖FR‖E5/2+ν = R(ε1/2M)

(
ε

1 + εt

)3/2

log(2 + εt)
(
(M1 + M2)(1 + M2

1)

+ε1/2−ν(1 + |M|)12
)
. (6.6)
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Proof. Step (i) Applying (4.17) with σ = 5/2 + ν and (5.26) we obtain

‖FI + FII‖Eσ = R(|z| + ‖ f1‖L∞)(|z|3 + |z|‖ f ‖E−σ + ‖ f1‖L∞‖ f ‖E−σ )

= R(|z| + ‖ f1‖L∞)
[
|z|3 + |z|‖g‖E−σ + |z|‖h‖E−σ + ‖ f1‖L∞(|z|2 + ‖g‖E−σ

+‖h‖E−σ )
]

= R(ε1/2M)

((
ε

1 + εt

)3/2

M3
1+

(
ε

1 + εt

)1/2
ε

(1 + t)3/2
M1

+
(

ε

1 + εt

)2

log(2 + εt)M1M3 +
(

ε

1 + εt

)1/2

log(2 + εt)M2

×
[

ε

1 + εt
M2

1 + ε

(1 + t)3/2
+

(
ε

1 + εt

)3/2

log(2 + εt)M3

])

which implies (6.6) for FI + FII.
Step (ii) Further, by (4.19)

‖FIII‖E5/2+ν = R(|z| + ‖ f1‖L∞)(1 + t)4+ν(|z|12 + ‖ f1‖12
L∞)

= R(ε1/2M)(1 + t)4+ν log12(2 + εt)

(
ε

1 + εt

)6

(M12
1 + M12

2 ), (6.7)

and then (6.6) for FIII follows.

Lemma 6.4. For 0 < ν < 1/2 the remainder F̃R admits the bound

‖F̃R‖E5/2+ν∩W = R(ε1/2M)
ε

1 + εt

(
M2

1 + ε1/2(1 + |M|)12
)
. (6.8)

For FI and FII the bound follows from (4.17). Further, by (4.20)

‖FIII‖W = R(|z| + ‖ f1‖L∞)(|z|11 + ‖ f1‖11
L∞)

= R(ε1/2M)

(
ε

1 + εt

)5/2

log11(2 + εt)(M11
1 + M11

2 ),

which together with (6.7) implies (6.8) for FIII. Finally, (4.18) implies

‖PcN2[w,w]‖Eσ∩W = R(ε1/2M)
ε

1 + εt
M2

1,

and then (6.8) follows. ��
The term HI is represented by (5.7) with Cm estimated in (5.8). For Cm we now

obtain

Lemma 6.5. For m = 0, ±1, the bounds hold

‖Cm‖Eσ = R(ε1/2M)

(
ε

1 + εt

)3/2 (
M3

1 + ε1/2(1 + |M|)3
)
. (6.9)
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Proof. Estimate (5.8) implies

‖Cm‖Eσ = R(|z| + ‖ f ‖E−σ )|z|(|z| + ‖g‖E−σ + ‖h‖E−σ )
2

= R(ε1/2M)

(
ε

1 + εt

)1/2

M1

((
ε

1 + εt

)1/2

M1+ ε

(1 + t)3/2

+
(

ε

1 + εt

)3/2

log(2 + εt)M2

)2

,

which implies (6.9). ��

6.3. Initial conditions

We assume the smallness of the initial condition:

|z(0)| � ε1/2, ‖ f (0)‖Eσ = ‖h(0)‖Eσ � ε3/2h0,

‖ f (0)‖Eσ∩W � ε1/2 f0, (6.10)

where h0, f0 are some fixed constant, and ε > 0 is sufficiently small by (2.6).
Equation (5.17) implies |z1|2 � |z|2 + R(|z|)|z|3. Therefore

y0 = y(0) = |z1(0)|2 � ε + C(|z(0)|)ε3/2. (6.11)

6.4. Estimates via majorants

This section is devoted to studying equations (5.24), (5.25), (5.28) for f, h and y
under assumptions (6.10) on initial data and estimates (6.5)-(6.9) of the remainders.

First we consider equation (5.28) for y which is of Ricatti type.

Lemma 6.6. [3, Proposition 5.6] The solution to (5.28) with an initial condition
and a remainder satisfying (6.11) and (6.5), respectively, admits the bound:∣∣∣∣y − y0

1 + 2y0 Im K t

∣∣∣∣ � R(ε1/2M)
ε5/2

(1 + εt)2
√
εt

log(2 + εt)(1 + |M|)5. (6.12)

Corollary 6.7. The majorant M1 satisfies

M2
1 = R(ε1/2M)

(
1 + ε1/2(1 + |M|)5

)
. (6.13)

Proof. Bounds (6.11) and (6.12) imply

y � R(ε1/2M)

[
ε

1 + εt
+

(
ε

1 + εt

)3/2

log(2 + εt)(1 + |M|)5
]
.

Using that |z|2 � y + R(|z|)|z|3, we get

|z|2 � R(ε1/2M)

[
ε

1 + εt
+

(
ε

1 + εt

)3/2

log(2 + εt)(1 + |M|)5

+
(

ε

1 + εt

)3/2

M3
1

]
.

Hence, (6.13) follows. ��
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Second, we consider Equation (5.24) for f .

Lemma 6.8. The solution to (5.24) admits the bound

‖ f1‖L∞ � C

(
ε

1 + εt

)1/2

log(2 + εt)
(

f0 + R(ε1/2M)

(M2
1 + ε1/2(1 + |M|)12

)
. (6.14)

Proof. We have

f (t) = eAt f (0)+
∫ t

0
eA(t−τ) F̃R(τ ) dτ.

Using the the bounds (3.11) and the estimates (6.8), (6.10), we obtain

‖ f1‖L∞ � C

(1 + t)1/2
‖ f (0)‖Eσ∩W +

∫ t

0

C

(1 + (t − τ))1/2
‖F̃R(τ )‖Eσ∩W dτ

� C

[
f0

(
ε

1 + t

)1/2

+ R(ε1/2M)(M2
1 + ε1/2(1 + |M|)12

×
∫ t

0

dτ

(t − τ)1/2

ε

1 + ετ
dτ

]
.

Hence, (6.14) follows. ��

Corollary 6.9.

M2 = R(ε1/2M)
(

M2
1 + ε1/2(1 + |M|)12

)
. (6.15)

Finally, we consider Equation (5.25) for h.

Lemma 6.10. The solution to (5.25) admits the bound

‖h‖E−σ � C

(
ε

1 + εt

)3/2

log(2 + εt)
(

h0 + R(ε1/2M)
[
(1 + M2

1 + M2)

×(1 + M2
1)+ ε1/2−ν(1 + |M|)12

])
. (6.16)

Proof. We have

h = eAt h(0)+
∫ t

0
eA(t−τ)HR(τ ) dτ.

Bounds (6.10), (6.6), (6.9), Proposition 3.1 and Corollary 3.3 imply
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‖h‖E−σ � C

(1 + t)3/2
‖h(0)‖Eσ +

∫ t

0

C

(1 + (t − τ))3/2

(
‖FR(τ )‖Eσ

+
∑

m

‖Cm(τ )‖Eσ

)
dτ

� C

[
h0

(
ε

1+t

)3
2 + R(ε1

2 M)
[
(M1 + M2)(1 + M2

1)

+ε1
2 −ν(1 + |M|)12

]∫ t

0

log(2+εt) dτ

(1+(t−τ))3
2

(
ε

1+ετ
)3

2

+
∑

m

R(ε1/2M)
(
M3

1 + ε1/2(1 + |M|)3
) ∫ t

0

dτ

(1 + (t − τ))3/2

(
ε

1 + ετ

)3/2
]
,

which implies (6.16). ��

Corollary 6.11.

M3 = R(ε1/2M)
[
(1 + M2

1 + M2)(1 + M2
1)+ ε1/2−ν(1 + |M|)12

]
. (6.17)

6.5. Uniform bounds for majorants

The aim of this section is to prove that if ε is sufficiently small, all the Mi are
bounded uniformly in T and ε.

Lemma 6.12. For ε sufficiently small, there exists a constant M independent of T
and ε, such that,

|M(T )| � M. (6.18)

Proof. Combining (6.13), (6.15), and (6.17) we obtain

M2 � R(ε1/2M)
[
(1 + M2

1 + M2)
4 + ε1/2−ν(1 + |M|)24

]
.

Replacing M2
1 and M2 by its bound (6.13) and (6.15), we get

M2 � R(ε1/2M)(1 + ε1/2−νF(M)),

where F(M) is an appropriate function. The last inequality implies that M is
bounded uniformly in ε, since M(0) is small and M(t) is continuous. ��
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Corollary 6.13. For t > 0 and σ > 5/2 the bounds hold

|z(t)| � M

(
ε

1 + εt

)1/2

, (6.19)

‖ f1‖L∞ � M

(
ε

1 + εt

)1/2

log(1 + εt), (6.20)

‖h‖E−σ � M

(
ε

1 + εt

)3/2

log(1 + εt), (6.21)

‖ f ‖E−σ � M

(
ε

1 + εt

)
. (6.22)

Thus we have proved the following result:

Theorem 6.14. Let the conditions of Theorem 2.3 hold. Then

(i) for ε small enough, one can write the solution of (2.1) in the form

Y (x, t) = s(x)+ (z(t)+ z(t))u + f (x, t), (6.23)

(ii) in addition, for all t > 0, there exists a constant M > 0 such that

|z(t)| � M

(
ε

1 + εt

)1/2

, ‖ f ‖E−σ � M

(
ε

1 + εt

)
, σ > 5/2. (6.24)

7. Soliton asymptotics

7.1. Long time behavior of z(t)

We start with Equation (5.18) for z1. By (5.16) the remainder Ẑ R satisfies

Ẑ R = R(ε1/2 M)
ε2 log(2 + εt)

(1 + εt)3/2
√
εt
(1 + M4) � Cε2 log(2 + εt)

(1 + εt)3/2
√
εt
.

On the other hand, (6.11) and (6.12) imply

∣∣∣∣y − y0

1 + 2 Im K y0t

∣∣∣∣ � C

(
ε

1 + εt

)3/2

log(2 + εt)

with |y0 − ε| � Cε3/2. With estimate (6.19) for |z| and (obviously) the same one
for |z1|, we have

ż1 = iμz1 + iK
y0

1 + 2 Im K y0t
z1 + Z1 (7.1)

with

|Z1| � Cε2 log(2 + εt)

(1 + εt)3/2
√
εt
. (7.2)
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Since y0 = ε + O(ε3/2), we have that 2 Im K y0 = kε. We also denote ρ = Re K
Im K .

The solution z1 of (7.1) is written in the form

z1 = eiμt

(1 + kεt)1/2−iρ

[
z1(0)+

∫ t

0
e−iμs(1 + kεs)1/2−iρ Z1(s) ds

]

= zL∞
eiμt

(1 + kεt)1/2−iρ
+ zR,

where

z∞ = z1(0)+
∫ ∞

0
e−μs(1 + kεs)1/2−iρ Z1(s) ds,

zR = −
∫ ∞

t
eiμt

(
1 + kεs

1 + kεt

)1/2−iρ
Z1(s) ds.

From (7.2) it follows that |zR | � Cε log(2 + εt)

(1 + εt)
. Therefore z1(t) satisfies the

estimate

z1(t) = z∞
eiμt

(1 + kεt)1/2−iρ
+ O

(
ε

1 + εt
log(2 + εt)

)
. (7.3)

Here z∞ = z1(0) + O(ε), z = z1 + O( ε

1 + εt
), and |z(0)| = ε1/2. Thus |z∞| =

ε1/2 + O(ε). Hence,

z(t) = z∞
eiμt

(1 + kεt)1/2−iρ
+ O

(
ε

1 + εt
log(2 + εt)

)
. (7.4)

7.2. Asymptotic completeness

Here we prove our main Theorem 2.3. We have obtained solution Y (x, y) to
(2.1) in the form

Y = S + w + f.

We include w into the remainder r± from (2.7) since z(t) ∼ t−1/2 by (7.4). It
remains to extract the dispersive wave W (t)�± from f . We rewrite (4.14) as

{
ḟ1 = f2 + Q1

ḟ2 = f ′′
1 − m2 f1 + Q2

, (7.5)

where

Q1 = (PcN )1 = −(PdN )1 = − 1

iδ
〈N , u1〉u1 + 1

iδ
〈N , u1〉u1 = 0

Q2 = (PcN )2 = (PcN2[w,w])2 + (FR)2 − V f1
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by (3.9) and (5.12). Then

f (t) = W0(t) f (0)+
∫ t

0
W0(t − τ)Q(τ ) dτ

= W0(t)

(
f (0)+

∫ ∞

0
W0(−τ)Q(τ ) dτ

)

−
∫ ∞

t
W0(t − τ)Q(τ ) dτ = W0(t)φ+ + r+(t). (7.6)

Here Q(t) := (0, Q2(t)). Equation (7.6) implies asymptotics of type (2.7) and
(2.8), if all the integrals converge. To complete the proof it remains to prove the
following proposition.

Proposition 7.1. The bound holds

‖r+(t)‖E = O(t−1/3), t → ∞. (7.7)

Proof. To check (7.7), we should obtain an appropriate decay for Q2(t).
Step (i) According to (4.15), (4.17), (4.19), (6.19), (6.20), and (6.22), we have

‖(FR)2‖L2 = O(t−3/2 log t). (7.8)

Further, (3.9), (4.11), and (4.13) imply

(PcN2[w,w])2 = N2[w,w] − (PdN2[w,w])2
= (z2 + 2zz + z2) (N2[u, u] − 2iμu1 Z2).

Hence, from (5.2) and (5.3) it follows that

Q2 = q20z2 + 2q11zz + q02z2 + Q2R (7.9)

with

qi j = N2[u1, u1] − 2i Z2μu1 − V ai j,1, Q2R = (FR)2 − V ( f1 − k1), (7.10)

where ai j,1 and k1 are the first components of vector-functions ai j and k from (5.3).
By (1.10), (5.2), (6.4) and (6.21) we have

‖V ( f1 − k1)‖L2 = O(t−3/2 log t), t → ∞.

The last bound and (B.5) imply that

‖Q2R‖L2 = O(t−3/2 log t), t → ∞. (7.11)

Therefore, the term Q2R gives the contribution of order O(t−1/2 log t) to r+(t).
Step (ii) It remains to estimate the contribution to r+(t) of the quadratic term
from (7.9). Functions qi j (x) are smooth with exponential decay at infinity since
ai j ∈ Hs−σ with any s > 0 by Lemma 5.1. On the other hand, time decay of
functions z2(t), z(t)z(t), z2(t) is very slow like O(t−1). Therefore, the integral
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representing the contribution of the quadratic term to r+(t) does not converge
absolutely. Fortunately, we may define the integral as

∫ ∞

t
W (t − τ)(q20z2 + 2q11zz + q02z2) dτ

:= lim
T →∞

∫ T

t
W (t − τ)(q20z2 + 2q11zz + q02z2) dτ.

We prove below the convergence of the integral with the values in E and the decay
rate O(t−1/3).

First we estimate the contribution of q11(x)zz. Note that (7.4) implies the asymp-
totics zz ∼ (1 + kεt)−1.

Lemma 7.2. Let q(x) ∈ L2(R). Then

I (t) :=
∥∥∥∥
∫ ∞

t
W0(−τ)

(
0
q

)
dτ

1 + τ

∥∥∥∥
E

= O(t−1), t → ∞. (7.12)

Proof. Denote ω = ω(ξ) = √
ξ2 + m2. Then

I (t) =
∥∥∥∥
∫ ∞

t

( − sinωτ q̂(ξ)
− cosωτ q̂(ξ)

)
dτ

1 + τ

∥∥∥∥
L2⊕L2

� C

1 + t
‖q̂(ξ)/ω(ξ)‖L2 (7.13)

since the partial integration implies that∣∣∣∣∣
∫ ∞

t

eiωτ

1 + τ
dτ

∣∣∣∣∣ =
∣∣∣∣∣
∫ ∞

t

deiωτ

iω(1 + τ)
dτ

∣∣∣∣∣ �
∣∣∣∣∣

eiωτ

ω(1 + t)

∣∣∣∣∣ +
∣∣∣∣∣
∫ ∞

t

eiωτ

ω(1 + τ)2
dτ

∣∣∣∣∣
� C

ω(1 + t)
. (7.14)

��
Next we estimate the contribution of q20(x)z2 and q02(x)z2 (see [3, Proposition

6.5]). By (7.4) we have z2 ∼ e2iμτ /(1+kεt)1−2iρ and z2 ∼ e−2iμτ /(1+kεt)1+2iρ .

Lemma 7.3. Let q(x) ∈ L2(R) ∩ L1(R). Then∥∥∥∥∥
∫ ∞

t
W0(−τ)

(
0
q

)
e±2iμτ dτ

(1 + τ)1∓2iρ

∥∥∥∥∥
E

= O(t−1/3), t → ∞. (7.15)

Proof. We consider, for example, the integral with e−2iμτ and omit for simplicity
the factor (1 + t)2iρ , since with the factor the proof is similar. Let us represent
sinωτ and cosωτ as a linear combination of eiωτ and e−iωτ . The contribution of
“nonresonant” terms with the e−iωτ to (7.15) is O(t−1), similarly to (7.13) and
(7.14). It remains to prove that

I (t) =
∥∥∥∥∥
∫ ∞

t

ei(ω−2μ)τ q̂(ξ) dτ

1 + τ

∥∥∥∥∥
L2

= O(t−1/3). (7.16)
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For a fixed β > 0, let us denote

χτ (ξ) =
{

1, |ω(ξ)− 2μ| � 1/τβ

0, |ω(ξ)− 2μ| > 1/τβ
.

Then

I (t) �
∥∥∥∥∥
∫ ∞

t

ei(2ω−μ)τχτ (ξ)q̂(ξ) dτ

1 + τ

∥∥∥∥∥
L2

+
∥∥∥∥∥
∫ ∞

t

ei(2ω−μ)τ (1 − χτ (ξ))q̂(ξ) dτ

1 + τ

∥∥∥∥∥
L2

= I1(t)+ I2(t).

Since q̂(ξ) is bounded function, and ‖χτ‖2 � 1/τβ , we have

I1(t) � C‖q̂‖L∞/(1 + t)β/2.

On the other hand, partial integration implies that

I2(t) =
∥∥∥∥∥
∫ ∞

t

(1 − χτ (ξ))q̂(ξ) dei(2ω−μ)τ

(2ω − μ)(1 + τ)

∥∥∥∥∥
L2

� Ctβ

1 + t
‖q̂‖L2 + C

∫ ∞

t

τβ dτ

(1 + τ)2

‖q̂‖L2

� C‖q̂‖L2

(1 + t)1−β .

Equating β/2 = 1 − β, we get β = 2/3. ��
Proposition 7.1 is proved. ��

Appendix A. Virial type estimates

Here we prove weighted estimate (4.21). Let us recall that we split the solution
Y (t) = (ψ(·, t), π(·, t)) = S + X (t), and denote X (t) = (
(t),�(t)), X0 =
(
0,�0) := (
(0),�(0)).

Proposition 1.1. Let condition U1 hold, and let X0 satisfy (2.6) with σ = 5/2 + ν.
Then the bound holds

‖
(t)‖L2
5/2+ν

� C(d0)(1 + t)4+ν, t > 0. (A.1)

We will deduce the proposition from the following two lemmas. Denote

e(x, t) = |π(x, t)|2
2

+ |ψ ′(x, t)|2
2

+ U (ψ(x, t)).

Lemma 1.2. For the solution ψ(x, t) to (1.1) the local energy estimate holds

∫ b

a
e(x, t) dx �

∫ b+t

a−t
e(x, 0) dx, a < b, t > 0. (A.2)
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Proof. The estimate follows by standard arguments: multiplication (1.1) by ψ̇(x, t)
and integration over trapezium ABC D, where A = (a − t, 0), B = (a, t),C =
(b, t), D = (b + t, 0). Then (A.2) follows by partial integration using that
U (ψ)� 0. ��
Lemma 1.3. For any σ � 0

∫
(1 + |x |σ )e(x, t) dx � C(σ )(1 + t)σ+1

∫
(1 + |x |σ )e(x, 0) dx . (A.3)

Proof. By (A.2)

∫
(1 + |x |σ )

(∫ x

x−1
e(y, t) dy

)
dx �

∫
(1 + |x |σ )

(∫ x+t

x−1−t
e(y, 0) dy

)
dx .

Hence,

∫
e(y, t)

(∫ y+1

y
(1 + |x |σ ) dx

)
dy �

∫
e(y, 0)

(∫ y+t+1

y−t
(1 + |x |σ ) dx

)
dy.

and then (A.3) follows. ��
Proof of Proposition 1.1. First we verify that

U0 :=
∫
(1 + |x |5+2ν)U (ψ0(x)) dx < ∞, ψ0(x) = ψ(x, 0). (A.4)

Indeed, ψ0(x) = s(x)+
0(x) is bounded since 
0 ∈ H1(R). Hence by U1

|U (ψ0(x))| � C(d0)(ψ0(x)± a)2 � C(d0)
(
(s(x)± a)2 +
0(x)

2
)
,

and then (A.4) follows by (2.6). Now (A.3) with σ = 5+2ν and (2.6), (A.4) imply
that

‖
(t)‖2
L2

5/2+ν
=

∫
(1 + |x |5+2ν)

(∫ t

0

̇(x, s) ds −
0(x)

)2

dx

�2
∫
(1 + |x |5+2ν)
2

0 (x) dx+2t
∫
(1 + |x |5+2ν) dx

∫ t

0
π2(x, s) ds

� 2d2
0 +2t

[
‖X0‖2

E5/2+ν +U0

] ∫ t

0
(1+s)6+2ν ds � C(d0)(1+t)8+2ν .

Appendix B. Proof of Proposition 3.3

First we prove the following lemma. Denote by B a Banach space with the
norm ‖ · ‖.
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Lemma 2.1. Let L(ν) ∈ B, ν ∈ R, and

K (t) =
∫
ζ(ν)eiνt Q(ν) dν, Q(ν) := L(ν)− L(ν0)

ν − ν0
, (B.1)

where ζ ∈ C∞
0 (R), and

Mk := sup
ν∈supp ζ

‖∂k
ν L(ν)‖ < ∞, k = 0, 1, 2. (B.2)

Then

‖K (t)‖ = O(t−3/2), t → ∞. (B.3)

Proof. We take ϕ ∈ C∞
0 (R) and split ζ = ζ1t + ζ2t , where

ζ1t (ν) := ζ(ν)ϕ((ν − ν0)
√

t), ζ2t (ν) := ζ(ν)[1 − ϕ((ν − ν0)
√

t)]. (B.4)

Then

K (t) =
∫
ζ1t (ν)e

iνt Q(ν) dν +
∫
ζ2t (ν)e

iνt Q(ν) dν = K1(t)+ K2(t).

Step (i) Integrating twice by parts, we obtain

K1(t) = − 1

i t

∫
|ν−ν0|< 1√

t

ζ1t e
iνt Q′(ν) dν − 1

t2

∫
|ν−ν0|< 1√

t

ζ ′′
1t e

iνt Q(ν) dν

− 1

t2

∫
|ν−ν0|< 1√

t

ζ ′
1t e

iνt Q′(ν) dν.

Since |∂k
ν ζ j t (ν)| � C(k)tk/2, j = 1, 2, and

‖Q(ν)‖ =
∥∥∥∫ ν
ν0

L ′(r) dr
∥∥∥

|ν − ν0| � M1, ‖Q′(ν)‖ =
∥∥∥∫ ν
ν0

[∫ νr L ′′(s) ds] dr
∥∥∥

|ν − ν0|2 � 1

2
M2,

(B.5)

then

‖K1(t)‖L(Eσ ,E−σ ) � C1t−3/2.

Step (ii) Integrating three times by parts, we obtain

K2(t) =− 1

t2

∫
eiνtζ2t Q′′(ν) dν − 2

t2

∫
eiνtζ ′

2t Q′(ν) dν + 1

i t3

∫
eiνtζ ′′′

2t Q(ν) dν

+ 1

i t3

∫
eiνtζ ′′

2t Q′(ν) dν

= K21(t)+ K22(t)+ K23(t)+ K24(t).

Using the bounds from Step (i) we obtain

‖K2 j (t)‖L(Eσ ,E−σ ) � C2t−3/2, j = 2, 3, 4.
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To estimate K21(t), note that ζ2t (ν) = 0 for |ν − ν0| � 1
2
√

t
and

|Q′′(ν)| = 1

|ν − ν0|3
∣∣∣∣L ′′(ν)(ν − ν0)

2 − 2
∫ ν

ν0

[∫ ν

r
L ′′(s) ds

]
dr

∣∣∣∣ � C M2

|ν − ν0| .

Therefore,

‖K21(t)‖L(Eσ ,E−σ ) � Ct−3/2.

��
Proof of Proposition 3.3. We apply the Laplace representation

eAt (A − 2iμ− 0)−1 = − 1

2π i

∫ i∞

−i∞
eλt R(λ+ 0) dλ R(2iμ+ 0).

Using the Hilbert identity for the resolvent

R(λ1)R(λ2) = 1

λ1 − λ2
[R(λ1)− R(λ2)], Re λ1, Re λ2 > 0

for λ1 = λ+ 0 and λ2 = 2iμ+ 0, we obtain

eAt (A − 2iμ− 0)−1 = − 1

2π i

∫ i∞

−i∞
eλt R(λ+ 0)− R(2iμ+ 0)

λ− 2iμ
dλ

= P1(t)+ P2(t)+ P3(t),

where

P1(t) = − 1

2π i

∫ i∞

−i∞
eλtζ(λ)

R(λ+ 0)− R(2iμ+ 0)

λ− 2iμ
dλ,

P2(t) = − 1

2π i

∫
C+∪C−

eλt (1 − ζ(λ))
R(λ+ 0)− R(2iμ+ 0)

λ− 2iμ
dλ,

P2(t) = − 1

2π i

∫
(−i∞,i∞)\(C+∪C−)

eλt (1 − ζ(λ))
R(λ+ 0)− R(2iμ+ 0)

λ− 2iμ
dλ,

where ζ(λ) ∈ C∞
0 (iR), ζ(λ) = 1 for |λ−2iμ| < δ/2 and ζ(λ) = 0 for |λ−2iμ| >

δ, with 0 < δ < 2μ − √
2. Applying Lemma 2.1 with B = L(Eσ , E−σ ), and

L(ν) = R(λ+ 0) we obtain

‖P1(t)‖L(Eσ ,E−σ ) = O(t−3/2), t → ∞, σ > 5/2.

Since Proposition 3.1 imply (B.2) for L(ν) = R(iν+0). Proposition 3.1 also yields

‖P2(t)‖L(Eσ ,E−σ ) = O(t−3/2), t → ∞.

Here the choice of the sign in A−2iμ−0 plays a crucial role. Further, the integrand
in K3(t) is an analytic function of λ �= 0,±iμ with the values in L(Eσ , E−σ ) for
σ � 0. At λ = 0,±iμ the integrand has poles of finite order. However, all the
Laurent coefficients vanish when applied to Pch. Hence, integrating by parts twice,
we obtain

‖P3(t)P
ch‖E−σ � c(1 + t)−2‖h‖Eσ ,

completing the proof. ��
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Appendix C. Examples

We construct examples of U (ψ) satisfying U1–U3. We will construct U (ψ) by
small perturbations of the cubic Ginzburg–Landau potential U0(ψ) := (1−ψ2)2/4.
For U (ψ) = U0(ψ)

s(x)=s0(x) := tanh
x√
2
, V (x) = V0(x) = U ′′

0 (s0(x))− 2 = −3 cosh−2 x√
2
.

(C.6)

Let us consider the corresponding Schrödinger operator

H0 = − d2

dx2 + 2 + V0(x) = − d2

dx2 + 2 − 3

cosh2(x/
√

2)

restricted to odd functions. The continuous spectrum of H0 coincides with [2,∞).
It is well known (see [10, pp. 64–65]) that

(i) The discrete spectrum of H0 consists of one point λ0 = 3/2.
(ii) The edge point λ = 2 is not eigenvalue nor resonance.

Hence, the condition U2 holds for U0. The non-degeneracy condition U3 reads

∫
φ6(x)

sinh3(x/
√

2)

cosh5(x/
√

2)
dx �= 0, (C.7)

where φ6(x) is a nonzero odd solution to H0φ6(x) = 6ψ6(x). Numerical calcu-
lation [15] demonstrate the validity of (C.7) and hence U3 holds. Further, U0(ψ)

satisfies (1.2) with a = 1 and m2 = 2. However, U0(ψ) does not satisfy (1.3) since
U ′′′

0 (±1) = ±6,U (4)
0 (±1) = 6.

Therefore we will construct a small perturbation U0. Namely, for an appropriate
fixed C > 0, and any sufficiently small δ > 0, there exists U (ψ) satisfying (1.3)
such that

U (ψ) = U0(ψ) for ||ψ | − 1| > δ, sup
ψ∈R,k=0,1,2

|U (k)(ψ)− U (k)
0 (ψ)| � Cδ,

sup
ψ∈R

|U ′′′(ψ)− U ′′′
0 (ψ)| � C. (C.8)

For example, let us set

U (ψ) = U0(ψ)−
[

1

4
(|ψ | − 1)4 + (|ψ | − 1)3

]
χδ(|ψ | − 1),

where χδ(z) = χ(z/δ), χ(z) ∈ C∞
0 (R), χ(z) = 1 for |z| < 1/2, and χ(z) = 0 for

|z| > 1. Then (C.8) holds, and

U (ψ) = (|ψ | − 1)2 for ||ψ | − 1|<δ/2, and U (ψ)=U0(ψ) for ||ψ | − 1|>δ.
Hence, U (ψ) satisfies U1. It remains to prove that U (ψ) satisfies U2 and U3.
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Denote S = {x ∈ R : ||s(x)| − 1|, ||s0(x)| − 1| < δ}. Then s(x) = s0(x) and
V (x) = V0(x) for x ∈ R \ S. For x ∈ S, using (C.8), we obtain

sup
x∈S

|V (x)− V0(x)| � sup
x∈S

|U ′′(s(x))− U ′′(s0(x))| + sup
x∈S

|U ′′(s0(x))− U ′′
0 (s0(x))|

= sup
||φ|−1|<δ

|U ′′′(φ)| sup
x∈S

|s0(x)− s(x)| + O(δ) = O(δ)

since sup
x∈S

|s0(x)− s(x)| � 2δ. Hence

sup
x∈R

|V (x)− V0(x)| = O(δ). (C.9)

Let us verify the uniform decay of V (x) for small δ > 0. We consider the case
x � 0 (the case x � 0 can be considered similarly). Note that U (ψ) � (ψ − 1)2/4
for 0 � ψ < 1. Using the identity

∫ s(x)
0 ds/

√
2U (s) = x we obtain for x > 0 and

0 � s(x) < 1 that

x �
∫ s(x)

0

√
2 ds√

(1 − s)2
=

∫ s(x)

0

√
2 ds

1 − s
= −√

2 ln(1 − s(x)).

Hence, 1 − s(x) � e−x/
√

2 for x � 0, and then |1 − |s(x)|| � e−|x |/√2. Therefore

|V (x)| � Ce−|x |/√2, x ∈ R. (C.10)

Finally, (C.9)–(C.10) imply that U2 and U3 hold for U (ψ) for sufficiently small
δ > 0, since they hold for U0(ψ).
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