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The long-time asymptotics is analyzed for all finite energy solutions to the 1D Klein-
Gordon equation coupled to a nonlinear oscillator. The coupled system is invariant
with respect to the rotation group U(1). Each finite energy solution converges to the
“eigenfunctions” ψ±(x)eiω±t as t → ±∞. The problem is inspired by Schrödinger’s
identification of the quantum stationary states to the eigenfunctions in the quantum
electrodynamics which is invariant with respect to the (global) gauge group U(1).

1 Introduction

The eigenvalue problem is a core of quantum mechanics since Schrödinger had
identified the solutions ψ(x)eiωt to “quantum stationary states”. At first glance, this
identification seems not compatible with the first Bohr postulate on the transitions
between the stationary states, |ω−〉 7→ |ω+〉. Namely, the transitions may be treated
dynamically as a long-time asymptotics of the type

ψ(x, t) ∼ ψ±(x)e−iω±t, t→ ±∞, (B)

which means that the set of the quantum stationary states is an attractor of cor-
responding dynamical system. However, such asymptotics generally is impossible
for the linear autonomous Schrödinger, Klein-Gordon or Dirac equations because of
the principle of superposition. The equations are autonomous in the presence of a
static Maxwell field. For instance, a static Coulombic field gives the frequencies ω
of the quantum stationary states of Hydrogen atom, with a high precision.

On the other hand, the transitory regime is followed by an electromagnetic radi-
ation according to the second Bohr postulate. Hence, to get a consistent dynamical
description of the transitions, it is necessary to take into account the coupling to the
Maxwell field (“polarization of vacuum”) which is the subject of Quantum Electro-
dynamics. The coupled semiclassical Klein-Gordon-Maxwell Equations have been
introduced and discussed for the first time in 26. The coupled equations are i)
nonlinear and ii) invariant with respect to the (global gauge) group U(1). This
situation suggests that the features i), ii) may be responsible for the transitions (B)
in the coupled semiclassical equations or their second-quantized version. The high
precision of the linearized theory might be explained by a smallness of the nonlinear
coupling.

The nonlinear coupling generates the perturbation series (“Feynman diagrams”)
in the calculation of the quantum stationary states ψ(x)e−iωt in Quantum Electro-
dynamics. The series give the perfect description of many quantum phenomena
where the series converge numerically: for instance, the Lamb shift for Hydrogen
and anomalous magnetic momentum of the electron. The perturbation series lead
to the problem of renormalization, and their convergence has not been proved up
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to now. Moreover, the series diverge numerically in the theory of strong or electro-
weak interaction. Therefore, it would be instructive to identify the perturbation
procedure as a tool, and not as a formulation of the problem. Namely, this sit-
uation suggests that the perturbation series is a tool to calculate the “nonlinear
eigenfunctions” ψ(x)e−iωt to the coupled nonlinear equations, and the special role
of the eigenfunctions might be explained by the long-time asymptotics (B) as an
inherent mathematical property of the coupled system. Note that the existence
of corresponding nontrivial solutions ψ(x)e−iωt is established recently in 4 for the
coupled Dirac-Maxwell Equations without an external Maxwell field. In 1 similar
result is established for a general class of nonlinear U(1)-invariant Klein-Gordon
Eqns.

In a more general mathematical context, it is then natural to expect that the
asymptotics (B) is an inherent mathematical property of a generic class of hyper-
bolic partial differential equations with the features i), ii). In the present paper,
we check this for a model nonlinear U(1)-invariant Klein-Gordon Eqn. We prove
that the transitions (B) are provided by radiation maintained by an energy flow
over the spectrum, from low to higher modes. The spectral flow is provided by a
polynomial character of the nonlinear term. The radiation cannot go forever as the
total energy is finite. Therefore, the solution converges to the set of radiationless
trajectories. A crucial point is the determination of this set: it consists only of the
nonlinear eigenfunctions ψ(x)e−iωt. Possible extensions must include more general
1D and 3D problems and higher symmetry groups as, for instance, SU(2) or SU(3)
for the Yang-Mills Eqn 5,7,31.

We consider the long-time asymptotics and attractor of all finite energy solu-
tions to a model nonlinear Klein-Gordon equations of the following type,

ψ̈(x, t) = ψ′′(x, t) −m2
0ψ(x, t) + δ(x)F (ψ(0, t)), (x, t) ∈ IR2. (KG)

Here m0 > 0, ψ(x, t) is a continuous complex-valued “wave” function and F is a
continuous function, the dots stand for the derivatives in t and the primes in x. All
derivatives and the equation are understood in the distribution sense.

We identify a complex number ψ = ψ1 + iψ2 with the real two-dimensional
vector (ψ1, ψ2). Physically, Eqn (KG) describes small crosswise oscillations of an
infinite string in three-dimensional space (x, ψ1, ψ2) stretched along the axis Ox.
The string is subject to an “elastic” force −m2

0ψ(x, t) and coupled to an oscillator
attached at the point x = 0: F is a nonlinear “oscillator force”. We assume that
the oscillator force F admits a real-valued potential U ∈ C2(IR2),

F (ψ) = −∇U(ψ), ψ ∈ IR2. (P )

Then Eqn (KG) formally is a Hamiltonian system with the Hamiltonian functional

H(ψ, ψ̇) =
1

2

∫

IR

[|ψ̇|2 + |ψ′|2 +m2
0|ψ|

2]dx + U(ψ(0)). (H)

It is conserved for finite energy solutions. To have a good a priori estimates, we
assume that the potential is confining, i.e.

U(ψ) → +∞, |ψ| → ∞. (U)
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Our key assumption concerns the U(1)-invariance (or the rotation-invariance) of
the oscillator (cf 1): F (eiθψ) = eiθF (ψ), θ ∈ [0, 2π], or equivalently,

F (ψ) = a(|ψ|)ψ, ψ ∈ C, (I)

where a(|ψ|) is real by (P ). For instance, F (0) = 0. Obviously, the symmetry holds
true iff the potential is radial: U(ψ) = u(|ψ|). The symmetry implies that eiθψ(x, t)
is a solution to Eqn (KG) if ψ(x, t) is. The Eqn is U(1)-invariant in the sense of 8.
Here U(1) stands for the rotation group eiθ, θ ∈ [0, 2π]. Main subject of this paper
is an analysis of a special role of the “stationary states” of Eqn (KG), or Solitary
Waves (see 8) which are finite energy solutions of type

ψω(x, t) = ψω(x)e−iωt, ω ∈ IR. (S)

The frequency ω and the amplitude ψ(x) give a solution to the following “nonlinear
eigenvalue problem”: (KG) implies by (I),

−ω2ψω(x) = ψ′′
ω(x) −m2

0ψω(x) + δ(x)F (ψω(x)), x ∈ IR. (ω)

Note that ω ∈ IR due to (U) and energy conservation. ψω(x) = 0 is always the
solitary wave as F (0) = 0, and for |ω| > m0 only the zero solitary wave exist.

Definition S denotes the set of all solitary waves, S={ψω(x) ∈ H1(IR) : ω ∈ IR}.

Here H1(IR) denotes the Sobolev space. We give a complete analysis of the set S
of all solitary waves ψ(x) by an explicit calculation. For a polynomial F , the set S
modU(1) is isomorphic to a finite union of one-dimensional intervals.

Our main results are the following two long-time asymptotics. First, we prove
an attraction to the set S of all solitary waves:

ψ(·, t) → S, t→ ±∞, (A)

where the convergence holds in local energy seminorms. We prove it for a poly-
nomial nonlinear term under following “True Nonlinearity” condition: U(ψ) =
∑

n≤N

un|ψ|
2n; uN > 0, N ≥ 2. Equivalently, for the function a from (I),

a(|ψ|) = −
∑

n≤N

an|ψ|
2n−1; aN > 0, N ≥ 1. (N)

Furthermore, we prove an attraction of type (B) where the asymptotics also holds in
local energy seminorms. We prove it under Condition (N) together with following
“Energy Nondegeneracy” Condition: for each E ∈ [0,∞)

the set {ω ∈ IR : H(ψ,−iωψ) = E, ψ ∈ S} is discrete, (E)

where ω is the frequency corresponding to ψ. We give a simple sufficient criterion
providing generic examples where (E) holds true.

For the case m0 = 0, the Eqn (KG) is equivalent to the Lamb system of a wave
equation coupled to an oscillator. The system has been introduced in 22 for linear
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function F . For nonlinear F such system has been studied in 12: the solutions (S)
exist only with ω = 0. Then the asymptotics (A) and (B) mean a global attraction
to the static stationary states. The attraction is established under a condition
of type (N) with a = 0. These results were extended to more general 1D wave
equations in 13,15 (see the survey 16), to 3D wave-particle systems in 17,18,20 and to
Maxwell-Lorentz system in19 (see the survey14). The proofs have used the following
common strategy:

i We analyze the energy radiation to the infinity to prove an attraction of the
solution to a compact finite-dimensional subset in the phase space as t→ ∞;

ii We analyze the limit set of the trajectory: each omega-limit point is a
stationary state. This means that the set of stationary states is a point attractor.

iii The convergence to a limit point of the attractor follows if it is discrete.

Here we adopt this general strategy to the Klein-Gordon equation with m0 > 0.
However, the key arguments in the proofs are considerably different. This is related
to more complicate character of energy propagation in the Klein-Gordon Eqn: the
dispersive relation ω2 = k2 +m2

0 provides the group velocities v = ∇ω(k) (see 25).
For the wave equation then |v| = 1 for any k. On the other hand, for the Klein-
Gordon each velocity v with |v| < 1 is possible while |v| = 1 is impossible in total
controversy to the wave equation. Respectively, our strategy requires the following
modifications:

I We consider t > 0 and split the solution in two components: dispersive and
bound. The dispersive component is the union of the harmonics with frequencies
|ω| ≥ m0. The bound component is the union of the harmonics with ω ∈ (−m0,m0)
which implies a compactness. Stationary phase arguments lead to a local decay of
the dispersive component as t → +∞ and reduce the long-time behavior of the
solution to the one of the bound component, i.e. to a compact set.

II We analyze the trajectory starting from any omega-limit point, as t→ +∞,
of the bound component: first, the time spectrum of the trajectory is embedded
in [−m0,m0]. Secondly, the trajectory is radiationless as the energy is bounded.
These two facts allow us reduce the time-spectrum of the trajectory to a unique
harmonic with a frequency ω+ ∈ (−m0,m0): otherwise, Eqn (KG) and (N) imply
that the time-spectrum of the component is not embedded in [−m0,m0]. Then (A)
follows.

III We prove that the energy has a limit as t → +∞. Then (E) implies that
ω+ is the same for each omega-limit point. This means the asymptotics of type (B).

Note that the compact attracting set in I is infinite-dimensional in contrast to
i. The argument II physically means the following radiative mechanism: the low-
frequency perturbation of the stationary state does not radiate the energy until it
generates a spectral line (t.e. a point of the spectrum) embedded in the continuous
spectrum outside [−m0,m0]. First, this mechanism has been discovered numeri-
cally in the experiments with the relativistic Ginzburg-Landau equation. Here we
deduce this mechanism from a “spectral condition” which follows from Eqn (KG).
The deduction is based on the Titchmarsh Theorem concerning the support of the
convolution of the distributions. In our case the convolution arises for the time-
spectrum of the solution.

The plan of the paper is the following. In Section 2 we state main results. In
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Section 3 we give a complete description of the set of all solitary waves. Section
4 concerns a splitting of the solution in a dispersive and bound components. In
Sections 5 and 6 we derive the complete description of the limiting radiationless
trajectories. Namely, in Section 5 we obtain the spectral condition for all limiting
trajectories, and in Section 6 we apply the Titchmarsh Theorem to the spectral
condition.

The asymptotics of type (A), (B) were discovered first with ψ± = 0 in the
scattering theory for nD nonlinear wave, Klein-Gordon, Schrödinger and Yang-Mills
equations for the case when the attractor S is a point zero: see 6,7,9,11,23,29. Then
the asymptotics mean well known local energy decay.

The asymptotics with ψ± 6= 0 and ω± = 0, were established in 12−20 for a list
of 1D and 3D nonlinear wave problems corresponding to m0 = 0, and without a
symmetry group. There the attractor S is the set of all stationary states. It can be
an infinite set and even contain some continuous components.

First results on the asymptotics of type (A), (B) with ψ± 6= 0 and ω± 6= 0 were
obtained for nonlinear U(1)-invariant Schrödinger Eqn: in 27,28 for a multidimen-
sional Eqn with a potential (see also 24), and in 3 for translation-invariant 1D Eqn.
In these papers the asymptotics are established for the solutions close to a solitary
wave, which means the attraction to a local attractor.

In the present paper, we establish the global attraction to the solitary waves (S)
with ψ± 6= 0 and ω± 6= 0 for all finite energy solutions to the model U(1)-invariant
1D nonlinear Klein-Gordon equation (KG). The global attractor is isomorphic-
modU(1) to a finite union of one-dimensional intervals. Our results demonstrate
that the long-time asymptotics (A) and (B) are the properties of generic equa-
tions from a class of nonlinear U(1)-invariant equations. For instance, the asymp-
totics (A) holds true for U(1)-invariant equations (KG) under Condition (N). This
Condition defines an open and dense everywhere subset in the class of confining
polynomial U(1)-invariant potentials.

Our results suggest possible extension to a generic class of nonlinear hyperbolic
equations with a Lie symmetry group G: corresponding attractor probably consists
of solitary waves eΩtψ(x) introduced in8. Here Ω is an element of corresponding Lie
algebra G and eΩt is the one-parametric subgroup of G, then Ω, ψ(x) is a solution to
a “nonlinear eigenmatrix problem”. However, this extension is an open question.

Note that the results 12−21 on convergence to static stationary states (i.e. with
Ω = 0), concern the equations with the trivial symmetry group G = {e}.
Remark If we have two Lie groups G1 ⊂ G2, then each G2-invariant equation also
is G1-invariant. At first glance, this contradicts our conjecture as it means that the
larger symmetry group G2 leads to more sophisticate long-time asymptotics. How-
ever, the conjecture only concerns generic G-invariant equations, while G2-invariant
equations combine an exceptional subset of the equations among G1-invariant ones.

2 Main results

Consider the Cauchy problem for Eqn (KG), with the initial conditions ψ|t=0 =
ψ0(x), ψ̇|t=0 = π0(x). Write the Cauchy problem as

Ẏ (t) = V(Y (t)), t ∈ IR; Y (0) = Y0, (2.1)
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where Y (t) = (ψ(·, t), ψ̇(·, t)) and Y0 = (ψ0, π0). We introduce the phase space E of
finite energy states for Eqn (KG). Denote by L2 the Hilbert space L2(IR,C) with
the norm ||| · |||, and denote by ||| · |||R the norm in L2(−R,R; C) for R > 0. Denote by
H1 the Sobolev space {ψ(x) ∈ L2 : ψ′(x) ∈ L2}

Definition 2.1 i) E = H1 ⊕ L2 is the Hilbert space of the pairs (ψ(x), π(x)), with
the norm

‖(ψ, π)‖E = |||ψ′||| + |||ψ||| + |||π|||. (2.2)

ii) EF is the space E endowed with the Fréchet topology defined by the seminorms

‖(ψ, π)‖R ≡ |||ψ′|||R + |||ψ|||R + |||π|||R, R > 0. (2.3)

Note that both spaces E and EF are metrisable and EF is not a complete space.
With the assumptions (P ), (U), Eqn (KG) is formally a Hamiltonian system with
the phase space E and the Hamiltonian functional

H(ψ, π) =
1

2

∫

IR

[|π(x)|2 + |ψ′(x)|2 +m2
0|ψ(x)|2]dx+ U(ψ(0)), (ψ, π) ∈ E , (H)

which is continuous in E .

Proposition 2.2 Let Conditions (P ) and (U) be fulfilled. Then
i) for every Y0 ∈ E the Cauchy problem (2.1) has a unique solution Y (t) ∈ C(IR, E).
ii) The map Wt : Y0 7→ Y (t) is continuous in E and EF for each t ∈ IR.
iii) The energy is conserved, H(Y (t)) = H(Y0) t ∈ IR.

iv) The a priory bounds hold, sup
t∈IR

(

‖ψ̇(·, t)‖+‖ψ′(·, t)‖+‖ψ(·, t)‖+‖ψ(0, t)‖
)

<∞.

Definition 2.3 i) The solitary waves of Eqn (2.1) are the solutions Y (t) = (ψω(x),−iωψω(x))e−iωt

with ψω ∈ S.
ii) S is the set of the initial dates (ψω(x),−iωψω(x)) ∈ E of all solitary waves.

The set S obviously is invariant under a multiplication by eiθ, θ ∈ [0, 2π]. Let
us give a simple criterion providing (E). Consider the following algebraic equation:

F (r) = 2m0r, r ≥ 0. (2.4)

Let r− < r+ be any neighboring roots of the equation: we also include r = +∞ as
a “root”. Then the criterion is the following:

either min
[r−, r+]

F (r) ≤ 0, or min
[r−, r+]

(F (r) − 2m0r) ≥ 0. (C)

Example Consider the “Ginzburg-Landau” potential U(ψ) = g(|ψ|2−1)2/2. Then
F (r) = −2g(r3 − r) and F ′(0) = 2g. For g ≤ m0 we have two “roots” r = 0,+∞,
and the first condition holds true. For g > m0 we have three “roots” r = 0, r1,+∞:
for the neighboring roots r1,+∞, the first condition holds true, while for r = 0, r1,
the second condition holds true.

Let us call a subset D ⊂ L2 “finite modU(1)” if the set D modU(1) is finite.
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Proposition 2.4 Let Conditions (P ), (U), (I) and (N) be fulfilled. Then
i) for any fixed ω ∈ IR,

the set of solutions to (ω) is finite modU(1). (Ω)

ii) Let additionally, Criterion (C) be fulfilled. Then Condition (E) holds true and
moreover, the set in (E) is finite.

Our main result is the following theorem.

Theorem A Let Conditions (P ), (U), (I) and (N) be fulfilled. Then
i) For any solution Y (t) ∈ C(IR, E) to Eqn (2.1),

Y (t)
EF−→ S, t→ ±∞. (A)

ii) Let additionally, (E) and (Ω) hold. Then there exist solitary waves (ψ±(x), −
iω±ψ±(x))e−iω±t such that for some θ±(t) ∈ [0, 2π) we have

Y (t)
EF∼ (ψ±(x),−iω±ψ±(x))e−i(ω±t+θ±(t)), t→ ±∞. (B)

3 Solitary waves

Here we prove Proposition 2.4.
Step 1 Let us calculate all solitary waves. Denote κ2 = m2

0 − ω2. Then (ω)
implies ψ′′(x) = κ2ψ(x), x 6= 0, hence ψ(x) = C±e

κx, ±x > 0. Since ψ′(x) ∈ L2,
the function ψ(x) is continuous, hence C− = C+ = C and ψ(x) = Ceκx, x ∈ IR.
Furthermore, ψ(x) ∈ L2, therefore κ is real and negative if C 6= 0:

ψ(x) = Ce−κ|x|, κ =
√

m2
0 − ω2 > 0, ω ∈ (−m0, m0). (3.1)

At last, we get an algebraic equation for the constant C equating the coefficients of
δ(x) in both sides of (ω):

0 = ψ′(0+) − ψ′(0−) + F (ψ(0)). (3.2)

This implies 0 = −2κC + F (C), or equivalently,

κ = κC :=
F (C)

2C
, C ∈ C, κ ∈ (0,m0]. (3.3)

Now we can prove (Ω): for a fixed ω, we also have a fixed κ, hence the set of the
roots of Eqn (3.3) is finite modU(1) as κC is a polynomial of a degree ≥ 2 by (N).
It remains to prove (E).

Step 2 Eqn (3.3) demonstrates that the set S of all solitary waves allow a simple
parameterization with the complex constant C. First, C = 0 gives the zero solitary
wave ψ0(x) = 0. Further consider all complex C 6= 0, then κ = κC ∈ (0,m0] for
the finite energy solitary waves. For a complex constant C 6= 0 with κC ∈ [0,m0],
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denote by ψC(x) the function (3.1). If κC ∈ (0,m0], the solitary waves ψC(x) has a
finite energy, while κC = 0 with C 6= 0 correspond to the infinite energy of ψC(x).
Now we can evaluate the set in (E):

{ω ∈ IR : H(ψ,−iωψ) = E, ψ ∈ S} = {ωC : H(ψC ,−iωCψC) = E, C ∈ [0,∞)},
(3.4)

where ω2
C = m2

0 − κ2
C . We restrict here C ∈ C to C ∈ [0,∞) after division by eiθ as

it does not change ωC and H(ψC ,−iωCψC) that follows from (I) and (H).
Step 3 It suffices to prove that the set of possible values of C ∈ [0,∞) in RHS

of (3.4) is finite.
Consider the set of the roots C ∈ [0,∞) of the equation (3.3) with the maximal

value κC = m0 and add r = +∞ as a “root”. The set is finite as κC is a polynomial
of a degree ≥ 2.

Let us consider any neighboring roots r− < r+ and prove that the interval
[r−, r+] contains at most a finite number of the C with H(ψC ,−iωCψC) = E.

First, consider the case when min
[r−, r+]

(F (r) − 2m0r) ≥ 0. Then κC ≥ m0,

C ∈ [r, r+], and only κC = m0 correspond to a finite energy. Hence, the set of such
C is finite as κC is a polynomial of a degree ≥ 2.

Second, consider the case when min
[r−, r+]

F (r) ≤ 0. Then the “finite energy”-set

{C ∈ (r−, r+) : κC ∈ (0,m0)} is open, hence it is a union of a finite set of the
intervals (α, β). Obviously, κC = 0 at least in one end of each interval. Let us
consider arbitrary of these intervals, (α, β). The function H(ψC ,−iωCψC) is finite
and real analytic in (α, β) as all the functions κC , ωC =

√

m2
0 − κ2(C) and U(ψC(0))

are real-analytic functions of C until κC ∈ (0,m0). If H(ψC ,−iωCψC) = E for an
infinite number of the points in (α, β), then H(ψC ,−iωCψC) = E everywhere in
(α, β). However, H(ψC ,−iωCψC) = ∞ at the end where κC = 0. 2

4 Dispersive and bound components

We split the solution in two components: a dispersive and a bound. The dispersive
component describes a radiation to infinity, while the bound is responsible for the
long-time asymptotics in the finite space.

Step 1 First, we split the solution ψ(x, t) in two components φ0(x, t), φ1(x, t):
for x ∈ IR, t > 0,

{

φ̈0(x, t) = φ′′0 (x, t) −m2
0φ0(x, t),

φ0|t=0 = ψ0, φ̇0|t=0 = ψ1,

{

φ̈1(x, t) = φ′′1 (x, t) −m2
0φ1(x, t) + δ(x)f(t),

φ1|t=0 = 0, φ̇1|t=0 = 0,

where f(t) := F (ψ(0, t)). We will study the properties of each component φi,
i = 0, 1.

Lemma 4.1 Let Conditions (P ) and (U) hold. Then the component φ0 decays as
t→ ∞: ∀R, T > 0,

sup
|x|<R

|φ0(x, t)| → 0, , sup
|x|<R

∫ t+T

t

(

|φ̇0(x, s)|
2 + |φ′0(x, s)|

2
)

ds→ 0. (4.1)
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Step 2 Next we split φ1(x, t) further in two components: φ1(x, t) = φ2(x, t) +
φ3(x, t), t > 0. Here φ2(x, t) is a dispersive component which decays as t → ∞
similar to φ0(x, t), while φ3(x, t) is a “bound” component with the time spectrum
in [−m0,m0]. To split φ1(x, t), we calculate in the Fourier-Laplace transform

φ̃1(x, ω) = F+φ1 :=

∫ ∞

0

eiωtφ1(x, t)dt, x ∈ IR, ω ∈ C
+

:= {z ∈ C: Im z > 0}.

The integral converges and is an analytic function in C
+

for each x ∈ IR due to
Proposition 2.2 iv). Eqn for φ1 implies (cf (ω))

−ω2φ̃1(x, ω) = φ̃′′1 (x, ω) −m2
0φ̃1(x, ω) + δ(x)f̃ (ω), ω ∈ C

+
.

The solution φ1(x, ω) is a linear combination of the fundamental solutionsE±(x, ω) =
e±ik|x|

±2ik
where k stands for an analytic function k(ω) =

√

ω2 −m2
0, ω ∈ C

+
with

Im k(ω) > 0. Further we use the standard “limit absorption principle” for the

selection of E±: only E+ is appropriate as φ1(·, ω) ∈ H1 for ω ∈ C
+
. Thus,

φ̃1(x, ω) = −f̃(ω)E+(x, ω), x ∈ IR, ω ∈ C
+
. Extend k(ω) to ω ∈ C

+
by conti-

nuity. Then k(ω) is real for ω ∈ IR with |ω| ≥ m0 and imaginary with |ω| < m0.
Denote κ = κ(ω) := −ik(ω) =

√

m2
0 − ω2 > 0 for ω ∈ (−m0,m0). Then

φ1(x, t) = −
1

2π

∫

|ω|≥m0

e−iωtf̃(ω)
eik|x|

2ik
dω +

1

2π

∫

|ω|<m0

e−iωtf̃(ω)
e−κ|x|

2κ
dω, (4.2)

or φ1(x, t) = φ2(x, t) + φ3(x, t), t ∈ IR. We call d(x, t) := φ0(x, t) + φ2(x, t) a
dispersive component and b(x, t) := φ3(x, t) a bound component of the solution
ψ(x, t).

Lemma 4.2 Let Conditions (P ) and (U) hold. Then for d(x, t) the decay (4.1)
holds true.

The sketch of proof The functions eik|x| have “an infinite energy”, while φ1 has
a finite energy, and e−κ|x| as well. This is possible only if the density f̃(ω) is
absolutely continuous. Then the oscillatory integral form of the function φ2 implies
its decay of type (4.1).

5 Radiationless solutions: spectral condition

Previous analysis demonstrates that long-time asymptotics of the solution ψ(x, t),
t→ ∞ depends only on the one of the bound component b(x, t). Set c(t) := b(0, t),
then we have for t ∈ IR

b(x, t) =
1

2π

∫

|ω|<m0

e−iωtf̃(ω)
e−κ|x|

2κ
dω, c(t) =

1

2π

∫

|ω|<m0

e−iωtf̃(ω)
1

2κ
dω. (5.1)

Denote Spec c(·) := supp c̃. Then obviously,

Spec b(x, ·) = Spec c(·), x ∈ IR. (σb)
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We are going to reduce the time-spectrum of b(x, t) to a unique frequency ω+ ∈
[−m0,m0] taking into account Condition (N). More precisely, we prove it for each
omega - limiting function

β(x, t) = lim
τk→∞

b(x, τk + t), (x, t) ∈ IR2. (5.2)

This implies, first, the asymptotics (A). Then (B) would follow under Condition
(D).

Let us describe our strategy.
1) First, we prove a compactness of the trajectory b(·, t), t ∈ IR to establish a
convergence of the type (5.2). Then we prove that the limiting trajectory β(x, t)
i) is a solution to the equation (KG) (though b(x, t) does not!!):

β̈(x, t) = β′′(x, t) −m2
0β(x, t) + δ(x)F (β(0, t)), (x, t) ∈ IR2. (KGβ)

ii) admits the representations of type (5.1):

β(x, t) =
1

2π

∫

|ω|≤m0

e−iωtg̃(ω)
e−κ|x|

2κ
dω, γ(t) := β(0, t) =

1

2π

∫

|ω|≤m0

e−iωtg̃(ω)
1

2κ
dω.

(5.3)
Therefore, similarly to (σb),

Specβ(x, ·) = Specγ(·), x ∈ IR. (σβ)

2) Next we use the algebraic equation (cf (3.2)) 0 = β ′(0+, t)−β′(0−, t)+F (γ(t)), t ∈
IR, which follows from (KGβ) equating the coefficients of δ-function in both sides.
It implies, SpecF (γ(·)) ⊂ Specβ′(0+, ·) ∪ Specβ′(0−, ·). Therefore, (σβ) implies

SpecF (γ(·)) ⊂ Specγ(·). (σF )

Finally, we have from (5.3),

Spec γ(·)) ⊂ [−m0,m0]. (σγ)

3) Now we use Conditions (I), (N): we deduce from (σF ) and (σγ) that γ(t) has a
constant amplitude,

|γ(t)| = const, t ∈ IR. (a)

4) This implies that Spec γ(·) is a point ω+: γ(t) = Ce−iω+t.
5)Finally, (I) implies that f(t) := F (γ(t)) = F (C)e−iω+t, hence (5.3) implies that
β(x, t) is a solitary wave ψ+(x)e−iω+t.

Main point of the program is the implication 3): (σF )&(σγ) =⇒ (a). We prove
it by the classical Titchmarsh Theorem on the support of the convolution (see 10,
p. 178). Note that 4) follows by the same argument. This leads to the proof of
Theorem A.

We start with the following compactness argument. The set of distributions
D = {e−iτωf̃(ω) : τ ∈ IR} is compact in the space of distributions with the support
in [−m0,m0]. Hence, for any sequence τk → ∞ there exists a subsequence τk′ → ∞
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such that e−iτ
k′ωf̃(ω) → g̃(ω), ω ∈ IR, where the convergence holds in the sense of

distributions. Therefore, (5.1) implies the convergences of type (5.2),

b(x, t+ τk′) → β(x, t) :=
1

2π

∫

|ω|≤m0

e−iωtg̃(ω)
e−κ|x|

2κ
dω, (x, t) ∈ IR2. (5.4)

Furthermore, the convergence (5.4) holds uniformly in (x, t) ∈ IRn× [−T, T ] for any
T > 0. Therefore, (KG) implies (KGβ). Hence, the algebraic equation (δβ) and
the spectral conditions (σF ), (σγ) hold true for each ω-limiting function β(x, t).

Remark We call the limiting trajectories β(x, t) “radiationless” as we suggest that
the radiation of energy goes to zero as t→ ∞.

In next section, we will use the spectral condition (σF ), (σγ) to determine all the
radiationless solutions. We will show that each such solution has the Schrödinger’s
form ψ+(x)eiω+t with certain ω+ ∈ (−m,m).

6 Titchmarsh Theorem

We have to reduce the spectrum of each limiting trajectory β(x, t) to a unique point.

Step 1 Let us prove (a). We deduce it from the spectral conditions (σF ), (σγ). The
inclusion (σF ) is possible for a linear function F (ψ) = a(|ψ|)ψ with a(|ψ|) =const.
For the nonlinear functions F satisfying Conditions (N), we will prove that (σF ), (σγ)
imply |γ(t)| =const.
Proposition 6.1 Let a complex-valued continuous function F (ψ) = a(|ψ|)ψ, ψ ∈
C, satisfy Condition (N), and γ(t) be a complex-valued bounded continuous function
in IR with a bounded spectrum, i.e. (σγ) holds with an m0 > 0. Then (σF ) implies
(a).
Proof γ(t) and α(t) := a(|γ(t)|) are bounded continuous functions in IR. Hence,
γ(t) and α(t) are tempered distributions. Then the product f(t) = α(t)γ(t) becomes
the convolution in the Fourier transform: f̃ = Cα̃ ∗ γ̃. The convolution is defined
and the identity holds true due to (σγ). Now Condition (σF ) means that

supp α̃ ∗ γ̃ ⊂ supp γ̃, (σ∗)

while generally, supp α̃ ∗ γ̃ ⊂ supp α̃ + supp γ̃ (see 25). This situation suggests that
the set supp α̃ must be a point zero that we prove below. First, (N) provides that
α(t) := a(|γ(t)|) is a polynomial in γ(t) and γ(t). Therefore, the set supp α̃ also
is compact. Hence, we have supp α̃ ⊂ [s−, s+], supp γ̃ ⊂ [σ−, σ+] for some finite
s±, σ± ∈ IR. It remains to prove that we can take here s± = 0. Indeed, then α̃(ω)
is a finite linear combination of the derivatives of δ(ω). This implies that α(t) is a
polynomial, hence it is constant as α(t) is bounded by Proposition 2.2 iv).

Theorem B (Titchmarsh) Let α̃, γ̃ be two tempered distributions with compact
supports as above, and s± ∈ supp α̃, σ± ∈ supp γ̃. Then we have also

s± + σ± ∈ supp α̃ ∗ γ̃. (6.1)
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This theorem and (σ∗) imply [s− + σ−, s+ + σ+] ⊂ [σ−, σ+], i.e. s± = 0. 2

Step 2 It remains to prove that γ(t) = Ce−iω+t, t ∈ IR. This follows from (a)
by the same Theorem B. Namely, (a) implies γ(t)γ(t) ≡ C, hence in the Fourier
transform γ̃ ∗ γ̃ = C1δ(ω). Therefore, Theorem B implies supp γ̃ + supp γ̃ = {0}.
Hence, supp γ̃ = {ω+} and supp γ̃ = {−ω+} with some ω+ ∈ IR.

Remarks i) We have used essentially that the spectrum of γ is bounded (see (σγ)).
ii) We used the polynomial character of the nonlinear term to deduce the same for
F (γ(·)).

Let us comment on a special role of Spectral Condition (σF ). Generally, one
could expect that the spectrum of F (γ(·)) contains new “spectral lines” which were
not presented in the spectrum of γ(·). Generally, this “inflation of spectrum” holds
for F (γ) = γn, n ≥ 2, if Specγ(·) contains a point outside zero: it is obvious in the
case of the discrete finite spectrum. Our results demonstrate that this inflation also
holds for F satisfying Conditions (I) and (N) if γ(·) has a spectrum containing at
least two distinct points. The iteration of F leads then to a generation of a spectral
line outside [−m0,m0] belonging to the dispersive component, i.e. to the radiation
of energy to infinity. Thus, Condition (σF ) means the absence of the energy flow
from low to higher modes. This characterization of the limit “radiationless” trajec-
tories serves as an equation for the determination of the attractor.
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