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Abstract 

Heine transformations are proved for a new kind of multivariate basic hypergeometric series which had been 
previously introduced by Krattenthaler in connection with generating functions for nonintersecting lattice paths. 
As a consequence, a q-Gauss and q-Chu-Vandermonde sum are proved and also a generalization of Ramanujan's 1~01 
sum. 

Keywords: Basic hypergeometric series in U(n); Heine transformation; Bilateral basic hypergeometric series; Good's 
identity 

AMS classification: primary 33D80; 33D45 

1. Introduction and statement of results 

The classical basic hypergeometric series (with notation as in [2]) is defined by 

2q91(a,b; c; q ,z )  = 
(a;q) , (b;  q) , z"  

,=o ( q ;q ) , ( e ;q ) ,  ' 

where 

1, n = 0, 

( a ; q ) , =  ( 1 - a ) ( 1 - a q ) . . . ( 1 - a q " - l ) ,  n = 1 , 2 , . . . ,  
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is the q-shifted factorial and it is assumed that c ¢ q-m for m = 0, 1, . . . ,  and the series converges 
absolutely if lq[ < 1 and I zl < 1. We will also use the notation 

(al ; q),(aa ; q), ... (ak; q), --(ax,  ... , ak; q), -- (al, ... , ak),, 

where we assume that the base q is fixed throughout.  
The study of the properties of such a 2~0~ series was initiated by Heine [4, 5] who proved the 

following transformation formulas: 

(a, bz)~o 
2q91 (a, b; c; q, z) - - -  2q), (c/a, z; bz; q, a) (1.1) 

(c/b, bz)~o 
- 2q), (abz/c, b; az; q, c/b) (1.2) 

_(abz/c)oo ( a ! z )  
(z)o~ 2q), c / a , c / b ; c ; q , - -  . (1.3) 

These transformations can be iterated and it was Rogers [10] who observed how to simply describe 
the symmetry of the 2~01 function under the symmetry group generated by these transformations. 
A description of Roger's result and how it became a starting point in Roger's further investigation 
on q-Hermite polynomials and partition identities is given in the second chapter of [1]. 

We will prove multivariate generalizations of the three transformations (1.1)-(1.3) involving the 
following extension of the classical 2qh- For a positive integer r and A, B, C, Z, X , ,  . . . ,  X, ~ C, and 
for convergence assume IZI < Iql ~- '  < 1, define 

2q)t~') (X  x, . . . ,  X~; A, B; C; q, Z)  

k ...... t,>~o i=1 (q )k , (CXi )k , , ]  

X 1-[ 1 - - q k F k ' x / x " ~  

= Z [ I  (Xi- ,q-k, _ X~- ,q-k,) 
k ...... k,>~O l~i<j<~, ( x i - 1  --  X ;  l )  

r (A)k,(BX,)k, 
x I ]  

i=, (q)k,(CXl)k, " 
(1.4) 

Remark 1. The multivariate hypergeometric series (1.4) first occurred in connection with certain 
generating functions for nonintersecting lattice paths [8]. The zq~] r) series is a new kind of series 
associated to the group U(r) (or root system At-,) .  It is closely related to Milne's basic hyper- 
geometric series in U(n) [9, Definition 1.39], which is in turn a q-analog of the ordinary 
hypergeometric series in U(n) introduced by Holman [7]. The main difference between the 
2q?i r) series and one of Milne's series [F]  (') are the factors (A)k,/(q)k, appearing in (1.4). 
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Our generalizations of (1.1)-(1.3) read as follows. 

Theorem 2. With notation as above and [ZI < [ql r-  1 and [q[ < 1, 

zq~l (X1, . . . ,  X,; A, B; C; q, Z) 

= f i  (Aqi- ' l~(BZXi)~ 
~:1 (Zq~-~)oo (CX~)~o 2~P~")(XI' "" 'X ' ;  Z, C/A; BZ; q, A) (1.5) 

= f i  (Cqi-r/B)°°(BZXi)°° 
~:1 ~ ( C T ~ ) ~  :~P~°(XI ' ""X~;ABZ/C 'B;BZ;q 'C/B)  (1.6) 

= f i  (ABZq'- ' /C)~ 
,:1 (Zq T- r)oo 2~0(r) ( x l  . . . . .  X r "  ~ C/B, C/A; C; q, ABZ/C). (1.7) 

Theorem will be proved in Section 2. 
By specializing Z = C/AB in (1.6), one obtains a generalization of the q-Gauss sum. 

Corollary 3. With notation as above and assuming convergence, 

2~P~lr)(Xl, ... ,X~; A,B; C;q, C/AB) = f i  
(Cq'-'/B) o~(CXjA)oo 

,=1 (Cq i - ' /aB)~ (CX~)o~ " (1.8) 

Setting A = q-"  for some nonnegative integer n and reversing the series on the left-hand side of 
(1.8), one finds a generalization of the q-Chu-Vandermonde  sum: 

2 ( p ( r ) ( X l ,  . . .  ,Xr; q-",B; C;q,q) = q,O f i  (Cq~-r/B)"(BXI)" (1.9) 
i= 1 (CX& 

Remark 4. Identity (1.8) was first discovered by counting nonintersecting lattice paths [-8, identity 
(4.3.12)] and identity (1.6) was used in the same paper for rewriting certain generating functions for 
nonintersecting lattice paths. 

One can also give a natural generalization of the bilateral 1~01 hypergeometric series: 

(x, lq-~ x 7  \ r (A)k,A 
,~9]"(X, ,X,;  A ,B;q ,Z)  = ~, VI - lq-k ' l  FI Z k' (1.10) 

, "'" I l ~ t X -  1 X ] -  1) J i~]  (B)k, ' 
k~ . . . . .  k , = - o o  l < < . i < j < ~ r \  ~, t 

which converges when IB/al < IZI  < Iql ~-  1 < 1. There is the following generalization of Rama- 
nujan's 1~1 sum (which includes the q-binomial theorem as a special case). The proof is included 
below. 
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Theorem 5. With notation and assumptions as above, 

gO([)(X1, . . . ,  Xr; A, B; q, z) = f l  (q) o~ (B/A)oo (ql + ~ - ' /AZ)~ (AZq' - ~)o~ 
i=x (B)oo(q/A)~(q'-iB/AZ)oo(Zq'-r)~ 

(1.11) 

Proof. Expand the sum on the left-hand side of (1.11) using the classical r = 1 case and the 
Vandermonde determinant. We find 

l O i r ) ( X l ,  . . . , X , ; A , B ; q , z ) =  1-[ (X71 - X f ' )  -1 ~" e(a) 
I <~i<j <.r aeS, 

i= 1 ki = -  ~ ~ (Zq~( i ) - ' ) k '  

(where S, is the permutation group on r letters and e(a) is the sign of the permutation a) 

(1.12) 

= H (X/ -  1 - -  X 2 1 ) - 1  Z ~(o') 
1 <~i<j<~r aeS, 

151 ,-~ (q)oo(B/A)o~(q I +'-i /AZ)~(AZq'- ')~o 
X 11 X,~(,) ,=1 (B)oo (q/A)o~ (qr-'B/AZ)oo (Zq'-')o~ 

f l  (q)~ (B/A)~ (ql +r-'/AZ)~o (AZq'-~)~o 
,=111 (B)oo(q/A)o~(q.-,B/AZ)~(Zq,-,)~ 

(1.13) 

(1.14) 

This completes the proof. [] 

2. Proof of Theorem 2 

We will prove identity (1.5) by induction on r. Identity (1.6) is proved by an entirely similar 
argument and (1.7) follows by equating the right-hand sides of (1.5) and (1.6). 

The case r = 1 of (1.5) is just the classical result (1.1). For the general case we will use Good's 
identity [-3, 11], [-6, p. 61]: 

1 =  ~ f i  (1 - - yJyk )  -1 
i=1 k= l  

k~i  

=ifi 
i=1 k= l  (2i  - 1  - -  y~-1)" 

k¢i  

Setting y, = X,q k', use (2.1) to expand the series on the left-hand side of (1.5), 

2(p]')(X1, ... ,X,;  A,B; C;q,Z) 

= x -r 
,= 1 I-I~=l (X~ 1 _ X~  1) 2q)1 (A, BXi; CX5 q, q l - r z )  

x 2q~([ - 1)(X1, . . . ,  X,, . . . ,  X,;  A, B; C; q, z), 

(2.1) 

(2.2) 



R.A. Gustafson, C. Krattenthaler / Journal of Computational and Applied Mathematics 68 (1996) 151-158 155 

where )?i means omit Xi. Then by induction and (1.1) we have 

= i (A)°°(BXiZql-~L° *(-I I (Aql-J)~° 
i=1  (CX,)oo(Zql-~)~o j = x ( Z q t - j ) ~  

x 11 (CXj)oo I ]~ ,= l (X71 - X/ -1 )  j = l  
j#-i k~i  

X 2q)l ( C X i / A  , Z q  1 -r; B Z X i q l  -r; q, A) 

x 2(p~ ~- 1)(X,, . . . ,  ,9,~, . . . ,  Xr; Z, C/A; BZ; q, A) (2.3) 

x l :  
= fi (AqJ-')°°(BZXi)°° ~ ). Ili:~(XFa- X ;  1) 

j= 1 (Zq j-")~ (CXl)oo j= 1 

(BXIZq 1- ' ) , -  1 ~ (CXi/A)k(Zq 1-r)k 
A g 

X (Aql_ r ) r_  1 k=02" (q )k (BZXiq l - r )k  

x 2q~(~'-X)(Xx, ... , X ,  . . . . .  X , ; Z , C / A ; B Z ; q , A ) ; .  (2.4) 

3 
Observe t ha t  

(Zq I -.)k = (Zq 1 - r)r_ 1 
(Zqk_r+ 1)~_ 1 (Z)k 

and by the q-Chu-Vandermonde sum, we also have 

~-1 f (Zqk- .+l ) ,  ( q k - ' + ' + a ) . - , -  1 lqC-?)q,} qk(r-l)(Zql-r)r-1 : e=o ~ ( ~ ( q l - ' ) e ( - - 1 y -  . 

Substituting (2.5) and (2.6) into the right-hand side of (2.4) we find tha t  

2q)( l r ) (x1,  . . .  , Xr; A, B; C; q, Z) 

= f i  (aqJ- ' )~(BZXj)® 
i=1 (Zq j-')~o (CXj)~ 

X 1 -~ (BXiZq i - , ) , _  1 
. 7=-f-l- 1) X 

j = x  [ I j = l ( X i  - X Z  (Aql-~)._l  

(2.5) 

(2.6) 
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X 2(/9(1 r -  1 ) ( X l ,  . . - , - X i ,  . . . ,  X r  ; Z ,  C/A; B Z ;  q, A) 

~. .- 1 q-k(.- 1) (Z)k (Zq k-r+ 1)~ 

x ,_, ~-" (Zq *-'+ 1),-1 (q)k (BZXiq 1-')k k=O ~ = 0  

(CXi/A)k(qk-'+t + 2),_t_1 1) ' - 1  } (2.7) x (q)t ( q l - r ) e ( _  q('-?)qtAk . 

Note  that  if 0 ~< k ~< r - [ - 1 then the factor  (qk-r+~+2),_e_ 1 vanishes. Hence  in the r igh t -hand 
side of (2.7) we m a y  replace k - r + f + 1 by m and  sum over  m ~> 0 instead of k /> 0. Also observe 
tha t  

(Z)m +r - t -  1 (Zq m-~)t 
(Zqm_t),_ 1 = (Z)m (2.8a) 

and  

(qm+ 1)r_¢ - 1 1 

(q)m+r-e-1 (q)m, 

so we have 

z¢~°(X1, ..., X,; A, B; C; q, Z) 

= f i  (AqJ-')°°(BZXj)°° 
j= 1 (Zq J- r)oo (CXj)oo 

x,-" 
× r i=1 Y I j = I ( X F  1 -- X ;  1) 

(BXiZq I - r)r  _ 1 

(Aq 1 -,),_ 1 

X 2(D(1 r -  1 ) ( X l ,  . . . , -Y.i ,  . . . ,  X r  ;Z ,  C / A ;  B Z ;  q, A)  

r -1  x ~ ( -  1) ' -  1 q(e- m)(r- 1)q-(r- 1)2q(%~)ql(CXiqm/A)r_¢_ 1 
m= 0 f= 0 ( B Z X i q  1 - r ) r -  1 ( B Z X i q  m)-E 

x (A) r - t - '  ( q l - r ) t  (Z)m(CXdA)m } 
(q)t (q)m(BZXi)m Am 

( - 1 ) ' - l q - ( ; )  [ I  (X~ -1 -1 -1 
(Aql-,). 1 <~i<j<~r -- X j  ) 

f i  (AqJ-r)°°(BZXj)°° X 
j=, (Zq 1-')oo (CXj) 

x Z ( (q)¢ 
ml, .. . ,m, ~>0 f = O  

(2.8b) 

(2.9) 
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Z mj VI ( )mj(CXj/A)m~A 
X 

j=111 (q),.j(BZXg)mj 

x ~ e(a)[(BZX.~l)qm".~-e)t(CX.(a)qr"'../A)r_t_ 1 
aESr t_ 

where the Vandermonde determinant is used, Sr is the symmetric group on r letters, and 8(o-) is the 
sign of the permutation o. e S~. 

We expand the product 

r - - 1  

(BZX~(1)qm~m-e)e(CXa(a)qtn°~l'/A)r-e- 1 = Z dk(Xa(x)qm~m) k, ( 2 . 1 1 )  

k=O 

where do = 1 and dk is independent of Xa¢l) and qm.,,, for 0 ~< k ~< r - 1. I t  follows that 

o~s e(a) [(BZXa(1)qm'"'-t)¢( C Xa(x)q""'/ A ),_ ~_ , 

X f l  

r - - 1  

: ~-. dk Z ~'(o.)(Xa(1)q m"m)k-r+l 
k = 0 asS, 

x i (X~(j)q""'J') j-~ 
j = 2  

= ~. e(o.) f i  (Xa(,)q"°'") i-", (2.12) 
a~S, i = 1 

since the only nonvanishing term in the sum over k is the k = 0 term. It follows that 

2q0<x')(Xx. ,X~;A,B;C;q,Z) = ( -  1)r-Xq-(;) (AqJ-')oo(BZXj)o~ 
• . .  , .  

x A ~- a 2q~t~')(Xl, ..., X~; Z, C/A; BZ; q, A) 

x i ( q X - r ) e ( - ~ )  e ' e = o  (q)t (2.13) 

The proof of Theorem 2 is completed by applying the q-binomial theorem to the sum over t ~ in 
(2.13) and simplifying. 
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