Computer Algebra for Lattice Path Combinatorics

Alin Bostan

MてNa

Computer Algebra in Combinatorics
ESI, Vienna, November 13, 2017

Overview

Part 1: General presentation
 Part 2: Guess'n'Prove

Part 2: Guess'n'Prove

Summary of Part 1: Walks with unit steps in \mathbb{N}^{2}

Summary of Part 1: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be a 2D non-singular model with small steps.
The following assertions are equivalent:
(1) The full generating function $F_{\mathfrak{S}}(t ; x, y)$ is D-finite
(2) the excursions generating function $F_{\mathfrak{S}}(t ; 0,0)$ is D-finite
(3) the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$ is $\sim K \cdot \rho^{n} \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
(4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $\left|\mathcal{G}_{\mathfrak{S}}\right|=2 \cdot \min \left\{\ell \in \mathbb{N}^{\star} \left\lvert\, \frac{\ell}{\alpha+1} \in \mathbb{Z}\right.\right\}$)
(5) the step set \mathfrak{S} has either an axial symmetry, or zero drift and cardinality different from 5 .

Proof

(1) \Rightarrow (2) Easy
(2) \Rightarrow (3) [Denisov, Wachtel, 2013] + [Katz '70, Chudnovsky '85, André '89]
(3) \Rightarrow (4) [B., Raschel, Salvy, 2013]
(4) \Rightarrow (1) [Bousquet-Mélou, Mishna, 2010] + [B., Kauers, 2010]
(5) $\Leftrightarrow(4)$ A posteriori observation

Summary of Part 1: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be a 2D non-singular model with small steps. The following assertions are equivalent:
(1) The full generating function $F_{\mathfrak{S}}(t ; x, y)$ is D-finite
(2) the excursions generating function $F_{\mathfrak{S}}(t ; 0,0)$ is D-finite
(3) the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$ is $\sim K \cdot \rho^{n} \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
(4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $\left|\mathcal{G}_{\mathfrak{S}}\right|=2 \cdot \min \left\{\ell \in \mathbb{N}^{\star} \left\lvert\, \frac{\ell}{\alpha+1} \in \mathbb{Z}\right.\right\}$)
(5) the step set \mathfrak{S} has either an axial symmetry, or zero drift and cardinality different from 5 .

Moreover, under (1)-(5), $F_{\mathfrak{S}}(t ; x, y)$ is algebraic if and only if the model \mathfrak{S} has positive covariance $\sum_{(i, j) \in \mathfrak{S}} i j-\sum_{(i, j) \in \mathfrak{S}} i \cdot \sum_{(i, j) \in \mathfrak{S}} j>0$, and iff it has $\mathrm{OS}=0$.

In this case, $F_{\mathfrak{S}}(t ; x, y)$ is expressible using nested radicals.
If not, $F_{\mathfrak{S}}(t ; x, y)$ is expressible using iterated integrals of ${ }_{2} F_{1}$ expressions.
\triangleright Proof of the last statements: [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Two important models: Kreweras and Gessel walks

$$
\begin{array}{ll}
\mathfrak{S}=\{\downarrow, \leftarrow, \nearrow\} & F_{\mathfrak{S}}(t ; x, y) \equiv K(t ; x, y) \\
\mathfrak{S}=\{\nearrow, \swarrow, \leftarrow, \rightarrow\} & F_{\mathfrak{S}}(t ; x, y) \equiv G(t ; x, y)
\end{array}
$$

Example: A Kreweras excursion.

Gessel's conjecture

- Gessel walks: walks in \mathbb{N}^{2} using only steps in $\mathfrak{S}=\{\nearrow, \swarrow, \leftarrow, \rightarrow\}$
- $g(n ; i, j)=$ number of walks from $(0,0)$ to (i, j) with n steps in \mathfrak{S}

Question: Find the nature of the generating function $G(t ; x, y)=\sum_{i, j, n=0}^{\infty} g(n ; i, j) x^{i} y^{j} t^{n} \in \mathbb{Q}[[x, y, t]]$

Theorem (B.-Kauers, 2010) $G(t ; x, y)$ is an algebraic function ${ }^{\dagger}$.
\rightarrow Effective, computer-driven discovery and proof
\dagger Minimal polynomial $P(x, y, t, G(t ; x, y))=0$ has $>10^{11}$ terms; $\approx 30 \mathrm{~Gb}(!)$

First guess, then prove [Pólya, 1954]

Guessing and Proving

George Pólya

What is "scientific method"? Philosophers and non-philosophers have discussed this question and have not yet finished discussing it. Yet as a first introduction it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to confess it. They have, however, something which the other scientists cannot really have. For mathematicians the advice is

First guess, then prove.

Personal bias: Experimental Mathematics using Computer Algebra

David H. Bailey
Jonathan M. Borwein
Neil J. Calkin
Roland Girgensohn
D. Russell Luke
Victor H. Moll

Experimental Mathematics in Action

Guess'n'Prove for

-PROVING ALGEBRAICITY-

Methodology for proving algebraicity

Experimental mathematics -Guess'n'Prove- approach:
(S1) Generate data
(S2) Conjecture
(S3) Prove

Methodology for proving algebraicity

Experimental mathematics -Guess'n'Prove- approach:
(S1) Generate data compute a high order expansion of the series $F_{\mathfrak{S}}(t ; x, y)$;
(S2) Conjecture guess a candidate for the minimal polynomial of $F_{\mathfrak{S}}(t ; x, y)$, using Hermite-Padé approximation;
(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial computations.

Methodology for proving algebraicity

Experimental mathematics -Guess'n'Prove- approach:
(S1) Generate data compute a high order expansion of the series $F_{\mathfrak{S}}(t ; x, y)$;
(S2) Conjecture guess candidates for minimal polynomials of $F_{\mathfrak{S}}(t ; x, 0)$ and $F_{\mathfrak{S}}(t ; 0, y)$, using Hermite-Padé approximation;
(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial computations.

Methodology for proving algebraicity

Experimental mathematics -Guess'n'Prove- approach:
(S1) Generate data compute a high order expansion of the series $F_{\mathfrak{S}}(t ; x, y)$;
(S2) Conjecture guess candidates for minimal polynomials of $F_{\mathfrak{S}}(t ; x, 0)$ and $F_{\mathfrak{S}}(t ; 0, y)$, using Hermite-Padé approximation;
(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial computations.

+ Efficient Computer Algebra

Step (S1): high order series expansions

$f_{\mathfrak{S}}(n ; i, j)$ satisfies the recurrence with constant coefficients

$$
f_{\mathfrak{S}}(n+1 ; i, j)=\sum_{(u, v) \in \mathfrak{S}} f_{\mathfrak{S}}(n ; i-u, j-v) \quad \text { for } \quad n, i, j \geq 0
$$

+ initial conditions $f_{\mathfrak{S}}(0 ; i, j)=\delta_{0, i, j}$ and $f_{\mathfrak{S}}(n ;-1, j)=f_{\mathfrak{S}}(n ; i,-1)=0$.

Step (S1): high order series expansions

$f_{\mathfrak{S}}(n ; i, j)$ satisfies the recurrence with constant coefficients

$$
f_{\mathfrak{S}}(n+1 ; i, j)=\sum_{(u, v) \in \mathfrak{S}} f_{\mathfrak{S}}(n ; i-u, j-v) \quad \text { for } \quad n, i, j \geq 0
$$

+ initial conditions $f_{\mathfrak{S}}(0 ; i, j)=\delta_{0, i, j}$ and $f_{\mathfrak{S}}(n ;-1, j)=f_{\mathfrak{S}}(n ; i,-1)=0$.
Example: for the Kreweras walks,

$$
\begin{aligned}
k(n+1 ; i, j) & =k(n ; i+1, j) \\
& +k(n ; i, j+1) \\
& +k(n ; i-1, j-1)
\end{aligned}
$$

Step (S1): high order series expansions

$f_{\mathfrak{S}}(n ; i, j)$ satisfies the recurrence with constant coefficients

$$
f_{\mathfrak{S}}(n+1 ; i, j)=\sum_{(u, v) \in \mathfrak{S}} f_{\mathfrak{S}}(n ; i-u, j-v) \quad \text { for } \quad n, i, j \geq 0
$$

+ initial conditions $f_{\mathfrak{S}}(0 ; i, j)=\delta_{0, i, j}$ and $f_{\mathfrak{S}}(n ;-1, j)=f_{\mathfrak{S}}(n ; i,-1)=0$.
Example: for the Kreweras walks,

$$
\begin{aligned}
k(n+1 ; i, j) & =k(n ; i+1, j) \\
& +k(n ; i, j+1) \\
& +k(n ; i-1, j-1)
\end{aligned}
$$

\triangleright Recurrence is used to compute $F_{\mathfrak{S}}(t ; x, y) \bmod t^{N}$ for large N.

$$
\begin{aligned}
K(t ; x, y) & =1+x y t+\left(x^{2} y^{2}+y+x\right) t^{2}+\left(x^{3} y^{3}+2 x y^{2}+2 x^{2} y+2\right) t^{3} \\
& +\left(x^{4} y^{4}+3 x^{2} y^{3}+3 x^{3} y^{2}+2 y^{2}+6 x y+2 x^{2}\right) t^{4} \\
& +\left(x^{5} y^{5}+4 x^{3} y^{4}+4 x^{4} y^{3}+5 x y^{3}+12 x^{2} y^{2}+5 x^{3} y+8 y+8 x\right) t^{5}+\cdots
\end{aligned}
$$

Step (S2): guessing equations for $F_{\mathfrak{S}}(t ; x, y)$, a first idea

In terms of generating functions, the recurrence on $k(n ; i, j)$ reads

$$
\begin{align*}
(x y & \left.-\left(x+y+x^{2} y^{2}\right) t\right) K(t ; x, y) \\
& =x y-x t K(t ; x, 0)-y t K(t ; 0, y) \tag{KerEq}
\end{align*}
$$

\triangleright A similar kernel equation holds for $F_{\mathfrak{S}}(t ; x, y)$, for any \mathfrak{S}-walk.
Corollary. $F_{\mathfrak{S}}(t ; x, y)$ is algebraic (resp. D-finite) if and only if $F_{\mathfrak{S}}(t ; x, 0)$ and $F_{\mathfrak{S}}(t ; 0, y)$ are both algebraic (resp. D-finite).
\triangleright Crucial simplification: equations for $G(t ; x, y)$ are huge $(\approx 30 \mathrm{~Gb})$

Step (S2): guessing equations for $F_{\mathfrak{S}}(t ; x, 0)$ and $F_{\mathfrak{S}}(t ; 0, y)$

Task 1: Given the first N terms of $S=F_{\mathfrak{S}}(t ; x, 0) \in \mathbb{Q}[x][[t]]$, search for a differential equation satisfied by S at precision N :

$$
c_{r}(x, t) \cdot \frac{\partial^{r} S}{\partial t^{r}}+\cdots+c_{1}(x, t) \cdot \frac{\partial S}{\partial t}+c_{0}(x, t) \cdot S=0 \bmod t^{N}
$$

Step (S2): guessing equations for $F_{\mathfrak{S}}(t ; x, 0)$ and $F_{\mathfrak{S}}(t ; 0, y)$

Task 1: Given the first N terms of $S=F_{\mathfrak{S}}(t ; x, 0) \in \mathbb{Q}[x][[t]]$, search for a differential equation satisfied by S at precision N :

$$
c_{r}(x, t) \cdot \frac{\partial^{r} S}{\partial t^{r}}+\cdots+c_{1}(x, t) \cdot \frac{\partial S}{\partial t}+c_{0}(x, t) \cdot S=0 \bmod t^{N}
$$

Task 2: Search for an algebraic equation $\mathcal{P}_{x, 0}(S)=0 \bmod t^{N}$.

Step (S2): guessing equations for $F_{\mathfrak{S}}(t ; x, 0)$ and $F_{\mathfrak{S}}(t ; 0, y)$

Task 1: Given the first N terms of $S=F_{\mathfrak{S}}(t ; x, 0) \in \mathbb{Q}[x][[t]]$, search for a differential equation satisfied by S at precision N :

$$
c_{r}(x, t) \cdot \frac{\partial^{r} S}{\partial t^{r}}+\cdots+c_{1}(x, t) \cdot \frac{\partial S}{\partial t}+c_{0}(x, t) \cdot S=0 \bmod t^{N}
$$

Task 2: Search for an algebraic equation $\mathcal{P}_{x, 0}(S)=0 \bmod t^{N}$.

- Both tasks amount to linear algebra in size N over $\mathbb{Q}(x)$.
- In practice, we use modular Hermite-Padé approximation (Beckermann-Labahn algorithm) combined with (rational) evaluation-interpolation and rational number reconstruction.
- Fast (FFT-based) arithmetic in $\mathbb{F}_{p}[t]$ and $\mathbb{F}_{p}[t]\left\langle\frac{t}{\partial t}\right\rangle$.

Step (S2): guessing equations for $K(t ; x, 0)$

Using $N=80$ terms of $K(t ; x, 0)$, one can guess
\triangleright a linear differential equation of order 4 , degrees $(14,11)$ in (t, x), such that

$$
\begin{array}{r}
t^{3} \cdot(3 t-1) \cdot\left(9 t^{2}+3 t+1\right) \cdot\left(3 t^{2}+24 t^{2} x^{3}-3 x t-2 x^{2}\right) . \\
\cdot\left(16 t^{2} x^{5}+4 x^{4}-72 t^{4} x^{3}-18 x^{3} t+5 t^{2} x^{2}+18 x t^{3}-9 t^{4}\right) . \\
\cdot\left(4 t^{2} x^{3}-t^{2}+2 x t-x^{2}\right) \cdot \frac{\partial^{4} K(t ; x, 0)}{\partial t^{4}}+\cdots
\end{array}
$$

$=0 \bmod t^{80}$
\triangleright a polynomial of tridegree $(6,10,6)$ in (T, t, x)

$$
\begin{aligned}
\mathcal{P}_{x, 0} & =x^{6} t^{10} T^{6}-3 x^{4} t^{8}(x-2 t) T^{5}+ \\
& +x^{2} t^{6}\left(12 t^{2}+3 t^{2} x^{3}-12 x t+\frac{7}{2} x^{2}\right) T^{4}+\cdots
\end{aligned}
$$

such that $\mathcal{P}_{x, 0}(K(t ; x, 0), t, x)=0 \bmod t^{80}$.

Step (S2): guessing equations for $G(t ; x, 0)$ and $G(t ; 0, y)$

Using $N=1200$ terms of $G(t ; x, y)$, our guesser found candidates

- $\mathcal{P}_{x, 0}$ in $\mathbb{Z}[T, t, x]$ of degree $(24,43,32)$, coefficients of 21 digits
- $\mathcal{P}_{0, y}$ in $\mathbb{Z}[T, t, y]$ of degree $(24,44,40)$, coefficients of 23 digits such that

$$
\mathcal{P}_{x, 0}(G(t ; x, 0), t, x)=0 \bmod t^{1200}, \quad \mathcal{P}_{0, y}(G(t ; 0, y), t, y)=0 \bmod t^{1200} .
$$

Step (S2): guessing equations for $G(t ; x, 0)$ and $G(t ; 0, y)$

Using $N=1200$ terms of $G(t ; x, y)$, our guesser found candidates

- $\mathcal{P}_{x, 0}$ in $\mathbb{Z}[T, t, x]$ of degree $(24,43,32)$, coefficients of 21 digits
- $\mathcal{P}_{0, y}$ in $\mathbb{Z}[T, t, y]$ of degree $(24,44,40)$, coefficients of 23 digits such that

$$
\mathcal{P}_{x, 0}(G(t ; x, 0), t, x)=0 \bmod t^{1200}, \quad \mathcal{P}_{0, y}(G(t ; 0, y), t, y)=0 \bmod t^{1200} .
$$

\triangleright Guessing $\mathcal{P}_{x, 0}$ by undetermined coefficients would have required to solve a dense linear system of size ≈ 100000, and ≈ 1000 digits entries!

Step (S2): guessing equations for $G(t ; x, 0)$ and $G(t ; 0, y)$

Using $N=1200$ terms of $G(t ; x, y)$, our guesser found candidates

- $\mathcal{P}_{x, 0}$ in $\mathbb{Z}[T, t, x]$ of degree $(24,43,32)$, coefficients of 21 digits
- $\mathcal{P}_{0, y}$ in $\mathbb{Z}[T, t, y]$ of degree $(24,44,40)$, coefficients of 23 digits such that

$$
\mathcal{P}_{x, 0}(G(t ; x, 0), t, x)=0 \bmod t^{1200}, \quad \mathcal{P}_{0, y}(G(t ; 0, y), t, y)=0 \bmod t^{1200} .
$$

\triangleright Guessing $\mathcal{P}_{x, 0}$ by undetermined coefficients would have required to solve a dense linear system of size ≈ 100000, and ≈ 1000 digits entries!
$\triangleright[\mathrm{B} .$, Kauers ' 09$]$ actually first guessed differential equations ${ }^{\dagger}$, then computed their p-curvatures to empirically certify them. This led them suspect the algebraicity of $G(t ; x, 0)$ and $G(t ; 0, y)$, using a conjecture of Grothendieck's (on differential equations modulo p) as an oracle.
\dagger of order 11, and bidegree $(96,78)$ for $G(t ; x, 0)$, and $(68,28)$ for $G(t ; 0, y)$

Guessing is good, proving is better [Pólya, 1957]

Guessing and Proving

George Polya

Guessing is good, proving is better.

Step (S3): warm-up - Gessel excursions are algebraic

Theorem. $g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n}$ is algebraic.

Step (S3): warm-up - Gessel excursions are algebraic

Theorem. $g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n}$ is algebraic.

Proof: First guess a polynomial $P(t, T)$ in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t)=\sum_{n=0}^{\infty} g_{n} t^{n}$ as a root.

Step (S3): warm-up - Gessel excursions are algebraic

Theorem. $g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n}$ is algebraic.

Proof: First guess a polynomial $P(t, T)$ in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t)=\sum_{n=0}^{\infty} g_{n} t^{n}$ as a root.
(1) Such a P can be guessed from the first 100 terms of $g(t)$.

Step (S3): warm-up - Gessel excursions are algebraic

Theorem. $g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n}$ is algebraic.

Proof: First guess a polynomial $P(t, T)$ in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t)=\sum_{n=0}^{\infty} g_{n} t^{n}$ as a root.
(1) Such a P can be guessed from the first 100 terms of $g(t)$.
(2) Implicit function theorem: $\exists!\operatorname{root} r(t) \in \mathbb{Q}[[t]]$ of P.

Step (S3): warm-up - Gessel excursions are algebraic

Theorem. $g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n}$ is algebraic.

Proof: First guess a polynomial $P(t, T)$ in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t)=\sum_{n=0}^{\infty} g_{n} t^{n}$ as a root.
(1) Such a P can be guessed from the first 100 terms of $g(t)$.
(2) Implicit function theorem: $\exists!$ root $r(t) \in \mathbb{Q}[[t]]$ of P.
(3) $r(t)=\sum_{n=0}^{\infty} r_{n} t^{n}$ being algebraic, it is D-finite, and so is $\left(r_{n}\right)$:

$$
(n+2)(3 n+5) r_{n+1}-4(6 n+5)(2 n+1) r_{n}=0, \quad r_{0}=1
$$

\Rightarrow solution $r_{n}=\frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}} 16^{n}=g_{n}$, thus $g(t)=r(t)$ is algebraic.

Step (S3): rigorous proof for Kreweras walks

(1) Setting $y_{0}=\frac{x-t-\sqrt{x^{2}-2 t x+t^{2}\left(1-4 x^{3}\right)}}{2 t x^{2}}=t+\frac{1}{x} t^{2}+\frac{x^{3}+1}{x^{2}} t^{3}+\cdots$ in the kernel equation

$$
\underbrace{\left(x y-\left(x+y+x^{2} y^{2}\right) t\right)}_{\stackrel{!}{=} 0} K(t ; x, y)=x y-x t K(t ; x, 0)-y t K(t ; 0, y)
$$

Step (S3): rigorous proof for Kreweras walks

(1) Setting $y_{0}=\frac{x-t-\sqrt{x^{2}-2 t x+t^{2}\left(1-4 x^{3}\right)}}{2 t x^{2}}=t+\frac{1}{x} t^{2}+\frac{x^{3}+1}{x^{2}} t^{3}+\cdots$ in the kernel equation (diagonal symmetry implies $K(t ; y, x)=K(t ; x, y)$)

$$
\underbrace{\left(x y-\left(x+y+x^{2} y^{2}\right) t\right)}_{\stackrel{!}{=} 0} K(t ; x, y)=x y-x t K(t ; x, 0)-y t K(t ; y, 0)
$$

Step (S3): rigorous proof for Kreweras walks

(1) Setting $y_{0}=\frac{x-t-\sqrt{x^{2}-2 t x+t^{2}\left(1-4 x^{3}\right)}}{2 t x^{2}}=t+\frac{1}{x} t^{2}+\frac{x^{3}+1}{x^{2}} t^{3}+\cdots$ in the kernel equation

$$
\underbrace{\left(x y-\left(x+y+x^{2} y^{2}\right) t\right)}_{\stackrel{!}{=} 0} K(t ; x, y)=x y-x t K(t ; x, 0)-y t K(t ; y, 0)
$$

shows that $U=K(t ; x, 0)$ satisfies the reduced kernel equation

$$
\begin{equation*}
0=x \cdot y_{0}-x \cdot t \cdot U(t, x)-y_{0} \cdot t \cdot U\left(t, y_{0}\right) \tag{RKerEq}
\end{equation*}
$$

Step (S3): rigorous proof for Kreweras walks

(1) Setting $y_{0}=\frac{x-t-\sqrt{x^{2}-2 t x+t^{2}\left(1-4 x^{3}\right)}}{2 t x^{2}}=t+\frac{1}{x} t^{2}+\frac{x^{3}+1}{x^{2}} t^{3}+\cdots$ in the kernel equation

$$
\underbrace{\left(x y-\left(x+y+x^{2} y^{2}\right) t\right)}_{\stackrel{!}{=} 0} K(t ; x, y)=x y-x t K(t ; x, 0)-y t K(t ; y, 0)
$$

shows that $U=K(t ; x, 0)$ satisfies the reduced kernel equation

$$
0=x \cdot y_{0}-x \cdot t \cdot U(t, x)-y_{0} \cdot t \cdot U\left(t, y_{0}\right)
$$

(RKerEq)
(2) (RKerEq) admits a unique solution in $\mathbb{Q}[[x, t]]$, namely $U=K(t ; x, 0)$.

Step (S3): rigorous proof for Kreweras walks

(1) Setting $y_{0}=\frac{x-t-\sqrt{x^{2}-2 t x+t^{2}\left(1-4 x^{3}\right)}}{2 t x^{2}}=t+\frac{1}{x} t^{2}+\frac{x^{3}+1}{x^{2}} t^{3}+\cdots$ in the kernel equation

$$
\underbrace{\left(x y-\left(x+y+x^{2} y^{2}\right) t\right)}_{\stackrel{!}{=} 0} K(t ; x, y)=x y-x t K(t ; x, 0)-y t K(t ; y, 0)
$$

shows that $U=K(t ; x, 0)$ satisfies the reduced kernel equation

$$
\begin{equation*}
0=x \cdot y_{0}-x \cdot t \cdot U(t, x)-y_{0} \cdot t \cdot U\left(t, y_{0}\right) \tag{RKerEq}
\end{equation*}
$$

(2) (RKerEq) admits a unique solution in $\mathbb{Q}[[x, t]]$, namely $U=K(t ; x, 0)$.
(3) The guessed candidate $\mathcal{P}_{x, 0}(T, t, x)$ has a root $H(t, x)$ in $\mathbb{Q}[[x, t]]$.

Step (S3): rigorous proof for Kreweras walks

(1) Setting $y_{0}=\frac{x-t-\sqrt{x^{2}-2 t x+t^{2}\left(1-4 x^{3}\right)}}{2 t x^{2}}=t+\frac{1}{x} t^{2}+\frac{x^{3}+1}{x^{2}} t^{3}+\cdots$ in the kernel equation

$$
\underbrace{\left(x y-\left(x+y+x^{2} y^{2}\right) t\right)}_{\stackrel{!}{=} 0} K(t ; x, y)=x y-x t K(t ; x, 0)-y t K(t ; y, 0)
$$

shows that $U=K(t ; x, 0)$ satisfies the reduced kernel equation

$$
\begin{equation*}
0=x \cdot y_{0}-x \cdot t \cdot U(t, x)-y_{0} \cdot t \cdot U\left(t, y_{0}\right) \tag{RKerEq}
\end{equation*}
$$

(2) (RKerEq) admits a unique solution in $\mathbb{Q}[[x, t]]$, namely $U=K(t ; x, 0)$.
(3) The guessed candidate $\mathcal{P}_{x, 0}(T, t, x)$ has a root $H(t, x)$ in $\mathbb{Q}[[x, t]]$.
(4) $U=H(t, x)$ also satisfies (RKerEq)

Resultant computations!

Step (S3): rigorous proof for Kreweras walks

(1) Setting $y_{0}=\frac{x-t-\sqrt{x^{2}-2 t x+t^{2}\left(1-4 x^{3}\right)}}{2 t x^{2}}=t+\frac{1}{x} t^{2}+\frac{x^{3}+1}{x^{2}} t^{3}+\cdots$ in the kernel equation

$$
\underbrace{\left(x y-\left(x+y+x^{2} y^{2}\right) t\right)}_{\stackrel{!}{=} 0} K(t ; x, y)=x y-x t K(t ; x, 0)-y t K(t ; y, 0)
$$

shows that $U=K(t ; x, 0)$ satisfies the reduced kernel equation

$$
0=x \cdot y_{0}-x \cdot t \cdot U(t, x)-y_{0} \cdot t \cdot U\left(t, y_{0}\right)
$$

(RKerEq)
(2) (RKerEq) admits a unique solution in $\mathbf{Q}[[x, t]]$, namely $U=K(t ; x, 0)$.
(3) The guessed candidate $\mathcal{P}_{x, 0}(T, t, x)$ has a root $H(t, x)$ in $\mathbb{Q}[[x, t]]$.
(4) $U=H(t, x)$ also satisfies (RKerEq)

Resultant computations!
(5) Uniqueness $\Longrightarrow H(t, x)=K(t ; x, 0) \Longrightarrow K(t ; x, 0)$ is algebraic!

Algebraicity of Kreweras walks: a computer proof in a nutshell

```
# HIGH ORDER EXPANSION (S1)
> st,bu:=time(),kernelopts(bytesused):
> f:=proc(n,i,j) option remember;
    if i<0 or j<0 or n<0 then 0
    elif n=0 then if i=0 and j=0 then 1 else 0 fi
    else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi
    end:
> S:=series(add(add (f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):
# GUESSING (S2)
> libname:=".",libname:gfun:-version();
    3.76
> P:=subs(Fx0(t)=T,gfun:-seriestoalgeq(S,Fx0(t))[1]):
# RIGOROUS PROOF (S3)
> ker := (T,t,x) -> ( }\textrm{x}+\textrm{T}+\mp@subsup{\textrm{x}}{}{\wedge}2*\mp@subsup{*}{}{~}2)*\textrm{t}-\textrm{x}*\textrm{T}
> pol := unapply(P,T,t,x):
> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):
> normal(primpart(p1,T)/primpart(p2,T));
        1
# time (in sec) and memory consumption (in Mb)
> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000~2);
    8, 785
```


Step (S3): rigorous proof for Gessel walks

Same strategy, but several complications:

- stepset diagonal symmetry is lost: $G(t ; x, y) \neq G(t ; y, x)$;
- $G(t ; 0,0)$ occurs in (KerEq) (because of the step \swarrow);
- equations are ≈ 5000 times bigger.
\longrightarrow replace equation (RKerEq) by a system of 2 reduced kernel equations.
\longrightarrow fast algorithms needed (e.g., [B., Flajolet, Salvy, Schost, 2006] for computations with algebraic series).

Fast computation of special resultants Alin Bostan ${ }^{\text {a, } *}$, Philippe Flajolet ${ }^{\text {a }}$, Bruno Salvy ${ }^{\text {a }}$, Éric Schost ${ }^{\text {b }}$
${ }^{a}$ Algorithms Project, Inria Rocquencourt, 78153 Le Chesnay, France
${ }^{\mathrm{b}}$ LIX, École polytechnique, 91128 Palaiseau, France
Received 3 September 2003; accepted 9 July 2005

INSIDE THE BOX

-Hermite-Padé approximants-

Definition

Definition: Given a column vector $\mathbf{F}=\left(f_{1}, \ldots, f_{n}\right)^{T} \in \mathbb{K}[[x]]^{n}$ and an n-tuple $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$, a Hermite-Padé approximant of type \mathbf{d} for \mathbf{F} is a row vector $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right) \in \mathbb{K}[x]^{n},(\mathbf{P} \neq 0)$, such that:
(1) $\mathbf{P} \cdot \mathbf{F}=P_{1} f_{1}+\cdots+P_{n} f_{n}=O\left(x^{\sigma}\right)$ with $\sigma=\sum_{i}\left(d_{i}+1\right)-1$,
(2) $\operatorname{deg}\left(P_{i}\right) \leq d_{i}$ for all i.
σ is called the order of the approximant \mathbf{P}.
\triangleright Very useful concept in number theory (irrationality/transcendence):

- [Hermite, 1873]: e is transcendent.
- [Lindemann, 1882]: π is transcendent; so does e^{α} for any $\alpha \in \overline{\mathbf{Q}} \backslash\{0\}$.
- [Apéry, 1978; Beukers, 1981]: $\zeta(3)=\sum_{n \geq 1} \frac{1}{n^{3}}$ is irrational.
- [Rivoal, 2000]: there exist infinite values of k such that $\zeta(2 k+1) \notin \mathrm{Q}$.

Worked example

Let us compute a Hermite-Padé approximant of type $(1,1,1)$ for $\left(1, C, C^{2}\right)$, where $C(x)=1+x+2 x^{2}+5 x^{3}+14 x^{4}+42 x^{5}+O\left(x^{6}\right)$.
This boils down to finding $\alpha_{0}, \alpha_{1}, \beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}$ (not all zero) such that

$$
\alpha_{0}+\alpha_{1} x+\left(\beta_{0}+\beta_{1} x\right)\left(1+x+2 x^{2}+5 x^{3}+14 x^{4}\right)+\left(\gamma_{0}+\gamma_{1} x\right)\left(1+2 x+5 x^{2}+14 x^{3}+42 x^{4}\right)=O\left(x^{5}\right)
$$

Identifying coefficients, this is equivalent to a homogeneous linear system:

$$
\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 2 & 1 \\
0 & 0 & 2 & 1 & 5 & 2 \\
0 & 0 & 5 & 2 & 14 & 5 \\
0 & 0 & 14 & 5 & 42 & 14
\end{array}\right] \times\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\beta_{0} \\
\beta_{1} \\
\gamma_{0} \\
\gamma_{1}
\end{array}\right]=0 \Longleftrightarrow\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 2 \\
0 & 0 & 2 & 1 & 5 \\
0 & 0 & 5 & 2 & 14 \\
0 & 0 & 14 & 5 & 42
\end{array}\right] \times\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\beta_{0} \\
\beta_{1} \\
\gamma_{0}
\end{array}\right]=-\gamma_{1}\left[\begin{array}{c}
0 \\
1 \\
2 \\
5 \\
14
\end{array}\right]
$$

By homogeneity, one can choose $\gamma_{1}=1$.
Then, the violet minor shows that one can take $\left(\beta_{0}, \beta_{1}, \gamma_{0}\right)=(-1,0,0)$.
The other values are $\alpha_{0}=1, \alpha_{1}=0$.

Thus the approximant is $(1,-1, x)$, which corresponds to $P=1-y+x y^{2}$ such that $P(x, C(x))=0 \bmod x^{5}$.

Algebraic and differential approximation = guessing

- Hermite-Padé approximants of $n=2$ power series are related to Padé approximants, i.e. to approximation of series by rational functions
- algebraic approximants $=$ Hermite-Padé approximants for $f_{\ell}=A^{\ell-1}$, where $A \in \mathbb{K}[[x]]$
seriestoalgeq, listtoalgeq
- differential approximants $=$ Hermite-Padé approximants for $f_{\ell}=A^{(\ell-1)}$, where $A \in \mathbb{K}[[x]]$ seriestodiffeq, listtodiffeq
> listtoalgeq([1, 1, 2, 5, 14, 42, 132, 429],y(x));

$$
\left[1-y(x)+x y(x)^{2}, o g f\right]
$$

> listtodiffeq([1, 1, 2, 5, 14, 42, 132, 429],y(x))[1];

$$
y(0)=1, D(y)(0)=1\}, \operatorname{egf}]
$$

Existence and naive computation

Theorem For any vector $\mathbf{F}=\left(f_{1}, \ldots, f_{n}\right)^{T} \in \mathbb{K}[[x]]^{n}$ and for any n-tuple $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$, there exists a Hermite-Padé approx. of type \mathbf{d} for \mathbf{F}.

Proof: The undetermined coefficients of $P_{i}=\sum_{j=0}^{d_{i}} p_{i, j} x^{j}$ satisfy a linear homogeneous system with $\sigma=\sum_{i}\left(d_{i}+1\right)-1$ eqs and $\sigma+1$ unknowns.

Corollary Computation in $O\left(\sigma^{\omega}\right)$, for $2 \leq \omega \leq 3$ (linear algebra exponent)
\triangleright There are better algorithms (the linear system is structured, Sylvester-like):

- Derksen's algorithm (Euclidean-like elimination)
$O\left(\sigma^{2}\right)$
- Beckermann-Labahn algorithm (DAC)
$\tilde{O}(\sigma)=O\left(\sigma \log ^{2} \sigma\right)$
- structured linear algebra algorithms for Toeplitz-like matrices

O(σ)

Quasi-optimal computation

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé approximant of type (d, \ldots, d) for $\mathbf{F}=\left(f_{1}, \ldots, f_{n}\right)$ in $\tilde{O}\left(n^{\omega} d\right)$ ops. in \mathbb{K}.

Ideas:

- Compute a whole matrix of approximants
- Exploit divide-and-conquer

Algorithm:

(1) If $\sigma=n(d+1)-1 \leq$ threshold, call the naive algorithm
(2) Else:
(1) recursively compute $\mathbf{P}_{1} \in \mathbb{K}[x]^{n \times n}$ s.t. $\mathbf{P}_{1} \cdot \mathbf{F}=O\left(x^{\sigma / 2}\right), \operatorname{deg}\left(\mathbf{P}_{1}\right) \approx \frac{d}{2}$
(2) compute "residue" \mathbf{R} such that $\mathbf{P}_{1} \cdot \mathbf{F}=x^{\sigma / 2} \cdot\left(\mathbf{R}+O\left(x^{\sigma / 2}\right)\right)$
(3) recursively compute $\mathbf{P}_{2} \in \mathbb{K}[x]^{n \times n}$ s.t. $\mathbf{P}_{2} \cdot \mathbf{R}=O\left(x^{\sigma / 2}\right), \operatorname{deg}\left(\mathbf{P}_{2}\right) \approx \frac{d}{2}$
(4) return $\mathbf{P}:=\mathbf{P}_{2} \cdot \mathbf{P}_{1}$
\triangleright The precise choices of degrees is a delicate issue
\triangleright Corollary: Gcd, extended gcd, Padé approximants in $\tilde{O}(d)$ ops. in \mathbb{K}.
\triangleright Extensions to order bases, over Ore domains: George Labahn's talk.

Guess'n'Prove for
-TRANSCENDENCE-

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series —represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series —represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]
E.g.,

$$
f=\ln (1-t)=-t-\frac{t^{2}}{2}-\frac{t^{3}}{3}-\frac{t^{4}}{4}-\frac{t^{5}}{5}-\frac{t^{6}}{6}-\cdots
$$

is D-finite and can be represented by the second-order equation

$$
\left((t-1) \partial_{t}^{2}+\partial_{t}\right)(f)=0, \quad f(0)=0, f^{\prime}(0)=-1
$$

The algorithm should recognize that f is transcendental.

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series -represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]
\triangleright Notation: For a D-finite series f, we write $L_{f}^{\min }$ for its differential resolvent,
i.e. the least order monic differential operator in $\mathbb{Q}(t)\left\langle\partial_{t}\right\rangle$ that cancels f.

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series -represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]
\triangleright Notation: For a D-finite series f, we write $L_{f}^{\min }$ for its differential resolvent, i.e. the least order monic differential operator in $\mathbb{Q}(t)\left\langle\partial_{t}\right\rangle$ that cancels f.
\triangleright Warning: $L_{f}^{\min }$ is not known a priori; only some multiple L of it is given.

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series -represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]
\triangleright Notation: For a D-finite series f, we write $L_{f}^{\min }$ for its differential resolvent, i.e. the least order monic differential operator in $\mathbb{Q}(t)\left\langle\partial_{t}\right\rangle$ that cancels f.
\triangleright Warning: $L_{f}^{\min }$ is not known a priori; only some multiple L of it is given.
\triangleright Difficulty: $L_{f}^{\min }$ might not be irreducible. E.g., $L_{\ln (1-t)}^{\min }=\left(\partial_{t}+\frac{1}{t-1}\right) \partial_{t}$.

Three examples

(A) Apéry's power series [Apéry, 1978] (used in his proof of $\zeta(3) \notin \mathbb{Q}$)

$$
\sum_{n} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} t^{n}=1+5 t+73 t^{2}+1445 t^{3}+33001 t^{4}+\cdots
$$

(B) GF of trident walks in the quarter plane

$$
\sum_{n} a_{n} t^{n}=1+2 t+7 t^{2}+23 t^{3}+84 t^{4}+301 t^{5}+1127 t^{6}+\cdots
$$

where $a_{n}=\#\left\{\begin{array}{l}\text {. } \\ .\end{array}\right.$
(C) GF of a quadrant model with repeated steps

$$
\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+520 t^{6}+\cdots
$$

where $a_{n}^{n}=\#\left\{\begin{array}{l}\curvearrowleft \\ \swarrow\end{array}\right.$ - walks of length n in \mathbb{N}^{2} from $(0,0)$ to $\left.(\star, 0)\right\}$

Three examples

(A) Apéry's power series [Apéry, 1978] (used in his proof of $\zeta(3) \notin \mathrm{Q}$)

$$
\sum_{n} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} t^{n}=1+5 t+73 t^{2}+1445 t^{3}+33001 t^{4}+\cdots
$$

(B) GF of trident walks in the quarter plane

$$
\sum_{n} a_{n} t^{n}=1+2 t+7 t^{2}+23 t^{3}+84 t^{4}+301 t^{5}+1127 t^{6}+\cdots
$$

where $a_{n}=\#\left\{\mathcal{S}^{-}\right.$. - walks of length n in \mathbb{N}^{2} starting at $\left.(0,0)\right\}$
(C) GF of a quadrant model with repeated steps

$$
\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+520 t^{6}+\cdots
$$

where $a_{n}^{n}=\#\left\{\underset{\sim}{n}\right.$ - walks of length n in \mathbb{N}^{2} from $(0,0)$ to $\left.(\star, 0)\right\}$

Question: How to prove that these three power series are transcendental?

Singer's algorithm

Problem: Decide if a D-finite power series $f \in \mathbb{Q}[[t]]$, given by a differential equation $L(f)=0$ and sufficiently many initial terms, is transcendental.
(1) Compute $L^{\text {alg }}$, the (right) factor of L whose solution space is spanned by all algebraic solutions of L
[Singer, 2014]
(2) Decide if $L^{\text {alg }}$ annihilates f
\triangleright Benefit: Solves (in principle) Stanley's problem.
\triangleright Drawbacks: Step 1 involves impractical bounds and requires ODE factorization
\triangleright ODE factorization is effective
[Schlesinger, 1897], [Singer, 1981], [Grigoriev, 1990], [van Hoeij, 1997]
$\triangleright \ldots$ but possibly extremely costly [Grigoriev, 1990] $\exp \left(\left(\operatorname{bitsize}(L) 2^{n}\right)^{2^{n}}\right)$

A different method: the basic idea

Problem: Decide if a D-finite power series $f \in \mathbb{Q}[[t]]$, given by a differential equation $L(f)=0$ and sufficiently many initial terms, is transcendental.

Basic remark: If $L_{f}^{\min }$ has a logarithmic singularity, then f is transcendental. (f algebraic implies basis of algebraic solutions for $L_{f}^{\min } \quad$ [Tannery, 1875].)
\triangleright Pros and cons: Avoids factorization of L, but requires to compute L_{f}^{min}.

Ex. (A): Apéry's power series

$$
f(t)=\sum_{n} a_{n} t^{n}, \quad \text { where } a_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

\triangleright Creative telescoping:

$$
(n+1)^{3} a_{n}-(2 n+3)\left(17 n^{2}+51 n+39\right) a_{n+1}+(n+2)^{3} a_{n+2}=0, \quad a_{0}=1, a_{1}=5
$$

\triangleright Conversion from recurrence to differential equation $L(f)=0$, where

$$
L=\left(t^{4}-34 t^{3}+t^{2}\right) \partial_{t}^{3}+\left(6 t^{3}-153 t^{2}+3 t\right) \partial_{t}^{2}+\left(7 t^{2}-112 t+1\right) \partial_{t}+t-5
$$

$\triangleright L_{f}^{\min }=\frac{1}{t^{4}-34 t^{3}+t^{2}} L$ using L irreducible, or cf. new algorithm
\triangleright Basis of formal solutions of $L_{f}^{\min }$ at $t=0$:
$\left\{1+5 t+O\left(t^{2}\right), \ln (t)+(5 \ln (t)+12) t+O\left(t^{2}\right), \ln (t)^{2}+\left(5 \ln (t)^{2}+24 \ln (t)\right) t+O\left(t^{2}\right)\right\}$
\triangleright Conclusion: f is transcendental

Ex．（B）：Nature of $F(t ; 1,1)$ for SSW
［B．，Chyzak，van Hoeij，Kauers，Pech，2016］

	OEIS \mathfrak{S}	algebr	asymptotics		OEIS \mathfrak{S}	algebraic？	asymptotics
1	A005566 $\xrightarrow{\overleftrightarrow{*}}$	N	$\frac{4}{\pi} \frac{4}{n}$	13	A151275 込	N	$12 \sqrt{30} \frac{(2 \sqrt{6})^{n}}{n^{2}}$
2	A018224 义	N	$\frac{2}{\pi} \frac{4}{n}$	14	A151314	N	$\frac{\sqrt{6} \lambda \mu \mu^{5 / 2}}{5 \pi} \frac{(2 C)}{}{ }^{2} n^{2}$
3	A151312 退	N	$\frac{\sqrt{6}}{\pi} \frac{6^{n}}{n}$	15	A151255 洨	N	$\frac{24 \sqrt{2}}{\pi} \frac{(2 \sqrt{2})^{n}}{n^{2}}$
4	A151331	N		16	A151287 突	N	$\frac{2 \sqrt{2} A^{7 / 2}}{\pi} \frac{\left.n^{2} A\right)^{n}}{n^{2}}$
5	A151266	N	$\frac{1}{2} \sqrt{\frac{3}{\pi}} \frac{3^{n}}{n^{1 / 2}}$	17	A001006	Y	$\frac{3}{2} \sqrt{\frac{3}{\pi}} \frac{3^{n}}{n^{n / 2}}$
6	A151307	N	$\frac{1}{2} \sqrt{\frac{5}{2 \pi}} \frac{5^{n}}{n^{1 / 2}}$	18	A129400	Y	$\frac{3}{2} \sqrt{\frac{3}{\pi}} \frac{6^{n}}{n^{3 / 2}}$
7	A151291	N	$\frac{4}{3 \sqrt{\pi} \frac{4^{1}}{n^{1 / 2}}}$	19	A005558	N	$\frac{8}{\pi} \frac{4}{n^{n}}$
8	A151326	N	$\frac{2}{\sqrt{3 \pi}} \frac{6^{n}}{n^{1 / 2}}$				
9	A151302 这	N	$\frac{1}{3} \sqrt{\frac{5}{2 \pi}} \frac{5^{n}}{n^{1 / 2}}$	20	A151265 7	Y	$\frac{2 \sqrt{2}}{\Gamma(1 / 4)} \frac{3^{n}}{n^{3 / 4}}$
10	A151329 第	N	$\frac{1}{3} \sqrt{\frac{7}{3 \pi} \frac{7^{n}}{n^{1 / 2}}}$	21	A151278 通	Y	$\frac{3 \sqrt{3}}{\sqrt{2 \Gamma(1 / 4)}} \frac{3^{n}}{n^{3 / 4}}$
11	A151261 㐁	N	$\frac{12 \sqrt{3}}{\pi} \frac{(2 \sqrt{3})^{n}}{n^{2}}$	22	A151323 㯡	Y	$\frac{\sqrt{2} 1^{3 / 4} / 4}{\Gamma \Gamma 1 / 4} \frac{6^{3}}{n^{3 / 4}}$
12	A151297 全全	N	$\frac{\sqrt{3} B^{7 / 2}}{2 \pi} \frac{(2 B)^{n}}{n^{n}}$	23	A060900	Y	$\frac{4 \sqrt{3}}{3 \Gamma(13)} \frac{4^{n}}{n^{2 / 3}}$

\triangleright Computer－driven discovery and proof；no human proof yet in some cases
\triangleright Proof uses creative telescoping，ODE factorization，Singer＇s algorithm
\triangleright For models 5－10，asymptotics do not conclude．

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
Let $a_{n}=\#\left\{\stackrel{\text { a }}{\sim}\right.$ - walks of length n in \mathbb{N}^{2} from $(0,0)$ to $\left.(\star, 0)\right\}$. Then $f(t)=\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+\cdots$ is transcendental.

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

$f(t)=\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+\cdots$ is transcendental.

Proof:

(1) Discover and certify a differential equation L for $f(t)$ of order 11 and degree 73
(2) If $\operatorname{ord}\left(L_{f}^{\text {min }}\right) \leq 10$, then $\operatorname{deg}_{t}\left(L_{f}^{\min }\right) \leq 580$
(high-tech) Guess'n'Prove
(3) Rule out this possibility differential Hermite-Padé approximants
(4) Thus, $L_{f}^{\min }=L$
(5) L has a log singularity at $t=0$, thus f is transcendental

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

$f(t)=\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+\cdots$ is transcendental.

Proof:

(1) Discover and certify a differential equation L for $f(t)$ of order 11 and degree 73
(2) If $\operatorname{ord}\left(L_{f}^{\min }\right) \leq 10$, then $\operatorname{deg}_{t}\left(L_{f}^{\min }\right) \leq 580$
(high-tech) Guess'n'Prove
(3) Rule out this possibility apparent singularities
(4) Thus, $L_{f}^{\min }=L$
(5) L has a \log singularity at $t=0$, thus f is transcendental

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
 $f(t)=\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+\cdots$ is transcendental.

Proof:

(1) Discover and certify a differential equation L for $f(t)$ of order 11 and degree 73
(2) If $\operatorname{ord}\left(L_{f}^{\min }\right) \leq 10$, then $\operatorname{deg}_{t}\left(L_{f}^{\min }\right) \leq 580$
(high-tech) Guess'n'Prove
(3) Rule out this possibility differential Hermite-Padé approximants
(4) Thus, $L_{f}^{\min }=L$
(5) L has a \log singularity at $t=0$, thus f is transcendental
\triangleright Computer-driven discovery and proof; no human proof yet.
\triangleright All other transcendence criteria / algorithms fail or do not terminate.

Central sub-task: computation of $L_{f}^{\min }$

Problem: Given a D-finite power series $f \in \mathbb{Q}[[t]]$ by a differential equation $L(f)=0$ and sufficiently many initial terms, compute its resolvent $L_{f}^{\min }$.
\triangleright Why isn't this easy? After all, it is just a differential analogue of:
Given an algebraic power series $f \in \mathbb{Q}[[t]]$
by an algebraic equation $P(t, f)=0$ and sufficiently many initial terms, compute its minimal polynomial $P_{f}^{m i n}$.
$\triangleright L_{f}^{\min }$ is a (right) factor of L, but contrary to the commutative case:

- factorization of diff. operators is not unique $\partial_{t}^{2}=\left(\partial_{t}+\frac{1}{t-c}\right)\left(\partial_{t}-\frac{1}{t-c}\right)$
- and it is difficult to compute
- $\operatorname{deg}_{t} L_{f}^{\mathrm{min}}>\operatorname{deg}_{t} L$, due to apparent singularities $\quad\left(t \partial_{t}-N\right) \mid \partial_{t}^{N+1}$
$\triangleright \operatorname{deg}_{t} L_{f}^{\min }$ can be bounded w.r.t. n and local data of L via Fuchs' relation

Central sub-task: computation of $L_{f}^{\min }$

Problem: Given a D-finite power series $f \in \mathbb{Q}[[t]]$ by a differential equation $L(f)=0$ and sufficiently many initial terms, compute its resolvent $L_{f}^{\min }$.
\triangleright Why isn't this easy? After all, it is just a differential analogue of:
Given an algebraic power series $f \in \mathbb{Q}[[t]]$
by an algebraic equation $P(t, f)=0$ and sufficiently many initial terms, compute its minimal polynomial $P_{f}^{\min }$.
$\triangleright L_{f}^{\min }$ is a (right) factor of L, but contrary to the commutative case:

- factorization of diff. operators is not unique $\partial_{t}^{2}=\left(\partial_{t}+\frac{1}{t-c}\right)\left(\partial_{t}-\frac{1}{t-c}\right)$
- and it is difficult to compute
- $\operatorname{deg}_{t} L_{f}^{\mathrm{min}}>\operatorname{deg}_{t} L$, due to apparent singularities $\quad\left(t \partial_{t}-N\right) \mid \partial_{t}^{N+1}$
$\triangleright \operatorname{deg}_{t} L_{f}^{\min }$ can be bounded w.r.t. n and local data of L via Fuchs' relation
\triangleright More on apparent singularities and desingularization in Moulay Barkatou's and Maximilian Jaroschek's talks
$\triangleright L_{f}^{\min }$ useful in other contexts, e.g. in number theory: Tanguy Rivoal's talk

Summary

(\because
Guess'n'Prove is a powerful method, especially when combined with efficient computer algebra

It is robust: it can be used to uniformly prove
(-) D-finiteness in all the cases with finite group
(-) algebraicity in all the cases with finite group and zero orbit sum
© transcendence in all the cases with finite group and nonzero orbit sum

Brute-force and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(t ; x, y) \approx 30 \mathrm{~Gb}$.

BACK TO THE EXERCISE
 -A hint-

The exercise

Let $\mathfrak{S}=\{\uparrow, \leftarrow, \searrow\}$. A \mathfrak{S}-walk is a path in \mathbb{Z}^{2} using only steps from \mathfrak{S}. Show that, for any integer n, the following quantities are equal:
(i) the number a_{n} of \mathfrak{S}-walks of length n confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and end at the origin $(0,0)$;
(ii) the number b_{n} of \mathfrak{S}-walks of length n confined to the quarter plane \mathbb{N}^{2} that start at the origin $(0,0)$ and finish on the diagonal $x=y$.

The exercise

Let $\mathfrak{S}=\{\uparrow, \leftarrow, \searrow\}$. A \mathfrak{S}-walk is a path in \mathbb{Z}^{2} using only steps from \mathfrak{S}. Show that, for any integer n, the following quantities are equal:
(i) the number a_{n} of \mathfrak{S}-walks of length n confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and end at the origin $(0,0)$;
(ii) the number b_{n} of \mathfrak{S}-walks of length n confined to the quarter plane \mathbb{N}^{2} that start at the origin $(0,0)$ and finish on the diagonal $x=y$.

For instance, for $n=3$, this common value is $a_{3}=b_{3}=3$:

A recurrence relation for $\{\uparrow, \leftarrow, \searrow\}$-walks in $\mathbb{Z} \times \mathbb{N}$

$h(n ; i, j)=$ nb. of $\{\uparrow, \leftarrow, \searrow\}$-walks in $\mathbb{Z} \times \mathbb{N}$ of length n from $(0,0)$ to (i, j) The numbers $h(n ; i, j)$ satisfy

$$
h(n ; i, j)= \begin{cases}0 & \text { if } j<0 \text { or } n<0 \\ \mathbb{1}_{i=j=0} h\left(n-1 ; i-i^{\prime}, j-j^{\prime}\right) & \text { if } n=0 \\ \sum_{\left(i^{\prime}, j^{\prime}\right) \in \mathfrak{S}} h(n \text { otherwise }\end{cases}
$$

> h:=proc (n,i,j)
option remember;
if $\mathrm{j}<0$ or $\mathrm{n}<0$ then 0
elif $\mathrm{n}=0$ then if $\mathrm{i}=0$ and $\mathrm{j}=0$ then 1 else 0 fi
else $h(n-1, i, j-1)+h(n-1, i+1, j)+h(n-1, i-1, j+1) f i$ end:
> $\mathrm{A}:=\operatorname{series}\left(\operatorname{add}\left(\mathrm{h}(\mathrm{n}, 0,0) * \mathrm{t}^{\wedge} \mathrm{n}, \mathrm{n}=0 . .12\right), \mathrm{t}, 12\right)$;

$$
A=1+3 t^{3}+30 t^{6}+420 t^{9}+O\left(t^{12}\right)
$$

A recurrence relation for $\left\{\uparrow, \leftarrow, \searrow\right.$ \}-walks in \mathbb{N}^{2}

$q(n ; i, j)=$ nb. of $\{\uparrow, \leftarrow, \searrow\}$-walks in \mathbb{N}^{2} of length n from $(0,0)$ to (i, j) The numbers $q(n ; i, j)$ satisfy

$$
q(n ; i, j)= \begin{cases}0 & \text { if } i<0 \text { or } j<0 \text { or } n<0 \\ \mathbb{1}_{i=j=0} q\left(n-1 ; i-i^{\prime}, j-j^{\prime}\right) & \text { if } n=0 \\ \sum_{\left(i^{\prime}, j^{\prime}\right) \in \mathfrak{S}} q(n \text { otherwise }\end{cases}
$$

> $\mathrm{q}:=\operatorname{proc}(\mathrm{n}, \mathrm{i}, \mathrm{j})$
option remember;
if $i<0$ or $j<0$ or $n<0$ then 0
elif $n=0$ then if $i=0$ and $j=0$ then 1 else 0 fi
else $q(n-1, i, j-1)+q(n-1, i+1, j)+q(n-1, i-1, j+1) f i$ end:
> $\mathrm{B}:=\operatorname{series}\left(\operatorname{add}\left(\operatorname{add}(\mathrm{q}(\mathrm{n}, \mathrm{k}, \mathrm{k}), \mathrm{k}=0 . . \mathrm{n}) * \mathrm{t}^{\wedge} \mathrm{n}, \mathrm{n}=0 . .12\right), \mathrm{t}, 12\right)$;

$$
B=1+3 t^{3}+30 t^{6}+420 t^{9}+O\left(t^{12}\right)
$$

Guessing the answer

$$
\begin{aligned}
& >\operatorname{seriestorec}(A, u(n))[1] ; \\
& \begin{array}{l}
2 \\
\left\{\left(-27 n^{2}-81 n-54\right) u(n)+\left(n^{2}+9 n+18\right) u(n+3)\right. \\
\qquad u(0)=1, u(1)=0, u(2)=0\}
\end{array} \\
& >\operatorname{rsolve}(\%, u(n)): \\
& >A:=\operatorname{sum}\left(\operatorname{subs}(n=3 * n, \operatorname{op}(2, \%)) * t^{\sim}(3 * n), n=0 \ldots\right. \text { infinity); } \\
& \qquad A:=\operatorname{hypergeom}([1 / 3,2 / 3],[2], 27 t)
\end{aligned}
$$

\triangleright Thus, differential guessing predicts

$$
A(t)=B(t)={ }_{2} F_{1}\left(\left.\begin{array}{cc}
1 / 3 & 2 / 3 \\
2
\end{array} \right\rvert\, 27 t^{3}\right)=\sum_{n=0}^{\infty} \frac{(3 n)!}{n!^{3}} \frac{t^{3 n}}{n+1} .
$$

Guessing the answer

$$
\begin{aligned}
& >\operatorname{seriestorec}(A, u(n))[1] ; \\
& \begin{array}{l}
2 \\
\left\{\left(-27 n^{2}-81 n-54\right) u(n)+\left(n^{2}+9 n+18\right) u(n+3)\right. \\
\qquad u(0)=1, u(1)=0, u(2)=0\}
\end{array} \\
& >\operatorname{rsolve}(\%, u(n)): \\
& >A:=\operatorname{sum}\left(\operatorname{subs}(n=3 * n, \operatorname{op}(2, \%)) * t^{\sim}(3 * n), n=0 \ldots\right. \text { infinity); } \\
& \qquad A:=\operatorname{hypergeom}([1 / 3,2 / 3],[2], 27 t)
\end{aligned}
$$

\triangleright This can be algorithmically proved using creative telescoping

Bibliography

- Automatic classification of restricted lattice walks, with M. Kauers. Proceedings FPSAC, 2009.
- The complete generating function for Gessel walks is algebraic, with M. Kauers. Proceedings of the American Mathematical Society, 2010.
- Explicit formula for the generating series of diagonal 3D Rook paths, with F. Chyzak, M. van Hoeij and L. Pech. Séminaire Lotharingien de Combinatoire, 2011.
- Non-D-finite excursions in the quarter plane, with K. Raschel and B. Salvy. Journal of Combinatorial Theory A, 2013.
- On 3-dimensional lattice walks confined to the positive octant, with M. Bousquet-Mélou, M. Kauers and S. Melczer. Annals of Comb., 2016.
- A human proof of Gessel's lattice path conjecture, with I. Kurkova, K. Raschel, Transactions of the American Mathematical Society, 2017.
- Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, with F. Chyzak, M. van Hoeij, M. Kauers and L. Pech, European Journal of Combinatorics, 2017.
- Computer Algebra for Lattice Path Combinatorics, preprint, 2017.
end

Thanks for your attention!

