Applications of integer relation algorithms

David Broadhurst, Open University, UK
 ESI, Wien, 17 November 2017

This talk shows ways in which integer relation algorithms have empowered quantum field theorists to turn numerical results into conjecturally exact evaluations of Feynman periods. Ideas on quasi-periods are fermenting.

1. 1985: Periods in the Dark Ages
2. 1995: Renaissance by PSLQ
3. 1999: Improvements and parallelization
4. 2009: Work on the Broadhurst-Kreimer conjecture
5. 2015: Periods from Panzer and Schnetz
6. 2017: Periods from Laporta in electrodynamics
7. Heute: Quasi-periods from Brown and Zhou

1 1985: Periods in the Dark Ages

Problem: Given numerical approximations to $n>2$ real numbers, x_{k}, is there is at least one probable relation

$$
\sum_{k=1}^{n} z_{k} x_{k}=0
$$

with integers z_{k}, at least two of which are non-zero? If so, produce one. Examples: I studied periods from 6-loop Feynman diagrams in 1985:

$$
P_{6,1}=168 \zeta_{9}, \quad P_{6,2}=\frac{1063}{9} \zeta_{9}+8 \zeta_{3}^{3}, \quad 16 P_{6,3}+P_{6,4}=1440 \zeta_{3} \zeta_{5}
$$

with Riemann zeta values $\zeta_{a}:=\sum_{n>0} n^{-a}$. I had a strong intuition that $P_{6,3}$ and $P_{6,4}$ would involve ζ_{8} and the multiple zeta value (MZV)

$$
\zeta_{5,3}:=\sum_{m>n>0} \frac{1}{m^{5} n^{3}}=0.03770767298484754401130478 \ldots
$$

but did not have enough digits for the periods to test this.

2 1995: Renaissance by PSLQ

In response to a request from Dirk Kreimer, I obtained $P_{6,3}=256 N_{3,5}+72 \zeta_{3} \zeta_{5}$ and $P_{6,4}=-4096 N_{3,5}+288 \zeta_{3} \zeta_{5}$, with

$$
N_{3,5}:=\frac{27}{80} \zeta_{5,3}+\frac{45}{64} \zeta_{3} \zeta_{5}-\frac{261}{320} \zeta_{8}
$$

found by PSLQ, after more digits were obtained for the periods.
We found $\zeta_{3,5,3}$, with weight 11 and depth 3, in some 7 -loop periods.
Much experimenting with PSLQ led to the Broadhurst-Kreimer (BK) conjecture that the number $N(w, d)$ of independent primitive MZVs of weight w and depth d is generated by

$$
\prod_{w>2} \prod_{d>0}\left(1-x^{w} y^{d}\right)^{N(w, d)}=1-\frac{x^{3} y}{1-x^{2}}+\frac{x^{12} y^{2}\left(1-y^{2}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)}
$$

with a final term inferred by relating MZVs to alternating sums.

2.1 PSLQ: Partial Sums, Lower triangular, orthogonal Quotient

PSLQ came from work by Helaman Ferguson and Rodney Forcade in 1977, was implemented in multiple-precision ForTran by David Bailey in 1992, improved and parallelized in 1999. See David H. Bailey and David J. Broadhurst, Parallel Integer Relation Detection: Techniques and Applications, Math. Comp. 70 (2001), 1719-1736. Initialization:

1. For $j:=1$ to n : for $i:=1$ to n : if $i=j$ then set $A_{i j}:=1$ and $B_{i j}:=1$ else set $A_{i j}:=0$ and $B_{i j}:=0$; endfor; endfor.
2. For $k:=1$ to n : set $s_{k}:=\operatorname{sqrt}\left(\sum_{j=k}^{n} x_{j}^{2}\right)$; endfor. Set $t=1 / s_{1}$. For $k:=1$ to n : set $y_{k}:=t x_{k} ; s_{k}:=t s_{k}$; endfor.
3. For $j:=1$ to $n-1$: for $i:=1$ to $j-1$: set $H_{i j}:=0$; endfor; set $H_{j j}:=s_{j+1} / s_{j}$; for $i:=j+1$ to n : set $H_{i j}:=-y_{i} y_{j} /\left(s_{j} s_{j+1}\right)$; endfor; endfor.
4. For $i:=2$ to n : for $j:=i-1$ to 1 step -1 : set $t:=\operatorname{round}\left(H_{i j} / H_{j j}\right)$; and $y_{j}:=y_{j}+t y_{i}$; for $k:=1$ to $j:$ set $H_{i k}:=H_{i k}-t H_{j k}$; endfor; for $k:=1$ to n : set $A_{i k}:=A_{i k}-t A_{j k}$ and $B_{k j}:=B_{k j}+t B_{k i}$; endfor; endfor; endfor.

Iteration:

1. Select m such that $(\mathbf{4} / \mathbf{3})^{i / 2}\left|H_{i i}\right|$ is maximal when $i=m$. Swap the entries of y indexed m and $m+1$, the corresponding rows of A and H, and the corresponding columns of B.
2. If $m \leq n-2$ then set $t_{0}:=\boldsymbol{\operatorname { s q r t }}\left(H_{m m}^{2}+H_{m, m+1}^{2}\right), t_{1}:=H_{m m} / t_{0}$ and $t_{2}:=H_{m, m+1} / t_{0}$; for $i:=m$ to n : set $t_{3}:=H_{i m}, t_{4}:=H_{i, m+1}$, $H_{i m}:=t_{1} t_{3}+t_{2} t_{4}$ and $H_{i, m+1}:=-t_{2} t_{3}+t_{1} t_{4}$; endfor; endif.
3. For $i:=m+1$ to n : for $j:=\min (i-1, m+1)$ to 1 step -1 : set $t:=\operatorname{round}\left(H_{i j} / H_{j j}\right)$ and $y_{j}:=y_{j}+t y_{i}$; for $k:=1$ to $j:$ set $H_{i k}:=H_{i k}-t H_{j k} ;$ endfor; for $k:=1$ to n : set $A_{i k}:=A_{i k}-t A_{j k}$ and $B_{k j}:=B_{k j}+t B_{k i}$; endfor; endfor; endfor.
4. If the largest entry of A exceeds the precision, then fail, else if a component of the y vector is very small, then output the relation from the corresponding column of B, else go back to Step 1.

For big problems, the parallelization of PSLQ has been vital, especially for the magnetic moment of the electron. For smaller problems, there is now a handy alternative.

2.2 LLL

In 1982, Arjen Lenstra, Hendrik Lenstra and László Lovász gave the LLL algorithm for lattice reduction to a basis with short and almost orthogonal components. An extension of this underlies lindep in Pari-GP.
\$ Z53=0.03770767298484754401130478;
\$ P63=107.71102484102;
\$ V=[P63,Z53,zeta(3)*zeta(5),zeta(8)];
\$ for (d=10,16,U=lindep(V,d);U*=sign(U[1]);print([d, $\left.\left.\left.\mathrm{U}^{\sim}\right]\right)\right)$;
[10, [12, 44, -936, -127]]
[11, [4, -827, -460, 173]]
[12, [4, -827, $-460,173]]$
[13, [4, -827, $-460,173]]$
[14, [5, -432, -1260, 1044]]
[15, [5, -432, -1260, 1044]]
[16, [196, 1652, -9701, -9045]]

3 1999: Improvements and parallelization

Multi-level improvement: perform most operations at 64-bit precision, some at intermediate precision (we chose 125 digits) and only the bare minimum of the most delicate operations at full precision (more than 10000 digits, for some big problems).

Multi-pair improvement: swap up to $0.4 n$ disjoint pairs of the n indices at each iteration. In this case, it is not proven that the algorithm will succeed, but it ain't yet been found to fail.

Parallelization: distribute the disjoint-pair jobs; for each pair, distribute the full-precision matrix multiplication in the outermost loop.

3.1 Fourth bifurcation of the logistic map

Working at $\mathbf{1 0 0 0 0}$ digits, we found that the constant associated with the fourth bifurcation is the root of a polynomial of degree $\mathbf{2 4 0}$.

3.2 Alternating sums

We tested my conjecture on alternating sums defined by

$$
\zeta\left(\begin{array}{cccc}
s_{1}, & s_{2} & \cdots & s_{r} \\
\sigma_{1}, & \sigma_{2} & \cdots & \sigma_{r}
\end{array}\right):=\sum_{k_{1}>k_{2}>\cdots>k_{r}>0} \frac{\sigma_{1}^{k_{1}}}{k_{1}^{s_{1}}} \frac{\sigma_{2}^{k_{2}}}{k_{2}^{s_{2}}} \cdots \frac{\sigma_{r}^{k_{r}}}{k_{r}^{s_{r}}}
$$

where $\sigma_{j}= \pm 1$ are signs and $s_{j}>0$ are integers, namely that at weight $w=\sum_{j} s_{j}$ every alternating sum is a rational linear combination of elements of a basis of size $F_{w+1}=F_{w}+F_{w-1}$, i.e. the Fibonacci number with index $w+1$. At $w=11$, integer relations of size $n=F_{12}+1=\mathbf{1 4 5}$ were readily found, working at 5000 -digit precision.

3.3 Inverse binomial sums

Noting that $S(4)=\frac{17}{36} \zeta_{4}$, I conjectured that

$$
S(w):=\sum_{n=1}^{\infty} \frac{1}{n^{w}\binom{2 n}{n}}
$$

is reducible to weigth w nested sums that involve sixth roots of unity, i.e. with $\sigma_{j}^{6}=1$, above. This was confirmed for all weights $w \leq 20$, with $525990827847624469523748125835264000 S(20)$ given by 106 terms.

4 2009: Work on the BK conjecture

The BK conjecture was a rash leap based on a PSLQ dicovery:

$$
\begin{aligned}
& 2^{5} \cdot 3^{3} \zeta_{4,4,2,2}-2^{14} \sum_{m>n>0} \frac{(-\mathbf{1})^{m+n}}{\left(m^{3} n\right)^{3}}= \\
& \quad 2^{5} \cdot 3^{2} \zeta_{3}^{4}+2^{6} \cdot 3^{3} \cdot 5 \cdot 13 \zeta_{9} \zeta_{3}+2^{6} \cdot 3^{3} \cdot 7 \cdot 13 \zeta_{7} \zeta_{5} \\
& +2^{7} \cdot 3^{5} \zeta_{7} \zeta_{3} \zeta_{2}+2^{6} \cdot 3^{5} \zeta_{5}^{2} \zeta_{2}-2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \zeta_{5} \zeta_{4} \zeta_{3} \\
& -2^{8} \cdot 3^{2} \zeta_{6} \zeta_{3}^{2}-\frac{13177 \cdot 15991}{691} \zeta_{12} \\
& +2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \zeta_{6,2} \zeta_{4}-2^{7} \cdot 3^{3} \zeta_{8,2} \zeta_{2}-2^{6} \cdot 3^{2} \cdot 11^{2} \zeta_{10,2}
\end{aligned}
$$

is reducible to MZVs of depth $d \leq 2$ and their products. It means that $\zeta_{4,4,2,2}$ is pushed down to depth $d=2$, if we allow alternating sums in the MZV basis. When constructing the MZV datamine, Johannes
Blümlein and Jos Vermaseren and I were able to prove this by massive use of computer algebra. There seems little hope of proving my discovery of pushdown at weight 21 and depth 7 , where

$$
81 \zeta_{6,2,3,3,5,1,1}+326 \sum_{j>k>l>m>n>0} \frac{(-\mathbf{1})^{k+m}}{\left(j k^{2} l m^{2} n\right)^{3}}
$$

is empirically reducible to $\mathbf{1 5 0}$ terms containing MZVs of depths $d \leq 5$.

5 2015: Periods from Panzer and Schnetz

I found empirical reductions to MZVs for a pair of 7-loop periods

$$
\begin{aligned}
P_{7,8}= & \frac{22383}{20} \zeta_{11}+\frac{4572}{5}\left(\zeta_{3,5,3}-\zeta_{3} \zeta_{5,3}\right)-700 \zeta_{3}^{2} \zeta_{5} \\
& +1792 \zeta_{3}\left(\frac{9}{320}\left(12 \zeta_{5,3}-29 \zeta_{8}\right)+\frac{45}{64} \zeta_{5} \zeta_{3}\right) \\
P_{7,9}= & \frac{92943}{160} \zeta_{11}+\frac{3381}{20}\left(\zeta_{3,5,3}-\zeta_{3} \zeta_{5,3}\right)-\frac{1155}{4} \zeta_{3}^{2} \zeta_{5} \\
& +896 \zeta_{3}\left(\frac{9}{320}\left(12 \zeta_{5,3}-29 \zeta_{8}\right)+\frac{45}{64} \zeta_{5} \zeta_{3}\right)
\end{aligned}
$$

that had been expected to involve alternating sums. These results were later proven, one by Erik Panzer and the other by Oliver Schnetz. They obtained complicated combinations of alternating sums which then gave my MZV formulas by use of proven results in the datamine.

The period from this 7-loop diagram is called $P_{7,11}$ in the census of Schnetz. All other periods up to 7 loops reduce to MZVs; only $P_{7,11}$ requires nested sums with sixth roots of unity. Panzer evaluated $\sqrt{3} P_{7,11}$ in terms of 4589 such sums, each of which he evaluated to 5000 digits. Then he found an empirical reduction to a 72 -dimensional basis. The rational coefficient of π^{11} in his result was

$$
C_{11}=-\frac{964259961464176555529722140887}{2733669078108291387021448260000}
$$

whose denominator contains 8 primes greater than 11, namely 19, 31, 37, 43, 71, 73, 50909 and 121577.

I built an empirical datamine to enable substantial simplification.

Let $A=\mathrm{d} \log (x), B=-\mathrm{d} \log (1-x)$ and $D=-\mathrm{d} \log (1-\exp (2 \pi \mathrm{i} / 6) x)$ be letters, forming words W that define iterated integrals $Z(W)$. Let

$$
\begin{gathered}
W_{m, n} \equiv \sum_{k=0}^{n-1} \frac{\zeta_{3}^{k}}{k!} A^{m-2 k} D^{n-k} \\
P_{n} \equiv(\pi / 3)^{n} / n!, I_{n} \equiv \mathrm{Cl}_{n}(2 \pi / 3) \text { and } I_{a, b} \equiv \Im Z\left(A^{b-a-1} D A^{2 a-1} B\right) . \text { Then } \\
\sqrt{3} P_{7,11}
\end{gathered}=-10080 \Im Z\left(W_{7,4}+W_{7,2} P_{2}\right)+50400 \zeta_{3} \zeta_{5} P_{3} .
$$

with the datamine transformations

$$
\begin{aligned}
I_{2,9} & =91\left(11 T_{2,9}\right)-898 T_{3,8}+11 I_{4,7}-292 P_{11} \\
I_{3,8} & =24\left(11 T_{2,9}\right)+841 T_{3,8}-190 I_{4,7}-255 P_{11}
\end{aligned}
$$

removing denominator primes greater than 3 .

6 2017: Periods from Laporta in electrodynamics

The magnetic moment of the electron, in Bohr magnetons, has electrodynamic contributions $\sum_{L \geq 0} a_{L}(\alpha / \pi)^{L}$ given up to $L=4$ loops by

$$
\begin{aligned}
& a_{0}=1 \quad[\text { Dirac, 1928] } \\
& a_{1}=0.5 \quad[\text { Schwinger, 1947] } \\
& a_{2}=-0.32847896557919378458217281696489239241111929867962 \ldots \\
& a_{3}=1.18124145658720000627475398221287785336878939093213 \ldots \\
& a_{4}=-1.91224576492644557415264716743983005406087339065872 \ldots
\end{aligned}
$$

In 1957, corrections by Petermann and Sommerfield resulted in

$$
a_{2}=\frac{197}{144}+\frac{\zeta_{2}}{2}+\frac{3 \zeta_{3}-2 \pi^{2} \log 2}{4} .
$$

In 1996, Laporta and Remiddi [hep-ph/9602417] gave us

$$
\begin{aligned}
a_{3}= & \frac{28259}{5184}+\frac{17101 \zeta_{2}}{135}+\frac{139 \zeta_{3}-596 \pi^{2} \log 2}{18} \\
& -\frac{39 \zeta_{4}+400 U_{3,1}}{24}-\frac{215 \zeta_{5}-166 \zeta_{3} \zeta_{2}}{24} .
\end{aligned}
$$

The 3-loop contribution contains a weight-4 depth-2 polylogarithm

$$
U_{3,1}:=\sum_{m>n>0} \frac{(-1)^{m+n}}{m^{3} n}=\frac{\zeta_{4}}{2}+\frac{\left(\pi^{2}-\log ^{2} 2\right) \log ^{2} 2}{12}-2 \sum_{n>0} \frac{1}{2^{n} n^{4}}
$$

encountered in my study of alternating sums [arXiv:hep-th/9611004].
Equally fascinating is the Bessel moment B, at weight 4, in the breath-taking evaluation by Laporta [arXiv:1704.06996] of $\mathbf{4 8 0 0}$ digits of
$a_{4}=P+B+E+U \approx 2650.565-1483.685-1036.765-132.027 \approx-1.912$
where P comprises polylogs and E comprises integrals, with weights 5,6 and 7 , whose integrands contain logs and products of elliptic integrals. U comes from 6 difficult integrals, still under investigation.
The weight-4 non-polylogarithm at 4 loops has $N=6$ Bessel functions:

$$
B=-\int_{0}^{\infty} \frac{27550138 t+35725423 t^{3}}{48600} I_{0}(t) K_{0}^{5}(t) \mathrm{d} t .
$$

6.1 Bessel moments and modular forms

Gauss noted on 30 May 1799 that the lemniscate constant

$$
A:=\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{1-x^{4}}}=\frac{(\Gamma(1 / 4))^{2}}{4 \sqrt{2 \pi}}=\frac{\pi / 2}{\operatorname{agm}(1, \sqrt{2})}
$$

is given by the reciprocal of an arithmetic-geometric mean. This is an example of the Chowla-Selberg formula (1949) at the first singular value, seen in the talk by Dan Romick. In Bruno Salvy's talk, we encountered the sixth singular value, where an integral evaluated by Watson in 1939 in terms of $\left(\sum_{n \in \mathbf{Z}} \exp \left(-\sqrt{\mathbf{6}} \pi n^{2}\right)\right)^{4}$ gives the product of $\Gamma(k / \mathbf{2 4})$ with $k=1,5,7,11$, as observed by Glasser and Zucker in 1977. In 2007, I identified a Feynman period at the fifteenth singular value, where $\left(\sum_{n \in \mathbf{Z}} \exp \left(-\sqrt{\mathbf{1 5}} \pi n^{2}\right)\right)^{4}$ gives the product of $\Gamma(k / \mathbf{1 5})$ with $k=1,2,4,8$. With $N=a+b$ Bessel functions and $c \geq 0$, I define moments

$$
M(a, b, c) \equiv \int_{0}^{\infty} I_{0}^{a}(t) K_{0}^{b}(t) t^{c} \mathrm{~d} t
$$

that converge for $b>a>0$. Then the 5 -Bessel matrix is

$$
\left[\begin{array}{ll}
M(1,4,1) & M(1,4,3) \\
M(2,3,1) & M(2,3,3)
\end{array}\right]=\left[\begin{array}{cc}
\pi^{2} C & \pi^{2}\left(\frac{2}{15}\right)^{2}\left(13 C-\frac{1}{10 C}\right) \\
\frac{\sqrt{15 \pi} C}{2} C & \frac{\sqrt{15 \pi}}{2}\left(\frac{2}{15}\right)^{2}\left(13 C+\frac{1}{10 C}\right)
\end{array}\right] .
$$

The determinant $2 \pi^{3} / \sqrt{3^{3} 5^{5}}$ is free of the 3-loop constant

$$
C \equiv \frac{\pi}{16}\left(1-\frac{1}{\sqrt{5}}\right)\left(\sum_{n=-\infty}^{\infty} \exp \left(-\sqrt{\mathbf{1 5}} \pi n^{2}\right)\right)^{4}=\frac{1}{240 \sqrt{5} \pi^{2}} \prod_{k=0}^{3} \Gamma\left(\frac{2^{k}}{\mathbf{1 5}}\right)
$$

The L-series for $N=5$ Bessel functions comes from a modular form of weight $\mathbf{3}$ and level 15 [arXiv:1604.03057]:

$$
\begin{aligned}
\eta_{n} & \equiv q^{n / 24} \prod_{k>0}\left(1-q^{n k}\right) \\
f_{3,15} & \equiv\left(\eta_{3} \eta_{5}\right)^{3}+\left(\eta_{1} \eta_{15}\right)^{3}=\sum_{n>0} A_{5}(n) q^{n} \\
L_{5}(s) & \equiv \sum_{n>0} \frac{A_{5}(n)}{n^{s}} \quad \text { for } s>2 \\
L_{5}(1) & =\sum_{n>0} \frac{A_{5}(n)}{n}\left(2+\frac{\sqrt{\mathbf{1 5}}}{2 \pi n}\right) \exp \left(-\frac{2 \pi n}{\sqrt{\mathbf{1 5}}}\right) \\
& =5 C=\frac{5}{\pi^{2}} \int_{0}^{\infty} I_{0}(t) K_{0}^{4}(t) t \mathrm{~d} t .
\end{aligned}
$$

Laporta's work engages the first row of the 6-Bessel determinant

$$
\operatorname{det}\left[\begin{array}{ll}
M(1,5,1) & M(1,5,3) \\
M(2,4,1) & M(2,4,3)
\end{array}\right]=\frac{5 \zeta_{4}}{32}
$$

associated to $f_{4,6}=\left(\eta_{1} \eta_{2} \eta_{3} \eta_{6}\right)^{2}$ with weight 4 and level 6.

7 Heute: Quasi-periods from Brown and Zhou

7.1 Proofs of conjectures on determinants

A few days ago, Yajun Zhou posted impressive proofs [arXiv:1711.01829] of conjectures that Anton Mellit and I had made about determinants of matrices of Feynman integrals. Let \mathbf{M}_{k} be the $k \times k$ matrix with elements $M(a, 2 k+1-a, 2 b-1)$, for a and b running from 1 to k. Then I discovered that with $N=2 k+1=31$ Bessel functions

$$
\operatorname{det} \mathbf{M}_{15}=\frac{2^{182} \pi^{120}}{3^{33} 5^{20} 7^{5} \sqrt{11^{3} 13^{9} 17^{17} 19^{19} 23^{23} 29^{29} 31^{31}}}
$$

after seeking an integer relation between logs of the determinant, small primes and π. Then I inferred a general formula which Zhou has proven. My result for even numbers of Bessel functions is also proven and hence the $\mathbf{6}$ Bessel determinant is secure, in quantum electrodynamics.

7.2 Brown's quasi-periods

Recently, Francis Brown posted impressive ideas [arXiv:1710.07912] on quasi-periods associated to modular forms. A definition of these has been strangely elusive at weights greater than 2 . For the weight 12 level 1 modular form $\Delta(z):=\eta_{1}^{24}$ with $q:=\exp (2 \pi \mathrm{i} z)$, periods are defined via $L(\Delta, s)$ which has 11 critical values at integers $s \in[1,11]$. At odd integers these are given, up to rational multiples of powers of π, by ω_{+}, while at even integers we use ω_{-}. Specifically, the periods are

$$
\begin{aligned}
\omega_{+} & :=-70(2 \pi)^{11} \int_{0}^{\infty} y^{4} \Delta(\mathrm{i} y) \mathrm{d} y \\
& =-68916772.8095951947543101246553310304390699691 \ldots \\
\omega_{-} & :=-6(2 \pi)^{11} \int_{0}^{\infty} y^{5} \Delta(\mathrm{i} y) \mathrm{d} y \\
& =-5585015.37931040186687713926379627512963503343 \ldots
\end{aligned}
$$

To define quasi-periods, Brown considers the weakly holomorphic modular form $\Delta^{\prime}(z)$, defined in terms of Klein's j-invariant by

$$
\begin{aligned}
\Delta^{\prime}(z) & :=\left(j^{2}-1464 j+142236\right) \Delta(z)=1 / q+O\left(q^{2}\right), \\
j & :=\frac{1}{\Delta(z)}\left(1+240 \sum_{n>0} \frac{n^{3} q^{n}}{1-q^{n}}\right)^{3} .
\end{aligned}
$$

The quasi-periods are

$$
\begin{aligned}
& \eta_{+}=127202100647.177094777317161298610877494045988 \ldots \\
& \eta_{-}=10276732343.6491327508171930724009209088993990 \ldots
\end{aligned}
$$

with numerical values obtainable from a determinant and permanent,

$$
\begin{aligned}
& \omega_{+} \eta_{-}-\omega_{-} \eta_{+}=(2 \pi)^{11} 10! \\
& \frac{\omega_{+} \eta_{-}+\omega_{-} \eta_{+}}{4 \pi \omega_{+} \omega_{-}}=-\left.\sum_{c>0} \frac{I_{11}(4 \pi / c)}{c} \sum_{r \in(\mathbf{Z} / \mathbf{Z} c)^{*}} \exp \left(\frac{2 \pi \mathrm{i}(r-s)}{c}\right)\right|_{r s=1 \bmod c}
\end{aligned}
$$

Brown is able to obtain these directly by Eichler-type integrals in the upper half plane, taking care to avoid the singularity at infinity in Δ^{\prime}.

7.3 Quasi-periods from lindep and Zhou?

I conjectured and Zhou proved the determinant condition

$$
\operatorname{det} \int_{0}^{\infty}\left[\begin{array}{cc}
K_{0}(t) & K_{0}(t) t^{2} \\
I_{0}(t) & I_{0}(t) t^{2}
\end{array}\right] I_{0}(t) K_{0}^{4}(t) t \mathrm{~d} t=\frac{\pi^{4}}{2^{6} 3^{2}}
$$

for the 6-Bessel problem encountered by Laporta in electrodynamics.

Using lindep, I discovered that this may be recast as

$$
6 \pi^{3} \operatorname{det} \int_{0}^{\infty}\left[\begin{array}{ll}
f(1 / 2+\mathrm{i} y) & g(1 / 2+\mathrm{i} y) \\
f(1 / 2+\mathrm{i} y) y & g(1 / 2+\mathrm{i} y) y
\end{array}\right] \mathrm{d} y=1
$$

with the cuspform $f(z)=\left(\eta_{1} \eta_{2} \eta_{3} \eta_{6}\right)^{2}$,

$$
\frac{g(z)}{f(z)}=w^{4}-6 w^{2}+c-6 w^{-2}+9 w^{-4}, \quad \frac{w}{3}=\left(\frac{\eta_{3}}{\eta_{1}}\right)^{4}\left(\frac{\eta_{2}}{\eta_{6}}\right)^{2} .
$$

Amusingly, w defines an external energy for the two-loop sunrise diagram that I evaluated in my first talk, using Domb's enumeration of returning walks on a honeycomb. Clearly the determinant alone cannot tell us the value of c. The Bessel moments choose $c=2$ which makes $g(z) / f(z)$ vanish at the pseudo-threshold $w=1$, where the Feynman integral is regular. This week, Zhou proved my empirical result, above.
It remains to be seen how, if at all, Francis Brown's definition of quasi-periods relates to the second column of the matrix above.

Summary

1. PSLQ and LLL have enlivened quests for analytical results.
2. PSLQ led to the Broadhurst-Kreimer conjecture.
3. PSLQ has been parallelized.
4. PSLQ and LLL have provided strong tests on conjectures.
5. PSLQ and LLL have condensed huge expressions.
6. PSLQ was of the essence in Laporta's work in electrodynamics.
7. PSLQ and LLL led to determinants that may relate to quasi-periods.
8. Yajun Zhou's remarkable proofs [arXiv:1711.01829; 1708.02857; 1706.08308; 1706.01068] continue to turn experimental findings into proven mathematics.

I thank colleagues and hosts in Creswick (Victoria), Newcastle (NSW), Mainz, Oxford, Paris, Marseille, Edinburgh, Copenhagen, Zeuthen and Vienna.

