Arctic curves in path models from the Tangent Method
(P. Difrancesco of M. Lapa, VIuc Physics)
O. Introduction

1. The tangent method
2. Domino tilings of the Aztec Diamond
3. Deck paths and Rhombus tilings of a $\frac{1}{2}$ hexagon
4. Another path model
5. Vertically Symmetic Alternating sign matrices ES I 17
O. INTRODUCTION

Combinatorial problems:
(1) Tiling of finite damain with finite set of tiles Ex: a.dominos $\prod_{2 \times 1}^{\square}{ }_{1 \times 2}$, Aztecdiamand
b. rhambi $<>\geqslant V$, half-hexagan

(2) Non-intersecting Pattice poths $\left\{a_{i}\right\} \rightarrow\left\{e_{i}\right\}$.

Ex Dych pats

Asymptotics

- appearance of different phases \rightarrow order "aystal"

Ex - 楜需 dominocuystal

- Ilo path aystal
- At longe size $(D \rightarrow N D, N \rightarrow \infty)$ there is a Sharp separation between these phases $=A R C T I C$ CURVE

Enumeration

- reformulate all problems in tams of NILP
- Use Gessel-Viennot-Lindstöm determinant

$$
\begin{aligned}
& Z_{\left\langle a_{i} \rightarrow j e_{i}\right\}}=\operatorname{det}_{1 \leq i, j \leq n}\left(Z_{a_{i} \rightarrow e_{j}}\right)=\begin{array}{c}
\text { partition function of } \\
\text { pa(ts fran } a_{1-1}-a_{n} \\
Z_{a \rightarrow 1} e_{1} \ldots e_{n}
\end{array} \\
& Z_{\substack{\text { parks } \\
a \rightarrow b}} w(\text { path }) \longleftarrow W_{i \text { eight }}=\prod_{\text {edges }} w(\text { edge })
\end{aligned}
$$

- Calculate det by $L U$ decampaition of $A=\left(Z_{a_{i} \rightarrow e_{j}}\right)$
- use generating functions as a tool

1. TANGENT METHOD [ColomoSporticllo 16$]$

- Change the setting

- large size

Relies on 2 properties:

1. "left to its an devices, a directed random path with freed end pants is most likely to follar a straight line"
2." The line follased by the external path away from the others is tangent to the arctic curve \&"
2. can be proved rigorausly.
3. still an assumption

Proof of 1. directed paths on \mathbb{Z}^{2}

- allow steps $\left(s_{i}, t_{i}\right)$ with $t_{i}>0$ say, weight w_{i}
- $P(z, \sigma):=\sum_{i} w_{i} z^{s_{i}} w^{t_{i}}$ Newton plynanial
$Z_{\substack{(00) \rightarrow(a b) \\ \text { Nsteps }}}=\left.\frac{1}{1-t P(z, \omega)}\right|_{z^{a} w^{b} t^{N}}$

cut with a line L intersection wo th (x, y)

$$
\begin{aligned}
& Z_{(00) \rightarrow(a b)}=\sum_{(x, y) \in L} Z_{(00) \rightarrow(x y)} Z_{(x y) \rightarrow((a b)} \\
&= \sum_{(0, v,(x y)} Z_{(00),(a-x, b-y)} \\
& Z_{(00) \rightarrow(x y)}= \oint \frac{d z}{z^{x+1}} \frac{d w}{w y+1} \frac{1}{1-P(z, w)}=\oint \frac{d z}{z} \frac{d s}{} e^{S_{x, y}} \\
& S_{x y}^{z w}=-\log (1-P(z, w))-x \log z-y \log w \\
& \frac{\text { large scale }}{}(x, y)=n(5, \eta) \quad(a, b)=n(\alpha, \beta) \quad n \rightarrow \infty \\
& S_{x y}^{z w}=-n\left(3 \log z+\eta \log w+\frac{1}{n} \log (1-P(z, w))\right)
\end{aligned}
$$

dominated by saddle -point $\partial_{3} S=\partial_{3} S=0 \Rightarrow \begin{aligned} & z_{0}=z_{1}, \\ & w=w_{0},\end{aligned}$

$$
\begin{aligned}
& \partial_{z} S=\partial_{w} S=\partial_{z^{\prime}} S=\partial_{w}, S=0 \Rightarrow \\
& \frac{\xi_{0}}{z_{0}}-\frac{1}{n} \frac{\partial_{z} P}{1-P}=\frac{\alpha-\zeta_{0}}{z_{0}^{\prime}}-\frac{1}{n} \frac{\partial_{i}^{\prime} P_{0}}{1-P_{0}}=0 \\
& \frac{\eta_{0}}{2 v_{0}}-\frac{1}{n} \frac{\partial_{w} P}{1-P_{0}}=\frac{\beta-\eta_{0}}{w_{0}}-\frac{1}{n} \frac{\partial{ }^{w} P_{0}}{1-P_{0}}=0 \\
& \Rightarrow 3 \%=\alpha-\xi_{0} / \beta-\eta_{0}
\end{aligned} \begin{aligned}
& \Leftrightarrow \beta \zeta_{0}-\alpha \eta_{0}=0 \\
& \\
& \text { (00) (by) (ab) aligned }
\end{aligned}
$$

(00) ($x y$) (ab) aligned!
(Ged.

APPLYING THE TANGENT METHOD:
Summary: l. compute the "escaping path" partition function $Z_{n, l}$ and "1pt-function" $H_{n, e}:=\frac{Z_{n, e}}{Z_{n, 0}} \leftarrow$ escaping pint at l
2. Compute the free path partition function

$$
Y_{l, e^{\prime}}=\text { single path from } l \rightarrow e^{\prime}
$$

3. Scaling estimate $\sum_{e} H_{n, e} Y_{e, e^{\prime}}$ $n \rightarrow \infty \quad l=n j \quad e^{\prime}=n a$

$$
\text { then } \sum_{l} H_{n, p} Y_{e, e^{\prime}} \sim \int d \xi e^{n(\underbrace{}_{0}(\xi)+S_{1}(\xi, a)})
$$

\Rightarrow tangent line thru $n J$ and na
\Rightarrow (6) as envelope, for varying a.

- We must estimate $H_{n, e=n j}$ at large

Doexact enumeration first. $\quad Z_{n, 0}=\operatorname{LGVdet}=\operatorname{det}\left(A_{i j}\right)$ $Z_{n, e}=\operatorname{det}_{0 \leq, j \leq n}\left(\widetilde{A}_{i j}\right)$ where $\left\{\begin{array}{l}\widetilde{A}_{i j}=A_{i j} \\ \mathcal{A}_{i n}=\mathcal{Z}_{i \rightarrow e^{\prime}, j \leq n}^{j<n}\end{array}\right.$ only the last churn differs
$L U$ decomposition: $\quad A=L \cdot U^{\Sigma}$ unpertiongular $\operatorname{det} A=\operatorname{det} U$
Then $\quad \rightarrow L^{-1} \tilde{A}=\widetilde{U}$ with \tilde{U} unpen kiangular $\widetilde{U}_{i j}=U_{i j} j<n$
and $H_{n, e}=\frac{\operatorname{det}(\tilde{A})}{\operatorname{det}(A)}=\frac{\tilde{U}_{n, n}}{U_{n, n}}$
It all boils down to LU decampoition
NB: $\tilde{U}_{n, n}=\sum_{i}\left(L^{-1}\right)_{n, i} \cdot \tilde{A}_{i, n}=$ alternating sum, not good fr longe $i n$ estimates \rightarrow TURN IT INTO a >0 sum!!
2. Domino Tilings of the Aztec Diamond
 SE

large Schroeder NILP

Steps $(1,1)(1,-1)(2,0)$
\Rightarrow partition function $Z_{n}=2^{n(n+1) / 2}$

Tangent method:

Z_{n}
LGV matix:

$$
A_{i j}=\left.\frac{1}{1-z-w-z_{w}}\right|_{z^{i} \omega j}=\sum_{p=0}^{M m(i j)} \frac{(i+j-p)!}{p!(i-p)!(j-p)!}
$$

LU decamporition

$$
\begin{aligned}
& L_{i j}=\left.\frac{1}{1-z(1+w)}\right|_{z i \omega j}=\binom{i}{j} \quad\left(L^{-1}\right)_{i j}=(-1)^{i+j}\binom{i}{j} \\
& U_{i j}=\left.\frac{1}{1-w(1+2 z)}\right|_{z i w j}=2^{i}\binom{j}{i}
\end{aligned}
$$

Partition function:

$$
Z_{n}=\operatorname{det} A=\prod_{0}^{n} U_{i i}=2^{n(n+1) / 2}
$$

$Z_{n, e}$ LGV matix: $\quad \widetilde{A}_{i j}= \begin{cases}A_{i j} & j<n \\ A_{i+-n, n} & j=n\end{cases}$
LUdecomposition: $\quad L^{-1} \widetilde{A}=\widetilde{U}$

$$
\tilde{U}_{i j}=\left\{\begin{array}{cc}
U_{i j} & j<n \\
\sum_{i} L^{-1} i k \overline{A_{R n}} & j=n
\end{array}\right.
$$

1-pt function:

$$
H_{n, l}=\frac{\operatorname{det} \tilde{A}}{\operatorname{det} A}=\frac{\tilde{U}_{n, n}}{U_{n, n}}=\frac{1}{2^{n}} \sum_{j=0}^{l}\binom{n}{j}
$$

Proof:

$$
\begin{aligned}
\widetilde{U}_{n, 1} & =\sum_{i} \underbrace{L_{n, i}^{-1}}_{(-1)^{n+i}\binom{n}{i}} \tilde{A}_{i, n}=\sum_{i} L_{n, i}^{-1} \underbrace{A_{i+-n, n}}_{\left.\frac{1}{1-z-w-z w}\right|_{z^{i n+n}} w^{n}} \\
& \left.=\sum_{i}(-z)^{n-i}\binom{n}{i} \frac{1}{1-z-w-z w} \right\rvert\, z^{e} w^{n} \\
& =\left.\frac{(1-z)^{n}}{1-z-w-z w}\right|_{z^{e} w^{n}}=\left.(1-z)^{n} \frac{(1+z)^{n}}{(1-z)^{n+1}}\right|_{z^{e}}=\left.\frac{(1+z)^{n}}{1-z}\right|_{z^{e}} \\
& =\sum_{0}^{e}\binom{n}{j} \quad \text { ged } .
\end{aligned}
$$

Yea

Single path from $(l, 2 n-l) \rightarrow(k, k)$ exiting diamad

$$
Y_{\ell, k}=A_{n-l, k-n-1}+A_{n-l-1, k-n-1}
$$

Tangent method: asymptotics of $\sum_{e} H_{n, e} Y_{e, k}$
Scaling: n lange $l=n j \quad k=n z \quad j \in(0,1) ; z>1$.

$$
\begin{aligned}
& Y_{n, 1} Y_{n \pi, n x} \sim 2 A_{n(1-5), n(z-1)} \sim \int_{0}^{M_{i n}(1-5, x-1)} d \theta e^{S_{0}(\theta, 3, z)} \\
& S_{0}(\theta, \zeta, z)=(z-j-\theta) \log (z-j-\theta)-\theta \log \theta-(1-\xi-\theta) \log (-\bar{j}-\theta) \\
& \text { stiving } \\
& -(z-1-\theta) \log (z-1-\theta)
\end{aligned}
$$

$$
\begin{array}{r}
\text { (Hn?)} \left.\begin{array}{r}
H_{n, n j} \sim \frac{1}{2 n} \sum_{j=0}^{l}\binom{n}{j} \sim \int_{0}^{\zeta} d \varphi e^{n S_{1}(\varphi, z)} \\
S_{1}(\varphi, z)
\end{array}\right)=-\varphi \log \varphi-(1-\varphi) \log (1-\varphi)-\log 2
\end{array}
$$

Saddle paint:
total action: $S=S_{0}+S_{1}(\varphi, \theta, \zeta, z)$

$$
\frac{\partial S}{\partial \varphi}=0 \Rightarrow \varphi_{0}=\frac{1}{2}
$$

$\left\{\begin{array}{l}\text { (1) } \zeta>\frac{1}{2} \text { then } S_{1}(\varphi \cdot, z)=0 \quad \text { and } H_{n, n}, \sim 1 \\ \text { (2) } \zeta<\frac{1}{2} \text { then } S_{1}(\xi, z) \text { dominates }=-\zeta \log T-(1-3) \log (1-\zeta)-\log 2\end{array}\right.$

$$
\begin{cases}(1) J>\frac{1}{2} & S=S_{0}(\theta, 5, z) \\ (2) 5<\frac{1}{2} & S=S_{0}(\theta, 5, z)+S_{1}(\zeta, z)\end{cases}
$$

Now extemize S over $\theta, J=\frac{\partial S}{\partial \theta}=\frac{\partial S}{\partial \zeta}=0$
(1) no solution
(2) $(1-j-\theta)(z-1-\theta)=\theta(z-j-\theta)$ and $(1-\zeta-\theta)(1-\zeta)=(z-j-\theta) \xi$
$\Rightarrow \zeta_{0}(z)=\frac{1}{2 z}$ most likely exit point $=\left(\zeta_{0}, 2-\xi_{0}\right)$
Tangent Family:

$$
L(x, y)=y-\frac{2-\zeta_{0}-z}{5_{0}-z} x+2 z \frac{1-\zeta_{0}}{5_{0}-z}=0
$$

Envelope $\quad \frac{\partial L}{\partial z}=L=0$
$\mathscr{G}: x^{2}+(y-1)^{2}=\frac{1}{2} \quad x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$

3. DYCK PATHS
z_{n}

Tangent Meltod selting:

LGVmatix $\quad A_{i, j}=C_{i+j+k} 0 \leq i, j \leq n$ $C_{n}=\frac{1}{n+1}\binom{2 n}{n} \quad$ Catalan number.
$[$ Krattenthaler $] \rightarrow \operatorname{det}\left(C_{i+\alpha_{i}}\right)$ formula

LU decomposition:

$$
\begin{aligned}
& L_{i j}=\frac{(2 k+2 i)!(k+j)!(k+2 j+1)!}{(2 k+2 j)!(k+i)!(k+i+j+1)!}\binom{i}{j} \\
& \left(L^{-1}\right)_{i j}=(-1)^{i+j} \frac{(2 k+2 i)!(k+j)!(k+i+j)!}{(2 k+2)!(k+i)!(k+2 i)!}\binom{i}{j} \\
& \Rightarrow U_{n, n}=\frac{(2 n+1)!(2 n+2 k)!}{(k+2 n+1)!(k+2 n)!}
\end{aligned}
$$

Fron combinatorial identit:

$$
\sum_{m=0}^{i}(-1)^{m+i}\binom{k+m+i}{i-j}\binom{k+i+j+1}{i-m}\binom{k+m}{m}\binom{2 k+2 m+2 j}{2 j}=\left\{\begin{array}{cc}
(2 i+1)\binom{k+i}{k} & (i=j) \\
0 & (i>j)
\end{array}\right.
$$

$z_{n, \ell}$
LGV matix: $\quad \tilde{A}_{i, j}=\left\{\begin{array}{ll}A_{i j} & (j<n) \\ \frac{n+l+1}{n+i+k+1}\binom{2 k+2 i+n-l}{k+i-l}\end{array} \quad(j=n)\right.$
1ptfunction: $\quad H_{n, k l}=\frac{\operatorname{det}(\widetilde{A})}{\operatorname{det}(A)}=\frac{\tilde{U}_{n, n}}{U_{n, n}}$
THM

$$
H_{n, k l}=\frac{1}{\binom{2 n+2 l l}{n+l}} \sum_{s=0}^{n}\binom{n+l+1}{2 n+1-2 s}\binom{2 n+k-s}{n+l}
$$

follows from a verynon-tivial combinatorial identity:
(1) $\frac{\widetilde{U}_{n n}}{U_{n, n}}=\frac{(n+l+1) n!(2 n+k+1)!}{(2 k+1)!(n+k)!} \sum_{r=0}^{n}(-1)^{n+r} \frac{(k+r)!(n+k+r)!(2 k+2 r+n-l)!}{r!(2 k+r)!(n-r)!(n+k+r+1)!(k+r-l)!}$
$\tau_{\text {alternating sum }}$
(2) $=\frac{(n+l+1)!(2 k+n-l)!}{(2 n+2 k)!} \sum_{s=0}^{n} \frac{(2 n+k-s)!}{(l+2 s-n)!(n+k-l-s)!(2 n+1-2 s)!}$
\uparrow positive sum
Proof: by interpolation.

$$
Y_{e, p}=\binom{p+l-1}{e}
$$

Tangent Melhod: asymptorics of $\sum_{e} H_{n g, e} Y_{e, r}$
Scaling: n lange, $l=3 n, k=x n, p=y n$
(Yn, $Y_{\zeta n, y_{n}} \sim e^{n S_{0}(5, y)}$

$$
S_{0}(J, y)=(y+\xi) \log (y+j)-J \log 5-y \log y
$$

$H_{n, 1,1} \quad H_{n, x^{n}, 5 n} \sim \int_{0}^{x} d \sigma e^{s_{1}(\sigma, 5, x)}$

$$
\begin{aligned}
S_{1}(\sigma, 5, x) & =(1+5) \log (1+5)+(2 x+1-5) \log (2 x+1-5)-(2 x+2) \log (2 x+2) \\
& +(x+2-\sigma) \log (x+2-\sigma)-(5+2 \sigma-1) \log (5+2 \sigma-1) \\
& -(1+x-\sigma-\xi) \log (1+x-\sigma-5)-(2-2 \sigma) \log (2-2 \sigma)
\end{aligned}
$$

(and constraints $0 \leqslant \sigma \leqslant 1 \quad 0 \leqslant 5 \leqslant 1+x \quad \overline{3}+2 \sigma \geqslant 1$)
Extremization: $S=S_{0}+S_{1} \quad \partial_{\sigma} S=\partial_{5} S=0$

$$
\Rightarrow \sigma=\frac{2+3 x-(2+x) 5}{3+4 x-3}=1-\frac{x+(2+x) 5}{3+4 x-5} \leq 1
$$

- if $\sigma \geqslant 0 \Leftrightarrow \bar{\zeta}<\frac{2+3 x}{2+x}$ then $\bar{\zeta}=2 x+1$ no solution.
- hence $\sigma=0$ and $\partial_{3} S=0 \Rightarrow(1+3)(y+5)(1+x-3)=5(1+2 x-j)(\xi-1)$

$$
j>\frac{2+3 x}{2+x}
$$

Tangent family $L=v=a u \quad b=0 a=\frac{y-\xi}{y+3} \quad b=\frac{2(1+x+y) \xi-y}{y+5}$

$$
\zeta=\zeta(x, y) \text { suction } f(x)
$$

$(*) \Rightarrow y=\frac{\zeta((2+x) \zeta-(2+3 x))}{(1+5)(1+x-\zeta)}$ envelope: $\frac{\partial L}{\partial \bar{\zeta}}=L=0$

ArcticCurve (ellipı)
(C) $x^{2} v^{2}+4(1+x) u(u-2 x)=0$

Tangency paints A, B

- A: $y \rightarrow \infty \quad \overline{3}=1+x$

$$
\begin{aligned}
& x_{1}=\frac{2 x}{2+x} \\
& B=y \rightarrow 0 \quad j=\frac{2+3 x}{2+x} \\
& x_{2}=\frac{2 x(1+x)}{2+x}
\end{aligned}
$$

What about the rest of the curve? TILING problem!

TANGENT METHOD AGAIN

(2h)
Gersel-Viennot-matix $\left.\quad A_{i j}=\binom{j+n+1}{2 j-i} p \leqslant i, j \leqslant k-1\right)$
LU de composition

$$
\begin{aligned}
& \quad L_{i j}=\frac{i!(j+2 n+2)!}{(i-j)!(2 j-i)!(i-2 n+2)!} \\
& \left(L^{-1}\right)_{i j}=(-1)^{i+j} \frac{(j+2 n+2)!(2 i-j-1)!}{(i+2 n+2)!(i-j)!(j-1)!} \quad(0 \leq i, j \leq k-1) \\
& U_{k-1, k-1}=\frac{(2 n+2 k)!(k-1)!}{(2 n+k+1)!(2 k-2)!}
\end{aligned}
$$

$\frac{Z_{n, e}}{\underline{\text { Gessel-Viennot matiix }}} \tilde{A}_{i j}= \begin{cases}A_{i j} & (\leqslant \leqslant j<k-1) \\ \binom{n+k-l}{2 k-2-i} & (j=k-1)\end{cases}$

$$
\widetilde{U}_{k-1, k-1}=\sum_{i}\left(L^{-1}\right)_{k, i} \widetilde{A}_{i, k-1}=\text { signed sum }
$$

(THM)

$$
H_{n, P}=\frac{\tilde{U}_{k-1, k-1}}{U_{k-1, k-1}}=\frac{2}{\binom{2 n+2 k}{2 n+3}} \sum_{s=l}^{n+1}\binom{k+n-s}{k-2}\binom{k+n+s-1}{k-2}
$$

$$
(\mathscr{C})=\text { remainder of cllipse. }
$$

4. Another path model

$$
\begin{aligned}
& Z_{n}=2^{n(n+1) / 2} \quad \text { (same as domino tilings!) } \\
& H_{n, l}=\frac{1}{2^{n}} \sum_{i=0}^{\operatorname{Mn}(n, 2 n-l)}\binom{n}{i}
\end{aligned}
$$

Arctic Curve
(6)

$$
4 x^{2}+y^{2}-4 x y-8 x+8 y=0
$$

$(y-2 x)^{2}=8(x-y) \quad$ parabola!

Equivalent Tiling problem:

5. Vertically Symmetric Altanaling sign matices

VSASM

$\underset{\text { symmeticic wrt }}{\text { ver }}$

osculating paths

TANGENT METHOD

Crucial relation [Razumov-Stroganov 04]

$$
\begin{aligned}
& \frac{1}{N_{V S A S M}(2 n+1)} \sum_{l=1}^{2 n} N_{V S A S M}(2 n+1, e) t_{\text {position f1 in last edumn }}^{e-1} \\
& =\frac{1}{N_{\text {ASM }}(2 n-1)} \frac{t}{1+t} \sum_{i=1}^{2 n} N_{\text {ASM }}(2 n, i) t^{i-1} \\
& H_{n, l}=\frac{N_{V \operatorname{SASM}}(2 n+1, l)}{N_{\operatorname{sASM}}(2 n+1)} \quad Y_{e, k}=\sum_{i=0}^{M_{\operatorname{ma}}(k-1,2 n+l-l)}\binom{k-1}{i}\binom{2 n+1-l}{i}
\end{aligned}
$$

(6) $4\left((x-1)^{2}+y^{2}-x y\right)+4(x-1)+8 y+1=0$
\Rightarrow quarter of ellipse

complete by symmetry = same result as ASMs

COnclusion

- It works, but why?
\rightarrow must shaw tangency to \mathscr{C}
- Beyond NILP = it still woks. Why? and what kind of interaction can wee allow
- many other examples - Osculating schröder
- inhomogenears weights
- fused 6V ...

Reference: arXiv:1711.03182 [math-ph]

