How Not to Define Desingularization

Maximilian Jaroschek

Joint work with Moulay A. Barkatou (University of Limoges, XLIM)
for(syte
Formal Methods
in Systems Engineering
"Pólya said: 'First guess, then prove.'" (A. Bostan, 2017)

Recurrences

$$
\begin{array}{ll}
F(z+2)-F(z+1)-F(z)=0 & F(0)=0, F(1)=1 \\
S(z+1)-(z+1) S(z)=0 & S(0)=1 \\
(z+2) H(z+2)-(2 z+3) H(z+1)+(z+1) H(z)=0 & H(0)=1, H(1)=\frac{3}{2}, H(2)=\frac{11}{6}
\end{array}
$$

Holonomic Sequences

These are holonomic:

- Fibonacci numbers
- Factorials
- Harmonic numbers
- Catalan numbers
- Sequences given by polynomial / rational functions
- Sums, products, (certain) subsequences of these

These are not:

- Sequence of prime numbers
- Bernoulli numbers
- Partition numbers

From Single Equations to Systems

$$
\begin{aligned}
& z A(z+1)-3(z+2) A(z)-(z+6) B(z)=0 \\
& z B(z+1)-(-2(z+2)+1) A(z)+3 B(z)=0 \\
& \binom{A(z+1)}{B(z+1)}=\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right)\binom{A(z)}{B(z)}
\end{aligned}
$$

From Single Equations to Systems

$$
\begin{gathered}
(z+2) H(z+2)-(2 z+3) H(z+1)+(z+1) H(z)=0 \\
\binom{H(z+1)}{H(z+2)}=\left(\begin{array}{cc}
0 & 1 \\
\frac{-(z+1)}{z+2} & \frac{2 z+3}{z+2}
\end{array}\right)\binom{H(z)}{H(z+1)}
\end{gathered}
$$

What is a Difference System

Definition: Linear Difference System

$$
Y(z+1)=A(z) Y(z)
$$

Y : d-dimensional column vector
A : invertible matrix of size $\mathrm{d} \times \mathrm{d}$ with entries in $\mathbb{K}(\mathrm{z}), \mathbb{K} \leq \mathbb{C}$

What is a Difference System

Definition: Linear Difference System

$$
Y(z+1)=A(z) Y(z)
$$

Y : d-dimensional column vector
A : invertible matrix of size $\mathrm{d} \times \mathrm{d}$ with entries in $\mathbb{K}(\mathrm{z}), \mathbb{K} \leq \mathbb{C}$

What is a Difference System

Definition: Linear Difference System

$$
Y(z+1)=A(z) Y(z)
$$

Y : d-dimensional column vector
A : invertible matrix of size $\mathrm{d} \times \mathrm{d}$ with entries in $\mathbb{K}(\mathrm{z}), \mathbb{K} \leq \mathbb{C}$

What is a Solution?

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

Meromorphic Functions
$f: \mathbb{C} \backslash S \rightarrow \mathbb{C}^{d}$, where S is a set of isolated points.

Number Sequences
$s_{z}: \mathbb{Z} \rightarrow \mathbb{C}^{d}, s_{z+1}=A(z) s_{z}$ for all z where $A(z)$ is defined.

What is a Solution?

$$
Y(z+1)=A(z) Y(z)
$$

Meromorphic Functions

$f: \mathbb{C} \backslash S \rightarrow \mathbb{C}^{d}$, where S is a set of isolated points.

Number Sequences

$s_{z}: \mathbb{Z} \rightarrow \mathbb{C}^{d}, s_{z+1}=A(z) s_{z}$ for all z where $A(z)$ is defined.

What is a Solution?

Theorem

The set of meromorphic solutions of $[A]$ is a vector space of dimension d over the field of 1-periodic meromorphic functions. (Norlund 1924)

What is a Solution?

Theorem

The set of meromorphic solutions of $[A]$ is a vector space of dimension d over the field of 1-periodic meromorphic functions. (Norlund 1924)

Theorem

Any difference system [A] has a fundamental system of entire solutions. (Praagman 1986)

What is a Solution?

Theorem

The set of meromorphic solutions of $[A]$ is a vector space of dimension d over the field of 1-periodic meromorphic functions. (Norlund 1924)

Theorem

Any difference system [A] has a fundamental system of entire solutions. (Praagman 1986)

Theorem

For any complex number q with $-\operatorname{Re}(q)$ large enough, there exist d linearly independent meromorphic solutions which are holomorphic for $-\operatorname{Re}(z)$ large enough and the associated fundamental matrix F satisfies $F(q)=I_{d}$ (Ramis 1987, Barkatou 1989, Immink 1999)

Singularities in Meromorphic Solutions

Singularities in Meromorphic Solutions

$$
A(z+1)=\frac{1}{z+(3-2 i)} A(z)
$$

Singularities in Meromorphic Solutions

$$
A(z+1)=\frac{1}{z+(3-2 i)} A(z)
$$

Singularities in Meromorphic Solutions

$$
A(z+1)=\frac{1}{z+(3-2 i)} A(z)
$$

Singularities in Meromorphic Solutions

$$
\mathrm{A}(\mathrm{z}+1)=\frac{1}{\mathrm{z}+(3-2 \mathrm{i})} \mathrm{A}(\mathrm{z})
$$

Singularities in Meromorphic Solutions

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

Singularities in Meromorphic Solutions

$$
\mathrm{A}(\mathrm{z}+1)=\frac{1}{\mathrm{z}+(3-2 \mathrm{i})} \mathrm{A}(\mathrm{z})
$$

Singularities in Meromorphic Solutions

$$
\mathrm{A}(\mathrm{z}+1)=\frac{1}{\mathrm{z}+(3-2 \mathrm{i})} \mathrm{A}(\mathrm{z})
$$

Singularities in Meromorphic Solutions

$$
A(z+1)=\frac{1}{z+(3-2 i)} A(z)
$$

An Example for a Function Solution

$$
Y(z+1)=\left(\begin{array}{cc}
0 & 1 \\
\frac{-2 z-2}{z-2} & \frac{3 z-3}{z-2}
\end{array}\right) Y(z)
$$

An Example for a Function Solution

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
0 & 1 \\
\frac{-2 z-2}{z-2} & \frac{3 z-3}{z-2}
\end{array}\right) Y(z) \\
F(z)=\left(\begin{array}{cc}
2^{z} & z^{3}+5 z+6 \\
2^{z+1} & z^{3}+3 z^{2}+8 z+12
\end{array}\right)
\end{gathered}
$$

An Example for a Function Solution

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
0 & 1 \\
\frac{-2 z-2}{z-2} & \frac{3 z-3}{z-2}
\end{array}\right) Y(z) \\
F(z)=\left(\begin{array}{cc}
2^{z} & z^{3}+5 z+6 \\
2^{z+1} & z^{3}+3 z^{2}+8 z+12
\end{array}\right) \\
\text { holomorphic }
\end{gathered}
$$

An Example for a Function Solution

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
0 & 1 \\
\frac{-2 z-2}{z-2} & \frac{3 z-3}{z-2}
\end{array}\right) Y(z) \\
F(z)=\left(\begin{array}{cc}
2^{z} & z^{3}+5 z+6 \\
2^{z+1} & z^{3}+3 z^{2}+8 z+12
\end{array}\right) \\
\text { holomorphic }
\end{gathered}
$$

Question: Which poles in A correspond to poles in solutions?

Apparent Singularities

Definition

A pole of $A(z)$ is called an apparent singularity, if any solution of [A] which is holomorphic in some left half-plane can be analytically continued to a meromorphic solution which is holomorphic at each point of $\zeta+\mathbb{N}^{*}$.

Previous and Related Work

Desingularization of Ore operators:

- Abramov, van Hoeij 1999
- Tsai 2000
- Abramov, Barkatou, van Hoeij 2006
- Chen, J., Kauers, Singer 2013
- Chen, Kauers, Singer 2015
- Zhang 2016

Desingularization of linear differential systems:

- Barkatou 2010
- Barkatou, Maddah 2015

$$
Y(z+1)=A(z) Y(z)
$$

Desingularization of Operators vs. Desingularization of Systems

Basis Transformations

$$
Y(z+1)=A(z) Y(z)
$$

Basis Transformations

$$
\begin{gathered}
Y(z+1)=A(z) Y(z) \\
Y(z)=T(z) X(z)
\end{gathered}
$$

Basis Transformations

$$
\begin{gathered}
Y(z+1)=A(z) Y(z) \\
Y(z)=T(z) X(z) \\
T(z+1) X(z+1)=A(z) T(z) X(z)
\end{gathered}
$$

Basis Transformations

$$
\begin{gathered}
Y(z+1)=A(z) Y(z) \\
Y(z)=T(z) X(z) \\
T(z+1) X(z+1)=A(z) T(z) X(z) \\
X(z+1)=T^{-1}(z+1) A(z) T(z) X(z)
\end{gathered}
$$

Basis Transformations

$$
\begin{gathered}
Y(z+1)=A(z) Y(z) \\
Y(z)=T(z) X(z) \\
T(z+1) X(z+1)=A(z) T(z) X(z) \\
X(z+1)=\underbrace{T^{-1}(z+1) A(z) T(z)}_{=: B(z)} X(z) \\
X(z+1)=B(z) X(z)
\end{gathered}
$$

Humble Beginnings

$$
Y(z+1)=\left(\begin{array}{rrrr}
\frac{-2 z+\frac{1}{2}}{\frac{1}{1} z} & \frac{\frac{1}{4} z^{2}}{-\frac{1}{2} z-19} & 0 & \frac{2 z-3}{-\frac{1}{5} z-3} \\
\frac{-\frac{1}{4} z^{2}-\frac{1}{4} z+1}{20 z^{2}-27} & \frac{3}{4} z^{2}-\frac{40}{3} z+4 \\
-\frac{1}{2} z^{2}-\frac{4}{3} z & \frac{19}{2} z-\frac{1}{2} & \frac{2 z^{2}-z-\frac{3}{2}}{-z^{2}-5 z} \\
\frac{16}{11} z^{2}-z-\frac{1}{2} \\
-z^{2}+6 z-2 & \frac{-5 z^{2}-3 z-1}{-12 z^{2}-4 z-5} & \frac{25 z^{2}+5 z-2}{51 z^{2}+2 z-1} & \frac{-\frac{1}{2} z^{2}-\frac{1}{8} z-1}{-\frac{2}{3} z-5} \\
\frac{8}{3} z^{2}+z+1 \\
-z^{2}-z & \frac{-2 z^{2}-25 z+\frac{2}{3}}{-3 z^{2}+\frac{1}{49} z+1} & \frac{-12 z^{2}+\frac{1}{3} z-1}{-2 z^{2}-\frac{1}{2} z-7} & \frac{\frac{1}{5} z+1}{-\frac{2}{5} z^{2}-\frac{9}{2} z-7}
\end{array}\right) Y(z)
$$

Humble Beginnings

$$
Y(z+1)=\frac{1}{z} Y(z)
$$

$$
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & \frac{z+1}{z}
\end{array}\right) Y(z)
$$

Humble Beginnings

$$
Y(z+1)=\frac{1}{z} Y(z) \quad Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & \frac{z+1}{z}
\end{array}\right) Y(z)
$$

$$
A(z) \in \mathbb{K}(z), \quad q \cdot A(z) \in \operatorname{Mat}_{d}(\mathbb{K}[z]), \quad q \in \mathbb{K}[z]
$$

The Algebraic Approach - Problem Statement

Problem Statement

Let A be a $d \times d$ matrix with coefficients in $\frac{1}{q} \mathbb{K}[z]$ where q is an irreducible polynomial in z. Find a polynomial transformation T such that $T[A] \in \mathbb{K}[z]$ or show that no such T exists. If such a T exists, we call q removable.

The Algebraic Approach - Problem Statement

Problem Statement

Let A be a $d \times d$ matrix with coefficients in $\frac{1}{q} \mathbb{K}[z]$ where q is an irreducible polynomial in z. Find polynomial transformation such that $T[A] \in \mathbb{K}[z]$ or show that no such T exists. If such a 7 exists, we cali q removable.

$$
Y(z)=T(z) X(z)
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

The Algebraic Approach - Problem Statement

Problem Statement

Let A be a $d \times d$ matrix with coefficients in $\frac{1}{q} \mathbb{K}[z]$ where q is an irreducible polynomial in z. Find polynomial transformation such that $T[A] \in \mathbb{K}[z]$ or show that no such T exists. If such a 1 exists, we call q removable.

$$
Y(z)=T(z) X(z)
$$

Strategy

- Construct T as a composition of easy to understand transformations.
- Things that work for differential equations might work for difference equations.

Some Very Easy Examples

$$
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z)
$$

Some Very Easy Examples

$$
\begin{aligned}
& Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
& T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \\
& \downarrow
\end{aligned}
$$

Some Very Easy Examples

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Some Very Easy Examples

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Some Very Easy Examples

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Some Very Easy Examples

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Some Very Easy Examples

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Some Very Easy Examples

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \\
\frac{1}{7} \\
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
\\
=\left(\begin{array}{cc}
\frac{z+2}{z+1} & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Some Very Easy Examples

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
\frac{z+2}{z+1} & 0 \\
0 & 1
\end{array}\right) \\
T
\end{gathered}
$$

Some Very Easy Examples

$$
\begin{gathered}
Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
T=\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
\frac{z+2}{z+1} & 0 \\
0 & 1
\end{array}\right) \\
T
\end{gathered} \begin{gathered}
\mid \\
\\
=\left(\begin{array}{cc}
z+1 & 0 \\
0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Some Very Easy Examples

$$
\left.\begin{array}{rl}
Y(z+1) & =\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
1 \\
T & =\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{z+2}{z+1} & 0 \\
0 & 1
\end{array}\right) \\
0 & 0 \\
0 & 1
\end{array}\right) Y(z)
$$

Some Very Easy Examples

$$
\begin{aligned}
& Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{2} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
& T=\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{2} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\mathrm{z} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{z+2}{z+1} & 0 \\
0 & 1
\end{array}\right) \\
& T=\left(\begin{array}{cc}
z+1 & 0 \\
0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& Y(z+1)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
& T=\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
& \downarrow
\end{aligned}
$$

Some Very Easy Examples

$$
\begin{aligned}
& Y(z+1)=\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
& T=\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{1}{\frac{1}{z+1}} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\mathrm{z} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{z+2}{z+1} & 0 \\
0 & 1
\end{array}\right) \\
& T=\left(\begin{array}{cc}
z+1 & 0 \\
0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& Y(z+1)=\left(\begin{array}{cc}
\frac{1}{z} & 0 \\
0 & 1
\end{array}\right) Y(z) \\
& T=\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
& \downarrow \\
& \left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Dispersion - A Necessary Condition

Lemma

Let q be removable from A . Then there exists a positive integer ℓ such that

$$
\mathrm{q}(\mathrm{z}+\ell) \mid \operatorname{num}(\operatorname{det}(\mathrm{A})) .
$$

Dispersion - A Necessary Condition

Lemma

Let q be removable from A. Then there exists a positive integer ℓ such that

$$
\mathrm{q}(\mathrm{z}+\ell) \mid \operatorname{num}(\operatorname{det}(\mathrm{A})) .
$$

Definition
We call the largest such ℓ the dispersion of A (at q).
$Y(z+1)=A(z) Y(z)$
$\mathrm{T}[\mathrm{A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})$
$\mathrm{q} \mid \operatorname{den}(\mathrm{A})$

Dispersion - A Necessary Condition

Lemma

Let q be removable from A. Then there exists a positive integer ℓ such that

$$
\mathrm{q}(\mathrm{z}+\ell) \mid \operatorname{num}(\operatorname{det}(\mathrm{A})) .
$$

Definition
We call the largest such ℓ the dispersion of A (at q).

$$
\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{cc}
\frac{1}{z} & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right)
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

$q \mid \operatorname{den}(A)$

Dispersion - A Necessary Condition

Lemma

Let q be removable from A. Then there exists a positive integer ℓ such that

$$
\mathrm{q}(\mathrm{z}+\ell) \mid \operatorname{num}(\operatorname{det}(\mathrm{A})) .
$$

Definition
We call the largest such ℓ the dispersion of A (at q).

$$
\left(\begin{array}{ll}
\frac{z+}{z} & 0 \\
0 & 1 \\
1
\end{array}\right) \quad\left(\begin{array}{cc}
\frac{1}{z} & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right)
$$

$$
Y(z+1)=A(z) Y(z)
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

$$
\mathrm{q} \mid \operatorname{den}(\mathrm{A})
$$

Dispersion - A Necessary Condition

Lemma

Let q be removable from A. Then there exists a positive integer ℓ such that

$$
\mathrm{q}(\mathrm{z}+\ell) \mid \operatorname{num}(\operatorname{det}(\mathrm{A})) .
$$

Definition
We call the largest such ℓ the dispersion of A (at q).

$$
\left(\begin{array}{ll}
\frac{z+}{z} & 0 \\
0 & 1 \\
1
\end{array}\right) \quad\left(\begin{array}{cc}
\frac{1}{z} & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right)
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

$$
\mathrm{q} \mid \operatorname{den}(\mathrm{A})
$$

Dispersion - A Necessary Condition

Lemma

Let q be removable from A. Then there exists a positive integer ℓ such that

$$
\mathrm{q}(\mathrm{z}+\ell) \mid \operatorname{num}(\operatorname{det}(\mathrm{A})) .
$$

Definition
We call the largest such ℓ the dispersion of A (at q).

$$
Y(z+1)=A(z) Y(z)
$$

$\mathrm{T}[\mathrm{A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})$
$\mathrm{q} \mid \operatorname{den}(\mathrm{A})$

Dispersion Reduction

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{z+2}{z} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \\
=\left(\begin{array}{cc}
\frac{z+2}{z+1} & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

Observation: Entries in the intersection were multiplied with $\frac{z}{z+1} \rightarrow$ Reduced dispersion.
Idea: Reduce dispersion to zero \rightarrow Singularity removed or not removal not possible.

Column Reduced Form

Lemma

Let r be the rank of the residue matrix of A with respect to q. There exists a unimodular polynomial transformation S such that $S[A]$ is of the form

$$
\left(\begin{array}{ll}
\frac{1}{9} \mathrm{~A}_{1} & \mathrm{~A}_{2}
\end{array}\right)
$$

where A_{1}, A_{2} are polynomial matrices of size $d \times r$ and $d \times d-r$ respectively.

Column Reduced Form

Lemma

Let r be the rank of the residue matrix of A with respect to q. There exists unimodular polynomial transformation S such that $S[A]$ is of the form

$$
\left(\begin{array}{ll}
\frac{1}{9} \mathrm{~A}_{1} & \mathrm{~A}_{2}
\end{array}\right)
$$

where A_{1}, A_{2} are polynomial matrices of size $d \times r$ and $d \times d-r$ respectively.

Column Reduced Form

Lemma

Let r be the rank of the residue matrix of A with respect to q. There exists polynomial transformation S such that $S[A]$ is of the form

$$
\left(\begin{array}{ll}
\frac{1}{q} \mathrm{~A}_{1} & \mathrm{~A}_{2}
\end{array}\right)
$$

where A_{1}, A_{2} are polynomial matrices of size $d \times r$ and $d \times d-r$ respectively.

$$
\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right) \xrightarrow{S=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & -1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z} & 0 \\
\frac{3}{2} & 2
\end{array}\right)
$$

Column Reduced Form

Lemma

Let r be the rank of the residue matrix of A with respect to q. There exists polynomial transformation S such that $S[A]$ is of the form

$$
\left(\begin{array}{ll}
\frac{1}{\mathrm{q}} \mathrm{~A}_{1} & \mathrm{~A}_{2}
\end{array}\right) \quad\left(\begin{array}{ll}
\mathrm{A}_{1} & \mathrm{pA}
\end{array}\right)
$$

where A_{1}, A_{2} are polynomial matrices of size $d \times r$ and $d \times d-r$ respectively.

$$
\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right) \xrightarrow{S=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & -1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z} & 0 \\
\frac{3}{2} & 2
\end{array}\right)
$$

Column Reduced Form

Lemma

Let r be the rank of the residue matrix of A with respect to q. There exists polynomial transformation S such that $S[A]$ is of the form

$$
\left(\begin{array}{ll}
\frac{1}{\mathrm{q}} \mathrm{~A}_{1} & \mathrm{~A}_{2}
\end{array}\right) \quad\left(\begin{array}{ll}
\tilde{\mathrm{A}}_{1} & 0
\end{array}\right)
$$

where A_{1}, A_{2} are polynomial matrices of size $d \times r$ and $d \times d-r$ respectively.

$$
\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right) \xrightarrow{S=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & -1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z} & 0 \\
\frac{3}{2} & 2
\end{array}\right)
$$

Column Reduced Form

Lemma

Let r be the rank of the residue matrix of A with respect to q. There exists polynomial transformation S such that $S[A]$ is of the form

$$
\left(\begin{array}{ll}
\frac{1}{\mathrm{q}} \mathrm{~A}_{1} & \mathrm{~A}_{2}
\end{array}\right) \quad\left(\begin{array}{ll}
\tilde{\mathrm{A}}_{1} & 0
\end{array}\right)
$$

where A_{1}, A_{2} are polynomial matrices of size $d \times r$ and $d \times d-r$ respectively.

$$
\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right) \xrightarrow{S=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & -1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z} & 0 \\
\frac{3}{2} & 2
\end{array}\right)
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z}) \quad \mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

$\mathrm{q} \mid \operatorname{den}(\mathrm{A})$

Shearing Transformation

Lemma

Let A be desingularizable at q and of the form

$$
\underbrace{\frac{1}{q} \mathrm{~A}_{1}}_{r \text { columns }} \mathrm{A}_{2})
$$

Any desingularizing transformation T for A can be written as $\mathrm{T}=\mathrm{D} \tilde{\mathrm{T}}$, where

$$
\mathrm{D}=\operatorname{diag}(\underbrace{\mathrm{q}, \ldots, \mathrm{q}}_{r \text { times }}, 1, \ldots, 1) \text { and } \tilde{\mathrm{T}} \in \mathrm{GL}_{\mathrm{d}}(\mathbb{K}[\mathrm{z}]) \text {. }
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

$$
\mathrm{q} \mid \operatorname{den}(\mathrm{A})
$$

Shearing Transformation

Lemma

Let A be desingularizable at q and of the form

$$
\underbrace{\frac{1}{q} \mathrm{~A}_{1}}_{r \text { columns }} \mathrm{A}_{2})
$$

Any desingularizing transformation T for A can be written as $\mathrm{T}=\mathrm{D} \tilde{\mathrm{T}}$, where

$$
\begin{gathered}
\mathrm{D}=\operatorname{diag}(\underbrace{q, \ldots, q}_{r \text { times }}, 1, \ldots, 1) \text { and } \tilde{T} \in \mathrm{GL}_{\mathrm{d}}(\mathbb{K}[z]) . \\
\left(\begin{array}{cc}
\frac{z+3}{z} & 0 \\
\frac{3}{2} & 2
\end{array}\right) \longrightarrow \mathrm{D}=\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
\frac{z+3}{z+1} & 0 \\
\frac{3}{2} z & 2
\end{array}\right)
\end{gathered}
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

Assembling the Transformation

Lemma

If A is desingularizable at q with dispersion ℓ, then there exist polynomial transformations D, S such that (SD)[A] is either desingularized or desingularizable at $\mathrm{q}(\mathrm{z}+1)$ with dispersion $\ell-1$.

Assembling the Transformation

Lemma

If A is desingularizable at q with dispersion ℓ, then there exist polynomial transformations D, S such that (SD)[A] is either desingularized or desingularizable at $\mathrm{q}(\mathrm{z}+1)$ with dispersion $\ell-1$.

$$
Y(z+1)=A(z) Y(z)
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

$\mathrm{q} \mid \operatorname{den}(\mathrm{A})$

Assembling the Transformation

Lemma

If A is desingularizable at q with dispersion ℓ, then there exist polynomial transformations D, S such that (SD)[A] is either desingularized or desingularizable at $\mathrm{q}(\mathrm{z}+1)$ with dispersion $\ell-1$.

Desingularization Theorem

Theorem

Let A be desingularizable at q. Then there exists an integer m, unimodular polynomial matrices S_{1}, \ldots, S_{m} and diagonal polynomial matrices D_{1}, \ldots, D_{m} such that

$$
\mathrm{T}=\mathrm{S}_{1} \mathrm{D}_{1} \cdots \mathrm{~S}_{\mathrm{m}} \mathrm{D}_{\mathrm{m}}
$$

is a desingularizing transformation for A at q . Furthermore, any other desingularizing transformation T_{0} for A at p can be written as

$$
\mathrm{T}_{0}=\mathrm{T} \tilde{T} \text { with } \tilde{T} \in G L_{d}(\mathbb{K}[z]) .
$$

Our Example

$$
\left(\begin{array}{cc}
\frac{3(z+2)}{} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right) \mathrm{S}_{1}=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & -1
\end{array}\right)
$$

Our Example

$$
\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right) \xrightarrow{S_{1}=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & -1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z} & 0 \\
\frac{3}{2} & 2
\end{array}\right)
$$

Our Example

Our Example

$$
\begin{array}{cc}
\left(\begin{array}{cc}
\frac{3(z+2)}{z} & \frac{z+6}{z} \\
\frac{-2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right) \xrightarrow{S_{1}=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & -1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z} & 0 \\
\frac{3}{2} & 2
\end{array}\right) \xrightarrow{D_{1}=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z+1} & 0 \\
\frac{3}{2} z & 2
\end{array}\right) \\
\left(\begin{array}{cc}
z+1 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cc}
\frac{z+3}{z+2} & 0 \\
\frac{3}{2} z(z+1) & 2
\end{array}\right)
\end{array}
$$

Our Example

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{3(z+2)}{2(z+2)+1} & \frac{z+6}{z} \\
\frac{-3}{z}
\end{array}\right) \xrightarrow{S_{1}=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & -1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z} & 0 \\
\frac{3}{2} & 2
\end{array}\right) \xrightarrow{D_{1}=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z+1} & 0 \\
\frac{3}{2} z & 2
\end{array}\right) \\
\left(\begin{array}{cc}
D_{2}=\left(\begin{array}{cc}
z+1 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{cc}
\frac{3}{2} z(z+1)(z+2) & 2
\end{array}\right) \\
D_{3}=\left(\begin{array}{cc}
z+2 & 0 \\
0 & 1
\end{array}\right)
\end{array}\left(\begin{array}{cc}
\frac{z+3}{z+2} & 0 \\
\frac{3}{2} z(z+1) & 2
\end{array}\right)\right.
\end{gathered}
$$

Our Example

$$
\begin{aligned}
& \left(\begin{array}{cc}
\frac{3(z+2)}{\frac{z}{z}+1} & \frac{z+6}{z} \\
\frac{2(z+2)+1}{z} & \frac{-3}{z}
\end{array}\right) \xrightarrow{S_{1}=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{2} & -1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z} & 0 \\
\frac{3}{2} & 2
\end{array}\right) \xrightarrow{D_{1}=\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right)}\left(\begin{array}{cc}
\frac{z+3}{z+1} & 0 \\
\frac{3}{2} z & 2
\end{array}\right) \\
& \left(\begin{array}{cc}
\left.\downarrow=S_{1} D_{1} D_{2} D_{3}=\left(\begin{array}{cc}
x^{3}+3 x^{2}+2 x & 1 \\
-\frac{1}{2} x^{3}-\frac{3}{2} x^{2}-x & -1
\end{array}\right) \quad D_{2}=\left(\begin{array}{cc}
z+1 & 0 \\
0 & 1
\end{array}\right) \right\rvert\, \\
\left.\left(\begin{array}{cc}
1 & 0 \\
\frac{3}{2} z(z+1)(z+2) & 2
\end{array}\right) \stackrel{D_{3}=\left(\begin{array}{cc}
z+2 & 0 \\
0 & 1
\end{array}\right)}{\stackrel{\frac{z+3}{z+2}}{ } \quad 0} \begin{array}{c}
\frac{3}{2} z(z+1) \\
2
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

The Story So Far

What we did:

- Given: Difference system with irreducible polynomial as denominator.
- Can we find a polynomial basis transformation that removes the denominator?
- We know how to construct such a transformation.
- We know the dispersion \rightarrow We know an upper bound for \#loop iterations.

Question: How can we generalize this to several different poles or poles with higher multiplicity?

Desingularization - Take One

Definition: Desingularization

We call [A] desingularizable at q if $\frac{\operatorname{den}(A)}{q} A$ is desingularizable at q.

Desingularization - Take One

Definition: Desingularization

We call [A] desingularizable at q if $\frac{\operatorname{den}(A)}{q} A$ is desingularizable at q.

$$
\left(\frac{\mathrm{z}+1}{\mathrm{z}^{2}}\right) \xrightarrow{\mathrm{T}=(\mathrm{z})}\left(\frac{1}{\mathrm{z}}\right)
$$

Desingularization - Take Two

$$
A=q^{k}\left(A_{0, q}+q A_{1, q}+q^{2} A_{2, q} \cdots\right)
$$

Desingularization - Take Two

$$
A=q^{k}\left(A_{0, q}+q A_{1, q}+q^{2} A_{2, q} \cdots\right)
$$

Definition: Desingularization

We call [A] desingularizable at q if there exists a polynomial transformation T s.t.

$$
\operatorname{ord}_{q}(\mathrm{~T}[\mathrm{~A}])>\operatorname{ord}_{\mathrm{q}}(\mathrm{~A}) .
$$

Desingularization - Take Two

$$
A=q^{k}\left(A_{0, q}+q A_{1, q}+q^{2} A_{2, q} \cdots\right)
$$

Definition: Desingularization

We call $[A]$ desingularizable at q if there exists a polynomial transformation T s.t.

$$
\operatorname{ord}_{q}(\mathrm{~T}[\mathrm{~A}])>\operatorname{ord}_{q}(\mathrm{~A}) .
$$

$$
\left(\frac{1}{z}\right) \xrightarrow{T=(z)}\left(\frac{1}{z+1}\right)
$$

Desingularization - Take Three

$$
A=q^{k}\left(A_{0, q}+q A_{1, q}+q^{2} A_{2, q} \cdots\right)
$$

Definition: Desingularization

We call [A] desingularizable at q if there exists a polynomial transformation T s.t.

$$
\operatorname{ord}_{q}(T[A])>\operatorname{ord}_{q}(A), \quad \operatorname{ord}_{p}(T[A]) \geq \operatorname{ord}_{p}(A), \quad p \in \mathbb{K}[z] .
$$

Desingularization - Take Three

$$
A=q^{k}\left(A_{0, q}+q A_{1, q}+q^{2} A_{2, q} \cdots\right)
$$

Definition: Desingularization

We call [A] desingularizable at q if there exists a polynomial transformation T s.t.

$$
\operatorname{ord}_{q}(T[A])>\operatorname{ord}_{q}(A), \quad \operatorname{ord}_{p}(T[A]) \geq \operatorname{ord}_{p}(A), \quad p \in \mathbb{K}[z] .
$$

$$
\left(\begin{array}{cc}
\frac{1}{z} & 0 \\
0 & \frac{1}{(z+1)^{2}}
\end{array}\right) \xrightarrow{T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right)}\left(\begin{array}{cc}
\frac{1}{z+1} & 0 \\
0 & \frac{1}{(z+1)^{2}}
\end{array}\right)
$$

Phi Minimality

$$
\left(\frac{z+2}{z(z+1)}\right)
$$

Phi Minimality

$$
\left(\frac{z+2}{z(z+1)}\right) \xrightarrow{T_{1}=(z(z+1))}\left(\frac{1}{z+1}\right)
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

Phi Minimality

$$
\left(\frac{1}{z}\right) \stackrel{T_{2}=(z+1)}{\longleftrightarrow}\left(\frac{z+2}{z(z+1)}\right) \xrightarrow{T_{1}=(z(z+1))}\left(\frac{1}{z+1}\right)
$$

Phi Minimality

$$
\left(\frac{1}{z}\right) \stackrel{T_{2}=(z+1)}{\longleftrightarrow}\left(\frac{z+2}{z(z+1)}\right) \xrightarrow{T_{1}=(z(z+1))}\left(\frac{1}{z+1}\right)
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z}) \quad \mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z}) \quad \mathrm{q} \mid \operatorname{den}(\mathrm{A})
$$

Phi Minimality

$$
\left(\frac{1}{z}\right) \stackrel{T_{2}=(z+1)}{\longleftrightarrow}\left(\frac{z+2}{z(z+1)}\right) \xrightarrow{T_{1}=(z(z+1))}\left(\frac{1}{z+1}\right)
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

Phi Minimality

$$
\left(\frac{1}{z}\right) \stackrel{T_{2}=(z+1)}{\longleftrightarrow}\left(\frac{z+2}{z(z+1)}\right) \xrightarrow{T_{1}=(z(z+1))}\left(\frac{1}{z+1}\right)
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

Phi Minimality

$$
\left(\frac{1}{z}\right) \stackrel{T_{2}=(z+1)}{\longleftrightarrow}\left(\frac{z+2}{z(z+1)}\right) \xrightarrow{T_{1}=(z(z+1))}\left(\frac{1}{z+1}\right)
$$

$$
\mathrm{Y}(\mathrm{z}+1)=\mathrm{A}(\mathrm{z}) \mathrm{Y}(\mathrm{z})
$$

$$
\mathrm{T}[\mathrm{~A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})
$$

Desingularization - Take Four

Definition: Desingularization

We call [A] desingularizable at a phi-minimal q if there exists a polynomial transformation T s.t.

$$
\operatorname{ord}_{q}(T[A])>\operatorname{ord}_{q}(A), \quad \operatorname{ord}_{p}(T[A]) \geq \operatorname{ord}_{p}(A), \quad p \in \mathbb{K}[z] .
$$

Desingularization - Take Four

Definition: Desingularization

We call [A] desingularizable at a phi-minimal q if there exists a polynomial transformation T s.t.

$$
\operatorname{ord}_{q}(T[A])>\operatorname{ord}_{q}(A), \quad \operatorname{ord}_{p}(T[A]) \geq \operatorname{ord}_{p}(A), \quad p \in \mathbb{K}[z] .
$$

$$
\left(\begin{array}{cc}
\frac{z+1}{z} & 0 \\
0 & \frac{1}{(z+1)^{2}}
\end{array}\right) \xrightarrow{T=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right)}\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{(z+1)^{2}}
\end{array}\right)
$$

Desingularization - Take Five

Definition: Desingularization

$Y(z+1)=A(z) Y(z)$
$\mathrm{T}[\mathrm{A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})$
$\mathrm{q} \mid \operatorname{den}(\mathrm{A})$
97 / 101

Desingularization and Rank Reduction

$$
\left(\begin{array}{cc}
\frac{z+1}{z} & 0 \\
0 & \frac{1}{z}
\end{array}\right) \xrightarrow{T=\left(\begin{array}{ll}
z & 0 \\
0 & 1
\end{array}\right)}\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{z}
\end{array}\right)
$$

From Nilpotency to the Factorial Relation

Proposition

Let ζ be a pole of $\mathrm{A}(\mathrm{z})$ of order $\nu \geq 1$ such that $\zeta-\mathrm{j}$ is not a pole of A for all positive integers j . Let $\tilde{A}(z)=(z-\zeta)^{\nu} \mathrm{A}(\mathrm{z})$, so that $\tilde{A}(\zeta) \neq 0$. If ζ is an apparent singularity for [A], then there exists a positive integer k such that

$$
\tilde{A}(\zeta) \mathrm{A}(\zeta-1) \cdots \mathrm{A}(\zeta-k)=0
$$

in particular, the matrix $\mathrm{A}(\zeta-\mathrm{j})$ is singular for some nonnegative integer j .

Apparent Implies Removable

Theorem

Let ζ be a pole of $A(z)$ such that $\zeta-j$ is not a pole of A for all positive integers j. Then A is desingularizable at $p=z-\zeta$ if and only if

$$
\tilde{A}(\zeta) \mathrm{A}(\zeta-1) \cdots \mathrm{A}(\zeta-\mathrm{k})=0
$$

Theorem

Let ζ be a pole of $\mathrm{A}(\mathrm{z})$ such that $\zeta-\mathrm{j}$ is not a pole of A for all positive integers j . If ζ is an apparent singularity, then A is desingularizable at $p=z-\zeta$.

Conclusion

We saw:

- What are linear difference systems?
- What are apparent singularities of solutions?
- What is desingularization?
- Algorithm for removing singularities.
- Apparent Singularities are removable.

$$
Y(z+1)=A(z) Y(z)
$$

$\mathrm{T}[\mathrm{A}]=\mathrm{T}^{-1}(\mathrm{z}+1) \mathrm{A}(\mathrm{z}) \mathrm{T}(\mathrm{z})$
$\mathrm{q} \mid \operatorname{den}(\mathrm{A})$

