Computation of normal forms for polynomial and maybe Ore matrices

George Labahn

Symbolic Computation Group
University of Waterloo, Canada

Workshop on Computer Algebra and Combinatorics
Vienna November 13-17, 2017

Hermite Normal Forms

Given nonsingular $\mathbf{A} \in \mathbb{K}[D]^{n \times n}$. Compute \mathbf{U} and \mathbf{H} :
(i) \mathbf{U} unimodular, i.e. invertible in $\mathbb{K}[D]^{n \times n}$
(iii) $\mathbf{U} \cdot \mathbf{A}=\mathbf{H}$
(iii) \mathbf{H} in (row) Hermite form, i.e.

$$
\mathbf{H}=\left[\begin{array}{ccccc}
h_{11} & h_{12} & \cdots & \cdots & h_{1 n} \\
0 & h_{22} & h_{23} & & h_{2 n} \\
\vdots & & \ddots & \ddots & \vdots \\
\vdots & & & \ddots & h_{n-1, n} \\
0 & \cdots & \cdots & 0 & h_{n n}
\end{array}\right] \quad \operatorname{deg} h_{j i}<\operatorname{deg} h_{i i}
$$

Popov Normal Form

Given nonsingular $\mathbf{A} \in \mathbb{K}[D]^{n \times n}$. Compute \mathbf{U} and \mathbf{P} :
(i) \mathbf{U} unimodular,
(iii) $\mathbf{U} \cdot \mathbf{A}=\mathbf{P}$
(iii) \mathbf{P} in (row) Popov form, i.e. after possibly permuting rows

$$
\mathbf{P}=\left[\begin{array}{ccccc}
p_{11} & p_{12} & p_{13} & \cdots & p_{1 n} \\
p_{21} & p_{22} & p_{23} & & p_{2 n} \\
\vdots & \vdots & p_{33} & \ddots & \vdots \\
\vdots & \vdots & & \ddots & p_{n-1, n} \\
p_{n 1} & p_{n, 2} & p_{n, 3} & \cdots & p_{n n}
\end{array}\right]
$$

Icoeff (\mathbf{P}) special

More on Normal forms

- Hermite : solving systems of linear equations
- Popov:
* convert Transfer function representation to linear system representation in linear systems theory
* also called Polynomial Echelon Form in Kailath
- Also shifted Popov form : one rescales the row degrees
- Also two sided Smith and Jacobson Forms (Mark's talk)

Example: Conversion to first order

Higher order system of linear differential equations

$$
\begin{array}{rlrlrl}
y_{1}^{\prime \prime}(t)+(t+2) y_{1}(t) & + & t^{2} y_{2}^{\prime \prime}(t)+y_{2}(t) & + & y_{3}^{\prime}(t)+y_{3}(t) & = \\
y_{1}^{\prime \prime}(t)-3 y_{1}(t) & + & 2 t^{2} y_{2}^{\prime \prime}(t)+y_{2}^{\prime}(t)+y_{2}(t) & + & y_{3}^{\prime \prime \prime \prime \prime}(t)-y_{3}^{\prime \prime \prime}(t)+2 t^{2} y_{3}(t) & = \\
y_{1}^{\prime}(t)+y_{1}(t) & + & y_{2}^{\prime \prime}(t)+2 t y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime \prime}(t) & = \\
\hline
\end{array}
$$

Example: Conversion to first order

Higher order system of linear differential equations

$$
\begin{array}{rlrlrl}
y_{1}^{\prime \prime}(t)+(t+2) y_{1}(t) & + & t^{2} y_{2}^{\prime \prime}(t)+y_{2}(t) & + & y_{3}^{\prime}(t)+y_{3}(t) & = \\
y_{1}^{\prime \prime}(t)-3 y_{1}(t) & + & 2 t^{2} y_{2}^{\prime \prime}(t)+y_{2}^{\prime}(t)+y_{2}(t) & + & y_{3}^{\prime \prime \prime \prime \prime}(t)-y_{3}^{\prime \prime \prime}(t)+2 t^{2} y_{3}(t) & = \\
y_{1}^{\prime}(t)+y_{1}(t) & + & y_{2}^{\prime \prime}(t)+2 t y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime \prime}(t) & = \\
\hline
\end{array}
$$

Represent system in operator form

$$
\left[\begin{array}{ccc}
D^{2}+(t+2) & t^{2} D^{2}+1 & D+1 \\
D^{2}-3 & 2 t D^{2}+D+1 & D^{5}-D^{3}+2 t^{2} \\
D+1 & D^{2}+2 t D+1 & D^{4}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]=\mathbf{0} .
$$

Example

Higher order system of linear differential equations

$$
\begin{array}{rlrlrl}
y_{1}^{\prime \prime}(t)+(t+2) y_{1}(t) & + & t^{2} y_{2}^{\prime \prime}(t)+y_{2}(t) & + & y_{3}^{\prime}(t)+y_{3}(t) & =0 \\
y_{1}^{\prime}(t)+3 y_{1}(t) & + & y_{2}^{\prime \prime \prime}(t)+2 y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime}(t)-2 t^{2} y_{3}(t) & = \\
y_{1}^{\prime}(t)+y_{1}(t) & + & y_{2}^{\prime \prime}(t)+2 t y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime}(t) & = \\
0 & 0
\end{array}
$$

Represent system in operator form

$$
\left[\begin{array}{ccc}
D^{2}+(t+2) & t^{2} D^{2}+1 & D+1 \\
D+3 & D^{3}+2 D-1 & D^{3}-2 t^{2} \\
D+1 & D^{2}+2 t D+1 & D^{4}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]=\mathbf{0} .
$$

Example

Higher order system of linear differential equations

$$
\begin{aligned}
y_{1}^{\prime \prime}(t)+(t+2) y_{1}(t) & + & t^{2} y_{2}^{\prime \prime}(t)+y_{2}(t) & + & y_{3}^{\prime}(t)+y_{3}(t) & =0 \\
y_{1}^{\prime}(t)+3 y_{1}(t) & + & y_{2}^{\prime \prime \prime}(t)+2 y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime}(t)-2 t^{2} y_{3}(t) & =0 \\
y_{1}^{\prime}(t)+y_{1}(t) & + & y_{2}^{\prime \prime}(t)+2 t y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime}(t) & =0 .
\end{aligned}
$$

Represent system in operator form

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
D^{2}+(t+2) & t^{2} D^{2}+1 & D+1 \\
D+3 & D^{3}+2 D-1 & D^{3}-2 t^{2} \\
D+1 & D^{2}+2 t D+1 & D^{4}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]=\mathbf{0} .} \\
& \text { (row) Lcoeff }=\left[\begin{array}{lll}
1 & t^{2} & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example

Higher order system of linear differential equations

$$
\begin{array}{rlrlrl}
y_{1}^{\prime \prime}(t)+(t+2) y_{1}(t) & + & t^{2} y_{2}^{\prime \prime}(t)+y_{2}(t) & + & y_{3}^{\prime}(t)+y_{3}(t) & =0 \\
y_{1}^{\prime}(t)+3 y_{1}(t) & + & y_{2}^{\prime \prime \prime}(t)+2 y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime}(t)-2 t^{2} y_{3}(t) & = \\
y_{1}^{\prime}(t)+y_{1}(t) & + & y_{2}^{\prime \prime}(t)+2 t y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime}(t) & = \\
0 & 0
\end{array}
$$

Represent system in operator form

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
D^{2}+(t+2) & t^{2} D^{2}+1 & D+1 \\
D+3 & D^{3}+2 D-1 & D^{3}-2 t^{2} \\
D+1 & D^{2}+2 t D+1 & D^{4}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]=\mathbf{0} .} \\
& \text { (row) Lcoeff }=\left[\begin{array}{ccc}
1 & t^{2} & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad \text { (col) Lcoeff }=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example

Change to new higher order system

$$
\begin{array}{rlrlll}
y_{1}^{\prime \prime}(t)+(t+2) y_{1}(t) & + & t^{2} y_{2}^{\prime \prime}(t)+y_{2}(t) & + & y_{3}^{\prime}(t)+y_{3}(t) & =0 \\
y_{1}^{\prime}(t)+3 y_{1}(t) & + & y_{2}^{\prime \prime \prime}(t)+2 y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime}(t)-2 t^{2} y_{3}(t) & = \\
y_{1}^{\prime}(t)+y_{1}(t) & + & y_{2}^{\prime \prime}(t)+2 t y_{2}^{\prime}(t)-y_{2}(t) & + & y_{3}^{\prime \prime \prime}(t) & =0 \\
\hline
\end{array}
$$

Represent system in operator form

$$
\left[\begin{array}{ccc}
D^{2}+(t+2) & t^{2} D^{2}+1 & D+1 \\
D+3 & D^{3}+D+1 & D^{3}-2 t^{2} \\
D+1 & D^{2}+2 t D+1 & D^{4}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]=\mathbf{0}
$$

Hence can rewrite as

$$
\begin{aligned}
y_{1}^{\prime \prime}(t) & =-(t+2) y_{1}(t)-t^{2} y_{2}^{\prime \prime}(t)-y_{2}(t)-y_{3}^{\prime}(t)-y_{3}(t) \\
y_{2}^{\prime \prime \prime}(t) & =-y_{1}^{\prime}(t)-3 y_{1}(t)-2 y_{2}^{\prime}(t)+y_{2}(t)-y_{3}^{\prime \prime \prime}(t)+2 t^{2} y_{3}(t) \\
y_{3}^{\prime \prime \prime}(t) & =-y_{1}^{\prime}(t)-y_{1}(t)-y_{2}^{\prime \prime}(t)-2 t y_{2}^{\prime}(t)-y_{2}(t)
\end{aligned}
$$

Hermite and Popov are connected:

Monomials on vectors $\mathbb{K}^{1 \times n}[z]$:

$$
z^{\alpha} e_{j}=\left[0, \ldots, 0, z^{\alpha}, 0, \ldots, 0\right]
$$

Ordering on monomials of $\mathbb{K}^{1 \times n}[z]$:

- Position over Term (POT):

$$
z^{\alpha} e_{i}<z^{\beta} e_{j} \quad \Longleftrightarrow \quad i<j \quad \text { or } i=j \text { and } \alpha<\beta
$$

If M submodule of $\mathbb{K}^{1 \times n}[z]$ then can speak of Gröbner bases.

Hermite and Popov are connected:

Monomials on vectors $\mathbb{K}^{1 \times n}[z]$:

$$
z^{\alpha} e_{j}=\left[0, \ldots, 0, z^{\alpha}, 0, \ldots, 0\right]
$$

Ordering on monomials of $\mathbb{K}^{1 \times n}[z]$:

- Position over Term (POT):

$$
z^{\alpha} e_{i}<z^{\beta} e_{j} \quad \Longleftrightarrow \quad i<j \quad \text { or } i=j \text { and } \alpha<\beta
$$

If M submodule of $\mathbb{K}^{1 \times n}[z]$ then can speak of Gröbner bases.
POT reduced Gröbner bases for $M \Longleftrightarrow M$ in Hermite Form.

Hermite and Popov are connected:

Monomials on vectors $\mathbb{K}^{1 \times n}[z]$:

$$
z^{\alpha} e_{j}=\left[0, \ldots, 0, z^{\alpha}, 0, \ldots, 0\right]
$$

Ordering on monomials of $\mathbb{K}^{1 \times n}[z]$:

- Term over Position (TOP):

$$
z^{\alpha} e_{i}<z^{\beta} e_{j} \Longleftrightarrow \alpha<\beta \text { or } i=j \text { and } i<j
$$

If M submodule of $\mathbb{K}^{1 \times n}[z]$ then can speak of Gröbner bases.

TOP reduced Gröbner bases for $M \Longleftrightarrow M$ in Popov Form.

Hermite and Popov are connected:

Monomials on vectors $\mathbb{K}^{1 \times n}[z]$:

$$
z^{\alpha} e_{j}=\left[0, \ldots, 0, z^{\alpha}, 0, \ldots, 0\right]
$$

Ordering on monomials of $\mathbb{K}^{1 \times n}[z]$:

- Term over Position (TOP):

$$
z^{\alpha} e_{i}<z^{\beta} e_{j} \quad \Longleftrightarrow \quad \alpha<\beta \quad \text { or } i=j \text { and } i<j
$$

If M submodule of $\mathbb{K}^{1 \times n}[z]$ then can speak of Gröbner bases.
TOP reduced Gröbner bases for $M \Longleftrightarrow M$ in Popov Form.
Hermite to Popov via FGLM: PhD thesis J. Middeke (2011)

Computation in

Polynomial Domains

Polynomial Matrices

- Fast, deterministic algorithms for Hermite and Popov
- Complexity: $O^{\sim}\left(n^{\omega}\lceil s\rceil\right)$ where s bounded by average : of row and column degrees of \mathbf{A}
: output size $O\left(n^{2} s\right), \Longrightarrow$ good complexity.

Polynomial Matrices

- Fast, deterministic algorithms for Hermite and Popov
- Complexity : $O^{\sim}\left(n^{\omega}\lceil s\rceil\right)$ where s bounded by average
: of row and column degrees of \mathbf{A}
: output size $O\left(n^{2} s\right), \Longrightarrow$ good complexity.
- G. Labahn, V. Neiger and W. Zhou, Fast, deterministic computation of determinants and Hermite normal forms of polynomial matrices,
To appear in Journal of Complexity
- V. Neiger and Thi Xuan Vu, Computing Canonical Bases of Modules of Univariate Relations, Proceedings of ISSAC'17, (2017).

Previous work : Hermite Form

- Polynomial-time over $\mathbb{Q}[x]$: Kannan 1985.
- $O^{\sim}\left(n^{4} d\right)$: Hafner-McCurley 1991
deterministic
- $O^{\sim}\left(n^{\omega+1} d\right)$: Hafner-McCurley (1991), Villard (1996) Storjohann and L. (1996) deterministic
- $O^{\sim}\left(n^{3} d^{2}\right)$: Mulders and Storjohann (2003) deterministic
- $O^{\sim}\left(n^{3} d\right)$: Gupta and Storjohann (2012) probabilistic
- $O^{\sim}\left(n^{\omega} d\right)$: Gupta and Storjohann (2012)
probabilistic
- $O^{\sim}\left(n^{\omega} s\right)$: L.-Neiger-Zhou deterministic

Techniques

(1) Triangularize

- Finding Diagonals
- Complexity
(2) Normalize to Hermite Form
(3) Normalize to (shifted) Popov Form

Finding Diagonal Elements

Given nonsingular A: Partition \mathbf{U} and \mathbf{A} and reduce via

$$
\mathbf{U} \cdot \mathbf{A}=\left[\begin{array}{l}
\mathbf{U}_{u} \\
\mathbf{U}_{d}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{\ell} & \mathbf{A}_{r}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{B}_{1} & * \\
0 & \mathbf{B}_{2}
\end{array}\right] .
$$

Finding Diagonal Elements

Given nonsingular A: Partition \mathbf{U} and \mathbf{A} and reduce via

$$
\mathbf{U} \cdot \mathbf{A}=\left[\begin{array}{l}
\mathbf{U}_{u} \\
\mathbf{U}_{d}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{\ell} & \mathbf{A}_{r}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{B}_{1} & * \\
0 & \mathbf{B}_{2}
\end{array}\right] .
$$

Here
(i) \mathbf{U}_{d} a left kernel basis of \mathbf{A}_{ℓ}
(ii) $\mathbf{B}_{1}\left(=\mathbf{U}_{u} \cdot \mathbf{A}_{\ell}\right)$ is nonsingular and a row basis of \mathbf{A}_{ℓ}.
(iii) $\mathbf{B}_{2}=\mathbf{U}_{d} \cdot \mathbf{A}_{r}$,

Recurse on \mathbf{B}_{1} and \mathbf{B}_{2} to get diagonal elements

Finding Diagonal Elements

Given nonsingular A: Partition \mathbf{U} and \mathbf{A} and reduce via

$$
\mathbf{U} \cdot \mathbf{A}=\left[\begin{array}{l}
\mathbf{U}_{u} \\
\mathbf{U}_{d}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{\ell} & \mathbf{A}_{r}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{B}_{1} & * \\
0 & \mathbf{B}_{2}
\end{array}\right] .
$$

Here
(i) \mathbf{U}_{d} a left kernel basis of \mathbf{A}_{ℓ}
(ii) $\mathbf{B}_{1}\left(=\mathbf{U}_{u} \cdot \mathbf{A}_{\ell}\right)$ is nonsingular and a row basis of \mathbf{A}_{ℓ}.
(iii) $\mathbf{B}_{2}=\mathbf{U}_{d} \cdot \mathbf{A}_{r}$,

Recurse on \mathbf{B}_{1} and \mathbf{B}_{2} to get diagonal elements
Important to control size (measured by row degrees).

Finding Diagonal Elements

Given nonsingular A: Partition \mathbf{U} and \mathbf{A} and reduce via

$$
\mathbf{U} \cdot \mathbf{A}=\left[\begin{array}{l}
\mathbf{U}_{u} \\
\mathbf{U}_{d}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{\ell} & \mathbf{A}_{r}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{B}_{1} & * \\
0 & \mathbf{B}_{2}
\end{array}\right] .
$$

Here
(i) \mathbf{U}_{d} a left kernel basis of \mathbf{A}_{ℓ}
(ii) $\mathbf{B}_{1}\left(=\mathbf{U}_{u} \cdot \mathbf{A}_{\ell}\right)$ is nonsingular and a row basis of \mathbf{A}_{ℓ}.
(iii) $\mathbf{B}_{2}=\mathbf{U}_{d} \cdot \mathbf{A}_{r}$,

Recurse on \mathbf{B}_{1} and \mathbf{B}_{2} to get diagonal elements
Important to control size (measured by row degrees).
Cannot actually compute all of \mathbf{U} - it's too big.

Approach for Hermite

- Triangularize A (fast for all 3 steps)
- Gives diagonal entries of \mathbf{H} which can be large
- Reduce remaining off-diagonal entries (fast)
- Remember: Avoid computing unimodular multiplier \mathbf{U}

Size measures : Shifted Degrees

- The row degree of a row vector \mathbf{p} is

$$
\operatorname{rdeg} \mathbf{p}=\max _{1 \leq i \leq n}\left[\operatorname{deg} p^{(i)}\right] .
$$

Size measures : Shifted Degrees

- The row degree of a row vector \mathbf{p} is

$$
\operatorname{rdeg} \mathbf{p}=\max _{1 \leq i \leq n}\left[\operatorname{deg} p^{(i)}\right] .
$$

- The \vec{s}-row degree of \mathbf{p} is

$$
\operatorname{rdeg}_{\vec{s}} \mathbf{p}=\max _{1 \leq i \leq n}\left[\operatorname{deg} p^{(i)}+s_{i}\right]=\operatorname{rdeg} \mathbf{p} \cdot x^{\vec{s}}
$$

- e.g. $\operatorname{rdeg}\left[\begin{array}{ll}x & x^{2}\end{array}\right]=2, \operatorname{rdeg}_{[3,1]}\left[\begin{array}{ll}x & x^{2}\end{array}\right]=\operatorname{rdeg}\left[\begin{array}{ll}x^{4} & x^{3}\end{array}\right]=4$

Size measures : Shifted Degrees

- The row degree of a row vector \mathbf{p} is

$$
\operatorname{rdeg} \mathbf{p}=\max _{1 \leq i \leq n}\left[\operatorname{deg} p^{(i)}\right] .
$$

- The \vec{s}-row degree of \mathbf{p} is

$$
\operatorname{rdeg}_{\vec{s}} \mathbf{p}=\max _{1 \leq i \leq n}\left[\operatorname{deg} p^{(i)}+s_{i}\right]=\operatorname{rdeg} \mathbf{p} \cdot x^{\vec{s}}
$$

- e.g. $\operatorname{rdeg}\left[\begin{array}{ll}x & x^{2}\end{array}\right]=2, \quad \operatorname{rdeg}_{[3,1]}\left[\begin{array}{ll}x & x^{2}\end{array}\right]=\operatorname{rdeg}\left[\begin{array}{ll}x^{4} & x^{3}\end{array}\right]=4$
- For any matrix $\mathbf{A :} \quad \operatorname{rdeg}_{-\vec{s}} \mathbf{A} \leq 0$ same as $\operatorname{cdeg} \mathbf{A} \leq \vec{s}$

Minimal Kernel Bases

Given $\mathbf{F} \in \mathbb{K}[z]^{m \times n}, \quad m \leq n:$

A Left Kernel Basis for \mathbf{F} is a $\mathbb{K}[z]$ module basis for

$$
\left\{\mathbf{p} \in \mathbb{K}[x]^{m} \mid \mathbf{p} \cdot \mathbf{F}=0\right\}
$$

Can represent basis as matrix $\mathbf{M} \in \mathbb{K}[z]^{* \times m}$.

Minimal Kernel Bases

Given $\mathbf{F} \in \mathbb{K}[z]^{m \times n}, \quad m \leq n:$

A Left Kernel Basis for \mathbf{F} is a $\mathbb{K}[z]$ module basis for

$$
\left\{\mathbf{p} \in \mathbb{K}[x]^{m} \mid \mathbf{p} \cdot \mathbf{F}=0\right\}
$$

Can represent basis as matrix $\mathbf{M} \in \mathbb{K}[z]^{* \times m}$.

Minimal Kernel Basis if matrix \mathbf{M} is row reduced,

Shifted \vec{s}-Minimal Kernel Basis if $\mathbf{M} \cdot z^{\vec{s}}$ is row reduced.

Row Bases

Given $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ with $m \geq n$.

A Row Basis for \mathbf{F} is a $\mathbb{K}[x]$ module basis for

$$
\left\{\mathbf{q} \in \mathbb{K}[x]^{n} \mid \exists \mathbf{p} \in \mathbb{K}[x]^{m} \quad \text { with } \quad \mathbf{q}=\mathbf{p} \cdot \mathbf{F}\right\}
$$

Row Bases

Given $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ with $m \geq n$.

A Row Basis for \mathbf{F} is a $\mathbb{K}[x]$ module basis for

$$
\left\{\mathbf{q} \in \mathbb{K}[x]^{n} \mid \exists \mathbf{p} \in \mathbb{K}[x]^{m} \text { with } \mathbf{q}=\mathbf{p} \cdot \mathbf{F}\right\}
$$

Again
(i) Represent row basis as full rank matrix $\mathbf{T} \in \mathbb{K}[x]^{r \times n}$.
(ii) Can find unimodular matrix \mathbf{U} with $\mathbf{U} \cdot \mathbf{F}=\left[\begin{array}{l}\mathbf{T} \\ \mathbf{0}\end{array}\right]$.

Costs

$\mathbf{F} \in \mathbb{K}[x]^{n \times n}, \quad \vec{s} \in \mathbb{Z}^{m}$ bounds row degrees, $\quad \sum \vec{s} \leq \xi$

Theorem: (Zhou,L,Storjohann) ISSAC (2012) \vec{s}-Minimal left kernel basis computation costs $O^{\sim}\left(m^{\omega} s\right)$.

Note: depends on fast order bases computation Zhou-L. (2009)

Costs

$\mathbf{F} \in \mathbb{K}[x]^{n \times n}, \quad \vec{s} \in \mathbb{Z}^{m}$ bounds row degrees, $\quad \sum \vec{s} \leq \xi$

Theorem: (Zhou,L,Storjohann) ISSAC (2012) \vec{s}-Minimal left kernel basis computation costs $O^{\sim}\left(m^{\omega} s\right)$.

Note: depends on fast order bases computation Zhou-L. (2009)
Theorem: (Zhou, L (ISSAC 2013)
Row basis computation costs $O^{\sim}\left(m^{\omega} s\right)$.

Note: depends on fast Nullspace bases computation.

Complexity

$\mathbf{F} \in \mathbb{K}[x]^{n \times m}, \quad \vec{s} \in \mathbb{Z}^{n}$ bounds row degrees, $\quad \sum \vec{s} \leq \xi$
Theorem
For M a \vec{s}-minimal kernel basis of $\mathbf{F}: \quad \sum \operatorname{rdeg}_{\vec{s}} \mathbf{M} \leq \sum \vec{s}$

Theorem

(i) $\mathbf{A} \in \mathbb{K}[x]^{n \times m}, m \leq n, \quad \vec{s} \in \mathbb{Z}^{n}$ bounding row degrees of \mathbf{A}
(ii) $\mathbf{B} \in \mathbb{K}[x]^{k \times n}$ with $k \in O(n), \quad \sum \operatorname{rdeg}_{\vec{s}} \mathbf{B} \leq \sum \vec{s} \in O(\xi)$

Multiply B and A : $O^{\sim}\left(m^{2} n^{\omega-2} s\right) \subset O^{\sim}\left(n^{\omega} s\right), \quad s=\xi / n$.

Complexity

$\mathbf{F} \in \mathbb{K}[x]^{n \times m}, \quad \vec{s} \in \mathbb{Z}^{n}$ bounds row degrees, $\quad \sum \vec{s} \leq \xi$
Theorem
For M a \vec{s}-minimal kernel basis of $\mathbf{F}: \quad \sum \operatorname{rdeg}_{\vec{s}} \mathbf{M} \leq \sum \vec{s}$

Theorem

(i) $\mathbf{A} \in \mathbb{K}[x]^{n \times m}, m \leq n, \vec{s} \in \mathbb{Z}^{n}$ bounding row degrees of \mathbf{A}
(ii) $\mathbf{B} \in \mathbb{K}[x]^{k \times n}$ with $k \in O(n), \quad \sum \operatorname{rdeg}_{\vec{s}} \mathbf{B} \leq \sum \vec{s} \in O(\xi)$

Multiply B and A : $O^{\sim}\left(m^{2} n^{\omega-2} s\right) \subset O^{\sim}\left(n^{\omega} s\right), \quad s=\xi / n$.

Theorem

$\mathbf{A} \in \mathbb{K}[x]^{n \times n}$. Diagonals costs $O^{\sim}\left(n^{\omega}\lceil s\rceil\right)$ where $s=\frac{\sum \operatorname{cdg} \mathrm{A}}{n}$.

Determinants

Diagonals not enough - need to worry about unimodular part.

Determinants

Diagonals not enough - need to worry about unimodular part.

$$
\operatorname{det} \mathbf{A}=\frac{\operatorname{det} \mathbf{B}_{1} \cdot \operatorname{det} \mathbf{B}_{2}}{\operatorname{det} \mathbf{U}}
$$

Determinants

Diagonals not enough - need to worry about unimodular part.

$$
\operatorname{det} \mathbf{A}=\frac{\operatorname{det} \mathbf{B}_{1} \cdot \operatorname{det} \mathbf{B}_{2}}{\operatorname{det} \mathbf{U}}
$$

For $\operatorname{det} \mathbf{U}=\operatorname{det}\left[\mathbf{U}_{\ell} \mathbf{U}_{r}\right]$ we do:
(1) $\operatorname{det} \mathbf{U}=\operatorname{det} \mathbf{U} \bmod z=\operatorname{det} U=\operatorname{det}\left[U_{\ell}, U_{r}\right]$
(2) $\mathbf{V}=\mathbf{U}^{-1}=\left[\begin{array}{l}\mathbf{V}_{u} \\ \mathbf{V}_{d}\end{array}\right]$
(3) U_{r} and V_{u} determined in column bases computation
(4) Find $U_{\ell}{ }^{*}$ such that $U^{*}=\left[U_{\ell}{ }^{*}, U_{r}\right]$ is unimodular
(5) Let $V_{u}=\mathbf{V}_{u} \bmod z$. Then $\operatorname{det} \mathbf{U}=\frac{\operatorname{det} U^{*}}{\operatorname{det} V_{u} U_{t}^{*}}$

Rest : Reduction of Off-diagonals

Know : $\vec{\delta}$ diagonal degrees of \mathbf{H}. Set $\mu=\max (\vec{\delta})$

$$
\mathbf{A} \cdot \mathbf{x}^{\vec{\mu}-\vec{\delta}} \xrightarrow{\text { reduce }} \mathbf{R} \cdot \mathbf{x}^{\vec{\mu}-\vec{\delta}} \xrightarrow{\text { normalize }} \mathbf{H}=\mathrm{lc}_{-\vec{\delta}}(\mathbf{R})^{-1} \cdot \mathbf{R}
$$

where \mathbf{R} is any $-\vec{\delta}$-row reduced form of \mathbf{A}.

Rest : Reduction of Off-diagonals

Know : $\vec{\delta}$ diagonal degrees of \mathbf{H}. Set $\mu=\max (\vec{\delta})$

$$
\mathbf{A} \cdot \mathbf{x}^{\vec{\mu}-\vec{\delta}} \xrightarrow{\text { reduce }} \mathbf{R} \cdot \mathbf{x}^{\vec{\mu}-\vec{\delta}} \xrightarrow{\text { normalize }} \mathbf{H}=\mathrm{lc}_{-\vec{\delta}}(\mathbf{R})^{-1} \cdot \mathbf{R}
$$

where \mathbf{R} is any $-\vec{\delta}$-row reduced form of \mathbf{A}.

Problem : Shift $\vec{\mu}-\vec{\delta}$ might be too large

Rest : Reduction of Off-diagonals

Know : $\vec{\delta}$ diagonal degrees of $\mathbf{H} . \quad$ Set $\mu=\max (\vec{\delta})$

$$
\mathbf{A} \cdot \mathbf{x}^{\vec{\mu}-\vec{\delta}} \xrightarrow{\text { reduce }} \mathbf{R} \cdot \mathbf{x}^{\overrightarrow{\mu^{1}-\vec{\delta}}} \xrightarrow{\text { normalize }} \mathbf{H}=\mathrm{lc}_{-\vec{\delta}}(\mathbf{R})^{-1} \cdot \mathbf{R}
$$

where \mathbf{R} is any $-\vec{\delta}$-row reduced form of \mathbf{A}.

Problem : Shift $\vec{\mu}-\vec{\delta}$ might be too large

Answer : Partial linearization of Storjohann (2007): $\mathbf{A} \rightarrow \mathcal{L}(\mathbf{A})$

Smooths shifts, keeps properties of \mathbf{A} while enlarging a bit.

Partial Linearization

Consider \mathbf{H} with diagonal degrees (2, 37, 7, 18).

$$
\mathbf{H}=\left[\begin{array}{cccc}
(2) & {[36]} & {[6]} & {[17]} \\
& (37) & {[6]} & {[17]} \\
& & (7) & {[17]} \\
& & & (18)
\end{array}\right],
$$

[d] : degree at most d and (d) : monic, degree exactly d.
$\delta=1+\lfloor(2+37+7+18) / 4\rfloor=17$. Construct by "expanding columns":

$$
\widetilde{\mathbf{H}}=\left[\begin{array}{ccccccc}
(2) & {[16]} & {[16]} & {[2]} & {[6]} & {[16]} & 0 \\
& {[16]} & {[16]} & (3) & {[6]} & {[16]} & {[0]} \\
& & & & (7) & {[16]} & {[0]} \\
& & & & & {[16]} & (1)
\end{array}\right] .
$$

\mathbf{H} and $\widetilde{\mathbf{H}}$ are related by $\quad \mathbf{H}=\widetilde{\mathbf{H}} \cdot \mathcal{E}_{\vec{\delta}}$ where

$$
\mathcal{E}_{\vec{\delta}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & x^{17} & 0 & 0 \\
0 & x^{34} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & x^{17}
\end{array}\right]
$$

Insert elementary rows in $\widetilde{\mathbf{H}}$ by

$$
\mathcal{L}_{\vec{\delta}}(\mathbf{H})=\left[\begin{array}{ccccccc}
(2) & {[16]} & {[16]} & {[2]} & {[6]} & {[16]} & {[0]} \\
& x^{17} & -1 & & & & \\
& & x^{17} & -1 & & & \\
& {[16]} & {[16]} & (3) & {[6]} & {[16]} & {[0]} \\
& & & & (7) & {[16]} & {[0]} \\
& & & & & x^{17} & -1 \\
& & & & & {[16]} & (1)
\end{array}\right]
$$

Column degrees $\vec{d}=(2,17,17,3,7,17,1)$ - maximum 17 .

Main property kept : shifted row reduction.

Theorem

Let $\mathbf{A} \in \mathbb{K}[x]^{n \times n}$ nonsingular with $\vec{\delta}$ the degrees of the diagonal entries of the Hermite form.

Then the Hermite form is computed using $O^{\sim}\left(n^{\omega} d\right)$ field operations.

Improving the Complexity

Repeat : partial linearization (this time with rows) :
(i) Enlarge: $\mathbf{A} \rightarrow \mathcal{L}^{\mathcal{C}}(\mathbf{A})$

- size of $\mathcal{L}^{c}(\mathbf{A})$ at most twice size of \mathbf{A}
- degree $\mathcal{L}^{c}(\mathbf{A})$ at most average of \mathbf{A}
(ii) Compute Hermite form of $\mathcal{L}^{c}(\mathbf{A})$
(iii) \mathbf{H} is found in upper left corner of Hermite form of $\mathcal{L}^{c}(\mathbf{A})$

Theorem
$\mathbf{A} \in \mathbb{K}[x]^{n \times n}$ nonsingular. Hermite form computed: $O^{\sim}\left(n^{\omega}\lceil s\rceil\right)$.

Results specific to Ore domain

- M. Giesbrecht and M. Sub Kim, (2013) Domain $\mathbf{A} \in \mathcal{F}(t)\left[D_{t}\right]^{n \times n}$
- Hermite: Polynomial \mathcal{F} operations in $n, \operatorname{deg}_{D} \mathbf{A}$, and $\operatorname{deg}_{t} \mathbf{A}$ (also polynomial in the coefficient bit-length when $\mathcal{F}=Q$).
- M. Barkatou, C. El Bacha, E. Pflügell, G.L. (2013)
- Two-sided block Popov form for $\mathbf{A} \in \mathcal{F}[[t]]\left[D_{t}\right]^{n \times n}$
- B. Beckermann, H. Cheng and G.L, (2006)
- Fraction-free row reduction Ore matrices

Order bases for Ore matrices

- M. Khochtali and A. Storjohann, (ISSAC 2017)
- Fraction-free Popov for Ore matrices

Thanks

- To the organizers for the invitation

- To the audience for listening

Complexity

Complexity

Proof.

If cost : $g(n)$ then recurrence relation: (with $s=\frac{\xi}{n}$)

$$
g(n) \in O^{\sim}\left(n^{\omega}\lceil s\rceil\right)+g(\lceil n / 2\rceil)+g(\lfloor n / 2\rfloor)
$$

Complexity

Proof.

If cost : $g(n)$ then recurrence relation: (with $s=\frac{\xi}{n}$)

$$
\begin{aligned}
g(n) & \in O^{\sim}\left(n^{\omega}\lceil s\rceil\right)+g(\lceil n / 2\rceil)+g(\lfloor n / 2\rfloor) \\
& \in O^{\sim}\left(n^{\omega-1} \xi+n^{\omega}\right)+g(\lceil n / 2\rceil)+g(\lfloor n / 2\rfloor)
\end{aligned}
$$

Complexity

Proof.

If cost : $g(n)$ then recurrence relation: (with $s=\frac{\xi}{n}$)

$$
\begin{aligned}
g(n) & \in O^{\sim}\left(n^{\omega}\lceil s\rceil\right)+g(\lceil n / 2\rceil)+g(\lfloor n / 2\rfloor) \\
& \in O^{\sim}\left(n^{\omega-1} \xi+n^{\omega}\right)+g(\lceil n / 2\rceil)+g(\lfloor n / 2\rfloor) \\
& \in O^{\sim}\left(n^{\omega-1} \xi+n^{\omega}\right)+2 g(\lceil n / 2\rceil) \\
& \in O^{\sim}\left(n^{\omega-1} \xi+n^{\omega}\right)=O^{\sim}\left(n^{\omega}\lceil s\rceil\right) .
\end{aligned}
$$

