Convolutions as solutions of linear recurrences

S. A. Abramov*
M. Petkovšek ${ }^{\dagger} \quad$ H. Zakrajšek ${ }^{\dagger}$
*Dorodnicyn Computing Center, FRC CSC of RAS
${ }^{\dagger}$ University of Ljubljana, Slovenia

Vienna, November 2017

Outline

■ Operations with holonomic sequences
■ Explicitly representable sequences
(3) Convolutions of Liouvillian sequences
© Inverse Zeilberger's problem

Operations with holonomic sequences 1

Notation:
$\mathbb{N} \quad \ldots$ the set of nonnegative integers
$\mathbb{K} \quad \ldots$ algebraically closed field of characteristic 0
$\mathbb{K}^{\mathbb{N}} \quad \ldots$ the set of all sequences over \mathbb{K}
$\mathcal{P}(\mathbb{K}) \quad$... the set of all P-recursive or holonomic sequences over \mathbb{K}

Operations with holonomic sequences 1

Notation:

$\mathbb{N} \quad$... the set of nonnegative integers
$\mathbb{K} \quad \ldots$ algebraically closed field of characteristic 0
$\mathbb{K}^{\mathbb{N}} \quad \ldots$ the set of all sequences over \mathbb{K}
$\mathcal{P}(\mathbb{K}) \quad \ldots$ the set of all P-recursive or holonomic sequences over \mathbb{K}

Definition

A sequence $\left\langle a_{n}\right\rangle_{n=0}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ is P-recursive or holonomic if there are $d \in \mathbb{N}$ and $p_{0}, p_{1}, \ldots, p_{d} \in \mathbb{K}[n], p_{0} p_{d} \neq 0$, such that

$$
p_{d}(n) a_{n+d}+p_{d-1}(n) a_{n+d-1}+\cdots+p_{0}(n) a_{n}=0
$$

for all $n \in \mathbb{N}$.

Operations with holonomic sequences 2

Definition

A sequence $a \in \mathbb{K}^{\mathbb{N}}$ is hypergeometric if:

$$
1 \exists p, q \in \mathbb{K}[n] \backslash\{0\}:
$$

$$
p(n) a_{n+1}+q(n) a_{n}=0
$$

for all $n \geq 0$,

Operations with holonomic sequences 2

Definition

A sequence $a \in \mathbb{K}^{\mathbb{N}}$ is hypergeometric if:

$$
\mathbb{1} \exists p, q \in \mathbb{K}[n] \backslash\{0\}:
$$

$$
p(n) a_{n+1}+q(n) a_{n}=0
$$

for all $n \geq 0$,
$2 \exists N \in \mathbb{N}: a_{n} \neq 0$ for all $n \geq N$.

Operations with holonomic sequences 2

Definition

A sequence $a \in \mathbb{K}^{\mathbb{N}}$ is hypergeometric if:

$$
\begin{aligned}
& \mathbb{1} \exists p, q \in \mathbb{K}[n] \backslash\{0\}: \\
& \qquad p(n) a_{n+1}+q(n) a_{n}=0
\end{aligned}
$$

for all $n \geq 0$,
2 $\exists N \in \mathbb{N}: a_{n} \neq 0$ for all $n \geq N$.

Equivalently:
a hypergeometric $\Longleftrightarrow \exists r \in \mathbb{K}(n)^{*}: \frac{a_{n+1}}{a_{n}}=r(n)$ a.e.

Operations with holonomic sequences 3

Example

Some hypergeometric sequences:

$$
\begin{aligned}
& a_{n}=c^{n}, \quad c \in \mathbb{K}^{*} \\
& a_{n}=r(n) \text { a.e., } \quad r \in \mathbb{K}(n), r \neq 0 \\
& a_{n}=n! \\
& a_{n}=\binom{2 n}{n}
\end{aligned}
$$

Operations with holonomic sequences 3

Example

Some hypergeometric sequences:
$\square a_{n}=c^{n}, \quad c \in \mathbb{K}^{*}$
$a_{n}=r(n)$ a.e., $r \in \mathbb{K}(n), r \neq 0$
$a_{n}=n!$

- $a_{n}=\binom{2 n}{n}$

Notation: $\mathcal{H}(\mathbb{K}) \ldots$ all hypergeometric sequences in $\mathbb{K}^{\mathbb{N}}$

Operations with holonomic sequences 4

Research project:

Operations with holonomic sequences 4

Research project:

Design algorithms for finding explicit representations of holonomic sequences in terms of

Operations with holonomic sequences 4

Research project:

Design algorithms for finding explicit representations of holonomic sequences in terms of

- hypergeometric sequences,

Operations with holonomic sequences 4

Research project:

Design algorithms for finding explicit representations of holonomic sequences in terms of

- hypergeometric sequences,
- operations which preserve holonomicity.

Operations with holonomic sequences 5

Theorem

$\mathcal{P}(\mathbb{K})$ is closed under the following unary operations $a \mapsto c$:
1 scalar multiplication: $\quad c_{n}=\lambda a_{n} \quad(\lambda \in \mathbb{K})$
2 shift: $c_{n}=a_{n+1}$
3 inverse shift: $\quad c_{n}= \begin{cases}a_{n-1}, & n \geq 1, \\ 0, & n=0\end{cases}$
4 difference: $c_{n}=a_{n+1}-a_{n}$
5 partial summation: $c_{n}=\sum_{k=0}^{n} a_{k}$
б multisection: $\quad c_{n}=a_{k n+r} \quad(k \in \mathbb{N} \backslash\{0\}, 0 \leq r \leq k-1)$

Operations with holonomic sequences 6

Theorem

$\mathcal{P}(\mathbb{K})$ closed under the following binary operations $(a, b) \mapsto c$:

7 addition: $\quad c_{n}=a_{n}+b_{n}$
8 multiplication: $c_{n}=a_{n} b_{n}$
9 convolution: $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$

Operations with holonomic sequences 7

Theorem

$\mathcal{P}(\mathbb{K})$ is closed under
10 interlacing: $\left(a^{(0)}, a^{(1)}, \ldots, a^{(d-1)}\right) \mapsto c$, where

$$
c_{n}=a_{n \operatorname{div} d}^{(n \bmod d)} \quad(d \in \mathbb{N})
$$

Operations with holonomic sequences 7

Theorem

$\mathcal{P}(\mathbb{K})$ is closed under
10 interlacing: $\left(a^{(0)}, a^{(1)}, \ldots, a^{(d-1)}\right) \mapsto c$, where

$$
c_{n}=a_{n \operatorname{div} d}^{(n \bmod d)} \quad(d \in \mathbb{N})
$$

Example

The interlacing of $a, b \in \mathbb{K}^{\mathbb{N}}$ is the sequence

$$
c=\left\langle a_{0}, b_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right\rangle
$$

Explicitly representable sequences 1

Definition

$\mathcal{A}(\mathbb{K})$ is the least subring of $\mathbb{K}^{\mathbb{N}}$ containing $\mathcal{H}(\mathbb{K})$, closed under
■ shift, inverse shift,

- partial summation.

The elements of $\mathcal{A}(\mathbb{K})$ are d'Alembertian sequences.

Explicitly representable sequences 1

Definition

$\mathcal{A}(\mathbb{K})$ is the least subring of $\mathbb{K}^{\mathbb{N}}$ containing $\mathcal{H}(\mathbb{K})$, closed under

- shift, inverse shift,
- partial summation.

The elements of $\mathcal{A}(\mathbb{K})$ are d'Alembertian sequences.

Example

Some d'Alembertian sequences:

- Harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$
- Derangement numbers $d_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$
$\square a_{n}=\frac{(n+1)!}{2^{n}} \sum_{k=0}^{n} \frac{2^{k}}{k+1}$

Explicitly representable sequences 2

Definition

$\mathcal{L}(\mathbb{K})$ is the least subring of $\mathbb{K}^{\mathbb{N}}$ containing $\mathcal{H}(\mathbb{K})$, closed under

- shift, inverse shift,
- partial summation,
- interlacing.

The elements of $\mathcal{L}(\mathbb{K})$ are Liouvillian sequences.

Explicitly representable sequences 2

Definition

$\mathcal{L}(\mathbb{K})$ is the least subring of $\mathbb{K}^{\mathbb{N}}$ containing $\mathcal{H}(\mathbb{K})$, closed under

- shift, inverse shift,
- partial summation,
- interlacing.

The elements of $\mathcal{L}(\mathbb{K})$ are Liouvillian sequences.

Example

The sequence

$$
n!!= \begin{cases}2^{k} k!, & n=2 k, \\ \frac{(2 k+1)!}{2^{k} k!}, & n=2 k+1\end{cases}
$$

is Liouvillian (as an interlacing of two hypergeometric sequences).

Explicitly representable sequences 3

$$
\text { P-recursive: } \quad \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

Liouvillian: n!!

Explicitly representable sequences 4

Theorem

$\mathcal{L}(\mathbb{K})$ is closed under the following operations:
1 scalar multiplication
2 shift
3 inverse shift
4 difference
5 partial summation
6 multisection
7 addition
8 multiplication
9 interlacing

Convolutions of Liouvillian sequences 1

Question: What about convolution

$$
(a * b)_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} ?
$$

Convolutions of Liouvillian sequences 1

Question: What about convolution

$$
(a * b)_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} ?
$$

Example

The convolution of $1 / n$! with itself

$$
\frac{1}{n!} * \frac{1}{n!}=\sum_{k=0}^{n} \frac{1}{k!(n-k)!}=
$$

Convolutions of Liouvillian sequences 1

Question: What about convolution

$$
(a * b)_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} ?
$$

Example

The convolution of $1 / n$! with itself

$$
\frac{1}{n!} * \frac{1}{n!}=\sum_{k=0}^{n} \frac{1}{k!(n-k)!}=\frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k}=\frac{2^{n}}{n!}
$$

is hypergeometric.

Convolutions of Liouvillian sequences 2

Example

The convolution of n ! with itself

$$
c_{n}:=n!* n!=\sum_{k=0}^{n} k!(n-k)!
$$

Convolutions of Liouvillian sequences 2

Example

The convolution of n ! with itself

$$
c_{n}:=n!* n!=\sum_{k=0}^{n} k!(n-k)!
$$

satisfies

$$
2 c_{n+1}-(n+2) c_{n}=2(n+1)!, \quad c_{0}=1
$$

Convolutions of Liouvillian sequences 2

Example

The convolution of $n!$ with itself

$$
c_{n}:=n!* n!=\sum_{k=0}^{n} k!(n-k)!
$$

satisfies

$$
2 c_{n+1}-(n+2) c_{n}=2(n+1)!, \quad c_{0}=1
$$

with solution

$$
c_{n}=\frac{(n+1)!}{2^{n}} \sum_{k=0}^{n} \frac{2^{k}}{k+1}
$$

Convolutions of Liouvillian sequences 2

Example

The convolution of n ! with itself

$$
c_{n}:=n!* n!=\sum_{k=0}^{n} k!(n-k)!
$$

satisfies

$$
2 c_{n+1}-(n+2) c_{n}=2(n+1)!, \quad c_{0}=1
$$

with solution

$$
c_{n}=\frac{(n+1)!}{2^{n}} \sum_{k=0}^{n} \frac{2^{k}}{k+1}
$$

Note: c_{n} is d'Alembertian, not hypergeometric.

Convolutions of Liouvillian sequences 3

Example

The convolution of n ! with $1 / n$!

$$
c_{n}:=n!* \frac{1}{n!}=\sum_{k=0}^{n} \frac{k!}{(n-k)!}
$$

Convolutions of Liouvillian sequences 3

Example

The convolution of n ! with $1 / n$!

$$
c_{n}:=n!* \frac{1}{n!}=\sum_{k=0}^{n} \frac{k!}{(n-k)!}
$$

satisfies

$$
c_{n+2}-(n+2) c_{n+1}+c_{n}=\frac{1}{(n+2)!}
$$

and

$$
(n+3) c_{n+3}-\left(n^{2}+6 n+10\right) c_{n+2}+(2 n+5) c_{n+1}-c_{n}=0
$$

Convolutions of Liouvillian sequences 3

Example

The convolution of n ! with $1 / n$!

$$
c_{n}:=n!* \frac{1}{n!}=\sum_{k=0}^{n} \frac{k!}{(n-k)!}
$$

satisfies

$$
c_{n+2}-(n+2) c_{n+1}+c_{n}=\frac{1}{(n+2)!}
$$

and

$$
(n+3) c_{n+3}-\left(n^{2}+6 n+10\right) c_{n+2}+(2 n+5) c_{n+1}-c_{n}=0
$$

Note: This equation has no nonzero Liouvillian solution!

Convolutions of Liouvillian sequences 4

Definition

Sequences $a, b \in \mathbb{K}^{\mathbb{N}}$ are similar if

$$
\exists N \in \mathbb{N} \forall n \geq N: a_{n}=b_{n}
$$

Notation: $a \sim b$.

Convolutions of Liouvillian sequences 4

Definition

Sequences $a, b \in \mathbb{K}^{\mathbb{N}}$ are similar if

$$
\exists N \in \mathbb{N} \forall n \geq N: a_{n}=b_{n}
$$

Notation: $a \sim b$.

Definition

An operation f on $\mathbb{K}^{\mathbb{N}}$ is local if \sim is a congruence w.r.t. f.

Convolutions of Liouvillian sequences 5

Proposition

The following operations with sequences are local:

Convolutions of Liouvillian sequences 5

Proposition

The following operations with sequences are local:
1 scalar multiplication
2 shift
3 inverse shift
4 difference
5 multisection
6 addition
7 multiplication
8 interlacing

Convolutions of Liouvillian sequences 6

Example

Partial summation is not local: Let

Convolutions of Liouvillian sequences 6

Example

Partial summation is not local: Let

$$
\begin{aligned}
& a=\langle 0,0,0, \ldots\rangle \\
& b=\langle 1,0,0, \ldots\rangle
\end{aligned}
$$

Convolutions of Liouvillian sequences 6

Example

Partial summation is not local: Let

$$
\begin{aligned}
& a=\langle 0,0,0, \ldots\rangle \\
& b=\langle 1,0,0, \ldots\rangle
\end{aligned}
$$

Then $a \sim b$ but

Convolutions of Liouvillian sequences 6

Example

Partial summation is not local: Let

$$
\begin{aligned}
a & =\langle 0,0,0, \ldots\rangle \\
b & =\langle 1,0,0, \ldots\rangle
\end{aligned}
$$

Then $a \sim b$ but

$$
\sum_{k=0}^{n} a_{k}=0 \quad \nsim \quad \sum_{k=0}^{n} b_{k}=1
$$

Convolutions of Liouvillian sequences 6

Example

Partial summation is not local: Let

$$
\begin{aligned}
a & =\langle 0,0,0, \ldots\rangle \\
b & =\langle 1,0,0, \ldots\rangle
\end{aligned}
$$

Then $a \sim b$ but

$$
\sum_{k=0}^{n} a_{k}=0 \quad \nsim \quad \sum_{k=0}^{n} b_{k}=1
$$

Corollary

Convolution is not local.

Convolutions of Liouvillian sequences 7

Lemma

If $a \sim a^{\prime}$ then

$$
\sum_{k=0}^{n} a_{k} \sim \sum_{k=0}^{n} a_{k}^{\prime}+C
$$

for some $C \in \mathbb{K}$.

Convolutions of Liouvillian sequences 7

Lemma

If $a \sim a^{\prime}$ then

$$
\sum_{k=0}^{n} a_{k} \sim \sum_{k=0}^{n} a_{k}^{\prime}+C
$$

for some $C \in \mathbb{K}$.

Lemma

Let $\mathcal{C} \subseteq \mathbb{K}^{\mathbb{N}}$ be closed under scalar multiplication, inverse shift, addition, and similarity. Assume $a, b, a * b \in \mathcal{C}, a^{\prime} \sim a$ and $b^{\prime} \sim b$. Then $a^{\prime} * b^{\prime} \in \mathcal{C}$.

Convolutions of Liouvillian sequences 8

Definition

$\mathcal{A}_{\text {rat }}(\mathbb{K})$ is the least subring of $\mathbb{K}^{\mathbb{N}}$ containing $\mathbb{K}(n)$, closed under

- shift, inverse shift,
- partial summation.

The elements of $\mathcal{A}_{\text {rat }}(\mathbb{K})$ are rationally d'Alembertian sequences.

Convolutions of Liouvillian sequences 8

Definition

$\mathcal{A}_{\text {rat }}(\mathbb{K})$ is the least subring of $\mathbb{K}^{\mathbb{N}}$ containing $\mathbb{K}(n)$, closed under

- shift, inverse shift,
- partial summation.

The elements of $\mathcal{A}_{\text {rat }}(\mathbb{K})$ are rationally d'Alembertian sequences.

Definition

$\mathcal{L}_{\text {rat }}(\mathbb{K})$ is the least subring of $\mathbb{K}^{\mathbb{N}}$ containing $\mathbb{K}(n)$, closed under
■ shift, inverse shift,

- partial summation,
- interlacing.

The elements of $\mathcal{L}_{\text {rat }}(\mathbb{K})$ are rationally Liouvillian sequences.

Convolutions of Liouvillian sequences 9

Example

- Harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ are rationally d'Alembertian.

Convolutions of Liouvillian sequences 9

Example

- Harmonic numbers $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ are rationally d'Alembertian.

■ The interlacing of H_{n} with $H_{n}^{(2)}=\sum_{k=1}^{n} \frac{1}{k^{2}}$ is rationally Liouvillian.

Convolutions of Liouvillian sequences 10

Theorem

The convolution of a d'Alembertian sequence with a rationally d'Alembertian sequence is d'Alembertian.

Convolutions of Liouvillian sequences 10

Theorem

The convolution of a d'Alembertian sequence with a rationally d'Alembertian sequence is d'Alembertian.

Theorem

The convolution of a Liouvillian sequence with a rationally Liouvillian sequence is Liouvillian.

Inverse Zeilberger's problem 1

Question: How to find solutions of LRE that are convolutions of two hypergeometric sequences?

Inverse Zeilberger's problem 1

Question: How to find solutions of LRE that are convolutions of two hypergeometric sequences?

Answer: ???

Inverse Zeilberger's problem 1

Question: How to find solutions of LRE that are convolutions of two hypergeometric sequences?

Answer: ???
Easier question: Given $a \in \mathcal{H}(\mathbb{K})$, how to find solutions of the form $a * b$ where $b \in \mathcal{H}(\mathbb{K})$?

Inverse Zeilberger's problem 1

Question: How to find solutions of LRE that are convolutions of two hypergeometric sequences?

Answer: ???
Easier question: Given $a \in \mathcal{H}(\mathbb{K})$, how to find solutions of the form $a * b$ where $b \in \mathcal{H}(\mathbb{K})$?

Operator notation:

$$
\begin{array}{lc}
E: \mathbb{K}^{\mathbb{N}} \rightarrow \mathbb{K}^{\mathbb{N}} & \text { shift operator } \\
\left(E^{k} a\right)_{n}=a_{n+k} & (k \in \mathbb{N})
\end{array}
$$

Inverse Zeilberger's problem 1

Question: How to find solutions of LRE that are convolutions of two hypergeometric sequences?

Answer: ???
Easier question: Given $a \in \mathcal{H}(\mathbb{K})$, how to find solutions of the form $a * b$ where $b \in \mathcal{H}(\mathbb{K})$?

Operator notation:

$$
\begin{array}{ll}
E: \mathbb{K}^{\mathbb{N}} \rightarrow \mathbb{K}^{\mathbb{N}} & \text { shift operator, } \\
\left(E^{k} a\right)_{n}=a_{n+k} & (k \in \mathbb{N}) \\
L=\sum_{k=0}^{d} p_{k}(n) E^{k} \in \mathbb{K}[n]\langle E\rangle & \text { linear recurrence operator }
\end{array}
$$

Inverse Zeilberger's problem 2

Example: Given $a_{n}=\frac{1}{n!}$ and

$$
L=(n+3) E^{3}-\left(n^{2}+6 n+10\right) E^{2}+(2 n+5) E-1
$$

find b such that $L(a * b)=0$.

Inverse Zeilberger's problem 2

Example: Given $a_{n}=\frac{1}{n!}$ and

$$
L=(n+3) E^{3}-\left(n^{2}+6 n+10\right) E^{2}+(2 n+5) E-1
$$

find b such that $L(a * b)=0$.
Idea 1. Use generating functions and a hyperexponential given factor.

Inverse Zeilberger's problem 2

Example: Given $a_{n}=\frac{1}{n!}$ and

$$
L=(n+3) E^{3}-\left(n^{2}+6 n+10\right) E^{2}+(2 n+5) E-1
$$

find b such that $L(a * b)=0$.
Idea 1. Use generating functions and a hyperexponential given factor.

Definition

A sequence $a \in \mathbb{K}^{\mathbb{N}}$ is hyperexponential if $\mathrm{gf}_{a}(x):=\sum_{n \geq 0} a_{n} x^{n}$ satisfies

$$
\operatorname{gf}_{a}^{\prime}(x)=r(x) \operatorname{gf}_{a}(x)
$$

for some $r \in \mathbb{K}(x)^{*}$.

Inverse Zeilberger's problem 3

Problem: Given $L \in \mathbb{K}[x]\langle E\rangle$ and hyperexponential a, find b such that $L(a * b)=0$.

Assume $L(a * b)=0, u=\operatorname{gf}_{a}, v=\operatorname{gf}_{b}$. Then $u^{\prime}=r u$ and

$$
\begin{equation*}
(u \cdot v)^{(k)}=u \sum_{i=0}^{k} r_{i, k} v^{(i)} \tag{1}
\end{equation*}
$$

for all $k \in \mathbb{N}$, with $r_{i, k} \in \mathbb{K}(x)$ for all i, k.

Inverse Zeilberger's problem 3

1 From L compute $M \in \mathbb{K}\left[x, x^{-1}\right]\langle D\rangle$ s.t.

$$
L(c)=0 \quad \Longrightarrow \quad M\left(\mathrm{gf}_{c}\right)=0
$$

Then $M(u \cdot v)=M\left(\mathrm{gf}_{a} \cdot \mathrm{gf}_{b}\right)=M\left(\mathrm{gf}_{a * b}\right)=0$.

Inverse Zeilberger's problem 3

1 From L compute $M \in \mathbb{K}\left[x, x^{-1}\right]\langle D\rangle$ s.t.

$$
L(c)=0 \quad \Longrightarrow \quad M\left(\mathrm{gf}_{c}\right)=0
$$

Then $M(u \cdot v)=M\left(\mathrm{gf}_{a} \cdot \mathrm{gf}_{b}\right)=M\left(\mathrm{gf}_{a * b}\right)=0$.
2 Using (1) in $M(u \cdot v)$, compute $M_{1} \in \mathbb{K}\left[x, x^{-1}\right]\langle D\rangle$ s.t.

$$
M_{1}(v)=0
$$

Inverse Zeilberger's problem 3

11 From L compute $M \in \mathbb{K}\left[x, x^{-1}\right]\langle D\rangle$ s.t.

$$
L(c)=0 \Longrightarrow M\left(\mathrm{gf}_{c}\right)=0 .
$$

Then $M(u \cdot v)=M\left(\mathrm{gf}_{a} \cdot \mathrm{gf}_{b}\right)=M\left(\mathrm{gf}_{\mathrm{a*b}}\right)=0$.
\simeq Using (1) in $M(u \cdot v)$, compute $M_{1} \in \mathbb{K}\left[x, x^{-1}\right]\langle D\rangle$ s.t.

$$
M_{1}(v)=0 .
$$

3 From M_{1} compute $L_{1} \in \mathbb{K}[n]\left\langle E, E^{-1}\right\rangle$ s.t.

$$
M_{1}(v)=M_{1}\left(\mathrm{gf}_{b}\right)=0 \Longrightarrow L_{1}(b)=0 .
$$

Inverse Zeilberger's problem 3

11 From L compute $M \in \mathbb{K}\left[x, x^{-1}\right]\langle D\rangle$ s.t.

$$
L(c)=0 \Longrightarrow M\left(\mathrm{gf}_{c}\right)=0 .
$$

Then $M(u \cdot v)=M\left(\mathrm{gf}_{a} \cdot \mathrm{gf}_{b}\right)=M\left(\mathrm{gf}_{\mathrm{a} * \mathrm{~b}}\right)=0$.
2 Using (1) in $M(u \cdot v)$, compute $M_{1} \in \mathbb{K}\left[x, x^{-1}\right]\langle D\rangle$ s.t.

$$
M_{1}(v)=0 .
$$

3 From M_{1} compute $L_{1} \in \mathbb{K}[n]\left\langle E, E^{-1}\right\rangle$ s.t.

$$
M_{1}(v)=M_{1}\left(\mathrm{gf}_{b}\right)=0 \Longrightarrow L_{1}(b)=0 .
$$

4 Return solutions b of $L_{1}(b)=0$.

Inverse Zeilberger's problem 3

Example

$$
L=(n+3) E^{3}-\left(n^{2}+6 n+10\right) E^{2}+(2 n+5) E-1
$$

Inverse Zeilberger's problem 3

Example

$$
\begin{gathered}
L=(n+3) E^{3}-\left(n^{2}+6 n+10\right) E^{2}+(2 n+5) E-1 \\
a_{n}=\frac{1}{n!}, \quad \operatorname{gf}_{a}(x)=e^{x}, \quad r(x)=1
\end{gathered}
$$

Inverse Zeilberger's problem 3

Example

$$
\begin{gathered}
L=(n+3) E^{3}-\left(n^{2}+6 n+10\right) E^{2}+(2 n+5) E-1 \\
a_{n}=\frac{1}{n!}, \quad \operatorname{gf}_{a}(x)=e^{x}, \quad r(x)=1
\end{gathered}
$$

11 $M=-x^{-2}\left(x^{2} D^{2}-(x-1)(2 x-1) D+(x-2)(x-1)\right)$
2. $M_{1}=-x^{-2}\left(x^{2} D^{2}+(3 x-1) D+1\right)$

3 $L_{1}=E^{2}\left((n+1) E-(n+1)^{2}\right)$
$4\{C n!; C \in \mathbb{K}\}$

Inverse Zeilberger's problem 2

Idea 2. Search for solution in terms of a polynomial series.

Inverse Zeilberger's problem 2

Idea 2. Search for solution in terms of a polynomial series.
Let $y=a * b$. Then

$$
y_{n}=\sum_{k=0}^{n} a_{n-k} b_{k}=\sum_{k=0}^{n} \frac{b_{k}}{(n-k)!},
$$

Inverse Zeilberger's problem 2

Idea 2. Search for solution in terms of a polynomial series.
Let $y=a * b$. Then

$$
\begin{aligned}
& y_{n}=\sum_{k=0}^{n} a_{n-k} b_{k}=\sum_{k=0}^{n} \frac{b_{k}}{(n-k)!}, \\
& z_{n}:=n!y_{n}=\sum_{k=0}^{n} \frac{n!}{(n-k)!} b_{k}=\sum_{k=0}^{n} c_{k}\binom{n}{k}
\end{aligned}
$$

where $c_{k}=k!b_{k}$.

Inverse Zeilberger's problem 3

Step 1. $L(y)=L\left(\frac{z}{n!}\right)=0 \rightsquigarrow L_{1}(z)=0$

Inverse Zeilberger's problem 3

Step 1. $L(y)=L\left(\frac{z}{n!}\right)=0 \rightsquigarrow L_{1}(z)=0$
Step 2. $L_{1}(z)=L\left(\sum_{k=0}^{n} c_{k}\binom{n}{k}\right)=0 \rightsquigarrow \tilde{L}(c)=0$

Inverse Zeilberger's problem 3

Step 1. $L(y)=L\left(\frac{z}{n!}\right)=0 \rightsquigarrow L_{1}(z)=0$
Step 2. $L_{1}(z)=L\left(\sum_{k=0}^{n} c_{k}\binom{n}{k}\right)=0 \rightsquigarrow \tilde{L}(c)=0$
Step 3. Find solutions c of $\tilde{L}(c)=0$, return $b_{k}=\frac{c_{k}}{k!}$.

Inverse Zeilberger's problem 3

Step 1. $L(y)=L\left(\frac{z}{n!}\right)=0 \rightsquigarrow L_{1}(z)=0$
Step 2. $L_{1}(z)=L\left(\sum_{k=0}^{n} c_{k}\binom{n}{k}\right)=0 \rightsquigarrow \tilde{L}(c)=0$
Step 3. Find solutions c of $\tilde{L}(c)=0$, return $b_{k}=\frac{c_{k}}{k!}$.

How to do step 2?

Inverse Zeilberger's problem 4

[S.A.-M.P.-A. Ryabenko, 2000]:

Inverse Zeilberger's problem 4

[S.A.-M.P.-A. Ryabenko, 2000]:

$\mathcal{B}:=\left\langle P_{k}(x)\right\rangle_{k=0}^{\infty}$ is a factorial basis for $\mathbb{K}[x]$ if

(P1). $\operatorname{deg} P_{k}=k$,
(P2). $P_{k} \mid P_{m}$ for $k<m$.

Inverse Zeilberger's problem 4

[S.A.-M.P.-A. Ryabenko, 2000]:

$\mathcal{B}:=\left\langle P_{k}(x)\right\rangle_{k=0}^{\infty}$ is a factorial basis for $\mathbb{K}[x]$ if
(P1). $\operatorname{deg} P_{k}=k$,
(P2). $P_{k} \mid P_{m}$ for $k<m$.
A linear operator $L: \mathbb{K}[x] \rightarrow \mathbb{K}[x]$ is compatible with \mathcal{B} if $\exists A, B \in \mathbb{N} \exists \alpha_{i, k} \in \mathbb{K}$ for $-A \leq i \leq B, k \geq 0$ s.t.

Inverse Zeilberger's problem 4

[S.A.-M.P.-A. Ryabenko, 2000]:

$\mathcal{B}:=\left\langle P_{k}(x)\right\rangle_{k=0}^{\infty}$ is a factorial basis for $\mathbb{K}[x]$ if
(P1). $\operatorname{deg} P_{k}=k$,
(P2). $P_{k} \mid P_{m}$ for $k<m$.
A linear operator $L: \mathbb{K}[x] \rightarrow \mathbb{K}[x]$ is compatible with \mathcal{B} if $\exists A, B \in \mathbb{N} \exists \alpha_{i, k} \in \mathbb{K}$ for $-A \leq i \leq B, k \geq 0$ s.t.

$$
L P_{k}=\sum_{i=-A}^{B} \alpha_{i, k} P_{k+i}
$$

where $P_{k}=0$ if $k<0$ (equivalently: $\left[\alpha_{i-k, k}\right]_{i, k \in \mathbb{N}}$ is band-diagonal).

Inverse Zeilberger's problem 5

Thanks to (P2), every linear operator L on $\mathbb{K}[x]$ extends to the ring $\mathbb{K}[[\mathcal{B}]]$ of formal polynomial series in a natural way.

Inverse Zeilberger's problem 5

Thanks to (P2), every linear operator L on $\mathbb{K}[x]$ extends to the ring $\mathbb{K}[[\mathcal{B}]]$ of formal polynomial series in a natural way.
For any polynomial series $y=\sum_{k=0}^{\infty} c_{k} P_{k}(x) \in \mathbb{K}[[\mathcal{B}]]$ we have

Inverse Zeilberger's problem 5

Thanks to (P2), every linear operator L on $\mathbb{K}[x]$ extends to the ring $\mathbb{K}[[\mathcal{B}]]$ of formal polynomial series in a natural way.
For any polynomial series $y=\sum_{k=0}^{\infty} c_{k} P_{k}(x) \in \mathbb{K}[[\mathcal{B}]]$ we have

$$
L(y)=0 \Longleftrightarrow \tilde{L}(c)=0,
$$

Inverse Zeilberger's problem 5

Thanks to (P2), every linear operator L on $\mathbb{K}[x]$ extends to the ring $\mathbb{K}[[\mathcal{B}]]$ of formal polynomial series in a natural way.
For any polynomial series $y=\sum_{k=0}^{\infty} c_{k} P_{k}(x) \in \mathbb{K}[[\mathcal{B}]]$ we have

$$
L(y)=0 \Longleftrightarrow \tilde{L}(c)=0,
$$

where

$$
\tilde{L}=\sum_{i=-B}^{A} \alpha_{-i, k+i} E_{k}^{i}
$$

and $c_{k}=0$ if $k<0$.

Inverse Zeilberger's problem 6

$1 L(p(x))=x p(x)$: compatible with any factorial basis;

$$
x P_{k}(x)=u_{k} P_{k}(x)+v_{k} P_{k+1}(x)
$$

$$
\text { so } A=0, B=1, \alpha_{0, k}=u_{k}, \alpha_{1, k}=v_{k}
$$

Inverse Zeilberger's problem 6

$1 L(p(x))=x p(x)$: compatible with any factorial basis;

$$
x P_{k}(x)=u_{k} P_{k}(x)+v_{k} P_{k+1}(x)
$$

$$
\text { so } A=0, B=1, \alpha_{0, k}=u_{k}, \alpha_{1, k}=v_{k}
$$

$2 L(p(x))=p^{\prime}(x)$: compatible with $P_{k}(x)=x^{k}$;

$$
\begin{array}{r}
P_{k}^{\prime}(x)=k P_{k-1}(x) \\
\text { so } A=1, B=0, \alpha_{-1, k}=k, \alpha_{0, k}=0
\end{array}
$$

Inverse Zeilberger's problem 6

$1 L(p(x))=x p(x)$: compatible with any factorial basis;

$$
x P_{k}(x)=u_{k} P_{k}(x)+v_{k} P_{k+1}(x),
$$

$$
\text { so } A=0, B=1, \alpha_{0, k}=u_{k}, \alpha_{1, k}=v_{k}
$$

2 $L(p(x))=p^{\prime}(x)$: compatible with $P_{k}(x)=x^{k}$;

$$
P_{k}^{\prime}(x)=k P_{k-1}(x),
$$

so $A=1, B=0, \alpha_{-1, k}=k, \alpha_{0, k}=0$
${ }_{3} L(p(x))=p(x+1)$: compatible with $P_{k}(x)=\binom{x}{k}$;

$$
P_{k}(x+1)=P_{k-1}(x)+P_{k}(x),
$$

so $\boldsymbol{A}=1, B=0, \alpha_{-1, k}=\alpha_{0, k}=1$

Inverse Zeilberger's problem 7

To compute $L \rightsquigarrow \tilde{L}$:

1 For differential operators with $P_{n}(x)=x^{n}$:

$$
\begin{aligned}
D & \rightsquigarrow(n+1) E_{n}, \\
x & \rightsquigarrow E_{n}^{-1}
\end{aligned}
$$

Inverse Zeilberger's problem 7

To compute $L \rightsquigarrow \tilde{L}$:

1 For differential operators with $P_{n}(x)=x^{n}$:

$$
\begin{aligned}
D & \rightsquigarrow(n+1) E_{n}, \\
x & \rightsquigarrow E_{n}^{-1}
\end{aligned}
$$

$\boxed{2}$ For recurrence operators with $P_{n}(x)=\binom{x}{n}$:

$$
\begin{aligned}
& E \rightsquigarrow E_{n}+1, \\
& x \rightsquigarrow n\left(E_{n}^{-1}+1\right)
\end{aligned}
$$

