Properties of Laurent coefficients of multivariate rational functions

Workshop on Computer Algebra in Combinatorics
 Erwin Schroedinger Institute

Armin Straub
November 14, 2017
University of South Alabama
includes joint work with

Frits Beukers
(Utrecht University)

Marc Houben
(Utrecht University)

Wadim Zudilin
(University of Newcastle/ Radboud Universiteit)

Goal of this talk

We introduce and advertise two questions about rational functions like

$$
\frac{1}{1-\left(x_{1}+x_{2}+x_{3}\right)+4 x_{1} x_{2} x_{3}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\bigotimes 0}^{3}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}} .
$$

Goal of this talk

We introduce and advertise two questions about rational functions like

$$
\frac{1}{1-\left(x_{1}+x_{2}+x_{3}\right)+4 x_{1} x_{2} x_{3}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geq 0}^{3}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}} .
$$

Q When has a rational function the Gauss property?
That is, when do the following congruences hold?

$$
A\left(\boldsymbol{n} p^{r}\right) \equiv A\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

Goal of this talk

We introduce and advertise two questions about rational functions like

$$
\frac{1}{1-\left(x_{1}+x_{2}+x_{3}\right)+4 x_{1} x_{2} x_{3}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geq 0}^{3}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}
$$

Q When has a rational function the Gauss property?
That is, when do the following congruences hold?

$$
A\left(\boldsymbol{n} p^{r}\right) \equiv A\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

Q When is a rational function positive?
That is, when is $A(\boldsymbol{n})>0$ for all \boldsymbol{n} ?

Goal of this talk
We introduce and advertise two questions about rational functions like

$$
\frac{1}{1-\left(x_{1}+x_{2}+x_{3}\right)+4 x_{1} x_{2} x_{3}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geqslant 0}^{3}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}
$$

Q When has a rational function the Gauss property?
That is, when do the following congruences hold?

$$
A\left(\boldsymbol{n} p^{r}\right) \equiv A\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

Q When is a rational function positive?
That is, when is $A(\boldsymbol{n})>0$ for all \boldsymbol{n} ?

In both cases, we will wonder about an explicit characterization. These are not conjectures because our evidence is limited. Computer algebra!

Goal of this talk
We introduce and advertise two questions about rational functions like

$$
\frac{1}{1-\left(x_{1}+x_{2}+x_{3}\right)+4 x_{1} x_{2} x_{3}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geqslant 0}^{3}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}} .
$$

EG Here, the diagonal coefficients are the Franel numbers

$$
A(n, n, n)=\sum_{k=0}^{n}\binom{n}{k}^{3}
$$

- As seen in previous talks, simple multivariate generating functions can be enormously useful, for instance, in computing asymptotics.
- Time permitting, more on Apéry-like numbers later...

Gauss congruences

The classical Gauss congruence

$\operatorname{THM}_{\text {Fermat }}^{\text {TH } p \text { is prime. }} \quad \quad a^{p} \equiv a \quad(\bmod p)$

The classical Gauss congruence

$\underset{\text { Fermat }}{\text { THM } p \text { is prime. }} \quad a^{p} \equiv a \quad(\bmod p)$
$\operatorname{THM}_{\text {Euler }}^{\text {TH } a \text { is coprime to } m .} \quad a^{\phi(m)} \equiv 1 \quad(\bmod m)$

The classical Gauss congruence

$\underset{\text { Fermat }}{\text { THM } p \text { is prime. }} \quad a^{p} \equiv a \quad(\bmod p)$

THM
Euler

$$
a^{\phi(m)} \equiv 1 \quad(\bmod m)
$$

THM
Gauss

$$
\sum_{d \mid m} \mu\left(\frac{m}{d}\right) a^{d} \equiv 0 \quad(\bmod m)
$$

Möbius function: $\mu(n)=(-1)^{\#}$ of $p \mid n$ if n is square-free, $\mu(n)=0$ else

The classical Gauss congruence

THM

Fermat

$$
a^{p} \equiv a \quad(\bmod p)
$$

if p is prime.

THM
Euler

$$
a^{\phi(m)} \equiv 1 \quad(\bmod m)
$$

if a is coprime to m.

THM
Gauss

$$
\sum_{d \mid m} \mu\left(\frac{m}{d}\right) a^{d} \equiv 0 \quad(\bmod m)
$$

Möbius function: $\mu(n)=(-1)^{\# \text { of } p \mid n}$ if n is square-free, $\mu(n)=0$ else

EG If $m=p^{r}$ then only $d=p^{r}, d=p^{r-1}$ contribute, and we get

$$
a^{p^{r}} \equiv a^{p^{r-1}} \quad\left(\bmod p^{r}\right)
$$

Gauss congruences

DEF $a(n)$ satisfies the Gauss congruences if, for all primes p,

$$
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

Equivalently, $\quad \sum_{d \mid m} \mu\left(\frac{m}{d}\right) a(d) \equiv 0 \quad(\bmod m)$.

Gauss congruences

DEF $a(n)$ satisfies the Gauss congruences if, for all primes p,

$$
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

Equivalently, $\quad \sum_{d \mid m} \mu\left(\frac{m}{d}\right) a(d) \equiv 0 \quad(\bmod m)$.
EG $\quad \cdot a(n)=a^{n}$

Gauss congruences

DEF $a(n)$ satisfies the Gauss congruences if, for all primes p,

$$
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

Equivalently, $\quad \sum_{d \mid m} \mu\left(\frac{m}{d}\right) a(d) \equiv 0 \quad(\bmod m)$.
EG

- $a(n)=a^{n}$
- $a(n)=L_{n} \quad$ Lucas numbers: $\begin{gathered}L_{n+1}=L_{n}+L_{n-1} \\ L_{0}=2, L_{1}=1\end{gathered}$

Gauss congruences

DEF $a(n)$ satisfies the Gauss congruences if, for all primes p,

$$
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

Equivalently, $\quad \sum_{d \mid m} \mu\left(\frac{m}{d}\right) a(d) \equiv 0 \quad(\bmod m)$.
EG

- $a(n)=a^{n}$
- $a(n)=L_{n} \quad$ Lucas numbers: $\begin{gathered}L_{n+1}=L_{n}+L_{n-1} \\ L_{0}=2, L_{1}=1\end{gathered}$
- $a(n)=D_{n} \quad$ Delannoy numbers: $D_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}$

Gauss congruences

DEF $a(n)$ satisfies the Gauss congruences if, for all primes p,

$$
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

Equivalently, $\quad \sum_{d \mid m} \mu\left(\frac{m}{d}\right) a(d) \equiv 0 \quad(\bmod m)$.
EG

- $a(n)=a^{n}$
- $a(n)=L_{n} \quad$ Lucas numbers: $\begin{gathered}L_{n+1}=L_{n}+L_{n-1} \\ L_{0}=2, L_{1}=1\end{gathered}$
- $a(n)=D_{n} \quad$ Delannoy numbers: $D_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}$
- Later, we allow $a(n) \in \mathbb{Q}$. If the Gauss congruences hold for all but finitely many p, we say that the sequence (or its GF) has the Gauss property.
- Similarly, for multivariate sequences $a(\boldsymbol{n})$, we require

$$
a\left(\boldsymbol{m} p^{r}\right) \equiv a\left(\boldsymbol{m} p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

More sequences satisfying Gauss congruences

$$
\begin{equation*}
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right) \quad\left(\bmod p^{r}\right) \tag{G}
\end{equation*}
$$

- realizable sequences $a(n)$, i.e., for some map $T: X \rightarrow X$,

$$
a(n)=\#\left\{x \in X: T^{n} x=x\right\} \quad \text { "points of period } n \text { " }
$$

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, (G) characterizes realizability.

More sequences satisfying Gauss congruences

$$
\begin{equation*}
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right) \quad\left(\bmod p^{r}\right) \tag{G}
\end{equation*}
$$

- realizable sequences $a(n)$, i.e., for some map $T: X \rightarrow X$,

$$
a(n)=\#\left\{x \in X: T^{n} x=x\right\} \quad \text { "points of period } n \text { " }
$$

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, (G) characterizes realizability.

- $a(n)=\operatorname{trace}\left(M^{n}\right)$

Jänichen '21, Schur '37; also: Arnold, Zarelua
where M is an integer matrix

More sequences satisfying Gauss congruences

$$
\begin{equation*}
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right) \quad\left(\bmod p^{r}\right) \tag{G}
\end{equation*}
$$

- realizable sequences $a(n)$, i.e., for some map $T: X \rightarrow X$,

$$
a(n)=\#\left\{x \in X: T^{n} x=x\right\} \quad \text { "points of period } n \text { " }
$$

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, (G) characterizes realizability.

- $a(n)=\operatorname{trace}\left(M^{n}\right)$

Jänichen '21, Schur '37; also: Arnold, Zarelua
where M is an integer matrix

- (G$)$ is equivalent to $\exp \left(\sum_{n=1}^{\infty} \frac{a(n)}{n} T^{n}\right) \in \mathbb{Z}[[T]]$.

This is a natural condition in formal group theory.
$\underset{\text { Minton, }}{\operatorname{THM}} f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q}-linear combination of functions $x u^{\prime}(x) / u(x)$, with $u \in \mathbb{Z}[x]$.
$\underset{\text { Minton, }}{\text { THM }} f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q}-linear Minton, combination of functions $x u^{\prime}(x) / u(x)$, with $u \in \mathbb{Z}[x]$.

- If $u(x)=\prod_{i=1}^{s}\left(1-\alpha_{i} x\right)$ then

$$
x \frac{u^{\prime}(x)}{u(x)}=-\sum_{i=1}^{s} \frac{\alpha_{i} x}{1-\alpha_{i} x}=s-\sum_{i=1}^{s} \frac{1}{1-\alpha_{i} x}
$$

Minton's theorem

THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q}-linear

Minton, 2014 combination of functions $x u^{\prime}(x) / u(x)$, with $u \in \mathbb{Z}[x]$.

- If $u(x)=\prod_{i=1}^{s}\left(1-\alpha_{i} x\right)$ then

$$
x \frac{u^{\prime}(x)}{u(x)}=-\sum_{i=1}^{s} \frac{\alpha_{i} x}{1-\alpha_{i} x}=s-\sum_{i=1}^{s} \frac{1}{1-\alpha_{i} x}
$$

- Assuming the α_{i} are distinct,

$$
\sum_{i=1}^{s} \frac{1}{1-\alpha_{i} x}=\sum_{n \geqslant 0}\left(\sum_{i=1}^{s} \alpha_{i}^{n}\right) x^{n}=\sum_{n \geqslant 0} \operatorname{trace}\left(M^{n}\right) x^{n}
$$

where M is the companion matrix of $\prod_{i=1}^{s}\left(x-\alpha_{i}\right)=x^{s} u(1 / x)$.

Minton's theorem

THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q}-linear combination of functions $x u^{\prime}(x) / u(x)$, with $u \in \mathbb{Z}[x]$.

- If $u(x)=\prod_{i=1}^{s}\left(1-\alpha_{i} x\right)$ then

$$
x \frac{u^{\prime}(x)}{u(x)}=-\sum_{i=1}^{s} \frac{\alpha_{i} x}{1-\alpha_{i} x}=s-\sum_{i=1}^{s} \frac{1}{1-\alpha_{i} x}
$$

- Assuming the α_{i} are distinct,

$$
\sum_{i=1}^{s} \frac{1}{1-\alpha_{i} x}=\sum_{n \geqslant 0}\left(\sum_{i=1}^{s} \alpha_{i}^{n}\right) x^{n}=\sum_{n \geqslant 0} \operatorname{trace}\left(M^{n}\right) x^{n}
$$

where M is the companion matrix of $\prod_{i=1}^{s}\left(x-\alpha_{i}\right)=x^{s} u(1 / x)$.

- Minton: No new C-finite sequences with the Gauss property!
- Can we generalize from C-finite towards D-finite?
$\underset{\text { Beukers. }}{\text { THM }}$ Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions
$\underset{\text { Beukers, }}{\operatorname{THM}}$ Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then Beukers, Houben,
S 2017

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions
EG Consider $Q=1-x-y-z+4 x y z$:

$$
f_{1}=Q \quad \Longrightarrow \quad(\mathrm{D})=\frac{-x+4 x y z}{Q}
$$

$\underset{\text { Beukers, }}{\operatorname{THM}}$ Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then Beukers, Houben,
S 2017

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions
EG Consider $Q=1-x-y-z+4 x y z$:

$$
\begin{aligned}
f_{1}=Q & \Longrightarrow(\mathrm{D})=\frac{-x+4 x y z}{Q} \\
f_{1}=Q, \quad f_{2}=1-4 y z & \Longrightarrow(\mathrm{D})=\frac{4 x y z}{Q}
\end{aligned}
$$

THM Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then

Beukers,

Houben,
S 2017

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.
Interesting detail: true for any of the different Laurent expansions of multivariate rational functions
EG Consider $Q=1-x-y-z+4 x y z$:

$$
\begin{aligned}
f_{1}=Q & \Longrightarrow(\mathrm{D})=\frac{-x+4 x y z}{Q} \\
f_{1}=Q, \quad f_{2}=1-4 y z & \Longrightarrow(\mathrm{D})=\frac{4 x y z}{Q}
\end{aligned}
$$

In particular, $\frac{1}{1-x-y-z+4 x y z}$ has the Gauss property.
There is nothing special about 4 .

THM Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then

Beukers,

Houben,
S 2017

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.
$\underset{\text { BHS }}{\text { THM }}$ Let $P, Q \in \mathbb{Z}[\boldsymbol{x}]$ with Q is linear in each variable. Then P / Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

- Here, $N(Q)$ is the Newton polytope of Q.
- In this case, $N(Q)=\operatorname{supp}(Q) \subseteq\{0,1\}^{n}$.

THM Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then

Beukers,

Houben,
S 2017

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.
$\underset{\text { BHS }}{\text { THM }}$ Let $P, Q \in \mathbb{Z}[\boldsymbol{x}]$ with Q is linear in each variable. Then P / Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

- Here, $N(Q)$ is the Newton polytope of Q.
- In this case, $N(Q)=\operatorname{supp}(Q) \subseteq\{0,1\}^{n}$.
$\underset{\text { BHS }}{\mathrm{PROP}}$ Let $P, Q \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$.
If P / Q has the Gauss property, then $N(P) \subseteq N(Q)$.

THM Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then
Beukers,
Houben,
S 2017

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.
${ }_{\text {BHS }}^{Q}$ Suppose $f \in \mathbb{Q}(\boldsymbol{x})$ has the Gauss property. Can it be written as a \mathbb{Q}-linear combination of functions of the form (D)?

- Yes, for $n=1$, by Minton's theorem.

THM Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then
Beukers,
Houben,
S 2017

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.
$\underset{\text { BHS }}{\mathbf{Q}}$ Suppose $f \in \mathbb{Q}(\boldsymbol{x})$ has the Gauss property. Can it be written as a \mathbb{Q}-linear combination of functions of the form (D)?

- Yes, for $n=1$, by Minton's theorem.
- Yes, for $f=P / Q$ with Q linear in all, or all but one, variables.

THM Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then
Beukers,
Houben,
S 2017

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.
$\underset{\text { BHS }}{Q}$ Suppose $f \in \mathbb{Q}(\boldsymbol{x})$ has the Gauss property. Can it be written as a \mathbb{Q}-linear combination of functions of the form (D)?

- Yes, for $n=1$, by Minton's theorem.
- Yes, for $f=P / Q$ with Q linear in all, or all but one, variables.
- Yes, for $f=P / Q$ with Q in two variables and total degree 2 .

THM Let $f_{1}, \ldots, f_{m} \in \mathbb{Q}(\boldsymbol{x})=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be nonzero. Then

Beukers,

Houben,
S 2017

$$
\begin{equation*}
\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{i, j=1, \ldots, m} \tag{D}
\end{equation*}
$$

has the Gauss property.
$\underset{\text { BHS }}{\mathbf{Q}}$ Suppose $f \in \mathbb{Q}(\boldsymbol{x})$ has the Gauss property. Can it be written as a \mathbb{Q}-linear combination of functions of the form (D)?

- Yes, for $n=1$, by Minton's theorem.
- Yes, for $f=P / Q$ with Q linear in all, or all but one, variables.
- Yes, for $f=P / Q$ with Q in two variables and total degree 2 .

EG
Can $\frac{x\left(x+y+y^{2}+2 x y^{2}\right)}{1+3 x+3 y+2 x^{2}+2 y^{2}+x y-2 x^{2} y^{2}}$ be written in that form?

Application: Delannoy numbers

$\underset{\text { BHS }}{\text { THM }}$ Let $P, Q \in \mathbb{Z}[\boldsymbol{x}]$ with Q is linear in each variable. Then P / Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

Application: Delannoy numbers

$\underset{\text { BHS }}{\text { THM }}$ Let $P, Q \in \mathbb{Z}[\boldsymbol{x}]$ with Q is linear in each variable. Then P / Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

EG The Delannoy numbers $D_{n_{1}, n_{2}}$ are characterized by

Beukers,
Houben,
S 2017

$$
\frac{1}{1-x-y-x y}=\sum_{n_{1}, n_{2}=0}^{\infty} D_{n_{1}, n_{2}} x^{n_{1}} y^{n_{2}}
$$

Application: Delannoy numbers

$\underset{\text { BHS }}{\text { THM }}$ Let $P, Q \in \mathbb{Z}[\boldsymbol{x}]$ with Q is linear in each variable. Then P / Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

EG The Delannoy numbers $D_{n_{1}, n_{2}}$ are characterized by

Beukers, Houben, S 2017

$$
\frac{1}{1-x-y-x y}=\sum_{n_{1}, n_{2}=0}^{\infty} D_{n_{1}, n_{2}} x^{n_{1}} y^{n_{2}} .
$$

By the theorem, the following have the Gauss property:

$$
\frac{N}{1-x-y-x y} \quad \text { with } N \in\{1, x, y, x y\}
$$

Application: Delannoy numbers

$\underset{\text { BHS }}{\text { THM }}$ Let $P, Q \in \mathbb{Z}[\boldsymbol{x}]$ with Q is linear in each variable. Then P / Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

EG The Delannoy numbers $D_{n_{1}, n_{2}}$ are characterized by
Beukers, Houben, S 2017

$$
\frac{1}{1-x-y-x y}=\sum_{n_{1}, n_{2}=0}^{\infty} D_{n_{1}, n_{2}} x^{n_{1}} y^{n_{2}} .
$$

By the theorem, the following have the Gauss property:

$$
\frac{N}{1-x-y-x y} \text { with } N \in\{1, x, y, x y\}
$$

In other words, for $\boldsymbol{\delta} \in\{0,1\}^{2}$,

$$
D_{\boldsymbol{m} p^{r}-\boldsymbol{\delta}} \equiv D_{\boldsymbol{m} p^{r-1}-\boldsymbol{\delta}} \quad\left(\bmod p^{r}\right)
$$

II

Positivity

Positivity of rational functions

- A rational function

$$
F\left(x_{1}, \ldots, x_{d}\right)=\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a_{n_{1}, \ldots, n_{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

is positive if $a_{n_{1}, \ldots, n_{d}}>0$ for all indices.

Positivity of rational functions

- A rational function

$$
F\left(x_{1}, \ldots, x_{d}\right)=\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a_{n_{1}, \ldots, n_{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

is positive if $a_{n_{1}, \ldots, n_{d}}>0$ for all indices.
EG $\frac{1}{1-x}$ and $\frac{1}{(1-x)(1-y)}$ are positive.

Positivity of rational functions

- A rational function

$$
F\left(x_{1}, \ldots, x_{d}\right)=\sum_{n_{1}, \ldots, n_{d} \geqslant 0} a_{n_{1}, \ldots, n_{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

is positive if $a_{n_{1}, \ldots, n_{d}}>0$ for all indices.
EG $\frac{1}{1-x}$ and $\frac{1}{(1-x)(1-y)}$ are positive.

- Szegő's proof builds on an integral of a product of Bessel functions. "the used tools, however, are disproportionate to the simplicity of the statement"
- Elementary proof by Kaluza ('33)
- Askey-Gasper ('72) use integral of product of Legendre functions.
- Ismail-Tamhankar ('79) systematize Kaluza's approach by using MacMahon's Master Theorem.
- S ('08): simple proof using a positivity-preserving operator

$$
\frac{1}{(1-x)(1-y)+(1-y)(1-z)+(1-z)(1-x)}=\sum_{k, m, n} A(k, m, n) x^{k} y^{m} z^{n}
$$

- Friedrichs and Lewy conjectured positivity of $A(k, m, n)$.
- Wanted to show convergence of finite difference approximations to

$$
\left(\frac{\partial}{\partial x} \frac{\partial}{\partial y}+\frac{\partial}{\partial x} \frac{\partial}{\partial z}+\frac{\partial}{\partial y} \frac{\partial}{\partial z}\right) u(x, y, z)=0
$$

which transforms to the 2D wave equation.

$$
\frac{1}{(1-x)(1-y)+(1-y)(1-z)+(1-z)(1-x)}=\sum_{k, m, n} A(k, m, n) x^{k} y^{m} z^{n}
$$

- Friedrichs and Lewy conjectured positivity of $A(k, m, n)$.
- Wanted to show convergence of finite difference approximations to

$$
\left(\frac{\partial}{\partial x} \frac{\partial}{\partial y}+\frac{\partial}{\partial x} \frac{\partial}{\partial z}+\frac{\partial}{\partial y} \frac{\partial}{\partial z}\right) u(x, y, z)=0
$$

which transforms to the 2D wave equation.

- With $\partial / \partial x$ replaced by Δ_{k},

$$
\Delta a(k)=a(k)-a(k-1)
$$

$$
\left(\Delta_{k} \Delta_{m}+\Delta_{k} \Delta_{n}+\Delta_{m} \Delta_{n}\right) A(k, m, n)=0
$$

Generalizations

- Szegő also showed positivity of
(and extension to any \# of variables)

$$
\frac{1}{\sum_{i=1}^{4} \prod_{j \neq i}\left(1-x_{j}\right)}=\frac{1}{\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right)+\cdots+\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)}
$$

Generalizations

- Szegő also showed positivity of

$$
\frac{1}{\sum_{i=1}^{4} \prod_{j \neq i}\left(1-x_{j}\right)}=\frac{1}{\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right)+\cdots+\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)}
$$

- The Lewy-Askey problem asks for positivity of

$$
\frac{1}{\sum_{1 \leqslant i<j \leqslant 4}\left(1-x_{i}\right)\left(1-x_{j}\right)}=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)+\cdots+\left(1-x_{3}\right)\left(1-x_{4}\right)}
$$

Generalizations

- Szegő also showed positivity of

$$
\frac{1}{\sum_{i=1}^{4} \prod_{j \neq i}\left(1-x_{j}\right)}=\frac{1}{\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right)+\cdots+\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)}
$$

- The Lewy-Askey problem asks for positivity of

$$
\frac{1}{\sum_{1 \leqslant i<j \leqslant 4}\left(1-x_{i}\right)\left(1-x_{j}\right)}=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)+\cdots+\left(1-x_{3}\right)\left(1-x_{4}\right)} .
$$

- Non-negativity proved by a very general result of Scott-Sokal ('13):
- $\frac{1}{\operatorname{det}\left(\sum\left(1-x_{i}\right) A_{i}\right)}$ is non-negative if $A_{i} \geqslant 0$ are hermitian matrices.
- For the Lewy-Askey problem:

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad A_{3}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad A_{4}=\left[\begin{array}{cc}
1 & e^{-i \pi / 3} \\
e^{i \pi / 3} & 1
\end{array}\right]
$$

Generalizations

- Szegő also showed positivity of

$$
\frac{1}{\sum_{i=1}^{4} \prod_{j \neq i}\left(1-x_{j}\right)}=\frac{1}{\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right)+\cdots+\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)}
$$

- The Lewy-Askey problem asks for positivity of

$$
\frac{1}{\sum_{1 \leqslant i<j \leqslant 4}\left(1-x_{i}\right)\left(1-x_{j}\right)}=\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)+\cdots+\left(1-x_{3}\right)\left(1-x_{4}\right)} .
$$

- Non-negativity proved by a very general result of Scott-Sokal ('13):
- $\frac{1}{\operatorname{det}\left(\sum\left(1-x_{i}\right) A_{i}\right)}$ is non-negative if $A_{i} \geqslant 0$ are hermitian matrices.
- For the Lewy-Askey problem:

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad A_{3}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad A_{4}=\left[\begin{array}{cc}
1 & e^{-i \pi / 3} \\
e^{i \pi / 3} & 1
\end{array}\right] .
$$

$\underset{2 \leqslant r \leqslant n}{\mathbf{Q}} e_{r}(1-\boldsymbol{x})^{-\beta}$ in n variables positive iff $\beta \geqslant(n-r) / 2($ or $\beta=0)$?
With complete monotonicity of $e_{r}(\boldsymbol{x})^{-\beta}$, this is a conjecture of Scott-Sokal ('13).
Multivariate asymptotics?

Preserving positivity

- Positivity of the Askey-Gasper rational function 1
$\overline{1-(x+y+z)+4 x y z}$

Preserving positivity

- Positivity of the Askey-Gasper rational function

$$
\frac{1}{1-(x+y+z)+4 x y z}
$$

implies positivity, for any $\varepsilon>0$, of

$$
\frac{1}{1-(x+y+z)+(4-\varepsilon) x y z}
$$

Preserving positivity

- Positivity of the Askey-Gasper rational function
$\frac{1}{(1-(x+y+z)+4 x y z)^{\beta}}$
implies positivity, for any $\varepsilon>0$, of

$$
\text { for } \beta \geqslant(\sqrt{17}-3) / 2 \approx 0.56
$$

$$
\frac{1}{1-(x+y+z)+(4-\varepsilon) x y z}
$$

Preserving positivity

- Positivity of the Askey-Gasper rational function
$\frac{1}{(1-(x+y+z)+4 x y z)^{\beta}}$
implies positivity, for any $\varepsilon>0$, of

$$
\text { for } \beta \geqslant(\sqrt{17}-3) / 2 \approx 0.56
$$

$$
\frac{1}{1-(x+y+z)+(4-\varepsilon) x y z}
$$

- If $F\left(x_{1}, \ldots, x_{n}\right)$ is positive, so is, for $0 \leqslant p \leqslant 1$,

$$
T_{p}(F)=\frac{F\left(\frac{p x_{1}}{1-(1-p) x_{1}}, \cdots, \frac{p x_{n}}{1-(1-p) x_{n}}\right)}{\left(1-(1-p) x_{1}\right) \cdots\left(1-(1-p) x_{n}\right)} .
$$

Preserving positivity

- Positivity of the Askey-Gasper rational function
$\frac{1}{(1-(x+y+z)+4 x y z)^{\beta}}$
implies positivity, for any $\varepsilon>0$, of \quad for $\beta \geqslant(\sqrt{17}-3) / 2 \approx 0.56$

$$
\frac{1}{1-(x+y+z)+(4-\varepsilon) x y z}
$$

- If $F\left(x_{1}, \ldots, x_{n}\right)$ is positive, so is, for $0 \leqslant p \leqslant 1$,

$$
T_{p}(F)=\frac{F\left(\frac{p x_{1}}{1-(1-p) x_{1}}, \cdots, \frac{p x_{n}}{1-(1-p) x_{n}}\right)}{\left(1-(1-p) x_{1}\right) \cdots\left(1-(1-p) x_{n}\right)} .
$$

Kauers-Zeilberger '08

EG
S '08

$$
T_{1 / 2} \frac{1}{1-(x+y+z)+4 x y z}=\frac{1}{1-(x+y+z)+\frac{3}{4}(x y+y z+z x)}
$$

Hence, we can conclude positivity of Szegő's function $e_{2}(1-x, 1-y, 1-z)^{-1}$.

The case of three variables

$$
h_{a, b}(x, y, z)=\frac{1}{1-(x+y+z)+a(x y+y z+z x)+b x y z}
$$

CONJ $h_{a, b}$ is positive $\Longleftrightarrow\left\{\begin{array}{l}b<6(1-a) \\ b \leqslant 2-3 a+2(1-a)^{3 / 2} \\ a \leqslant 1\end{array}\right.$

- $h_{a, b}$ is positive in the green region
- The conditions in the conjecture are necessary for positivity

S-Zudilin '15

A conjecture of Gillis, Reznick and Zeilberger

CONJ For any $d \geqslant 4$, the following function is non-negative:
G-R-Z
'83

$$
\frac{1}{1-\left(x_{1}+x_{2}+\ldots+x_{d}\right)+d!x_{1} x_{2} \cdots x_{d}}
$$

A conjecture of Gillis, Reznick and Zeilberger

CONJ For any $d \geqslant 4$, the following function is non-negative:
G-R-Z
'83

$$
\frac{1}{1-\left(x_{1}+x_{2}+\ldots+x_{d}\right)+d!x_{1} x_{2} \cdots x_{d}}
$$

THM Suffices to prove that the diagonal coefficients are non-negative.

A conjecture of Gillis, Reznick and Zeilberger

CONJ For any $d \geqslant 4$, the following function is non-negative:
G-R-Z
'83

$$
\frac{1}{1-\left(x_{1}+x_{2}+\ldots+x_{d}\right)+d!x_{1} x_{2} \cdots x_{d}}
$$

$\underset{G-R-Z}{\text { THM }}$ Suffices to prove that the diagonal coefficients are non-negative.
proof "omitted due to its length"

A conjecture of Gillis, Reznick and Zeilberger

CONJ For any $d \geqslant 4$, the following function is non-negative:
G-R-Z
'83

$$
\frac{1}{1-\left(x_{1}+x_{2}+\ldots+x_{d}\right)+d!x_{1} x_{2} \cdots x_{d}}
$$

$\underset{G-R-Z}{\text { THM }}$ Suffices to prove that the diagonal coefficients are non-negative.
proof "omitted due to its length"

- False for $d=2,3$.
- Kauers proved that diagonal is non-negative for $d=4,5,6$.

A conjecture of Gillis, Reznick and Zeilberger

CONJ For any $d \geqslant 4$, the following function is non-negative:
G-R-Z
'83

$$
\frac{1}{1-\left(x_{1}+x_{2}+\ldots+x_{d}\right)+d!x_{1} x_{2} \cdots x_{d}}
$$

$\underset{G-R-Z}{T H M}$ Suffices to prove that the diagonal coefficients are non-negative.
proof "omitted due to its length" \square

- False for $d=2,3$.
- Kauers proved that diagonal is non-negative for $d=4,5,6$.
- With c in place of $d!$, the coefficient of $x_{1} \cdots x_{d}$ is $d!-c$.

A conjecture of Gillis, Reznick and Zeilberger

CONJ For any $d \geqslant 4$, the following function is non-negative:
G-R-Z
'83

$$
\frac{1}{1-\left(x_{1}+x_{2}+\ldots+x_{d}\right)+d!x_{1} x_{2} \cdots x_{d}}
$$

$\underset{G-R-Z}{\text { THM }}$ Suffices to prove that the diagonal coefficients are non-negative.
proof "omitted due to its length" \square

- False for $d=2,3$.
- Kauers proved that diagonal is non-negative for $d=4,5,6$.
- With c in place of $d!$, the coefficient of $x_{1} \cdots x_{d}$ is $d!-c$.
- Diagonal coefficients eventually positive if $c<(d-1)^{d-1}$? Multivariate asymptotics?

Positivity vs diagonal positivity

- Consider rational functions $F=1 / p\left(x_{1}, \ldots, x_{d}\right)$ with p a symmetric polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F implied by the positivity of its diagonal?

Positivity vs diagonal positivity

- Consider rational functions $F=1 / p\left(x_{1}, \ldots, x_{d}\right)$ with p a symmetric polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F implied by the positivity of its diagonal?

EG $\frac{1}{1+x+y}$ has positive diagonal coefficients but is not positive.

Positivity vs diagonal positivity

- Consider rational functions $F=1 / p\left(x_{1}, \ldots, x_{d}\right)$ with p a symmetric polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F implied by the positivity of its diagonal?

EG $\frac{1}{1+x+y}$ has positive diagonal coefficients but is not positive.
$\underset{\text { sz }{ }^{1}{ }^{\mathbf{Q}}}{ } F$ positive \Longleftrightarrow diagonal of F, and $\left.F\right|_{x_{d}=0}$ are positive?

Positivity vs diagonal positivity

- Consider rational functions $F=1 / p\left(x_{1}, \ldots, x_{d}\right)$ with p a symmetric polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F implied by the positivity of its diagonal?

EG $\frac{1}{1+x+y}$ has positive diagonal coefficients but is not positive.
$\underset{\text { sz }{ }^{15}}{\text { Q }} F$ positive \Longleftrightarrow diagonal of F, and $\left.F\right|_{x_{d}=0}$ are positive?

THM
S-Zudilin
2015

$$
F(x, y)=\frac{1}{1+c_{1}(x+y)+c_{2} x y} \quad \text { is positive }
$$

\Longleftrightarrow diagonal of F, and $\left.F\right|_{y=0}$ are positive

- $d=3$: also yes, if the previous conjecture on $h_{a, b}$ is true.

Application: Szegő's rational function, once more

- Recall Szegő's rational function

$$
S(x, y, z)=\frac{1}{1-(x+y+z)+\frac{3}{4}(x y+y z+z x)}
$$

$S(2 x, 2 y, 2 z)$ has diagonal coefficients

$$
s_{n}=\sum_{k=0}^{n}(-27)^{n-k} 2^{2 k-n} \frac{(3 k)!}{k!^{3}}\binom{k}{n-k}
$$

Application: Szegő's rational function, once more

- Recall Szegő's rational function

$$
S(x, y, z)=\frac{1}{1-(x+y+z)+\frac{3}{4}(x y+y z+z x)} .
$$

$S(2 x, 2 y, 2 z)$ has diagonal coefficients

$$
s_{n}=\sum_{k=0}^{n}(-27)^{n-k} 2^{2 k-n} \frac{(3 k)!}{k!^{3}}\binom{k}{n-k},
$$

whose generating function is

$$
y(z)={ }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right\rvert\, 27 z(2-27 z)\right) .
$$

Application: Szegő's rational function, once more

- Recall Szegő's rational function

$$
S(x, y, z)=\frac{1}{1-(x+y+z)+\frac{3}{4}(x y+y z+z x)} .
$$

$S(2 x, 2 y, 2 z)$ has diagonal coefficients

$$
s_{n}=\sum_{k=0}^{n}(-27)^{n-k} 2^{2 k-n} \frac{(3 k)!}{k!^{3}}\binom{k}{n-k},
$$

whose generating function is

$$
y(z)={ }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right\rvert\, 27 z(2-27 z)\right) .
$$

- Ramanujan's cubic transformation

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right\rvert\, 1-\left(\frac{1-x}{1+2 x}\right)^{3}\right)=(1+2 x)_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right\rvert\, x^{3}\right),
$$

Application: Szegő's rational function, once more

- Recall Szegő's rational function

$$
S(x, y, z)=\frac{1}{1-(x+y+z)+\frac{3}{4}(x y+y z+z x)} .
$$

$S(2 x, 2 y, 2 z)$ has diagonal coefficients

$$
s_{n}=\sum_{k=0}^{n}(-27)^{n-k} 2^{2 k-n} \frac{(3 k)!}{k!^{3}}\binom{k}{n-k},
$$

whose generating function is

$$
y(z)={ }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right\rvert\, 27 z(2-27 z)\right) .
$$

- Ramanujan's cubic transformation

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right\rvert\, 1-\left(\frac{1-x}{1+2 x}\right)^{3}\right)=(1+2 x)_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right\rvert\, x^{3}\right)
$$

puts this in the form

$$
y(z)=(1+2 x(z))_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right\rvert\, x(z)^{3}\right),
$$

where the algebraic $x(z)=c_{1} z+c_{2} z^{2}+\ldots$ has positive coefficients.

Application: A conjecture of Kauers

CONJ The following rational function is positive:
Kauers
2007

$$
\frac{1}{1-(x+y+z+w)+\frac{64}{27}(y z w+x z w+x y w+x y z)} .
$$

- The diagonal is positive.
(apply CAD to recurrence of order 3 and degree 6)
- The rational function obtained from setting $w=0$ is positive.

Application: A conjecture of Kauers

CONJ The following rational function is positive:
Kauers
2007

$$
\frac{1}{1-(x+y+z+w)+\frac{64}{27}(y z w+x z w+x y w+x y z)} .
$$

- The diagonal is positive.
(apply CAD to recurrence of order 3 and degree 6)
- The rational function obtained from setting $w=0$ is positive. (because $64 / 27<4$)

Application: Another conjecture of Kauers and Zeilberger

CONJ The following rational function is positive:
Kauers-
Zeilberger
2008

$$
\frac{1}{1-(x+y+z+w)+2(y z w+x z w+x y w+x y z)+4 x y z w} .
$$

- Would imply conjectured positivity of Lewy-Askey rational function

$$
\frac{1}{1-(x+y+z+w)+\frac{2}{3}(x y+x z+x w+y z+y w+z w)} .
$$

Recent proof of non-negativity by Scott and Sokal, 2013

Application: Another conjecture of Kauers and Zeilberger

CONJ The following rational function is positive:
Kauers-
Zeilberger
2008

$$
\frac{1}{1-(x+y+z+w)+2(y z w+x z w+x y w+x y z)+4 x y z w} .
$$

- Would imply conjectured positivity of Lewy-Askey rational function 1

$$
\overline{1-(x+y+z+w)+\frac{2}{3}(x y+x z+x w+y z+y w+z w)} .
$$

Recent proof of non-negativity by Scott and Sokal, 2013
PROP The Kauers-Zeilberger function has diagonal coefficients

$$
d_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{n}^{2}
$$

Arithmetically interesting diagonals

Remarkably, several further rational functions on the boundary of positivity have Apéry-like diagonals:

EG

$$
\frac{1}{1-(x+y+z)+4 x y z} \quad \text { has diagonal coefficients } \quad \sum_{k=0}^{n}\binom{n}{k}^{3} .
$$

- Next, time permitting: congruences stronger than Gauss for these

Arithmetically interesting diagonals

Remarkably, several further rational functions on the boundary of positivity have Apéry-like diagonals:

EG

$$
\frac{1}{1-(x+y+z)+4 x y z}
$$

$$
\text { has diagonal coefficients } \sum_{k=0}^{n}\binom{n}{k}^{3} \text {. }
$$

EG Koornwinder's rational function

$$
\frac{1}{1-(x+y+z+w)+4 e_{3}(x, y, z, w)-16 x y z w}
$$

has diagonal coefficients $\sum_{k=0}^{n}\binom{2 k}{k}^{2}\binom{2(n-k)}{n-k}^{2}$.
Using a positivity preserving operator, implies positivity of

$$
1 / e_{3}(1-x, 1-y, 1-z, 1-w)
$$

- Next, time permitting: congruences stronger than Gauss for these

III

Apéry-like sequences

Apéry numbers and the irrationality of $\zeta(3)$

- The Apéry numbers $1,5,73,1445, \ldots$
satisfy

$$
A(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

$$
(n+1)^{3} A(n+1)=(2 n+1)\left(17 n^{2}+17 n+5\right) A(n)-n^{3} A(n-1) .
$$

Apéry numbers and the irrationality of $\zeta(3)$

- The Apéry numbers
satisfy

$$
A(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

$$
(n+1)^{3} A(n+1)=(2 n+1)\left(17 n^{2}+17 n+5\right) A(n)-n^{3} A(n-1)
$$

$\underset{\text { Apéry' } 78}{\text { THM }} \zeta(3)=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is irrational.
proof The same recurrence is satisfied by the "near"-integers

$$
B(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\left(\sum_{j=1}^{n} \frac{1}{j^{3}}+\sum_{m=1}^{k} \frac{(-1)^{m-1}}{2 m^{3}\binom{n}{m}\binom{n+m}{m}}\right)
$$

Then, $\frac{B(n)}{A(n)} \rightarrow \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

Zagier's search and Apéry-like numbers

- Recurrence for Apéry numbers is the case $(a, b, c)=(17,5,1)$ of

$$
(n+1)^{3} u_{n+1}=(2 n+1)\left(a n^{2}+a n+b\right) u_{n}-c n^{3} u_{n-1} .
$$

$\underset{\text { Q }}{\mathbf{Q}}$. Are there other tuples (a, b, c) for which the solution defined by Zagier $u_{-1}=0, u_{0}=1$ is integral?

Zagier's search and Apéry-like numbers

- Recurrence for Apéry numbers is the case $(a, b, c)=(17,5,1)$ of

$$
(n+1)^{3} u_{n+1}=(2 n+1)\left(a n^{2}+a n+b\right) u_{n}-c n^{3} u_{n-1} .
$$

Q Are there other tuples (a, b, c) for which the solution defined by
Beukers,
$\underset{\text { Zagier }}{\text { Beekers, }} u_{-1}=0, u_{0}=1$ is integral?

- Essentially, only 14 tuples (a, b, c) found.
(Almkvist-Zudilin)
- 4 hypergeometric and 4 Legendrian solutions (with generating functions

$$
{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \alpha, 1-\alpha \\
1,1
\end{array} \right\rvert\, 4 C_{\alpha} z\right), \quad \frac{1}{1-C_{\alpha} z}{ }_{2} F_{1}\left(\begin{array}{c|c}
\alpha, 1-\alpha & -C_{\alpha} z \\
1 & 1-C_{\alpha} z
\end{array}\right)^{2},
$$

$$
\text { with } \left.\alpha=\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6} \text { and } C_{\alpha}=2^{4}, 3^{3}, 2^{6}, 2^{4} \cdot 3^{3}\right)
$$

- 6 sporadic solutions
- Similar (and intertwined) story for:
- $(n+1)^{2} u_{n+1}=\left(a n^{2}+a n+b\right) u_{n}-c n^{2} u_{n-1}$ (Beukers, Zagier)
- $(n+1)^{3} u_{n+1}=(2 n+1)\left(a n^{2}+a n+b\right) u_{n}-n\left(c n^{2}+d\right) u_{n-1} \quad$ (Cooper)

The six sporadic Apéry-like numbers

(a, b, c)	$A(n)$	
$(17,5,1)$	$\sum_{k}\binom{n}{k}^{2}\binom{n+k}{n}^{2}$	Apery numbers
$(12,4,16)$	$\sum_{k}\binom{n}{k}^{2}\binom{2 k}{n}^{2}$	
$(10,4,64)$	$\sum_{k}\binom{n}{k}^{2}\binom{2 k}{k}\binom{2(n-k)}{n-k}$	Domb numbers
$(7,3,81)$	$\sum_{k}(-1)^{k} 3^{n-3 k}\binom{n}{3 k}\binom{n+k}{n} \frac{(3 k)!}{k!^{3}}$	Almkvist-Zudilin numbers
$(11,5,125)$	$\sum_{k}(-1)^{k}\binom{n}{k}^{3}\binom{4 n-5 k}{3 n}$	
$(9,3,-27)$	$\sum_{k, l}\binom{n}{k}^{2}\binom{n}{l}\binom{k}{l}\binom{k+l}{n}$	

Supercongruences for Apéry numbers

- Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$,

$$
A(p) \equiv 5 \quad\left(\bmod p^{3}\right)
$$

Supercongruences for Apéry numbers

- Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$,

$$
A(p) \equiv 5 \quad\left(\bmod p^{3}\right)
$$

- Gessel (1982) proved that $A(m p) \equiv A(m) \quad\left(\bmod p^{3}\right)$.

Supercongruences for Apéry numbers

- Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$,

$$
A(p) \equiv 5 \quad\left(\bmod p^{3}\right)
$$

- Gessel (1982) proved that $A(m p) \equiv A(m) \quad\left(\bmod p^{3}\right)$.

THM The Apéry numbers satisfy the supercongruence

$$
A\left(m p^{r}\right) \equiv A\left(m p^{r-1}\right) \quad\left(\bmod p^{3 r}\right)
$$

Supercongruences for Apéry numbers

- Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$,

$$
A(p) \equiv 5 \quad\left(\bmod p^{3}\right)
$$

- Gessel (1982) proved that $A(m p) \equiv A(m) \quad\left(\bmod p^{3}\right)$.

THM The Apéry numbers satisfy the supercongruence

$$
A\left(m p^{r}\right) \equiv A\left(m p^{r-1}\right) \quad\left(\bmod p^{3 r}\right) .
$$

EG For primes p, simple combinatorics proves the congruence

$$
\binom{2 p}{p}=\sum_{k}\binom{p}{k}\binom{p}{p-k} \equiv 1+1 \quad\left(\bmod p^{2}\right)
$$

For $p \geqslant 5$, Wolstenholme's congruence shows that, in fact,

$$
\binom{2 p}{p} \equiv 2 \quad\left(\bmod p^{3}\right)
$$

Supercongruences for Apéry numbers

- Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$,

$$
A(p) \equiv 5 \quad\left(\bmod p^{3}\right)
$$

- Gessel (1982) proved that $A(m p) \equiv A(m) \quad\left(\bmod p^{3}\right)$.

THM The Apéry numbers satisfy the supercongruence

$$
A\left(m p^{r}\right) \equiv A\left(m p^{r-1}\right) \quad\left(\bmod p^{3 r}\right) .
$$

EG
Mathematica 7 miscomputes $A(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ for $n>5500$.

$$
A\left(5 \cdot 11^{3}\right)=12488301 \ldots \text { about } 2000 \text { digits } \ldots \text { about } 8000 \text { digits. } .795652125
$$

Weirdly, with this wrong value, one still has

$$
A\left(5 \cdot 11^{3}\right) \equiv A\left(5 \cdot 11^{2}\right) \quad\left(\bmod 11^{6}\right)
$$

Supercongruences for Apéry-like numbers

- Conjecturally, supercongruences like

$$
A\left(m p^{r}\right) \equiv A\left(m p^{r-1}\right) \quad\left(\bmod p^{3 r}\right)
$$

hold for all Apéry-like numbers.

- Current state of affairs for the six sporadic sequences from earlier:

(a, b, c)	$A(n)$	
$(17,5,1)$	$\sum_{k}\binom{n}{k}^{2}\binom{n+k}{n}^{2}$	Beukers, Coster '87-88
$(12,4,16)$	$\sum_{k}\binom{n}{k}^{2}\binom{2 k}{n}{ }^{2}$	Osburn-Sahu-S '16
$(10,4,64)$	$\sum_{k}\binom{n}{k}^{2}\binom{2 k}{k}\binom{2(n-k)}{n-k}$	Osburn-Sahu '11
$(7,3,81)$	$\sum_{k}(-1)^{k} 3^{n-3 k}\binom{n}{3 k}\binom{n+k}{n} \frac{(3 k)!}{k!]^{3}}$	open $\begin{array}{r}\text { modulo } p^{3} \\ \text { Amdeberhan-Tauraso '16 }\end{array}$
$(11,5,125)$	$\sum_{k}(-1)^{k}\binom{n}{k}^{3}\binom{4 n-5 k}{3 n}$	Osburn-Sahu-S '16
$(9,3,-27)$	$\sum_{k, l}\binom{n}{k}{ }^{2}\binom{n}{l}\binom{k}{l}\binom{k+l}{n}$	open

Multivariate supercongruences

$\underset{\mathrm{s} 2014}{\mathrm{THM}}$ Define $A(\boldsymbol{n})=A\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ by

$$
\frac{1}{\left(1-x_{1}-x_{2}\right)\left(1-x_{3}-x_{4}\right)-x_{1} x_{2} x_{3} x_{4}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geqslant 0}^{4}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}} .
$$

- The Apéry numbers are the diagonal coefficients.
- For $p \geqslant 5$, we have the multivariate supercongruences

$$
A\left(\boldsymbol{n} p^{r}\right) \equiv A\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{3 r}\right)
$$

Multivariate supercongruences

$\underset{\mathrm{s} 2014}{\text { THM }}$ Define $A(\boldsymbol{n})=A\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ by

$$
\frac{1}{\left(1-x_{1}-x_{2}\right)\left(1-x_{3}-x_{4}\right)-x_{1} x_{2} x_{3} x_{4}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geqslant 0}^{4}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}} .
$$

- The Apéry numbers are the diagonal coefficients.
- For $p \geqslant 5$, we have the multivariate supercongruences

$$
A\left(\boldsymbol{n} p^{r}\right) \equiv A\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{3 r}\right)
$$

- $\sum_{n \geqslant 0} a(n) x^{n}=F(x) \Longrightarrow \sum_{n \geqslant 0} a(p n) x^{p n}=\frac{1}{p} \sum_{k=0}^{p-1} F\left(\zeta_{p}^{k} x\right) \quad \zeta_{p}=e^{2 \pi i / p}$
- Hence, both $A\left(\boldsymbol{n} p^{r}\right)$ and $A\left(\boldsymbol{n} p^{r-1}\right)$ have rational generating function. The proof, however, relies on an explicit binomial sum for the coefficients.

Multivariate supercongruences

$\underset{\text { s } 2014}{\text { THM }}$ Define $A(\boldsymbol{n})=A\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ by

$$
\frac{1}{\left(1-x_{1}-x_{2}\right)\left(1-x_{3}-x_{4}\right)-x_{1} x_{2} x_{3} x_{4}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geqslant 0}^{4}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}} .
$$

- The Apéry numbers are the diagonal coefficients.
- For $p \geqslant 5$, we have the multivariate supercongruences

$$
A\left(\boldsymbol{n} p^{r}\right) \equiv A\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{3 r}\right)
$$

- By MacMahon's Master Theorem,

$$
A(\boldsymbol{n})=\sum_{k \in \mathbb{Z}}\binom{n_{1}}{k}\binom{n_{3}}{k}\binom{n_{1}+n_{2}-k}{n_{1}}\binom{n_{3}+n_{4}-k}{n_{3}}
$$

Multivariate supercongruences

$\underset{\text { s } 2014}{\text { THM }}$ Define $A(\boldsymbol{n})=A\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ by

$$
\frac{1}{\left(1-x_{1}-x_{2}\right)\left(1-x_{3}-x_{4}\right)-x_{1} x_{2} x_{3} x_{4}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geqslant 0}^{4}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}} .
$$

- The Apéry numbers are the diagonal coefficients.
- For $p \geqslant 5$, we have the multivariate supercongruences

$$
A\left(\boldsymbol{n} p^{r}\right) \equiv A\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{3 r}\right)
$$

- By MacMahon's Master Theorem,

$$
A(\boldsymbol{n})=\sum_{k \in \mathbb{Z}}\binom{n_{1}}{k}\binom{n_{3}}{k}\binom{n_{1}+n_{2}-k}{n_{1}}\binom{n_{3}+n_{4}-k}{n_{3}}
$$

- Because $A(n-1)=A(-n,-n,-n,-n)$, we also find

$$
A\left(m p^{r}-1\right) \equiv A\left(m p^{r-1}-1\right) \quad\left(\bmod p^{3 r}\right)
$$

More conjectural multivariate supercongruences

- Exhaustive search by Alin Bostan and Bruno Salvy:
$1 /(1-p(x, y, z, w))$ with $p(x, y, z, w)$ a sum of distinct monomials; Apéry numbers as diagonal
$\frac{1}{1-(x+y+x y)(z+w+z w)}$
$\frac{1}{1-(1+w)(z+x y+y z+z x+x y z)}$
$\frac{1}{1-(y+z+x y+x z+z w+x y w+x y z w)}$
$\frac{1}{1-(y+z+x z+w z+x y w+x z w+x y z w)}$
$\frac{1}{1-(z+x y+y z+x w+x y w+y z w+x y z w)}$
$\frac{1}{1-(z+(x+y)(z+w)+x y z+x y z w)}$

More conjectural multivariate supercongruences

- Exhaustive search by Alin Bostan and Bruno Salvy:
$1 /(1-p(x, y, z, w))$ with $p(x, y, z, w)$ a sum of distinct monomials; Apéry numbers as diagonal

$$
\begin{aligned}
& \frac{1}{1-(x+y+x y)(z+w+z w)} \\
& \frac{1}{1-(1+w)(z+x y+y z+z x+x y z)} \\
& \frac{1}{1-(y+z+x y+x z+z w+x y w+x y z w)} \\
& \frac{1}{1-(y+z+x z+w z+x y w+x z w+x y z w)} \\
& \frac{1}{1-(z+x y+y z+x w+x y w+y z w+x y z w)} \\
& \frac{1}{1-(z+(x+y)(z+w)+x y z+x y z w)}
\end{aligned}
$$

$\underset{s}{\text { CONJ } 2014}$ The coefficients $B(\boldsymbol{n})$ of each of these satisfy, for $p \geqslant 5$,

$$
B\left(\boldsymbol{n} p^{r}\right) \equiv B\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{3 r}\right)
$$

An infinite family of rational functions

$\underset{\mathrm{s} 2014}{\operatorname{THM}}$ Let $\lambda \in \mathbb{Z}_{>0}^{\ell}$ with $d=\lambda_{1}+\ldots+\lambda_{\ell}$. Define $A_{\lambda}(\boldsymbol{n})$ by

$$
\frac{1}{\prod_{1 \leqslant j \leqslant \ell}\left[1-\sum_{1 \leqslant r \leqslant \lambda_{j}} x_{\lambda_{1}+\ldots+\lambda_{j-1}+r}\right]-x_{1} x_{2} \cdots x_{d}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geqslant 0}^{d}} A_{\lambda}(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}} .
$$

- If $\ell \geqslant 2$, then, for all primes p,

$$
A_{\lambda}\left(\boldsymbol{n} p^{r}\right) \equiv A_{\lambda}\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{2 r}\right)
$$

- If $\ell \geqslant 2$ and $\max \left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \leqslant 2$, then, for primes $p \geqslant 5$,

$$
A_{\lambda}\left(\boldsymbol{n} p^{r}\right) \equiv A_{\lambda}\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{3 r}\right)
$$

EG

$$
\begin{array}{ll}
\lambda=(2,2) & \lambda=(2,1) \\
\frac{1}{\left(1-x_{1}-x_{2}\right)\left(1-x_{3}-x_{4}\right)-x_{1} x_{2} x_{3} x_{4}} & \frac{1}{\left(1-x_{1}-x_{2}\right)\left(1-x_{3}\right)-x_{1} x_{2} x_{3}}
\end{array}
$$

Further examples

EG

$$
\frac{1}{\left(1-x_{1}-x_{2}\right)\left(1-x_{3}\right)-x_{1} x_{2} x_{3}}
$$

has as diagonal the Apéry-like numbers, associated with $\zeta(2)$,

$$
B(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}
$$

EG

$$
\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{d}\right)-x_{1} x_{2} \cdots x_{d}}
$$

has as diagonal the numbers $\quad d=3:$ Franel, $d=4$: Yang-Zudilin

$$
Y_{d}(n)=\sum_{k=0}^{n}\binom{n}{k}^{d}
$$

- In each case, we obtain supercongruences generalizing results of Coster (1988) and Chan-Cooper-Sica (2010).

A conjectural multivariate supercongruence

$\underset{\mathrm{s} 2014}{\text { CONJ }}$ The coefficients $Z(\boldsymbol{n})$ of

$$
\frac{1}{1-\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+27 x_{1} x_{2} x_{3} x_{4}}=\sum_{\boldsymbol{n} \in \mathbb{Z}_{\geqslant 0}^{4}} Z(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}
$$

satisfy, for $p \geqslant 5$, the multivariate supercongruences

$$
Z\left(\boldsymbol{n} p^{r}\right) \equiv Z\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{3 r}\right)
$$

- Here, the diagonal coefficients are the Almkvist-Zudilin numbers

$$
Z(n)=\sum_{k=0}^{n}(-3)^{n-3 k}\binom{n}{3 k}\binom{n+k}{n} \frac{(3 k)!}{k!^{3}},
$$

for which the univariate congruences are still open.

Some open problems

- Which rational functions have the Gauss property?

$$
A\left(\boldsymbol{n} p^{r}\right) \equiv A\left(\boldsymbol{n} p^{r-1}\right) \quad\left(\bmod p^{r}\right)
$$

When are these necessarily combinations of $\frac{x_{1} \cdots x_{m}}{f_{1} \cdots f_{m}} \operatorname{det}\left(\frac{\partial f_{j}}{\partial x_{i}}\right)$?

- Which rational functions are positive?

When is diagonal, plus lower-dimensional, positivity sufficient?

- Can we establish all supercongruences via rational functions?

$$
\frac{1}{1-(x+y+z)+4 x y z}, \quad \frac{1}{1-(x+y+z+w)+27 x y z w}
$$

- Is there a rational function in three variables with the $\zeta(3)$-Apéry numbers as diagonal? As Alin showed us, the GF is transcendental, so two variables is impossible.

thank you!

Slides for this talk will be available from my website: http://arminstraub.com/talks
F. Beukers, M. Houben, A. Straub

Gauss congruences for rational functions in several variables
Preprint, 2017. arXiv:1710.00423
A. Straub, W. Zudilin

Positivity of rational functions and their diagonals
Journal of Approximation Theory (special issue dedicated to Richard Askey), Vol. 195, 2015, p. 57-69
A. Straub

Multivariate Apéry numbers and supercongruences of rational functions
Algebra \& Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008
A. Straub

Positivity of Szegö's rational function
Advances in Applied Mathematics, Vol. 41, Issue 2, Aug 2008, p. 255-264

