Properties of Laurent coefficients of multivariate rational functions

Workshop on Computer Algebra in Combinatorics Erwin Schroedinger Institute

Armin Straub

November 14, 2017

University of South Alabama

Wadim Zudilin (University of Newcastle/ Radboud Universiteit)

Frits Beukers (Utrecht University)

Marc Houben (Utrecht University)

and

$$\frac{1}{1 - (x_1 + x_2 + x_3) + 4x_1 x_2 x_3} = \sum_{\boldsymbol{n} \in \mathbb{Z}^3_{\geq 0}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}.$$

$$\frac{1}{1 - (x_1 + x_2 + x_3) + 4x_1 x_2 x_3} = \sum_{\boldsymbol{n} \in \mathbb{Z}^3_{\geq 0}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}.$$

Q When has a rational function the **Gauss property**? That is, when do the following congruences hold?

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \pmod{p^r}$$

$$\frac{1}{1 - (x_1 + x_2 + x_3) + 4x_1 x_2 x_3} = \sum_{\boldsymbol{n} \in \mathbb{Z}^3_{\geq 0}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}.$$

Q When has a rational function the **Gauss property**? That is, when do the following congruences hold?

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \pmod{p^r}$$

Q When is a rational function **positive**? That is, when is A(n) > 0 for all n?

$$\frac{1}{1 - (x_1 + x_2 + x_3) + 4x_1 x_2 x_3} = \sum_{\boldsymbol{n} \in \mathbb{Z}^3_{\ge 0}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}.$$

Q When has a rational function the **Gauss property**? That is, when do the following congruences hold?

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \pmod{p^r}$$

Q When is a rational function **positive**? That is, when is A(n) > 0 for all n?

In both cases, we will wonder about an explicit characterization. These are not conjectures because our evidence is limited. Computer algebra!

$$\frac{1}{1 - (x_1 + x_2 + x_3) + 4x_1 x_2 x_3} = \sum_{\boldsymbol{n} \in \mathbb{Z}^3_{\ge 0}} A(\boldsymbol{n}) \boldsymbol{x}^{\boldsymbol{n}}.$$

EG Here, the diagonal coefficients are the Franel numbers $A(n,n,n) = \sum_{k=0}^{n} {\binom{n}{k}}^{3}.$

- As seen in previous talks, simple multivariate generating functions can be enormously useful, for instance, in computing asymptotics.
- Time permitting, more on Apéry-like numbers later...

Gauss congruences

Properties of Laurent coefficients of multivariate rational functions

THM Fermat	if p is prime.	$a^p \equiv a$	$(\mathrm{mod}p)$
THM Euler	if a is coprime to m .	$a^{\phi(m)} \equiv 1$	$(\mathrm{mod}m)$

THM Fermat	$a^p\equiv a \pmod{p}$ if p is prime.		
THM Euler	$a^{\phi(m)} \equiv 1 \pmod{m}$ if a is coprime to m .		
THM Gauss	$\sum_{d m} \mu(\frac{m}{d}) a^d \equiv 0 \pmod{m}$		
Möbius function: $\mu(n) = (-1)^{\# \text{ of } p \mid n}$ if n is square-free, $\mu(n) = 0$ else			

THM Fermat	$a^p \equiv a \pmod{p}$			
	if p is prime.			
THM Euler	$a^{\phi(m)} \equiv 1 \pmod{m}$			
	if a is coprime to m.			
THM Gauss	$\sum \mu(\underline{m}_d) a^d \equiv 0 \pmod{m}$			
	d m			
Möbius function: $\mu(n) = (-1)^{\# \text{ of } p \mid n}$ if n is square-free, $\mu(n) = 0$ else				
EG	If $m = p^r$ then only $d = p^r$, $d = p^{r-1}$ contribute, and we get			
	$a^{p^r} \equiv a^{p^{r-1}} \pmod{p^r}.$			

 $\begin{array}{c} \mbox{DEF} & a(n) \mbox{ satisfies the Gauss congruences if, for all primes } p, \\ & a(mp^r) \equiv a(mp^{r-1}) \quad ({\rm mod}\,p^r). \end{array}$ Equivalently, $\sum_{d|m} \mu(\frac{m}{d})a(d) \equiv 0 \quad ({\rm mod}\,m). \end{array}$

a(n) satisfies the **Gauss congruences** if, for all primes p, DEF $a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}.$ Equivalently, $\sum \mu(\frac{m}{d})a(d) \equiv 0 \pmod{m}$. d|mEG • $a(n) = a^n$

a(n) satisfies the Gauss congruences if, for all primes p, DEF $a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}.$ Equivalently, $\sum \mu(\frac{m}{d})a(d) \equiv 0 \pmod{m}$. d|mEG • $a(n) = a^n$ • $a(n) = L_n$ Lucas numbers: $\begin{array}{c} L_{n+1} = L_n + L_{n-1} \\ L_0 = 2, L_1 = 1 \end{array}$

DEF a(n) satisfies the **Gauss congruences** if, for all primes p, $a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}.$ Equivalently, $\sum \mu(\frac{m}{d})a(d) \equiv 0 \pmod{m}$. d|mEG • $a(n) = a^n$ • $a(n) = L_n$ Lucas numbers: $\begin{array}{c} L_{n+1} = L_n + L_{n-1} \\ L_0 = 2, L_1 = 1 \end{array}$ • $a(n) = D_n$ Delannoy numbers: $D_n = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k}$

DEF a(n) satisfies the **Gauss congruences** if, for all primes p, $a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}.$ Equivalently, $\sum \mu(\frac{m}{d})a(d) \equiv 0 \pmod{m}$. d|m• $a(n) = a^n$ EG • $a(n) = L_n$ Lucas numbers: $L_{n+1} = L_n + L_{n-1}$ $L_0 = 2, L_1 = 1$ • $a(n) = D_n$ Delannoy numbers: $D_n = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k}$

- Later, we allow a(n) ∈ Q. If the Gauss congruences hold for all but finitely many p, we say that the sequence (or its GF) has the Gauss property.
- Similarly, for multivariate sequences $a(\boldsymbol{n})$, we require

$$a(\boldsymbol{m}p^r) \equiv a(\boldsymbol{m}p^{r-1}) \pmod{p^r}.$$

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r} \tag{G}$$

• realizable sequences a(n), i.e., for some map $T: X \to X$,

$$a(n) = #\{x \in X : T^n x = x\}$$
 "points of period n "

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

In fact, up to a positivity condition, (G) characterizes realizability.

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r} \tag{G}$$

• realizable sequences a(n), i.e., for some map $T: X \to X$,

$$a(n) = #\{x \in X : T^n x = x\}$$
 "points of period n "

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

In fact, up to a positivity condition, (G) characterizes realizability.

• $a(n) = \operatorname{trace}(M^n)$ Jänichen '21, Schur '37; also: Arnold, Zarelua where M is an integer matrix

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r} \tag{G}$$

• realizable sequences a(n), i.e., for some map $T: X \to X$,

$$a(n) = #\{x \in X : T^n x = x\}$$
 "points of period n "

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

In fact, up to a positivity condition, (G) characterizes realizability.

• $a(n) = \operatorname{trace}(M^n)$ Jänichen '21, Schur '37; also: Arnold, Zarelua

where \boldsymbol{M} is an integer matrix

• (G) is equivalent to $\exp\left(\sum_{n=1}^{\infty} \frac{a(n)}{n}T^n\right) \in \mathbb{Z}[[T]].$ This is a natural condition in formal group theory. THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q} -linear combination of functions xu'(x)/u(x), with $u \in \mathbb{Z}[x]$.

Minton's theorem

THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q} -linear combination of functions xu'(x)/u(x), with $u \in \mathbb{Z}[x]$.

• If
$$u(x) = \prod_{i=1}^{s} (1 - \alpha_i x)$$
 then

$$x \frac{u'(x)}{u(x)} = -\sum_{i=1}^{s} \frac{\alpha_i x}{1 - \alpha_i x} = s - \sum_{i=1}^{s} \frac{1}{1 - \alpha_i x}.$$

Minton's theorem

THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q} -linear combination of functions xu'(x)/u(x), with $u \in \mathbb{Z}[x]$.

• If
$$u(x) = \prod_{i=1}^{s} (1 - \alpha_i x)$$
 then

$$x \frac{u'(x)}{u(x)} = -\sum_{i=1}^{s} \frac{\alpha_i x}{1 - \alpha_i x} = s - \sum_{i=1}^{s} \frac{1}{1 - \alpha_i x}.$$

• Assuming the α_i are distinct,

$$\sum_{i=1}^s \frac{1}{1-\alpha_i x} = \sum_{n \geqslant 0} \left(\sum_{i=1}^s \alpha_i^n\right) x^n = \sum_{n \geqslant 0} \operatorname{trace}(M^n) x^n,$$

where M is the companion matrix of $\prod_{i=1}^{s} (x - \alpha_i) = x^s u(1/x)$.

Minton's theorem

THM $f \in \mathbb{Q}(x)$ has the Gauss property if and only if f is a \mathbb{Q} -linear combination of functions xu'(x)/u(x), with $u \in \mathbb{Z}[x]$.

• If
$$u(x) = \prod_{i=1}^{s} (1 - \alpha_i x)$$
 then

$$x \frac{u'(x)}{u(x)} = -\sum_{i=1}^{s} \frac{\alpha_i x}{1 - \alpha_i x} = s - \sum_{i=1}^{s} \frac{1}{1 - \alpha_i x}.$$

• Assuming the α_i are distinct,

$$\sum_{i=1}^{s} \frac{1}{1-\alpha_i x} = \sum_{n \geqslant 0} \left(\sum_{i=1}^{s} \alpha_i^n \right) x^n = \sum_{n \geqslant 0} \operatorname{trace}(M^n) x^n,$$

where M is the companion matrix of $\prod_{i=1}^{s} (x - \alpha_i) = x^s u(1/x)$.

- Minton: No new C-finite sequences with the Gauss property!
- Can we generalize from C-finite towards D-finite?

THM
Beukers,
Houben,
S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(\boldsymbol{x}) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions

THM
Beukers,
Houben, S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(x) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions

EG Consider
$$Q = 1 - x - y - z + 4xyz$$
:
 $f_1 = Q \implies (D) = \frac{-x + 4xyz}{Q}$

THM
Beukers,
Houben, S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(x) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions

EG Consider
$$Q = 1 - x - y - z + 4xyz$$
:
 $f_1 = Q \implies (D) = \frac{-x + 4xyz}{Q}$
 $f_1 = Q, \quad f_2 = 1 - 4yz \implies (D) = \frac{4xyz}{Q}$

THM
Beukers,
Houben, S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(\boldsymbol{x}) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

Interesting detail: true for any of the different Laurent expansions of multivariate rational functions

EG Consider
$$Q = 1 - x - y - z + 4xyz$$
:
 $f_1 = Q \implies (D) = \frac{-x + 4xyz}{Q}$
 $f_1 = Q, \quad f_2 = 1 - 4yz \implies (D) = \frac{4xyz}{Q}$
In particular, $\frac{1}{1 - x - y - z + 4xyz}$ has the Gauss property.

There is nothing special about 4.

THM
Beukers,
Houben,
S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(\boldsymbol{x}) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

THM Let
$$P, Q \in \mathbb{Z}[x]$$
 with Q is linear in each variable.
Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

- Here, N(Q) is the Newton polytope of Q.
- In this case, $N(Q) = \operatorname{supp}(Q) \subseteq \{0, 1\}^n$.

THM
Beukers,
Houben,
S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(x) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

THM
BHS Let
$$P, Q \in \mathbb{Z}[x]$$
 with Q is linear in each variable.
Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

- Here, N(Q) is the Newton polytope of Q.
- In this case, $N(Q) = \operatorname{supp}(Q) \subseteq \{0, 1\}^n$.

 $\begin{array}{l} \underset{\mathsf{BHS}}{\operatorname{PROP}} \mbox{ Let } P,Q \in \mathbb{Z}[{\pmb{x}}^{\pm 1}]. \\ \\ \mbox{ If } P/Q \mbox{ has the Gauss property, then } N(P) \subseteq N(Q). \end{array}$

Properties of Laurent coefficients of multivariate rational functions

THM
Beukers,
Houben,
S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(\boldsymbol{x}) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

Q Suppose $f \in \mathbb{Q}(x)$ has the Gauss property. Can it be written as a \mathbb{Q} -linear combination of functions of the form (D)?

• Yes, for n = 1, by Minton's theorem.

THM
Beukers,
Houben,
S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(\boldsymbol{x}) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

Q Suppose $f \in \mathbb{Q}(x)$ has the Gauss property. Can it be written as a \mathbb{Q} -linear combination of functions of the form (D)?

- Yes, for n = 1, by Minton's theorem.
- Yes, for f = P/Q with Q linear in all, or all but one, variables.

THM
Beukers,
Houben,
S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(\boldsymbol{x}) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

Q Suppose $f \in \mathbb{Q}(x)$ has the Gauss property. Can it be written as a \mathbb{Q} -linear combination of functions of the form (D)?

- Yes, for n = 1, by Minton's theorem.
- Yes, for f = P/Q with Q linear in all, or all but one, variables.
- Yes, for f = P/Q with Q in two variables and total degree 2.

THM
Beukers,
Houben,
S 2017 Let
$$f_1, \ldots, f_m \in \mathbb{Q}(\boldsymbol{x}) = \mathbb{Q}(x_1, \ldots, x_n)$$
 be nonzero. Then
$$\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i}\right)_{i,j=1,\ldots,m}$$
(D)

Q Suppose $f \in \mathbb{Q}(x)$ has the Gauss property. Can it be written as a \mathbb{Q} -linear combination of functions of the form (D)?

- Yes, for n = 1, by Minton's theorem.
- Yes, for f = P/Q with Q linear in all, or all but one, variables.
- Yes, for f = P/Q with Q in two variables and total degree 2.

EG Can
$$\frac{x(x+y+y^2+2xy^2)}{1+3x+3y+2x^2+2y^2+xy-2x^2y^2}$$
 be written in that form?

Application: Delannoy numbers

THM Let $P, Q \in \mathbb{Z}[\boldsymbol{x}]$ with Q is linear in each variable. Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

Application: Delannoy numbers

THM Let $P, Q \in \mathbb{Z}[\boldsymbol{x}]$ with Q is linear in each variable. Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

The **Delannoy numbers** D_{n_1,n_2} are characterized by EG Beukers. Houben. S 2017 $\frac{1}{1-x-y-xy} = \sum_{n_1,n_2=0}^{\infty} D_{n_1,n_2} x^{n_1} y^{n_2}.$

Application: Delannoy numbers

THM BHS Let $P, Q \in \mathbb{Z}[x]$ with Q is linear in each variable. Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

EG Beukers, Houben, s 2017 The Delannoy numbers D_{n_1,n_2} are characterized by $\frac{1}{1-x-y-xy} = \sum_{n_1,n_2=0}^{\infty} D_{n_1,n_2} x^{n_1} y^{n_2}.$

By the theorem, the following have the Gauss property:

$$\frac{N}{1-x-y-xy} \quad \text{with } N \in \{1, x, y, xy\}$$

Application: Delannoy numbers

THM BHS Let $P, Q \in \mathbb{Z}[x]$ with Q is linear in each variable. Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

The **Delannoy numbers** D_{n_1,n_2} are characterized by EG Beukers. Houben. S 2017 $\frac{1}{1-x-y-xy} = \sum_{n_1,n_2=0}^{\infty} D_{n_1,n_2} x^{n_1} y^{n_2}.$ By the theorem, the following have the Gauss property: $\frac{N}{1-x-y-xy} \quad \text{with } N \in \{1,x,y,xy\}$ In other words, for $\boldsymbol{\delta} \in \{0,1\}^2$, $D_{\boldsymbol{m}p^r-\boldsymbol{\delta}} \equiv D_{\boldsymbol{m}p^{r-1}-\boldsymbol{\delta}} \pmod{p^r}.$

Positivity

Properties of Laurent coefficients of multivariate rational functions

Armin Straub

• A rational function

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a_{n_1, \dots, n_d} x_1^{n_1} \cdots x_d^{n_d}$$

is **positive** if $a_{n_1,\ldots,n_d} > 0$ for all indices.

• A rational function

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a_{n_1, \dots, n_d} x_1^{n_1} \cdots x_d^{n_d}$$

is **positive** if $a_{n_1,\ldots,n_d} > 0$ for all indices.

EG
$$\frac{1}{1-x}$$
 and $\frac{1}{(1-x)(1-y)}$ are positive.

• A rational function

$$F(x_1, \dots, x_d) = \sum_{n_1, \dots, n_d \ge 0} a_{n_1, \dots, n_d} x_1^{n_1} \cdots x_d^{n_d}$$

is **positive** if $a_{n_1,\ldots,n_d} > 0$ for all indices.

EG
$$\frac{1}{1-x}$$
 and $\frac{1}{(1-x)(1-y)}$ are positive.

EG
Szegő
1933
$$\frac{1}{(1-x)(1-y) + (1-y)(1-z) + (1-z)(1-x)}$$
 is positive.

- Szegő's proof builds on an integral of a product of Bessel functions. "the used tools, however, are disproportionate to the simplicity of the statement"
- Elementary proof by Kaluza ('33)
- Askey–Gasper ('72) use integral of product of Legendre functions.
- Ismail–Tamhankar ('79) systematize Kaluza's approach by using MacMahon's Master Theorem.
- S ('08): simple proof using a positivity-preserving operator

$$\frac{1}{(1-x)(1-y) + (1-y)(1-z) + (1-z)(1-x)} = \sum_{k,m,n} A(k,m,n) x^k y^m z^n$$

- Friedrichs and Lewy conjectured positivity of A(k, m, n).
- Wanted to show convergence of finite difference approximations to

$$\left(\frac{\partial}{\partial x}\frac{\partial}{\partial y} + \frac{\partial}{\partial x}\frac{\partial}{\partial z} + \frac{\partial}{\partial y}\frac{\partial}{\partial z}\right)u(x, y, z) = 0,$$

which transforms to the 2D wave equation.

$$\frac{1}{(1-x)(1-y) + (1-y)(1-z) + (1-z)(1-x)} = \sum_{k,m,n} A(k,m,n) x^k y^m z^n$$

- Friedrichs and Lewy conjectured positivity of A(k, m, n).
- Wanted to show convergence of finite difference approximations to

$$\left(\frac{\partial}{\partial x}\frac{\partial}{\partial y} + \frac{\partial}{\partial x}\frac{\partial}{\partial z} + \frac{\partial}{\partial y}\frac{\partial}{\partial z}\right)u(x, y, z) = 0,$$

which transforms to the 2D wave equation.

• With $\partial/\partial x$ replaced by Δ_k , $\Delta a(k) = a(k) - a(k-1)$

$$(\Delta_k \Delta_m + \Delta_k \Delta_n + \Delta_m \Delta_n) A(k, m, n) = 0.$$

• Szegő also showed positivity of (and extension to any # of variables)
$$\frac{1}{\sum_{i=1}^{4} \prod_{j \neq i} (1-x_j)} = \frac{1}{(1-x_2)(1-x_3)(1-x_4) + \dots + (1-x_1)(1-x_2)(1-x_3)}$$

• The Lewy-Askey problem asks for positivity of

$$\frac{1}{\sum\limits_{1 \le i < j \le 4} (1 - x_i)(1 - x_j)} = \frac{1}{(1 - x_1)(1 - x_2) + \dots + (1 - x_3)(1 - x_4)}.$$

• Szegő also showed positivity of (and extension to any # of variables)
$$\frac{1}{\sum_{i=1}^{4} \prod_{j \neq i} (1-x_j)} = \frac{1}{(1-x_2)(1-x_3)(1-x_4) + \dots + (1-x_1)(1-x_2)(1-x_3)}$$

• The Lewy-Askey problem asks for positivity of

$$\frac{1}{\sum\limits_{1 \le i < j \le 4} (1 - x_i)(1 - x_j)} = \frac{1}{(1 - x_1)(1 - x_2) + \dots + (1 - x_3)(1 - x_4)}.$$

- Non-negativity proved by a very general result of Scott-Sokal ('13):
 - $\frac{1}{\det(\sum_{i=1}^{i}(1-x_i)A_i)}$ is non-negative if $A_i \ge 0$ are hermitian matrices.
 - For the Lewy–Askey problem:

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 1 & e^{-i\pi/3} \\ e^{i\pi/3} & 1 \end{bmatrix}.$$

• Szegő also showed positivity of (and extension to any # of variables)
$$\frac{1}{\sum_{i=1}^{4} \prod_{j \neq i} (1-x_j)} = \frac{1}{(1-x_2)(1-x_3)(1-x_4) + \dots + (1-x_1)(1-x_2)(1-x_3)}$$

• The Lewy-Askey problem asks for positivity of

$$\frac{1}{\sum\limits_{1 \le i < j \le 4} (1 - x_i)(1 - x_j)} = \frac{1}{(1 - x_1)(1 - x_2) + \dots + (1 - x_3)(1 - x_4)}.$$

- Non-negativity proved by a very general result of Scott-Sokal ('13):
 - $\frac{1}{\det (\sum_{i=1}^{n} (1-x_i)A_i)}$ is non-negative if $A_i \ge 0$ are hermitian matrices.
 - For the Lewy–Askey problem:

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 1 & e^{-i\pi/3} \\ e^{i\pi/3} & 1 \end{bmatrix}.$$

 $\mathbb{Q}_{2 \leq r \leq n} e_r (1-x)^{-\beta}$ in n variables positive iff $\beta \geqslant (n-r)/2$ (or $\beta = 0$)?

With complete monotonicity of $e_r(x)^{-\beta}$, this is a conjecture of Scott-Sokal ('13). Multivariate asymptotics?

Properties of Laurent coefficients of multivariate rational functions

• Positivity of the Askey–Gasper rational function

$$\frac{1}{1 - (x + y + z) + 4xyz}$$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79 Gillis–Reznick–Zeilberger '83 • Positivity of the Askey–Gasper rational function

$$\frac{1}{1 - (x + y + z) + 4xyz}$$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79 Gillis–Reznick–Zeilberger '83

implies positivity, for any $\varepsilon > 0$, of

$$\frac{1}{1 - (x + y + z) + (4 - \varepsilon)xyz}$$

Positivity of the Askey–Gasper rational function

$$\frac{1}{(1-(x+y+z)+4xyz)^{\beta}}$$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79 Gillis–Reznick–Zeilberger '83

implies positivity, for any $\varepsilon > 0$, of for $\beta \ge (\sqrt{17} - 3)/2 \approx 0.56$

$$\frac{1}{1 - (x + y + z) + (4 - \varepsilon)xyz}$$

Positivity of the Askey–Gasper rational function

$$\frac{1}{(1-(x+y+z)+4xyz)^{\beta}}$$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79 Gillis–Reznick–Zeilberger '83

implies positivity, for any $\varepsilon > 0$, of for $\beta \ge (\sqrt{17} - 3)/2 \approx 0.56$

$$\frac{1}{1 - (x + y + z) + (4 - \varepsilon)xyz}$$

• If $F(x_1, ..., x_n)$ is positive, so is, for $0 \le p \le 1$, $T_p(F) = \frac{F\left(\frac{px_1}{1-(1-p)x_1}, ..., \frac{px_n}{1-(1-p)x_n}\right)}{(1-(1-p)x_1)\cdots(1-(1-p)x_n)}.$ • Positivity of the Askey–Gasper rational function

$$\frac{1}{(1-(x+y+z)+4xyz)^{\beta}}$$

Askey–Gasper '77 Koornwinder '78 Ismail–Tamhankar '79 Gillis–Reznick–Zeilberger '83

implies positivity, for any $\varepsilon > 0$, of for $\beta \ge (\sqrt{17} - 3)/2 \approx 0.56$

$$\frac{1}{1 - (x + y + z) + (4 - \varepsilon)xyz}$$

• If
$$F(x_1, ..., x_n)$$
 is positive, so is, for $0 \le p \le 1$,

$$T_p(F) = \frac{F\left(\frac{px_1}{1-(1-p)x_1}, \dots, \frac{px_n}{1-(1-p)x_n}\right)}{(1-(1-p)x_1)\cdots(1-(1-p)x_n)}.$$

$$\begin{array}{c} {\rm EG} \\ {\rm s} \ {}^{\circ}{\rm O8} \end{array} \ T_{1/2} \ \frac{1}{1-(x+y+z)+4xyz} = \frac{1}{1-(x+y+z)+\frac{3}{4}(xy+yz+zx)} \\ \\ {\rm Hence, we \ can \ conclude \ positivity \ of \ Szegő's \ function \ e_2(1-x,1-y,1-z)^{-1}. \end{array}$$

The case of three variables

$$h_{a,b}(x, y, z) = \frac{1}{1 - (x + y + z) + a(xy + yz + zx) + bxyz}$$
CONJ
s '08
 $h_{a,b}$ is positive $\iff \begin{cases} b < 6(1 - a) \\ b \le 2 - 3a + 2(1 - a)^{3/2} \\ a \le 1 \end{cases}$

CONJ
G-R-Z
'B3
For any
$$d \ge 4$$
, the following function is non-negative:

$$\frac{1}{1 - (x_1 + x_2 + \ldots + x_d) + d! x_1 x_2 \cdots x_d}$$

CONJ
G.R.Z
'83
For any
$$d \ge 4$$
, the following function is non-negative:
$$\frac{1}{1 - (x_1 + x_2 + \ldots + x_d) + d! x_1 x_2 \cdots x_d}$$

THM Suffices to prove that the diagonal coefficients are non-negative.

CONJ
G.R.Z
'B3
For any
$$d \ge 4$$
, the following function is non-negative:

$$\frac{1}{1 - (x_1 + x_2 + \ldots + x_d) + d! x_1 x_2 \cdots x_d}$$

THM $_{G-R-Z}$ Suffices to prove that the diagonal coefficients are non-negative.

proof "omitted due to its length"

CONJ
G-R-Z
'83
For any
$$d \ge 4$$
, the following function is non-negative:
$$\frac{1}{1 - (x_1 + x_2 + \ldots + x_d) + d! x_1 x_2 \cdots x_d}$$

THM $_{G-R-Z}$ Suffices to prove that the diagonal coefficients are non-negative.

proof "omitted due to its length

- False for d = 2, 3.
- Kauers proved that diagonal is non-negative for d = 4, 5, 6.

CONJ
G.R.Z
'83
For any
$$d \ge 4$$
, the following function is non-negative:
$$\frac{1}{1 - (x_1 + x_2 + \ldots + x_d) + d! x_1 x_2 \cdots x_d}$$

THM $_{G-R-Z}$ Suffices to prove that the diagonal coefficients are non-negative.

proof "omitted d	e to its length"
------------------	------------------

- False for d = 2, 3.
- Kauers proved that diagonal is non-negative for d = 4, 5, 6.
- With c in place of d!, the coefficient of $x_1 \cdots x_d$ is d! c.

CONJ
G-R-Z
'83
For any
$$d \ge 4$$
, the following function is non-negative:
$$\frac{1}{1 - (x_1 + x_2 + \ldots + x_d) + d! x_1 x_2 \cdots x_d}$$

THM $_{G-R-Z}$ Suffices to prove that the diagonal coefficients are non-negative.

proof "omitted due to its leng	gth"
--------------------------------	------

- False for d = 2, 3.
- Kauers proved that diagonal is non-negative for d = 4, 5, 6.
- With c in place of d!, the coefficient of $x_1 \cdots x_d$ is d! c.
- Diagonal coefficients eventually positive if $c < (d-1)^{d-1}$? Multivariate asymptotics?

Positivity vs diagonal positivity

- Consider rational functions $F = 1/p(x_1, \ldots, x_d)$ with p a symmetric polynomial, linear in each variable.
 - Q Under what condition(s) is the positivity of *F* implied by the positivity of its diagonal?

- Consider rational functions $F = 1/p(x_1, \ldots, x_d)$ with p a symmetric polynomial, linear in each variable.
 - **Q** Under what condition(s) is the positivity of *F* implied by the positivity of its diagonal?
 - **EG** $\frac{1}{1+x+y}$ has positive diagonal coefficients but is not positive.

- Consider rational functions $F = 1/p(x_1, \ldots, x_d)$ with p a symmetric polynomial, linear in each variable.
 - Q Under what condition(s) is the positivity of *F* implied by the positivity of its diagonal?

EG $\frac{1}{1+x+y}$ has positive diagonal coefficients but is not positive.

 $\mathbf{Q}_{\text{SZ '15}}$ F positive \iff diagonal of F, and $F|_{x_d=0}$ are positive?

- Consider rational functions $F = 1/p(x_1, \ldots, x_d)$ with p a symmetric polynomial, linear in each variable.
 - Q Under what condition(s) is the positivity of *F* implied by the positivity of its diagonal?

EG $\frac{1}{1+x+y}$ has positive diagonal coefficients but is not positive.

$$\mathbf{Q}_{\mathbf{SZ} \ 15} F$$
 positive \iff diagonal of F , and $F|_{x_d=0}$ are positive?

THM S-Zudilin 2015

$$F(x,y) = \frac{1}{1+c_1(x+y)+c_2xy}$$
 is positive

 \iff diagonal of F, and $F|_{y=0}$ are positive

• d = 3: also yes, if the previous conjecture on $h_{a,b}$ is true.

Properties of Laurent coefficients of multivariate rational functions

ŀ

Application: Szegő's rational function, once more

• Recall Szegő's rational function

$$S(x, y, z) = \frac{1}{1 - (x + y + z) + \frac{3}{4}(xy + yz + zx)}.$$

S(2x,2y,2z) has diagonal coefficients

$$s_n = \sum_{k=0}^n (-27)^{n-k} 2^{2k-n} \frac{(3k)!}{k!^3} \binom{k}{n-k},$$

Application: Szegő's rational function, once more

• Recall Szegő's rational function

$$S(x, y, z) = \frac{1}{1 - (x + y + z) + \frac{3}{4}(xy + yz + zx)}.$$

S(2x,2y,2z) has diagonal coefficients

$$s_n = \sum_{k=0}^n (-27)^{n-k} 2^{2k-n} \frac{(3k)!}{k!^3} \binom{k}{n-k},$$

whose generating function is

$$y(z) = {}_{2}F_{1} \begin{pmatrix} \frac{1}{3}, \frac{2}{3} \\ 1 \end{bmatrix} 27z(2-27z) \end{pmatrix}.$$

• Recall Szegő's rational function

$$S(x, y, z) = \frac{1}{1 - (x + y + z) + \frac{3}{4}(xy + yz + zx)}.$$

S(2x,2y,2z) has diagonal coefficients

$$s_n = \sum_{k=0}^n (-27)^{n-k} 2^{2k-n} \frac{(3k)!}{k!^3} \binom{k}{n-k},$$

whose generating function is

$$y(z) = {}_{2}F_{1} \begin{pmatrix} \frac{1}{3}, \frac{2}{3} \\ 1 \end{bmatrix} 27z(2-27z) \end{pmatrix}.$$

• Ramanujan's cubic transformation

$${}_{2}F_{1}\left(\begin{array}{c}\frac{1}{3},\frac{2}{3}\\1\end{array}\right|1-\left(\frac{1-x}{1+2x}\right)^{3}\right)=(1+2x){}_{2}F_{1}\left(\begin{array}{c}\frac{1}{3},\frac{2}{3}\\1\end{array}\right|x^{3}\right),$$

• Recall Szegő's rational function

$$S(x, y, z) = \frac{1}{1 - (x + y + z) + \frac{3}{4}(xy + yz + zx)}.$$

S(2x,2y,2z) has diagonal coefficients

$$s_n = \sum_{k=0}^n (-27)^{n-k} 2^{2k-n} \frac{(3k)!}{k!^3} \binom{k}{n-k},$$

whose generating function is

$$y(z) = {}_{2}F_{1}\left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} \middle| 27z(2-27z) \right).$$

• Ramanujan's cubic transformation

$${}_{2}F_{1}\left(\begin{array}{c}\frac{1}{3},\frac{2}{3}\\1\end{array}\middle|1-\left(\frac{1-x}{1+2x}\right)^{3}\right)=(1+2x){}_{2}F_{1}\left(\begin{array}{c}\frac{1}{3},\frac{2}{3}\\1\end{vmatrix}x^{3}\right),$$

puts this in the form

$$y(z) = (1 + 2x(z))_2 F_1 \begin{pmatrix} \frac{1}{3}, \frac{2}{3} \\ 1 \\ \end{pmatrix} x(z)^3,$$

where the algebraic $x(z) = c_1 z + c_2 z^2 + \ldots$ has positive coefficients.

- The diagonal is positive. (apply CAD to recurrence of order 3 and degree 6)
- The rational function obtained from setting w = 0 is positive.

S-Zudilin '15

- The diagonal is positive. (apply CAD to recurrence of order 3 and degree 6)
- The rational function obtained from setting w = 0 is positive. (because 64/27 < 4)

Application: Another conjecture of Kauers and Zeilberger

CONJ
Kauers-
Zeilberger
2008
$$\frac{1}{1 - (x + y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw}$$
.

• Would imply conjectured positivity of Lewy-Askey rational function

$$\frac{1}{1 - (x + y + z + w) + \frac{2}{3}(xy + xz + xw + yz + yw + zw)}$$

Recent proof of non-negativity by Scott and Sokal, 2013

Application: Another conjecture of Kauers and Zeilberger

CONJ
Kauers-
Zeilberger
2008
$$\frac{1}{1 - (x + y + z + w) + 2(yzw + xzw + xyw + xyz) + 4xyzw}$$
.

• Would imply conjectured positivity of Lewy-Askey rational function

$$\frac{1}{1 - (x + y + z + w) + \frac{2}{3}(xy + xz + xw + yz + yw + zw)}$$

Recent proof of non-negativity by Scott and Sokal, 2013

PROP S-Zudilin 2015 The Kauers–Zeilberger function has diagonal coefficients

$$d_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{2k}{n}^2.$$

Arithmetically interesting diagonals

Remarkably, several further rational functions on the boundary of positivity have **Apéry-like** diagonals:

EG
$$\frac{1}{1-(x+y+z)+4xyz}$$
 has diagonal coefficients $\sum_{k=0}^{n} {\binom{n}{k}}^{3}$.

• Next, time permitting: congruences stronger than Gauss for these

Arithmetically interesting diagonals

Remarkably, several further rational functions on the boundary of positivity have **Apéry-like** diagonals:

EG
$$\frac{1}{1-(x+y+z)+4xyz}$$
has diagonal coefficients $\sum_{k=0}^{n} {\binom{n}{k}}^{3}$.EGKoornwinder's rational function $\frac{1}{1-(x+y+z+w)+4e_3(x,y,z,w)-16xyzw}$ has diagonal coefficients $\sum_{k=0}^{n} {\binom{2k}{k}}^2 {\binom{2(n-k)}{n-k}}^2$.Using a positivity preserving operator, implies positivity of
 $1/e_3(1-x,1-y,1-z,1-w)$

• Next, time permitting: congruences stronger than Gauss for these

Apéry-like sequences

Properties of Laurent coefficients of multivariate rational functions

Apéry numbers and the irrationality of $\zeta(3)$

• The Apéry numbers $1, 5, 73, 1445, \ldots$ $A(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2}$ satisfy

 $(n+1)^{3}A(n+1) = (2n+1)(17n^{2}+17n+5)A(n) - n^{3}A(n-1).$

Apéry numbers and the irrationality of $\zeta(3)$

• The Apéry numbers
$$A(n) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$$
 satisfy

$$(n+1)^{3}A(n+1) = (2n+1)(17n^{2}+17n+5)A(n) - n^{3}A(n-1).$$

THM $\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$ is irrational.

proof The same recurrence is satisfied by the "near"-integers $B(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} \left(\sum_{i=1}^{n} \frac{1}{j^{3}} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^{3}\binom{n}{m}\binom{n+m}{m}}\right).$ Then, $\frac{B(n)}{A(n)} \rightarrow \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

Zagier's search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Beukers, Zagier Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

Zagier's search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Beukers, Zagier Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

- Essentially, only 14 tuples (a,b,c) found. (Almkvist-Zudilin)
 - 4 hypergeometric and 4 Legendrian solutions (with generating functions

$${}_{3}F_{2}\left(\begin{array}{c}\frac{1}{2},\alpha,1-\alpha\\1,1\end{array}\middle|4C_{\alpha}z\right), \qquad \frac{1}{1-C_{\alpha}z}{}_{2}F_{1}\left(\begin{array}{c}\alpha,1-\alpha\\1\end{array}\middle|\frac{-C_{\alpha}z}{1-C_{\alpha}z}\right)^{2},$$

with $\alpha = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$ and $C_{\alpha} = 2^4, 3^3, 2^6, 2^4 \cdot 3^3$)

- 6 sporadic solutions
- Similar (and intertwined) story for:
 - $(n+1)^2 u_{n+1} = (an^2 + an + b)u_n cn^2 u_{n-1}$ (Beukers, Zagier)
 - $(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n n(cn^2 + d)u_{n-1}$ (Cooper)

The six sporadic Apéry-like numbers

(a,b,c)	A(n)	
(17, 5, 1)	$\sum_{k} \binom{n}{k}^2 \binom{n+k}{n}^2$	Apéry numbers
(12, 4, 16)	$\sum_{k} \binom{n}{k}^2 \binom{2k}{n}^2$	
(10, 4, 64)	$\sum_{k} \binom{n}{k}^{2} \binom{2k}{k} \binom{2(n-k)}{n-k}$	Domb numbers
(7, 3, 81)	$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$	Almkvist–Zudilin numbers
(11, 5, 125)	$\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$	
(9, 3, -27)	$\sum_{k,l} \binom{n}{k}^2 \binom{n}{l} \binom{k}{l} \binom{k+l}{n}$	

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$, $A(p) \equiv 5 \pmod{p^3}.$

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM Beukers, Coster '85, '88 The Apéry numbers satisfy the supercongruence $(p \ge 5)$ $A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM Beukers, Coster '85, '88
The Apéry numbers satisfy the supercongruence $(p \ge 5)$ $A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$

EG For primes p, simple combinatorics proves the congruence

$$\binom{2p}{p} = \sum_{k} \binom{p}{k} \binom{p}{p-k} \equiv 1+1 \pmod{p^2}.$$

For $p \ge 5$, Wolstenholme's congruence shows that, in fact,

$$\binom{2p}{p} \equiv 2 \pmod{p^3}.$$

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

THM Beukers, Coster '85, '88 The Apéry numbers satisfy the supercongruence $(p \ge 5)$ $A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$

EG Mathematica 7 miscomputes $A(n) = \sum_{k=0}^{n} {\binom{n}{k}}^2 {\binom{n+k}{k}}^2$ for n > 5500.

 $A(5\cdot 11^3)=12488301\ldots$ about 2000 digits \ldots about 8000 digits \ldots 795652125

Weirdly, with this wrong value, one still has

$$A(5 \cdot 11^3) \equiv A(5 \cdot 11^2) \pmod{11^6}.$$

• Conjecturally, supercongruences like

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}$$

hold for all Apéry-like numbers.

Robert Osburn (University of Dublin) Brundaban Sahu (NISER, India)

Osburn-Sahu '09

• Current state of affairs for the six sporadic sequences from earlier:

(a, b, c)	A(n)	
,	$\sum_{k} {\binom{n}{k}}^2 {\binom{n+k}{n}}^2$	Beukers, Coster '87-'88
	$\sum_k {\binom{n}{k}}^2 {\binom{2k}{n}}^2$	Osburn–Sahu–S '16
(10, 4, 64)	$\sum_{k} {\binom{n}{k}}^{2} {\binom{2k}{k}} {\binom{2(n-k)}{n-k}}$	Osburn–Sahu '11
(7,3,81)	$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$	open modulo p ³ Amdeberhan-Tauraso '16
(11, 5, 125)	$\sum_{k} (-1)^k \binom{n}{k}^3 \binom{4n-5k}{3n}$	Osburn–Sahu–S '16
(9, 3, -27)	$\sum_{k,l} {\binom{n}{k}}^2 {\binom{n}{l}} {\binom{k}{l}} {\binom{k+l}{n}}$	open

Multivariate supercongruences

THM Define
$$A(\mathbf{n}) = A(n_1, n_2, n_3, n_4)$$
 by

$$\frac{1}{(1 - x_1 - x_2)(1 - x_3 - x_4) - x_1 x_2 x_3 x_4} = \sum_{\mathbf{n} \in \mathbb{Z}_{\geq 0}^4} A(\mathbf{n}) \mathbf{x}^{\mathbf{n}}.$$

- The Apéry numbers are the diagonal coefficients.
- For $p \ge 5$, we have the multivariate supercongruences

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \quad (\mathrm{mod}\,p^{3r}).$$

THM
S 2014 Define
$$A(\mathbf{n}) = A(n_1, n_2, n_3, n_4)$$
 by
$$\frac{1}{(1 - x_1 - x_2)(1 - x_3 - x_4) - x_1 x_2 x_3 x_4} = \sum_{\mathbf{n} \in \mathbb{Z}_{\geq 0}^4} A(\mathbf{n}) \mathbf{x}^{\mathbf{n}}.$$

- The Apéry numbers are the diagonal coefficients.
- For $p \ge 5$, we have the multivariate supercongruences

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \quad (\text{mod } p^{3r}).$$

•
$$\sum_{n \ge 0} a(n)x^n = F(x) \implies \sum_{n \ge 0} a(pn)x^{pn} = \frac{1}{p} \sum_{k=0}^{p-1} F(\zeta_p^k x) \qquad \zeta_p = e^{2\pi i/p}$$

• Hence, both $A(np^r)$ and $A(np^{r-1})$ have rational generating function. The proof, however, relies on an explicit binomial sum for the coefficients.

THM
S 2014 Define
$$A(n) = A(n_1, n_2, n_3, n_4)$$
 by

$$\frac{1}{(1 - x_1 - x_2)(1 - x_3 - x_4) - x_1 x_2 x_3 x_4} = \sum_{n \in \mathbb{Z}_{\ge 0}^4} A(n) x^n.$$
• The Apéry numbers are the diagonal coefficients.
• For $p \ge 5$, we have the multivariate supercongruences
 $A(x, T) = A(x, T^{-1}) - (x - 1, \frac{3T}{2})$

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \pmod{p^{3r}}$$

• By MacMahon's Master Theorem,

$$A(\boldsymbol{n}) = \sum_{k \in \mathbb{Z}} \binom{n_1}{k} \binom{n_3}{k} \binom{n_1 + n_2 - k}{n_1} \binom{n_3 + n_4 - k}{n_3}.$$

THM Define
$$A(n) = A(n_1, n_2, n_3, n_4)$$
 by

$$\frac{1}{(1 - x_1 - x_2)(1 - x_3 - x_4) - x_1 x_2 x_3 x_4} = \sum_{n \in \mathbb{Z}_{\ge 0}^4} A(n) x^n.$$
• The Apéry numbers are the diagonal coefficients.
• For $p \ge 5$, we have the multivariate supercongruences

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \quad (\text{mod } p^{3r}).$$

• By MacMahon's Master Theorem,

$$A(\boldsymbol{n}) = \sum_{k \in \mathbb{Z}} \binom{n_1}{k} \binom{n_3}{k} \binom{n_1 + n_2 - k}{n_1} \binom{n_3 + n_4 - k}{n_3}.$$

• Because A(n-1) = A(-n, -n, -n, -n), we also find

$$A(mp^r-1) \equiv A(mp^{r-1}-1) \pmod{p^{3r}}.$$
 Beukers '85

- 28 / 34

More conjectural multivariate supercongruences

• Exhaustive search by Alin Bostan and Bruno Salvy:

1/(1-p(x,y,z,w)) with p(x,y,z,w) a sum of distinct monomials; Apéry numbers as diagonal

$$\frac{1}{1 - (x + y + xy)(z + w + zw)}$$

$$\frac{1}{1 - (1 + w)(z + xy + yz + zx + xyz)}$$

$$\frac{1}{1 - (y + z + xy + xz + zw + xyw + xyzw)}$$

$$\frac{1}{1 - (y + z + xz + wz + xyw + xzw + xyzw)}$$

$$\frac{1}{1 - (z + xy + yz + xw + xyw + yzw + xyzw)}$$

More conjectural multivariate supercongruences

• Exhaustive search by Alin Bostan and Bruno Salvy:

1/(1-p(x,y,z,w)) with p(x,y,z,w) a sum of distinct monomials; Apéry numbers as diagonal

$$\frac{1}{1 - (x + y + xy)(z + w + zw)}$$

$$\frac{1}{1 - (1 + w)(z + xy + yz + zx + xyz)}$$

$$\frac{1}{1 - (y + z + xy + xz + zw + xyw + xyzw)}$$

$$\frac{1}{1 - (y + z + xz + wz + xyw + xzw + xyzw)}$$

$$\frac{1}{1 - (z + xy + yz + xw + xyw + yzw + xyzw)}$$

$$\frac{1}{1 - (z + (x + y)(z + w) + xyz + xyzw)}$$

CONJ s 2014 The coefficients B(n) of each of these satisfy, for $p \ge 5$, $B(np^r) \equiv B(np^{r-1}) \pmod{p^{3r}}.$

Properties of Laurent coefficients of multivariate rational functions

An infinite family of rational functions

Properties of Laurent coefficients of multivariate rational functions

.

Further examples

EG

 $\frac{1}{(1-x_1-x_2)(1-x_3)-x_1x_2x_3}$ has as diagonal the Apéry-like numbers, associated with $\zeta(2)$, $B(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}.$ EG $\overline{(1-x_1)(1-x_2)\cdots(1-x_d)} - x_1x_2\cdots x_d$ has as diagonal the numbers d = 3: Franel, d = 4: Yang-Zudilin $Y_d(n) = \sum_{k=0}^n \binom{n}{k}^d.$

 In each case, we obtain supercongruences generalizing results of Coster (1988) and Chan-Cooper-Sica (2010).

A conjectural multivariate supercongruence

CONJ
S 2014 The coefficients
$$Z(n)$$
 of

$$\frac{1}{1 - (x_1 + x_2 + x_3 + x_4) + 27x_1x_2x_3x_4} = \sum_{n \in \mathbb{Z}_{\geq 0}^4} Z(n)x^n$$
satisfy, for $p \geq 5$, the multivariate supercongruences
 $Z(np^r) \equiv Z(np^{r-1}) \pmod{p^{3r}}.$

• Here, the diagonal coefficients are the Almkvist-Zudilin numbers

$$Z(n) = \sum_{k=0}^{n} (-3)^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^3},$$

for which the univariate congruences are still open.

• Which rational functions have the Gauss property?

$$A(\boldsymbol{n}p^r) \equiv A(\boldsymbol{n}p^{r-1}) \pmod{p^r}$$

When are these necessarily combinations of $\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)$?

- Which rational functions are **positive**?
 When is diagonal, plus lower-dimensional, positivity sufficient?
- Can we establish all supercongruences via rational functions?

$$\frac{1}{1 - (x + y + z) + 4xyz}, \quad \frac{1}{1 - (x + y + z + w) + 27xyzw}$$

• Is there a rational function in three variables with the $\zeta(3)$ -Apéry numbers as diagonal? As Alin showed us, the GF is transcendental, so two variables is impossible.

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

F. Beukers, M. Houben, A. Straub Gauss congruences for rational functions in several variables Preprint, 2017. arXiv:1710.00423

A. Straub, W. Zudilin

Positivity of rational functions and their diagonals Journal of Approximation Theory (special issue dedicated to Richard Askey), Vol. 195, 2015, p. 57-69

A. Straub Multivariate Apéry numbers and supercongruences of rational functions

Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008

A. Straub

Positivity of Szegö's rational function Advances in Applied Mathematics, Vol. 41, Issue 2, Aug 2008, p. 255-264

Properties of Laurent coefficients of multivariate rational functions