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Preface
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the corresponding conference proceedings (see [13, 14]). A detailed list can also be found at
the end of this thesis.
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Introduction

Lattice path models are important and well-studied structures in combinatorics and prob-
ability theory as well as in statistical mechanics. For example, they naturally appear in basic
probabilistic and combinatorial settings such as coin tossing and ballot type problems (see, e.g.,
[15, Chaper III]). In general, a lattice walk is represented by a (finite) sequence of vertices of a
given lattice. In this thesis we will be concerned with two related lattice path models, namely
non-intersecting lattice paths and lattice walks in a Weyl chamber. The lattice underlying the
first model is always assumed to be the acyclic and directed square grid.

A set of lattice paths is called non-intersecting if the vertex sets corresponding to any pair
of different lattices walks in this set are disjoint. In statistical mechanics, non-intersecting
lattice paths (or vicious walkers) are for example used to describe certain wetting and melting
processes (see Fisher [16]), or to encode certain non-colliding particle systems (one may think
of a one-dimensional discrete gas). Non-intersecting lattice paths are also in bijection with
other important combinatorial objects such as plane partitions, integer partitions and Young
tableaux (see, e.g., [20, 25, 33, 34]). Furthermore, non-intersecting lattice paths turned out to
be a very useful tool for proving Schur function identities as well as identities for orthogonal
and symplectic characters (see [18–20]). In [22, 30], the authors prove convergence results for
certain (suitably rescaled) configurations of non-intersecting lattice paths, called watermelons
and stars, to systems of non-colliding Brownian motions (see also [44]), which are closely related
to Dyson’s Brownian motion [9]. These limiting laws establish a close relation to random matrix
theory (see, e.g., [37]), a fact that has been exhibited earlier, e.g., in [2, 3, 38]. More precisely,
it is known that the distribution of the positions of random non-intersecting lattice paths at a
certain time are related to the eigenvalue distribution in some random matrix ensembles. In
particular, the top most path corresponds to the largest eigenvalue of the random matrix.

The second type of objects we study in this thesis are random lattice walks confined to the
region 0 < x1 < x2 < · · · < xk (here, xj refers to the j-th coordinate in R

d). This region is
identified with a Weyl chamber of type B. Special configurations of lattice walks in a Weyl
chamber correspond, e.g., to certain non-intersecting lattice paths, namely vicious walkers in
the lock step model or in the random turns model with wall restriction (see Fisher [16] and
[Paper A, Section 7]) and k-non-crossing tangled diagrams (see [7]). Walks in a Weyl chamber
also have an interpretation in terms of multiplicities of weights in tensor powers (see [24] and
[42]).

In Paper A, we determine asymptotics for the number of lattice walks in a Weyl chamber of
type B as the number of steps tends to infinity for a general class of steps. This class of steps
is such that an exact expression for the total number of walks can be determined with the help
of a reflection principle argument, that generalises a result by Gessel and Zeilberger [21] (see
also Theorem 1 below). We want to stress that the admissible class of steps can be precisely
described (see [Paper A, Lemma 3.5]), and is such that it also includes types of lattice walks
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2 Introduction

that are not of the nearest neighbour type. As corollaries to our main results, we obtain
asymptotics for vicious walks in the lock step model as well as in the random turns model,
and also for k-non-crossing tangled diagrams (see [Paper A, Section 7]). Special cases of these
results include asymptotics given in [33, 40], as well as precises asymptotics for the number
of certain objects studied in [7, 23], where the authors could only determine the asymptotic
growth order.

In Papers B and C, we study non-intersecting lattice paths on the Z-lattice spanned by the
set {(1, 1), (1,−1)} with steps from this set. In Paper B, the paths are confined to the upper
half plane, and the horizontal axis plays the role of an impenetrable wall. In Paper C we study
non-intersecting lattice paths without such a wall restriction. On these structures, we analyse
the statistics “height” (the maximum ordinate of the top most path) and “range” (difference
between maximum ordinate of top most path and minimum ordinate of bottom most path).
Assuming the uniform probability measure on the set of configurations with a fixed number n of
steps, we determine the limiting distribution of the random variables “height” and “range” as
n → ∞. Additionally, we determine first and second order asymptotics for all moments of the
random variable “height”. This research was motivated by computer experiments published
in [5]. As a special case, the results in Paper B and Paper C include well-known results on the
maximum and the range of Brownian excursions and Brownian bridges (see [4, 39]) as well as
results in [17] on the height of pairs of non-intersecting paths. In [28, 41], the authors consider
this model in the thermo-dynamical limit (i.e., non-intersecting Brownian motions instead of
non-intersecting lattice paths) and re-derive the asymptotically dominant terms for some of
the quantities given in Paper B and Paper C. The derivation of the results in [28] is very
close to the approach taken in Paper B, and makes essential use of a result originally proven
in Paper B (cf. [Paper B, Corollary 1] and [28, Lemma 3]).

All of the above mentioned results share an interesting characteristic: while it is relatively
easy to set up exact counting formulas for the quantities in question (mainly because they can
already be found in the literature), it is rather hard to obtain asymptotic results from these
formulas. The main reason for this fact is, that all these exact formulas involve determinants
that cannot be evaluated to a simple closed product form. As a consequence, we have to
cope with a large number of cancellations of leading asymptotic terms that increases with the
dimension of the matrix inside the determinant. The solution to this problem was one of the
key steps in the proofs of the above mentioned results. For details, we directly refer to the
research manuscripts A, B and C.

The rest of the introduction is organised as follows. In Section 1 we give precise definitions
for walks in a Weyl chamber, and state a fundamental counting result for the total number
of lattice walks in a Weyl chamber due to Gessel and Zeilberger [21] (see Theorem 1 below).
This result relies on the so-called reflection principle, that we also present in this section in its
most basic form.

In Section 2 we give definitions for non-intersecting lattice paths and state a theorem
due to Lindström [36] and Gessel and Viennot [20] that (under certain conditions) gives a
determinantal expression for the total number of non-intersecting lattice walks on a directed
acyclic graph (see Theorem 2 below). As a special case, this result includes a discrete version
of a formula by Karlin and McGregor [27]. We also illustrate the main idea of the proof of this
theorem, which is closely related to the reflection principle argument of Section 1.
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In Section 3 we explain the relation between lattice walks in a Weyl chamber of type A or
B and non-intersecting lattice paths on the square grid or the halfed square grid, respectively,
and derive exact formulas for the number of these objects from Theorem 1 and Theorem 2.

The last three sections of this introduction contain more detailed descriptions of the research
papers A, B and C.

1. Walks in a Weyl chamber

A classical problem in combinatorics, a variant of the two candidate ballot problem, asks
for the number of walks of length 2n with steps from the set {(1, 1), (1,−1)} from (0, 0) to
(2n, 0) that do not go below the horizontal axis (y = 0). André [1] gave a solution to this
problem (and more general ones) utilising a reflection principle argument which we want to
repeat now. As a first remark, we note that the number of “good walks” (those that do not
go below the horizontal axis) is equal to the total number of walks minus the number of “bad
walks” (walks that go below the horizontal axis). Now, the basic reflection principle argument
goes as follows (see Figure 1 for an illustration). Imagine a typical “bad walk”. If we reflect
the initial part of this walk up to the first contact with the horizontal line y = −1 at this
very line, we obtain a walk starting in (0,−2) and ending at (2n, 0). This clearly sets up
a bijection between the set of “bad walks” and the set of walks from (0,−2) to (2n, 0). By
basic combinatorial arguments, the cardinality of the latter set is seen to be equal to

(

2n
n−1

)

.
Consequently, the number of “good paths” is given by (the total number of paths from (0, 0)
to (2n, 0) is equal to

(

2n
n

)

)
(

2n

n

)

−

(

2n

n − 1

)

=
1

n + 1

(

2n

n

)

.

−1

Figure 1. Illustration of the basic reflection principle. The solid path is a
typical “bad walk” from (0, 0) to (30, 0). Reflecting the initial part of this walk
up to the first contact with the horizontal line y = −1 at this line yields a walk
from (0,−2) to (30, 0).



4 Introduction

Generalisations of this basic reflection principle to higher dimensions have been given in
[45, 46], while q-analogues can be found in [31, 32]. Gessel and Zeilberger [21] formulated
a general reflection principle argument for lattice walks confined to regions (Weyl chambers)
associated with reflection groups.

In order to state Gessel and Zeilberger’s theorem, we first need to present some notation
concerning reflection groups. This presentation will be very brief. For details on reflection
groups (or Coxeter groups) we refer the reader to Humphreys [26].

A root system is a finite set of vectors (the roots) of R
k satisfying the following properties:

the set is invariant under reflection in any of the hyperplanes orthogonal to one of the roots;
the difference of any root and its mirror image with respect to any such hyperplane is an
integer multiple of the root corresponding to this hyperplane. The Coxeter group W (or Weyl
group) associated with the root system is the set of linear transformations generated by the
set of reflections in hyperplanes orthogonal to one of the roots. The connected components of
the complement of the union of all hyperplanes are called Weyl chambers. For any element
w of the Weyl group W and any simple system ∆ of the root system, we define the length
of w, denoted by l(w), as the minimal number of terms needed to express w as a product of
reflections σα, α ∈ ∆. The fundamental Weyl chamber C associated with ∆ is defined as

C =
{

x ∈ R
k : for all α ∈ ∆ we have 〈x, α〉 > 0

}

,

where 〈x, α〉 denotes the usual Euclidean scalar product on R
k. Finally, by C̄ we denote the

closure of C in R
k.

Let us now turn our attention to lattice walks in R
k. Fix an arbitrary lattice L in R

k. A
lattice walk of length n is a sequence (x0,x1, . . . ,xn) of n + 1 elements of L. Alternatively,
the lattice walk can be described by a starting point x0 together with a sequence (v1, . . . ,vn)
of length n of steps. Clearly, we have the relation vt = xt − xt−1, t = 1, 2, . . . , n. In the
following, we will not distinguish between these two possible representations for lattice walks.
Furthermore, the set of possible steps is always assumed to be a finite set.

We are interested in the number of lattice walks that are confined to the Weyl chamber C
corresponding to an arbitrary Weyl group. Under certain assumptions about the lattice L and
the set of allowed steps it is possible to give a nice formula for this number. This is a result
due to Gessel and Zeilberger [21] and is the content of Theorem 1 below. The proof relies on
a generalised reflection principle argument. Roughly speaking, the following theorem applies
in cases where the lattice and the set of steps are such that it is not possible to exit C̄ from a
lattice point within C in a single step. As a consequence, every walk failing to stay within C
contains a lattice point on the boundary of C̄.

Theorem 1 (see Gessel and Zeilberger [21, Theorem 1]). Fix a Weyl group W and a simple
system ∆ with associated fundamental Weyl chamber C. Let L be a lattice in R

k, and let S
be a finite set of differences of points in L, and assume that both sets, L and S, are invariant
under the action of the Weyl Group.

If for any λ ∈ C ∩L and any s ∈ S we have λ + s ∈ C̄ ∩L, then the total number of walks
of length n from a ∈ C ∩ L to b ∈ C ∩ L with steps from the set S is equal to

∑

w∈W

(−1)l(w)Pn(w(a) → b),

where Pn(a → b) denotes the total number of lattice walks of length n from a to b.
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2. Non-intersecting walks on an acyclic graph

Let G = (V, E) be a directed acyclic graph with vertex set V and edge set E. A walk on
G of length n is a sequence (v0, v1, . . . , vn) of n + 1 points such that for j = 0, 1, . . . , n − 1
we have (vj, vj+1) ∈ E (that is, the walk moves along edges in G). Alternatively, we can
represent this walk by the starting point v0 together with the step sequence (e1, . . . , en), where
ej = (vj−1, vj) ∈ E. Again, we will not distinguish between these two representations. The set
of all walks from a ∈ V to b ∈ V will be denoted by {a → b}.

Two walks on G are said to be non-intersecting if the sets of vertices corresponding to
these walks are disjoint. We are interested in the total number of non-intersecting walks on G
for given sets of starting points and end points. Under certain assumptions on the underlying
graph and the sets of starting and end points, Gessel and Viennot [20, Corollary 3] as well
as Lindström [36, Lemma 1] proved that this number is equal to a certain determinant. This
enumeration result is the content of Theorem 2 below. For the special case when the graph is
the two dimensional Z-lattice spanned by the vectors {(1, 1), (1,−1)} (all edges are oriented
from left to right), this theorem is essentially a discrete version of a theorem by Karlin and
McGregor [27] for the transition density function of the absorbing Brownian motion.

Theorem 2 (Gessel and Viennot [20, Corollary 3], Lindström [36, Lemma 1]). Let G =
(V, E) be a directed acyclic graph with vertex set V and edge set E. Fix two sets A =
{a1, . . . , ak} and B = {b1, . . . , bk} of vertices, all of which are distinct.

If the sets A and B are such that for all i < j an all k < l every path in {ai → bl} intersects
every path in {aj → bk} in at least one vertex, then the total number of non-intersecting lattice
paths, where the j-th path runs from aj to bj, is given by

det
1≤i,j≤k

(P (ai → bj)) ,

where P (u → v) denotes the cardinality of the set {u → v}.

Proof (sketch). We want to sketch the proof for the case k = 2, where the graph G is
the Z-lattice spanned by the vectors {(1, 1), (1,−1)}. In this case we have

det
1≤i,j≤2

(P (ai → bj)) = P (a1 → b1)P (a2 → b2) − P (a1 → b2)P (a2 → b1).

Now, the basic idea is to show that the contribution of intersecting sets of walks in the difference
on the right hand side is equal to zero. This is accomplished by the following bijection (for an
illustration, see Figure 2). Consider a typical intersecting pair of walks from the set {a1 → b1}×
{a2 → b2} (for an example, see Figure 2). Exchanging the initial parts of boths walks up to
their first common vertex yields an element of {a1 → b2} × {a2 → b1}. This shows that the
contribution of intersecting pairs of walks to the difference on the right above is equal to zero.
Consequently, the determinant is equal to the number of non-intersecting pairs of walks in the
set {a1 → b1} × {a2 → b2}.

The proof for the case k > 2 is pretty similar, but requires a bit more care and needs a
refined notion of “first common vertex”. We omit the details. �
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a1
a1

b1b1
a2

a2

b2 b2

Figure 2. Illustration of the bijection on the set of intersecting pairs of walks
for the case k = 2 and the Z-lattice spanned by the vectors {(1, 1), (1,−1)} used
in the proof of Theorem 2. The red point indicates the first common vertex of
both walks.

3. Walks in a Weyl chamber of type A or B and non-intersecting lattice paths on

the square grid

In the following, we denote by L the Z-lattice spanned by the set of vectors S = {(1, 1), (1,−1)},
that is

L =
{

(i, j) ∈ Z
2 : i ≡ j mod 2

}

.

Furthermore, we define

L≥0 = {(i, j) ∈ L : j ≥ 0} .

By non-intersecting lattice paths without wall restriction and non-intersecting lattice paths with
wall restriction we mean sets of non-intersecting walks with steps from the set S on either L
or L≥0, respectively. Figure 3 (the picture on the right hand side) shows an example of a set
of non-intersecting lattice paths with wall restriction. These non-intersecting lattice paths are
in a close relationship with walks in a Weyl chamber of type A and type B, as will be shown
in the following.

Let CA denote the Weyl chamber of type A defined by

CA =
{

(x1, . . . , xk) ∈ R
k : x1 < x2 < · · · < xk

}

.

The boundary of CA is contained in the union of the hyperplanes (xj refers to the j-th coor-
dinate in R

k)

xi − xj = 0, 1 ≤ i < j ≤ k.

The reflections in these hyperplanes form a generating set for the Weyl group of type Ak−1,
which is isomporphic to the symmetric group Sk on k elements (see [26]). Finally, we let Λ be
the Z-lattice generated by the 2k vectors (±1, . . . ,±1). Now, let (x0,x1, . . . ,xn) ∈ Λn denote
a lattice walk on Λ of length n with steps of the form (±1, . . . ,±1) that is confined to the
Weyl chamber CA. If we write xj = (xj,1, . . . , xj,k), then we clearly have

xj,1 < xj,2 < · · · < xj,k, for j = 0, 1, . . . n.

Consequently, the lattice paths
(

(x0,m − 1, 0), (x1,m − 1, 1), . . . , (xn,m − 1, n)
)

, m = 1, 2, . . . , k,

form a set of non-intersecting lattice paths on L with steps from the set S.



Introduction 7

If, instead, we consider lattice walks of the same type confined to the Weyl chamber of type
B given by

CB =
{

(x1, . . . , xk) ∈ R
k : 0 < x1 < x2 < · · · < xk

}

,

then we obtain by the same procedure as above a set of non-intersecting lattice walks on L≥0

with steps from the set S. We omit the details and refer to Figure 3 for an illustration of this
correspondence in this latter case.

x1

x1 − 1

x2

x2 − 1

6

Figure 3. Illustration of the correspondence of lattice walks in a Weyl chamber
of type B and non-intersecting lattice paths with wall restriction. The lower path
in the right picture corresponds to the horizontal coordinate of the path in the left
picture minus one, while the upper path in the right picture corresponds to the
vertical coordinate of the walk in the left picture minus one. This correspondence
is indicated for the position of the paths after six steps. The coloured region in
the left picture indicates the Weyl chamber 0 < x1 < x2. (The walk is restricted
to the interior of this region).

The two correspondences described above show that there is some overlap of Theorems 1
and 2. In fact, since the Weyl group of type Ak−1 is isomorphic to the symmetric group Sk

on k elements (see [26]), Theorem 1 yields for the total number of lattice walks of length n on
Λ with steps of the form (±1, . . . ,±1) from a ∈ Λ to b ∈ Λ (we assume bj − aj ≡ n mod 2,
j = 1, . . . , k) confined to CA the expression

∑

σ∈Sk

sgn (σ)Pn

(

(aσ(1), . . . , aσ(k)) → b
)

.

Noting that

Pn

(

(aσ(1), . . . , aσ(k)) → (b1, . . . , bk)
)

=
k

∏

j=1

(

n

(n − aσ(j) + bj)/2

)

we see that the expression above is equal to

det
1≤j,m≤k

((

n

(n − am + bj)/2

))

.
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This last expression is exactly what we would have obtained from Theorem 2 for the total
number of sets of non-intersecting lattice paths on L, where the j-th path runs from (0, aj) to
(n, bj).

Analogously, we see by Theorem 1 and 2, respectively, that the total number of walks of
length n on Λ confined to CB and the total number of sets of non-intersecting lattice paths on
L≥0 are equal to

∑

ε1,...,εk∈{−1,+1}

∑

σ∈Sk

sgn (σ)

k
∏

j=1

εj

(

n

(n − εjaσ(j) + bj)/2

)

= det
1≤j,m≤k

((

n

(n + am − bj)/2

)

−

(

n

(n − am − bj)/2

))

.

4. Overview of Paper A

We consider lattice walks in R
k confined to the region 0 < x1 < · · · < xk, a Weyl chamber

of type B, for a general set of steps. The allowed sets of steps are such that a generalised
version of Theorem 1 gives the total number of such walks. For details, we refer to [Paper A,
Lemma 2.1]. The main results of this work are [Paper A, Theorem 5.1] and [Paper A, Theorem
6.2], in which we, respectively, determine asymptotics for the number of such walks with either
a fixed end point or a free end point as the number of steps tends to infinity.

As applications, we determine asymptotics for the number of so-called k-non-crossing tan-
gled diagrams with and without isolated points. This solves a problem raised by Chen et al. [6],
who could only determine the asymptotic growth order of these objects. The solution to this
problem essentially relies on the generalisation of Theorem 1 mentioned above. Additionally,
we determine asymptotics for vicious walks with wall restriction in the lock step model as well
as in the random turns model for an arbitrary starting point and either an arbitrary end point
or a free end point (for definitions, we directly refer to [Paper A, Section 7]). This completes
a partial result in [23]. As special cases, these results also include asymptotics for certain
configurations of vicious walks in the lock step model derived in [33, 40]. The asymptotics for
the number vicious walks in the random turns model seem to be new.

The principle idea of the proofs for [Paper A, Theorem 5.1 and Theorem 6.2] is as follows.
Starting from [Paper A, Lemma 2.1] (the generalised version of Theorem 1), we derive a contour
integral representation for the number of walks of interest. Asymptotics for this integral can
then be determined by means of saddlepoint techniques. The main difficulty here lies in the fact
that we need to determine asymptotics for certain determinants. This problem is surmounted
by means of a general technique that we develop in [Paper A, Section 4].

5. Overview of Paper B

Watermelons with wall are certain special configurations of non-intersecting lattice paths
on L≥0 with specifically chosen starting and end points. More precisely, a k-watermelon with
wall of length 2n is a set of non-intersecting lattice paths on L≥0, where the j-th paths starts
at (0, 2j − 2) and ends at (2n, 2j − 2), j = 1, 2, . . . , k. The height of a watermelon is defined
as the maximum ordinate of its top most path (for an illustration, see [Paper B, Figure 1]).
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Assuming the uniform probability measure on the set of k-watermelons with wall of length
2n, we study the parameter “height” on this set and determine its asymptotic cumulative dis-
tribution function as well as asymptotics for the moments of this random variable. More pre-

cisely, we show that the s-th moment of the random variable “height” behaves like sκ
(p)
s ns/2 −

3
(

s
2

)

κ
(p)
s−1n

(s−1)/2 + O(ns/2−1 + np/2−p2

log n) as the number 2n of steps tends to infinity, for
some explicit constants κs. The precise statement of this result is the content of [Paper B,
Theorem 1]. This generalises a well-known result by de Bruijn, Knuth and Rice [8] on the
average height of planted plane trees (which, in fact, are in bijection 1-watermelons). Our
result on the limiting distribution ([Paper B, Theorem 2]) contains as a special case a result
in [39] on the height of trees.

The main problem to solve is the determination of asymptotics for certain harmonic sums
involving determinants. The difficulty here lies again in the fact that, due to the determinants,
there happens a large number of cancellation of asymptotically leading terms. One of the key
problems in Paper B is to determine first surviving term of these harmonic sums (see [Paper B,
Lemma 8]). Furthermore, the solution given in Paper B involves Mellin transform techniques,
and requires the understanding of the analytic behaviour of certain multidimensional Dirichlet
series (for details, we refer to [Paper B, Section 2]). This analysis is accomplished very much
in the spirit of one of Riemann’s methods for the analytic continuation of the Riemann zeta
function (see, e.g., [43, Section 2.6]), and is based on a reciprocity relation for derivatives of
one of Jacobi’s theta functions (see [Paper B, Section 2]. This reciprocity relation generalises
the well-known reciprocity law for Jacobi’s theta functions (see, e.g., [35, Section 2.3]), and,
to the author’s best knowledge, seems to be new.

After distribution of the first version of Paper B, Schehr et al. [41] and Katori et al. [28, 29]
re-derived the asymptotically dominant terms for some of the quantities studied in Paper B.
The methods in [28] are very much in parallel to the approach taken in Paper B and rely
essentially on [Paper B, Corollary 1] (see also [28, Lemma 3]).

6. Overview of Paper C

Watermelons without wall are non-intersecting lattice paths on L with specifically chosen
starting and end points. More precisely, a k-watermelon without wall of length 2n is a set
of non-intersecting lattice paths on L, where the j-th paths starts at (0, 2j − 2) and ends
at (2n, 2j − 2), j = 1, 2, . . . , k. As in the case of watermelons with wall, the “height” of a
watermelon is defined as the maximum ordinate of its top most branch. A second interesting
parameter that is also studied in Paper C is the “range” of a watermelon, which is the difference
between the maximum ordinate of its top most branch and the minimum ordinate of its bottom
most branch.

Assuming the uniform probability measure on the set of watermelons without wall of
length 2n, we study the random variables “height” and “range” on this set, and deter-
mine the cumulative distribution of the limiting laws as the number 2n of steps tends to
infinity (see [Paper C, Theorem 1] and [Paper C, Theorem 3], respectively). Additionally,
we derive asymptotics for the moments of the random variable “height”, and, more pre-
cisely, show that for s ≥ 2 the s-th moment of the random variable “height” behaves like
sµsn

s/2 + (s − 1)(p − 1 − s/2)µs−1n
(s−1)/2 + O

(

ns/2−1
)

as n → ∞, for some explicit numbers
µs. For s = 1, the second order term is equal to p − 3/2.
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Exact expressions in terms of determinants for all quantities in question can easily be ob-
tained from Theorem 2 (see also [Paper C, Lemma 1]). In order to derive asymptotics from
these expressions we need to determine asymptotics for determinants involving binomial coeffi-
cients that cannot be evaluated in a closed form expression. This is accomplished with the help
Stirling’s approximation for the factorials together with techniques to determine asymptotics
for the resulting determinants. Again, the main difficulty lies in the fact that there occurs a
large number of cancellations of asymptotically leading terms, so that it is a non-trivial task
to determine the first surviving term in the asymptotic expansion for these determinants. The
final expression for the asymptotics of the moments of the random variable “height” is obtained
by observing a non-obvious relation between two determinants (see [Paper C, Lemma 8]).

The limiting distribution for the random variable “height” has been re-derived by Schehr
et al. [41]. Since, at first sight, their expression differs considerably from the one given in
[Paper C, Theorem 1], we show how derive the expression given in [41] from our expression
(see Remark 2).
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ASYMPTOTICS FOR THE NUMBER OF WALKS IN A WEYL CHAMBER

OF TYPE B

THOMAS FEIERL‡

Abstract. We consider lattice walks in Rk confined to the region 0 < x1 < x2... < xk with
fixed (but arbitrary) starting and end points. The walks are required to be ”reflectable”, that
is, we assume that the number of paths can be counted using the reflection principle. The
main results are asymptotic formulas for the total number of walks of length n with either a
fixed or a free end point for a general class of walks as n tends to infinity. As applications, we
find the asymptotics for the number of k-non-crossing tangled diagrams on the set {1, 2, ..., n}
as n tends to infinity, and asymptotics for the number of k-vicious walkers subject to a wall
restriction in the random turns model as well as in the lock step model. Asymptotics for all
of these objects were either known only for certain special cases, or have only been partially
determined or were completely unknown.

1. Introduction

Lattice paths are well-studied objects in combinatorics as well as in probability theory. A
typical problem that is often encountered is the determination of the number of lattice paths
that stay within a certain fixed region. In many situations, this region can be identified with
a Weyl chamber corresponding to some reflection group. In this paper, the region is a Weyl
chamber of type B, and, more precisely, it is given by 0 < x1 < · · · < xk. (Here, xj refers to
the j-th coordinate in Rk.)

Under certain assumptions on the set of allowed steps and on the underlying lattice, the total
number of paths as described above can be counted using the reflection principle as formulated
by Gessel and Zeilberger [9]. This reflection principle is a generalisation of a reflection argu-
ment, which is often attributed to André [1], to the context of general finite reflection groups
(for details on reflection groups, see [14]).

A necessary and sufficient condition on the set of steps for ensuring the applicability of the
reflection principle as formulated by Gessel and Zeilberger [9] has been given by Grabiner and
Magyar [12]. In their paper, Grabiner and Magyar also stated a precise list of steps that satisfy
these conditions.

In a recent paper that attracted the author’s interest, and that was also the main initial
motivation for this work, Chen et al. [5, Obervations 1 and 2] gave lattice path descriptions for
combinatorial objects called k-non-crossing tangled diagrams. In their work, they determined
the order of asymptotic growth of these objects, but they did not succeed in determining
precise asymptotics. Interestingly, the sets of steps appearing in this description do not satisfy
Grabiner and Magyar’s condition. Nevertheless, a slightly generalised reflection principle turns
out to be applicable because the steps can be interpreted as sequences of certain atomic steps,

Date: October 22, 2009.
‡ Research supported by the Austrian Science Foundation FWF, grant S9607-N13.
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18 THOMAS FEIERL

where these atomic steps satisfy Grabiner and Magyar’s condition. In this manuscript, we state
a generalised reflection principle that applies to walks consisting of steps that are sequences of
such atomic steps (see Lemma 2.1 below).

Our main results are asymptotic formulas for the total number of walks as the number of
steps tends to infinity that stay within the region 0 < x1 < · · · < xk, with either a fixed
end point or a free end point (see Theorem 5.1 and Theorem 6.2, respectively). The starting
point of our walks may be chosen anywhere within the allowed region. The proofs of the main
results can be roughly summarised as follows. Using a generating function approach, we are
able to express the number of walks that we are interested in as a certain coefficient in a
specific Laurent polynomial. We then express this coefficient as a Cauchy integral and extract
asymptotics with the help of saddle point techniques. Of course, there are some technical
problems in between that we have to overcome. The most significant comes from the fact that
we have to determine asymptotics for a determinant. The problem here is the large number of
cancellations of asymptotically leading terms. It is surmounted by means of a general technique
that is presented in Section 4. As a corollary to our main results, we obtain precise asymptotics
for k-non-crossing tangled diagrams with and without isolated points (for details, see Section 7).
Moreover, we find asymptotics for the number of vicious walks with a wall restriction in the
lock step model as well as asymptotics for the number of vicious walks with a wall restriction in
the random turns model. Special instances of our asymptotic formula for the total number of
vicious walks in the lock step model have been established by Krattenthaler et al. [16, 17] and
Rubey [21]. The growth order for the number of vicious walks in the lock step model with a
free and point, and for the number of k-non-crossing tangled diagrams has been determined by
Grabiner [11] and Chen et al. [4], respectively. To the author’s best knowledge, the asymptotics
for the number of vicious walks in the random turns model seem to be new.

In some sense, one of the achievements of the present work is that it shows how to overcome
a technical difficulty put to the fore in [24]. In order to explain this remark, we recall that
Tate and Zelditch [24] determined asymptotics of multiplicities of weights in tensor powers,
which are related to reflectable lattice paths in a Weyl chamber (for details, we refer to [12,
Theorem 2]). For the so-called central limit region of irreducible multiplicities (for definition,
we directly refer to [24]) they did not manage to determine the asymptotic behaviour of these
multiplicities, and, therefore, had to resort to a result of Biane [2, Théorème 2.2]. More
precisely, although they were able to obtain the (indeed correct) dominant asymptotic term in
a formal manner, they were not able to actually prove its validity by establishing a sufficient
bound on the error term. For a detailed elaboration on this problem we refer to the paragraph
after [24, Theorem 8]. The techniques applied in [24] are in fact quite similar to those applied
in this manuscript (namely, the Weyl character formula/reflection principle and saddle point
techniques). However, it is the above mentioned technique presented in Section 4 which forms
the key to resolve the problem by providing sufficiently small error bounds in situations as the
one described by Tate and Zelditch [24].

The paper is organised as follows. In the next section, we give the basic definitions and precise
description of the lattice walk model underlying this work. We also state and prove a slightly
generalised reflection principle (see Lemma 2.1 below) that can be used to count the number of
lattice walks in our model. At the end of this section, we prove an exact integral formula for this
number. In Section 3, we determine the possible step sets the walks in our model may consist
of. Additionally, we state and prove some technical results. This allows us to give the proofs
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of our main results in a more accessible manner. Section 4 presents a factorisation technique
for certain functions defined by determinants. These results are crucial to our proofs since
they enable us to determine precise asymptotics for these functions. Our main results, namely
asymptotics for total number of random walks with a fixed end point and with a free end point,
are the content of Section 5 and Section 6, respectively. The last section presents applications
of our main results, namely Theorem 5.1 and Theorem 6.2. Here we determine asymptotics for
the number of vicious walks with a wall restriction in the lock step model as well as asymptotics
for the number of vicious walks with a wall restriction in the random turns model. Furthermore,
we determine precise asymptotics for the number of k-non-crossing tangled diagrams on the
set {1, 2, . . . , n} as n tends to infinity. This generalises results by Krattenthaler et al. [16, 17]
and Rubey [21]. Additionally, we provide precise asymptotic formulas for counting problems
for which only the asymptotic growth order has been established. In particular, we give precise
asymptotics for the total number of vicious walkers with wall restriction and free end point,
as well as precise asymptotics for the number of k-non-crossing tangled diagrams with and
without isolated points. (The growth order for the former objects has been established by
Grabiner [11], whereas the growth order for the latter objects has been determined by Chen et
al. [5].)

2. Reflectable walks of type B

The intention of this section is twofold. First, we give a precise description of the lattice walk
model underlying this work, and state some basic results. Second, we derive an exact integral
formula (see Lemma 2.3 below) for the generating function of lattice walks in this model with
respect to a given weight.

Let us start with the presentation of the lattice path model. We will have two kind of steps:
atomic steps and composite steps. Atomic steps are elements of Rk. The set of all atomic
steps in our model will always be denoted by A. Composite steps are finite sequences of atomic
steps. The set of composite steps in our model will be always be denoted by S. Both sets, A
and S, are assumed to be finite sets. By L we denote the Z-lattice spanned by the atomic step
set A.

The walks in our model are walks on the lattice L consisting of steps from the composite
step set S that are confined to the region

W0 =
{

(x1, . . . , xk) ∈ R
k : 0 < x1 < · · · < xk

}

.

For a given function w : S → R+, called the weight function, we define the weight of a walk
with step sequence (s1, . . . , sn) ∈ Sn by

∏n
j=1w(sj).

The generating function for all n-step paths from u ∈ L to v ∈ L with respect to the weight
w will be denoted by Pn(u → v), that is,

Pn(u → v) =
∑

s1,...,sn∈S
u+s1+···+sn=v

n
∏

j=1

w(sj),

and the generating function of those paths of length n from u to v with respect to the weight
w that stay within the region W0 will be denoted by P+

n (u → v).
The ultimate goal of this work is the derivation of an asymptotic formula for P+

n (u → v) as
n tends to infinity for certain step sets S and certain weight functions w.
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In the theory of reflection groups (or Coxeter groups), W0 is called a Weyl chamber of type
Bk. By W, we denote the closure of W0, viz.

W =
{

(x1, . . . , xk) ∈ R
k : 0 ≤ x1 ≤ · · · ≤ xk

}

,

The boundary of W is contained in the union of the hyperplanes

(2.1) xi − xj = 0 for 1 ≤ i < j ≤ k, and x1 = 0.

The set of reflections in these hyperplanes is a generating set for the finite reflection group of
type Bk (see Humphreys [14]).

We would like to point out that all results presented in this section have analogues for all
general finite or affine reflection groups. In order to keep this section as short and simple as
possible, we restrict our presentation to the type Bk case. For the general results, we refer
the interested reader to the corresponding literature. A good introduction to the theory of
reflection groups can be found in the standard reference book by Humphreys [14].

The fundamental assumption underlying this manuscript is the applicability of a reflection
principle argument to the problem of counting walks with n composite steps that stay within
the region W0. Such a reflection principle has been proved by Gessel and Zeilberger [9] for
lattice walks in Weyl chambers of arbitrary type that consist of steps from an atomic step set.
We need to slightly extend their result for Weyl chambers of type Bk to walks consisting of
steps from a composite step set. The precise result is stated in the following lemma, and is
followed by a short sketch of its proof.

Lemma 2.1 (Reflection Principle). Let A be an atomic step set that is invariant under the
reflection group generated by the reflections (2.1), and such that for all a ∈ A and all u ∈
W0 ∩ L we have u + a ∈ W. By S we denote a composite step set over A such that for
all (a1, . . . , an) ∈ S we also have (ρ(a1), . . . , ρ(aj), aj+1, . . . , am) ∈ S for all j = 1, 2, . . . , m
and all reflections ρ in the group generated by (2.1). Finally, assume that the weight function
w : S → R+ satisfies w ((a1, . . . , am)) = w ((ρ(a1), . . . , ρ(aj), aj+1, . . . , am)) for all j and ρ as
before.

Then, for all u = (u1, . . . , uk) ∈ W0 ∩ L and all v ∈ W0 ∩ L, the generating function for
all n-step walks with steps from the composite step set S with respect to the weight w that stay
within W0 satisfies

(2.2) P+
n (u → v) =

∑

σ∈Sk
ε1,...,εk∈{−1,+1}

(

k
∏

j=1

ej

)

sgn (σ)Pn

(

(ε1uσ(1), . . . , εkuσ(k)) → v
)

,

where Sk is the set of all permutations on {1, . . . , k}.
Proof (Sketch). The proof of this lemma is almost identical to the proof of the reflection princi-
ple for lattice walks consisting of atomic steps in [9]. The basic idea of the proof is the following.
We set up an involution on the set of n-step walks starting in one of the points(ρ(a1), . . . , ρ(ak)),
where ρ denotes an arbitrary reflection in the group generated by (2.1), to v that percolate
or touch the boundary of W. For a typical such walk we then show that the contributions of
it and its image under this involution to the right hand side of (2.2) differ by sign only. This
shows that the total contribution of n-step walks percolating or touching the boundary of W
to the right hand side of (2.2) is equal to zero.
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This involution is constructed with the help of the involution defined in the proof of [9,
Theorem 1] as follows. Consider the walk starting in (ρ(u1), . . . , ρ(uk)) with step sequence

(

(a1,1, . . . , a1,mj
), (a2,1, . . . , a2,m2), · · · , (an,1, . . . , an,mn)

)

∈ Sn,

where the aj,ℓ denote atomic steps. If we ignore all the inner brackets in the step sequence
above, we can view this walk as a walk starting (ρ(u1), . . . , ρ(uk)) that consists of (m1+· · ·+mn)
atomic steps. To this walk, we can apply the involution of the proof of [9, Theorem 1].

For example, assume that the first contact of the walker with the boundary of W occurs
right after the atomic step aj,ℓ. Then, the image of this path under the involution is the path
starting in (τ(ρ(u1)), . . . , τ(ρ(uk))) with step sequence
(

(τ(a1,1), . . . , τ(a1,m1)), · · · , (τ(aj,1), . . . , τ(aj,ℓ), aj,ℓ+1, . . . , aj,mj
), · · · , (an,1, . . . , an,mn)

)

,

for a specifically chosen reflection τ in one of the hyperplanes (2.1).
For a details, we refer the reader to the proof of [9, Theorem 1]. �

In view of this last lemma, the question that now arises is: what composite step sets S satisfy
the conditions in Lemma 2.1? This question boils down the question: what atomic step sets
A satisfy the conditions in Lemma 2.1? The answer to this latter question has been given by
Grabiner and Magyar [12]. For type B, the result reads as follows.

Lemma 2.2 (Grabiner and Magyar [12]). The atomic step set A ⊂ Rk \ {0} satisfies the
conditions stated in Lemma 2.1 if and only if A is (up to rescaling) equal either to

{

±e(1),±e(2), . . . ,±e(k)
}

or to

{

k
∑

j=1

εje
(j) : ε1, . . . , εk ∈ {−1,+1}

}

,

where
{

e(1), . . . , e(k)
}

is the canonical basis in Rk.

In this manuscript we will always assume that our lattice walk model satisfies all the require-
ments of Lemma 2.1. Therefore, we make the following assumption.

Assumption 2.1. From now on, we assume that the atomic step set A is equal to one of the
two sets given in Lemma 2.2. Further, we assume that the composite step set S and the weight
function w : S → R

k satisfy the conditions of Lemma 2.1.

The final objective in this section is an integral formula for P+
n (u → v). The result is stated

in Lemma 2.3 below. Its derivation is based on a generating function approach.
In order to simplify the presentation, we apply the standard multi-index notation: If z =

(z1, . . . , zk) is a vector of indeterminates and a = (a1, . . . , ak) ∈ Zk, then we set za :=
za11 z

a2
2 . . . zak

k . Furthermore, if F (z) is a series in z, then we denote by [za]F (z) the coeffi-
cient of the monomial za in F (z).

Now, we define the atomic step generating function A(z) = A(z1, . . . , zk) associated with the
atomic step set A by

A(z1, . . . , zk) = A(z) =
∑

a∈A

za.
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The composite step generating function associated with the composite step set S with respect
to the weight w is defined by

S(z1, . . . , zk) = S(z) =
∑

m≥0
(a1,...,am)∈S

w
(

(a1, . . . , am)
)

za1+···+am.

The generating function for the number of n-step paths with steps from the composite step
set S that start in u ∈ L and end in v ∈ L with respect to the weight w can then be expressed
as

(2.3) Pn(u → v) =
[

zv−u
]

S(z)n.

We can now state and prove the main result of this section: the integral formula for P+
n (u →

v).

Lemma 2.3. Let S be a composite step set and let w : S → R+ be weight function, both
satisfying Assumption 2.1. Furthermore, let S(z1, . . . , zk) be the associated composite step
generating function.

Then the generating function P+
n (u → v) for the number of n-step paths from u ∈ W0 ∩ L

to v ∈ W0 ∩ L that stay within W0 with steps from the composite step set S satisfies

(2.4) P+
n (u → v) =

1

(2πi)k

∫

· · ·
∫

|z1|=···=|zk|=ρ

det
1≤j,m≤k

(

zum
j − z−um

j

)

S(z1, . . . , zk)
n

(

k
∏

j=1

dzj

z
vj+1
j

)

,

where ρ > 0.

Proof. The proof of this lemma relies on the reflection principle (Lemma 2.1) and Cauchy’s
integral formula.

Lemma 2.1 and Equation (2.3) together give us

P+
n (u → v) =

∑

σ∈Sk

(ε1,...,εk)∈{−1,+1}k

(

k
∏

j=1

εj

)

sgn (σ)
[

z
v1−ε1uσ(1)

1 . . . z
vk−εkuσ(k)

k

]

S(z1, . . . , zk)
n,

and by Cauchy’s integral formula, we have
[

z
v1−ε1uσ(1)

1 . . . z
vk−εkuσ(k)

k

]

S(z1, . . . , zk)
n

=
1

(2πi)k

∫

· · ·
∫

|z1|=···=|zk|=1

S(z1, . . . , zk)
n

(

k
∏

j=1

dzj

z
vj−εkuσ(j)+1

j

)

.

Now, substituting the right hand side of the last equation above for the corresponding term
in the second to last equation, and interchanging summation and integration, we obtain the
expression

∫

· · ·
∫

|z1|=···=|zk|=1

S(z1, . . . , zk)
n

(2πi)k









∑

σ∈Sk

(ε1,...,εk)∈{−1,+1}k

sgn (σ)

(

k
∏

j=1

εjz
εjuσ(j)

j

)









(

k
∏

j=1

dzj

z
vj+1
j

)

.
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The result now follows from this expression by noting that

∑

σ∈Sk

(ε1,...,εk)∈{−1,+1}k

(

k
∏

j=1

εj

)

sgn (σ)

(

k
∏

j=1

z
εjuσ(j)

j

)

= det
1≤j,m≤k

(

zum
j − z−um

j

)

.

�

We close this section with an alternative exact expression for the quantity P+
n (u → v).

Corollary 2.1. Under the conditions of Lemma 2.3, the generating function P+
n (u → v) for

the number of n-step paths from u ∈ W0 ∩ L to v ∈ W0 ∩ L that stay within W0 with steps
from the composite step set S satisfies

P+
n (u → v) =

(−1)k

(2πi)kk!

×
∫

· · ·
∫

|z1|=···=|zk|=ρ

det
1≤j,m≤k

(

zum
j − z−um

j

)

S(z1, . . . , zk)
n det

1≤j,m≤k

(

zvm
j

)

(

k
∏

j=1

dzj
zj

)

,

where ρ > 0.

Proof. The substitution zj 7→ 1/zj , for j = 1, 2, . . . , k, transforms Equation (2.4) into

P+
n (u → v) =

(−1)k

(2πi)k

∫

· · ·
∫

|z1|=···=|zk|=ρ

det
1≤j,m≤k

(

zum
j − z−um

j

)

S(z1, . . . , zk)
n

(

k
∏

j=1

z
vj

j

dzj
zj

)

.

Now, we make the following observation. If σ denotes an arbitrary permutation on the set
{1, 2, . . . , k}, then we have

det
1≤j,m≤k

(

zum

σ(j) − z−um

σ(j)

)

(

k
∏

j=1

zvm

σ(j)

)

= det
1≤j,m≤k

(

zum
j − z−um

j

)

(

sgn (σ)

k
∏

j=1

zvm

σ(j)

)

,

which can be seen to be true by rearranging the rows of the determinant on the left hand side
and taking into account the sign changes. This implies

P+
n (u → v) =

(−1)k

(2πi)k

×
∫

· · ·
∫

|z1|=···=|zk|=ρ

det
1≤j,m≤k

(

zum
j − z−um

j

)

S(z1, . . . , zk)
n

(

sgn (σ)
k
∏

j=1

z
vj

σ(j)

dzj
zj

)

.

The claim is now proved upon summing the expression above over all k! possible permutations
and dividing the result by k!. �



24 THOMAS FEIERL

3. Auxiliary results

In this section, we are going to derive some auxiliary results that we are going to use in
the proof of our main results. In the first part of this section, we are going to have a closer
look at composite step generating functions. At the end of this section, we present two rather
technical results, that should be skipped at a first reading until they are used in the proof of
our main result.

The proofs of Theorem 5.1 and Theorem 6.2 rely on some structural results for composite
step generating functions S(z1, . . . , zk) associated with composite step sets that satisfy As-
sumption 2.1 (the conditions of Lemma 2.1). These structural results are the content of the
following lemmas.

A direct consequence of the classification of Grabiner and Magyar [12], presented in Lemma 2.2,
is the following result on atomic step generating functions.

Lemma 3.1. Let A be an atomic step set satisfying Assumption 2.1. Then the associated
atomic step generating function A(z1, . . . , zk) is equal either to

(3.5)
k
∑

j=1

(

zj +
1

zj

)

or to
k
∏

j=1

(

zj +
1

zj

)

.

As a direct consequence of this last lemma, we obtain the following result.

Lemma 3.2. Let S be composite step set over the atomic step set A, and let w : S → R+ be
a weight function. If S, A and w satisfy Assumption 2.1, then there exists a polynomial P (x)
with non-negative coefficients such that either

S(z1, . . . , zk) = P

(

k
∑

j=1

(

zj +
1

zj

)

)

or S(z1, . . . , zk) = P

(

k
∏

j=1

(

zj +
1

zj

)

)

.

Proof. Let A(z1, . . . , zk) denote the atomic step generating function corresponding to A.
Our assumptions imply that if (a1, . . . , am) ∈ S, then we also have

(ρ(a1), . . . , ρ(aj), aj+1, . . . , am) ∈ S, j = 1, 2, . . . , m

and all reflections ρ in the group generated by (2.1). This means that if the composite step
set S contains a composite step consisting of m atomic steps, then S has to contain all
composite steps consisting of m atomic steps. Also, our assumptions on w imply that the
same weight is assigned to all composite steps consisting of the same number of atomic steps.
Since the generating function for all composite steps consisting of m atomic steps is given by
A(z1, . . . , zk)

m, we deduce that there exists a polynomial P (x) with non-negative coefficients
such that S(z1, . . . , zk) = P (A(z1, . . . , zk)). This fact, together with Lemma 3.1, proves the
claim. �

Lemma 3.3. Let S be a composite step set, and let S(z1, . . . , zk) denote the associated com-
posite step generating function. Further, let w be a weight function.

If S and w satisfy Assumptions 2.1, then all maxima of the function (ϕ1, . . . , ϕk) 7→ |S(eiϕ1 , . . . , eiϕk)|
lie within the set {0, π}k. The point (ϕ1, . . . , ϕk) = (0, . . . , 0) is always a maximum.
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Proof. From Lemma 3.2, we deduce that S(eiϕ1, . . . , eiϕk) is either equal to

(3.6) P

(

2

k
∑

j=1

cosϕj

)

or to P

(

2k
k
∏

j=1

cosϕj

)

,

for some polynomial P (x) with non-negative coefficients. Now, if S(eiϕ1 , . . . , eiϕk) is equal to
the expression on the left in (3.6), then the triangle inequality shows that

|S(eiϕ1 , . . . , eiϕk)| =

∣

∣

∣

∣

∣

P

(

2
k
∑

j=1

cos(ϕj)

)∣

∣

∣

∣

∣

≤ P

(

2
k
∑

j=1

|cos(ϕj)|
)

≤ S(1, . . . , 1).

If S(eiϕ1 , . . . , eiϕk) is equal to the expression on the right in (3.6), then similar arguments can
be used to show the inequality |S(eiϕ1 , . . . , eiϕk)| ≤ S(1, . . . , 1) in this case. This inequality
shows that (0, . . . , 0) is always a maximum of the function (ϕ1, . . . , ϕk) 7→ |S(eiϕ1, . . . , eiϕk)|,
and further, since P (x) is monotonic increasing for x > 0, that all points maximising this

function lie within the set {0, π}k. �

We end this section with two results of a rather technical nature.

Lemma 3.4. Let S be an composite step set over the atomic step set A, and assume that
both sets, A and S satisfy Assumptions 2.1. The corresponding step generating functions are
denoted by S(z1, . . . , zk) and A(z1, . . . , zk), respectively. Further, let u = (u1, . . . , uk) ∈ W0∩L,
v = (v1, . . . , vk) ∈ W0 ∩ L and n ∈ N be such that P+

n (u → v) > 0.

If (ϕ̂1, . . . , ϕ̂k) ∈ {0, π}k is maximum of the function (ϕ1, . . . , ϕk) 7→ |S(eiϕ1, . . . , eiϕk)|, then,
for any function F (u, v), we have

S(eiϕ̂1 , . . . , eiϕ̂k)n det
1≤j,m≤k

(

(−1)(vm+uj)ϕ̂j/πF (uj, vm)
)

= S(1, . . . , 1)n det
1≤j,m≤k

(

F (uj, vm)
)

.

Proof. For the sake of brevity, we say that a point in {0, π}k is a maximal point, if this point
is a maximum of the function (ϕ1, . . . , ϕk) 7→ |S(eiϕ1, . . . , eiϕk)|.

For (ϕ̂1, . . . , ϕ̂k) = (0, . . . , 0) the claim is obviously true. Now, recall that according to
Lemma 3.2, we have S(z1, . . . , zk) = P (A(z1, . . . , zk)) for some polynomial P (x) with non-
negative coefficients. We proceed with a case-by-case analysis.

Let us first assume that A(z1, . . . , zk) =
∑k

j=1

(

zj + 1
zj

)

. If |P (−x)| = P (x), then we have

two maximal points, namely (0, . . . , 0) and (π, . . . , π). If P (−x) = P (x), then we know that
each step in S, viewed as a sequence of atomic steps, has even length. Analogously, we see that
every step has odd length whenever P (−x) = −P (x). Since, by assumption P+

n (u → v) > 0,

we must have
∑k

j=1(vj − uj) ≡ n mod 2, which proves the claim in these two cases. If P (x) is

neither even nor odd, then (0, . . . , 0) is the only maximal point, and there is nothing to prove.

Let us now assume that A(z1, . . . , zk) =
∏k

j=1

(

zj + 1
zj

)

. In this case, the Z-lattice L spanned

by the atomic step set A is given by

L =
{

(c1, . . . , ck) ∈ Z
k : c1 ≡ c2 ≡ · · · ≡ ck mod 2

}

.

Consequently, we have

vm − uj ≡ v1 − u1 mod 2 for all m and j,
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which implies

S(eiϕ̂1 , . . . , eiϕ̂k)n det
1≤j,m≤k

(

(−1)(vm+uj)ϕ̂j/πF (uj, vm)
)

= (−1)

(u1+v1)
π

k
P

j=1
ϕ̂j

S(eiϕ̂1, . . . , eiϕ̂k)n det
1≤j,m≤k

(F (uj, vm)) .

Now, if P (x) is even, then v1 + u1 ≡ 0 mod 2, and the claim is proved. For P (x) odd, we note
that

S(eiϕ̂1, . . . , eiϕ̂k) = (−1)
Pk

j=1 ϕ̂j/πS(1, . . . , 1).

The result now follows from the fact that in this case we must have n ≡ v1 + u1 mod 2.
If P (x) is neither even or odd, then the set of maximal points is given by

{

(ϕ̂1, . . . , ϕ̂k) ∈ {0, π}k :

(

k
∑

j=1

ϕ̂j/π

)

≡ 0 mod 2

}

,

and the claim follows upon noting that S(eiϕ̂1, . . . , eiϕ̂k) > 0 for all maximal points. �

Lemma 3.5. For any two real numbers u, v ∈ R, we have
∞
∫

0

sin(uϑ) sin(vϑ)e−ϑ
2/2dϑ =

1

2

√

π

2

(

e−(u−v)2/2 − e−(u+v)2/2
)

.

Proof. Since, by definition we have

sin (uϑ) sin (vϑ) =
1

4

(

ei(u−v)ϑ + e−i(u−v)ϑ − ei(u+v)ϑ − e−i(u+v)ϑ
)

,

we see that the integral of interest is a sum of four integrals, all of which are of the form
∞
∫

0

eiκϑ−ϑ
2/2dϑ = e−κ

2/2

∞
∫

0

e−(ϑ−iκ)2/2dϑ.

By Cauchy’s integral theorem, we know that




R
∫

0

+

R−iκ
∫

R

+

−iκ
∫

R−iκ

+

0
∫

−iκ



 e−z
2/2dz = 0

for any R and any κ. Letting R tend to +∞ and rearranging the last equation, we obtain
∞
∫

0

e−(ϑ−iκ)2/2dϑ =

∞
∫

0

e−ϑ
2/2dϑ+ i

κ
∫

0

et
2/2dϑ,

and further
∞
∫

0

(

e−(ϑ−iκ)2/2 + e−(ϑ+iκ)2/2
)

dϑ = 2

∞
∫

0

e−ϑ
2/2dϑ =

√
2π,

which proves the lemma. �
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4. Determinants and asymptotics

Asymptotics for determinants are often hard to obtain, the reason being a typical large num-
ber of cancellations of asymptotically leading terms. In this section, we present a factorisation
technique that allows one to represent certain functions in several complex variables defined
by determinants as a product of two factors. One of these factors will always be a symmetric
(Laurent) polynomial (this accounts for the cancellations of asymptotically leading terms men-
tioned before). The second factor is a determinant, the entries of which are certain contour
integrals. The fundamental technique is illustrated in Lemma 4.1 below.

We want to stress that Lemma 4.1 should be seen as a general technique, not as a particular
result. The main intention of this lemma is to give the reader an unblurred view at the
technique. An application of Lemma 4.1 together with some remarks on asymptotics can be
found right after the proof.

Let us now start with the illustration of our factorisation technique.

Lemma 4.1. Let Am(x, y), 1 ≤ m ≤ k, be analytic and one-valued for (x, y) ∈ R × D ⊂ C
2,

where D ⊂ C is some non empty set and R = {x ∈ C : r∗ ≤ |x| < R∗} for some 0 ≤ r∗ < R∗.
Then, the function

det
1≤j,m≤k

(Am(xj , ym))

is analytic for (x1, . . . , xk, y1, . . . , yk) ∈ Rk ×Dk, and it satisfies

det
1≤j,m≤k

(Am(xj , ym)) =

(

∏

1≤j<m≤k

(xm − xj)

)

× det
1≤j,m≤k











1

2πi

∫

|ξ|=R

Am(ξ, ym)dξ
j
∏

ℓ=1

(ξ − xℓ)

− 1

2πi

∫

|ξ|=r

Am(ξ, ym)dξ
j
∏

ℓ=1

(ξ − xℓ)











,

where r∗ < r < minj |xj | ≤ maxj |xj | < R < R∗.

Proof. By Laurent’s theorem, we have

(4.7) det
1≤j,m≤k

(Am(xj , ym)) = det
1≤j,m≤k







1

2πi

∫

|ξ|=R

Am(ξ, ym)dξ

ξ − xj
− 1

2πi

∫

|ξ|=r

Am(ξ, ym)dξ

ξ − xj






.

Now, short calculations show that for any L ≥ 0 and all n1, . . . , nL ∈ {1, 2, . . . , k} we have
∫

|ξ|=ρ1

Am(ξ, ym)dξ

(ξ − xj)
∏L

ℓ=1(ξ − xnℓ
)
−
∫

|ξ|=ρ1

Am(ξ, ym)dξ

(ξ − xj)
∏L

ℓ=1(ξ − xnℓ
)

= (xm − xj)

∫

|ξ|=ρ1

A(ξ, y)dξ

(ξ − xj)(ξ − xm)
∏L

ℓ=1(ξ − xnℓ
)
.

Consequently, we can prove the claimed factorisation as follows. First, we subtract the first
row of the determinant in (4.7) from all other rows. By the computations above we can then
take the factor (xj − x1) out of the j-th row of the determinant. In a second run, we subtract
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the second row from the rows 3, 4, . . . , k, and so on. In general, after subtracting row j from
row ℓ we take the factor (xℓ − xj) out of the determinant. �

Example 4.1. Consider the function

det
1≤j,m≤k

(exjym) .

An application of Lemma 4.1 with A(x, y) = exy immediately gives us the factorisation

det
1≤j,m≤k

(exjym) =

(

∏

1≤j<m≤k

(xm − xj)

)

det
1≤j,m≤k

(

1

2πi

∫

|ξ|=R

eξymdξ
∏j

ℓ=1(ξ − xℓ)

)

,

where R > maxj |xj |. Note that the second contour integral occurring in the factorisation given
in Lemma 4.1 is equal to zero because the function A(x, y) = exy is an entire function.

Now we want to demonstrate how one can derive asymptotics for det1≤j,m≤k (exjym) as
x1, . . . , xk → 0 from this factorisation. The geometric series expansion gives us

1

2πi

∫

|ξ|=R

eξydξ
∏j

ℓ=1(ξ − xℓ)
=

1

2πi

∫

|ξ|=R

eξy
dξ

ξj
+O

(

k
∑

j=1

|xk|
)

=
yj−1

(j − 1)!
+O

(

k
∑

j=1

|xk|
)

as x1, . . . , xk → 0. Consequently, we have

det
1≤j,m≤k

(exjym) =

(

∏

1≤j<m≤k

(xm − xj)

)(

det
1≤j,m≤k

(

yj−1
m

(j − 1)!

)

+O

(

k
∑

j=1

|xk|
))

=

(

∏

1≤j<m≤k

(xm − xj)

)((

∏

1≤j<m≤k

ym − yj
m− j

)

+O

(

k
∑

j=1

|xj |
))

as x1, . . . , xk → ∞.
This illustrates that the problem of establishing asymptotics for functions of the form

det1≤j,m≤k(Am(xj , ym)) can be reduced to an application of Lemma 4.1 and the extraction
of certain coefficients of the functions Am(x, y).

If we would have considered the function det
1≤j,m≤k

(

eξ
2y
)

, k > 1, instead of det
1≤j,m≤k

(exjym) as

in the example above, we would have got only the upper bound

det
1≤j,m≤k

(

ex
2
jym

)

= O

((

∏

1≤j<m≤k

(xm − xj)

)

k
∑

j=1

|xj |
)

as x1, . . . , xk → 0, because

det
1≤j,m≤k

(

1

2πi

∫

|ξ|=R

eξ
2ym

dξ

ξj

)

= 0, k > 1.

The reason for this is that the function A(x, y) = ex
2y satisfies the symmetry A(−x, y) = A(x, y)

which induces additional cancellations of asymptotically leading terms.
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In order to obtain precise asymptotic formulas in cases where the functions Am(x, y) exhibit
certain symmetries, we have to take into account these symmetries. This can easily be accom-
plished by a small modification to our factorisation technique presented in Lemma 4.1. In fact,
the only thing we have to do is to modify the representation (4.7), the rest of our technique
remains - mutatis mutandis - unchanged.

The following series of lemmas should illustrate these modifications to our factorisation
method for some selected symmetry conditions, and should underline the general applicability
of our factorisation method.

Lemma 4.2. Let A(x, y) be analytic for (x, y) ∈ R1 ×R2 ⊂ C2, where

Rj =
{

x ∈ C : |x| < R∗
j

}

, j = 1, 2,

for some R∗
1, R

∗
2 > 0. Furthermore, assume that A(x, y) = A(−x, y) = A(x,−y).

Then, the function

det
1≤j,m≤k

(A(xj , ym))

is analytic for (x1, . . . , xk, y1, . . . , yk) ∈ Rk
1 ×Rk

2, and it satisfies

det
1≤j,m≤k

(A(xj , ym)) =

(

∏

1≤j<m≤k

(x2
m − x2

j )(y
2
m − y2

j )

)

× det
1≤j,m≤k











1

(2πi)2

∫

|ξ|=R1

|η|=R2

A(ξ, η)ξηdξdη
(

j
∏

ℓ=1

(ξ2 − x2
ℓ)

)(

m
∏

ℓ=1

(η2 − y2
m)

)











,

where maxj |xj | < R1 < R∗
1 and maxj |yj| < R2 < R∗

2.

Proof (sketch). By Cauchy’s theorem, we have

A(x, y) =
1

(2πi)2

∫

|ξ|=R1

|η|=R2

A(ξ, η)dξdη

(ξ − x)(η − y)
.

By assumption, we have 4A(x, y) = A(x, y)+A(−x,−y)+A(−x, y)+A(x,−y). This equation
together with the integral representation above implies

A(x, y) =
1

(2πi)2

∫

|ξ|=R1

|η|=R2

A(ξ, η)ξηdξdη

(ξ2 − x2)(η2 − y2)
.

Consequently we should replace Equation (4.7) in the proof of Lemma 4.1 with

det
1≤j,m≤k

(A(xj , ym)) = det
1≤j,m≤k











1

(2πi)2

∫

|ξ|=R1

|η|=R2

A(ξ, η)ξηdξdη

(ξ2 − x2
j )(η

2 − y2
m)











.
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Now we apply the same sequence of row operations as in the proof of Lemma 4.1 to the
determinant on the right hand side above. After each of these row operations, we can take a
factor of the form (x2

ℓ − x2
j ), ℓ < j, out of the determinant.

Finally, we transpose the resulting determinant (which does not change its value) and apply
the same sequence of row operations a second time. This yields successively factors of the form
(y2
ℓ − y2

j ), and completes the proof of the lemma. �

Lemma 4.3. Let A(x, y) be analytic for (x, y) ∈ R1 ×R2 ⊂ C2, where

Rj =
{

x ∈ C : |x| < R∗
j

}

, j = 1, 2,

for some R∗
1, R

∗
2 > 0. Furthermore, assume that A(x, y) = −A(−x, y) = −A(x,−y).

Then, the function

det
1≤j,m≤k

(A(xj , ym))

is analytic for (x1, . . . , xk, y1, . . . , yk) ∈ Rk
1 ×Rk

2, and it satisfies

det
1≤j,m≤k

(A(xj , ym)) =

(

k
∏

j=1

xjyj

)(

∏

1≤j<m≤k

(x2
m − x2

j )(y
2
m − y2

j )

)

× det
1≤j,m≤k











1

(2πi)2

∫

|ξ|=R1

|η|=R2

A(ξ, η)dξdη
(

j
∏

ℓ=1

(ξ2 − x2
ℓ)

)(

m
∏

ℓ=1

(η2 − y2
m)

)











,

where maxj |xj | < R1 < R∗
1 and maxj |yj| < R2 < R∗

2.

Proof (sketch). The present situation is very similar to the one considered in the last lemma.
But now, our assumption implies 4A(x, y) = A(x, y)+A(−x,−y)−A(−x, y)−A(x,−y), which,
together with Cauchy’s theorem, yields

A(x, y) =
xy

(2πi)2

∫

|ξ|=R1

|η|=R2

A(ξ, η)dξdη

(ξ2 − x2)(η2 − y2)
.

Consequently we should replace Equation (4.7) in the proof of Lemma 4.1 with

det
1≤j,m≤k

(A(xj , ym)) =

(

k
∏

j=1

xjyj

)

det
1≤j,m≤k











1

(2πi)2

∫

|ξ|=R1

|η|=R2

A(ξ, η)dξdη

(ξ2 − x2
j )(η

2 − y2
m)











.

Now the determinant on the right hand side is treated exactly as in the previous lemma. �

Lemma 4.4. Let Am(x), 1 ≤ m ≤ k, be analytic and one-valued in

R =

{

x ∈ C :
1

R∗
< |x| < R∗

}

, R∗ > 1.

Furthermore, assume that Am(x) = −Am(1/x), m = 1, . . . , k.
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Then, the function

det
1≤j,m≤k

(Am(xj))

is analytic for (x1, . . . , xk) ∈ Rk, and it satisfies

det
1≤j,m≤k

(Am(xj)) =

(

k
∏

j=1

xj

)−k(
∏

1≤j<m≤k

(xj − xm)(1 − xjxm)

)(

k
∏

j=1

(x2
j − 1)

)

× det
1≤j,m≤k











1

4πi

∫

|ξ|=R

Am(ξ)ξj−1dξ
j
∏

ℓ=1

(ξ − xℓ)
(

ξ − 1
xℓ

)

− 1

4πi

∫

|ξ|= 1
R

Am(ξ)ξj−1dξ
j
∏

ℓ=1

(ξ − xℓ)
(

ξ − 1
xℓ

)











,

where 1
R∗

< 1
R
< minj |xj | ≤ maxj |xj | < R < R∗.

Proof (sketch). Laurent’s theorem together with our assumption 2Am(x) = Am(x) − Am(1/x)
implies

Am(x) =
1

4πi

(

x− 1

x

)







∫

|ξ|=R

Am(ξ)

(ξ − x)
(

ξ − 1
x

)dξ −
∫

|ξ|= 1
R

Am(ξ)

(ξ − x)
(

ξ − 1
x

)dξ






.

Consequently, we should replace Equation (4.7) in the proof of Lemma 4.1 with

det
1≤j,m≤k

(Am(xj)) =

(

k
∏

j=1

(

xj −
1

xj

)

)

× det
1≤j,m≤k







1

4πi







∫

|ξ|=R

Am(ξ)dξ

(ξ − xj)
(

ξ − 1
xj

) −
∫

|ξ|= 1
R

Am(ξ)dξ

(ξ − xj)
(

ξ − 1
xj

)












.

Now, short computations show that for 1
R
≤ ρ ≤ R we have

∫

|ξ|=ρ

Am(ξ)dξ

(ξ − xℓ)
(

ξ − 1
xℓ

) −
∫

|ξ|=ρ

Am(ξ)dξ

(ξ − xj)
(

ξ − 1
xj

)

=
1

xℓxj
(xj − xℓ)(1 − xjxℓ)

∫

|ξ|=ρ

Am(ξ)ξdξ

(ξ − xℓ)
(

ξ − 1
xℓ

)

(ξ − xj)
(

ξ − 1
xj

) .

We can now apply the same series of row operations as in the proof of Lemma 4.1. The only
difference here is that after each row operation we take a factor of the form x−1

ℓ x−1
j (xj−xℓ)(1−

xjxℓ), j < ℓ, out of the determinant. �

The rest of this section is devoted to some particular results that can be obtained by the
above described technique. More precisely, we determine asymptotics for two determinants
that will become important in subsequent sections. As illustrated in Example 4.1, asymptotics
for determinants can be determined as follows. First, we factorise our determinants according
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to our technique. At this point it is important to take into account all the symmetries satisfied
by the entries A(xj , ym) of the determinant. Second, we apply the geometric series expansion.
This gives us the coefficient of the asymptotically leading term as a determinant, the entries of
which being certain coefficients of the functions A(xj , ym). In both cases, this last determinant
can then be evaluated into a closed form expression.

Lemma 4.5. We have the asymptotics

det
1≤j,m≤k

(

e−(xj−ym)2 − e−(xj+ym)2
)

=

(

k
∏

j=1

xjyj

)(

∏

1≤j<m≤k

(x2
m − x2

j )(y
2
m − y2

j )

)

× 2k
2+k

∏k
j=1(2j − 1)!

(

1 +O

(

k
∑

j=1

(|xj|2 + |yj|2)
))

as x1, . . . , xk, y1, . . . , yk → 0.

Proof. The function A(x, y) = e−(x−y)2 − e−(x+y)2 satisfies the requirements of Lemma 4.3.
Therefore, we have

det
1≤j,m≤k

(

e−(xj−ym)2 − e−(xj+ym)2
)

=

(

k
∏

j=1

xjyj

)(

∏

1≤j<m≤k

(x2
m − x2

j )(y
2
m − y2

j )

)

× det
1≤j,m≤k











1

(2πi)2

∫

|ξ|=1
|η|=1

A(ξ, η)dξdη
(

j
∏

ℓ=1

(ξ2 − x2
ℓ)

)(

m
∏

ℓ=1

(η2 − y2
ℓ )

)











for maxj |xj|,maxj |yj| < 1. Since

1

(2πi)2

∫

|ξ|=1
|η|=1

(

e−(ξ−η)2 − e−(ξ+η)2
) dξ

ξ2j

dη

η2m
=

2

(j +m− 1)!

(

2j + 2m− 2

2j − 1

)

,

we deduce with the help of the geometric series expansion

1

(2πi)2

∫

|ξ|=1
|η|=1

A(ξ, η)dξdη
(

j
∏

ℓ=1

(ξ2 − x2
ℓ)

)(

m
∏

ℓ=1

(η2 − y2
ℓ )

)

=
2

(j +m− 1)!

(

2j + 2m− 2

2j − 1

)

(

1 +O

(

k
∑

j=1

(|xj|2 + |yj|2)
))

.
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Consequently, we have

det
1≤j,m≤k











1

(2πi)2

∫

|ξ|=1
|η|=1

A(ξ, η)dξdη
(

j
∏

ℓ=1

(ξ2 − x2
ℓ)

)(

m
∏

ℓ=1

(η2 − y2
ℓ )

)











= det
1≤j,m≤k

(

2

(j +m− 1)!

(

2j + 2m− 2

2j − 1

))

(

1 +O

(

k
∑

j=1

(|xj|2 + |yj|2)
))

.

The determinant on the right hand side can be evaluated into a closed form expression by
taking some factors and applying [15, Lemma 3], which gives us

det
1≤j,m≤k

(

2

(j +m− 1)!

(

2j + 2m− 2

2j − 1

))

=
2k

2+k

∏k
j=1(2j − 1)!

,

and completes the proof of the lemma. �

Lemma 4.6. For all u1, . . . , uk ∈ C we have the asymptotics

det
1≤j,m≤k

(sin(umϕj)) =

(

k
∏

j=1

ujϕj

)(

∏

1≤j<m≤k

(u2
m − u2

j)(ϕ
2
m − ϕ2

j )

)(

k
∏

j=1

(−1)j

(2j − 1)!

)

×
(

1 +O

(

k
∑

j=1

|ϕj|2
))

as (ϕ1, . . . , ϕk) → (0, . . . , 0).

Proof. An application of Lemma 4.3 shows that

det
1≤j,m≤k

(sin(umϕj)) =

(

k
∏

j=1

ujϕj

)(

∏

1≤j<m≤k

(u2
m − u2

j)(ϕ
2
m − ϕ2

j )

)

× det
1≤j,m≤k











1

(2πi)2

∫

|ξ|=R
|η|=1

sin(ξη)dξdη
(

j
∏

ℓ=1

(ξ2 − u2
ℓ)

)(

m
∏

ℓ=1

(η2 − ϕ2
ℓ)

)











.

Since

1

(2πi)2

∫

|ξ|=R
|η|=1

sin(ξη)
dξ

ξ2j

dη

η2m
=

{

(−1)j−1

(2j−1)!
if j = m,

0 else,
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we deduce with the help of the geometric series expansion that

1

(2πi)2

∫

|ξ|=R
|η|=1

sin(ξη)dξdη
(

j
∏

ℓ=1

(ξ2 − u2
ℓ)

)(

m
∏

ℓ=1

(η2 − ϕ2
ℓ)

)

=
1

(2πi)2

∫

|ξ|=R
|η|=1

sin(ξη)
dξ

ξ2j

dη

η2m

(

1 +O

(

k
∑

j=1

|ϕj|2
))

.

Consequently, we have

det
1≤j,m≤k











1

(2πi)2

∫

|ξ|=R
|η|=1

sin(ξη)dξdη
(

j
∏

ℓ=1

(ξ2 − u2
ℓ)

)(

m
∏

ℓ=1

(η2 − ϕ2
ℓ)

)











= det
1≤j,m≤k











1

(2πi)2

∫

|ξ|=R
|η|=1

sin(ξη)
dξ

ξ2j

dη

η2m











(

1 +O

(

k
∑

j=1

|ϕj|2
))

as (ϕ1, . . . , ϕk) → (0, . . . , 0). Finally, noting that, by the above calculations, the matrix inside
the determinant on the right hand side is a diagonal matrix, we obtain the claimed result. �

5. Walks with a fixed end point

In this section, we are going to derive asymptotics for P+
n (u → v) as n tends to infinity (see

Theorem 5.1 below). The asymptotics are derived by applying saddle point techniques to the
integral representation (2.3) together with the techniques developed in Section 4.

Theorem 5.1. Let S be a composite step set over the atomic step set A, and let w : S → R+ be
a weight function. By L we denote the Z-lattice spanned by A. The composite step generating
function associated with S is denoted by S(z1, . . . , zk). Finally, let M ⊆ {0, π}k denote the set
of points such that the function (ϕ1, . . . , ϕk) 7→ |S(eiϕ1, . . . , eiϕk)| attains a maximum value,
and let |M| denote the cardinality of the set M.

If A, S and w satisfy Assumption 2.1 and S(1, . . . , 1) > 0, then for any two points u,v ∈
W0 ∩ L we have the asymptotic formula

(5.8) P+
n (u → v) = |M|S(1, . . . , 1)n

(

2

π

)k/2(
S(1, . . . , 1)

nS ′′(1, . . . , 1)

)k2+k/2

×

(

∏

1≤j<m≤k

(u2
m − u2

j)(v
2
m − v2

j )

)(

k
∏

j=1

ujvj

)

(

∏k
j=1(2j − 1)!

)

(

1 +O(n−1/4)
)
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as n→ ∞ in the set {n : P+
n (u → v) > 0}. Here, S ′′(z1, . . . , zk) denotes the second derivative

of S(z1, . . . , zk) with respect to any of the zj.

Proof. According to Lemma 2.3, we have to asymptotically analyse the integral

P+
n (u → v) =

1

(2πi)k

∫

|z1|=···=|zk|=1

det
1≤j,m≤k

(

zum
j − z−um

j

)

S(z1, . . . , zk)
n

(

k
∏

j=1

z
−vj−1
j dzj

)

as n→ ∞. The substitution zj = eiϕj gives

P+
n (u → v) =

(

i

π

)k
π
∫

−π

. . .

π
∫

−π

det
1≤j,m≤k

(

sin(umϕj)
)

S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

e−ivjϕjdϕj

)

.(5.9)

For large n, the absolute value of the integral is governed by the factor |S(eiϕ1, . . . , eiϕk)|n.
By Lemma 3.3, the set M of maximal points of (ϕ1, . . . , ϕk) 7→ |S(eiϕi , . . . , eiϕk)| is a subset

of {0, π}k. We are now going to prove that, for large n, the asymptotically dominant part of
the integral is captured by small neighbourhoods around these maxima. Asymptotics for the
integral can then be determined by saddle point techniques.

For notational convenience, we define the sets

Uε(ϕ̂) =
{

ϕ ∈ R
k : |ϕ̂− ϕ|∞ < ε

}

, ϕ̂ = (ϕ̂1, . . . , ϕ̂k) ∈ M,

where ε > 0 and | · |∞ denotes the maximum norm on Rk. We claim that the dominant
asymptotic term of P+

n (u → v) is captured by

(5.10)

(

i

π

)k
∑

ϕ̂∈M

∫

· · ·
∫

Uε(ϕ̂)

det
1≤j,m≤k

(

sin(umϕj)
)

S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

e−ivjϕjdϕj

)

,

where we choose ε = ε(n) = n−5/12. This claim can be proved by means of the saddle point
method: (1) Determine an asymptotically equivalent expression for (5.10) that is more conve-
nient to work with; (2) Find a bound for the remaining part of the integral (5.9).

Let us start with task (1). Fix a point ϕ̂ ∈ M and consider the corresponding summand in
the sum (5.10), viz.

(

i

π

)k ∫

· · ·
∫

Uε(ϕ̂)

det
1≤j,m≤k

(

sin(umϕj)
)

S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

e−ivjϕjdϕj

)

.

We can then transform this expression with the help of the substitution ϕj 7→ ϕj + ϕ̂j, j =
1, . . . , k, into

(

i

π

)k ∫

· · ·
∫

Uε(0)

det
1≤j,m≤k

(

sin(um(ϕj + ϕ̂j))
)

S
(

ei(ϕ1+ϕ̂1), . . . , ei(ϕk+ϕ̂k)
)n

×
(

k
∏

j=1

e−ivj(ϕj+ϕ̂j)dϕj

)

.
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Since ϕ̂1, . . . , ϕ̂k ∈ {0, π}, we know that the determinant in the expression above is an odd
function of each the variables ϕj, j = 1, 2, . . . , k. On the other hand, we deduce from (3.6)
that S

(

ei(ϕ1+ϕ̂1), . . . , ei(ϕk+ϕ̂k)
)

is an even function of the variables ϕj. Consequently, we can
further simplify our integral to

(

2

π

)k
n−5/12
∫

0

· · ·
n−5/12
∫

0

det
1≤j,m≤k

(

sin(um(ϕj + ϕ̂j))
)

S
(

ei(ϕ1+ϕ̂1), . . . , ei(ϕk+ϕ̂k)
)n

×
(

k
∏

j=1

sin(vj(ϕj + ϕ̂j))dϕj

)

.

Incorporating the product of the sines into the determinant and noting that (ϕ̂1, . . . , ϕ̂k) ∈
{0, π}k, we finally obtain the expression

(

2

π

)k
n−5/12
∫

0

· · ·
n−5/12
∫

0

det
1≤j,m≤k

(

(−1)(um+vj)ϕ̂j/π sin(umϕj) sin(vjϕj)
)

× S
(

ei(ϕ1+ϕ̂1), . . . , ei(ϕk+ϕ̂k)
)n

(

k
∏

j=1

dϕj

)

.

Asymptotics for this integral can now be determined by replacing the second part of the inte-
grand with an appropriate Taylor series approximation around (ϕ1, . . . , ϕk) = (0, . . . , 0). Recall
that, according to Lemma 3.2, there exists a polynomial P (x) with non-negative coefficients
such that either

S(z1, . . . , zk) = P

(

k
∑

j=1

(

zj +
1

zj

)

)

or S(z1, . . . , zk) = P

(

k
∏

j=1

(

zj +
1

zj

)

)

.

For ϕ ∈ Un−5/12(0) we have the Taylor series approximation

(5.11) S
(

ei(ϕ1+ϕ̂1), . . . , ei(ϕk+ϕ̂k)
)

= S(eiϕ̂1 , . . . , eiϕ̂k) exp

(

−Λ

k
∑

j=1

ϕ2
j

2

)

(

1 +O
(

n−5/4
))

as n → ∞, where Λ = S′′(1,...,1)
S(1,...,1)

and S ′′(z1, . . . , zk) = ∂2

∂z21
S(z1, . . . , zk). Short calculations show

that either

Λ = 2
P ′(2k)

P (2k)
> 0 or Λ = 2k

P ′(2k)

P (2k)
> 0,

corresponding to the two possible cases for S(z1, . . . , zk) given in Lemma 3.2. Here, P ′(x) is
the derivative of P (x) with respect to x.
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Substituting the Taylor approximation (5.11) for the corresponding term in the integral
above, we obtain the asymptotic expression

(

2

π

)k

S(eiϕ̂1 , . . . , eiϕ̂k)n det
1≤j,m≤k






(−1)(um+vj)ϕ̂j/π

n−5/12
∫

0

sin(umϑ) sin(vjϑ)e−nΛϑ2/2dϑ







×
(

1 +O(n−1/4)
)

as n→ ∞.
From now on we assume that u,v ∈ W0 ∩ L and n ∈ N are such that P+

n (u → v) > 0.
Then, according to Lemma 3.4, the asymptotic expression above is equal to

(

2

π

)k

S(1, . . . , 1)n det
1≤j,m≤k







n−5/12
∫

0

sin(umϑ) sin(vjϑ)e−nΛϑ2/2dϑ







(

1 +O(n−1/4)
)

as n → ∞ in the set {n : P+
n (u → v) > 0}. This shows that Expression (5.10) is asymptoti-

cally equal to |M| times this last expression as n tends to infinity.
The second step of the saddle point method is to establish a bound for the remaining part

of the integral (5.9), viz.

(

2

π

)k ∫

· · ·
∫

[0,2π)k\Uε(M)

det
1≤j,m≤k

(

sin(umϕj)
)

S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

e−ivjϕjdϕj

)

,

where Uε(M) =
⋃

ϕ̂∈M Uε(ϕ̂) and ε = ε(n) = n−5/12. Since M is the set of maximal points

of the function (ϕ1, . . . , ϕk) 7→ |S(eiϕ1, . . . , eiϕk)|, we see that (at least for n large enough) the
maximum of this function on the set [0, 2π]k \ Uε(M) is attained somewhere on the boundary
of one of the sets Uε(ϕ̂), ϕ̂ ∈ M. Let ψ ∈ [0, 2π]k \ Uε(M) be one such maximal point. Since
the Expansion (5.11) is valid for ψ, we immediately obtain the upper bound

(

2

π

)k
∣

∣S
(

eiϕ1 , . . . , eiϕk
)∣

∣ ≤
∣

∣S
(

eiψ1 , . . . , eiψk
)∣

∣ = S(1, . . . , 1)n−C1n1/6+O(n−1/4)

as n→ ∞ for some constant C1 > 0. This gives us the bound

∫

· · ·
∫

[0,2π)k\Uε(M)

det
1≤j,m≤k

(

sin(umϕj)
)

S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

e−ivjϕjdϕj

)

= O
(

S(1, . . . , 1)n−C1n1/6
)

as n→ ∞.
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Consequently, we see that, if u,v ∈ L and n ∈ N are chosen such that P+
n (u → v) > 0, then

we have

P+
n (u → v)

= |M|S(1, . . . , 1)n det
1≤j,m≤k







2

π

n−5/12
∫

0

sin(umϑ) sin(vjϑ)e−nΛϑ2/2dϑ






×
(

1 +O(n−1/4)
)

+O
(

S(1, . . . , 1)n−C1n1/6
)

as n→ ∞ in the set {n : P+
n (u → v) > 0}, where |M| denotes the cardinality of the set M.

Let us now have a closer look at the determinant

(5.12) det
1≤j,m≤k







2

π

n−5/12
∫

0

sin(umϑ) sin(vjϑ)e−nΛϑ2/2dϑ






.

We need to determine the asymptotic behaviour of this determinant. This task will be accom-
plished with the help of Lemma 4.5, for which we have to have a closer look at the entries of
the determinant.

The change of variables ϑ 7→ ϑ/
√
nΛ and the simple bound

∫∞

L
e−α

2
dα = O

(

e−L
2
)

gives us

2

π

n−5/12
∫

0

sin(uϑ) sin(vϑ)e−nΛϑ2/2dϑ

=
2

π
√
nΛ

∞
∫

0

sin

(

uϑ√
nΛ

)

sin

(

vϑ√
nΛ

)

e−ϑ
2/2dϑ+O

(

e−Λn1/3
)

as n→ ∞, and Lemma 3.5 yields

2

π
√
nΛ

∞
∫

0

sin

(

uϑ√
nΛ

)

sin

(

vϑ√
nΛ

)

e−ϑ
2/2dϑ =

1√
2πnΛ

(

e−(u−v)2/(2nΛ) − e−(u+v)2/(2nΛ)
)

.

Consequently, our determinant (5.12) satisfies the asymptotics

det
1≤j,m≤k







2

π

n−5/12
∫

0

sin(umϑ) sin(vjϑ)e−nΛϑ2/2dϑ







= (2πnΛ)−k/2 det
1≤j,m≤k

(

A

(

vj√
2nΛ

,
um√
2nΛ

))

+O
(

e−Λn1/3
)
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as n → ∞, where A(x, y) = e−(x−y)2 − e−(x+y)2 . Asymptotics for the determinant on the right
hand side are given in Lemma 4.5, viz.

det
1≤j,m≤k

(

e−(xj−ym)2 − e−(xj+ym)2
)

=

(

k
∏

j=1

xjyj

)(

∏

1≤j<m≤k

(x2
m − x2

j )(y
2
m − y2

j )

)

2k
2+k

∏k
j=1(2j − 1)!

(

1 +O
(

n−1
))

.

This completes the proof of the theorem. �

6. Walks with a free end point

In this section, we are interested in the generating function P+
n (u) for walks starting in u

consisting of n steps that are confined to the region W0. This quantity can be written as the
sum

P+
n (u) =

∑

v∈W0

P+
n (u → v),

where P+
n (u → v) denotes the generating functions for walks from u to v consisting of n steps

that are confined to the region W0. This sum is in fact a finite sum, because there is only a finite
number of points in W0 that are reachable from u in n steps. In order to find a nice expression
for P+

n (u) that is amenable to asymptotic methods, we proceed as follows. First, we substitute
the integral expression from Lemma 2.3 for P+

n (u → v) in the sum above. In a second step, we
interchange summation and integration. This yields a sum that can be evaluated with the help
of a known identity relating Schur functions and odd orthogonal characters (see Lemma 6.1
below). The resulting expression can then be asymptotically evaluated by means of saddle
point techniques and the techniques from Section 4.

Lemma 6.1 (see, e.g., Macdonald [18, I.5]). For any integer c > 0, we have the identity

(6.13)
∑

0≤λ1≤···≤λk≤2c

det
1≤j,m≤k

(

zλm+m−1
j

)

det
1≤j,m≤k

(

zm−1
j

) =

det
1≤j,m≤k

(

z
2c+m−1/2
j − z

−(m−1/2)
j

)

det
1≤j,m≤k

(

z
m−1/2
j − z

−(m−1/2)
j

) .

Remark 6.1. Equation (6.13) is well-known in representation theory as well as in the theory of
Young tableaux, but is usually given in a different form, for which we first need some notation.

For ν = (ν1, . . . , νk), ν1 ≥ · · · ≥ νk ≥ 0, define the Schur function sν(z1, . . . , zk) by

sν(z1, . . . , zk) =

det
1≤j,m≤k

(

zνm+k−m
j

)

det
1≤j,m≤k

(

zk−mj

) ,

and further define for any k-tuple µ = (µ1, . . . , µk) of integers or half-integers the odd orthogonal
character soµ(z

±
1 , . . . , z

±
k , 1) by

soµ(z
±
1 , . . . , z

±
k , 1) =

det
1≤j,m≤k

(

z
µm+k−m+1/2
j − z

−(µm+k−m+1/2)
j

)

det
1≤j,m≤k

(

z
k−m+1/2
j − z

−(k−m+/2)
j

) .
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For details on Schur functions and odd orthogonal characters, we refer the reader to [8]. Com-
binatorial interpretations of Schur functions and odd orthogonal characters can be found in
[18] and [7, 20, 23], respectively.

With the above notation at hand, we may rewrite Equation (6.13) as

∑

2c≥ν1≥···≥ν1≥0

s(ν1,...,νk)(z1, . . . , zk) =

(

k
∏

j=1

zj

)c

so(c,...,c)(z
±
1 , . . . , z

±
k , 1).

Proofs for this identity have been given by, e.g., Gordon [10], Macdonald [18, I.5, Example 16]
and Stembridge [22, Corollary 7.4(a)]. An elementary proof of Lemma 6.1 based on induction
has been given by Bressoud [3, Proof of Lemma 4.5].

For a much more detailed account on this identity, we refer to [16, Proof of Theorem 2].

Theorems 6.1 and 6.2 below also rely on two results which we are going to summarise in the
following lemmas.

Lemma 6.2 (see Krattenthaler [15, Lemma 2]). We have the determinant evaluations

det
1≤j,m≤k

(

zmj − z−mj
)

=

(

k
∏

j=1

zj

)−k(
∏

1≤j<m≤k

(zj − zm)(1 − zjzm)

)(

k
∏

j=1

(z2
j − 1)

)

det
1≤j,m≤k

(

z
m−1/2
j − z

−(m−1/2)
j

)

=

(

k
∏

j=1

zj

)−k+1/2(
∏

1≤j<m≤k

(zj − zm)(1 − zjzm)

)(

k
∏

j=1

(zj − 1)

)

.

Lemma 6.3. For any non-negative integers u1, . . . , um, the function

det
1≤j,m≤k

(

xum
j − x−um

j

)

det
1≤j,m≤k

(

xmj − x−mj
)

is a Laurent polynomial in the complex variables x1, . . . , xk.

We note that the quantity considered in this last lemma is known in the literature as a
symplectic character. For details on symplectic characters we refer to [8].

Theorem 6.1. Let S be a composite step set over the atomic step set A. By L we denote the
Z-lattice spanned by A. The composite step generating function associated with S is denoted
by S(z1, . . . , zk).

If A,S satisfy Assumption 2.1, then for any point u = (u1, . . . , uk) ∈ W0 ∩ L we have the
exact formula

(6.14) P+
n (u) =

(2π)−k

k!

∫

· · ·
∫

|z1|=···=|zk|=ρ

det
1≤j,m≤k

(zmj ) det
1≤j,m≤k

(z−mj )
det

1≤j,m≤k

(

zum
j − z−um

j

)

det
1≤j,m≤k

(

zmj − z−mj
)

× S(z1, . . . , zk)
n

(

k
∏

j=1

(zj + 1)dzj
zj

)

,

where ρ > 0.
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Proof. We start from the exact expression for P+
n (u → v) as given by Corollary 2.1, viz.

P+
n (u → v)

=
(−1)k

(2πi)kk!

∫

· · ·
∫

|z1|=···=|zk|=ρ

det
1≤j,m≤k

(

zum
j − z−um

j

)

S(z1, . . . , zk)
n det

1≤j,m≤k

(

zvm
j

)

(

k
∏

j=1

dzj
zj

)

,

where we choose 0 < ρ < 1. We want to sum this expression over all v ∈ W0. This will be
accomplished in two steps. First, we sum the expression above over all v = (v1, . . . , vk) ∈ W0

such that vk ≤ 2c+ k for some fixed c. Second, we let c tend to infinity.
This yields

∑

0<v1<···<vk≤2c+k

P+
n (u → v)

=
(−1)k

(2πi)kk!

∫

· · ·
∫

|z1|=···=|zk|=ρ

det
1≤j,m≤k

(

zum
j − z−um

j

)

S(z1, . . . , zk)
n

×
(

∑

0<v1<···<vk≤2c+k

det
1≤j,m≤k

(

zvm
j

)

)(

k
∏

j=1

dzj
zj

)

.

Setting λm = vm −m in Lemma 6.1, we obtain

∑

0<v1<···<vk≤2c+k

det
1≤j,m≤k

(

zvm
j

)

= det
1≤j,m≤k

(

zmj
)

det
1≤j,m≤k

(

z
2c+m−1/2
j − z

−(m−1/2)
j

)

det
1≤j,m≤k

(

z
m−1/2
j − z

−(m−1/2)
j

) .

Now, since |zj | = ρ < 1, we can let c tend to infinity, and obtain

∑

0<v1<···<λk

det
1≤j,m≤k

(

zvm
j

)

= det
1≤j,m≤k

(

zmj
)

det
1≤j,m≤k

(

−z−(m−1/2)
j

)

det
1≤j,m≤k

(

z
m−1/2
j − z

−(m−1/2)
j

)

= (−1)k

(

k
∏

j=1

zj

)1/2 det
1≤j,m≤k

(

zmj
)

det
1≤j,m≤k

(

z−mj
)

det
1≤j,m≤k

(

z
m−1/2
j − z

−(m−1/2)
j

) .

Finally, we deduce from Lemma 6.2 that

det
1≤j,m≤k

(

z
m−1/2
j − z

−(m−1/2)
j

)

=

(

k
∏

j=1

√
zj

zj + 1

)

det
1≤j,m≤k

(

zmj − z−mj
)

,

which proves Equation (6.14) for 0 < ρ < 1.
By Lemma 6.3, the factor

det
1≤j,m≤k

(

zum
j − z−um

j

)

det
1≤j,m≤k

(

zmj − z−mj
)
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is a Laurent polynomial. Hence, by Cauchy’s theorem, the value of the integral (6.14) for
1 ≤ ρ <∞ is the same as for 0 < ρ < 1. This proves the theorem. �

Theorem 6.2. Let S be a composite step set over the atomic step set A. By L we denote the
Z-lattice spanned by A. The composite step generating function associated with S is denoted
by S(z1, . . . , zk).

If A,S satisfy Assumption 2.1 and S(1, . . . , 1) > 1, then we have for any point u =
(u1, . . . , uk) ∈ W0 ∩ L the asymptotic formula

(6.15) P+
n (u) = S(1, . . . , 1)n

(

2

π

)k/2(
S(1, . . . , 1)

nS ′′(1, . . . , 1)

)k2/2

×
(

k
∏

j=1

uj(j − 1)!

(2j − 1)!

)(

∏

1≤j<m≤k

(u2
m − u2

j)

)

(

1 +O
(

n−1/4
))

as n→ ∞. Here, S ′′(1, . . . , 1) denotes the second derivative of S(z1, . . . , zk) with respect to any
of the zj.

Remark 6.2. For the special case S ∼= A (i.e., S and A are isomorphic), the order of the
asymptotic growth of P+

n (u) has already been determined by Grabiner [11, Theorem 1]. There,
Grabiner gives the asymptotic growth order of the number of walks with a free end point in a
Weyl chamber for any of the classical Weyl groups as the number of steps tends to infinity, but
his method does not allow to determine the coefficient of the asymptotically dominant term.

Proof of Theorem 6.2. We prove the claim with the help of a saddle point approach applied to
Equation (6.14). Choosing ρ = 1 in (6.14), substituting zj = eiϕj , j = 1, 2, . . . , k, and applying
Vandermonde’s determinant evaluation twice we obtain

(6.16) P+
n (u) =

1

(2π)kk!

π
∫

−π

. . .

π
∫

−π

(

∏

1≤j<m≤k

∣

∣eiϕm − eiϕj
∣

∣

2

) det
1≤j,m≤k

(sin(umϕj))

det
1≤j,m≤k

(sin(mϕj))

× S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

(

1 + eiϕj
)

dϕj

)

.

For large n, the absolute value of the integral above is mainly governed by the factor
S(eiϕ1 , . . . , eiϕk)n. We therefore expect that the main contribution to the integral on the
right hand side above comes from small neighbourhoods around the maxima of the function
(ϕ1, . . . , ϕk) 7→ |S(eiϕ1, . . . , eiϕk)| on the torus |z1| = · · · = |zk| = 1, and that this dominant
part can again be determined using a saddle point approach.

In Lemma 3.3, we have shown that the set of maxima of the function (ϕ1, . . . , ϕk) 7→
|S(eiϕ1, . . . , eiϕk)| on the torus |z1| = · · · = |zk| = 1 is a subset of the set {0, π}k, and (0, . . . , 0)
is always a maximum. It will turn out that the maxima different from (0, . . . , 0) do not con-
tribute to the leading asymptotic term of P+

n (u). Hence, the asymptotic behaviour of P+
n (u)

is captured by a small neighbourhood around (0, . . . , 0). The reason for this, as we will see

below, is the factor
∏k

j=1(1 + eiϕj ) of the integrand.
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We proceed with a precise statement of our claim: the integral in (6.16) above is asymptot-
ically equal to

(6.17)

ε
∫

−ε

. . .

ε
∫

−ε

(

∏

1≤j<m≤k

∣

∣eiϕm − eiϕj
∣

∣

2

) det
1≤j,m≤k

(sin(umϕj))

det
1≤j,m≤k

(sin(mϕj))

× S(eiϕ1 , . . . , eiϕk)n

(

k
∏

j=1

(1 + eiϕj )dϕj

)

,

as n→ ∞, where we choose ε = ε(n) = n−5/12.
We are going to prove this claim by means of a saddle point approach: (1) Determine an

asymptotically equivalent expression for (6.17) that is more convenient to work with. (2) Find
a bound for the remaining part of the integral in (6.16).

Let us start with task (1). We have already seen in the proof of Theorem 5.1 (see Equa-
tion (5.11)) that for |ϕj| ≤ n−5/12, j = 1, 2, . . . , k, we have the expansion

S
(

eiϕ1 , . . . , eiϕk
)

= S(1, . . . , 1) exp

(

−Λ

k
∑

j=1

ϕ2
j

2

)

(

1 +O
(

n−5/4
))

as n→ ∞, where Λ = S′′(1,...,1)
S(1,...,1)

> 0 and S ′′(z1, . . . , zk) = ∂2

∂z21
S(z1, . . . , zk). Further, we have the

expansions

∏

1≤j<m≤k

∣

∣eiϕm − eiϕj
∣

∣

2
=

(

∏

1≤j<m≤k

(ϕm − ϕj)
2

)

+O
(

n−(k
2)−5/12

)

and
k
∏

j=1

(

1 + eiϕj
)

= 2k +O
(

n−5/12
)

as n→ ∞.
Finally, Lemma 4.6 gives us

det
1≤j,m≤k

(sin(umϕj))

det
1≤j,m≤k

(sin(mϕj))
=

(

∏

1≤j<m≤k

u2
m − u2

j

m2 − j2

)(

k
∏

j=1

uj
j

)

(

1 +O
(

n−5/6
))

as n→ ∞. Therefore, the integral (6.17) is asymptotically equal to

S(1, . . . , 1)n
(

1 +O
(

n−1/4
))

(

k
∏

j=1

2uj
(2j − 1)!

)(

∏

1≤j<m≤k

(u2
m − u2

j)

)

×
ε
∫

−ε

. . .

ε
∫

−ε

(

∏

1≤j<m≤k

(ϕm − ϕj)
2

)

exp

(

−nΛ
∑ ϕ2

j

2

)

(

k
∏

j=1

dϕj

)
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as n→ ∞. Now, the substitution ϕj 7→ ϕj/
√

2/(nΛ) transforms this last integral into

(

2

nΛ

)k2/2
∞
∫

−∞

. . .

∞
∫

−∞

(

∏

1≤j<m≤k

(ϕm − ϕj)
2

)

e−
Pk

j=1 ϕ
2
j

k
∏

j=1

dϕj +O
(

e−Λn1/6/2
)

.

This resulting integral is a Selberg integral, and it is well known (see, e.g., [19, p. 321]), that

∞
∫

−∞

. . .

∞
∫

−∞

(

∏

1≤j<m≤k

(ϕm − ϕj)
2

)

e−
Pk

j=1 ϕ
2
j

k
∏

j=1

dϕj =
(2π)k/2

2k2/2

k
∏

j=1

j!.

This shows that the integral (6.17) is asymptotically equal to

S(1, . . . , 1)n
(

1 +O
(

n−1/4
))

(

2

nΛ

)k2/2
(2π)k/2

2k2/2

(

k
∏

j=1

2ujj!

(2j − 1)!

)(

∏

1≤j<m≤k

(u2
m − u2

j)

)

,

which completes task (1).
We now turn towards task (2) of the saddle point approach: finding a bound for the re-

maining part of the integral. For the sake of convenience, we adopt the notation of the proof
of Theorem 5.1: by M, we denote the set of maximal points of the function (ϕ1, . . . , ϕk) 7→
|S(eiϕ1, . . . , eiϕk)|, and we define the sets

Uε(ϕ̂) =
{

ϕ ∈ R
k : |ϕ̂− ϕ|∞ < ε

}

, ϕ̂ = (ϕ̂1, . . . , ϕ̂k) ∈ M,

and U c
ε (ϕ̂) = [0, 2π) \ Uε(ϕ̂) as well as Uε(M) =

⋃

ϕ̂∈M Uε(ϕ̂).
Analogous to the reasoning in the proof of Theorem 5.1, we see that

∫

· · ·
∫

Uc
ε (M)

(

∏

1≤j<m≤k

∣

∣eiϕm − eiϕj
∣

∣

2

) det
1≤j,m≤k

(sin(umϕj))

det
1≤j,m≤k

(sin(mϕj))
S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

(

1 + eiϕj
)

dϕj

)

is O
(

S(1, . . . , 1)n−C1n1/6
)

for some constant C1 > 0 as n→ ∞.

It remains to establish bounds for the (finitely many) integrals

∫

· · ·
∫

Uε(ϕ̂)

(

∏

1≤j<m≤k

∣

∣eiϕm − eiϕj
∣

∣

2

) det
1≤j,m≤k

(sin(umϕj))

det
1≤j,m≤k

(sin(mϕj))
S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

(

1 + eiϕj
)

dϕj

)

,

where ϕ̂ ranges over M\ {(0, . . . , 0)}. If (ϕ̂1, . . . , ϕ̂k) 6= (0, . . . , 0), ϕ̂r = π, say, then we have
1 + ei(ϕ̂r+ϑr) = O(ϑr), and consequently,

k
∏

j=1

(

1 + ei(ϕ̂j+ϑj)
)

= O
(

n−5/12
)
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for |(ϑ1, . . . , ϑk)|∞ < ε = n−5/12 as n→ ∞. Hence, we obtain

∫

· · ·
∫

Uε(ϕ̂)

(

∏

1≤j<m≤k

∣

∣eiϕm − eiϕj
∣

∣

2

) det
1≤j,m≤k

(sin(umϕj))

det
1≤j,m≤k

(sin(mϕj))
S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

(

1 + eiϕj
)

dϕj

)

= O
(

n−5/12−k2/2S(1, . . . , 1)n
)

for ϕ̂ = (ϕ̂1, . . . , ϕ̂k) ∈ M \ {(0, . . . , 0)} as n→ ∞. This finally gives us the bound

∫

· · ·
∫

Uc
ε (0)

(

∏

1≤j<m≤k

∣

∣eiϕm − eiϕj
∣

∣

2

) det
1≤j,m≤k

(sin(umϕj))

det
1≤j,m≤k

(sin(mϕj))
S
(

eiϕ1 , . . . , eiϕk
)n

(

k
∏

j=1

(

1 + eiϕj
)

dϕj

)

= O
(

n−5/12−k2/2S(1, . . . , 1)n
)

as n→ ∞, and completes the proof of the theorem. �

7. Applications

The rest of this manuscript is entirely devoted to applications of Theorem 5.1 and Theo-
rem 6.2.

Special cases of some of the results presented in the following subsections have already been
derived earlier by other authors. Also, we can give precise answers to some questions to which
only partial results were known. In these cases, we provide the reader with pointers to the
original literature. Some other results (in particular, Corollaries 7.1, 7.3, 7.5 and 7.6) in this
section seem, to the author’s best knowledge, to be new.

7.1. Lock step model of vicious walkers with wall restriction. In general, the vicious
walkers model is concerned with k random walkers on a d-dimensional lattice. In the lock step
model, at each time step all of the walkers move one step in any of the allowed directions, such
that at no time any two random walkers share the same lattice point. This model was defined
by Fisher [6] as a model for wetting and melting processes.

In this subsection, we consider a two dimensional lock step model of vicious walkers with wall
restriction, which we briefly describe now. The only allowed steps are (1, 1) and (1,−1), and
the lattice is the Z-lattice spanned by these two vectors. Fix two vectors u,v ∈ Zk such that
0 < u1 < u2 < · · · < uk and ui ≡ uj mod 2 for 1 ≤ i < j ≤ k, and analogously for v. For
1 ≤ j ≤ k, the j-th walker starts at (0, uj − 1) and, after n steps, ends at the point (n, vj − 1)
in a way such that at no time the walker moves below the horizontal axis (“the wall”) or shares
a lattice point with another walker.

Certain configurations of the two dimensional vicious walkers model, such as watermelons
and stars consisting of k vicious walkers with or without the presence of an impenetrable
walls, have been fully analysed by Guttmann et al. [13] and Krattenthaler et al. [16, 17]. In
their papers, they prove exact as well as asymptotic results for the total number of these
configurations.

The results in this subsection include asymptotics for the total number of vicious walkers
configurations with an arbitrary (but fixed) starting point having either an arbitrary (but fixed)
end point or a free end point (see Corollary 7.1 and Corollary 7.3, respectively). Special cases
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of these asymptotics have been derived earlier by Krattenthaler et al. [16, 17] and Rubey [21].
For further links to the literature concerning this model, we refer to the references given in the
papers mentioned before.

The two dimensional lock step model of vicious walkers as described above can easily be
reformulated as a model of lattice paths in a Weyl chamber of type B as follows: at each
time, the positions of the walkers are encoded by a k-dimensional vector, where the j-th
coordinate records the current second coordinate (the height) of the j-th walker. Clearly, if
(c1, . . . , ck) ∈ Zk is such a vector encoding the heights of our walkers at a certain point in time,
then we necessarily have 0 ≤ c1 < c2 < · · · < ck and ci ≡ cj mod 2 for 1 ≤ i < j ≤ k. Hence,
each realisation of the lock step model with k vicious walkers, where the j-th walker starts at
(0, uj − 1) and ends at (n, vj − 1), naturally corresponds to a lattice path in

{

(x1, x2, . . . , xk) ∈ Z
k : 0 < x1 < · · · < xk and xi ≡ xj mod 2 for 1 ≤ i < j ≤ k

}

that starts at u = (u1, . . . , uk) and ends at v = (v1, . . . , vk). (Note the shift by +1.) The
atomic step set is given by

A =

{

k
∑

j=1

εje
(j) : ε1, . . . , εk ∈ {−1,+1}

}

,

and the composite step set S is set of all sequences of length one of elements in A. This
means, that in the present case there is only a formal difference between the atomic steps and
composite steps. Both sets, A and S satisfy Assumption 2.1 (the conditions of Lemma 2.1).
Consequently, asymptotics for this model can be obtained from Theorem 5.1 and Theorem 6.2.

The composite step generating function associated with S is

S(z1, . . . , zk) =

k
∏

j=1

(

zj +
1

zj

)

,

and the set M ⊆ {0, π}k of points maximising the function (ϕ1, . . . , ϕk) 7→ |S(eiϕ1, . . . , eiϕk)|
is given by M = {0, π}k. Hence, we have |M| = 2k, and after short calculations we find
S(1, . . . , 1) = S ′′(1, . . . , 1) = 2k. As a consequence of Theorem 5.1, we obtain the following
result.

Corollary 7.1. The number of vicious walkers of length n with k walkers that start at (0, u1 −
1), . . . , (0, uk − 1) and end at (n, v1 − 1), . . . , (n, vk − 1) (we assume that u1 + v1 ≡ n mod 2)
is asymptotically equal to

2nk+3k/2π−k/2n−k2−k/2

(

∏

1≤j<m≤k

(v2
m − v2

j )(u
2
m − u2

j)

)(

k
∏

j=1

vjuj

)

(

∏k
j=1(2j − 1)!

)

as n→ ∞.

The special case uj = 2aj + 1, j = 1, . . . , k, of the corollary above implicitly appears in
Rubey [21, Proof of Theorem 4.1, Chapter 2]. Other special instances of Corollary 7.1 can be
found in [16, Theorem 15]. For example, let us consider the so-called k-watermelon configura-
tion. In this case, the walkers start at (0, 0), (0, 2), . . . , (0, 2k − 2) and, after 2n steps, end at
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(2n, 0), (2n, 2), . . . , (2n, 2k−2). Hence, setting uj = vj = 2j−1, 1 ≤ j ≤ k, as well as replacing
n with 2n in the asymptotics above, we obtain the following corollary.

Corollary 7.2 (see Krattenthaler et al. [16, Theorem 15]). The number of k-watermelon con-
figurations of length 2n is asymptotically equal to

4kn2k
2−kπ−k/2n−k2−k/2

(

k
∏

j=1

(2j − 1)!

)

, n→ ∞.

Asymptotics for the number of walkers with a free end point can be derived from Theorem 6.2.

Corollary 7.3. The number of vicious walkers of length n that start at (0, u1−1), . . . , (0, uk−1),
0 < u1 < · · · < uk, uj ≡ uℓ mod 2, is asymptotically equal to

2nk+k/2π−k/2n−k2/2

(

k
∏

j=1

uj(j − 1)!

(2j − 1)!

)(

∏

1≤j<m≤k

(u2
m − u2

j)

)

, n→ ∞.

Setting uj = 2aj + 1, j = 1, . . . , k in the corollary above, we obtain as a special case [21,
Theorem 4.1, Chapter 2].

The set of k-star configurations consists of all possible vicious walks with the starting points
(0, 0), (0, 2), . . . , (0, 2k − 2). Hence, setting uj = 2j − 1, j = 1, . . . , k, in the corollary above,
we obtain the following result.

Corollary 7.4 (see Krattenthaler et al. [16, Theorem 8]). The number of k-star configurations
of length n is asymptotically equal to

2nk+k
2−k/2π−k/2n−k2/2

k
∏

j=1

(j − 1)!, n→ ∞.

7.2. Random turns model of vicious walkers with wall restriction. This model is quite
similar to the lock step model of vicious walkers. The difference here is, that at each time step
exactly one walker is allowed to move (all the other walkers have to stay in place).

We consider the random turns model with k vicious walkers. Again, at no time any two of
the walkers may share a lattice point, and none of them is allowed to go below the horizontal
axis. Now, fix two points u,v ∈ Zk ∩ W0, and assume that for 1 ≤ j ≤ k, the j-th walker
starts at (0, uj − 1) and, after n steps, ends at (n, vj − 1). In an analogous manner as in the
previous subsection, we interpret this as a lattice walk of length n in Zk ∩W0 that starts at u

and ends at v. Here, the underlying lattice is given by L = Zk and the atomic step set is seen
to be

S =
{

±e(1),±e(2), . . . ,±e(k)
}

.

The composite step set is, as in the last subsection, the set of all sequences of length one of
elements in A. Since both sets, S and A, satisfy Assumption 2.1, we may obtain asymptotics
by means of Theorem 5.1 and Theorem 6.2.

From the description of S above it is seen that the associated composite step generating
function is given by

S(z1, . . . , zk) = A(z1, . . . , zk) =

k
∑

j=1

(

zj +
1

zj

)

.
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Short calculations give us S(1, . . . , 1) = 2k and S ′′(1, . . . , 1) = 2. Furthermore, it is easily
checked that the set of maximal points is given by M = {(0, . . . , 0), (π, . . . , π)}, which implies
|M| = 2. Consequently, according to Theorem 5.1, we have the following result.

Corollary 7.5. The number of k vicious walkers in the random turns model, where the j-th
walker starts at (0, uj − 1) and, after n steps ends at (n, vj − 1), is asymptotically equal to

2(2k)n
(

2

π

)k/2(
k

n

)k2+k/2

(

∏

1≤j<m≤k

(v2
m − v2

j )(u
2
m − u2

j)

)(

k
∏

j=1

vjuj

)

(

∏k
j=1(2j − 1)!

) , n→ ∞.

Asymptotics for the number of vicious walks starting in (0, uj − 1), j = 1, . . . , k, with a free
end point can be determined with the help of Theorem 6.2.

Corollary 7.6. The number of k-vicious walkers in the random turns model, where the j-th
walker starts at (0, uj − 1), of length n is asymptotically equal to

(2k)n
(

2

π

)k/2(
k

n

)k2
(

k
∏

j=1

uj(j − 1)!

(2j − 1)!

)(

∏

1≤j<m≤k

(u2
m − u2

j)

)

, n→ ∞.

7.3. k-non-crossing tangled diagrams with isolated points. Tangled diagrams are cer-
tain special embeddings of graphs over the vertex set {1, 2, . . . , n} and vertex degrees of at
most two. More precisely, the vertices are arranged in increasing order on a horizontal line,
and all edges are drawn above this horizontal line with a particular notion of crossings and
nestings. Instead of giving an in-depth presentation of tangled diagrams we refer to the papers
[4, 5] for details, and quote the following crucial observation by Chen et al. [5, Observation 2,
page 3]:

“The number of k-non-crossing tangled diagrams over {1, 2, . . . , n} (allowing
isolated points), equals the number of simple lattice walks in x1 ≥ x2 ≥ · · · ≥
xk−1 ≥ 0, from the origin back to the origin, taking n days, where at each
day the walker can either feel lazy and stay in place, or make one unit step in
any (legal) direction, or else feel energetic and make any two consecutive steps
(chosen randomly).”

In order to simplify the presentation, we replace k with k + 1, and determine asymptotics
for the number of (k + 1)-non-crossing tangled diagrams. A simple change of the lattice path
description given above shows the applicability of Theorem 5.1 to this problem. We proceed
with a precise description. Consider a typical walk of the type described in the quotation above,

and let
(

(c
(m)
1 , . . . , c

(m)
k )

)

m=0,...,n
be the sequence of lattice points visited during the walk. Then,

the sequence
(

(c
(m)
k + 1, c

(m)
k−1 + 2, . . . , c

(m)
1 + k)

)

m=0,...,n
is sequence of lattice points visited by a

walker starting and ending in (1, 2, . . . , k) that is confined to the region 0 < x1 < x2 < · · · < xk
with the same step set as described in the quotation above. This clearly defines a bijection
between walks of the type described in the quotation above and walks confined to the region
0 < x1 < · · · < xk starting and ending in u = (1, 2, . . . , k) with the same set of steps.

As a consequence, we see that the number of (k + 1)-non-crossing tangled diagrams with
isolated points on the set {1, 2, . . . , n} is equal to the number of walks starting and ending in
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u that are confined to the region 0 < x1 < · · · < xk and consist of composite steps from the
set

S = {0} ∪ A ∪ A×A,
where the atomic step set A is given by

A =
{

±e(1),±e(2), . . . ,±e(k)
}

.

The step sets A and S are seen to satisfy the assumptions of Theorem 5.1, and, therefore, may
be used to obtain asymptotics for P+

n (u → u).
According to the definition of the composite step set S, the composite step generating func-

tion S(z1, . . . , zk) is given by

S(z1, . . . , zk) = 1 +

(

k
∑

j=1

zj +
1

zj

)

+

(

k
∑

j=1

zj +
1

zj

)2

.

Short calculations show that S(1, . . . , 1) = 1 + 2k + 4k2 and S ′′(1, . . . , 1) = 2 + 8k, and it is
easily seen that (0, . . . , 0) is the only point of maximal modulus of S(z1, . . . , zk) on the torus
|z1| = · · · = |zk| = 1. Consequently, Theorem 5.1 gives us asymptotics for the number of
(k + 1)-non-crossing tangled diagrams.

Corollary 7.7. The total number of (k + 1)-non-crossing tangled diagrams is asymptotically
equal to

P+
n (u → u) ∼ (1 + 2k + 4k2)n

(

2

π

)k/2(
1 + 2k + 4k2

n(2 + 8k)

)k2+k/2
(

k
∏

j=1

(2j − 1)!

)

, n→ ∞.

7.4. k-non-crossing tangled diagrams without isolated points. Consider a tangled di-
agram as defined in the previous example. A vertex of this tangled diagram is called isolated,
if and only if its vertex degree is zero, that is, the vertex is isolated in the graph theoretical
sense.

Again, for the sake of convenience, we shift k by one, and consider (k + 1)-non-crossing
tangled diagrams without isolated points. In an analogous manner as in the previous section,
these diagrams can be bijectively mapped onto a set of lattice paths (see [5, Observation 1,
p.3]) in the region 0 < x1 < · · · < xk that start and end in u = (1, 2, . . . , k). The only difference
to the situation described in the last example is the fact, that now the walker is not allowed
to stay in place. Hence, the composite step set S is now given by

S = A ∪A×A.
The atomic step set A remains unchanged.

According to the definition of S, the composite step generating function is now given by

S(z1, . . . , zk) =

(

k
∑

j=1

zj +
1

zj

)

+

(

k
∑

j=1

zj +
1

zj

)2

,

so that S(1, . . . , 1) = 2k + 4k2 and S ′′(1, . . . , 1) = 2 + 8k, as well as M = {(0, . . . , 0)}.
Asymptotics for the number of (k + 1)-non-crossing tangled diagrams without isolated points
can now easily be determined with the help of Theorem 5.1.
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Corollary 7.8. The total number of (k + 1)-non-crossing tangled diagrams without isolated
points is asymptotically equal to

P+
n (u → u) ∼ (2k + 4k2)n

(

2

π

)k/2(
2k + 4k2

n(2 + 8k)

)k2+k/2
(

k
∏

j=1

(2j − 1)!

)

, n→ ∞.
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THE HEIGHT OF WATERMELONS WITH WALL

THOMAS FEIERL†

Abstract. We derive asymptotics for the moments as well as the weak limit of the height
distribution of watermelons with p branches with wall. This generalises a famous result of
de Bruijn, Knuth and Rice [4] on the average height of planted plane trees, and results by
Fulmek [9] and Katori et al. [15] on the expected value, respectively higher moments, of the
height distribution of watermelons with two branches.

The asymptotics for the moments depend on the analytic behaviour of certain multidimen-
sional Dirichlet series. In order to obtain this information we prove a reciprocity relation
satisfied by the derivatives of one of Jacobi’s theta functions, which generalises the well known
reciprocity law for Jacobi’s theta functions.

1. Introduction

The model of vicious walkers was introduced by Fisher [7]. He gave a number of applications
in physics, such as modelling wetting and melting processes. In general, the model of vicious
walkers is concerned with p random walkers on a d-dimensional lattice. In the lock step model,
at each time step all of the walkers move one step in any of the allowed directions, such that
at no time any two random walkers share the same lattice point.

A configuration that attracted much interest amongst mathematical physicists and combina-
torialists is the watermelon configuration, which is a special case of the two dimensional vicious
walker model. See Figure 1 for an example of a watermelon, where, for the moment, the broken
line labelled 13 should be ignored. This configuration can be studied with or without presence
of an impenetrable wall, and with or without deviation. We proceed with a description of
p-watermelons of length 2n with wall (without deviation), which is the model underlying this
paper. Consider the lattice in R2 spanned by the two vectors (1, 1) and (1,−1). At time zero
the walkers are located at the points (0, 0), (0, 2), . . . , (0, 2p − 2). The allowed directions for
the walkers are given by the vectors (1, 1) and (1,−1). Further, the horizontal line y = 0
is an impenetrable wall, that is, no walker is allowed to cross the x-axis. The walkers may
now simultaneously move one step in one of the allowed directions, but such that at no time
two walkers share the same place. Additionally we demand that after 2n steps all walkers are
located at (2n, 0), (2n, 2), . . . , (2n, 2p − 2).

Tracing the paths of the vicious walkers through the lattice we obtain a set of non-intersecting
lattice paths with steps in the set {(1, 1), (1,−1)}. In the case of watermelons without devia-
tion, the i-th lattice path, also called i-th branch, starts at (0, 2i) and ends at (2n, 2i). Further,
it is seen that the bottom most path is a Dyck path, so that the 1-watermelons with wall cor-
respond to Dyck paths.

Date: October 27, 2009.
† Research supported by the Austrian Science Foundation FWF, grant S9607-N13.
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Figure 1. Example of a 4-watermelon of length 18 with wall and height 13

Since Fisher’s introduction [7] of the vicious walkers model numerous papers on this subject
have appeared. While early results mostly analyse vicious walkers in a continuum limit, there
are nowadays many results for certain configurations directly based on the lattice path descrip-
tion above. For example, Guttmann, Owczarek and Viennot [13] related the star and water-
melon configurations to the theory of Young tableaux and integer partitions, and re-derived
results for the total number of stars and watermelons without wall. Later, Krattenthaler,
Guttmann and Viennot [18] proved new, exact as well as asymptotic, results for the number of
certain vicious walkers with wall. Recently, Krattenthaler [17] analysed the number of contacts
of the bottom most walker in the case of watermelons with wall, continuing earlier work by
Brak, Essam and Owczarek [22].

In 2003, Bonichon and Mosbah [2] presented an algorithm for uniform random generation
of watermelons, which is based on the counting results by Krattenthaler, Guttmann and Vi-
ennot [18] (see Theorems 1 and 6 therein). Amongst other things they used their generator
for obtaining experimental results on the height of watermelons. Here, the height of a water-
melon is defined as the smallest number h such that the upper most branch does not cross the
horizontal line y = h. See Figure 1 for an example with four branches and height 13.

As already mentioned, watermelons with one branch are simply Dyck paths. It is well-known
that these are in bijection with planted plane trees, and that under this bijection the height of
a Dyck path corresponds to the height of the corresponding tree. The asymptotic behaviour of
the average height of planted plane trees was determined by de Bruijn, Knuth and Rice [4], that
is, they solved the average height problem for 1-watermelons with wall. Recently, Fulmek [9]
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extended their reasoning and determined the asymptotic behaviour of the average height of 2-
watermelons with wall. Katori, Izumi and Kobayashi [15] considered the diffusion scaling limit
of 2-watermelons, and obtained the leading asymptotic term for all moments of the height
distribution as well as a central limit theorem. The limiting process of p-watermelons has
been investigated by Gillet [12]. He succeeded in proving the convergence of (properly scaled)
watermelons to certain limiting processes, which he characterised by stochastic differential
equations.

In this paper we rigorously analyse the height of p-watermelons of length 2n with wall, and
obtain asymptotics for all moments of the height distribution as n → ∞ as well as a central limit

theorem. In particular, we show that the s-th moment behaves like sκ
(p)
s ns/2−3

(

s
2

)

κ
(p)
s−1n

(s−1)/2+

O(ns/2−1 +np/2−p2
log n) as n → ∞ for some explicit numbers κ

(p)
s , see Theorem 1 at the end of

Section 3. The nature of our result explains the somewhat inconclusive predictions in [2]. To
be more specific, Bonichon and Mosbah [2] predicted, based on numerical experiments, that

κ
(p)
1 ≈

√

(1.67p − 0.06). Although it does not seem unlikely that the constant κ
(p)
1 , as given in

Theorem 1, behaves like
√

p as p → ∞, a rigorous proof is still lacking and work in progress.
The proof of our result can be summarised as follows. As a first step, we represent the total

number of watermelons and the number with height restriction in terms of certain determi-
nants (see Lemma 4), the entries being sums of binomial coefficients. From these determinants
we then obtain an exact expression for the s-th moment of the height distribution. After
normalisation we may apply Stirling’s formula and obtain an expression that can be asymptot-
ically evaluated using Mellin transform techniques (see Lemma 7). This kind of approach goes
back to de Bruijn, Knuth and Rice [4]. Fulmek [9] adopted their approach for the asymptotic
analysis of 2-watermelons. The new objects which arise here (and, in general, when extend-
ing this approach to the asymptotic analysis of p-watermelons) are certain multidimensional
Dirichlet series (instead of Riemann’s zeta function as in [4]). An additional complication
with which one has to cope is the increasing number of cancellations of leading asymptotic
terms that one encounters in the calculations while the number p of branches becomes bigger.
Thus, while a brute force approach will eventually produce a result for any fixed p (this is,
in essence, what Fulmek [9] and Katori et al. [15] do for p = 2), the main difficulty that we
have to overcome in order to arrive at an asymptotic result for arbitrary p is to trace the
roots of these cancellations. We accomplish this with the help of Lemma 8. It allows us to
exactly pin down which cancellations take place and to extract explicit formulas for the first
two terms which survive the cancellations. The multidimensional Dirichlet series which arise
in our analysis are the subject of the subsequent section. What we need is information on
their poles. This information is obtained with the help of a relation that generalises the reci-
procity law for Jacobi’s theta functions (see Equation (3)), that is proved in Proposition 1. We
note that our definition of these Dirichlet series differs slightly from Fulmek’s definition, which
makes the analysis somewhat easier. These Dirichlet series that we encounter are related to
so-called twisted multivariate zeta functions, studied, e.g., by de Crisenoy [5] and de Crisenoy
and Essouabri [6]. However, their results cannot be used since they do not apply to our multi-
dimensional Dirichlet series, which are explicitly excluded in these two papers. They can also
be found within a class of multidimensional Dirichlet series studied by Cassou-Noguès [3]. In
principle we could apply her results to our Dirichlet series and would obtain information on
the poles of the analytic continuation of these series. But this would be cumbersome, and in
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our case it is more straightforward to obtain this information using the generalised reciprocity
relation (see end of Section 2), which we are going to need in the proof of Theorem 1 anyway.

Small modifications immediately yield analogous results for p-watermelons with a horizontal
wall positioned at some negative integer. Also, the analysis of the height distribution of
watermelons without wall can be accomplished in a completely analogous fashion.

The paper is organised as follows. The second section contains information on the analytic
character of certain multidimensional Dirichlet series that is crucial for the proof of our main
result. The third section contains the main result, see Theorem 1 at the end of that section.
The techniques applied in that section are then used to obtain a central limit law, see Theorem 2
at the end of this paper.

We close this section by fixing some notation. Vectors are denoted using bold face letters
and are assumed to be p-dimensional row vectors. Further, we make use of the 1-norm and
the 2-norm of vectors, viz. |w|1 = w0 + · · ·+wp−1 and |w|22 = w2

0 + · · ·w2
p−1. Finally, we define

vw = vw0
0 . . . v

wp−1

p−1 . The relation v ≥ w is to be understood component-wise.

2. Some multidimensional Dirichlet series

In this section we study the multidimensional Dirichlet series

Za(z) =
∑

m 6=0

ma0
0 . . . m

ap−1

p−1

(m2
0 + · · · + m2

p−1)
z

=
∑

m 6=0

ma

|m|2z
2

,

where m = (m0, . . . , mp−1) ranges over Zp \ {0}, for a = (a0, . . . , ap−1) ∈ Zp, a ≥ 0. Our
goal is to establish the analytic continuation of Za(z) to a meromorphic function and the
determination of its poles. Also, we need information on the growth of Za(z) as |z| → ∞ in
some vertical strip.

It follows from the definition that Za0,...,ap−1(z) = Zaσ(0),...,aσ(p−1)
(z) for every permutation

σ ∈ Sp. If p = 1 then

Za(z) = 2 [a even] ζ(2z − a),

where [Statement] is Iverson’s notation, that is

[Statement] =

{

1 if ’Statement’ is true,

0 otherwise.

If ap−1 is odd, the definition shows that Za0,...,ap−2,ap−1(z) = 0. Consequently, we may assume
that the parameters a0, . . . , ap−1 are even.

The analytic continuation of Z2a(z) is accomplished very much in the spirit of one of Rie-
mann’s methods for ζ(z) (see, e.g., [25, Section 2.6]). In fact we have

(2πi)2|a|1

πz
Z2a(z)Γ(z) =

∫ ∞

0

tz−1

((

p−1
∏

j=0

ϑ2aj
(t)

)

− [a = 0]

)

dt,(1)

where ϑa(t) = θa(0, it) and where

θa(x, y) =
∂a

∂xa
θ(x, y) =

∞
∑

n=−∞

(2πin)ae2πi(xn+n2y/2), ℑ(y) > 0,
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is the a-th derivative with respect to x of θ(x, y) =
∑

n e2πi(xn+n2y/2), a variant of one of
Jacobi’s theta functions. Here, Equation (1) is obtained by substitution of Euler’s integral for
the gamma function, viz. Γ(z) =

∫∞

0
tz−1e−tdt, and the series definition for Z2a on the left

hand side of the equation above followed by interchanging summation and integration as well
as a change of variables in the integral.

We are now going to extract information on the poles of Z2a(z) from the integral (1). This
task is accomplished with the help of a generalised reciprocity relation (see Corollary 1), which
is a consequence of the following two results, stated in Lemma 1 and Proposition 1. This
relation generalises Jacobi’s reciprocity law for θ(x, y), and is proved following along the lines
of the proof of the reciprocity law in [19, Section 2.3].

Lemma 1. Let (fa(x, y))a≥0 be a sequence of functions which are entire with respect to x for
every fixed y with ℑ(y) > 0. If (fa(x, y))a≥0 satisfies the conditions

(i) fa(x + 1, y) = fa(x, y)

(ii) fa(x − y, y) = e2πi(x−y/2)
a
∑

k=0

(

a
k

)

fk(x, y)

then we have

(2) fa(x, y) =
a
∑

k=0

(

a

k

)

c
(k)
0 (y)

(2πi)a−k
θa−k(x, y),

where

c
(k)
0 (y) =

∫ 1

0

fk(x, y)dx

is the constant term in the Fourier expansion of fk(x, y) as a function in x.

Proof. Condition (i) implies the convergent Fourier expansion (fa(x, y) being understood as a
function of x)

fa(x, y) =
∑

n

c(a)
n (y)e2πi(xn+n2y/2)

for a ≥ 0 which shows that

e−2πi(x−y/2)fa(x − y, y) =
∑

n

c
(a)
n+1(y)e2πi(xn+n2y/2).

Now, this last equation and Condition (ii) together imply the recursion

c
(a)
n+1(y) =

a
∑

k=0

(

a

k

)

c(k)
n (y),

which yields

c(a)
n (y) =

a
∑

k=0

(

a

k

)

na−kc
(k)
0 (y).

This proves the lemma. �
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Proposition 1. We have

(3)

⌊a
2
⌋

∑

k=0

(

a

2k

)

(2k)!

k!
πk
(y

i

)a−k+1/2

θa−2k(x, y)

= e−iπx2/y

a
∑

k=0

(

a

k

)

(−x)kik−a(2π)kθa−k

(

x

y
,−1

y

)

.

Proof. We prove the claim by applying Lemma 1 to the functions

fa(x, y) =
∑

n

(

−x + n

y

)a

e−iπ(x+n)2/y, a ≥ 0.

Condition (i) of Lemma 1 is clearly satisfied by fa(x, y). For Condition (ii) we calculate

fa(x − y, y) =
∑

n

(

1 − x + n

y

)a

e−iπ(x+n−y)2/y

= e2πi(x−y/2)

a
∑

k=0

(

a

k

)

∑

n

(

−x + n

y

)k

e−iπ(x+n)2/y.

It remains to determine the coefficients c
(a)
0 (y) of Lemma 1. Short calculations show that

c
(a)
0 (y) =

∫ 1

0

fa(x, y)dx = 2 [a even]

∫ ∞

0

(

x

y

)a

e−iπx2/ydx.

In particular we have for a = 0

c
(0)
0 (y) =

∫ ∞

−∞

e−iπx2/ydx =

√

y

i
.

Note that the evaluation of the integral above is true for y = it for some t > 0 and analytic
continuation then proves the correctness for general y with ℑ(y) > 0. If a > 0 then integration
by parts yields the recursion

c
(2a)
0 (y) = 2

∫ ∞

0

(

x

y

)2a

e−iπx2/ydx =
2a − 1

iπy

∫ ∞

0

(

x

y

)2a−2

e−iπx2/ydx =
2a − 1

2iπy
c
(2a−2)
0 (y),

and we obtain

c
(a)
0 (y) =

{

0 if a is odd
a!

(4πiy)a/2(a/2)!

√

y
i

if a is even.

Hence, by Lemma 1 we have

fa(x, y) =

⌊a
2
⌋

∑

k=0

(

a

2k

)

(2k)!

k!

πk

(2πi)a

(y

i

)−k+1/2

θa−2k(x, y).
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On the other hand, expanding the binomial term shows that

fa(x, y) = (−y)−ae−iπx2/y
a
∑

k=0

(

a

k

)

xk
∑

n

na−ke−2πi(xn+n2/y)

= y−ae−iπx2/y
a
∑

k=0

(

a

k

)

(−x)k(2πi)k−aθa−k

(

x

y
,−1

y

)

.

The last two representations for fa(x, y) prove the lemma. �

Putting a = 0 in Equation (3), we obtain the reciprocity law for Jacobi’s theta functions in
the form

√

y

i
θ(x, y) = e−iπx2/yθ

(

x

y
,−1

y

)

.

Corollary 1. The functions ϑa(y) = θa(0, iy), a ≥ 0, satisfy the relation

(4) ϑa(y) = ia
⌊a

2
⌋

∑

k=0

(

a

2k

)

(2k)!

k!
πk

(

1

y

)a−k+1/2

ϑa−2k

(

1

y

)

, y > 0.

Proof. The corollary follows from Equation (3) upon setting x = 0 and replacing y by i/y. �

We can now prove the main result of this section.

Lemma 2. The function Z2a(z) can be analytically continued to a meromorphic function having
a single pole of order 1 at z = p

2
+ |a|1 with residue

Res
z= p

2
+|a|1

Z2a(z) =
πp/2

Γ
(

p
2

+ |a|1
)

(

p−1
∏

i=0

(2ai)!

4aiai!

)

.(5)

Furthermore, we have the representation

Z2a(z) = − [a = 0]πz

Γ(z + 1)
+

πz−|a|1

Γ(z)

∏p−1
i=0

(2ai)!
4aiai!

z − p
2
− |a|1

+
πz−2|a|1

(−4)|a|1Γ(z)

∫ ∞

1

tz−1

((

p−1
∏

j=0

ϑ2aj
(t)

)

− [a = 0]

)

dt

+
πz−2|a|1

(−4)|a|1Γ(z)

∫ ∞

1

t−z−1

((

p−1
∏

j=0

ϑ2aj

(

1

t

)

)

− (−π)|a|1

(

p−1
∏

i=0

(2ai)!

ai!

)

tp/2+|a|1

)

dt,

where the two integrals above define entire functions with respect to z. For any non-negative
integer k we have

Z2a(−k) =

{

−1 if a = 0 and k = 0,

0 otherwise.
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Proof. Consider again Equation (1), viz.

(2πi)2|a|1

πz
Z2a(z)Γ(z) =

∫ ∞

0

tz−1

((

p−1
∏

j=0

ϑ2aj
(t)

)

− [a = 0]

)

dt.

We split the integral above into two parts, one over [0, 1] and one over [1,∞). The second
integral is seen to define an entire function with respect to z. We consider the first integral

∫ 1

0

tz−1

((

p−1
∏

j=0

ϑ2aj
(t)

)

− [a = 0]

)

dt = − [a = 0]

z
+

∫ 1

0

tz−1

(

p−1
∏

j=0

ϑ2aj
(t)

)

dt.

By virtue of (4) we obtain

(

p−1
∏

j=0

ϑ2aj
(t)

)

− (−π)|a|1

(

p−1
∏

j=0

(2aj)!

aj!

)

t−p/2−|a|1

= (−1)|a|1









∑

0≤k≤a
k 6=a

(

p−1
∏

j=0

(

2aj

2kj

)

(2kj)!

kj!
πkj tkj−2aj−1/2ϑ2aj−2kj

(

1

t

)

)









+ (−π)|a|1

(

p−1
∏

j=0

(2aj)!

aj !

)

t−p/2−|a|1

(

ϑ

(

1

t

)p

− 1

)

.

Now, since for a 6= 0 the integrals
∫ 1

0

tz−1

(

ϑ

(

1

t

)p

− 1

)

dt and

∫ 1

0

tz−1

(

p
∏

j=1

ϑ2aj

(

1

t

)

)

dt

define entire functions with respect to z we see that

∫ 1

0

tz−1

((

p
∏

j=1

ϑ2aj
(t)

)

− (−π)|a|1

(

p−1
∏

j=0

(2aj)!

aj !

)

t−p/2−|a|1

)

dt

defines an entire function with respect to z, too.
Combining all the parts and noting that

(−π)|a|1

(

p−1
∏

j=0

(2aj)!

aj!

)

∫ 1

0

tz−1−p/2−|a|1dt =
(−π)|a|1

∏p−1
j=0

(2aj )!

aj !

z − p
2
− |a|1

we obtain the representation for Z2a claimed in the lemma. The evaluations at the non-positive
integers immediately follow from this representation. �

We close this section with a result on the growth of Z2a(σ + it) as |t| → ∞.

Lemma 3. For σ ∈ R fixed we have the estimate

(6) Z2a(σ + it) = O
(

eε|t|
)

, |t| → ∞,

for any ε > 0.
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Proof. Mellin transform asymptotics show that

ϑ2a(t) =
(−4π2)a

πa+1/2

Γ(a + 1/2)

ta+1/2
+ O

(

tM
)

, t → 0,

ϑ2a(t) = [a = 0] + O
(

t−M
)

, t → ∞,

for any M > 0. Consequently, we have for a ∈ Np the asymptotics
(

p−1
∏

i=0

ϑ2ai
(t)

)

− [a = 0] =
(−4π)|a|1

t|a|1+p/2

∏p−1
j=0 Γ(aj + 1/2)

πp/2
− [a = 0] + O

(

tM
)

, t → 0,

(

p−1
∏

i=0

ϑ2ai
(t)

)

− [a = 0] = O
(

t−M
)

, t → ∞,

for any M > 0. Now, by [8, Proposition 5] we see that the Mellin transform of
(
∏p−1

i=0 ϑ2a(t)
)

−
[a = 0], viz.

f ∗
2a(z) =

(2πi)2|a|1

πz
Z2a(z)Γ(z),

satisfies

f ∗
2a(σ + it) = O

(

e−(π/2−ε)|t|
)

, |t| → ∞,

for any ε > 0 and σ in any closed subinterval of (|a|1 + p/2,∞), which can be extended to
any closed subinterval of (−∞,∞) (see the proof of [8, Prop. 4] for details). The result now
follows from the behaviour of the gamma function along vertical lines, viz.

Γ(σ + it) ∼
√

2π|t|σ−1/2e−π|t|/2, |t| → ∞.

�

3. The moments of the height distribution

We denote by M
(p)
2n,h the number of p-watermelons with wall with length 2n and height

strictly smaller than h. Further, we write M
(p)
2n for the total number of p-watermelons with

length 2n. Note that M
(p)
2n = M

(p)
2n,h for h ≥ n + 2p − 1 and M

(p)
2n,h = 0 for h < 2p.

Now, let W
(p)
n denote the set of p-watermelons of length 2n, and let P denote the uniform

probability measures on these sets, and let Hn,p denote the random variable “height” on the

probability space
(

W
(p)
n , 2W

(p)
n , P

)

.

The goal of this section is to obtain an asymptotic expression for the s-th moment EHs
n,p,

where E denotes the expectation with respect to P, of this random variable as the length of
the watermelons tends to infinity. Clearly, we have

EHs
n,p =

1

M
(p)
2n

∑

h≥1

(hs − (h − 1)s)
(

M
(p)
2n − M

(p)
2n,h

)

, s ≥ 1.(7)

For determining the asymptotics of EHs
n,p we proceed as follows. First, we find expressions

in terms of determinants for the quantities M
(p)
2n,h and M

(p)
2n . This is accomplished by an
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application of a theorem by Lindström–Gessel–Viennot, respectively of a theorem by Gessel
and Zeilberger. Second, we obtain asymptotics for

M
(p)
2n,h and

∑

h≥1

(hs − (h − 1)s)
(

M
(p)
2n − M

(p)
2n,h

)

.(8)

The asymptotics for EHs
n,p are then easily established. The main result is stated in Theorem 1

at the end of this section.
We start with exact expressions for M

(p)
2n,h and M

(p)
2n .

Lemma 4. We have

M
(p)
2n = det

0≤i,j<p

((

2n

n + i − j

)

−
(

2n

n − 1 − i − j

))

,(9)

and for h ≥ 0 we have

M
(p)
2n,h = det

0≤i,j<p

(

∑

m∈Z

((

2n

n + m(h + 1) + i − j

)

−
(

2n

n + m(h + 1) − 1 − i − j

))

)

.(10)

Proof (Sketch). For h ≥ 2p both equations follow from a theorem by Lindström–Gessel–
Viennot (see [10, Corollary 3] or [20, Lemma 1]), respectively from a theorem of Gessel and
Zeilberger [11]. To be more specific, Equation (9) follows from the type Cp case of the main

theorem in [11], while Equation (10) follows from the type C̃p case.
The reader should observe that the entries of the determinant (9) are the numbers of lattice

paths from (0, 2i) to (2n, 2j) that do not cross the x-axis. On the other hand, the entries of
the determinant (10) are the numbers of lattice paths from (0, 2i) to (2n, 2j) that do not cross
the x-axis and have height smaller than h. These sums are obtained by a repeated reflection
principle (see, e.g., Mohanty [21, p.6]).

For 0 ≤ h < 2p the identity

∑

m∈Z

((

2n

n + m(h + 1) + i − j

)

−
(

2n

n + m(h + 1) − 1 − i − j

))

= −
∑

m∈Z

((

2n

n + m(h + 1) + (h − i) − j

)

−
(

2n

n + m(h + 1) − 1 − (h − i) − j

))

shows that the right hand side of (10) is equal to zero, since for h = 2i the i-th row of the
determinant is equal to zero, and for h = 2i + 1 we see that the i-th and (i + 1)-th row of the
determinant only differ by sign and thus are linear dependent. �

We now turn towards the problem of determining asymptotics for the expressions (8).
Asymptotics for the total number of watermelons are easily established since the determinant
in (9) admits a simple closed form. The result is stated in the following lemma.

Lemma 5. We have

M
(p)
2n = 4(p

2)

(

p−1
∏

i=0

(2i + 1)!

)

(

2n

n

)p

n−p2 (

1 + O
(

n−1
))

as n → ∞.
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Proof. The determinant (9) can be evaluated in closed form, e.g., by means of [16, Theorem
30], and is in fact given by

M
(p)
2n =

p−1
∏

j=0

(

2n+2j
n

)

(

n+2j+1
n

) =

(

2n

n

)p
(

p−1
∏

j=0

(2j + 1)!

)(

p−1
∏

j=0

(2n + 2j) . . . (2n + 1)

(n + 2j + 1)(n + 2j)2 . . . (n + 1)2

)

.

This proves, upon determining asymptotics for the right-most product, the result as stated in
the lemma.

For a comprehensive discussion and references of this counting problem we refer to [18,
Section 4]. �

Asymptotics for the second part of (8) are much harder to obtain. As a first step we note
that

(11)
∑

h≥1

(hs − (h − 1)s)
(

M
(p)
2n − M

(p)
2n,h

)

=
∑

h≥1

((h − 1)s − hs)
∑

m 6=0

det
0≤i,j<p

((

2n

n + mi(h + 1) + i − j

)

−
(

2n

n + mi(h + 1) − 1 − i − j

))

by (9) and (10), where the inner sum ranges over Zp \ {0}.
For determining asymptotics for (11) we closely follow the proof of de Bruijn, Knuth and

Rice [4] (in our case we have to overcome some additional difficulties). For sake of convenience,
we give a short plan of the proof. As a first step we factor

(

2n
n

)

out of each row of the determinant
on the right-hand side of (10). We then replace the quotients of binomial coefficients by
its (sufficiently accurate) asymptotic series expansion, which is determined with the help of
Stirling’s asymptotic series for the factorials (see Lemma 6). This shows that the asymptotic
series expansion for (11) can be expressed in terms of products of derivatives of Jacobi’s theta
functions we considered in the last section. With the help of the Mellin transforms and the
results of the last section we are able to derive asymptotics for these functions (see Lemma 7).
In Lemma 8 we finally obtain the desired asymptotics for (11).

We start with the asymptotic series expansion for the quotients of binomial coefficients
mentioned above.

Lemma 6. For |m − z| ≤ n5/8 and N > 1 we have the asymptotic expansion

(12)

(

2n
n+m−z

)

(

2n
n

)

= e−m2/n

(

4N+1
∑

u=0

(

− z√
n

)u
(

φu

(

m√
n

)

+
3N+1
∑

l=1

u−1
∑

k=0

2l
∑

r=1

Fr,l

nl

(

2r

u − k

)

φk

(

m√
n

)(

m√
n

)2r+k−u
))

+ O
(

n−1−2Ne−m2/n
)

as n → ∞. Here, the Fr,l are some constants the explicit form of which is of no importance in
the sequel, and (−1)kk!φk(w) is the k-th Hermite polynomial, that is

φk(z) =
∑

m≥0

(−1)m

m!

(

m

k − m

)

(2z)2m−k, k ≥ 0.(13)
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Proof. For sake of convenience, set x = (m − z)/n. With the help of Stirling’s asymptotic
series for the factorials we see that for x sufficiently small, |x| < 1

2
, say, we have

log

(

2n
n+m−z

)

(

2n
n

) =

(

n +
1

2

)

log
1

1 − x2
− nx log

1 + x

1 − x

+
N
∑

k=1

B2kn
1−2k

2k(2k − 1)

(

2 − (1 + x)1−2k − (1 − x)1−2k
)

+ O
(

n−1−2N
)

for all fixed N > 0 as n → ∞. Here, Bk denotes the k-th Bernoulli number defined via
∑

k≥0 Bkt
k/k! = t/(et − 1).

For the range |x| ≤ n−1/4 we further obtain by Taylor series expansion and some simplifica-
tions the expression

log

(

2n
n+m−z

)

(

2n
n

) = −n

(

4N+3
∑

r=1

x2r

r(2r − 1)

)

+
1

2

(

4N+1
∑

r=1

x2r

r

)

−
(

4N−1
∑

r=1

(

N
∑

k=1

B2kn
1−2k

k(2k − 1)

(−2k + 1

r

)

)

x2r

)

+ O
(

n−1−2N
)

.

Further restricting ourselves to the range |x| ≤ n−3/8 we obtain, upon taking the exponential
of both sides of the expression above and another Taylor series expansion, the asymptotic series
expansion

(

2n
n+m−z

)

(

2n
n

) = e−nx2



1 +
4N+3
∑

r=1





2N−⌊3r/4⌋
∑

l=−⌊r/2⌋

Fr,l+rn
−l



 x2r + O
(

n−1−2N
)





for some constants Fr,l.
Now, if N > 1 we obtain upon interchanging the two sums on the right-hand side above,

replacing x with its defining expression (m − z)/n and simple rearrangements the expression
(

2n
n+m−z

)

(

2n
n

) = e−(m−z)2/n

(

1 +

3N+1
∑

l=1

n−l

2l
∑

r=1

Fr,l

(

m − z√
n

)2r

+ O
(

n−1−2N
)

)

Finally, expanding e−(m−z)2/n in the expression above in the form

e−(m−z)2/n = e−m2/n
∑

k≥0

φk

(

m√
n

)(

− z√
n

)k

,

and collecting powers of z, we obtain the result. Here, the φk(m/
√

n) represent certain poly-
nomials the explicit form of which is given in the lemma. �

We mentioned before, that the non-normalised s-th moment (11) is a linear combination
of certain functions related to products of the functions ϑ2a(t), a ≥ 0, considered in the last
section. In the next lemma we obtain asymptotics for these functions with the help of the
Mellin transform and the results proved in the last section.
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Lemma 7. For a ∈ Zp, a ≥ 0, and k ∈ N define the function

gk,a(n) =
∑

h≥1

(h + 1)k
∑

m∈(h+1)Zp

m 6=0

e−|m|22/n

(

m√
n

)2a

.(14)

For any fixed M > 0 we have the asymptotics

(15) gk,a(n) =

(

p−1
∏

j=0

(2aj)!

4ajaj!

)

Ωk(n) + ωk,an
(k+1)/2 +

(

1 − Bk+1
(−1)k

k + 1

)

[a = 0] + O
(

n−M
)

as n → ∞, where

Ωk(n) = (nπ)p/2 ×
{

γ − 1 + log
√

n if p = k + 1,

ζ(p − k) − 1 else,

and

ωk,a =
1

2
×











lim
z→p/2

(

Z2a(z + |a|1)Γ(z + |a|1) −
(

p−1
∏

j=0

(2aj )!

4aj aj !

)

πp/2

z− p
2

)

if p = k + 1,

Γ
(

k+1
2

+ |a|1
)

Z2a

(

k+1
2

+ |a|1
)

else.

Here, γ = 0.5772 . . . is the Euler-Mascheroni constant.

Proof. First, note that the function gk,a(n) can be written in terms of derivatives of theta
functions, viz.

gk,a(n) = (−4π)−|a|1
∑

h≥1

(h + 1)k

(

(h + 1)2

nπ

)|a|1
(

p−1
∏

j=0

ϑ2aj

(

(h + 1)2

nπ

)

− [a = 0]

)

.

Now, by the harmonic sum rule and Equation (1), the Mellin transform of gk,a(n) for ℜ(z) >
1
2
max {p, k + 1} is seen to be

g∗
k,a(z) =

∫ ∞

0

gk,a(x
−1)xz−1dx = (ζ(2z − k) − 1) Γ(z + |a|1)Z2a(z + |a|1).

Consequently, the function gk,a(n) can be represented with the help of the inverse Mellin
transform by the contour integral

gk,a(n) =
1

2πi

∫ c+i∞

c−i∞

g∗
k,a(z)nzdz, c >

1

2
max {p, k + 1} .

Asymptotics are now being obtained by pushing the line of integration to the left and taking
into account the residues of the poles of the integrand.

From the well-known analytic behaviour of the gamma and the zeta function (see, e.g., [26])
and the analytic behaviour of Z2a(z) as given by Lemma 2 we infer that the integrand g∗

k,a(z)nz

has potential poles at z = p/2, z = (k + 1)/2 and z = −|a|1 − m for m ∈ N. For p 6= k + 1 all



68 THOMAS FEIERL

poles are of order one. Furthermore, the residues are given by

Res
z=p/2

g∗
k,a(z)nz = (ζ(p − k) − 1)

(

p−1
∏

j=0

(2aj)!

4ajaj !

)

(nπ)p/2

Res
z=(k+1)/2

g∗
k,a(z)nz =

1

2
Γ

(

k + 1

2
+ |a|1

)

Z2a

(

k + 1

2
+ |a|1

)

n(k+1)/2

Res
z=−|a|1−m

g∗
k,a(z)nz = −

(

Bk+1
(−1)k

k + 1
− 1

)

[a = 0 and m = 0] ,

where Bl denotes the l-th Bernoulli number defined via
∑

l≥0 Blt
l/l! = t/(et − 1).

In the case p = k +1, the only difference is the pole at z = p/2, which is now a pole of order
two. By Lemma 2 we know that

Res
z=p/2

Z2a(z + |a|1)Γ(z + |a|1) =

(

p−1
∏

j=0

(2aj)!

4ajaj !

)

πp/2,

and consequently, we have

Res
z=p/2

g∗
k,a(z)nz =

(

p−1
∏

j=0

(2aj)!

4ajaj!

)

(

γ − 1 + log
√

n
)

(πn)p/2

+
np/2

2
lim

z→p/2

(

Z2a(z + |a|1)Γ(z + |a|1) −
(

p−1
∏

j=0

(2aj)!

4ajaj !

)

πp/2

z − p
2

)

.

Note that the limit above is equal to the constant term in the Laurent expansion of Z2a(z +
|a|1)Γ(z + |a|1) around its pole z = p/2.

For completing the proof we have to show the admissibility of the displacement of the
contour of integration above. But this follows by well known estimates for the gamma and
the zeta function along vertical lines in the complex plane together with Lemma 3. See [8] for
details. �

This last lemma finally enables us to determine the asymptotics for the non normalised s-th
moment (11).

Lemma 8. We have the asymptotics

∑

h≥1

(hs − (h − 1)s)
(

M
(p)
2n − M

(p)
2n,h

)

= 2−p

(

2n

n

)p

n−p2

×
(

sλsn
s/2 − 3

(

s

2

)

λs−1n
(s−1)/2 − 3

2
2p2

(

p−1
∏

i=0

(2i + 1)!

)

+ O
(

ns/2−1 + np/2−p2

log n
)

)

as n → ∞, where

λk = −
∑

a≥0

(−4)|a|1 det
0≤i,j<p

(

(2i + 2j + 2)!

(i + j + 1 − ai)! (2ai)!

)

ωk−1,a, k > 0,

with ωk−1,a being defined in Lemma 7.
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Proof. Substituting the determinant expressions (9) and (10) for M
(p)
2n and M

(p)
2n,h we see that

∑

h≥1

(hs − (h − 1)s)
(

M
(p)
2n − M

(p)
2n,h

)

=
∑

h≥1

((h − 1)s − hs)
∑

m 6=0

det
0≤i,j<p

((

2n

n + mi(h + 1) + i − j

)

−
(

2n

n + mi(h + 1) − 1 − i − j

))

.

Instead of determining asymptotics for the right-hand side expression above directly we con-
sider the more general quantity

Dn(x,y, z)

=
∑

h≥1

((h − 1)s − hs)
∑

m∈(h+1)Zp

m 6=0

det
0≤i,j<p

((

2n

n + mi + xi − yj

)

−
(

2n

n + mi − z − xi − yj

))

.

Now, we factor
(

2n
n

)

out of each row of the determinant above, and restrict the sum above to

those (p+1)-tuples (h, m0, . . . , mp−1) such that for i = 0, . . . , p−1 we have |(h+1)mi| ≤ n1/2+ε

for some fixed ε satisfying 0 < ε ≤ 1/8. Since, by Stirling’s formula, we have
(

2n
n+α

)

(

2n
n

) = O
(

e−n2ε
)

, n → ∞,

whenever |α| ≥ n1/2+ε, we see that the sum of all terms failing to satisfy the condition above
is O

(

n−M
)

for all M > 0 and, therefore, is negligible.
In the remaining sum we replace all quotients of binomial coefficients by their asymptotic

series expansion as given by Lemma 6. Having done so, we extend the range of summation
to N × (Zp − {0}). This adds some additional terms, their sum being exponentially small
and, therefore, again negligible. This technique of truncating the (exponentially small) tail of
the exact sum, replacing the addends by their asymptotic expansion and finally adding a new
(exponentially small) tail to the resulting sum has also been applied by de Bruijn, Knuth and
Rice [4].

This procedure yields, upon noticing some cancellations due to summation over m which
eliminates all odd powers of mi for i = 0, . . . , p − 1, for arbitrary N > 0 the expression

(16) PN (x,y, z)

=
∑

h≥1

hs(h)
∑

m∈(h+1)Zp

m 6=0

e−|m|22/n det
0≤i,j<p

(

2N
∑

u=0

(

(yj − xi)
2u − (z + xi + yj)

2u

nu

)

T2u;N

(

mi√
n

, n

)

)

,

where hs(h) = (h − 1)s − hs and

Tu;N(w, n) = φu(w) +

3N+1
∑

l=1

n−l
u−1
∑

k=0

2l
∑

r=1

Fr,l

(

2r

u − k

)

φk(w)w2r+k−u,(17)

such that

(18) Dn(x,y, z) =

(

2n

n

)p
(

PN(x,y, z) + O
(

n−2N−1Gs,0(n)
)

)

, n → ∞.
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Here, the functions φk(w) are defined by (13), and

Gs,a(n) =
∑

h≥1

((h − 1)s − hs)
∑

m∈(h+1)Zp

m 6=0

(

m√
n

)2a

e−|m|22/n.(19)

Clearly, PN(x,y, z) is a polynomial with respect to the variables x0, . . . , xp−1, y0, . . . , yp−1, z.
Furthermore, expanding the determinants and interchanging summations in (16) reveals that
PN(x,y, z) is of the form

PN(x,y, z) =
∑

i,j,l≥0
|i|1+|j|1+|l|1 even

xiyjz|l|1

n(|i|1+|j|1+|l|1)/2

(

∑

a≥0

qa,i,j,l

(

n−1
)

Gs,a(n)

)

(20)

for some polynomials qa,i,j,l(n
−1) in n−1. Noting that [w2a]T2u+1;N(w, n) = 0 for all a by (17)

we obtain upon extracting the corresponding coefficients in (16) the explicit representation

qa,v,w,l(n
−1) = det

0≤i,j<p

((

vi + wj + li
vi, wj, li

)

(

(−1)vi [li = 0] − 1
)

[

w2ai
]

Tvi+wj+li;N(w, n)

)

,(21)

and short calculations show that

[

w2a
]

T2u;N(w, n)

=
(−1)u+a

(u + a)!

(

u + a

2a

)

4a +

3N+1
∑

l=1

2l
∑

r=1

Fr,l

nl

2u−1
∑

k=0

(−1)u+a−r

(u + a − r)!

(

u + a − r

2a + 2u − 2r − k

)

22a+2u−2r−k.

By expanding (h− 1)s − hs in powers of (h + 1) in (19) and interchanging summations we see
that

(22) Gs,a(n) =

s−1
∑

k=0

(

s

k

)

(2s−k − 1)(−1)s−kgk,a(n),

where the functions gk,a(n) are defined in Lemma 7.
Thus, we are led to consider sums of the form

∑

a≥0

qa,v,w,l(n
−1)gk,a(n).

Now, we replace gk,a(n) by its asymptotic expansion (15), viz.

gk,a(n) =

(

p−1
∏

j=0

(2aj)!

4ajaj !

)

Ωk(n) + ωk,an
(k+1)/2 + [a = 0]

(

1 − Bk+1
(−1)k

k + 1

)

+ O(n−M)

as n → ∞ for all M > 0. The quantities Ωk(n) and ωk,a have already been defined in Lemma 7.
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The multi-linearity of the determinant in (21) then shows that

∑

a≥0

qa,v,w,l(n
−1)

(

p−1
∏

j=0

(2aj)!

4ajaj !

)

Ωk(n)

= Ωk(n) det
0≤i,j<p

(

(

vi + wj + li
vi, wj, li

)

(

[li = 0](−1)vi − 1
)

∑

a≥0

(2a)!

4aa!

[

w2ai
]

Tvi+wj+li;N(w, n)

)

.

The sum inside the determinant is further seen to be

∑

a≥0

(2a)!

4aa!

[

w2a
]

T2u(w, n)

=
3N+1
∑

l=1

2l
∑

r=1

Fr,l

nl

2u−1
∑

k=2(u−r)

(−1)u−r

22r+k−2u

(2r + k − 2u)!

(k + r − u)!

∑

a≥0

(−1)a

(

k + r − u

a

)(

2a

2r + k − 2u

)

.

By the Chu-Vandermonde summation formula we obtain for the innermost sum above

∑

a≥0

(−1)a

(

k + r − u

a

)(

2a

2r + k − 2u

)

= 2F1

[

−⌊k/2⌋, 1
2

+ r − u + ⌈k/2⌉
1
2

+ ⌈k/2⌉ − ⌊k/2⌋ ; 1

]

=
Γ
(

1
2

+ ⌈k/2⌉ − ⌊k/2⌋
)

Γ
(

1
2

+ ⌈k/2⌉
)

Γ(u − r)

Γ(u − r − ⌊k/2⌋) ,

and, from the fact that ⌊k/2⌋ ≥ u − r on the right-hand side of the second to last equation
above, we conclude that all terms having r < u vanish, since in these cases this last sum
evaluates to zero. But this shows that

∑

a≥0

(2a)!

4aa!

[

w2a
]

T2u(w, n) = O
(

n−u/2
)

, n → ∞,

and we infer that

∑

a≥0

qa,v,w,l(n
−1)

(

p−1
∏

j=0

(2aj)!

4ajaj !

)

Ωk(n) = O
(

Ωk(n)n−(|v|1+|w|1+|l|1)/2
)

, n → ∞,

and further, noting that Ωk(n) = O(np/2 log n) as n → ∞,

(23)
∑

a≥0

qa,v,w,l(n
−1)gk,a(n) =

(

∑

a≥0

ωk,aqa,v,w,l(n
−1)

)

n(k+1)/2

+ q0,v,w,l(n
−1)

(

1 − Bk+1
(−1)k

k + 1

)

+ O
(

n(p−|v|1−|w|1−|l|1)/2 log n
)

as n → ∞.
Now, lets turn back to Equation (16). Since the determinants involved in the definition of

PN(x,y, z) vanish whenever xi = xj or yi = yj for some i 6= j or xi = −z − xj or yi = −z − yj
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for some i and j, we conclude that PN(x,y, z), which is a polynomial with respect to the
variables x, y and z, is divisible by

(

∏

0≤i<j<p

(xi − xj)(yi − yj)

)(

∏

0≤i≤j<p

(z + xi + xj)(z + yi + yj)

)

.

Consequently, all monomials of PN(x,y, z) have total degree ≥ 2p2. Furthermore, we see that

(24) PN (x,y, z) =

(

∏

0≤i<j<p

(xi − xj)(yi − yj)

)(

∏

0≤i≤j<p

(z + xi + xj)(z + yi + yj)

)

× n−p2

C(n)
(

1 + O
(

n−1
))

for some unknown function C(n) as n → ∞. This function C(n) can be determined by

comparing the coefficient of
∏p−1

i=0 x2i+1
i y2i+1

i in (20) and (24). In this way we obtain

(25) n−p2
∑

a≥0

qa,J,J,0(n
−1)Gs,a(n) = 4pn−p2

C(n)
(

1 + O(n−1)
)

, n → ∞,

where J = (1, 3, . . . , 2p − 1). Since

(26) Gs,a(n) = −sgs−1,a(n) + 3

(

s

2

)

gs−2,a(n) + O(gs−3,a(n)), n → ∞,

by (22), we see by (23) that

∑

a≥0

qa,J,J,0(n
−1)Gs,a(n) = −

∑

a≥0

qa,J,J,0(n
−1)

(

sgs−1,a(n) − 3

(

s

2

)

gs−2,a(n)

)

+ O
(

ns/2−1 + np/2−p2

log n
)

as n → ∞. Noting that

qa,J,J,0(n
−1) =

2p(−4)|a|1
(
∏p−1

i=0 (2i + 1)!
)2 det

0≤i,j<p

(

(2i + 2j + 2)!

(i + j + 1 − ai)! (2ai)!

)

+ O(n−1), n → ∞,

we further see by (23) that

∑

a≥0

qa,J,J,0(n
−1)Gs,a(n) =

2p

(

p−1
∏

i=0

(2i + 1)!

)2

(

sλsn
s/2 − 3

(

s

2

)

λs−1n
(s−1)/2 + λ0

)

+ O
(

ns/2−1 + np/2−p2

log n
)

as n → ∞, where

λk = −
∑

a≥0

(−4)|a|1 det
0≤i,j<p

(

(2i + 2j + 2)!

(i + j + 1 − ai)! (2ai)!

)

ωk−1,a, k > 0,

and

λ0 = −3

2
det

0≤i,j<p

(

(2i + 2j + 2)!

(i + j + 1)!

)

.
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Here, the constant λ0 is of interest only in the case s = 1 (it can be absorbed into the O-term
otherwise), and comes from the asymptotic expansion of g1,0(n).

Now, with the help of Equation (25) we can determine asymptotics for the function C(n),
which gives us asymptotics for PN(x,y, z) by Equation (24), and finally also asymptotics for
DN(x,y, z) by Equation (18).

The proof is now completed upon specialising to xi = yi = i for i = 0, . . . , p − 1 and z = 1
in the asymptotics for DN(x,y, z). For sake of convenience we finally note the identities

(

∏

0≤i<j<p

(i − j)2

)(

∏

0≤i≤j<p

(1 + i + j)2

)

=

p−1
∏

i=0

(2i + 1)!2,

det
0≤i,j<p

(

(2i + 2j + 2)!

(i + j + 1)!

)

= 2p2

p−1
∏

i=0

(2i + 1)!.

The second identity can be proved by means of standard determinant evaluation techniques
(see [16] for details). �

Finally, we can state and prove the main result of this paper.

Theorem 1. Set Mp = 2p2∏p−1
i=0 (2i + 1)! and Tp(t) = det

0≤i,j<p
(ϑ2i+2j+2(t)). For s ∈ N, the s-th

moment of the height distribution of p-watermelons with wall satisfies

(27) EHs
n,p = sκ(p)

s ns/2 − 3

(

s

2

)

κ
(p)
s−1n

(s−1)/2 − 3

2
+ O

(

ns/2−1 + np/2−p2

log n
)

as n → ∞, where

κ(p)
s =

πs/2

2

∫ ∞

0

t−1−s/2

(

1 − tp
2+p/2

(−π)p2

Tp(t)

Mp

)

dt, s > 0.

Proof. Replacing M
(p)
2n and the sum in Equation (7) with their asymptotic expansions as given

by Lemma 5 and Lemma 8 we see that

EHs
n,p = sκ(p)

s ns/2 − 3

(

s

2

)

κ
(p)
s−1n

(s−1)/2 − 3

2
+ O

(

ns/2−1 + np/2−p2

log n
)

, n → ∞,

where, for k > 0,

κ
(p)
k = − 1

Mp

∑

a≥0

(−4)|a|1 det
0≤i,j<p

(

(2i + 2j + 2)!

(i + j + 1 − ai)! (2aj)!

)

ωk−1,a.

The quantity ωk−1,a has already been defined in Lemma 7.

In order to prove the integral representation for κ
(p)
s when s 6= p, where we have ωk−1,a =

1
2
Γ
(

k
2

+ |a|1
)

Z2a

(

k
2

+ |a|1
)

, we consider the more general expression

κ(p)(z) = − 1

2Mp

∑

a≥0

det
0≤i,j<p

(

(2i + 2j + 2)!(−4)ai

(i + j + 1 − ai)!(2ai)!

)

Γ (z + |a|1)Z2a (z + |a|1)

= − πz

2Mp

∫ ∞

0

tz−1

(

det

(

∑

a≥0

(2i + 2j + 2)!(t/π)a

(i + j + 1 − a)!(2a)!
ϑ2a(t)

)

− Mp

)

dt
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Table 1. This table gives numerical approximations for sκ
(p)
s for small values

of s and p. The quantity sκ
(p)
s is the coefficient of the dominant part of the

asymptotics for the s-th moment of the height of p-watermelons (see Theorem 1).

The calculations have been carried out using the integral representation for κ
(p)
s

as given in Theorem 1. The results shown here conform well with with numerical
results obtained by Fulmek [9] and Katori et al. [15].

sκ
(p)
s s = 1 s = 2 s = 3 s = 4

p = 1
√

π 3.289 . . . 6.391 . . . 12.987 . . .
p = 2 2.577 . . . 6.790 . . . 18.282 . . . 50.306 . . .
p = 3 3.207 . . . 10.429 . . . 34.371 . . . 114.817 . . .
p = 4 3.742 . . . 14.141 . . . 53.939 . . . 207.712 . . .
p = 5 4.215 . . . 17.898 . . . 76.536 . . . 329.655. . .

for ℜz sufficiently large. Here, the second line is a direct consequence of Equation (1). The
reciprocity relation (4) followed by the change of variables t 7→ t−1 then shows that

κ(p)(z) =
πz

2

∫ ∞

0

t−z−1

(

1 − tp
2+p/2

(−π)p2

Tp(t)

Mp

)

dt.

Asymptotics for ϑ2a(t) for t → 0 and t → ∞ as given in the proof of Lemma 3 then show that
this last integral is convergent for ℜz > 0. The representation for s 6= p is now proved upon

observing that, by definition, we have κ(p)
(

s
2

)

= κ
(p)
s .

Now, consider the case s = p. Here, we have

ωp−1,a =
1

2
lim

z→p/2



Z2a (z + |a|1) Γ(z + |a|1) −
πp/2

(

∏p−1
i=0

(2ai)!
4aiai!

)

(

z − p
2

)



 ,

which shows that, as in the other case,

− 1

Mp

∑

a≥0

det
0≤i,j<p

(

(2i + 2j + 2)!(−4)ai

(i + j + 1 − ai)!(2ai)!

)

ωp−1,a = lim
z→p/2

κ(p)(z) = κ(p)
(p

2

)

.

In this last calculation, we have, after interchanging the order of the limit and the sum, applied
the results obtained in the case s 6= p. This proves the theorem. �

Some numerical approximations for the coefficient of the dominant term of the asymptotics
proved in Theorem 1 are shown in Table 3. But our last theorem does not only give the dom-
inant term of the asymptotics of the s-th moment of the height distribution of p-watermelons
but also the second order term. So, for example, we obtain the more precise asymptotics

EHn,1 =
√

πn − 3

2
+ O

(

n−1/2 log n
)

, n → ∞,

EHn,2 = 2.577 . . .
√

n − 3

2
+ O

(

n−1/2
)

, n → ∞,

EH2
n,2 = 6.790 . . . n − 3.866 . . .

√
n + O (1) , n → ∞.
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Remark 1. It can be shown that Theorem 1 is even valid for s ∈ C, ℜ(s) > 0. The proof of
this more general result is the same as for our theorem except for two small changes which we
are going to address now.

In the proof of Lemma 8 we defined the functions Gs,a(n) (see Equation (19)). For s ∈ N the
asymptotics (26) for Gs,a(n) were easily found by the expansion (22). This is not possible for
s ∈ C\N. In order to prove the asymptotics (26) in that case we note that (see Equation (19))

(h − 1)s − hs = (h + 1)s

((

1 − 2

h + 1

)s

−
(

1 − 1

h + 1

)s)

.

The term for h = 1 in (19) is seen to be negligible due to summation over a ≥ 0 (see
the discussion of the function Ωk(n) following Equation (22) in the proof of Lemma 8). For
h ≥ 2, we can use the binomial series expansion in the expression above and finally obtain the
asymptotics (26).

The second change concerns Lemma 7, which has to be generalised to k ∈ C. But this makes
no difficulties.

4. A central limit law

We are going to derive asymptotics for the cumulative distribution function of the random
variable “height” on the set of p-watermelons with length 2n with wall, i.e.,

Fn(h) = P {Hn,p ≤ h} =
M

(p)
2n,h+1

M
(p)
2n

for the range h + 2 = t
√

n, where t ∈ (0,∞).

Theorem 2. For t ∈ (0,∞) fixed, the random variable Hn,p on the set of p-watermelons of
length 2n with wall satisfies

(28) P

{

Hn,p + 2√
n

≤ t

}

=
πp/2t−2p2−p

(−2)p2
∏p−1

i=0 (2i + 1)!
det

0≤i,j<p

(

ϑ2i+2j+2

( π

t2

))

+ O

(

1

nt

)

as n → ∞, where the constant implied by the O-term is independent of t.

Proof. The result can be proved in pretty much the same way as Theorem 1. Therefore, we
only give a rather brief account of the proof, and refer to Lemma 8 for the details.

Instead of the exact expression (10) for M
(p)
2n,h we consider the more general quantity

(29) Fn(h;x,y, z) =

(

2n

n

)p

det
0≤i,j<p





∑

m∈(h+2)Z

(

2n
n+m+xi−yj

)

(

2n
n

) −
(

2n
n+m−z−xi−yj

)

(

2n
n

)



 .

Again, we find the polynomial

QN(x,y, z) = det
0≤i,j<p





2N
∑

u=0

(yj − xi)
2u − (z + xi + yj)

2u

nu

∑

m∈(h+2)Z

T2u;N

(

m√
n

, n

)

e−m2/n



 ,
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such that

Fn(h;x,y, z) =

(

2n

n

)p


QN (x,y, z) + O



n−2N−1
∑

m∈(h+2)Z

e−m2/n







 ,

where N can be chosen arbitrarily large and T2u;N being defined by (17). The polynomial
QN (x,y, z) is seen to be divisible by

(

∏

0≤i<j<p

(xi − xj)(yi − yj)

)(

∏

0≤i≤j<p

(z + xi + xj)(z + yi + yj)

)

since the determinant in the definition of QN (x,y, z) vanishes whenever xi = xj or yi = yj for
some i 6= j or xi = −z − xj or yi = −z − yj for some i and j. Hence,

QN (x,y, z)

=

(

∏

0≤i<j<p

(xi − xj)(yi − yj)

)(

∏

0≤i≤j<p

(z + xi + xj)(z + yi + yj)

)

C(t)
(

1 + O(n−1)
)

as n → ∞ for some unknown constant C(t). Now, we are going to determine asymptotics for
C(t) as n → ∞. This task can be accomplished by comparing the coefficients of the monomial
∏

0≤i<p x2i+j
i y2i+1

i in the expression above and the defining expression for QN (x,y, z). We
obtain

4pC(t)
(

1 + O(n−1)
)

= (−2)pn−p2

det
0≤i,j<p

(

(

2i + 2j + 2

2i + 1

)

∑

m∈Z

T2i+2j+2;N (mt, n) e−(mt)2

)

.

Recalling the definition of the functions T2a;N (w, n) (see Equation (17)), our attention is drawn
to sums of the form

(2a)!
∞
∑

m=−∞

φ2a(mt)e−(mt)2 , a ∈ N,

where the polynomials φ2a are defined by (13).
Now, rewriting the reciprocity relation (4) as

ϑ2a

(

1

y

)

= ya+1/2πa
∞
∑

m=−∞

(2a)!φ2a (m
√

πy) e−m2πy,

we see that

(2a)!

∞
∑

m=−∞

φ2a(mt)e−(mt)2 =

√
π

t2a+1
ϑ2a

( π

t2

)

.

From the asymptotics for ϑ2a(t) as given in the proof of Lemma 3 we deduce that
√

π

t2a+1
ϑ2a

( π

t2

)

= const + O(t−M), t → ∞,
√

π

t2a+1
ϑ2a

( π

t2

)

= [a = 0]

√
π

t
+ O

(

t−M
)

, t → 0,
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for all M > 0. Consequently, we obtain for h + 2 = t
√

n, where t is fixed,

∑

m∈Z

T2a;N (mt, n) e−(mt)2 =

√
π

t2a+1
ϑ2a

( π

t2

)

+ O

(

1

nt

)

, n → ∞.

Note that the constant implied by the O-term can be chosen independent of t.
The theorem is now proved upon substituting these asymptotics for our sums appearing

in the expression for C(t) above, taking out some factors, specialising to xj = yj = 1, and

dividing by M
(p)
2n . �

Remark 2. The asymptotic cumulative distribution function of the random variable “height”
as given in Theorem 2 has been re-derived by two groups since the first version of this man-
uscript was distributed. Since their expressions differ from the one given by Equation (28)
we want to give some comments on the equivalence of these three (more or less) different
expressions.

The expression found by Katori et al. [14] can easily be obtained by an application of the
reciprocity relation (4) to Equation (28), and therefore, is not essentially different from the
one given here.

Schehr et al. [24] expressed the cumulative distribution function of the height as a multiple
sum, which can also be easily derived from Theorem 2. By definition, we have ϑ2a(t) =
∑∞

n=−∞(−4π2n2)ae−n2πt. Consequently, the determinant in Equation (28) is equivalent to

det
0≤i,j<p

(

ϑ2i+2j+2

( π

t2

))

=
∑

n0,...,np−1∈Z

e−
Pp−1

j=0 (njπ/t)2 det
0≤i,j<p

(

(−4n2
jπ

2)i+j+1
)

.

The determinant on the right hand side is of Vandermonde type and, therefore, can be evaluated
to a closed form expression. Consequently, the expression above is equal to

(−π2)p2

22p2+p
∑

n0,...,np−1∈N

(

p−1
∏

j=0

n2j+2
j

)(

∏

0≤i<j<p

(n2
j − n2

i )

)

e−
Pp−1

j=0 (njπ/t)2 .

Arranging the summation variables in ascending order further gives

(−π2)p2

22p2+p
∑

1≤n0<···<np−1

(

∏

0≤i<j<p

(n2
j − n2

i )

)





∑

σ∈Sp

sgn (σ)

p−1
∏

j=0

n2j+2
σ(j) e−(nσ(j)π/t)2



 ,

where Sp denotes the set of permutations on the set {0, 1, . . . , p − 1}. Note that the per-
mutation sign sgn (σ) exactly cancel the sign introduced by rearrangment of the product
∏

0≤i<j<(n2
j −n2

i ) that took place in this last step. The alternating sum on the right hand side
is again identified with a Vandermonde type determinant. Consequently, we obtain the final
expression

(−π2)p2

22p2+p
∑

1≤n0<···<np−1

(

∏

0≤i<j<p

(n2
j − n2

i )

)2(p−1
∏

j=0

n2
je

−(njπ/t)2

)

.
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Substituting this expression for the determinant in Equation (28) we arrive at

2p2+pπ2p2+p/2t−2p2−p

∏p−1
i=0 (2i + 1)!

∑

1≤n0<···<np−1

(

∏

0≤i<j<p

(n2
j − n2

i )

)2(p−1
∏

j=0

n2
je

−(njπ/t)2

)

,

which is Schehr’s expression for the cumulative distribution function.

For the special case p = 1 we obtain the well known central limit law first proved by Rényi
and Szekeres [23], viz.

(30) P

{

Hn,1√
n

≤ t

}

→
∑

m∈Z

(

1 − 2(mt)2
)

e−(mt)2 , n → ∞.

This limiting distribution is known to be the distribution function of
√

2 max0≤x≤1 e(x), where
e(x) denotes the standard Brownian excursion of duration 1. For details and references we refer
to the survey paper by Biane, Pitman and Yor [1], in which the authors consider probability
laws related to Brownian motion, Riemann’s zeta function and Jacobi’s theta functions.
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THE HEIGHT AND RANGE OF WATERMELONS WITHOUT WALL

THOMAS FEIERL‡

Abstract. We determine the weak limit of the distribution of the random variables “height”
and “range” on the set of p-watermelons without wall restriction as the number of steps tends
to infinity. Additionally, we provide asymptotics for the moments of the random variable
“height”.

1. Introduction

The model of vicious walkers was originally introduced by Fisher [6] as a model for wetting
and melting processes. In general, the vicious walkers model is concerned with p random
walkers on a d-dimensional lattice. In the lock step model, at each time step all of the walkers
move one step in one of the allowed directions, such that at no time any two random walkers
share the same lattice point.

A configuration that attracted much interest amongst mathematical physicists and combi-
natorialists is the watermelon configuration1, which is the model underlying this paper (see
Figure 1 for an example). This configuration can be studied with or without the presence of
an impenetrable wall. By tracing the paths of the vicious walkers through the lattice we can
identify the (probabilistic) vicious walkers model with certain sets of non-intersecting lattice
paths. It is exactly this equivalent point of view that we adopt in this paper. We proceed with
a precise definition. A p-watermelon of length 2n is a set of p lattice paths in Z

2 satisfying the
following conditions:

• the i-th path starts at position (0, 2i) and ends at (2n, 2i), i = 0, 1, . . . , p − 1,
• the paths consist of steps from the set {(1, 1), (1,−1)} only and
• the paths are non-intersecting, that is, at no time any two path share the same lattice

point.

An example of a 4-watermelon of length 16 is shown in Figure 1 (for the moment, the dashed
lines and the labels should be ignored).

Since its introduction, the vicious walkers model has been studied in numerous papers.
While early results mostly analyse the vicious walkers model in the continuum limit, there are
nowadays many results for certain configurations directly based on the lattice path description
given above. With the increasing number of results it became clear that vicious walkers are very
important objects in mathematical areas far beyond its original scope. For example, Guttmann,
Owczarek and Viennot [10] related the star and watermelon configurations to the theory of
Young tableaux and integer partitions. Later, Krattenthaler, Guttmann and Viennot [16]

Date: October 22, 2009.
‡ Research supported by the Austrian Science Foundation FWF, grant S9607-N13.
1This term comes from the resemblance of large configurations to the colour patterns of certain watermelons

(see [4, Figure 1(b)]).
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−4

0

11

16

Figure 1. Example of a 4-watermelon of length 16 without wall, height 11,
depth 4 and range 15

proved new, exact as well as asymptotic, results for the number of certain configurations of
vicious walkers.

The vicious walkers model is also very closely related to random matrix theory, as can
be seen from articles by, e.g., Baik [1], Johansson [11] and Nagao and Forrester [18]. More
recently, Katori and Tanemura [13] and Gillet [9] studied the diffusion scaling limit of certain
configurations of vicious walkers, namely stars and watermelons, respectively.

In 2003, Bonichon and Mosbah [2] presented an algorithm for uniform random generation
of watermelons, which relies on the counting results by Krattenthaler, Guttmann and Vien-
not [16]. Amongst other things, Bonichon and Mosbah studied the parameter height on the
set of watermelons (with and without wall).

In this paper we rigorously analyse the following two parameters on the set of p-watermelons:

• The height of a watermelon is the maximum ordinate reached by its top most branch.
• The range of a watermelon is the difference of the maximum of its top most branch

and the minimum of its bottom most branch (the depth of the watermelon).

The 4-watermelon depicted in Figure 1 has the height 11 and the range 11 + 4 = 15.
Katori et. al. [12] and Schehr et. al. [19] studied the parameter “height” in the continuous

limit, and recovered the leading terms for some of the asymptotics proved in this manuscript
and in [5]. Additionally, Schehr et. al. gave some arguments concerning the behaviour of the
parameter “height” as the number of walkers tends to infinity.

Now, consider the set m
(p)
n of p-watermelons of length 2n, endowed with the uniform prob-

ability measure. We can then speak of the random variables “height”, denoted by Hn,p, and
“range”, denoted by Rn,p, on this set. We determine the weak limits of Hn,p and Rn,p as the
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number n of steps tends to infinity (see Theorem 1 and Theorem 3, respectively). Additionally,
we determine asymptotics for the moments of Hn,p. More precisely, we prove that the s-th
moment of the random variable “height” behaves like κsn

s/2 + τsn
(s−1)/2 + O

(

ns/2−1
)

for some
explicit numbers κs and τs, see Theorem 2.

Techniques similar to those applied in this paper can also be used to analyse the random
variable height on the set of p-watermelons under the presence of an impenetrable wall. For
details we refer to [5].

The paper is organised as follows. The next section contains some well known results that
are needed in the subsequent sections. In Section 3 we consider the random variable “height”,
and we determine the weak limit as well as asymptotics for all moments. In the last section,
we determine the weak limit of the random variable “range”.

2. Preliminaries

In this section we collect several results which will be needed in the two subsequent sections.
All these results are either well known in the literature and/or can easily be derived by means
of standard techniques. We, therefore, remain very brief, give only a few comments on the
proofs and in each case refer to the corresponding literature for details.

We start with an exact enumeration result for the total number of watermelons confined
to a horizontal strip. (Recall, that the depth of a watermelon is the minimum ordinate of its
bottom most branch.)

Lemma 1. The number m
(p)
n,h,k of p-watermelons without wall, length 2n, height < h and depth

> −k is given by

m
(p)
n,h,k = det

0≤i,j<p

(

∑

ℓ∈Z

((

2n

n + ℓ(h + k) + i − j

)

−
(

2n

n + ℓ(h + k) + h − i − j

))

)

.

The total number m
(p)
n of p-watermelons is given by

m(p)
n = det

0≤i,j<p

((

2n

n + i − j

))

.

This lemma follows immediately from the well-known Lindström–Gessel–Viennot formula
(see [8, Corollary 3] or [17, Lemma 1]), together with an iterated reflection principle.

Remark 1. Since any p-watermelon without wall and length 2n has depth > −n − 1, we
see that the number of watermelons with height < h and no restriction on the depth is given

by m
(p)
n,h,n+1. For the sake of convenience, this quantity will also be denoted by m

(p)
n,h. In this

special case, the determinantal expression above simplifies to

m
(p)
n,h = det

0≤i,j<p

((

2n

n + i − j

)

−
(

2n

n + h − i − j

))

.

Lemma 2. We have

m(p)
n =

(

2

n

)(p

2)(2n

n

)p
(

p−1
∏

i=0

i!

)

(

1 + O(n−1)
)

as n → ∞.
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Proof (Sketch). The result is established from the closed form expression for m
(p)
n , viz

m(p)
n = det

0≤i,j<p

((

2n

n + i − j

))

=

(

2n

n

)p
(

p−1
∏

i=0

i!
(2n + i)!

(2n)!

(

n!

(n + i)!

)2
)

.

For details on the evaluation of this (and many more) determinant, we refer to [15]. �

Lemma 3. For |m − z| ≤ n5/8, z bounded, and arbitrary N > 1 we have the asymptotic
expansion

(1)

(

2n
n+m−z

)

(

2n
n

) = e−m2/n

4N+1
∑

u=0

(

z√
n

)u
1

u!
Hu

(

m√
n

)

+ e−m2/n
4N+1
∑

u=0

(

z√
n

)u 3N+1
∑

l=1

n−l
u−1
∑

k=0

2l
∑

r=1

Fr,l

(

2r

u − k

)

(−1)u−k

k!
Hk

(

m√
n

)(

m√
n

)2r+k−u

+ O
(

e−m2/nn−1−2N
)

as n → ∞. Here, the Fr,l are some constants the explicit form of which is of no importance in
the sequel, and Hk(z) denotes the k-th Hermite polynomial, that is,

Hk(z)

k!
=
∑

m≥0

(−1)k−m

(k − m)!

(2z)2m−k

(2m − k)!
, k ≥ 0.(2)

The lemma above follows from Stirling’s approximation for the factorials. For a detailed
proof we refer to [5, Lemma 6].

3. Height

In this section we derive asymptotics for the distribution as well as for the moments of the
random variable Hn,p. As mentioned before, the number of p-watermelons with length 2n and

height < h is given by m
(p)
n,h = m

(p)
n,h,n+1. Consequently, we have for the distribution of Hn,p

(3) P {Hn,p + 1 ≤ h} =
m

(p)
n,h

m
(p)
n

.

Theorem 1. For each fixed t ∈ (0,∞) we have the asymptotics

(4) P

{

Hn,p + 1√
n

≤ t

}

=
2−(p

2)
∏p−1

j=0 j!
det

0≤i,j<p

(

(−1)iHi+j(0) − Hi+j (t) e−t2
)

+ O
(

n−1/2e−t2
)

as n → ∞, where Ha(x) denotes the a-th Hermite polynomial.

Proof. Set x = (x0, . . . , xp−1) and y = (y0, . . . , yp−1), and consider the more general quantity

m
(p)
n,h(x,y) = det

0≤i,j<p

((

2n

n + xi − yj

)

−
(

2n

n + h − xi − yj

))

.
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Factoring
(

2n
n

)

out of each row of the determinant above and replacing each entry with its
asymptotic expansions as given in Lemma 3, we find the asymptotics

m
(p)
n,h(x,y) =

(

2n

n

)p
(

DN(x,y) + O
(

e−h2/nn−1−2N
))

, n → ∞,

where

DN (x,y) = det
0≤i,j<p

(

4N+1
∑

u=0

((

yj − xi√
n

)u

Tu;N(0, n) −
(

yj + xi√
n

)u

Tu;N(h, n)

)

)

and N > 0 is an arbitrary integer. Here, Tu;N(h, n) is given by (see Lemma 3)

Tu;N(h, n) = e−h2/n

×
(

Hu(h/
√

n)

u!
+

3N+1
∑

l=1

n−l
u−1
∑

k=0

2l
∑

r=1

Fr,l

(

2r

u − k

)

(−1)u−k

k!
Hk

(

h√
n

)(

h√
n

)2r+k−u
)

.

The quantity DN(x,y) is seen to be polynomial in the xi’s and yj’s. This polynomial is
divisible by the factors (xj − xi) and (yj − yi) for 0 ≤ i < j < p, for if xj = xi then the j-th
and the i-th row are equal and, therefore, the determinant is zero (if yj = yi then the j-th and
i-th column are equal). Hence,

DN(x,y) = n−(p

2)

∏

0≤i<j<p

(xj − xi)(yj − yi)

∏

0≤j<p

j!2
χ

(

h√
n

)

(

1 + O(n−1/2e−h2/n)
)

, n → ∞.

Here, the error term is determined by noting that every power of xj and yj entails a factor
of n−1/2, as can be seen from the definition of DN(x,y) above. The unknown coefficient
χ(n, h) can now be determined by comparing coefficients on both sides of the equation above.
Comparing the coefficients of

∏p−1
j=0 xj

jy
j
j , we obtain (after some simplifications) the equation

det
0≤i,j<p

(

(−1)iHi+j(0) − Hi+j

(

h√
n

)

e−h2/n

)

= χ

(

h√
n

)

.

If we specialise by setting xj = yj = j, then we see that

m
(p)
n,h = n−(p

2)
(

2n

n

)p

× det
0≤i,j<p

(

(−1)iHi+j(0) − Hi+j

(

h√
n

)

e−h2/n

)

+ O

(

(

2n

n

)−p

n−(p

2)−1/2e−h2/n

)

.

Setting h = t
√

n and replacing m
(p)
2n with its asymptotic equivalent as given by Lemma 2, we

obtain the result. �

Remark 2. After distribution of the first version of this manuscript, Schehr et al. [19] published
an article in which they (amongst other things) determined the distribution function of the
random variable “height” on the set of watermelons in the continuous limit, and thus, recovered
the asymptotically leading term in Equation (4). Since, at first sight, the expression for the
cummulative distribution function for

√
2Hp = limn→∞ n−1/2Hn,p given in [19] looks quite
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different from our expression, we want to show how Schehr’s expression can easily be derived
from Equation (4).

The only ingredients needed for our derivation is the identity

cos(x + y) + cos(x − y) = 2 cos(x) cos(y)

and the well-known (see, e.g., Szegö [20]) integral representation for the Hermite polynomials,
viz.

e−t2Hk(t) =
2k+1

√
π

∫ ∞

0

e−x2

xk cos

(

2xt +
k

2
π

)

dx.

Substituting the integrals above for the corresponding terms in

Fp(t) =
2−(p

2)
∏p−1

j=0 j!
det

0≤i,j<p

(

(−1)iHi+j(0) − Hi+j (t) e−t2
)

and taking the integrals as well as some factors out of the determinant, we obtain

Fp(t) =
2(p+1

2 )

πp/2
∏p−1

j=0 j!

∞
∫

0

· · ·
∞
∫

0

e−u2
0
−···−u2

p−1

× det
0≤i,j<p

(

ui+j
i

(

cos

(

j − i

2
π

)

− cos

(

2tui +
i + j

2
π

)))

du0 · · · dup−1.

The determinant inside the integral above can be rewritten as (using the cos-identity mentioned
above)

∑

σ∈Sp

sgn (σ)

(

p−1
∏

j=0

u
σ(j)+j
j

(

cos

(

σ(j) − j

2
π

)

+ cos

(

2tuj +
σ(j) + j + 2

2
π

))

)

= 2p
∑

σ∈Sp

sgn (σ)

(

p−1
∏

j=0

u
σ(j)+j
j cos

(

tuj +
σ(j) + 1

2
π

)

cos

(

tuj +
j + 1

2
π

)

)

where Sp denotes the set of permutations on the set {0, 1, · · · , p − 1}. This can further be
rewritten as

2p

p!

∑

σ,τ∈Sp

sgn (σ)

(

p−1
∏

j=0

u
σ(j)+τ(j)
τ(j) cos

(

tuτ(j) +
σ(j) + 1

2
π

)

cos

(

tuτ(j) +
τ(j) + 1

2
π

)

)

=
2p

p!

(

det
0≤i,j<p

(

uj
i cos

(

tui +
j + 1

2
π

)))2

.

This last equality can most easily be seen by replacing σ with σ ◦ τ on the left hand side of
the equation above.
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Substituting this last expression for the determinant involved in the integral representation
of Fp(t) above followed by the change of variables uj 7→ uj/(t

√
2), j = 0, 1, · · · , p − 1 gives us

Fp

(

t
√

2
)

=
22p

tp2(2π)p/2
∏p

j=0 j!

∞
∫

0

· · ·
∞
∫

0

e−(u2
0+···+u2

p−1)/(2t2)

×
(

det
0≤i,j<p

(

uj
i cos

(

ui +
j + 1

2
π

)))2

du0 · · · dup−1.

This is Schehr’s expression for the cummulative distribution function of the random variable√
2Hp.

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

Figure 2. Comparison of the c.d.f. of the random variable “height” on the set
of 3−watermelons of length 500 without wall (dotted curve) and the limiting
distribution as given by Theorem 1.

Let us now turn our attention to the moments of the distribution of Hn,p. Clearly, we have
for s ∈ N,

(5) E
(

Hs
n,p

)

=
∑

h≥1

hs
m

(p)
n,h+1 − m

(p)
n,h

m
(p)
n

=
∑

h≥1

(hs − (h − 1)s)
m

(p)
n − m

(p)
n,h

m
(p)
n

.

The dominant terms of the asymptotics for the moments are going to be expressed by lin-
ear combinations of certain infinite exponential sums. Asymptotics for these sums are to be
determined now.

Lemma 4. For ν ≥ 0 and µ > 0 define

fν,µ(n) =
∑

h≥1

hνe−µh2/n.

This sum admits the asymptotic series expansion

fν,µ(n) ≈ 1

2
Γ

(

ν + 1

2

)(

n

µ

)(ν+1)/2

+
∑

m≥0

(µ

n

)m (−1)ν+mB2m+ν+1

(2m + ν + 1)!m!
,

as n → ∞, where Γ denotes the gamma function and Bm is the m-th Bernoulli number defined
via

∑

j≥0 Bjt
j/j! = t/(et − 1).
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Proof (Sketch). Asymptotics for sums of this form can often be obtain by means of Mellin trans-
form techniques. For a detailed overview of Mellin transforms, harmonic sums and asymptotics,
we refer to [7].

We proceed with a sketch of the proof. The inverse Mellin transform gives

fν,µ(n) =
∑

h≥1

hνe−µh2/n =
∑

h≥1

hν

2πi

∫ c+i∞

c−i∞
Γ(z)

(

µh2

n

)−z

dz

=
1

2πi

∫ c+i∞

c−i∞
Γ(z)

(µ

n

)−z

ζ(2z − ν)dz.

The integrand has simple poles at z = (ν + 1)/2 and z = 0,−1,−2, . . . corresponding to the
poles of the zeta and the gamma function, respectively. The result is now obtained by pushing
the line of integration to the left and taking into account the residues.

For the sake of convenience, we mention the evaluations

Res
z=−m

Γ(z) =
(−1)m

m!
, m = 0, 1, 2, . . . ,

Res
z=1

ζ(z) = 1

ζ(−m) = Bm+1
(−1)m

m + 1
, m = 0, 1, 2, . . . ,

where Bm denotes the m-th Bernoulli number defined via
∑

j≥0 Bjt
j/j! = t/(et − 1). �

The rest of this section is devoted to the proof of Theorem 2 below, which gives the final
expression for the asymptotics of the moments. In order to present the proof of this theorem
in a clear fashion we split it into a series of lemmas. For a more detailed overview of the proof,
we refer directly to the proof of Theorem 2.

As a first step, we prove in Lemma 5 a preliminary asymptotic expression for the moments of
the height distribution. The presented compact form of the asymptotics makes use of certain
linear operators that are going to be defined now.

Definition 1. Let Ξ1 and Ξ0 denote the linear operators defined by

Ξ1

(

hνe−µh2
)

=
1

2
Γ

(

ν + 1

2

)(

1

µ

)(ν+1)/2

Ξ0

(

hνe−µh2
)

= (−1)ν Bν+1

(ν + 1)!
,

where Bk denotes the k-th Bernoulli number.

By Lemma 4 we have

fν,µ(n) = Ξ1

(

hνe−µh2
)

n(ν+1)/2 + Ξ0

(

hνe−µh2
)

+ O(n−1), n → ∞,

so that Ξ1 and Ξ0 yield the coefficients of the first two terms in the asymptotic expansion of
fν,µ(n).

The preliminary expression for the asymptotics of the moments can now be proven in pretty
much the same way as in Theorem 1.
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Lemma 5. For s ∈ N, s ≥ 1, the s-th moment of the random variable “height” satisfies the
asymptotics

(6) E
(

Hs
n,p

)

= sΞ1

(

κph
s−1
)

ns/2 − Ξ1

((

s

2

)

κph
s−2 + τph

s−1

)

n(s−1)/2 + Ξ0(κp) + O
(

ns/2−1
)

as n → ∞, where

κp = 1 − 2−(p

2)
∏

0≤j<p

j!
det

0≤i,j<p

(

(−1)iHi+j(0) − Hi+j (h) e−h2
)

and

τp = (p − 1)
2−(p

2)
∏

0≤j<p

j!
det

0≤i,j<p

({

(−1)iHi+j(0) − Hi+j (h) e−h2

if i < p − 1

(−1)pHp+j(0) − Hp+j (h) e−h2

if i = p − 1

)

.

Here, Hk(z) denotes the k-th Hermite polynomial.

Proof. Recall the exact expression for the s-th moment of the random variable “height” (see
Equation (5)),

(7) E
(

Hs
n,p

)

=

n+2p−2
∑

h=1

(hs − (h − 1)s)
m

(p)
n − m

(p)
n,h

m
(p)
n

.

Asymptotics for this quantity can be obtained in pretty much the same way as Theorem 1.
Compared to the problem of determining asymptotics for (3), the main difference now is the
summation over h.

We consider the more general quantity

m(p)
n (x,y) − m

(p)
n,h(x,y)

= det
0≤i,j<p

((

2n

n + xi − yj

))

− det
0≤i,j<p

((

2n

n + xi − yj

)

−
(

2n

n + h − xi − yj

))

,

where x = (x0, . . . , xp−1) and y = (y0, . . . , yp−1). As a first step, we pull
(

2n
n

)

out of each row

of the determinants above. Now, we restrict the range of summation in (7) to 1 ≤ h ≤ n1/2+ε

for some ε > 0. This truncation is justified by Stirling’s formula, which shows that
(

2n
n+α

)

(

2n
n

) = O
(

e−n2ε

)

, n → ∞,

whenever |α| ≥ n1/2+ε. This implies that the total contribution of all summands in (7) satisfy-
ing h > n1/2+ε is exponentially small as n → ∞ and, therefore, negligible. In all the remaining
summands we replace all the quotients of binomial coefficients with their asymptotic expan-
sions as given in Lemma 3. Finally, we re-extend the range of summation to h ≥ 1, which,
again, introduces an exponentially small error term. This gives the asymptotics

E
(

Hs
n,p

)

=
∑

h≥1

(

(hs − (h − 1)s)

(

(

2n
n

)p

m
(p)
n

DN(e, e) + O
(

e−h2/nn(p

2)−1−2N
)

))
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as n → ∞, where e = (0, 1, . . . , p − 1). Here, the structure of the error term is a consequence
of Lemma 2, and the quantity DN(x,y) is defined by

(8) DN(x,y) = det
0≤i,j<p

(

4N+1
∑

u=0

((

yj − xi√
n

)u

Tu;N(0, n)

)

)

− det
0≤i,j<p

(

4N+1
∑

u=0

((

yj − xi√
n

)u

Tu;N(0, n) −
(

yj + xi√
n

)u

Tu;N(h, n)

)

)

,

where N > 0 is an arbitrary integer and

Tu;N(h, n) = e−h2/n

×
(

Hu(h/
√

n)

u!
+

3N+1
∑

l=1

n−l
u−1
∑

k=0

2l
∑

r=1

Fr,l

(

2r

u − k

)

Hk (h/
√

n)

k!

(

− h√
n

)2r+k−u
)

.

As a consequence of Lemma 4, we see (after expanding the term (h − 1)s) that
∑

h≥1

(

(hs − (h − 1)s)O
(

e−h2/nn(p

2)−1−2N
))

= O
(

n(p

2)−2N+(s−1)/2
)

,

which is negligible for sufficiently large N . Hence, we have the asymptotics

E
(

Hs
n,p

)

=

(

2n
n

)p

m
(p)
n

∑

h≥1

(

(hs − (h − 1)s)DN (e, e)
)

+ O
(

n(p

2)−2N+(s−1)/2
)

, n → ∞.

It remains to determine the part of DN(x,y) that gives the dominant contribution to the
asymptotics above. First, we note that DN (x,y) is a polynomial in the xi’s and yi’s. Obviously,
DN(x,y) is equal to zero whenever xi = xj or yi = yj for some i 6= j, for if xi = xj (yi = yj)
then the i-th and j-th rows (columns) of the determinants involved in the definition of DN (x,y)
are equal, and, therefore, the determinants are equal to zero. This implies that DN(x,y) is of
the form

DN(x,y) = n−(p

2)

∏

0≤i<j<p

(xj − xi)(yj − yi)

∏

0≤j<p

j!2

×
(

χ(n, h) +

p−1
∑

j=0

(

ξj(n, h)
xj√
n

+ ηj(n, h)
yj√
n

)

+ O
(

n−1e−h2/n
)

)

as n → ∞. By comparing coefficients of
∏p−1

j=0 xj
jy

j
j on both sides of the equation above, we

have already seen (see Theorem 1) that

χ(n, h) = det
0≤i,j<p

(

(−1)iHi+j(0)
)

− det
0≤i,j<p

(

(−1)iHi+j(0) − Hi+j

(

h√
n

)

e−h2/n

)

.

Analogously we can determine ξk(n, h). By comparing the coefficients of xk

∏p−1
j=0 xj

jy
j
j on both

sides of the equation above we obtain the equations

0 = ξk(n, h) − ξk+1(n, h), k < p − 1,
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and

ξp−1(n, h) = −1

p
det

0≤i,j<p











(−1)iHi+j(0) − Hi+j

(

h√
n

)

e−h2/n if i < p − 1

(−1)pHp+j(0) − Hp+j

(

h√
n

)

e−h2/n if i = p − 1



 .

Note, that the coefficient of xk

∏p−1
j=0 xj

jy
j
j in the first determinant of (8) is equal to zero, which

is easily seen to be true for k < p − 1, and for k = p − 1 this is seen to be true by a series
of column and row operations that yield a new matrix consisting of two non-square blocks.
Similar expressions (with i and j interchanged) can be found for the ηk(n, h), 0 ≤ k < p.

Noting that Hi+j(0) is non-zero if and only if i + j is even we deduce that (−1)iHi+j(0) =
(−1)jHi+j(0), which implies

ξp−1(n, h) = ηp−1(n, h),

and also

det
0≤i,j<p

(

(−1)iHi+j(0)
)

= det
0≤i,j<p

(

(−1)(i+j)/2Hi+j(0)
)

= 2(p

2)
p−1
∏

j=0

j!.

Here, the last equality has been proven in Lemma 6.
If we specialise to xj = yj = j, 0 ≤ j < p, then we obtain

DN(e, e) = n−(p

2)
(

χ(n, h) + 2

(

p

2

)

ξp−1(n, h)n−1/2

)

(

1 + O
(

n−1e−h2/n
))

, n → ∞,

where e = (0, 1, . . . , p − 1).
Choosing N large enough and expanding the term hs − (h − 1)s in the asymptotics for

E
(

Hs
n,p

)

above, we obtain with the help of Lemma 4 the asymptotics

E
(

Hs
n,p

)

=

(

2n
n

)p

m
(p)
n

∑

h≥1

(

shs−1 −
(

s

2

)

hs−2

)

DN (e, e) + O
(

ns/2−1
)

, n → ∞,

and replacing DN(e, e) with its asymptotic expansion as given above proves the lemma. �

Lemma 6. Let Hk(x) denote the k-th Hermite polynomial as defined by Equation (2). We
have the determinant evaluation

(9) det
0≤i,j<p

(

(−1)(i+j)/2Hi+j(0)
)

= 2(p

2)
p−1
∏

j=0

j!.

Proof. The determinant under consideration is a Hankel determinant. Therefore, we can hope
to evaluate it with the help of orthogonal polynomials (for details see [15, Section 2.7]). It is
well known (see, e.g., [20, page 105]) that for k ∈ N we have

H2k+1(0) = 0 and H2k(0) = (−1)k (2k)!

k!
.

Consequently, we obtain

det
0≤i,j<p

(

(−1)(i+j)/2Hi+j(0)
)

= 2(p

2) det
0≤i,j<p

(

1 + (−1)i+j

2

2(i+j)/2

√
π

Γ

(

i + j + 1

2

))

.
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The (i, j)-th entry of the determinant on the right hand side above is seen to be precisely

the (i + j)-th moment with respect to the Gaussian weight w(x) = 1√
2π

e−x2/2 on R, that is,

1√
2π

∫ ∞

−∞
xke−x2/2dx =

1 + (−1)k

2

2k/2

√
π

Γ

(

k + 1

2

)

, k = 0, 1, 2 . . .

The family of monic orthogonal polynomials associated with the weight w(x) is given by

(10) 2−k/2Hk

(

x√
2

)

, k = 0, 1, 2, . . .

where Hk(x) denotes the k-th Hermite polynomial as defined by Equation (2). The three term
recursion relation for the orthogonal polynomials (10) is seen to be (cf. [20, p.105])

2−(k+1)/2Hk+1

(

x√
2

)

= x2−k/2Hk

(

x√
2

)

− k2−(k−1)/2Hk−1

(

x√
2

)

, k = 1, 2, . . . ,

with the initial values H0

(

x√
2

)

= 1 and 2−1/2H1

(

x√
2

)

= x. Now, an application of [15,

Theorem 11]) shows that

det
0≤i,j<p

(

1 + (−1)i+j

2

2(i+j)/2

√
π

Γ

(

i + j + 1

2

))

=

p−1
∏

j=0

j!,

which proves the claim. �

Lemma 7. Let µ > 0 denote a real number. The operator Ξ1 from Definition 1 satisfies the
relation

(11) Ξ1

(

d

dh

(

hνe−µh2
)

)

=

{

−1 if ν = 0

0 if ν > 0.

Proof. For ν = 0 the claim follows immediately from the definition of the operator Ξ1. For
ν > 0 we calculate

Ξ1

(

hν+1e−µh2
)

=
ν

2µ
Ξ1

(

hν−1e−µh2
)

,

from which the claims follows upon multiplying by 2µ and rearranging the terms. �

The next result is not obvious at all, and, on the contrary, is a quite surprising fact.

Lemma 8. Let κp and τp denote the determinants defined in Lemma 5. We have the relation

(12) (p − 1)
d

dh
κp = τp, p ≥ 1.

Proof. For the sake of convenience we set

C = 2−(p

2)

(

p−1
∏

j=0

j!

)−1

.
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The derivative of a p × p determinant is the sum of p determinants, where the j-th addend is
equal to the original determinant with the j-th row replaced by its derivative. Hence,

d

dh
κp = C

(

p−2
∑

j=0

Mj

)

+ CMp−1,

where

Mi = det













































H0,0 · · · H0,p−1
...

. . .
...

Hi−1,0 · · · Hi−1,p−1

−Hi+1(h)e−h2 · · · −Hi+p(h)e−h2

Hi+1,0 · · · Hi+1,p−1
...

. . .
...

Hp−1,0 · · · Hp−1,p−1













































,

where Hi,j = (−1)iHi+j(0)− Hi+j(h)e−h2

. We want to mention that (p − 1)CMp−1 is equal to
the expression for τp except for the constant terms in the last row of the determinant.

For 0 ≤ i < p − 1 the quantity Mi can also be represented by the expression

Mi = det





















































H0,0 · · · H0,p−1
...

. . .
...

Hi−1,0 · · · Hi−1,p−1

Hi+1 · · · Hi+p

(−1)i+1Hi+1(0) · · · (−1)i+1Hi+p(0)
Hi+2,0 · · · Hi+2,p−1

...
. . .

...
Hp−1,0 · · · Hp−1,p−1





















































, 0 ≤ i < p − 1,

which is more convenient to work with.
The Laplace expansion for determinants with respect to the row j + 1, 0 ≤ j < p − 1, gives

Mj =

p−1
∑

k=0

(−1)j+1Hj+1+k(0)Mj,k, 0 ≤ j < p − 1,

where Mj,k denotes the minor of Mj obtained by removing row j + 1 and column k, i.e.,

Mj,k = det













































H0,0 · · · H0,k−1 H0,k+1 · · · H0,p−1
...

. . .
...

...
. . .

...
Hi−1,0 · · · Hi−1,k−1 Hi−1,k+1 · · · Hi−1,p−1

Hi+1,0 · · · Hi+1,k−1 Hi+1,k+1 · · · Hi+1,p−1

Hi+2,0 · · · Hi+2,k−1 Hi+2,k+1 · · · Hi+2,p−1
...

. . .
...

...
. . .

...
Hp−1,0 · · · Hp−1,k−1 Hp−1,k+1 · · · Hp−1,p−1













































.
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Now, consider the sum
p−2
∑

j=0

Mj =

(

p−2
∑

j=0

p−2
∑

k=0

(−1)j+1Hj+1+k(0)Mj,k

)

+

p−2
∑

j=0

(−1)j+1Hj+p(0)Mj,p−1.

The first sum on the right hand side in fact is equal to zero as is going to be shown now. First,
note that

Mj,k = Mk,j

since the matrices involved are transposes of each other. Recalling that Hk(0) is non zero if
and only if k is an even number we deduce that

(−1)j+1Hj+1+k(0)Mj,k = −(−1)k+1Hk+1+j(0)Mk,j,

and both expressions correspond to different addends of the double sum above (j + 1 + k has
to be even). This shows that the value of the double sum is indeed equal to zero.

For the second sum we have
p−2
∑

j=0

(−1)j+1Hj+p(0)Mj,p−1 = −
p−2
∑

j=0

(−1)pHj+p(0)Mp−1,j

= det
0≤k,l<p

({

(−1)kHk+l(0) − Hk+l(h)e−h2

if k < p − 1

(−1)pHp+l if k = p − 1

)

,

which proves the lemma. �

We are now able to to state and prove the final expression for the asymptotics of the moments.

Theorem 2. The expected value of the random variable Hn,p satisfies the asymptotics

(13) E (Hn,p) = Ξ1 (κp)
√

n + p − 3

2
+ O

(

n−1/2
)

, n → ∞,

and for s ∈ N, s ≥ 2, we have the asymptotics

(14) E
(

Hs
n,p

)

= sΞ1(κph
s−1)ns/2 + (s − 1)

(

p − 1 − s

2

)

Ξ1

(

κph
s−2
)

n(s−1)/2 + O
(

ns/2−1
)

as n → ∞. Here, κp is defined by

κp = 1 − 2−(p

2)
∏

0≤j<p

j!
det

0≤i,j<p

(

(−1)iHi+j(0) − Hi+j (h) e−h2
)

,

where Hk(z) denotes the k-th Hermite polynomial.

Proof. As a first step we need to establish some simple facts concerning the quantity κp. To
be more precise, we have to show that κp is an even function with respect to h that has no
constant term, i.e., is of the form

κp =

K
∑

k=0

M
∑

m=1

λk,mh2ke−mh2

for some numbers K, M and some constants λk,m.
It is obvious from the definition of the Hermite polynomials (see Equation (2)) that the k-th

Hermite polynomial is an even (odd) polynomial whenever k is even (odd). This also implies
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the equality (−1)iHi+j(0) = (−1)jHi+j(0). Now, replacing h by −h in the definition of κp,
factoring (−1)i out of the i-th row and (−1)j out of the j-th row we see that the expression
remains unaltered. Hence, κp is an even function of h. The constant term of κp is seen to be
equal to

1 − 2−(p

2)
∏p−1

j=0 j!
det

0≤i,j<p

(

(−1)iHi+j(0)
)

= 1 − 2−(p

2)
∏p−1

j=0 j!
det

0≤i,j<p

(

(−1)(i+j)/2Hi+j(0)
)

= 0,

where the last equality is a consequence of Lemma 6. This proves the claimed form of κp.
We are now going to prove the asymptotics (14). Therefore, we assume that s > 1. The

properties of κp established above together with Lemma 7 imply the equation

Ξ1

(

d

dh

(

κph
s−1
)

)

= 0,

and the product rule for the derivative together with Lemma 8 show that

Ξ1

(

τph
s−1
)

= −(s − 1)(p − 1)Ξ1

(

κph
s−2
)

.

The asymptotics (14) is now obtained from the asymptotics (6) upon noting that the Ξ0-term
is negligible for s ≥ 2.

Finally, we prove the asymptotics (13) and, therefore, assume s = 1. For the sake of
simplicity we set

C = 2−(p

2)

(

p−1
∏

j=0

j!

)−1

.

From Lemma 8 and Lemma 7 we deduce that

Ξ1 (τp) = (p − 1)Ξ1

(

d

dh
κp

)

= −(p − 1)Ξ1

(

C
d

dh
χ(h)

)

,

where

χ(h) = det
0≤i,j<p

(

(−1)iHi+j(0) − Hi+j(0)e−h2
)

.

This last determinant can be evaluated to a closed form expression with the help of Lemma 6.
Factoring 1 − (−1)je−h2

out of each column of the determinant we see that

χ(h) =

(

p−1
∏

j=0

(

1 − (−1)je−h2
)

)

det
0≤i,j<p

(

(−1)(i+j)/2Hi+j(0)
)

=
1

C

(

1 − e−2h2
)⌊p/2⌋ (

1 − e−h2
)⌈p/2⌉−⌊p/2⌋

.

Now, an application of Lemma 7 shows that

Ξ1

(

d

dh
χ(h)

)

= −1,

which implies

Ξ1 (τp) = 1 − p.
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Table 1. This table gives the coefficient of the dominant asymptotic term of
EHs

n,p as n → ∞ for small values of s and p (see Theorem 2).

sκ
(p)
s s = 1 s = 2 s = 3

p = 1 1
2

√
π = 0.88 . . . 1 3

4

√
π = 1.32 . . .

p = 2 2+
√

2
4

√
π = 1.51 . . . 5

2
3(12+

√
2)

16

√
π = 4.45 . . .

p = 3 72+45
√

2−16
√

3
96

√
π = 1.99 . . . 25

6
1584+315

√
2−32

√
3

385

√
π = 9.11 . . .

p = 4 10368+17091
√

2−3776
√

3
20736

√
π = 2.39 . . . 1915

324
520992+165969

√
2−29824

√
3

82944

√
π = 15.04 . . .

The last step of the proof is the evaluation of the quantity Ξ0(κp). Recalling that κp is an
even function with respect to h as well as the fact that all odd Bernoulli numbers except for
B1 are zero, i.e., B2ν+1 = 0, ν ≥ 1, we deduce the equation

Ξ0(κp) = Ξ0 (1 − Cχ(h)) = Ξ0

(

1 −
(

1 − e−2h2
)⌊p/2⌋ (

1 − e−h2
)⌈p/2⌉−⌊p/2⌋

)

.

The definition of Ξ0 reveals that Ξ0

(

hνe−µh2

)

is independent of µ. Consequently, we see that

Ξ0(κp) = B1 = −1

2
.

This proves the asymptotics (13) and completes the proof of the theorem. �

Table 1 shows the constant of the dominant asymptotic term as n → ∞ for the s-th moment
of the height distribution for small values of s and p.

4. Range

We determine the asymptotics for n → ∞ of

(15) P {Rn,p ≤ r} =
1

m
(p)
n

r
∑

h=2p−2

(

m
(p)
n,h+1,r−h+1 − m

(p)
n,h,r−h+1

)

.

Note that m
(p)
n,h+1,r−h+1 − m

(p)
n,h,r−h+1 is the number of watermelons with height exactly h and

range ≤ r.

Theorem 3. For each fixed t ∈ (0,∞) we have the asymptotics

(16) P

{

Rn,p + 1√
n

≤ t

}

→ 2−(p

2)
∏p−1

i=0 i!

∫ t

0

(

d

dz
Tp(z, w)

∣

∣

∣

∣

z=t

)

dw, n → ∞,

where

Tp(z, w) = det
0≤i,j<p

(

(−1)i

(

∑

ℓ∈Z

Hi+j(ℓz)e−(ℓz)2

)

−
(

∑

ℓ∈Z

Hi+j (ℓz + w) e−(ℓz+w)2

))

.

Here, Ha denotes the a-th Hermite polynomial.
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Proof. Since m
(p)
n,2p−2,k = 0 for any k, Equation (15) can be rewritten as

P {Rn,p ≤ r} =
m

(p)
n,r+1,1

m
(p)
n

+
1

m
(p)
n

r
∑

h=2p−1

(

m
(p)
n,h,r−h+2 − m

(p)
n,h,r−h+1

)

.

The first term on the right-hand side is negligible. To see this, we note that mn,r+1,1 is equal to

the number of p-watermelons with wall and height ≤ r, which is of order
(

2n
n

)p
n−p2

as n → ∞
(see [5] for details), whereas m

(p)
n is of order

(

2n
n

)p
n−(p

2) (see Lemma 2).
Asymptotics for the sum on the right-hand side can now be established in a fashion analogous

to the proof of Theorem 1. A more detailed presentation of these techniques can also be found
in [5, Theorem 2]. We find the asymptotics

P {Rn,p ≤ r} ∼
(

2n
n

)p
n−(p

2)

m
(p)
n

r
∑

h=2p−1

(

Tp

(

r + 2√
n

,
h√
n

)

− Tp

(

r + 1√
n

,
h√
n

))

as n → ∞, where

Tp(t, w) = det
0≤i,j<p

(

(−1)i

(

∑

ℓ∈Z

Hi+j(ℓt)e
−(ℓt)2

)

−
(

∑

ℓ∈Z

Hi+j (ℓt + w) e−(ℓt+w)2

))

.

Now, Taylor series expansion shows that

Tp

(

r + 2√
n

,
h√
n

)

− Tp

(

r + 1√
n

,
h√
n

)

=
1√
n

T ′
p

(

r + 1√
n

,
h√
n

)

+ O
(

n−1
)

, n → ∞,

where T ′ denotes the derivative of T with respect to its first argument. Setting r + 1 = t
√

n
we see that

r
∑

h=2p−1

(

Tp

(

r + 2√
n

,
h√
n

)

− Tp

(

r + 1√
n

,
h√
n

))

∼
r
∑

h=2p−1

1√
n

T ′
p

(

r + 1√
n

,
h√
n

)

→
∫ t

0

T ′ (t, w) dw

as n → ∞.
�

Remark 3. For the special case p = 1 we recover a well-known fact originally proven by
Chung [3] and Kennedy [14]. Namely, the equality of the distributions of the height of Brownian
excursions and the range of Brownian bridges. This result also follows from a more general
relation between excursions an bridges proved by Vervaat [21].

In fact, for p = 1 we have

d

dz
T1(z, w)

∣

∣

∣

∣

z=t

= −
∑

ℓ∈Z

2ℓ2te−(ℓt)2 + 2
∑

ℓ∈Z

ℓ(ℓt + w)e−(ℓt+w)2 ,

which shows that

P

{

Rn,1 + 1√
n

≤ t

}

→
∑

ℓ∈Z

(

1 − 2(ℓt)2
)

e−(ℓt)2 , n → ∞,
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by Theorem 3. This shows that the distribution of the range of 1-watermelons without wall
weakly converges to the limiting distribution of the height of 1-watermelons with wall restriction
(see [5]).
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit zwei eng verwandten Modellen: Gitterpfaden
in einer Weylkammer vom Typ B und nichtüberschneidenden Gitterpfaden im ganzzahligen
Gitter aufgespannt durch die Vektoren {(1, 1), (1,−1)} mit Schritten aus dieser Menge. Diese
Gitterpfadmodelle sind unter anderem von zentraler Bedeutung in der Kombinatorik und der
statistischen Mechanik. In der statistischen Mechanik dienen diese Modelle der Beschreibung
bestimmter nicht-kollidierender Teilchen-Systeme. Die Bedeutung von Gitterpfadmodellen in
der Kombinatorik ist teilweise begründet durch ihre interessanten kombinatorischen Eigen-
schaften, vor allem aber auch durch die engen Beziehungen zu zahlreichen zentralen kombina-
torischen Objekten wie z.B. Integer Partitions, Plane Partitions und Young Tableaux.

Im ersten Teil dieser Arbeit werden asymptotische Formeln für die Anzahl von Gitterp-
faden in einer Weylkammer vom Typ B für eine allgemeine Klasse von Schritten hergeleitet.
Die Klasse der zulässigen Schritte wird hierbei durch die Forderung der “Reflektierbarkeit”
der resultierenden Pfade beschränkt. Spezialfälle dieser asymptotischen Formel lösen in der
Literatur aufgeworfene Probleme und liefern bekannte Resultate für zweidimensionale Vicious
Walkers Modelle und sogenannte k-non-crossing tangled diagrams.

Im zweiten Teil werden die Zufallsvariablen “Höhe” und “Ausdehnung” auf der Menge
aller nichtüberschneidenden Gitterpfade mit n Schritten sowie auf der Teilmenge all jener
auf die obere Halbebene beschränkten nichtüberschneidenden Gitterpfade mit n Schritten
studiert. Unter der Annahme einer Gleichverteilung auf diesen Mengen wird die asympto-
tische Verteilung beider Zufallsvariablen bestimmt. Weiters werden die ersten beiden Terme
der asymptotischen Entwicklung aller Momente der Zufallsvariable “Höhe” ermittelt. Dies löst
ein in der Literatur aufgeworfenes Problem, und verallgemeinert ein bekanntes Resultat über
die Höhe ebener Wurzelbäume.

Die in dieser Arbeit gelösten Probleme haben eine interessante Eigenschaft gemein. Wäh-
rend man relativ leicht exakte Abzählformeln für die betrachteten Größen aufstellen kann, da
bereits entsprechende Resultate (siehe Theorem 1 und Theorem 2 in der Einleitung) in der
Literatur vorhanden sind, ist es hingegen schwierig aus diesen exakten Formeln das asymp-
totische Verhalten der interessierenden Größen abzulesen. Der Hauptgrund hierfür ist die
Tatsache, dass es sich bei den exakten Abzählformeln im Wesentlichen um Determinanten
bzw. alternierende Summen handelt, welche keine einfache Darstellung als Produkt besitzen.
In der asymptotischen Analyse tritt daher eine große Anzahl von Auslöschungen von asympto-
tisch führenden Termen auf. Die genaue Bestimmung der Anzahl dieser Auslöschungen stellt
einen der wesentlichen Schritte in der vorliegenden Arbeit dar.
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