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Abstract

We review the algorithm of Novelli, Pak and Stoyanowskii, introduce the distribution

vector of the algorithm depending on its defining order, and derive, that some of its

properties (namely the complexity, the exchange numbers, the drop function and the

signed exit numbers) depend solely on the distribution vector rather than the defining

order. We consider the algorithm in settings different from Young diagrams. For the

double-tailed diamond and the case with an additional cell in row 1 we can describe

the distribution vector directly and with the help of distribution matrices, which we

introduce. For general insets we conjecture various properties of the distribution vectors

and matrices and derive some of their structure.

We use a direct fibre product to construct highly arc transitive digraphs which are

counterexamples for a conjecture by Cammeron, Praeger and Wormald. This product

also generalises other ad hoc constructions of highly arc transitive digraphs.
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Kurzzusammenfassung

Wir besprechen den Algorithmus von Novelli, Pak und Stoyanowskii, führen

Verteilungsvektoren für den Algorithmus in Abhängigkeit seiner definierenden Ord-

nung ein, und leiten ab, dass einige seiner Eigenschaften (nämlich die Komplexität,

die Vertauschungszahlen, die “Drop”-Funktion und die “signed exit”-Zahlen) nur vom

Verteilungsvektor und nicht von der definierenden Ordnung abhängen. Wir betrachten

den Algorithmus nicht nur auf Young Diagrammen sonder auch in anderen Situationen.

Für den zweifach-geschwänzten Diamanten und den Fall mit einer zusätzlichen Zelle in

Zeile 1 können wir den Verteilungsvektor sowohl direkt als auch unter Verwendung von

Verteilungsmatritzen (die wir einführen) beschreiben. Für allgemeine Insets vermuten

wir einige Eigenschaften der Verteilungsvektoren und -matritzen und leiten einige Aus-

sagen über ihre Struktur ab.

Wir verwenden ein direktes Faserprodukt um hochgradig bogentransitive Digraphen

zu konstrutieren, die Gegenbeispiele für eine Vermutung von Cammeron, Praeger und

Wormald sind. Dieses Produkt verallgemeinert einige ad hoc Konstruktionen anderer

hochgradig bogentransitiver Digarphen.
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Preface

The work towards the present thesis started with the investigation of highly arc

transitive (HAT) digraphs which continued considerations from my master thesis. A

digraph is HAT if its automorphism group acts transitively on the set of its s-arcs for

every s ∈ N. I used a fibre product to construct HAT digraphs which are counterexam-

ples to a conjecture by Cameron, Praeger and Wormald [CPW93]. This fibre product

generalises other ad hoc constructions of highly arc transitive digraphs which I would

not have expected to be related. In an independent work [DMŠ11] by DeVos, Mo-

har and Šámal isomorphic counterexamples were constructed using so called templates.

Chapter 2 consists of my work on HAT digraphs done in [Neu13].

I was looking for digraphs with interesting properties (like flag-transitivity, which

would have yielded further interesting examples of HAT digraphs), when a talk by Krat-

tenthaler motivated me to consider the digraph with fillings of a certain partition as

vertices and jeu de taquin steps as directed edges. This very digraph has none of the

properties, that I was looking for, but it was the starting point for the considerations

leading to the complexity theorems [NS13] and yielded a part of a proof of the ∆-

Theorem [NR14]. In this way the considerations leading to the results and conjectures

in Chapter 1 were triggered.

Chapter 1 treats distribution vectors of the jeu de taquin. Using the jeu de taquin

under a certain order one can sort a filling of a diagram (given by a permutation) to

a standard filling (i.e. a filling that grows along rows and columns). The distribution

vector can be understood as a property of such an order, it counts for every standard

filling, how many fillings are mapped to it. From this point of view, the famous bijection

of Novelli, Pak and Stoyanowskii [NPS97] proves that all components of the distribution

vector of the row-wise order of a Young diagram are equal. In Section 2 this algorithm

is recapitulated.

The above mentioned talk by Krattenthaler contained a conjecture that the inherent

sorting algorithm has the same complexity for both the row- and column-wise order. I

worked on this conjecture in cooperation with Sulzgruber. We found, that the complexity

and some other properties depend on the distribution vector and since the distribution
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12 PREFACE

vectors of the row- and column-wise orders agree the conjecture follows. This consider-

ations are available as preprint [NS13] and form Section 3.

Riegler considered the jeu de taquin on d-complete posets (as introduced by Proctor

[Pro99]). The smallest case of a d-complete poset is the so called double-tailed dia-

mond. The ∆-Theorem describes the distribution vectors of the double-tailed diamond.

Currently we know three (very different) proofs of the ∆-Theorem – one by Riegler, one

by myself and one in joint work between us. The latter can be found in [NR14] and we

give it here in Section 4.

My proof of the ∆-Theorem uses distribution matrices which are introduced in Sec-

tion 5. Distribution matrices describe how the distribution vector changes, if a top cell is

added to the diagram. There is some knowledge about the structure of the distribution

matrices but only little is known about their spectral properties. Indeed a strong relation

between distribution vectors and the eigenvectors of distribution matrices is conjectured.

There are also mysterious conjectures about the eigenvalues of distribution matrices –

they appear to be integers, most of which are consecutive.



CHAPTER 1

Jeu de taquin

1. Introduction

The first part of this thesis is devoted to several aspects of the “Jeu de taquin”.

Schützenberger [Sch72] introduced this operation motivated by Robinson’s correspon-

dence [Rob38] and Knuth’s generalisation [Knu70] of the Robinson-Schensted corre-

spondence [Sch61]. Its name actually comes from the French name of what is known as

the 15-Puzzle.

13 14 15

9 10 11 12

5 6 7 8

1 2 3 4

Figure 1. 15-Puzzle

In the present work we do not consider any of the original motivations of

Schützenberger et. al. to investigate partitions and the jeu de taquin. We are going

to introduce distribution vectors and will focus on surprising observations concerning

them. First we notice that there are a couple of statistics (such as the complexity or the

drop functions) of the jeu de taquin sorting algorithm that depend only on the resulting

distribution vector rather than the order defining the algorithm. Then we observe that

we can explain the distribution vectors in certain situations and recognise that they seem

(conjecturally) to have a close relation to the eigenvectors of the distribution matrices

which we are going to introduce as well.

The outline of Chapter 1 chronological. We start by recalling and introducing the

required notions for the rest of Section 1. We continue by recapitulating the bijection of

Novelli, Pak and Stoyanovskii in Section 2. In Section 3 we present the complexity the-

orems (joint work with Sulzgruber). In Section 4 we present a proof of the ∆-Theorem
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14 1. JEU DE TAQUIN

(joint work with Riegler). We start Section 5 by motivating distribution matrices, and

using them to reprove the ∆-Theorem. Moreover, we present various conjectures con-

cerning the spectrum of distribution matrices and prove some of them for some special

cases. We close the section and chapter with results on the structure of distribution

matrices and distribution vectors.

1.1. Partitions, diagrams and standard fillings. We begin with a couple of

definitions to introduce the objects which we will face throughout the entire first chapter.

Definition 1.1 (Partition). Let n ∈ N. A sequence λ := (λ1, . . . , λm) with

m∑
i=1

λi = n and

for all i ∈ {1, . . . ,m− 1} : λi ≥ λi+1

is called partition of n and denoted by λ ` n. We use superscript notation, i.e. we write

entries which appear more than once only once with their multiplicity as superscript, e.g.

(4, 3, 3, 3, 3, 2, 2, 1) = (4, 34, 22, 1).

We identify a partition with its Young diagram as shown in Figure 2.

Definition 1.2 (Young diagram). Let λ = (λ1, . . . , λm) ` n be a partition. A

Young diagram consists of n cells arranged in m rows such that the ith row contains

λi cells. We address each cell with the vector
(
j
k

)
of its coordinates, where 1 ≤ j ≤ m

and 1 ≤ k ≤ λj, i.e. j denotes the row and i the column. We say that λ is the shape

of the Young diagram.

In an abuse of notation we also call the Young diagram λ to indicate that it is of

shape λ. Formally we understand a Young diagram as a set of cells
(
i
j

)
distinguished by

their coordinates. Note that we will denote functions of cells
(
i
j

)
as functions of their

coordinates i.e. f(i, j) := f(
(
i
j

)
).

The conjugate partition can be understood intuitively by reflecting the corresponding

Young diagram diagonally. Figure 2 shows the Young diagrams of the partition λ =

(4, 32, 23, 12) and its conjugate λ′ = (8, 6, 3, 1).

There are various ways to formalise conjugate partitions. For completeness we give

one way to calculate its entries.

Definition 1.3 (Conjugate partition). Let λ ` n be a partition. The conjugate

partition λ′ = (λ′1, λ
′
2, . . . , λ

′
λ1

) is given by the entries

λ′i := |{λj ∈ λ | λj ≥ i}| .
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Figure 2. A partition and its conjugate

Note that for a partition λ = (λ1, . . . , λm) we have m = λ′1. Hence, we will always

refer to the number of entries of λ by λ′1. And vice verse we use λ1 for the number of

entries of λ′ as we did in Definition 1.3.

The second kind of diagram that we will consider is the double-tailed diamond, which

was introduced by Proctor [Pro99]. It consists of two neighbouring columns such that

the lowest cell of the left column is in the same row as the second cell of the right column.

Definition 1.4 (Double-tailed diamond). Let m ≥ 1 and n ≥ 2 be integers. The

double-tailed diamond (m; 1n) is the set of cells

(m; 1n) := {
(

3−m
0

)
, . . . ,

(
2
0

)
} ∪ {

(
1
1

)
, . . . ,

(
n
1

)
}.

m

 

n

Figure 3. The double-tailed diamond (m; 1n)

The double-tailed diamond is a special case of an inset. Insets were also introduced

by Proctor [Pro99]. An inset can intuitively be understood as a double-tailed diamond



16 1. JEU DE TAQUIN

where the right column was replaced by a Young diagram. Insets are the third class of

diagrams which we will consider.

Definition 1.5 (Inset). Let m ≥ 1, n ∈ N and λ ` n. The inset (m;λ) is the set

of cells

(m;λ) := {
(

3−m
0

)
, . . . ,

(
2
0

)
} ∪ λ.

(Remember that we identified partitions and Young diagrams, hence the above union is

a set of cells.)

m



︸ ︷︷ ︸
λ

Figure 4. The inset (6; 7, 62, 5, 42, 2, 1)

If we know the partition λ we will write insets without the brackets of λ, i.e.

(m;λ1, λ2, . . . , λλ′1) := (m; (λ1, λ2, . . . , λλ′1)).

Now, it becomes clear, why we chose to denote the double-tailed diamond by (m; 1n)

which is now a special case of our notation for insets.

For convenience we define the neck and body of an inset.

Definition 1.6. Given an inset I = (m;λ). The first column without its bottom cell

is the neck of I and denoted by NECK(I), i.e.

NECK(m;λ) := {
(

3−m
0

)
, . . . ,

(
1
0

)
}.

The rest of the inset is called the body of I and denoted by BODY(I), i.e.

BODY(I) := I \NECK(I).
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For any of these diagrams we can consider a skew version which cuts out a part at

the upper left.

Definition 1.7 (Skew-diagram). Let P and Q be diagrams of any of the above kinds

such that Q ⊂ P . The skew-diagram

P/Q := P \Q

is the set-theoretical difference of the sets of cells.

For insets this definition makes only sense if the lengths of the leftmost columns of

P and Q agree. In this case (and canonically for Young diagrams) we call Q an upper

left part of P .

Figure 5. The insets (4; 42, 32, 1), (4; 2, 12) and their skew-inset

Remark 1.8. We will use skew diagrams of an inset (1;λ) and a Young diagram (i)

with one line, i.e. (1;λ)/(i).

There is a canonical partial order ≺ on the cells which we get if we let the cells be

covered by their lower and right neighbours, i.e. a cell is minimal if it is a top left corner

and maximal if it is a bottom right corner. We call a cell that is minimal in this sense

a top cell – this mixture of nomenclature appears to be a little counter intuitive, but

neither calling top cells differently nor reversing the order are reasonable options.

Definition 1.9 (Tableau-order). The covering relation given by(
i
j

)
≺·

(
i+1
j

)
and(

i
j

)
≺·

(
i

j+1

)
for all i, j ∈ Z extends to a partial order ≺ on Z2. We call the restriction of ≺ to any

subset of Z2 (especially to any of the above diagrams) the tableau-order and denote it

by ≺ as well.
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Sometimes we will wish to address certain parts of diagrams. Usually, we want these

parts to be what is known as convex polyominos. Since we are not treating the theory

of polyominos here, we will use the term cell set instead.

Definition 1.10 (convex cell set). Let P be some diagram and I a subset of its cells.

I is called a convex cell set if for two cells of I which are either in the same row or

same column also the cells in between are cells of I, i.e. if

for cells
(
i
k

)
,
(
i
l

)
∈ I with k < l also

(
i

k+1

)
,
(

i
k+2

)
, . . . ,

(
i
l−1

)
∈ I and

for cells
(
k
j

)
,
(
l
j

)
∈ I with k < l also

(
k+1
j

)
,
(
k+2
j

)
, . . . ,

(
l−1
j

)
∈ I.

Note that all diagrams which we treat in this thesis are convex cell sets as well.

Moreover, with the tableau-order they become posets. Unlike the usual drawings of

posets which grow bottom-up, the tableau-order grows from top-left to bottom-right.

We will need a notation for the cells covering or being covered by a fixed cell.

Definition 1.11 (Neighbours). Let P be one of the above diagrams and x ∈ P be a

cell. We define the set of inneighbours of x

N−P (x) := {y ∈ P | y ≺· x},

the set of outneighbours of x

N+
P (x) := {y ∈ P | x ≺· y}

and the set of neighbours of x

NP (x) := N−P (x) ∪N+
P (x).

x x

N−P (x) N+
P (x)

Figure 6. Inneighbours and outneighbours

We will consider the set of linear orders on the cells and its subset of linear extensions

of ≺. These orders can be identified with bijective maps from the set of cells to a set of

integers.
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Definition 1.12 (Filling). Let P be one of the above diagrams. A filling F is a

bijective map

F : P → {N,N + 1, . . . , n− 1, n}.

If P = λ ` n is a Young diagram, the lower bound is N = 1 and the filling is also called

tabloid. If P is a double-tailed diamond (m; 1n) or an inset (m;λ) with λ ` n, the lower

bound is N = 1−m. We denote the set of fillings of P with T(P ). For a cell x ∈ P its

image F (x) is called the entry of x.

If the cell x =
(
i
j

)
is given by its coordinates, we write fillings as functions of the

coordinates, i.e. F (i, j) := F (x).

Definition 1.13 (Standard filling). Let P be one of the above diagrams. A stan-

dard filling S is a filling with the standard property

(1.1) for all x, y ∈ P : x ≺ y implies S(x) < S(y).

Standard fillings of Young diagrams P = λ are also called standard Young tableaux.

We denote the set of standard fillings of P by SYT(P ). We extend this notion to standard

fillings of convex cell sets I meaning that the restriction S|I has the standard property for

cells x, y ∈ I. For convenience we will often say that a filling is standard (respectively

is standard on a convex cell set) rather than saying that it has the standard property

(on a convex cell set).

8

1

9

3
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2
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17
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5
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9
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3

1
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2

16

7

4

11

6

14

10

17

12 13 18

Figure 7. A filling (left) and a standard filling (right)

Note that the standard property can be described by the local property

for all x ∈ P : F (x) < minF (N+
P (x)),

i.e. the entries grow along rows and columns. This can easily be seen from the fact that

this local property imposes the desired inequality along the covering relations which

define ≺.

The set of standard fillings is in an obvious one-to-one correspondence with the linear

extensions of the tableau order.
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Definition 1.14 (S-order). Given a diagram P and a standard filling S ∈ SYT(P ).

The S-order ≺S is given by

(1.2) x ≺S y if and only if S(x) < S(y)

for cells x, y ∈ P .

Remark 1.15. We will be interested in two canonical special cases, namely the row-

wise and the column-wise order. These can be intuitively understood as ordering

the cells lexicographically by their indices – for the row-wise order first by the first

coordinate, for the column-wise order first by the second coordinate. We will always

denote the standard filling corresponding to the row-wise order by R and the row-wise

order by ≺R. Analogously we will always denote C and ≺C respectively in the column-

wise case.

4

3

2

1

7

6

5

10

9

8

12

11

14

13

16

15 17 18

18

15

9

1

16

10

2

17

11

3

12

4

13

5

14

6 7 8

Figure 8. C (left) and R (right) for λ = (8, 6, 3, 1)

1.2. Sorting algorithms – the jeu de taquin. We are going to define sorting

algorithms that transform fillings to standard fillings. Every standard filling defines such

an algorithm. These algorithms process a sequence of steps, each of which exchanges

the entries of two neighbouring cells.

Definition 1.16 (Jeu de taquin step). Given a diagram P and a cell x ∈ P . A

jeu de taquin step is a map σx : T(P ) → T(P ) that exchanges the entry of x with

the minimal entry from N+
P (x). We denote jeu de taquin steps as transpositions, i.e.

multiplicative

σxF := (F (x),minF (N+
P (x)))F.

Since for a given filling F every cell x ∈ P is uniquely identified by its entry F (x) we

may use the convention

σF (x)F := σxF.

Note that we are abusing notation here. σx is not a transposition but is a function

that applies a transposition depending on the argument, i.e. σx without an argument

does not define a transposition. An example of a jeu de taquin step is given in Figure 9.

If we want to use jeu de taquin steps to create a standard filling, it makes sense to

perform it only, if it exchanges F (x) with a smaller entry.
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Figure 9. A jeu de taquin step σ14 = σ(14)

Definition 1.17. Given a diagram P , a filling F ∈ T(P ) and an entry b. Let x be

the cell containing b, i.e. F (x) = b. We say that b is in order in F if

b < minF (N+
P (x)).

As jeu de taquin we understand the procedure of taking an entry and performing jeu

de taquin steps with it until it is in order (which must happen since the diagram has a

bottom right border).

Definition 1.18 (Jeu de taquin). Given a diagram P , a filling F ∈ T(P ) and an

entry b ∈ F (P ). A jeu de taquin is a map jdtb : T(P ) → T(P ) that processes jeu de

taquin steps σb until a filling is reached such that b is in order. We can understand the

jeu de taquin as permutation of the entries, hence, we again denote it multiplicative

jdtbF := σ
r(b,F )
b F,

where r(b, F ) is the minimal, non-negative integer such that b is in order in σ
r(b,F )
b F .

For F (x) = b we can again use the conventions

jdtxF := jdtbF and

r(x, F ) := r(b, F ).

Moreover, if jdtbF (y) = b we say that b dropped from x to y.

Note that we used the fact that b uniquely defines x for given F already for the

well-definedness of r(b, F ) and not only for the mentioned convention. Actually, r(b, F )

may as well be zero. Further note, that in performing a jeu de taquin the definition of

r(b, F ) guarantees that we do not run into a situation where the transposition is not

defined (because there are no outneighbours).

Consider a diagram P , a filling F ∈ T(P ) and an upper left part Q of P such

that the restriction F |P/Q of the filling to the skew diagram is standard. We choose a

maximal cell x of Q (i.e. x is bottom right) and play the jeu de taquin with its entry

F (x). Because the jeu de taquin step exchanges an entry with the smaller entry of the

outneighbours, the convex cell set, on which jdtxF is standard, did grow by the cell x,

i.e. jdtxF |P/(Q\{x}) is standard. This motivates the following definition.
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Figure 10. A jeu de taquin jdt14 = jdt(14)

Definition 1.19 (≺S-algorithm1). Given a diagram P and a standard filling S ∈
SYT(P ). The ≺S-algorithm JDTS is given by

JDTS := jdtxn−N+1
jdtxn−N · · · jdtx1 ,

where xn−N+1 ≺S xn−N ≺S · · · ≺S x1 are the cells of the diagram.

Remark 1.20. It is a bit unlucky that the cells are indexed reverse to the tableau-

order. But since the ≺S-algorithm processes the cells in this reverse order, and the

standard property is irrevocable, we have to reverse the indices somewhere – and I

believe that this is the least uncomfortable place to do so.

From the above it is clear, that every ≺S-algorithm applied to any filling has a

standard filling as output, i.e.

JDTS : T(P )→ SYT(P ).

From here on we will address JDTR as the row-wise algorithm and analogously

JDTC as the column-wise algorithm (remember Remark 1.15). Figure 11 gives an

example of the application of the column-wise algorithm.

6 8 3

2 1

7 5

4

6 1 3

2 5

7 8

4

6 1 3

2 5

4 8

7

1 3 6

2 5

4 8

7

Figure 11. Application of the column-wise algorithm

1.3. Distribution vectors. We devote a section on its own to the definition of

the distribution vector, because this notion is the central object of the investigations in

Chapter 1.

Definition 1.21 (Distribution vector). Given a diagram P and an algorithm defin-

ing standard filling S ∈ SYT(P ). Let U ∈ SYT(P ) and let zU (P, S) count the fillings

1spoken: S-order-algorithm
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F ∈ T(P ) that are sorted to U by the ≺S-algorithm, i.e.

zU (P, S) := |{F ∈ T(P ) | JDTSF = U}| .

The distribution vector z(P, S) collects these multiplicities, i.e.

z(P, S) := (zU (P, S))U∈SYT(P ) .

If P is an inset (or double-tailed diamond), all standard fillings must agree on the

the entries of the first m − 1 cells (since these are liniearly ordered). Hence, we can

as well specify and index the distribution vector of an inset P = (m;λ) with standard

fillings S,U ∈ SYT(1;λ) of its body.

We need one more useful notation to describe a uniform distribution. For k ∈ N let

1k be the vector of dimension k consisting only of 1’s, i.e.

1k :=


1
...

1

 , dim(1k) = k.

If there is no question about k, it is unknown, or there is no need to specify it, we will

write 1 rather than 1k.

Definition 1.22 (Uniform distribution). Given a diagram P and a standard fill-

ing (of the body) S ∈ SYT(P ) (respectively S ∈ SYT(BODY(P ))). We say that the

≺S-algorithm is uniformly distributed if all components zU (P, S) of the distribution

vector agree, i.e. if there is a constant c(P ) such that

z(P, S) = c(P ) 1.

Note that the matrix of multiplicities that arises if one understands S as index, is

not called distribution matrix! If we speak of a distribution, we address a property of a

specific algorithm, and hence we fix S. The matrix of multiplicities for Young diagrams

was studied by Fischer [Fis02] and found to be symmetric.

2. The Novelli-Pak-Stoyanovskii bijection

2.1. The hook-length formula. Frame, Robinson and Thrall [FRT54] gave a

surprisingly easy formula for the number of standard Young tableaux of a given shape

λ. We define

fλ := |SYT(λ)| .

Definition 2.1 (hook-length). Let λ ` n be a Young diagram and x ∈ λ be a cell.

We call the set aλ(x) (and its size aλ(x)) of cells to the right of x the arm of x. The

set lλ(x) (and its size lλ(x)) of cells below x is called the leg of x. The union of the
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singleton {x} with the arm and leg of x is the hook hλ(x) of x. The size hλ(x) of the

hook of x is the hook-length of x.

If x =
(
i
j

)
is given by its coordinates, we write the above as a functions of the

coordinates and get

aλ(i, j) := aλ(
(
i
j

)
) = λi − j,

lλ(i, j) := lλ(
(
i
j

)
) = λ′j − i and

hλ(i, j) := hλ(
(
i
j

)
) = aλ(i, j) + lλ(i, j) + 1.

x

1

2

4

5

6

8

9

11

1

2

3

5

6

8

1

2

4 1

Figure 12. The hook of x and the hook-lengths

We formulate the famous hook-length formula as theorem.

Theorem 2.2 (hook-length formula). Let λ ` n be a Young diagram, then the num-

ber of standard Young tableaux of shape λ is

fλ =
n!∏

x∈λ hλ(x)
.

There are various proofs for this result. One outstanding proof was provided by

Novelli, Pak and Stoyanovskii [NPS97] using the concept of the jeu de taquin. We

recapitulate their proof in the following section.

2.2. The bijection. Novelli, Pak and Stoyanovskii introduced objects called hook

tableaux to construct a bijective proof of the hook length formula.

Definition 2.3 (Hook tableau). Let λ ` n define a Young diagram. A hook

tableau is a map H : λ→ Z such that for every x ∈ λ

(2.1) H(x) ∈ {−lλ(x),−lλ(x) + 1, . . . , aλ(x)}.

We denote the set of hook tableaux of shape λ by H(λ).
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Obviously, the hook tableaux of shape λ are counted by

|H(λ)| =
∏
x∈λ

hλ(x).

The proof gives a bijection between tabloids and pairs of a standard Young tableau

and a hook tableau (all of the same shape λ). Since there are as many tabloids as

permutations we get

n! = |T(λ)| = |SYT(λ)×H(λ)| = fλ
∏
x∈λ

hλ(x)

and the hook-length formula follows.

Before we investigate the bijection, we need some useful nomenclature. Later on

we will define the reverse procedure for the jeu de taquin for which the notions are

similar enough to introduce them right here. The set of cells which have F (x) as entry

at some point during the (backward) jeu de taquin (b)jdtx is called (reverse) path.

The (backward) jeu de taquin steps are canonically (depending on their direction) called

north/east/south/west steps. If y ∈ a(x) we say x is west of y and y is east of x.

Analogously, if y ∈ l(x) we say that x is north of y and y is south of x. We say that

x is weakly west/. . . of y if it is west/. . . or x = y. A cell x is (weakly) west/. . .

of the (reverse) path p if there is a cell y ∈ p such that x is (weakly) west/. . . of y. If

a path p has cells in rows where also the path q has cells, we say that p is (weakly)

west/east of q if in these rows all cells of p are (weakly) west/east of some cell in q.

Analogously, if a path p has cells in columns where also the path q has cells, we say

that p is (weakly) north/south of q if in these columns all cells of p are (weakly)

north/south of some cell in q. Note the asymmetry of these notions for paths.

Example 2.4. Figure 13 shows a black path p and the grey path q

p = {
(

2
2

)
,
(

3
2

)
,
(

3
3

)
,
(

3
4

)
,
(

3
5

)
,
(

4
5

)
,
(

5
5

)
} and

q = {
(

2
2

)
,
(

2
3

)
,
(

3
3

)
,
(

3
4

)
,
(

3
5

)
,
(

3
6

)
,
(

3
7

)
,
(

3
8

)
}

and cells x, y and z (we will always print the names of cells in the upper left corner to

distinguish them from entries). Note that two such paths cannot simultaneously appear

in the NPS-algorithm since they start in the same cell and are different, nevertheless

they are suitable examples for the above definitions.

The cell x is east, west, weakly south and weakly north of p but neither south nor

north of it. x is south, west, weakly north and weakly east of q. Moreover, x is north of

z.

The cell y is east of p and south of q. Moreover, y is east of z.
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The cell z is south and west of p and south of q. It is also south of x and west of y

but x and y are in none of these relations.

The path p is west and weakly south of q, but q is only weakly east and weakly north

of p because the cell
(

2
2

)
is not east of p.

y

x

z

Figure 13. Some paths and cells

Prepared with these notions we are going to have a look at the actual algorithm

that defines the bijection. Usually, the algorithm is described in a way such that it

produces a sequence of pairs of a tabloid and a hook-tableau both of shape λ. We will

right here take a step towards understanding the jeu de taquin from the point of view of

distribution matrices by adding a cell in every step such that we get a sequence of pairs

of skew tableaux. As usual we use the column-wise algorithm.

Algorithm 2.5 (Novelli-Pak-Stoyanovskii algorithm). We start with a tabloid T ∈
T(λ). Let xn ≺C xn−1 ≺C · · · ≺C x1 be the cells of λ in column-wise order and let

µk := {xk+1, xk+2, . . . , xn}

for 0 ≤ k ≤ n be Young diagrams (where we mean µn = ∅). We consider the skew-

diagrams

νk := λ/µk.

We will construct a sequence of pairs (Uk, Hk) of an injection Uk : νk → {1, . . . , n}
and a map Hk : νk → Z satisfying (2.1). For 0 < k < n we call Uk an intermediate

filling2 and Hk an intermediate hook tableau (we do not give a name to H0 and U0

2We defined fillings as bijections, nevertheless we use the term here for injections to avoid an unnecessary
complicated nomenclature.
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since they are empty). The pair (U,H) := (Un, Hn) is the output of the algorithm. For

1 ≤ k ≤ n we are going to define operations

addTxk : Uk−1 7→ Uk and

trackTxk : Hk−1 7→ Hk.

We define addTxk as follows: First we add the cell xk with the entry T (xk) to Uk−1, i.e.

we build the map

uk : νk → {1, 2, . . . , n}, x 7→

T (x) if x = xk

Uk−1(x) otherwise.

Then we play the jeu de taquin with the new cell, i.e.

Uk = jdtxkuk.

Figure 14 illustrates an application of addT
(22)

.
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8

9

2
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18
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8
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16
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13

3

8

9

2

12

17

15

11

7

1

4

18

6

5 10

addT
(22)

Figure 14. A tabloid T and the operator addT
(22)

in the column-wise algorithm

We need to store some tracking information in order to be able to reverse the proce-

dure later on. To do so, we apply trackTxk : Hk−1 7→ Hk as soon as addTxk was performed.

Let xk =
(
i
j

)
and

(
i′

j′

)
be the cell where the entry T (xk) came to rest. We construct Hk

from Hk−1 by shifting the i′ − i northern cells of the westernmost column by one to the

north, subtracting 1 from their entries and adding a cell with entry j′ − j at position(
i′

j

)
, i.e.

Hk : νk → Z,
(
r
s

)
7→


Hk−1(r + 1, s)− 1 if i ≤ r < i′ and s = j

j′ − j if r = i′ and s = j

Hk−1(r, s) otherwise.

We illustrate this step in Figure 15 where the grey path illustrates the way taken by

the new entry and the grey cells are shifted northwards.
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f

e

d

i

i′

j j′

f−1

e−1

d−1

j′−j

i

i′

j j′

trackT
(22)

Figure 15. Modifying the intermediate hook tableau

The nth cell that is added is xn =
(

1
1

)
. After it was processed, the algorithm termi-

nates with a pair (U,H) of a standard Young tableau U and a hook-tableau H both of

shape λ. The algorithm induces a function that we denote by

NPS : T(λ)→ SYT(λ)×H(λ), T 7→ (U,H).

Novelli, Pak and Stoyanovskii [NPS97] showed that this map is a bijection. We will

recapitulate the proof adapted to our notation roughly following Sagan [Sag01]. Before

we do so, we give an example of all steps of an algorithm in Figure 16.

It is not difficult to see that all Hk have the property (2.1). Namely an entry Hk(x) in

the (intermediate) hook tableau is calculated by starting with a number α ∈ {0, 1, . . . , a}
where a is the arm of a cell somewhere in the leg of x (and hence α ≤ a ≤ a(x)) and

then subtracting β times 1, where 0 ≤ β ≤ l(x). It immediately follows that

−l(x) ≤ α− β ≤ a(x).

The proof of bijectivity runs by giving the inverse

SPN : SYT(λ)×H(λ)→ T(λ),

which reverses the algorithm step by step. First we define the procedure reversing the

jeu de taquin.

Definition 2.6 (backward jeu de taquin step). Given a diagram P and a cell x ∈ P
and a filling F ∈ T(P ). Let b = F (x). A backward jeu de taquin step is a map

θx : T(P )→ T(P ) that exchanges b with the largest entry from its inneighbours. Like jeu
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8 7 5 4

10 11 3

9 6

1 2
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8 7 5 4

10 11 3

9 6
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U0 H0
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0 0
H10
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= U = H

addT
(14)

trackT
(14)

addT
(23)

trackT
(23)

addT
(13)

trackT
(13)

addT
(42)

trackT
(42)

addT
(32)

trackT
(32)

addT
(22)

trackT
(22)

addT
(12)

trackT
(12)

addT
(41)

trackT
(41)

addT
(31)

trackT
(31)

addT
(21)

trackT
(21)

addT
(11)

trackT
(11)

Figure 16. An evaluation of the column-wise algorithm

de taquin steps we write backward jeu de taquin steps as transpositions, i.e. multiplicative

θx F := (b,minF (N−P (x))) F.
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Since for a given filling F every cell x ∈ P is uniquely identified by its entry b we may

again use the convention

θb F := θx F.

We compose backward jeu de taquin steps to a backward slide.

Definition 2.7 (backward jeu de taquin). Given a diagram P and a cell x ∈ P

and a filling F ∈ T(P ). Let again b = F (x). The backward jeu de taquin is a map

bjdtb : T(P )→ T(P ) that performs backward jeu de taquin steps θb until b reaches a top

cell. We can understand the backward jeu de taquin as permutation of the entries hence

we again denote it multiplicative

bjdtb F := θ
s(b,F )
B F,

where s(b, F ) is the minimal, non-negative integer such that the cell (θ
s(b,F )
B F )−1(b)

containing b is a top cell. Again, we can use the conventions

bjdtx F := bjdtb F and

s(x, F ) := s(b, F ).

Unlike the jeu de taquin the backward jeu de taquin does not move an entry to

somewhere in the diagram, but it moves it to a top cell. The choice of the inneighbour

ensures, that if the tableau was standard then after the slide the only cell violating the

standard property is the one in which the entry b ends up. Moreover, the jeu de taquin

and backward jeu de taquin are inverse procedures in the following sense.

Lemma 2.8. Let P be a (skew) diagram, x ∈ P a ≺-minimal cell, F ∈ T(P ) a filling

such that the only cell violating the standerd property is x (i.e. F |P\{x} is standard).

Let x have the entry b = F (x), then

F = bjdtb jdtb F.

Proof. To see this, it is enough to see that “inside a standard convex cell set” the

backward jeu de taquin step reverses a jeu de taquin step. Consider the cells
(
i
j

)
,
(
i−1
j+1

)
and

(
i

j+1

)
with entries b = F (i, j), a = F (i− 1, j+ 1) and c = F (i, j+ 1). Suppose there

is a jeu de taquin east step

σb F = (b, c) F.

I.e. a < c < b. Then in (b, c) F the entry of
(
i
j

)
will be c and hence larger than the entry

of
(
i−1
j+1

)
which is still a, hence

θb (b, c) F = (b, c)(b, c) F = F.

Figure 17 shows this situation. Analogously, the same holds for a south step and of

course also if not both neighbours are in the diagram. �



2. THE NOVELLI-PAK-STOYANOVSKII BIJECTION 31

b c

a

i

j

c b

a

i

j

F (b, c) F

σb

Figure 17. A jeu de taquin step shifts the location for the order relation

We can use the backward jeu de taquin to assign to every entry of a standard filling

of any (skew) diagram a unique path to a northwestern corner. It is clear, that after

a backward jeu de taquin step (a, b) of the entry a the rest of the reverse path of a is,

what would have been the reverse path of b. Hence, the collection of backward jeux de

taquin of a standard filling defines a binary forest on the set of cells with the ≺-minimal

cells as roots (see Figure 18 (left)).

Definition 2.9 (path-order). Let P be a diagram and S ∈ SYT(P ). Let B1, . . . , Bs

be the binary trees in the above mentioned forest with roots rt(Bk) =
(
ik
jk

)
. For x ∈ P

we denote the tree containing x by BS(x). Moreover, if x is the root of BS(x) we call

BS(x) the x-tree. We impose a left-to-right order ≺l-t-r on the binary trees, i.e.

Bi ≺l-t-r Bj if and only if ji < jj .

On the vertices of the binary trees Bi we impose the usual in-order ≺in, which is given as

follows: consider the cell x ∈ V(Bi), all cells in the south subtree are ≺in smaller than x

and all cells in the west subtree are ≺in-greater than x (here V is the function returning

the vertex set of a (directed) graph). For details on the in-order we refer to [Knu97].

The path-order ≺pS is a linear order on the cells, that sorts the cells first by their

binary tree and then according to the in-order, i.e.

x ≺pS y if and only if

 x ≺in y if BS(x) = BS(y)

BS(x) ≺l-t-r BS(y) else.

As example the 1-based indices of the cells under ≺pS corresponding to the standard

filling on the left side of the same figure can be found in Figure 18 (right).

We are now well prepared to reverse the NPS-algorithm.

Algorithm 2.10 (inverse Novelli-Pak-Stoyanovskii algorithm). We proceed by in-

versing every step of the NPS-algorithm. Hence, we have to explain the operations

slideout
(U,H)
x and backtrack

(U,H)
x which prospectively reverse addTx and trackTx .
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3 7 17 26

4 10 18

5 9 19 21

6 11 12 22

8 13 25

14 15

16 23

20 24

15 21 23 24

14 20 22

9 13 17 19

8 12 16 18

7 10 11

5 6

2 4

1 3

Figure 18. A standard filling S and the corresponding indices of ≺pS

If we know at some point of the NPS-algorithm the pair (Uk, Hk) and want to

determine the pair (Uk−1, Hk−1) we have to figure out to which cell the entry T (xk) has

dropped. Näıvely, these could be the cells described as follows: If xk =
(
i
j

)
, we look for

all cells
(
il
j

)
with Hk+1(il, j) ≥ 0, one of the cells which are Hk+1(il, j) to the east from

there must be the correct one. We collect them in the set of candidate cells

Cxk = {
(
il
jl

)
| Hk+1(il, j) ≥ 0, jl = j +Hk+1(il, j)}.

From this set we choose the ≺pUk -maximal cell y =
(
i′

j′

)
and set

uk = bjdty Uk.

Finally, slideout
(U,H)
xk deletes the cell xk to get Uk−1 and we record T (xk) = Uk(y).

It is easy to reverse trackTxk by some operation backtrack
(U,H)
xk that deletes the cell(

i′

j

)
and shifts the cells

(
i
j

)
, . . . ,

(
i′−1
j

)
of the intermediate hook tableau Hk one to the

south and increases their entries by 1, as illustrated in Figure 19.

Again the grey path (with the white arrow-tip) indicates the backward-path and the

grey cells are the ones shifted to the south with incremented entries.

The inverse Novelli-Pak-Stoyanovskii algorithm induces a map

SPN : SYT(λ)×H(λ)→ T(λ).

We reverse our example from Figure 16 in Figure 20.

A priori it is unclear why this should work for three reasons. Using the above notation

we formulate these problems:

(P1) the cell y could be no vertex of the xk-tree,
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f

e

di

i′

j j′

f+1

e+1

d+1

i

i′

j j′

backtrack
(U,H)
x

Figure 19. Reversing the modification of the intermediate hook tableau

(P2) the entries which are increased and moved southwards by backtrack
(U,H)
xk could

violate (2.1) and

(P3) T (xk) could have been sorted to a cell in Cxk other than y.

If we can overcome these problems it is clear by the definitions of the algorithms and

Lemma 2.8 that NPS−1 = SPN and the proof is complete.

In the current setting we face at most two binary trees. To be more precise, if we

add the top cell of a column or a cell in the easternmost column, there is only one root

and hence only one tree, otherwise there are two roots and hence two trees. Anyway, the

tree containing the smallest entries under ≺pUxk is the xk-tree. We will later on resolve

problem (P1) by proving that Cxk ⊂ V(BUk(x)). But this would also resolve problem

(P2) in the following way.

Lemma 2.11. Using the above notation and requiring that Cxk ⊂ V(BUk(xk)) we have

that backtrack
(U,H)
xk (Hk) satisfies (2.1).

Proof. We use reverse induction on k. H = Hn satisfies (2.1) and it is clear, that

so does Hm when xn is in the first row. We prove that backtrack
(U,H)
xk (Hk) satisfies 2.1

if Hk does.

Suppose for contradiction that backtrack
(U,H)
xk (Hk) violates (2.1). Then there must

be a cell
(
i
j

)
in the westernmost column of νk−1 – actually it must be one of the cells

that were shifted to the south – with

backtrack(U,H)
xk

(Hk)(i, j) /∈ {−l(i, j), . . . , a(i, j)}.
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Figure 20. Reversing the column-wise algorithm

It is impossible that the lower bound is violated since

backtrack(U,H)
xk

(Hk)(i, j) = Hk(i− 1, j) + 1 ≥ −l(i− 1, j) + 1 =

= −(l(i, j) + 1) + 1 = −l(i, j).
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Hence, the upper bound must be violated, i.e.

backtrack(U,H)
xk

(Hk)(i, j) = Hk(i− 1, j) + 1 > a(i, j) ≥ 0.

Hence, Hk(i− 1, j) is non-negative and, hence,

z =
(

i−1
j+Hk(i−1,j)

)
∈ Cxk .

Since we required Cxk ⊂ V(BUk(xk)), there is a reverse path p from z to xk (this is

illustrated in Figure 21). And since Hk(i− 1, j) ≥ a(i, j), every backward-path starting

in a row southern of the ith row must join p with a north step. Hence, for all the cells

z′ in these rows we have z′ ≺pUk z and hence none of them is y. But then the cell
(
i−1
j

)
is none of the cells shifted to the south – which it must have been. �

z

xk

i

j

Figure 21. possible positions for the cell z

We will resolve problem (P1) by induction. To do so we need an argument connecting

the paths of the jeux de taquin starting in xk and xk+1. Actually we have already met

this argument in Figure 17, but we have another look at it on a larger scale. The upper

part of Figure 22 uses grey arrows to emphasise the standard property and a black path

p. The middle part of Figure 22 has additional arrows in black to emphasise the relations

generated by the jeu de taquin along this path.

On the one hand this picture again illustrates that the backward jeu de taquin indeed

reverses the jeu de taquin, because the reverse path must always choose the tip of a black

arrow over its shaft. On the other hand the next jeu de taquin must choose the shafts

of these arrows over their tips (if it runs into the situation to choose between them) and

hence the path q must stay weakly north of p. We illustrate this in the lower part of
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Figure 22 by displaying only the relations generated by p together with p in grey and a

possible path q in a darker grey.

Figure 22. Additional relations between entries
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We reverse this picture to conclude the following lemma.

Lemma 2.12. Let x̄ =
(
i
j

)
and x =

(
i+1
j

)
. Suppose x̄′ is the path-order-maximal cell

in Cx̄ and x′ is the path-order-maximal cell in Cx. Further suppose that the reverse path

q produced by bjdtx̄′ ends in x̄ and the reverse path p produced by bjdtx′ contains a cell

y =
(
k
l

)
south of q. Then p ends in x.

Proof. We show that p has a cell in column l − 1 (if l > j) that is south of q.

Iteratively it follows that p contains a cell in column j that is south of q and hence

contains x. Suppose q takes a west step from ȳ =
(
k′

l

)
to z̄ =

(
k′

l−1

)
, then we know that

after this step the entry of ȳ will be smaller than the entry of z′ =
(
k′+1
l−1

)
and hence p

must take a west step from y′ =
(
k′+1
l

)
to z′ unless it did so somewhere in the leg of y′.

Either way p contains a cell to the south of z̄. �

Figure 23 illustrates the argument from the proof of Lemma 2.12. The upper part

shows a path q and the relations generated by its slides. The lower part shows a path

p, the relations that must have been there before the sliding procedure and again the

relations which were generated by q. The emphasised arrows illustrate how a west step

of q forces a west step of p in the row below. That the cells x′ and x̄′ agree is coincidence.

We can now use Lemma 2.12 to resolve problem (P1) as promised before.

Proposition 2.13. All candidate cells in Cx are vertices of the x-tree.

Proof. As mentioned before the proposition is true, if x is in the first row. We

induce southwards along a column. We can suppose by induction that for the addition

of x̄ =
(
i
j

)
= xk+1 all candidate cells in Cx̄ lie in the x̄-tree. Let x =

(
i+1
j

)
= xk be the

south neighbour of x̄. We have to prove that all candidate cells in Cx lie in the x-tree.

Let ȳ =
(
i′

j′

)
be the path-order-maximal element in Cx̄. By induction we know that there

is a reverse path q from ȳ to x̄. We will prove that every reverse path p from a candidate

cell y in Cx contains a cell to the south of q and hence by Lemma 2.12 is contained in

the x-tree.

We know that the candidate cells in Cx̄ other than ȳ are ≺pUk+1
-smaller than ȳ in the

path-order. Hence, they are either a cell on p \ {ȳ} such that ȳ lies in an east subtree

(i.e. cells after a west step of p) or they lie in a south subtree of such a cell. We call the

cells which could be candidate cells candidate-suspects. By the above argument we

find three groups of candidate-suspects for x̄, namely the cells

(S1) in the rows from i to i′ − 1 west of q,

(S2.1) in the rows strictly below i′ south of q and

(S2.2) in the rows strictly below i′ but not south of q.
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x̄′y

y′

ȳ

z′

z̄

x̄

x′y

y′

ȳ

z′

z̄x

Figure 23. Additional relations between entries

Each of these properties defines a convex cell set. We do not call ȳ a candidate-suspect,

since we know that it is a candidate cell, but therefore we know that there is no other

candidate cell in the row i′. We know that the cells described by (S1) and (S2.1) are in

the x̄-tree. The (S2.2)-cells need not to, but still they could lie in the x̄-tree.

Considering backtrack
(U,H)
x̄ , we know that the candidate cells for x̄ in the convex cell

sets (S2.x) are also candidate cells in Cx and if we move a candidate cell in Cx̄ that lies

in the convex cell set (S1) one to the south and one to the east, we get a candidate cell
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in Cx. Moreover, there could be −1’s in the first row of the hook-tableau which grow to

0’s and we could get additional candidate cells. The latter two cases are described by

the property

(T1) that a cell lies in the rows from i+ 1 to i′ south of q.

Hence, the candidate-suspects for Cx are described by (T1), (S2.1) and (S2.2). The

candidate cells in the convex cell sets (T1) and (S2.1) are to the south of q and it

remains to show that the reverse paths starting in the candidate cells in the convex cell

set (S2.2) contain a cell south of q. Consider the convex cell set $ = {z ∈ λ | ȳ ≺ z}
containing the convex cell set (S2.2) and the arm and leg of y. The backward jeu de

taquin from y does not affect the entries in $ at all, hence, the reverse paths starting in

the convex cell set (S2.2) do not depend on whether we want to process x or x̄. These

reverse paths have to leave $ and hence, they reach at some point the arm or the leg

of ȳ. The paths reaching the arm cannot join q with a north step, hence, they are ≺pUk -

larger than ȳ in the corresponding path-order and, hence, they contain no candidate

cells. Thus all reverse paths starting in a candidate cell (for both x and x̄) contain a cell

in the leg of ȳ which is south of q. �

Figure 24 shows a reverse path and the corresponding convex cell sets containing

the candidate-suspects described by (T1), (S1), (S2.1) and (S2.2). Figure 25 shows the

convex cell set $ with some possible parts of reverse paths.

After we resolved (P1) we are left with problem (P3). It is now obvious that NPS step

by step reverses SPN, because in this direction it is clear which cell to use in every step.

Unfortunately, so far we have neither that NPS is injective, nor that SPN is surjective

– both would immediately finish the proof. Hence, we have not much of a choice but

to prove that the path-order-maximal cell is indeed the correct candidate cell. In order

to do so, we will first refine the argument from Figure 22 to the technical lemma below

and then wonder where candidate cells come from.

Lemma 2.14. Let T ∈ T(λ) and
(

1
j

)
= xs ≺ xs−1 ≺ · · · ≺ xr =

(λ′j
j

)
be the cells of

the jth column of λ. For r ≤ t ≤ s let pt be the path generated by addTxt. Fix r ≤ k ≤ s

and consider the paths pk and pk for k < k ≤ s.

(1) If pk contains an east step ek = (
(ik
j′

)
,
( ik
j′+1

)
) from column j′ to column j′ + 1

and some pk contains an east step ek = (
(
ik
j′

)
,
(
ik
j′+1

)
) between the same columns,

then ek is north of ek i.e. ik < ik.

(2) pk enters column j′ north of all cells of pk.

Proof. We argued before that these statements are true for k = k−1 (see Figure 22).

We need to extend the argument marginally to see that it holds for k = k + t where pk
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ȳ

x̄

(S1)

(S2.2)(S2.1)

ȳ

x̄

(T1)

(S2.2)(S2.1)

Figure 24. Candidate-suspects

is the first path after pk (in the NPS-algorithm) that contains an east step between the

columns in question.

First, we observe that (2) is fulfilled emptily if pk has no cells in column j′. Secondly,

we observe that it is true for j′ = j. Thirdly, we observe that (2) holds for j′ > j if (1)

holds for j′ − 1. Hence, we have to show that if (2) holds for column j′ so does (1).

Now suppose pl is the first path after pk that contains an east step from column j′ to

column j′ + 1. We know that neither of the paths pt for k > t > k has reached either of

the cells
(ik
j′

)
or
(ik−1
j′+1

)
since, after the jeu de taquin producing the path pk was processed

the entry of
(ik−1
j′+1

)
was smaller than the entry of

(ik
j′

)
, hence these paths would have

had to reach
(ik−1
j′+1

)
first – but neither did since neither contains the necessary east step.
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ȳ

x̄

$

Figure 25. The convex cell set $

Hence, the east step of pk from column j′ to column j′+1 must either be (
(ik−1
j′

)
,
(ik−1
j′+1

)
)

or north of it and the induction is complete. �

We are going to work from south to north trough a column and consider the positions

of candidate cells to resolve the final problem (P3).

Proposition 2.15. Let the cells xs, . . . , xr be as in Lemma 2.14. Let r ≤ k ≤ s

and consider the application of the NPS-algorithm to the tabloid T of shape λ and let

(Uk, Hk) be the intermediate pair after xk was processed. Then the entry T (xk) dropped

to the ≺pUk-maximal candidate cell in Cxk .

Proof. Suppose the entry T (xk) drops from xk to x′k =
(
i′

j′

)
along the path pk. The

statement obviously holds for k = r since there will be a unique candidate cell. For

k > r there are three types of candidate cells in Cxk , namely

(C1) the cells
(
i
j

)
with i < i′ such that there is a candidate cell

(
i+1
j+1

)
∈ Cxk−1

,

(C2) the cells
(
i
j

)
∈ Ck−1 with i > i′ and

(C3) the cell x′k.

We claim that

(1) the cells described by (C1) are west and weakly south of pk (and hence ≺pUk -

smaller than x′k) and

(2) the reverse paths from cells described by (C2) contain a cell south of pk (and

hence also these cells are ≺pUk -smaller than x′k).

We first have a look at the (C1)-cells. The corresponding candidate cells in Cxk−1

are either west and weakly south of some path pt with r ≤ t < k by induction or they

are some target cell of one of these paths which had been (C2)-cells since. Either way
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the candidate cell in Cxk (which is by one to the west and north of it) is west and weakly

south of pk by Lemma 2.14 (1).

We split the set of cells described by (C2) in

(C2.1) the cells
(
i
j

)
with j < j′ and

(C2.2) the cells
(
i
j

)
with j ≥ j′.

Obviously, the (C2.1) cells are ≺pUk -smaller than x′k since they are south of pk.

Let pt with t > k be the last path that reached the convex cell set (C2.2) so far. By

induction the cell x′t where it ended was the ≺pUt-maximal cell among the cells in Cxt .
By induction the (C2) cells of x′t have a cell to the south of pt in their reverse path. Also

by induction the (C1) cells of x′t are west and weakly south of pt. Since pt was the last

path reaching the convex cell set (C2.2) of x′k the cells and reverse paths there are still

the same and x′t is ≺pUt- and ≺pUk -maximal among the (C2.2) cells of x′k. By Lemma 2.14

(2) the reverse path from x′k has a cell in column j′ that is strictly to the south of the

cell where pk entered this column. This finishes the proof. �

Figure 26 shows a possible development of paths, candidate cells with the known

parts of their reverse paths, additional relations and the first column of the intermediate

hook-tableaux while processing a column.

2.3. Notes on the algorithm. We used the column-wise order to define the NPS-

algorithm. This raises the natural question if we could have used other orders as well.

Obviously, we could have used the row-wise order, since the row-wise algorithm cor-

responds to the column-wise algorithm of the conjugated partition. We observe that

one of the important ingredients of the NPS-algorithm is that the cells of a column are

processed one after the other. Considering the operation trackTx , we see that a column

of the hook-tableau is calculated in one series of steps and not touched after the column

was completed. Before the column was processed the convex cell set that was sorted so

far was a Young diagram and afterwards it is as well. We conclude that we can conjugate

the sorted convex cell set (and with it the hook-tableau) between treating two columns

and the algorithm would still yield a bijection.

Remark 2.16. If we build up a standard Young tableau S by in each step choosing

either the topmost non-full row or the leftmost non-full column and fill it with the

least possible entries, then the corresponding order ≺S is suitable for the NPS-bijection.

Figure 27 shows an example of a standard Young tableaux defining such an order.

Finally, we want to explain, why the above proof does not work for insets. The main

problem is that a reverse path q containing the east step (
(

2
1

)
,
(

2
0

)
) cannot force a reverse

path to its south to take an east step to the south of this east step. Hence, the conclusion
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Figure 26. Processing a column

that the next reverse path p in the induction contains a cell in the first column that is

south of q is wrong, and thus, the proofs of Propostion 2.15 and Lemma 2.12 fail.

Additionally, paths taking the west step (
(

1
0

)
,
(

1
1

)
) cannot force later paths to take a

west step to the north of this west step. Hence, the proof of Lemma 2.14 does not work.

This latter problem baulks the definition of the hook-tableau, but as we will see later, it

is no problem for distribution vectors, i.e. it does not hinder the uniform distribution.
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Figure 27. Other order for which the NPS-algorithm works

3. Complexity theorems

Considering the uniform distribution of the column-wise (or row-wise or. . . ) algo-

rithm one can understand JDTS as a method to get a random standard Young tableau

from a random permutation. This observation motivated Krattenthaler and Müller

[KM13] to consider the runtime of the algorithm and they came up with the surprising

conjecture that for any fixed λ the column-wise and row-wise algorithm agree on their

average runtime.

Remember Definition 1.18 and Definition 1.19 (jeu de taquin and ≺S-algorithm) and

observe, that it makes no difference whether we interpret JDTS as sorting algorithm

operating on tabloids of shape λ or as insertion algorithm that adds a cell xi before the

application of jdtxi . Especially, recall that the exponents r(xi, Fi) denote the number of

jeu de taquin steps a jeu de taquin executes.

Recall further that given a tabloid T of shape λ and a standard Young tableau S and

letting xn ≺S xn−1 ≺S · · · ≺S x1 be the cells of λ the NPS-algorithm creates a sequence

of intermediate fillings

Ui = addTxi · · · addTx1 ∅

and along with it the fillings ui such that Ui = jdtxiui.

Definition 3.1 (Runtime). Let T be a tabloid of shape λ ` n and S ∈ SYT(λ). The

runtime rS(T ) of JDTS(T ) is the total number of jeu de taquin steps that appear while

T is sorted with the ≺S-algorithm, i.e.

rS(T ) :=
n∑
i=1

r(xi, ui).
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We can now give a name to the average runtime.

Definition 3.2 (Complexity). With the setting of Definition 3.1 we define the com-

plexity of the ≺S-algorithm as

C(S) :=
1

n!

∑
T∈T(λ)

rS(T ).

With this nomenclature the conjecture of Krattenthaler and Müller reads as follows.

Conjecture 3.3 (Krattenthaler, Müller). For a given shape λ the row-wise and

column-wise algorithm have the same complexity, i.e.

C(C) = C(R).

In joint work with Sulzgruber [NS13] we could confirm Conjecture 3.3 by proving

the following stronger result.

Theorem 3.4 (Complexity Theorem). Let U, V ∈ SYT(λ) then

z(λ,U) = z(λ, V ) implies that C(U) = C(V ).

The rest of Section 3 follows [NS13] closely.

In order to prove the Complexity Theorem we will need some more notation which

we are going to introduce in Section 3.1. We will then present two proofs in Section 3.2

and Section 3.3. In Section 3.4 we give an example, state some notes and refer to further

results.

3.1. Additional notation. The following definition can be understood as the sec-

ond part of Definition 2.1.

Definition 3.5 (height). Let λ be a Young diagram and x =
(
i
j

)
∈ λ a cell. We

define the coleg of x as

l′(x) := i− 1,

the coarm of x as

a′(x) := j − 1

and the height of x as

h′(x) := a′(x) + l′(x).

We will need to consider the height of an entry a, hence, we introduce the con-

vention

h′(a, T ) := h′(T−1(a)).

Note that we used the coordinates of the cell x in Definition 3.5. This is different

from the definition of the hook where we used cardinalities of the arm and leg. This
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difference becomes visible if one applies the same definition to skew shapes, where the

height does not depend on the northwestern border. Hence, it makes no difference for

the height of the entries during the application of the NPS-algorithm if we use diagrams

or skew diagrams. This is also the reason why the coarm, coleg and height carry no

subscript that indicates the shape.

Definition 3.6 (Dropping zone). Let P be some diagram and x ∈ P a cell. The

dropping zone of x is the convex cell set J(x) of cells where a path starting in x might

end, i.e.

J(x) := {y ∈ P | x � y}.

We know that Ui−1 is standard and xi is the only cell of J(xi) that lies not in the

domain of Ui−1, hence, ui is standard on J(xi) \ {xi}. When jdtxi is applied, we say

that the entry b = T (xi) drops into the dropping zone of xi, i.e. it takes a (possibly

empty) sequence of east and south steps, each of which increases its height by 1. It is

clear that b cannot take any east or south steps later on, but it can take north and west

steps when it lies on the path of a larger entry that drops later.

Figure 28. Possible movement of an entry during the application of JDT

In order to investigate the complexity, the sequence of intermediate fillings (Ui)i is

not fine enough. We will need a sequence that reflects the status after every jeu de

taquin step. For easier notation we will forget about skewing for the time being and

record the entire tabloid.

Definition 3.7 (Sequence of intermediate tabloids). Given a tabloid T of shape λ

and standard Young tableau S and let xn ≺S xn−1 ≺S · · · ≺S x1 be the cells of λ. Let

σS(1, T ), . . . , σS(rS(T ), T ) be the jeu de taquin steps applied during the application of

JDTS to T in the order of their application. The tabloid

Ti := σS(i, T ) · · ·σS(1, T ) T
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is called intermediate tabloid and the sequence

TS := (T = T0, T1, . . . , TrS(T )−1, TrS(T ) = JDTS(T ))

is the sequence of intermediate tabloids.

Note, that we added the tabloid to the arguments of the jeu de taquin step, hence,

we can really identify the jeu de taquin step with the executed transposition.

With this nomenclature we formulate the above mentioned fact how the heights of

entries are changed by a jeu de taquin step as an evident lemma.

Lemma 3.8. Suppose there is a jeu de taquin step σS(i, T ) = (a, b) with a < b, then

h′(a, Ti+1) = h′(a, Ti)− 1 and

h′(b, Ti+1) = h′(b, Ti) + 1.

We will also need a refinement for the runtime.

Definition 3.9. Let in the above setting be xk ∈ λ. The intermediate runtime

is the number rS(k, T ) of jeu de taquin steps that occur during the application of JDTS

until the end of jdtxk , i.e.

rS(k, T ) :=

k∑
i=1

r(xi, Ti).

As mentioned above we want to consider the heights of entries.

Definition 3.10 (Total initial height). Before JDT is applied, the starting point is

some tabloid T ∈ T(λ), in which an entry b has some height h′(b, T ) to which we refer

as initial height. Consequently we call

αλ(b) :=
∑

T∈T(λ)

h′(b, T )

the total initial height.

One of the keys to the Complexity Theorem is the following remark.
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Remark 3.11. Note that αλ(b) does not depend on b, i.e.

αλ(b) =
∑

T∈T(λ)

h′(b, T )

=
∑

T∈T(λ)

 ∑
x∈λ, T (x)=b

h′λ(x)


=

∑
x∈λ

 ∑
T∈T(λ), T (x)=b

h′λ(x)


= (n− 1)!

∑
x∈λ

h′λ(x).

Therefore, we may write

αλ := αλ(b).

We want to mention some computational facts of minor importance.

Remark 3.12. The total initial height could as well be calculated as a sum of hook

lengths

αλ = (n− 1)!

(
−n+

∑
x∈λ

hλ(x)

)
or in terms of λi

αλ = (n− 1)!
∑
i∈N

((
λi
2

)
+ (i− 1)λi

)
.

Here
(
λi
2

)
denotes of course the binomial coefficient rather than a cell.

3.2. Exchange numbers. The first proof of Theorem 3.4 relies on the two insights,

that the total terminal height of an entry depends solely on the distribution vector, and

that an entry is exchanged equally often with every larger entry. Before we start the

proof we make these notions explicit.

Definition 3.13 (Total terminal height). Analogously to the total initial height we

define the total terminal height of the entry b with the given order-defining S ∈
SYT(λ) as

ωS(b) :=
∑

T∈T(λ)

h′(b, JDTS(T )).

The following remark is another key step on the way to the Complexity Theorem.
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Remark 3.14. The total terminal height does not depend on the actual algorithm

JDTS but rather on the distribution vector z(λ, S), i.e.

ωS(b) =
∑

T∈T(λ)

h′(b, JDTS(T ))

=
∑

U∈SYT(λ)

 ∑
T∈T(λ), JDTS(T )=U

h′(b, U)


=

∑
U∈SYT(λ)

zU (λ, S)h′(b, U).

Now, we turn our attention to the exchange of entries. We observe that during

the application of JDTS to the tabloid T the transposition (a, b) may occur at most

once. Under this light the functions in the following definition not just decide whether

a transposition occurs but also counts them.

Definition 3.15 (exchange functions). Let T ∈ T(λ) be a tabloid, x, y ∈ λ be cells,

a, b be entries and S ∈ SYT(λ) define the ≺S-algorithm. The local exchange function

decides whether during the application of JDTS a transposition (a, b) appears when a is

the entry of x and b is the entry of y, i.e.

εS(a, b, x, y, T ) :=


1 ∃ 1 ≤ i ≤ rS(T ) : Ti−1(x) = a, Ti−1(y) = b,

Ti(x) = b and Ti(y) = a

0 else.

Analogously, the exchange function decides whether (a, b) occurs at all during the

application of JDTS, i.e.

εS(a, b, T ) :=

1 ∃ 1 ≤ i ≤ rS(T ) : σS(i, T ) = (a, b)

0 else.

Note that the exchange function can be understood as a sum of local exchange

functions, i.e.

εS(a, b, T ) =
∑
x,y∈λ

εS(a, b, x, y, T ).

Moreover, they evidently satisfy

εS(a, b, x, y, T ) = εS(b, a, y, x, T ) and

εS(a, b, T ) = εS(b, a, T ).

Definition 3.16 (exchange numbers). With the setting of Definition 3.15 the local

exchange numbers count the tabloids of shape λ such that a and b are exchanged at x
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Figure 29. Contributions to the local exchange- and exchange function

and y, i.e.

εS(a, b, x, y) :=
∑

T∈T(λ)

εS(a, b, x, y, T ).

Analogously, the exchange numbers count the tabloids of shape λ such that a and b

are exchanged, i.e.

εS(a, b) :=
∑

T∈T(λ)

εS(a, b, T ).

Of course, the exchange numbers are connected with the same relation as the local

exchange function

εS(a, b) =
∑
x,y∈λ

εS(a, b, x, y).

We already depicted the third key fact in Figure 28. Now we have the notation to

formulate it.

Lemma 3.17. Let λ ` n be a partiton and S ∈ SYT(λ) define the ≺S-algorithm.

Consider the entry b. We have

αλ +
b−1∑
a=1

εS(a, b)−
n∑

c=b+1

εS(b, c) = ωS(b).

Proof. The lemma says, that the total initial height plus the number of steps b

takes away from the top left corner minus the number of steps b takes towards the top

left corner is its total terminal height, i.e. this is a direct consequence of Lemma 3.8. �

The key insight on the way to the Complexity Theorem is that entries are exchanged

equally often with larger entries.
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Proposition 3.18. Let S ∈ SYT(λ) define JDTS, x, y ∈ λ be cells and a, b, c be

entries with a < b and a < c. Then

εS(a, b, x, y) = εS(a, c, x, y) and(3.1)

εS(a, b) = εS(a, c).(3.2)

Hence, for a < b we may denote the (local) exchange numbers by

εS(a, x, y) := εS(a, b, x, y) and

εS(a) := εS(a, b) respectively.

Proof. Obviously, (3.2) follows from (3.1) by summation over all pairs of cells

x, y ∈ λ. It is sufficient to show (3.1) for c = b+ 1.

Let xn ≺S · · · ≺S x1 be the cells of λ, consider T ∈ SYT(λ) and let 1 ≤ i, j ≤ n be

such that T (xi) = b and T (xj) = b+ 1. Without loss of generality we may assume i > j.

Let

σ = (b, b+ 1) and

T∗ = σ T.

We will consider the sequences of intermediate tabloids

TS = (T0, T1, . . . , TrS(T )) and

T∗S = (T ∗0 , T
∗
1 , . . . , T

∗
rS(T ∗)).

We abbreviate

σk := σS(k, T ) and

σ∗k := σS(k, T ∗).

By definition we have T0 = σ T ∗0 .

For 1 ≤ k ≤ rS(j − 1, T ) we have Tk = σ T ∗k and σk = σ∗k since none of these jeu

de taquin steps involves or is influenced by the entries of xi or xj . Moreover, we have

rS(k, T ) = rS(k, T ∗).

Now, consider jdtxj . All entries different from b and b+ 1 are either less than both

b and b + 1 or greater than both b and b + 1. Hence, the path of the entry of xj does

not depend on whether it is b or b + 1 and we get Tk = σ T ∗k for rS(j − 1, T ) < k ≤
rS(j, T ) = rS(j, T ∗).

For the same reason the paths of jdtxl for j < l < i are the same in T and T ∗ and

we get Tk = σ T ∗k for rS(j, T ) < k ≤ rS(i− 1, T ) = rS(i− 1, T ∗) as well.

The situation for jdtxi is a little different. Still, b follows exactly the path that b+ 1

would have taken for the above reasons, but if and only if the final step of the path of
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xi
b

xj
b+1

xi
b+1

xj
b

T T ∗

Figure 30. Unaffected jeu de taquin

xi
b

xj

b+1

xi
b+1

xj

b

T T ∗

Figure 31. Unaffected jeux de taquin path

xi
b

xj
b+1

xi
b+1

xj
b

T T ∗

Figure 32. More unaffected jeux de taquin

b + 1 was σ, b cannot take this step. Hence, the path of b may or may not be by one

shorter than the path of b+ 1 would have been, and hence, our argument works exactly

up to k = rS(i, T ∗) but not necessarily for k = rS(i, T ). Figure 33 shows a situation

where b and b+ 1 do not interfere, Figure 34 a situation, where σ occurs.
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xi

b

xj
b+1

xi

b+1

xj
b

T T ∗

Figure 33. A path such that b and b+ 1 do not interfere

xi
b

xj
b+1

xi

b+1
xj

b

T T ∗

Figure 34. A path with interfering b and b+ 1

Summarising, we get

for all 0 ≤ k ≤ rS(i, T ∗) : Tk = T ∗k

and for k > rS(i, T ∗) we know that neither b nor b+ 1 can be exchanged with an entry

that is smaller than b. For a < b we conclude that, if there is a transposition σk = (a, b)

then there is a transposition σ∗k(a, b+ 1) involving the same cells. Analogously, for every

transposition σk = (a, b + 1) there is a transposition σ∗k(a, b) involving the same cells.

I.e.

εS(a, b, x, y, T ) = εS(a, b+ 1, x, y, T ∗) and

εS(a, b, x, y, T ∗) = εS(a, b+ 1, x, y, T ).

We see that already the summation over these two tabloids yields equality. Since σ is

an involution (i.e. partitions T(λ) in such pairs), summation over T yields (3.1). �

Remark 3.19. In a situation like in Figure 34 σ is actually reversed during the

application and it turns out, that JDTS(T ) = JDTS(T ∗). Hence, one might be tempted

to believe, that exchanging b and b + 1 in T either leads to exchanging b and b + 1 in
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JDTS(T ) or does not have any effect on JDTS(T ) at all. This, however, is wrong! In a

situation like shown in Figure 35 JDTS(T ) and JDTS(T ∗) might be totally different.

xi

b

xj
b+1

xi

b+1

xj
b

b b+1 b

b+1

T T ∗

Figure 35. A situation leading to essentially different outputs

Equipped with Propostion 3.18 we are well prepared to derive a recursion for the

exchange numbers.

Theorem 3.20 (Exchange Numbers). Let λ ` n be a partition and S ∈ SYT(λ)

define the ≺S-order algorithm. For 1 < b < n we have the recursion

(n− b)εS(b) = αλ − ωS(b) +
b−1∑
a=1

εS(a).

Proof. Considering Propostion 3.18 we can replace εS(a, b) and εS(b, c) by εS(a)

and εS(b) respectively in Lemma 3.17 and we get

αλ +
b−1∑
a=1

εS(a)−
n∑

c=b+1

εS(b) = ωS(b).
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Again from Propostion 3.18 we know that all the terms in the second sum agree, hence,

we get

αλ +
b−1∑
a=1

εS(a)− (n− b)εS(b) = ωS(b)

and the result follows. �

Remark 3.21. Theorem 3.20 gives not just a recursion, but the recursion produces

its own initial condition. Since, the sum is empty if b = 1. Moreover, the entry b = 1

will always end up in the top left corner, hence ωS(1) = 0. We get

εS(1) =
αλ
n− 1

.

Hence, we can calculate the exchange numbers recursively and with Remark 3.11 and

Remark 3.14 for S, T ∈ SYT(λ) and all entries b it follows that

z(λ, S) = z(λ, T ) implies εS(b) = εT (b).

Since every jeu de taquin step exchanges one entry with a smaller one and the other

with a larger one, counting how often an entry is exchanged with a larger entry counts

the jeu de taquin steps. I.e. we get the Complexity Theorem as corollary.

Corollary 3.22 (Complexity Theorem). Let λ ` n be a partition and S, T ∈
SYT(λ). We can calculate the complexity as

C(S) =
1

n!

n∑
a=1

(n− a)εS(a).

Moreover,

z(λ, S) = z(λ, T ) implies C(S) = C(T ).

This solves the questions raised by the conjecture of Krattenthaler and Müller.

Corollary 3.23. Since the column-wise and row-wise algorithms both yield uniform

distribution we have

C(R) = C(C).

Finally, we want to mention a nice technical aspect.

Remark 3.24. For every S ∈ SYT(λ) such that the ≺S-algorithm yields uniform

distribution the parameter ωS(b) can be expressed as

ωS(b) =
n!

fλ

∑
T∈SYT(λ)

h′(b, T ).

This gives a reasonable efficient way to calculate the complexity in the case of uniform

distribution.
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3.3. Drop-functions and signed exit numbers. While we were searching a

promising attempt to prove the conjecture of Krattenthaler and Müller we invented

so called drop-functions and conjectured that these agree for the column-wise and row-

wise algorithm – this would have implied the conjecture as we will see in a moment.

Most surprisingly, it turned out, that also the drop-functions depend solely on the dis-

tribution vector – as also the signed exit numbers do, which are derived from the local

exchange numbers and will take the place of the exchange numbers on the way to the

Drop-Function Theorem. We start this section by introducing a statistic measuring an

intermediate height.

Definition 3.25 (maximal height). Let T ∈ T(λ), S ∈ SYT(λ), xn ≺S · · · ≺S x1

be the cells of λ and b = T (xi) for some 1 ≤ i ≤ n. The maximal height of b is the

maximum of the heights of b during the application of JDTS to T . Since we know from

before that this height is taken at the end of jdtb we may define

βS(b, T ) := h′(b, Tr(i,T )).

Analogously to the other height statistics we define the total maximal height by sum-

mation over T(λ), i.e.

βS(b) :=
∑

T∈T(λ)

β(S(b, T )).

We mentioned before that we can count jeu de taquin steps by counting south- and

east-steps of entries. Obviously, the entry b takes overall βS(b)− αλ steps to the south

or east, hence we can calculate the complexity as

C(S) =
1

n!

n∑
b=1

(βS(b)− αλ) =

=
1

n!

n∑
b=1

βS(b)− αλ
(n− 1)!

=

=
1

n!

n∑
b=1

βS(b)−
∑
x∈λ

h′λ(x).

From any of the above right hand sides we see, that the Complexity Theorem might be

explained using the parameter βS(b). I.e. if z(λ, S) = z(λ, T ) implied βS(b) = βT (b),

then the Complexity Theorem would follow. This raises the question of locating the drop

target of the entries. The rest of this subsection is devoted to treating this question.

For the definition of the Drop-function we use the Iverson bracket, which is a gener-

alisation of the Kronecker delta. Given an expression E (that evaluates to true or false),
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the Iverson bracket is defined as

[E] :=

1 if E is true

0 if E is false.

Definition 3.26 (Drop-function). Let T ∈ T(λ), S ∈ SYT(λ), xn ≺S · · · ≺S x1 be

the cells of λ and b = T (xi) for some 1 ≤ i ≤ n and let x ∈ λ. The drop-function

counts the tabloids of shape λ such that (using the ≺S-algorithm) b drops to x, i.e.

dS(b, x) :=
∑

T∈T(λ)

[b = TrS(i,T )(x)].

Here the Iverson bracket decides, whether b drops in T to x. We could have used

the Kronecker-delta for this definition, but chose the Iverson bracket to enhance the

readability (especially of the subscripts).

If an entry takes no east- or south-step, we still say that it dropped – namely to its

starting position. We see that ∑
x∈λ

dS(b, x) = n!

because b drops exactly once in every T ∈ T(λ). Moreover, we have

dS(1, x) = (n− 1)!

for all x ∈ λ, since the entry 1 starts at every cell in (n− 1)! tabloids and always drops

to its starting position.

As we did for the complexity, we will give a formula for the drop-function that

depends on some intermediate quantity for which we can give a recursion. This recursion

will again depend solely on z(λ, S). To do so, we also need to adapt our initial and

terminal parameters.

Definition 3.27 (entry-count). An entry-count counts how often an entry b appears

as entry of a specified cell x. The initial entry-count

αλ := αλ(b, x) :=
∑

T∈T(λ)

[b = T (x)] = (n− 1)!

was mentioned just above. We will need the more interesting terminal entry-count

ωS(b, x) :=
∑

T∈T(λ)

[b = JDTS(T )(x)]

where S ∈ SYT(λ) defines the ≺S-algorithm.

The mentioned intermediate quantity that will take the place of the exchange num-

bers is defined as follows.
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Definition 3.28 (Signed exit number). With the usual notation we define the

signed exit number as

∆U (b, x) :=
∑

y∈N−x (λ)

εS(b, x, y)−
∑

y∈N+
x (λ)

εS(b, y, x).

The signed exit number counts the tabloids such that during the application of the

≺S-algorithm the entry b leaves the cell x with a north- or west-step (c, b) for a previously

fixed entry c > b and subtracts the number of tabloids where the entry b enters the cell

x with a north- or west-step (c, b) (for the same a – any other fixed entry greater than

b would be fine as well, since we have (3.1)).

x

y1

y3

y2 y4

εS(b, x, y1)

εS(b, x, y2) εS(b, y4, x)

εS(b, y3, x)

Figure 36. Signed exit number

Since we have already done the work on the local exchange numbers, we need nothing

more and can directly attack the recursion for the signed exit numbers.

Theorem 3.29 (Signed exit numbers). Let T ∈ T(λ) and S ∈ SYT(λ) define the

≺S-algorithm. For all cells x ∈ λ and for all entries 1 ≤ b ≤ n we have the recursion

(n− b)∆S(b, x) = αλ − ωS(b, x) +
b−1∑
a=1

∆S(a, x).

Proof. Fix an entry b and a cell x. We can calculate the corresponding terminal

entry-count from the initial entry-count by adding the number of times b enters x and

subtracting the number of times, b leaves x. That is

ωS(b, x) = αλ +
∑
a6=b

∑
y∈Nλ(x)

(
ε(b, a, y, x)− ε(b, a, x, y)

)
.
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We use our knowledge about the local exchange numbers to transform the above double

sum in the following way.∑
a6=b

∑
y∈Nλ(x)

(
ε(b, a, y, x)− ε(b, a, x, y)

)
=

=

b−1∑
a=1

( ∑
y∈N−λ (x)

εS(a, b, x, y)−
∑

y∈N+
λ (x)

εS(a, b, y, x)

)
+

+
n∑

c=b+1

( ∑
y∈N+

λ (x)

εS(b, c, y, x)−
∑

y∈N−λ (x)

εS(b, c, x, y)

)
=

=
b−1∑
a=1

( ∑
y∈N−λ (x)

εS(a, x, y)−
∑

y∈N+
λ (x)

εS(a, y, x)

)
+

+
n∑

c=b+1

( ∑
y∈N+

λ (x)

εS(b, y, x)−
∑

y∈N−λ (x)

εS(b, x, y)

)
=

=
b−1∑
a=1

∆S(a, x)− (n− b)∆S(b, x).

Here, the first equality distinguishes the four possible cases

(1) b is the larger of the exchanged entries, then b takes an east- or south step,

hence

(1.1) b can enter x from N−λ (x) or

(1.2) b can leave x to N+
λ (x).

(2) b is the smaller of the exchanged entries, then b takes a west- or north step,

hence

(2.1) b can enter x from N+
λ (x) or

(2.2) b can leave x to N−λ (x).

The second equality is Propostion 3.18, and the third equality is the definition of the

signed exit number. Basic transformation finishes the proof. �

Remark 3.30. Again, the recursion yields its own initial condition. Let b = 1, then

the sum on the right hand side is empty and we get

(n− 1)∆S(1, x) = αλ − ωS(1, x).

Since 1 always ends up in the top left corner we have ωS(1, x) = n! δx,(11)
and we have

∆S(1, x) =

−(n− 1)! if x =
(

1
1

)
(n− 2)! else.
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Again, we can conclude from the recursion and the fact that ωS(b, x) depends solely on

the distribution vector rather than on S that

z(λ, S) = z(λ, T ) implies ∆S(b, x) = ∆T (b, x)

for all S, T ∈ SYT(λ), x ∈ λ, and entries b.

Remark 3.31. Intuitively, the signed exit number measures how much stronger or

weaker a cell is as source of pushing b towards the top left corner, than it is as sink for

b on its way there. More formally we can say that for a fixed entry c summing over all

x ∈ λ the signed exit number counts every exchange of b with c once with positive and

once with negative sign, hence, we have for all 1 ≤ b ≤ n and all S ∈ SYT(λ)∑
x∈λ

∆S(b, x) = 0.

We are now going to express the drop-function in terms of the signed exit number

and conclude that it also depends solely on the distribution vector.

Theorem 3.32 (Drop-Function). With the usual notation the drop-function can be

derived from the signed exit numbers as

dS(b, x) = αλ +
b−1∑
a=1

∆S(a, x).

Furthermore,

z(λ, S) = z(λ, T ) implies dS(b, x) = dT (b, x).

Proof. The second claim follows from Remark 3.30, if the first claim holds. For

the first claim we argue as follows.

An entry b drops to a cell x if and only if it enters it from N−λ (x) or starts there and

does not leave it towards N+
λ (x). There are αλ tabloids such that b starts in x. There

are ∑
T∈T(λ)

b−1∑
a=1

∑
y∈N−λ (x)

εS(b, a, y, x, T )

tabloids such that b enters x from N−λ (x) (since it can enter x from this direction only,

if a smaller entry a leaves x in the reverse direction). Finally, there are∑
T∈T(λ)

b−1∑
a=1

∑
y∈N+

λ (x)

εS(b, a, x, y, T )
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tabloids such that b leaves x towards N+
λ (x) (since it can leave x in this direction only,

if a smaller entry a enters x in the reverse direction). Summation yields

dS(b, x) = αλ +
b−1∑
a=1

( ∑
y∈N−λ (x)

εS(a, b, x, y)−
∑

y∈N+
λ (x)

εS(a, b, y, x)

)
=

= αλ +
b−1∑
a=1

( ∑
y∈N−λ (x)

εS(a, x, y)−
∑

y∈N+
λ (x)

εS(a, y, x)

)
=

= αλ +
b−1∑
a=1

∆S(a, x).

�

As pointed out before, this gives an alternative proof of the Complexity Theorem

that avoids exchange numbers, but still heavily needs local exchange numbers. As we

have seen before, it is much easier to prove the Complexity Theorem from the exchange

numbers, hence, this is no excuse for considering drop-functions. Our point of view

is, that these results on the drop-functions and signed exit numbers are surprising and

interesting enough to be granted a section on their own.

3.4. Notes on the complexity theorems. We want to close Section 3 with a

couple of remarks.

Remark 3.33. Neither of the arguments in Section 3 used the form of the border of

the Young diagrams. Hence the proofs work for arbitrary diagrams, e.g. skew diagrams

of shifted diagrams (such are e.g. studied in [Fis02]).

Remark 3.34. Although there exists a version of the NPS-algorithm for the shifted

case (see [Fis01]), the results of Section 3 are not of too much use for diagrams with

other shapes, since little or nothing is known about their distribution vectors. Thus,

we have no knowledge about the ω-parameters and hence cannot use the formulas to

calculate complexities or drop-functions.

Remark 3.35. In the easiest case of a diagram (that consists of a single row, i.e.

λ = (n)) we can explicitly calculate the drop-function using a different approach. We

can index the cells with a single coordinate 1 ≤ x ≤ n. In this case we also face

a single standard tableau, hence we may index the drop-function with n rather than

S ∈ SYT(λ). We define the partial drop function counting the number of tabloids in

which the entry b drops from the starting position x to y as

dn(b, x, y) = |{T ∈ T((n)) : b = T (x) = jdtx · · · jdtnT (y)}|
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where the indices of the jeux de taquin are cells.

We can directly count these tabloids in the following way: There are n − b entries

larger than b. To allow b to drop to y, exactly n− y of these must start to the right of x

and consequently y − b of them are left to start to the left of x. Hence, we may choose

these positions and permute the entries smaller and the entries larger than b. The reader

may find it helpful to compare this arguments with Figure 37.

x

b

1 y n︸ ︷︷ ︸
x−1

︸ ︷︷ ︸
n−x

Figure 37. A jeu de taquin in a one-lined diagram

We get

dn(b, x, y) =

(
x− 1

y − b

)(
n− x
n− y

)
(b− 1)!(n− b)!.

The drop-function could now be evaluated by summation over x and the Chu-

Vandermonde identity. Instead we prefer to demonstrate how we can easily calculate

the drop-function by deriving a recursion from the partial drop-function. Exchanging

b and b + 1 defines a bijection between the tabloids in which b + 1 drops from x to y

and the tabloids in which either b drops from x to y and b + 1 starts to the left of x,

or b drops from x to y − 1 and b+ 1 starts to the right of x. The first case contributes
y−b
n−b dn(b, x, y) because there are n − b entries greater than b of which y − b must be

to the left of x (one of the latter must be b + 1, hence, choosing one of this cells and

permuting the rest yields (y − b)(n − b − 1)! permutations of the greater entries, since

there are (n−b)! such permutations, cancellation yields the coefficient). The second case

contributes n−y+1
n−b dn(b, x, y− 1) because of the n− b entries that are greater than b now

n− y + 1 must be to the right of x and we can argue analogously. These situations are

depicted in Figure 38 and Figure 39.

x
b+1b

y x
bb+1

y

Figure 38. An exchange fixing the drop-target

We conclude

dn(b+ 1, x, y) =
y − b
n− b

dn(b, x, y) +
n− y + 1

n− b
dn(b, x, y − 1).
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x
b+1 b

y x
b b+1

y

. . . . . .

x
b+1 b

y x
b b+1

y

x
b+1b

y x
b b+1

y

Figure 39. An exchange altering the drop-target

To get a recursion for the drop function we may sum over x.

dn(b+ 1, y) =
y − b
n− b

dn(b, y) +
n− y + 1

n− b
dn(b, y − 1).

Since the entry 1 always drops to its starting position, we get the initial condition

dn(1, y) = (n− 1)!

for all y ∈ (n). We prove by induction that

dn(b, y) =

 n!
n−b+1 if y ≥ b

0 else.

Obviously this holds for b = 1. Suppose it is true for a < b+ 1. We get

dn(b+ 1, y) =
y − b
n− b

dn(b, y) +
n− y + 1

n− b
dn(b, y − 1) =

=
y − b
n− b

n!

n− b+ 1
[y ≥ b] +

n− y + 1

n− b
n!

n− b+ 1
[y > b],

where [p] is again the Iverson bracket. If y < b both Iverson-brackets in the above

equation are 0, if y = b still the right hand Iverson bracket is 0 and in the left summand

y − b vanishes. Hence, we have

for all y < b+ 1 : dn(b+ 1, y) = 0

as desired. For y ≥ b+ 1 both Iverson-brackets take the value 1 and we get

dn(b+ 1, y) =
y − b
n− b

n!

n− b+ 1
+
n− y + 1

n− b
n!

n− b+ 1
=

=
n!

n− b+ 1

(
y − b
n− b

+
n− y + 1

n− b

)
=

=
n!

((((
(n− b+ 1

((((
(n− b+ 1

n− b
=

=
n!

n− (b+ 1) + 1
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and the induction is complete.

Remark 3.36. The definitions and proofs in Section 3.2 and Section 3.3 might give

the impression, that proving the Complexity Theorem is straightforward and that pretty

much everything depends solely on the distribution vector. This, however, is not more

than an illusion. E.g. on the first glance the partial drop function from Remark 3.35 looks

promising to yield another proof for the Complexity Theorem. But a short investigation

shows that its generalisation to Young diagrams depends on S rather than z(λ, S).

Moreover, the above calculation uses the fact that b drops to y − 1 if the exchange

with b + 1 moves b + 1 to a cell to the right of x. The same statement for the general

case appears to be very difficult to handle, since one would have to count the situations

such that b drops to a cell above b+ 1 (see Figure 34). Hence, it looks pretty impossible

to derive a suitable recursion for the general drop-function from some general partial

drop-function.

Remark 3.37. The numbers n!
n−b+1 from Remark 3.35 appear in a well known integer

sequence, actually

gcd

{
n!

n− b+ 1
: 1 ≤ b ≤ n

}
=

n!

lcm {1, . . . , n}
.

Thus we have

gcd {dn(b, y) : 1 ≤ b ≤ y ≤ n} =
n!

lcm {1, . . . , n}
.

Surprisingly, in a computer experiment for some partitions λ ` n with n ≤ 10 using the

row-wise algorithm this equation held for most but not all cases. In these other cases

we still observed

gcd {dS(b, y) : 1 ≤ b ≤ n, y ∈ λ} | n!

lcm {1, . . . , n}
.

In the light of Remark 3.37 we formulate the following conjecture.

Conjecture 3.38. Let λ ` n be a partition and S ∈ SYT(λ) such that the ≺S-

algorithm is uniformly distributed. Then

n!

lcm {1, . . . , n} · gcd {dS(b, y) : 1 ≤ b ≤ n, y ∈ λ}
∈ N.

We want to close Section 3 by refering to further results.

Remark 3.39. Sulzgruber investigated the results of this section for the uniformly

distributed case [Sul14]. For this case he derived very nice bijections proving the Drop-

function Theorem, the Exchange number Theorem and a version of the Complexity

Theorem and he was able to give formulae for the drop-function, the exchange numbers

and the complexity.
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4. The jeu de taquin on d-complete posets

Riegler investigated some aspects of the jeu de taquin on insets and I joined this

work with some observations. This resulted in the article [NR14] and was the starting

point for the investigation of the topics discussed in Section 5. In Section 4.1 we define

d-complete posets and explain why they are interesting. In Section 4.2 we have a look at

the double-tailed diamond and present the proof of the ∆-Theorem to which we heavily

contributed. Finally, we mention the other topics treated in [NR14] in Section 4.3.

4.1. d-complete posets. The desire was to generalise hook-lengths such that the

hook-length formula applies to more posets than just Young diagrams. Proctor [Pro99]

introduced d-complete posets and used its intervals to define such hook-lengths. A

further generalisation by Ishikawa and Tagawa are leaf-posets [IT07]. Even more

general are the so called hook-length posets, which are the posets counted by some

hook-length formula (see [Sta11]). Neither of these generalisations are of any interest

for the present work, hence, we return to a less general case.

Definition 4.1 (d-complete poset). Let P be a poset and k ≥ 3 an integer. An

interval [x, z] in P is called dk-interval if it is isomorphic to the symmetric double-

tailed diamond with 2k cells, i.e.

[x, z] ∼= (
(
k − 1; 1k−1

)
,�).

An interval [x, y] is called d−k -interval if it isomorphic to a dk-interval without the top

element, i.e.

[x, y] ∼= (
(
k − 2; 1k−1

)
,�).

Note that in the case k = 3 this is not an interval since it has two maximal elements,

nevertheless we denote it by [x, y] (the reader may in that case understand the parameter

y as the pair of maximal elements, but since it will not matter for our purposes we will

not introduce any formalism for it).

P is dk-complete if it satisfies the three conditions

(1) [x, y] is a d−k -interval implies that there exists a z ∈ P such that [x, z] is a

dk-interval,

(2) [x, z] is a dk-interval implies that z covers only elements in [x, z] and

(3) [x, z] is a dk-interval implies that there exists no x′ 6= x such that [x′, z] is a

dk-interval.

P is called d-complete if P is dk-complete for all k ≥ 3.

Proctors classification of d-complete posets [Pro99] uses 15 different classes. Insets

(m;λ) with m ≥ λ′, the double-tailed diamond (m; 1n) with m ≥ n, Young diagrams
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and shifted Young diagrams (all under reverse tableau order) are among the d-complete

posets, their skew versions, however, are not.

Although it will be of no use for the rest of the present work we want to mention

the generalisation of the hook-length, which is of course necessary to have a hook-length

formula.

Definition 4.2 (d-complete hook-length). Let P be a d-complete poset. For every

x ∈ P the hook-length hd(x) is given by the following algorithm.

(1) Assign to all minimal elements of P the hook-length 1.

(2) Choose z ∈ P such that all x ≤ z were already assigned a hook-length.

(2.1) If z is not the top element of a dk-interval, set

hd(z)← |{x ∈ P | x ≤ z}| .

(2.2) If otherwise z is the top element of a dk-interval [x, z] (note that this is

unique) set

hd(z)← hd(l) + hd(r)− hd(x)

where l and r are the non-comparable elements in [x, z].

(3) Repeat (2) until every x ∈ P was assigned a hook-length.

Remark 4.3. It indeed turns out, that this generalises the earlier defined hook-

lengths on Young diagrams, i.e. let P be a Young diagram, then hd(x) = h(x) for all

x ∈ P . Moreover, these hook-lengths qualify for a hook-formula

fP =
|P |!∏

x∈P hd(x)
.

The proof of the hook-length formula for d-complete posets is not bijective (see e.g.

[IT07]) and to the best of our knowledge no such proof is known. The idea of such a proof

would be to run some JDT and find a suitable trackTx such that a bijection to the pairs

of a standard filling and a “hook-filling” is established. An indispensable preliminary

for such an NPS-like algorithm is a uniformly distributed JDT. The investigation of

the jeu de taquin raises remarkable questions and yields results which by themselves

are interesting. We turn entirely away from the question of counting standard fillings

towards these questions on the distribution.

4.2. The ∆-Theorem. The double-tailed diamond has only two standard fillings

(C and R). Considering the column-wise algorithm the distribution vector appears as

z((m; 1n) , C) =

(
zC((m; 1n) , C)

zR((m; 1n) , C)

)
.

Using this distribution vector, we introduce the following statistic.
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Definition 4.4. We call the difference of the entries of the distribution vector

z((m; 1n) , C) the weighted deviation coefficient of the double-tailed diamond,

i.e.

∆(m;1n) := zC((m; 1n) , C)− zR((m; 1n) , C).

The nomenclature of this definition might appear somewhat bizarre at first sight,

but will become clear in Section 5. Riegler first considered this statistic and proved

the following result using “right-left-k–minima” of permutations (for details we refer to

[NR14]).

Theorem 4.5 (∆-Theorem). For integers m,n ≥ 2 the weighted deviation coefficient

of the double-tailed diamond is given by

∆(m;1n) = (−1)m
(
n− 1

m

)
m!n!

Note that this expression vanishes for m ≥ n, hence, as soon as m is large enough

such that the double-tailed diamond is d-complete, the jeu de taquin exhibits a uniform

distribution. In joint work with Riegler we gave a purely combinatorial proof based on

an involution. Before we present this proof, we have to do some preparations. First of

all we adapt the sequence of intermediate tabloids as sequence of intermediate fillings

TC = (F = F0, . . . , FrC(F ) = JDTC(F ))

as introduced in Definition 3.7. Secondly, we abbreviate

x = xn+1 and y = xn.

We will refer to the set {x, y} as the incomparable elements. We also introduce a name

for the bottom part of the double-tailed diamond.

Definition 4.6. Let xn+m ≺C · · · ≺C x1 be the cells of the double-tailed diamond

(m; 1n). The tail of (m; 1n) is the set

TAIL (m; 1n) := {xn−1, . . . , x1} = {
(

1
2

)
, . . . ,

(
1
n

)
}.

Definition 4.7 (Double-tailed diamond types). Let F ∈ T (m; 1n) be a filling of the

double-tailed diamond (m; 1n). We define the type of F as

τ(F ) :=

 1 if JDTC(F ) = C

−1 if JDTC(F ) = R.

Analogously, we define the k-type as the “type” after k rounds of jeu de taquin, i.e.

τk(F ) :=

 1 if Fk(x) < Fk(y)

−1 if Fk(x) > Fk(y).
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NECK (m; 1n)

 
TAIL (m; 1n)

x

y

Figure 40. Parts of the double-tailed diamond

In the light of this definition it makes sense to use a modified Iverson bracket

that returns −1 instead of 0 if the condition p is wrong, i.e.

[p]∗ := 2[p]− 1.

With this notation we have

τ(F ) = [JDTC(F ) = C]∗ and τk(F ) = [Fk(x) < Fk(y)]∗.

The second proof of the ∆-Theorem relies on a type-inversing involution (i.e. a

mapping matching fillings of different type). In the case m ≥ n the involution is defined

on the entire set of fillings T (m; 1n) such that ∆(m;1n) vanishes. For m < n we find a set

of exceptional fillings which are all of the same type and the involution will be defined

on the remaining fillings. The key fact for the proof is the following observation.

Lemma 4.8. Let xn+m ≺C · · · ≺C x1 be the cells of the double-tailed diamond (m; 1n)

and F ∈ T (m; 1n) be a filling. For k ≥ n + 1 the relative order of the entries of the

incomparable elements after k rounds of jeu de taquin depends solely on the relative order

of the entries of the cells x1, . . . , xk. I.e. let the permutation p : {−m + 1, . . . , n} →
{−m+ 1, . . . , n} be order-preserving on F ({x1, . . . , xk}) and let F ∗ = p ◦ F , then

Fk(x) < Fk(y) if and only if F ∗k (x) < F ∗k (y).

One may consider Lemma 4.8 as evident, nevertheless we will revise this property of

the jeu de taquin in more detail in Section 5.2.

We split the ∆-Theorem in the three cases m > n, m = n and m < n, we start with

the case of equality.
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Lemma 4.9. Under the column-wise algorithm the double-tailed diamond (n; 1n) has

the distribution vector

z((n; 1n) , C) = n(2n− 1)! 12.

Proof. The factor n(2n − 1)! is obvious if zC((n; 1n) , C) = zR((n; 1n) , C) since

|T (n; 1n)| = (2n)!. Hence, we only need to prove uniform distribution. We observe that

the final round of jeu de taquin reverses the relation between the entries of x and y if

and only if the initial entry of the top cell is larger than n, i.e. with the initial filling

F ∈ T (n; 1n) we have

τ(F ) = [F (x2n) ≤ 0]∗τ2n−1(F ).

This is true because

• if F (x2n) < 0, it will end up somewhere in the neck without having any effect

on the relative order of the entries of the incomparable elements,

• if F (x2n) = 0, the entries of the incomparable elements must be −1 and 1,

hence, 0 will take the place of −1 preserving the relative order,

• if F (x2n) = 1, the entries of the incomparable elements must be −1 and 0,

hence, 1 will take the place of −1 reversing the relative order, and

• if F (x2n) > 1, the entries of the incomparable elements must again be −1 and

0 and the entry of the top element of the tail must be 1, hence, 1 will be shifted

to where −1 has been and the relative order is reversed.

The first two cases are depicted in Figure 41, the latter two in Figure 42.
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Figure 41. Stabilised relative order
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Figure 42. Reversed relative order

Hence, we are left with constructing an involution that is order-preserving on

{x1, . . . , x2n−1} and flips the entry of the top cell between the lower and upper half

of its possible values. Consider the filling F with the top entry F (x2n) = b, we cyclically

shift the entries b, . . . , 1− b with the following permutations

Φ(F ) :=

(b, 1− b,−b,−b− 1 . . . , b+ 1)F if b ≤ 0

(b, 1− b, 2− b, 3− b . . . , b− 1)F if b ≥ n+ 1.

Intuitively this is, we mirror b at 1
2 and use the unique order preserving shift of the entries

“above which b jumped (including the one where it landed)” to reestablish bijectivity.

It is clear, that Φ is an involution and has the desired properties. �

Example 4.10. Figure 43 shows two fillings in T
(
6; 16

)
that are paired by Φ and

have different type. The entries involved in the involution are highlighted, the others

greyed.

As second case we treat m > n.

Corollary 4.11. For m > n and using the column-wise algorithm the double-tailed

diamond (m; 1n) has the distribution vector

z((m; 1n) , C) =
(m+ n)!

2
12.

Proof. Obviously, if two fillings F and G agree on their upper m− n entries, i.e.

F (xn+m) = G(xn+m), F (xn+m−1) = G(xn+m−1), . . . , F (x2n+1) = G(x2n+1)
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Figure 43. Typeinversing involution

and on their 2n-type, i.e.

τ2n(F ) = τ2n(G),

then they also agree on their type

τ(F ) = τ(G).

Hence, if we leave the top m− n entries unchanged and apply Φ to the relative order of

the bottom 2n elements, we get the desired involution. For F ∈ T (m; 1n) let pF be the

unique order preserving bijection

pF : F ((n; 1n))→ {1− n, . . . , n}

then we can write this involution as

Φ(m;1n)(F )(xi) :=

p−1
F ◦ Φ ◦ pF (F )(xi) if i ≤ 2n

F (xi) else.

Since the restriction of Φ(m;1n) to (n; 1n) is type-inversing by Lemma 4.9, we have defined

a type-inversing involution on T (m; 1n). �

Example 4.12. Figure 44 shows two fillings in T
(
9; 16

)
that are paired by Φ(9,6)

and have different type. Again the entries involved in the involution are highlighted, the

others greyed.

We want to remark here, that this proof of Corollary 4.11 provided the inspiration

to consider distribution matrices. Before we turn to them we complete our consideration

of the involution-approach. We turn to the case m < n.
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Figure 44. Type-inversing involution for m > n

Remark 4.13. The expression
(
n−1
m

)
n!m! is nice but misleading. We rewrite it using

the descending factorial(
n− 1

m

)
n!m! =

(n− 1)!

��m!(n−m− 1)!
n!��m! = (n− 1)mn!

Proof of the ∆-Theorem. Again we have to slightly modify the situation such

that we can apply Φ. The problem we are facing is, that the entries in the first column

may be too large. E.g. if F (x2n) was larger than m it has no counterpart among the

entries. We will be looking for the topmost cell, such that we can define an involution.

It will turn out, that we can (reasonably) define an involution “based” at xi if F (xi) ≤
2(i−n)−m+1 (note: there are i−n cells below and including xi in the first column, the

same amount of topmost cells in the second column leads to 2(i−n); if we fill these cells

with the smallest possible entries, the largest of these entries will be 2(i−n)−m+1 since

the smallest entry overall is 1−m). We call fillings without such an entry exceptional.

We define the set E (m; 1n) of exceptional fillings as

E (m; 1n) := {F ∈ T (m; 1n) | ∀ n < i ≤ n+m : F (xi) > 2(i− n)−m+ 1}.

The number of exceptional fillings can easily be calculated – there are n −m values to

choose as entry of xn+m, then there are n−m+2 possible values for the entry of xn+m−1

one of which was already chosen as entry for xn+m; iterating this argument we pick up

factors up to n− 1 for the cell x; the remaining n entries permute. We get

|E (m; 1n)| = (n−m)(n−m+ 1) · · · (n− 1)n! = (n− 1)mn!
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which meets the claimed value of the weighted deviation coefficient. We will first estab-

lish our involution on T (m; 1n)\E (m; 1n) and then finish the proof by showing that the

exceptional fillings have the correct type.

Let F ∈ T (m; 1n)\E (m; 1n) and j ∈ {n+ 1, n+ 2, . . . , n+m} be maximal such that

F (xj) ≤ 2(j−n)−m+ 1. The entries 1−m, 2−m, . . . , 2(j−n)−m+ 1 are among the

entries of the cells xi with i ≤ j. We call the set of cells carrying these entries

small(F ) := F−1({1−m, 2−m, . . . , 2(j − n)−m+ 1}).

The entries of small(F ) can easily be centred around 1
2 by adding n+m− j, such that

Φ applies to them. Therefore we define

pF (a) := a+ n+m− j

and

Φ(m;1n)(F )(xi) :=

p−1
F ◦ Φ ◦ pF (F (xi)) if xi ∈ small(F )

F (xi) else.

Under Fj−1 the entries 1 − m, . . . , 2(j − n) − m + 1 are located at the cells

x2n−j+1, . . . , xj . Therefore, the very same arguments as in the proof of Lemma 4.9

yield that Φ(m;1n) is a type-inversing involution. Moreover, Φ(m;1n) preserves the prop-

erty that xj is the ≺C-minimal cell with entry smaller or equal 2(j − n) −m + 1 and

hence is indeed matching elements of T (m; 1n) \ E (m; 1n).

Finally, we wonder about the type of the exceptional fillings. From their definition

it follows that all entries in the first column are positive, hence 1 − m and 2 − m are

located in the second column. It follows that Fn(y) = 1 −m with 2 −m just below it.

Hence, we get

Fn+1(x) = 2−m and Fn+1(y) = 1−m

and we derived the (n+ 1)-type

τn+1(F ) = −1.

We know that the entry F (xi) of a cell xi in the neck reverses the xi−1-type if and only if

it is larger than both Fi−1(x) and Fi−1(y) (see the arguments in the proof of Lemma 4.9).

The definition of the exceptional fillings ensures for every cell xi in the neck, that F (xi)

is large enough to reverse the (i− 1)-type. Hence, every exceptional filling F has type

τ(F ) = (−1)m

and the proof is complete. �

Example 4.14. Figure 45 shows two fillings in T
(
6; 19

)
that are paired by Φ(6;19)

and have different type. The cells containing entries that might be affected by Φ(m;1n)
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are highlighted, the others greyed. Again the entries that are actually involved in the

involution are highlighted, the others greyed. Moreover, we marked the topmost cell xj

with an entry smaller than 2(j − n).
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Figure 45. Type-inversing involution for m < n

Remark 4.15. In both cases m < n and m > n we named the involution Φ(m;1n).

This is not just no clash of notation (since the two cases are obviously disjoint) but

actually both specialise to Φ for m = n. Hence, we can consider all three as one function

Φ(m;1n).

Remark 4.16. We claimed that Φ(m;1n) is an involution on the set of all non-

exceptional fillings. Indeed we proved a finer statement. Namely, define the sets

Ej := {F ∈ T (m; 1n) | j is maximal with F (xj) ≤ 2(n− j)−m+ 1}.

The sets Ej for n + 1 ≤ j ≤ n + m partition the set of non-exceptional fillings. Above

we proved that each of these Ej ’s contains equally many fillings of both types.

Remark 4.17. Earlier we described the term
(
n−1
m

)
n! as misleading. The reason for

this is, that it canonically counts the set of fillings such that the entries 1−m, . . . 0 are

all located in the tail. With the same argumentation as in the above proof all these

fillings have type (−1)m. Hence, we could have chosen them as exceptional fillings.

Unfortunately, it appears to be remarkably more difficult to define a suitable involution

in this case – although we know that it must exist, we could not write it down or have

any hint if it has a nice form.
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4.3. Further result. Besides the ∆-Theorem [NR14] contains other interesting

considerations. We want to point out a formula for the expected value of the entry

of the cell
(

2
1

)
in a standard Young tableaux, namely let X be a uniformly distributed

random variable taking values from SYT(λ), then

E(X(
(

2
1

)
)) =

λ′1∏
i=1

n+ 1

n+ 1− λi
.

For details we refer to [NR14].

5. Distribution matrices of the jeu de taquin

The outline of Section 5 is as follows. We build up the notions chronologically to

present the motivations during the research – this is probably not the best way to intro-

duce the topic, but we chose it because the definitions are very young, and at the time

being it is unclear which approach is “the best one”. Hence, we describe in Section 5.1

our first considerations leading to distribution matrices. The first version of distribution

matrices is introduced in Section 5.2. In Section 5.3 we present the conjectures which are

the spice making the topic of distribution matrices interesting. In Section 5.4 we revisit

the ∆-Theorem and treat a further special case of an inset in Section 5.5. In Section 5.6

we introduce the general versions of distribution matrices. We consider these on Young

diagrams in Section 5.7 which leads to further conjectures presented in Section 5.8. Sec-

tion 5.9 and Section 5.10 are devoted to the structure of distribution matrices on insets.

Finally, Section 5.11 treats the structure of the distribution vectors of insets.

5.1. Motivation. As we mentioned before, the idea of considering distribution ma-

trices was inspired from the fact that adding further top cells to a d-complete double-

tailed diamond does not influence the uniform distribution. The tiny insight that got

the ball rolling was, that the jeu de taquin on an inset can be viewed as an operation on

the relative orders of the body of the inset. I.e. the idea was the following algorithm.

Algorithm 5.1. Given an inset (m;λ) with λ ` n, a filling F ∈ T(m;λ) and some

order-defining standard filling S ∈ SYT(m;λ).

(1) There is a unique order-preserving map

pF : F (BODY(m;λ))→ {0, . . . , n}.

We consider the inset (1;λ) with the filling

J ← pF ◦ F |BODY(m;λ) .
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(2) We play the jeu de taquin on J , i.e.

K ← JDTS|(1;λ)(J).

(3) Actually p−1
F is the unique order-preserving map

p−1
F : {0, . . . , n} → {−m, . . . , n} \ F (NECK(m;λ)).

We consider the inset (m;λ) with the filling L defined by

L←

F |NECK(m;λ) on NECK(m;λ)

p−1
F ◦K on BODY(m;λ).

(4) We play the jeu de taquin on L, i.e.

M ← jdt(3−m,0) · · · jdt(1,0)L.

We again adopt the notation xi for the cells in reverse order to ≺S and Fi for the

corresponding intermediate fillings. Then we can formulate the mentioned tiny insight

as a tiny lemma.

Lemma 5.2. With the above notation we have Fn+1 = L and JDT(F ) = M .

Proof. Every jeu de taquin step is determined by the relative order of the entries

of the cell and its outneighbours which is preserved by p. �

Example 5.3. Given the inset (4; 3, 22, 1) with the filling F as in Figure 46 and using

the column-wise order, we see that the above algorithm and the column-wise algorithm

indeed agree on their outcome.
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JDTC

F J K L M

Figure 46. The application of the above algorithm to F

Thinking about the situation we recognise K ∈ SYT(1;λ) and M |BODY(m;λ) ∈
SYT(1;λ) are both standard fillings of the same inset and that the latter together with
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m fully defines M . We can extract a refined simulation from the above algorithm by not

adding the neck in one step but by one cell a time. Moreover, we can forget about the

part of the neck that is already ordered. We derive the following refined simulation.

Simulation 5.4. Given a positive integer t, an inset (1;λ), a standard filling tF ∈
SYT(1;λ) and an integer b ∈ {−t, . . . , n}. Consider the inset (2;λ) with the filling G

that puts b in the top left corner and the rest of the filling is tF with all entries smaller

or equal b shifted down by 1, i.e.

G =

b on {
(

1
0

)
}

(b, b− 1, . . . ,−t) tF on (1;λ).

Now we apply the jeu de taquin to the top left cell and forget about this cell afterwards,

i.e.

t+1F = jdta(G)|(1;λ)

and we denote SIMb : tF 7→ t+1F .

This simulation describes what happens if we add a cell at the top of the neck (when

everything else is already sorted). Then the body has already the relative order of a

standard filling. There are n + t possibilities which entry could be carried by the new

top cell. The negative ones get stuck somewhere in the neck, and the non-negative ones

will drop to somewhere in the body such that tF, t+1F : (1;λ) → {0, . . . , n} are both

standard fillings and SIMb : SYT(1;λ) → SYT(1;λ) maps standard fillings to standard

fillings.

The attentive reader will object that tF ((1;λ)) will never contain negative values and

hence the lower bound −t is useless and could as well have been chosen as −1. This, of

course, is true. Nevertheless, we want to take the opportunity to point out the intuition

again: the new cell is added at the top of a neck of length t. The entries −t, . . . ,−1 are

in this neck and everything smaller than or equal to b including these entries is shifted

down by one. We are simulating this operation by placing b at
(

1
0

)
. The reader may

insist, that −t is still useless, but at the end of the day, we prefer to remark the intuition

than to remark that the shift reduces to the identity for negative b.

Moreover, I apologise for putting the index t that indicates the length of the (virtual)

neck to the left. This choice was made to avoid a clash of notation with the intermediate

fillings.

Example 5.5. Continuing the above example with 1F = K we find the transitions

given in Figure 47. Note that we cannot use SIMF (1−i,0) in the i-th transition but that

we need to use the image under the corresponding order-preserving map. Indeed 4F

agrees with the body of M .
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Figure 47. Simulating the neck step by step.

We refine our above insight to the following theorem.

Theorem 5.6. Given an inset (m;λ) and a filling F ∈ T(m;λ). For 1 ≤ t ≤ m let

pt be the unique order-preserving maps pt : F ((t+ 1;λ))→ {−t, . . . , n}. For 2 ≤ i ≤ m

let bi = pi(F (3− i, 0)) be the entry of the “next top cell of the neck in the corresponding

relative order”. Let 1F = JDT(p1 ◦ F |(1;λ)) be the sorted body under the corresponding

relative order. Then

(5.1) JDT(F )|(1;λ) = SIMbm ◦ · · · ◦ SIMb2 ◦ 1F.

Proof. Both sides of (5.1) apply the same sequence of jeu de taquin steps with the

same relative orders. �

For the moment it will be enough to consider the simulation of the neck cells and

define distribution matrices only for them. Afterwards we are going to work through

two interesting examples before we consider distribution matrices also for other cells –

which will enable us to explain a little of the structure of the distribution matrices. On

the way we will pick up a couple of remarkable conjectures.

5.2. Simulating a neck-cell with a distribution matrix. We are now going to

change our point of view from what happens with one filling to what happens with the

collection of all fillings.

Remember Definition 1.21 (distribution vector). We defined distribution vectors

using multiplicities zU (P, S) indexed by standard fillings U ∈ SYT(P ). Note that the

neck of an inset does not contribute to the structure of its standard fillings (the entries

of the neck will always be the same for any standard filling). Hence, we may as well use

the standard fillings of its body U ∈ SYT(BODY(P )) as indices. From here on we will

not distinguish if in such a case the index comes from the inset or its body.

Given the distribution vector z((m;λ), S) we can use SIMb to create a tool to calcu-

late z((m + 1;λ), S). To be more precise SIMb tells us what happens with the relative

order of the body when the entry of the (new) top cell is b. I.e. if there are zU ((m;λ), S)
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fillings of (m;λ) sorted to U this will contribute as summand to zSIMb(U)((m+ 1;λ), S)

for every b ∈ {1−m, . . . , n}. This motivates the definition of the distribution matrices.

Definition 5.7. Let m be a positive integer and consider the inset (1;λ) and standard

fillings U, V ∈ SYT(1;λ). We define

AU,V (m;λ) := |{b ∈ {1−m, . . . , n} | SIMb(V ) = U}|

and combine these entries to the distribution matrix

A(m;λ) := (AU,V (m;λ))U,V .

We can use the distribution matrices to iteratively compute the distribution vectors.

Lemma 5.8. In the above setting we have

z((m+ 1;λ), S) = A(m;λ) z((m;λ), S).

Proof. The lemma claims for the components of z((m+ 1;λ), S) that

zU ((m+ 1;λ), S) =
∑

V ∈SYT(1;λ)

AU,V (m;λ) zV ((m;λ), S).

But this is nothing else than applying SIMb for every b that can appear as entry of the

top cell. And since Theorem 5.6 tells us, that the simulation is really doing the right

thing, the equation holds. �

We right away recognise the simplest and though very important property of the

distribution matrices.

Lemma 5.9. In the above setting we have

A(m;λ) + I = A(m+ 1;λ).

Proof. For every negative value of b the simulation SIMb stabilises every standard

filling of the body. The definition of A(m + 1;λ) uses exactly one negative value of b

more than the definition of A(m;λ). �

Hence, we can consider A(1;λ) as the distribution matrix – all the others differ

only by addition of identities. Moreover, we observe a second important property of the

distribution matrices.

Proposition 5.10. The sum of every row and the sum every column of A(1;λ) is

n+ 2.

Proof. Given a standard filling V . Obviously for every b ∈ {−1, . . . , n} there is a

SIMb that maps V somewhere, and, hence, the entries of the columns sum to n+ 2. For
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U ∈ SYT(1;λ) it is also easy to construct fillings Vb for every b such that SIMb(Vb) = U .

To do so one uses the backward jeu de taquin as described in Definition 2.7. Hence, the

entries of the rows sum to n+ 2 as well. �

Thus, we get the following corollaries for free.

Corollary 5.11. Let (1;λ) be an inset. The leading eigenvector of A(1;λ) is 1 and

its eigenvalue is ε1 = n+ 2.

Note that we denote eigenvalues with εi rather than the usual λi since we need the

latter for the partitions.

Corollary 5.12. A(1;λ) can be written as the sum of n+ 2 permutation matrices.

Actually it is easy to explicitly find n+ 2 such permutation matrices, since SIMb for

a fixed b is a permutation.

5.3. Conjectures. We know from results of Proctor [Pro99] that the number of

standard fillings of d-complete3 insets (among other posets) are given by a hook-length

formula. But to the best of our knowledge no bijective proof was found so far. A

bijection in the sense of Novelli, Pak and Stoyanovskii would require that there exists a

≺S-algorithm that yields uniform distribution i.e. the zU ((m;λ), S) are equal if m ≥ λ′1.

We formulate this as conjecture for the row-wise and column-wise algorithm meanwhile

we suspect that it will hold for many others as well.

Conjecture 5.13 (Inset-Uniform-Distribution). Let λ ` n and (m;λ) be a d-

complete inset. Let S ∈ SYT(m;λ) represent the column-wise or row-wise order. Then

the ≺S-algorithm is uniformly distributed, i.e.

z((m;λ), S) = c(m;λ) 1

with a constant c(m;λ) = (n+m)!
|SYT(m;λ)| .

It is tempting to believe that the existence of a hook-length formula has to include

the existence of an ≺S-algorithm yielding uniform distribution – nevertheless, this is

unclear. However, we conjecture an enormously stronger statement.

Conjecture 5.14 (Inset-Eigenvector-Distribution). Let λ ` n and S ∈ SYT(1;λ)

represent the column- or row-wise order. Then the distribution matrix A(1;λ) has an

eigenvector vy to the eigenvalue εy = 2− λ′1 such that with c(1;λ) = (n+1)!
|SYT(1;λ)| we have

z((1;λ), S) = c(1;λ) 1 + vy.

3Remember that an inset (m;λ) is d-complete if m ≥ λ′1 – this is the only property of d-completeness
that will matter for our investigations.
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The Inset-Eigenvector-Distribution Conjecture straightforwardly implies the Inset-

Uniform-Distribution-Conjecture because adding the identity to the distribution matrix

stabilises the eigenvectors but adds 1 to the eigenvalues. Therefore, a consequence of

the conjecture is

vy ∈ ker (A(λ′1 − 1;λ)).

But since Lemma 5.8 implies

z((λ′1;λ), S) = A(λ′1 − 1;λ)A(λ′1 − 2;λ) · · ·A(1;λ) z((1;λ), S),

the coefficient of vy eventually vanishes and the distribution vector of a d-complete inset

under the ≺S-algorithm would be a multiple of 1.

The factor (n+1)!
|SYT(1;λ)| is non-ambiguous. The vectors 1 and vy are orthogonal, hence,

the components of vy sum to zero. Therefore 1 and its coefficient count permutations.

Now we have a look at an even more surprising conjecture.

Conjecture 5.15 (Inset-Spectrum). Let λ ` n be a partition with λ1 ≥ 2 and

λ′1 ≥ 2. The eigenvalues of A(1;λ) are

ε1 = n+ 2

and

n, n− 1, . . . , 2− λ′1.

The Inset-Spectrum Conjecture was the initial reason why we decided to have a closer

look at the distribution matrices. Note that the Inset-Spectrum Conjecture includes

the claim that the above εy is the least eigenvalue of A(1;λ). The Perron-Frobenius

eigenvalue ε1 is easily given by Propostion 5.11, its multiplicity is 1. We make no

statement about the multiplicity of the other eigenvalues, but in general their eigenspaces

are of higher dimension. Meanwhile, A(1;λ) is in general not diagonalisable.

We excluded the double-tailed diamond from the Inset-Spectrum-Conjecture because

it has only two standard fillings hence only two eigenvalues – but these are the essential

ones. In the next two sections we have a look at the double-tailed diamond and the inset

(m; 2, 1n−2), which is interesting, because – as mentioned before – all the eigenvalues are

simple.

5.4. The ∆-Theorem revised. We are now able to present an elegant proof of

the ∆-Theorem. Remember, we derived a weighted deviation coefficient of

∆(m;1n) = (−1)m

(
n− 1

m

)
m!n!.
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We rewrote its absolute value as (n− 1)mn!. The coefficient itself can be rewritten

analogously as

∆(m;1n) = (−1)m(n− 1)mn! = (1− n)mn!.

The observation that ∆(m;1n) can be expresses as an inner product

∆(m;1n) = zC((m; 1n) , C)− zR((m; 1n) , C) = z((m; 1n) , C) ·

(
1

−1

)
enables us to formulate the ∆-Theorem in the form

(5.2) z((m; 1n) , C) ·

(
1

−1

)
= (1− n)mn!

which is ideal for the following proof.

Alternative proof of the ∆-Theorem. The standard fillings of (1; 1n) are R

and C. The simulation maps

SIMb : R 7→

R b ≤ 0

C b > 0
and SIMb : C 7→

C b ≤ 0

R b > 0
.

Figure 48 depicts the transitions of SIMb for the values b ∈ {−1, . . . , n}.

0
1

1
0

−1,0 −1,0

1, . . . , n

C R

Figure 48. SIMb on the double-tailed diamond visualised as digraph

Hence, we get the distribution matrix

A (1; 1n) =

(
2 n

n 2

)
.

The characteristic polynomial factors as

det

(
2− ε n

n 2− ε

)
= (2− ε)2 − n2 = (2− ε− n)(2− ε+ n).
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Hence, we find the eigenvalues

ε1 = 2 + n and ε2 = 2− n.

We know from before that 1 is the leading eigenvector and spectral theory or half a line

of calculation tells us that the second eigenvector is orthogonal, i.e. the eigenvectors are

v1 = 1 and v2 =

(
1

−1

)
.

We proceed with a straightforward counting argument yielding the initial distribution

vector z((1; 1n) , C). Namely, we observe that every filling which has the 0 somewhere

in the right column will be sorted to the standard filling R. Only if the 0 starts at the

cell
(

2
0

)
it stays there. Since there is no condition on the positive entries we acquire a

factor n!, hence

z((1; 1n) , C) = n!

(
1

n

)
.

Straightforward computation yields coefficients to write the distribution vector as

z((1; 1n) , C) =
(n+ 1)!

2
1 +

(1− n)n!

2

(
1

−1

)
.

Applying the distribution matrices yields

z((m; 1n) , C) = A (m− 1; 1n) · · ·A (1; 1n) z((1; 1m) , C) =

= A (m− 1; 1n) · · ·A (1; 1n)

(
(n+ 1)!

2
1 +

(1− n)n!

2

(
1

−1

))
=

= (2 + n)m−1 (n+ 1)!

2
1 + (2− n)m−1 (1− n)n!

2

(
1

−1

)
=

=
(n+m)!

2
1 +

(1− n)mn!

2

(
1

−1

)
.

Plugging this into the lefthand side of (5.2) we get

z((m; 1n) , C) ·

(
1

−1

)
=

(
(n+m)!

2
1 +

(1− n)mn!

2

(
1

−1

))
·

(
1

−1

)
=

=
(n+m)!

2
1 ·

(
1

−1

)
+

(1− n)mn!

2

(
1

−1

)
·

(
1

−1

)
=

= 0 +
(1− n)mn!

2
2 =

= (1− n)mn!. �
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Considering this proof the nomenclature weighted deviation coefficient becomes rea-

sonable. z((m; 1n) , C) can be combined from 1 (with the counting coefficient) and

the deviation vector v2 with the weighted deviation coefficient. It is called weighted

because v2 is not normalised but we preferred to write it with integer components. The

same applies for the Inset-Eigenvector-Distribution Conjecture, where we call vy the de-

viation vector and ∆S the weighted deviation coefficient (if the conjecture holds, it is

obviously possible to write vy with integer entries, hence, we would prefer also here the

weighted version). With normalised v2 or vy the ∆-parameters would be a Cartesian

measure for the distance from the distribution vector to the line x = ξ 1.

5.5. The case (1; 2, 1n−2). We can prove the Inset-Eigenvector-Distribution Con-

jecture and the Inset-Spectrum Conjecture for the case (1; 2, 1n−2) under the column-

wise algorithm. Before we attack the case for general n we work through the example

(1; 2, 12). There are seven standard fillings (see Figure 49).

1 2
0 3

4

1 3
0 2

4

1 4
0 2

3

0 2
1 3

4

0 3
1 2

4

0 4
1 2

3

0 1
2 3

4

Figure 49. Standard fillings of (1; 2, 12)

If we order them as they are row-wisely from left to right in Figure 49 we get the

distribution vector

(5.3) z((1; 2, 12), C) =



8

8

8

24

24

24

24


.

This can easily be seen by counting arguments which we will present for the case of

general n or simply by running the algorithm. The distribution matrix can be calculated
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equally fast. It produces the transitions shown in Figure 50 and is given by

A(1; 2, 12) =



2 0 0 2 2 0 0

0 2 0 1 2 1 0

0 0 2 1 0 3 0

1 2 0 2 0 0 1

0 2 1 0 2 0 1

0 0 3 0 0 2 1

3 0 0 0 0 0 3


where we emphasised the structure by printing the zeros grey.

0 1
2 3

4

0 2
1 3

4

1 2
0 3

4

0 3
1 2

4

1 3
0 2

4

1 4
0 2

3

0 4
1 2

3

1

23

4

1,2

3

4

1

2,3,4

1,2

3,4

1,2

3,4

1,2,3

4

1,2,3

4

Figure 50. SIMb for (1; 2, 12)

Any computer algebra system quickly determines the eigenvalues

ε1 = 6, ε2 = 4, ε3 = 3, ε4 = 2, ε5 = 1, ε6 = 0 and ε7 = −1
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and the corresponding eigenvectors

v1 = 1, v2 =



−3

2

7

−4

1

6

−9


, v3 =



0

−2

−2

1

−1

−1

5


, v4 =



1

1

1

0

0

0

−3


,

v5 =



2

1

1

−1

0

0

−3


, v6 =



3

2

1

−2

−1

0

−3


and v7 =



−4

−4

−4

3

3

3

3


.

The eigenpair ε1, v1 is obvious and the eigenpair ε7, v7 can as well be easily guessed

and checked without the use of a computer. Again, it is straightforward to determine

coefficients to express the distribution vector as

z((1; 2, 12), C) =
120

7
v1 +

16

7
v7.

Hence the Inset-Eigenvector-Distribution Conjecture and the Inset-Spectrum Conjecture

both hold for the case (1; 2, 12) and we turn to the case (1; 2, 1n−2).

We start by describing the standard fillings. There are single cells in the first and

third column (i.e. in the columns 0 and 2), if we fix their entries a = S(2, 0) and

c = S(1, 2), the entries of the middle column are uniquely determined. Hence, we can

denote the fillings by a8c. If a = 0, the top entry in the second column must be 1 and c

can take any of the values 2, . . . , n. Hence, we collect the possible standard fillings

280, . . . , 08n ∈ SYT(1; 2, 1n−2).

If a = 1, the top entry in the second column must be 0 and we collect analogously the

standard fillings

182, . . . , 18n ∈ SYT(1; 2, 1n−2).

Finally, a = 2 is only possible, if the cells in the first row carry the entries 0 and 1, so

there is

281 ∈ SYT(1; 2, 1n−2)
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and there are no other possible standard fillings. Hence, the number of standard fillings

of (1; 2, 1n−2) is ∣∣SYT(1; 2, 1n−2)
∣∣ = 2n− 1.

Note that this equals the number of different eigenvalues claimed by the Inset-Spectrum

Conjecture.

Our next task is to determine the distribution vector z((1; 2, 1n−2), C). Again we

start by recognising that the 0 cannot reach the cell
(

2
0

)
if it starts somewhere else. If

the 0 starts in the cell
(

2
0

)
the 1 can start in the second column or at the cell

(
1
2

)
. If it

starts in the second column the entry c of the cell
(

1
2

)
will not move (for every c > 1

there are (n − 1)! such cases – see Figure 51 left). If 1 starts at the cell
(

1
2

)
it will also

reach
(

1
1

)
being exchanged with the entry c that starts there (for every c > 1 there are

(n− 2)! such cases – see Figure 51 right). This yields

z08c((1; 2, 1n−2), C) = (n− 1)! + (n− 2)! = (n− 2)!(1 + n− 1) = n(n− 2)!.

0

c

1

0

1c 
n− 2 cells

︸︷︷︸
n− 1 cells

Figure 51. Preimages of 08c

The outcome a = 1 will appear if the 0 starts in the second or third column (unless

they both start in the first row or the 1 starts at
(

1
2

)
). We reach 18c if c starts at

(
1
2

)
and 0 in the second column (these are (n − 1)(n − 1)! cases for every c – see Figure 52

left) or if the 0 starts at
(

1
2

)
and c completes the first row (these are (n− 1)! cases – see

Figure 52 right). This yields

z18c((1; 2, 1n−2), C) = (n− 1)(n− 1)! + (n− 1)! = (n− 1)!(n− 1 + 1) = n!.

Analogously, a = 2 requires either the 0 starting in the second row and 1 at
(

1
2

)
or

both of them in the first row (see Figure 53) – and the same calculation yields

z281((1; 2, 1n−2), C) = n!.
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c

0

0c 
n− 1 cells

︸ ︷︷ ︸
n− 1 cells with other entries

n− 1 cells︷︸︸︷

Figure 52. Preimages of 18c

1

0

01 
n− 1 cells

︸ ︷︷ ︸
n− 1 cells with other entries

n− 1 cells︷︸︸︷

Figure 53. Preimages of 281

To ensure that we did not forget any fillings we can recheck by summation, and

indeed we find

(n− 1)n(n− 2)! + nn! = n!(1 + n) = (n+ 1)! =
∣∣T(1; 2, 1n−2)

∣∣ .
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If we sort the standard fillings lexicographically we get the beautiful distribution vector

z((1; 2, 1n−2), C) =



n(n− 2)!
...

n(n− 2)!

n!
...

n!

n!


,

where the first n− 1 components are n(n− 2)! and n! appears n times (one extra time

at the final position which belongs to the standard filling 281).

We now turn to calculating the entries of the distribution matrix. The reader may

find it helpful to compare the arguments with Figure 50. First we recognise that SIMb

either changes the position of the 0 or stabilises the entire standard filling. Hence the

blocks on the diagonal of A(1; 2, 1n−2) will be diagonal. The standard fillings 08c and

18 c will all be stabilised by SIMb if and only if b ∈ {−1, 0}. 281 will additionally be

stabilised by b = 1 which will perform two east steps, i.e.

A08c,08c(1; 2, 1n−2) = 2,

A18c,18c(1; 2, 1n−2) = 2 and

A281,281(1; 2, 1n−2) = 3.

Sticking to the argument of the two east steps we see that for every b ≥ 2 we get

SIMb : 281 7→ 18b and, hence,

A281,18c(1; 2, 1n−2) = 1.

If we consider the standard filling 08 c and wonder what happens if b is positive, we

find, that the jeu de taquin starts with a south step and hence the value of a will be

positive. For c = 2 and b = 1 the jeu de taquin stops after the first step and we

have SIM1 : 08 2 7→ 18 2, every larger value of b will shrink c to 1 which means that

SIMb : 082 7→ 281 i.e.

A082,182(1; 2, 1n−2) = 1 and

A082,281(1; 2, 1n−2) = n− 1.

For every larger value of c the standard filling 08c has the 2 as entry of
(

2
1

)
, hence, every

positive b will produce a = 1. If b < c the latter will be unchallenged otherwise it will
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shrink by 1. We get

A08c,18c(1; 2, 1n−2) = c− 1 and

A08c,18c−1(1; 2, 1n−2) = n+ 1− c.

For c ≥ 3 the very same argumentation leads to

A18c,08c(1; 2, 1n−2) = c− 1 and

A18c,08c−1(1; 2, 1n−2) = n+ 1− c.

We are left with determining the images of 182 for positive b. For b = 1 the jeu de taquin

is a single east step, for b = 2 we get two east steps but the same result, hence

A182,082(1; 2, 1n−2) = 2.

For larger b we always find two east steps and SIMb : 182 7→ 08b, i.e. for c > 2 we have

A182,08c(1; 2, 1n−2) = 1.

We can convince ourselves that we did not forget anything by recognising that every

row and every column of A(1; 2, 1n−2) sums up to n+ 2. We use the same lexicographic

order as above, suppress the zeros and put lines to separate the values of a and the above

arguments to get the beautiful form

A(1; 2, 1n−2) =



2

2

2

2

2

2

2

2

1 n−2

2

n−2 1

n−1

2

1

1

1

n−2

2

n−2 1

n−1

n−1 3

1

1

1

1



.

Again the eigenpair ε1 = n + 2, v1 = 1 is immediate and with the conditions that the

first n − 1 components shall agree and so shall the last n it is very easy to guess the
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eigenvector

vy =



−n
...

−n
n− 1

...

n− 1

n− 1


to which we find the eigenvalue εy = 3 − n = 2 − λ′1. Another short calculation yields

coefficients such that

z((1; 2, 1n−2), C) =
(n+ 1)!

2n− 1
1 +

n(n− 2)(n− 2)!

2n− 1
vy.

Hence, the Eigenvector-Distribution Conjecture holds for the case (1; 2, 1n−2).

We can actually do better and prove the Inset-Spectrum Conjecture for this case as

well. We do so by factoring the characteristic polynomial.

(5.4)

det (A(1; 2, 1n−2)− x I) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2−x

2−x

2−x

2−x

2−x

2−x

2−x

2−x

1 n−2

2

n−2 1

n−1

2

1

1

1

n−2

2

n−2 1

n−1

n−1 3−x

1

1

1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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Since we know that all columns have the same sum we start by adding all other rows to

the bottom row.

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2−x

2−x

2−x

2−x

2−x

2−x

2−x

2−x

1 n−2

2

n−2 1

n−1

2

1

1

1

n−2

2

n−2 1

n−1

n+2−x n+2−x

1

1

1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

We subtract the last column from every other column to get rid of the entries in the

last row. This has no effect on the first n − 1 rows, but the second n − 1 rows get 1

subtracted everywhere but in the last column.

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2−x

2−x

2−x

2−x

1−x

1−x

1−x

1−x

−1

−1 −1

−1 −1

−1

−1

−1 −1

−1 −1

−1

n−3

1

n−3

1

n−2

2

1

1

1

n−2

2

n−2 1

n−1

n+2−x

1

1

1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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We can now expand along the last row to extract the first factor of the polynomial.

= (n+ 2− x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2−x

2−x

2−x

2−x

1−x

1−x

1−x

1−x

−1

−1 −1

−1 −1

−1

−1

−1 −1

−1 −1

−1

n−3

1

n−3

1

n−2

2

1

1

1

n−2

2

n−2 1

n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

We can get rid of the −1’s in the bottom right block by subtracting the ith column from

the (i + n− 1)st column where i = 1, . . . , n− 1. This also creates some of the diagonal

entries that we will need.

= (n+ 2− x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2−x

2−x

2−x

2−x

1−x

−x

4−n−x

3−n−x

2−n

−1

−1

−1 −1

−1 −1

−1

n−3

1

n−3

1

n−2

x

1

1

1

n−2

x n−3

x−1

1

3−n−x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

We can now clear a lot in the top right block by adding the ith row to the (i−n−1)st row

where i = n, . . . , 2n − 2, and simultaneously modify the diagonal entries in the top left
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block as we desire.

= (n+ 2− x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2−x

3−x

n−1−x

n−x

n−3

1

−1

−1 −1

−1 −1

−1

1−x

−x

4−n−x

3−n−x

2−n

−1

−1

−1 −1

−1 −1

−1

n−3

1

n−3

1

n−2

1

1

1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

We now reached a situation where the sums of the first halfrows vanish in the lower half

of the matrix and are 2− x in the upper half. We take advantage of this by adding the

first n− 2 columns to the (n− 1)st column.

= (n+ 2− x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2−x

3−x

n−1−x

n−3

1

−1

−1 −1

−1 −1

−1

2−x

2−x

1−x

−x

4−n−x

3−n−x

2−n

−1

−1

−1 −1

−1 −1

−1

n−3

1

n−3

1

1

1

1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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We use the (n− 1)st row to clear the 1’s, (2−x)’s and some −1’s by subtracting it from

the rows 1 to n− 2.

= (n+ 2− x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3−x

4−x

n−x

n−2

2

−1 −1 2−x

1−x

−x

4−n−x

3−n−x

2−n

−1

−1

−1 −1

−1 −1

−1

n−3

1

n−3

1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

We can now expand along the (n− 1)st column to extract the second factor.

= (n+ 2− x)(2− x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3−x

4−x

n−x

n−2

2

1−x

−x

4−n−x

3−n−x

2−n

−1

−1

−1 −1

−1 −1

−1

n−3

1

n−3

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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Since the top right block is now empty, we can split the determinant in the product of

the determinants of the diagonal blocks.

= (n+ 2− x)(2− x)

∣∣∣∣∣∣∣∣∣∣∣∣∣

3−x

4−x

n−x

n−2

2

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−x

−x

4−n−x

3−n−x

2−n

−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

Since these matrices are upper triangular, we can read off the factors of the characteristic

polynomial on the diagonals.

= (n+ 2− x)(n− x)(n− 1− x) . . . (3− n− x).

Hence, also the Inset-Spectrum Conjecture holds for the case (1; 2, 1n−2). Moreover,

all possible eigenvalues exist and are simple. For every larger example we observed

that there were some multiplicities of eigenvalues missing i.e. the matrices are not

diagonalisable. More importantly, we want to remark that in general the only eigenvalue

that is simple is the leading one. Especially note, that the eigenspace of the least

eigenvalue is of higher dimension. Hence, it is totally unclear from a spectral point

of view which vector in this space should be the deviation vector. This suggests that

the most promising approaches to prove the Inset-Eigenvector-Distribution Conjecture

are either to guess the deviation vector and derive the correct eigenvalue or to find an

induction. At the time being we believe that the latter has better chances to succeed.

5.6. Distribution matrices in a more general setting. If one adds a cell, that

is the unique top cell after the addition, it is clear, that it will carry the smallest entry

after the jeu de taquin was played. Hence, deleting this cell again makes no difference

to the index-set of the distribution vector. The situation is different if we add a top cell

which is not unique, since the smallest entry might be stuck in a different top cell such

that deleting the added cell shrinks the set of standard fillings.

This yields two different operations treating the addition of an explicit cell xi. For

easier notation we use a shifting function.

Definition 5.16 (Conditional shift). The Conditional shift shb : Z→ Z stabilises

everything larger than b and decrements everything else, i.e.

shb(t) =

t if t > b

t− 1 if t ≤ b.
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We extend our above notation with the specification of the added cell.

Definition 5.17 (Simulation of a cell). Let P be a skew diagram and x /∈ P a

cell such that P ∪ {x} is a skew diagram. Let S ∈ SYT(P ) be a standard filling, n =

max{S(P )}, N = min{S(P )}, t a positive integer and b ∈ {N − t, . . . , n}. Then the

simulation of the cell x denoted by SIMx
b is defined by the following algorithm.

(1) Start with the standard filling S.

(2) Apply shb to the entries of P .

(3) Add the cell x with entry b.

(4) Apply jdtx to this filling of P ∪ {x} and call the resulting standard filling U .

(5) Remove the cell x along with its entry.

(6) Apply sh−1
U(x) to the remaining entries of P to end up with the standard filling

SIMx
b (S) ∈ SYT(P ).

Note that, if x is a unique top cell, sh−1
U(x)

∣∣∣
P

is the identity. Intuition tells us that

t = 1 makes sense, larger values of t simulate some kind of neck attached to x since no

value b < N will reach P .

Definition 5.18 (Addition of a cell). Let P be a skew diagram and x /∈ P a cell such

that P ∪{x} is a skew diagram. Let S ∈ SYT(P ) be a standard filling, n = max{S(P )},
N = min{S(P )} and b ∈ {N − 1, . . . , n}. Then the addition of the cell x denoted by

ADDx
b is defined by the following algorithm.

(1) Start with the standard filling S.

(2) Apply shb to the entries of P .

(3) Add the cell x with entry b.

(4) Apply jdtx to this filling of P ∪ {x} to end up with the standard filling

ADDx
b (S) ∈ SYT(P ∪ {x}).

Comparing ADD with the operation add from Section 2 we recognise that they are

equal descriptions of the same thing. If we replace the entries of xk with their image

under the unique order-preserving map pk : F (νk)→ {n− k + 1, . . . , n} and then apply

all ADDxk
pk(F (xk)) in the order k = 1, . . . , k = n, this is the same as applying addFxk .

This is again an immediate consequence of the argument that the relative orders are

preserved. To illustrate this, we pick up our example from Figure 16 in Figure 54 where

we highlighted the entries which are shifted down to create the space for the entry of xk

which is about to drop.

Equipped with these operations we redefine the distribution matrices.

Definition 5.19 (virtual distribution matrix). Let P be a skew diagram and xk a

cell such that P ∪ {xk} is again a skew diagram. Consider the standard fillings SYT(P )
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8 7 5 4

10 11 3

9 6

1 2

T =

8 10 11 11

10 11 10

10 11

4 8

8 10 11 11

10 11 10

10 11

4 8

8 10 5 11

10 11 10

10 11

4 8

8 10 11 11

10 11 10

10 11

4 8

8 10 9 10

10 11 11

10 11

4 8

8 10 9 10

10 11 11

10 11

4 8

8 10 8 9

10 11 10

10 7

4 11

8 10 7 8

10 6 9

10 10

4 11

8 5 6 7

10 8 10

10 9

4 11

8 5 6 7

10 8 10

10 9

4 11

8 4 5 6

10 7 9

3 8

10 11

8 3 4 5

2 6 8

7 10

9 11

1 2 3 4

5 7 8

6 10

9 11

= U

pk’s

ADD
(14)
11 ADD

(23)
10

ADD
(13)
11

ADD
(42)
8ADD

(32)
11

ADD
(22)
11

ADD
(12)
10 ADD

(41)
4

ADD
(31)
10

ADD
(21)
10ADD

(11)
8

Figure 54. Sorting a filling of (4, 3, 2, 2) using ADD

and use for them the letters U and V and let

N = minV (P ),

n = maxV (P ) and

t ∈ N+.

We define

AU,V (t;xk P ) :=
∣∣{b ∈ {N − t, . . . , n} | SIMxk

b (V ) = U}
∣∣
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and combine these entries to the virtual distribution matrix

A(t;xk P ) := (AU,V (t;xk P ))U,V .

Definition 5.20 (distribution matrix). Let P be a skew diagram and xk a cell such

that P ∪ {xk} is again a skew diagram. Consider the standard fillings SYT(P ) and use

for them the letter V and let

N = minV (P ) and

n = maxV (P ).

Further use for standard fillings in SYT(P ∪ {xk}) the letter U . We define

BU,V (xk P ) :=
∣∣{b ∈ {N − 1, . . . , n} | ADDxk

b (V ) = U}
∣∣

and combine these entries to the distribution matrix

B(xk P) := (BU,V (xk P ))U,V .

If xk is a unique top cell, and the t = 1 agree, the distribution matrix and the

virtual distribution matrix are equal. If xk is in the neck of an inset, both specialise to

the distribution matrices defined earlier. The virtual distribution matrices are always

square, but they do not reflect the NPS-algorithm. The distribution matrices, however,

can be used to follow the sorting algorithm.

Lemma 5.21. Let P and Q be skew diagrams such that there is a cell xk with Q =

P ∪ {xk}. Let S ∈ SYT(Q) be an algorithm-defining standard filling such that xk is

≺S-minimal (i.e. is processed last). Then

z(Q,S) = B(xk P) z(P, S|P ).

Proof. The arguments are the same as for Lemma 5.8. �

From Lemma 5.21 the following corollary is immediate.

Corollary 5.22. Let P be a skew diagram and S ∈ SYT(P ) define the ≺S-

algorithm. Let xk ≺S · · · ≺S x1 be the cells of P and

Pi :=

i⋃
j=1

{xi} and

Si := S|Pi .

Then for 1 ≤ l ≤ k we have

z(Pl, Sl) = B(xl Pl−1)B(xl−1 Pl−2) · · ·B(x1 P0) 11

where P0 is the empty diagram.



100 1. JEU DE TAQUIN

Note that the empty diagram has a standard filling (namely the empty filling), hence,

B(x1 P0) is a (1× 1)-matrix and it has the entry 1.

We want to introduce one more matrix. Its definition may seem very unmotivated

since like for the virtual distribution matrices its combinatorial use may be questioned.

Nevertheless it appeared in our investigations and we do not want to hold it back.

Definition 5.23 (top-cell matrix). Let P be a skew diagram and let {y1, . . . , yk} be

the set of top cells of P . Consider the skew diagrams

P i := P \ yi.

We use lines between blocks to denote that a matrix consists of the blocks in between.

Then the top-cell matrix is given by

T( P ) :=
(
B(y1 P1)

∣∣∣B(y2 P2)
∣∣∣. . .∣∣∣B(yk Pk)

)
.

Since in every standard filling the smallest entry must be located at a top-cell

yi, we can forget about this cell of P to get a standard filling of P \ yi. For the

same reason SYT(P ) can be partitioned into k subsets corresponding to the sets

SYT(P 1), . . . ,SYT(P k). Hence, T( P ) is square.

5.7. Distribution matrices of Young diagrams. We are now going to have

a look at distribution matrices in the setting of Young diagrams. First we will be

interested in the distribution matrix B(
(

1
1

)
λ/(1)) = A(1;

(
1
1

)
λ/(1)) of the top left

corner and the distribution vector z(λ/(1), S) before the last cell is added, where S

is the restriction of a standard Young tableau that qualifies as order-defining for the

Novelli-Pak-Stoyanovskii algorithm (i.e. is given by Remark 2.16). We have

z(λ, S) = B(
(

1
1

)
λ/(1)) z(λ/(1), S).

From the Novelli-Pak-Stoyanovskii bijection we know that z(λ, S) exhibits uniform dis-

tribution. Moreover, we know that the sum of the entries of z(λ/(1), S) counts the

fillings of λ/(1), hence,

(n− 1)! =
∑

T∈SYT(λ/(1))

zT (λ/(1), S) = z(λ/(1), S) · 1.

This means that z(λ/(1), S) lies on a (non-homogeneous) hyperplane orthogonal to 1

i.e. there is a vector vy with vy · 1 = 0 such that

z(λ/(1), S) =
(n− 1)!

fλ
1 + vy.
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Since we know that 1 is the leading eigenvector of B(
(

1
1

)
λ/(1)) (having eigenvalue

ε1 = n) we have

z(λ, S) =
n!

fλ
1 = B(

(
1
1

)
λ/(1))

(n− 1)!

fλ
1

and hence,

vy ∈ ker (B(
(

1
1

)
λ/(1))).

This can be interpreted as an Eigenvector-Distribution Theorem for Young diagrams.

Let T ∈ SYT(λ) be such as the above S with the additional preliminary that the top

row is processed last, and let T ′ = T |λ/(λ1) be the restriction of T to the Young tableau

without the first row. It is clear form the Novelli-Pak-Stoyanovskii algorithm, that the

distribution vectors z(λ, T ) and z(λ/(λ1), T ′) both exhibit uniform distribution. We get

(5.5) z(λ/(0), T )︸ ︷︷ ︸
=n! 1fλ

= B(
(

1
1

)
λ/(1))

Q( λ):=︷ ︸︸ ︷
B(
(

1
2

)
λ/(2)) · · ·B(

(
1
λ1

)
λ/(λ1))︸ ︷︷ ︸

=:P( λ)

z(λ/(λ1), T ′)︸ ︷︷ ︸
=(n−λ1)! 1fλ/(λ1)

.

Here, we have to discuss the notation for P( λ) and Q( λ). To be consistent with the

notations introduced before, the parameters should read (i) λ/(i) and (i)/(1) λ/(i)

but since this is very unhandy and λ carries all information needed, we prefer the notation

as introduced.

Note that (5.5) implies that the rows of P( λ) have equal sums. P( λ) is a linear

map R|SYT(λ/(λ1))| → R|SYT(λ)| and we can index its columns by SYT(λ/(λ1)) and its

rows by SYT(λ). Hence, we can write for every U ∈ SYT(λ)

(5.6)
∑

V ∈SYT(λ/(λ1))

PU,V ( λ) =
fλ/(λ1)

fλ
nλ1 .

Moreover, ADD
(1,i)
b can create from one standard filling of λ/(i) as many (not necessarily

different) standard fillings of λ/(i − 1) as there are possible values of b. Hence, the

contribution of any 1 in z(λ/(λ1), R) to z(λ,R) is nλ1 . Therefore, also the sums of the

columns of P( λ) are equal, namely for all V ∈ SYT(λ)

(5.7)
∑

U∈SYT(λ/(λ1))

PU,V ( λ) = nλ1 .

The latter argument also works for Q( λ), i.e. for all V ∈ SYT(λ/(1))∑
U∈SYT(λ/(λ1))

QU,V ( λ) = (n− 1)λ1−1.
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But equation (5.6) does not apply for Q( λ) since

(n− 1)!

fλ
1 + vy = z(λ/(1), R) = Q( λ) z(λ/(λ1), R).

We would like to know more about Q( λ), ideally enough be able to generally guess

vy. We are not sure if this can be achieved, but at least we can say quite a bit about

the B(
(

1
i

)
λ/(i))’s. To do so, we introduce a notation to identify blocks of distribution

matrices.

Definition 5.24 (W → U block). Let M(·) be a distribution matrix of any kind

with index sets SYT(P ) of the rows and SYT(Q) of the columns (i.e. M(·) describes

how an addition or simulation maps standard fillings of P to standard fillings of Q). Let

W ⊂ SYT(P ) and U ⊂ SYT(Q), then the W → U block is the matrix

MW→U (·) := (MU,W (·))U∈U ,W∈W .

I.e. the W → U block describes how the operation that generates M(·) transforms

standard fillings in W to standard fillings in U .

Example 5.25. Consider the simulation of
(

1
1

)
with t = 2 of a Young diagram λ

with λ1 > 1 and letW = U be the set of standard fillings with the entry λ1 at
(

1
λ1

)
. The

first λ1 − 1 steps of any path must be east, hence, only values b ≤ λ1 will contribute to

this block (larger b’s could only leave λ1 at
(

1
λ1

)
if λ1 + 1 would be shrinked and shifted

from
(

2
λ1

)
, but λ1 + 1 is the entry of

(
2
1

)
). All these b’s stabilise these standard fillings

and hence, this W → U block is (λ1 + 2)I.

Proposition 5.26 (1st Addition Property). Let λ ` n and 1 < i < λ1 and consider

the skew diagram λ/(i) with the first i cells of the first row removed. We are interested

in additions of the cell
(

1
i

)
that yield the smallest entry at

(
1
i

)
, i.e. we consider the index

sets

W = SYT(λ/(i)) and

U = {S ∈ SYT(λ/(i− 1)) | S(1, i) = i}.

Then we find the W → U block

BW→U (
(

1
i

)
λ/(i)) =

(
B(
(

1
i+1

)
λ/(i + 1))

∣∣∣0)+ I

where
(
B(
(

1
i+1

)
λ/(i + 1))

∣∣∣0) is the square matrix constructed from the rectangular

matrix B(
(

1
i+1

)
λ/(i + 1)) by extending it with zeros.

Proof. Fixing the entry of
(

1
i

)
to i yields no restriction for the other entries (other

then that they are not i). Hence we can identify the standard fillings S of λ/(i−1) with

S(1, i) = i with the standard fillings T of λ/(i). Hence, BW→U (
(

1
i

)
λ/(i)) is square.
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There are two disjoint cases such that the outcome of the addition will satisfy

S(1, i) = i.

(1) b = i: in this case the path of b is trivial and we explained the summand I.

(2) b > i and the original standard filling T satisfies T (1, i+ 1) = i+ 1: in this case

the path will always start with an east step and after this step we are exactly

in the starting position of the addition of
(

1
i+1

)
to λ/(i+ 1). This explains the

summand
(
B(
(

1
i+1

)
λ/(i + 1))

∣∣∣0).

Note that T (2, i) = i+ 1 is impossible. �

I
i i

B(
(

1
i+1

)
λ/(i + 1))

Figure 55. Schematic picture of the 1st addition property.

The skew diagram λ/(i) has a second top cell, namely
(

2
1

)
. We are also interested in

the addition of this cell.

Proposition 5.27 (2nd Addition Property). Let λ ` n and 1 < i < λ1 and consider

the skew diagram λ/(i, 1). We wonder about the block that keeps the minimal entry at(
1
i+1

)
, this is, we let

W = {S ∈ SYT(λ/(1, i)) | S(1, i+ 1) = i+ 2} and

U = {S ∈ SYT(λ/(i)) | S(1, i+ 1) = i+ 1}.

Then the corresponding W → U block is given by

BW→U (
(

2
1

)
λ/(i, 1)) = B(

(
2
1

)
λ/(i + 1, 1)).

Proof. The only possibility that i + 2 shrinks to i + 1 is that b ≥ i + 2. Hence,

in B(
(

2
1

)
λ/(i, 1))U ,W the entry of (1, i + 1) is fixed at the minimum and we do not

consider b = i+ 1 – but this is exactly the situation of B(
(

2
1

)
λ/(i + 1, 1)). �

Finally, we derive an addition property for the easiest case of a top-cell matrix.

Proposition 5.28 (3rd Addition Property). Let λ ` n. Then

(5.8) B(
(

1
1

)
λ/(1)) = T( λ/(1)) + I =

(
B(
(

1
2

)
λ/(2))

∣∣B(
(

2
1

)
λ/(12))

)
+ I.
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i+1B(
(

2
1

)
λ/(i + 1, 1))

Figure 56. Schematic picture of the 2nd addition property.

Proof. If b = 1 every standard filling is fixed and we explained the summand I.

If b ≥ 2 the first step is either east or south. An east step explains the summand(
B(
(

1
2

)
λ/(2))

∣∣0) and a south step the summand
(
0
∣∣B(
(

2
1

)
λ/(12))

)
. �

I B(
(

1
2

)
λ/(2))

B(
(

2
1

)
λ/(12))

Figure 57. Schematic picture of the 3rd addition property.

The above addition properties explain a little of the structure of the distribution

matrices but wide areas of them remain in the dark. Of course, a huge amount of

further addition properties can be formulated and we wonder if they might be helpful.

Question 5.29. Is it possible to give general addition properties and use them to

derive a general reduction scheme in the sense of (5.4) that proves the Spectrum Con-

jectures?

5.8. More conjectures. Considering the matrices from the above section, we state

the follwing, adventurous conjecture.

Conjecture 5.30 (General Young Diagram Spectrum Conjecture). The eigenvalues

of the matrices T( λ/µ) + I and
(
B(
(

1
i

)
λ/(i))

∣∣0) are non-negative integers.

Note that this especially includes a Spectrum Conjecture for B(
(

1
1

)
λ/(1)).

We turn our attention back to the distribution vectors. Considering an order defined

by S ∈ SYT(λ) that qualifies for the NPS-algorithm, we know, that either the first row

or first column is processed last. Since before this step the intermediate distribution

vector exhibits uniform distribution, there are only two possible distribution vectors
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z(λ/(1), S) and hence only two possibilities for the deviation vector vy. We know (by

example) that the eigenspace to the least eigenvalue εy of the distribution matrix is

in general of higher dimension. Hence, we should a priori expect these two deviation

vectors to be independent. Observations, however, suggest the opposite.

Conjecture 5.31. Let in the above setting vR and vC be the deviation vectors of

the row-wise and column-wise algorithms. Then the deviation space spanned by vR and

vC has dimension 1, i.e.

dim〈vR, vC〉 = 1.

We believe that the following more general version of the same conjecture does not

strengthen it.

Conjecture 5.32 (Young Diagram Deviation Space Conjecture). Let U ⊂ SYT(λ)

be the set of standard fillings defining algorithms that exhibit uniform distribution and

denote by vU the deviation vector corresponding to the ≺U -algorithm. Then the deviation

space spanned by the vectors vU has dimension 1, i.e.

dim〈vU | U ∈ U〉 = 1.

So far we do not know about an NPS-like bijection for insets, hence, it is much riskier

to state the same conjecture for insets. Indeed we are afraid that in this case the search

for a counterexample might pay. Nevertheless, we have to state the conjecture.

Conjecture 5.33 (Inset Deviation Space Conjecture). Let U ⊂ SYT(λ′1;λ) be as

above and let the deviation vectors vU be analogous to above. Then the deviation space

spanned by the vectors vU has dimension 1, i.e.

dim〈vU | U ∈ U〉 = 1.

Up to now we stayed very vague with the notions deviation vector and deviation

space and trusted in the intuition of the reader. Indeed we denoted the deviation vector

as if the Inset Eigenvector Distribution Conjecture was proven. But this is not the only

obstacle – we may as well think of a deviation vector of a non-uniformly distributed

algorithm.

Definition 5.34 (deviation vector). Let P be a diagram with a top cell x, use

P ′ = P \ {x} and let U ∈ SYT(P ) such that U(x) is the minimal entry. The deviation

vector vU is defined as

vU := z(P, U |P ′)−
(|P | − 1)!

|SYT(P ′)|
1.

Indeed this notation contains the entire information, since P and x are encoded in

the standard filling U .
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We take a step back to think about the situation. We know that 1 is the leading

eigenvector of the distribution matrix. We could add a neck of arbitrary length at

the position of the top cell. For every cell of the neck we multiply the distribution

vector with a distribution matrix that agrees on the leading eigenvector 1. We may

apply Perron-Frobenius such that the normalised distribution vector converges to 1.

But the growth of the distribution vector is much too fast such that we will never

run into a situation such that n!
|SYT(P )|1 is the only integer point in the corresponding

neighbourhood. This tells us, that the deviation vector will always be small compared to

n!, but nothing else. A priori the distribution vector could e.g. somehow oscillate around

the line x = ξ 1. Encouraged by the Eigenvector Distribution Conjectures one might

be tempted to conjecture that such a deviation vector is a combination of eigenvectors

with positive eigenvalues – or even more surprising that for every order U there is an

eigenvalue εU such that the deviation vector vU has eigenvalue εU . Our observations for

small cases suggest something far beyond surprising.

Conjecture 5.35 (Young Diagram 2 Conjecture). Let U ∈ SYT(λ) define an al-

gorithm that does not exhibit uniform distribution. Then the deviation vector vU is an

eigenvector of B(
(

1
1

)
λ/(1)) with eigenvalue 2.

5.9. Distribution matrices on insets. When we started to consider distribution

matrices, the intention was to generalise the ∆-Theorem to insets. We soon discovered

that they carry a remarkable structure that motivated us to discover the above addition

properties. This section is devoted to the investigation of this structure.

We start by partitioning the set of standard fillings of an inset by the entry of the

cell
(

2
0

)
. From here on we will call this entry g and respectively g̃ after the execution of

the jeu de taquin. For the inset (1;λ) let

Ui := {S ∈ SYT(1;λ) | g = i}.

Since the possible values for g are 0, . . . , λ1, we can write the set of standard fillings as

disjoint union

SYT(1;λ) =

λ1∐
i=0

Ui.

This canonically splits the distribution matrix in blocks BUj→Ui(
(

1
0

)
(1;λ)). To avoid

additional subscripting, we denote

Bj 7→i(
(

1
0

)
(1;λ)) := BUj→Ui(

(
1
0

)
(1;λ)).
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The entry of the cell
(

2
1

)
is larger than g and all smaller entries also have to be in

the first row (or to be g). We call this entry h and get

h ∈ {g + 1, . . . , λ1 + 1} ⊂ {2, . . . , λ1 + 1}.

0 ··· ··· g−1 g+1 ··· ··· h−1

g h

Figure 58. The entries of g and h

We can now describe the blocks. We start with the blocks Bg 7→g(
(

1
0

)
(1;λ)). A

positive g will be stabilised by ADD
(10)
b if and only if b < g. Such a b can only be

exchanged with entries smaller than b. But these are all in the first row. Hence, b will

take some east steps and stop then without having had any effect on the relative order.

Hence, for b < g we have ADD
(10)
b = id and, since there are |{−1, . . . , g − 1}| = g + 1

such values of b, we derived for all g > 1

Bg 7→g(
(

1
0

)
(1;λ)) = (g + 1) I.

The value g = 0 is stabilised by b ∈ {−1, 0} and both values will stabilise the entire

tableau. Hence, the block B07→0(
(

1
0

)
(1;λ)) is given by

B07→0(
(

1
0

)
(1;λ)) = 2 I.

Whenever g is positive the jeu de taquin can start only with an east step. In this

situation g will shrink by one if and only if b ≥ g. In this case we know that actually

the first g steps will be east (passing by the entries 0, . . . , g − 1 in the first row). But

then we are in a situation we already met, namely

Bg 7→g−1(
(

1
0

)
(1;λ)) = B(

(
1

g−1

)
λ/(g − 1)).

If g = 0 and b is positive we observe jeux de taquin starting with a south step such

that the entry of
(

2
0

)
will grow to g̃. There are two possibilities to end up with g̃: either
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0 ··· ··· g−1

g

Figure 59. The jeux de taquin for the (g 7→ g)-block

1

0

Figure 60. The jeux de taquin for the (0 7→ 0)-block

b = g̃ and h > b (i.e. b stops after the first step), or h = g̃ + 1 and b ≥ g̃ (i.e. h will

shrink by one and slide to
(

2
0

)
).

The former includes that h > g̃ and, hence, this case acts as the identity on

SYT(λ/(g̃)).

The latter meets the situation of B(
(

2
1

)
λ/(g̃, 1)).

We observe that h ≤ g̃ is impossible. Hence, we can write

B0 7→g̃(
(

1
0

)
(1;λ)) =

(
I +

(
0
∣∣B(
(

2
1

)
λ/(g̃, 1))

)∣∣0) .
The General-Young-Diagram-Spectrum Conjecture was motivated by observing matrices

I +
(
0
∣∣B(
(

2
1

)
λ/(g̃, 1))

)
with integer spectrum.

It is easily checked, that all other blocks of B(
(

1
0

)
(1;λ)) are 0. We obtain the form

displayed in Figure 64. The above arguments include something more, not captured
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0 ··· ··· g−1

g

Figure 61. The jeux de taquin for the (g 7→ g − 1)-blocks

1 ··· ··· g̃ g̃+1 ··· ··· h−1

0 h>g̃

Figure 62. The jeu de taquin for the identity part of the (0 7→ g̃)-blocks

in the picture, namely that I + B(
(

2
1

)
λ/(i, 1)) lies exactly below the part of I +

B(
(

2
1

)
λ/(i− 1, 1)) that only carries entries from the identity.

Using the row-wise algorithm we know from the Novelli-Pak-Stoyanovskii bijection

that by applying the algorithm to the cells up to and including the cell
(

1
2

)
we get the

distribution vector

z((1;λ)/(1;λ1), R) =
(n− λ1)!

fλ/(λ1)
1.

Analogously to the case of ordinary Young diagrams we derive the distribution vector

z((1;λ), R) = B(
(

1
1

)
(1;λ)/(1)) B(

(
1
2

)
(1;λ)/(2)) · · ·

· · ·B(
(

1
λ1

)
(1;λ)/(λ1)) B(

(
2
0

)
(1;λ)/(1;λ1)) z((1;λ)/(1;λ1), R).
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0

1 ··· ··· g̃

g̃+1

Figure 63. The jeux de taquin for the (0 7→ g̃)-blocks

We already know, that 1 is an eigenvector of B(
(

2
1

)
(1;λ)/(1;λ1, 1)) to the eigenvalue

ε1 = n− λ1. Moreover, it is obvious that

B(
(

2
0

)
(1;λ)/(1;λ1)) = B(

(
2
1

)
(1;λ)/(1;λ1, 1)) + I.

Hence, we get

z((1;λ), R) = B(
(

1
1

)
(1;λ)/(1)) B(

(
1
2

)
(1;λ)/(2)) · · ·

· · ·B(
(

1
λ1

)
(1;λ)/(λ1))

(n+ 1− λ1)!

fλ/(λ1)
1.

This motivates us to have a look at the matrices B(
(

1
i

)
(1;λ)/(i)). Again, we

partition the sets of standard fillings by the values of g and g̃ and consider the

blocks Bg 7→g̃(
(

1
i

)
(1;λ)/(i)). The only non-zero blocks are Bg 7→g(

(
1
i

)
(1;λ)/(i)) and

Bg 7→g−1(
(

1
i

)
(1;λ)/(i)). With the same arguments as above we find

Bg 7→g(
(

1
i

)
(1;λ)/(i)) = (g − i) I

and

Bg 7→g−1(
(

1
i

)
(1;λ)/(i)) = B(

(
1
g

)
λ/(g)).

We summarise these arguments in Figure 65 and display the matrix B(
(

1
i

)
(1;λ)/(i))

in Figure 66. Note the strong relation between B(
(

1
i

)
(1;λ)/(i)) and B(

(
1
1

)
(1;λ)) by

subtracting (i− 1) I from the latter and finding the former as a right lower block.

Now this matrix looks really inviting, since it would be a square upper-triangular

matrix if one could just get rid of the upper left block. We remember that the distribution

matrices of simulations are always square. This motivates us to consider the virtual

distribution matrix A(
(

1
i

)
(1;λ)/(i)) := A(1;

(
1
i

)
(1;λ)/(i)).
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2 I B((11) λ/(1))

2 I B((12) λ/(2))

3 I

B(( 1
λ1

) λ/(λ1))

(λ1+1) I

I+

B((21) λ/(12))

I+

B((21) λ/(2,1))

I+

B((21) λ/(λ1−1,1))

I+

B((21) λ/(λ1,1))

Figure 64. The matrix B(
(

1
0

)
(1;λ))

Lemma 5.36. In the above setting with 0 < i < λ1 we have for i < g ≤ λ1 and

i ≤ g̃ ≤ λ1

Ag 7→g̃(
(

1
i

)
(1;λ)/(i)) = Bg 7→g̃(

(
1
i

)
(1;λ)/(i)).

Proof. We know that in this situation we start with the (least) entry i at the cell(
1
i+1

)
. Either the new smallest entry is b or i shrinks and slides to

(
1
i

)
. Either way

removing the cell
(

1
i

)
again has no effect on the other entries. We identify the standard

fillings of (1;λ)/(i) with the standard fillings of (1;λ)/(i− 1) with the smallest entry at(
1
i

)
if they agree on their values of (1;λ)/(i). The statement follows immediately. �

Note that we calculated the blocks Bg 7→g̃(
(

1
i

)
(1;λ)/(i)) above and that most of

them are zero. Note further that we did not formulate Lemma 5.36 for i = λ1. The
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i ··· ··· g−1

g

Figure 65. The jeux de taquin for B(
(

1
i

)
(1;λ)/(i))

lemma would be empty, since no g would exist. The following lemma, however, would

also apply for i = λ1 trivially, but we prefer to formulate it for i < λ1 as well.

Lemma 5.37. In the above setting with 0 < i < λ1 and g = i we get g̃ = i.

Proof. Either we simulate b = i− 1 and g never changes, or we simulate b ≥ i and

g shrinks to i− 1, but then the value that is later deleted at position
(

1
i

)
is greater than

i− 1 and g will be increased again such that in either case g̃ = i. �

Lemma 5.37 tells, that in going from B(
(

1
i

)
(1;λ)/(i)) to A(

(
1
i

)
(1;λ)/(i)) we

integrate the block Bi 7→i−1(
(

1
i

)
(1;λ)/(i)) into the block Bi 7→i(

(
1
i

)
(1;λ)/(i)) to get

the block Ai 7→i(
(

1
i

)
(1;λ)/(i)). This is almost but not exactly what we wanted. Namely,

we got rid of the top block of B(
(

1
i

)
(1;λ)/(i)), but we did not get an upper triangular

matrix, because the block Ai 7→i(
(

1
i

)
(1;λ)/(i)) is not upper triangular. With arguments

similar to the ones used for the addition properties one can tell quite a bit about this

integration process, but this analysis appears pointless to us, hence we skip it here to

baulk neither us nor the reader with it. Nevertheless we present the following theorem

to illustrate, that it is maybe not hopeless to attack the Spectrum Conjectures.

Theorem 5.38 (probably useless Theorem). For 1 ≤ i < λ1 the matrices

A(
(

1
i

)
(1;λ)/(i)) have (maybe among others) eigenvalues 2, . . . , λ1 +1− i and n+2− i.

Proof. From Lemma 5.36 and Lemma 5.37 follows that the matrix has the form

as displayed in Figure 67 and we can read off the eigenvalues 2, . . . , λ1 + 1 − i on the

diagonal. The eigenvalue n+2− i must be present, since all columns must sum to it. �
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B((1i) λ/(i))

I

B(( 1
i+1) λ/(i+1))

2 I

B(( 1
λ1

) λ/(λ1))

(λ1+1−i) I

Figure 66. The matrix B(
(

1
i

)
(1;λ)/(i))

One might be tempted to think, that the only problem arises with jeux de taquin

starting with south steps and that only these generate non-zero entries below the di-

agonal. This is partly true, but indeed the situation is much worse. The structure we

observed so far cannot be sufficient to explain the spectrum. We cannot exclude, that it

is possible to derive that the eigenvalues are integers (below n+ 2 which is obviously the

leading eigenvalue), but there is no hope to explain the lowest eigenvalue 2−λ′1 because

the number of rows does not appear in the description of the structure of the distribu-

tion matrices. If we want to explain this eigenvalue and if and why it is the eigenvalue
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Ai7→i((1i) (1;λ)/(i))

B(( 1
i+1) λ/(i+1))

2 I

B(( 1
λ1

) λ/(λ1))

(λ1+1−i) I

Figure 67. The matrix A(
(

1
i

)
(1;λ)/(i))

of the deviation vector, we need essentially stronger arguments. We could try some

Novelli-Pak-Stoyanovskii-like proof to show the Inset-Uniform-Distribution-Conjecture,

but that would basically mean to throw the distribution-matrices-approach away. If

we want to really learn more about the distribution matrices, we will probably have to

study the matrices B(
(

1
i

)
λ/(i)) and B(

(
2
1

)
λ/(i, 1)) and/or to try inductions with

the double-tailed diamond and/or the case (1; 2, 1n−2) as starting point.

We close the current section by noting that – if nothing else – the distribution

matrices at least provide a way to calculate distribution vectors much more efficiently

than by playing the jeu de taquin for (n+ 1)! tableaux.

5.10. Examples. There is a huge amount of orders that could be chosen to arrange

the rows and columns of the distribution matrices. We found no order, that appears to

be better than to sort the fillings row-wisely lexicographically starting with the entry g.

We have already seen some examples of distribution matrices when discussing the double

tailed diamond and the case (1; 2, 1n−2). Here we show B(
(

1
0

)
(1; 3, 2, 1)) in Figure 68



5. DISTRIBUTION MATRICES OF THE JEU DE TAQUIN 115

and B(
(

1
0

)
(1; 3, 2, 1, 1)) in Figure 69. We heavily encourage the reader to search the

addition properties in these examples.

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
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5.11. A note on the distribution vectors of insets. We close this chapter with

a consideration of the structure of the distribution vectors of insets. After we derived

the structure of the corresponding distribution matrices, we would expect to find some

kind of similar structure inherent to these vectors.

To do so, we refine our definition of the distribution vector. Namely, we consider the

starting and ending position of the minimal entry.
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Definition 5.39. Let P be some diagram, S ∈ SYT(P ) define an order and for

w ∈ P let Tw(P ) ⊂ T(P ) be the set of fillings F such that F (w) is the smallest entry.

We define the w-start-distribution vector zw→(P, S) via its components

zw→S (P,U) :=
∣∣JDT−1(U) ∩ Tw(P )

∣∣
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for U ∈ SYT. Analogously, we define the w-ending-distribution vector z→w(P, S)

via its components

z→wS (P,U) :=

zU (P, S) if U(w) is the minimal entry

0 otherwise.

We are going to consider the case of the insets using the row-wise order, i.e.

z(ij)→((1;λ), R) and z→(ij)((1;λ), R).

A well known fact which we (due to a remark of Sulzgruber) call the unstoppability

of the 1, is, that during the application of the ≺S-algorithm the path of the smallest

entry from its starting cell w to a top cell depends on S and w and nothing else (especially

not on the rest of the filling). The reason for this is of course that whenever a cell is

processed that is ≺-covered by the cell containing the smallest entry, the smallest entry

immediately slides there. We observe a very similar fact.

Lemma 5.40. Given S ∈ SYT and consider cells w and w′ with w′ ≺·
S
w and w′ ≺· w

and a filling F ∈ T such that F (w′) is the minimal entry. Then exchanging the entries

of w and w′ has no effect on the output of the ≺S-algorithm, i.e.

JDTS(F ) = JDTS((F (w′), F (w))F ).

Proof. On the lefthand side jdtw′ will be empty and jdtw will start with

(F (w′), F (w)), which commutes with all jeu de taquin steps processed before. �

As an immediate consequence we get that the corresponding w- and w′-start-

distribution vectors agree.

Corollary 5.41. Given S ∈ SYT(P ) and consider cells w and w′ with w′ ≺·
S
w

and w′ ≺· w, then

zw→(P, S) = zw
′→(P, S).

For insets this immediately includes.

Corollary 5.42. Consider the row-wise algorithm, then the
(
i
j

)
-start-distribution

vectors of cells in the same row agree, i.e.

z(ij)→((1;λ), R) = z(ik)→((1;λ), R)

if
(
i
j

)
and

(
i
k

)
decode cells of the inset.

The same holds obviously for Young diagrams and other appropriate shapes.

Since the distribution vector can be decomposed as

z((1;λ), R) =
∑

w∈(1;λ)

zw→((1;λ), R)
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we can use this result to break down the distribution vector row-wisely, i.e.

z((1;λ), R) = z(21)→((1;λ), R) +

λ′1∑
i=1

λi z
(i1)→((1;λ), R).

We further observe that the row-wise algorithm will slide the 0 to
(

2
0

)
if and only if it

starts not in the first row. We get

z→(20)((1;λ), R) = z(20)→((1;λ), R) +

λ′1∑
i=2

λi z
(i1)→((1;λ), R) and

z→(11)((1;λ), R) = λ1 z(11)→((1;λ), R).

The lefthand side of the former can easily be counted directly as

z→(20)((1;λ), R) =
(n− λ1 + 1)n!

fλ

(
1fλ

0

)

with the following argument: there is uniform distribution after
(

2
1

)
was processed, then

the 0 “slides out” giving a factor of (n− λ1 + 1) and we keep going with the case of an

ordinary tabloid where the 1 took the place of the 0. Hence, we get uniform distribution

on the standard fillings with the 0 at
(

2
0

)
and the rest of the vector vanishes. Note that

we again use a line-notation, this time to separate the parts of vectors.

Looking at the righthand side of the second equation we recognise, that the cell
(

1
1

)
does not play any role i.e.

z(11)→((1;λ), R) = z((1;λ)/(1), R).

This yields

z((1;λ), R) =

z→(20)((1;λ), R)

z→(11)((1;λ), R)

 =

 z→(20)((1;λ), R)

λ1 z(11)→((1;λ), R)

 =

 (n−λ1+1)n!
fλ

1

λ1 z((1;λ)/(1), R)

 .

Looking at the bottom part of this vector, we can repeat the procedure

z((1;λ)/(1), R) =

z→(20)((1;λ)/(1), R)

z→(12)((1;λ)/(1), R)

 =

=

 z→(20)((1;λ)/(1), R)

(λ1 − 1) z→(12)((1;λ)/(1), R)

 =

=

 z→(20)((1;λ)/(1), R)

(λ1 − 1) z((1;λ)/(2), R)

 .
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Note that the upper part of this vector is not a multiple of 1 any more, but has still

a deviation vector which is in the kernel of B((1, 1) λ/(1)). For the other cells in the

first column we lose this property, i.e. we have

z((1;λ)/(i), R) =

 z→(20)((1;λ)/(i), R)

(λ1 − i) z((1;λ)/(i+ 1), R)

 .

Finally, we find

z((1;λ)/(λ1 − 1), R) =

z→(20)((1;λ)/(λ1 − 1), R)

z((1;λ)/(λ1), R)

 =

z→(20)((1;λ)/(λ1 − 1), R)

(n−λ1+1)!
fλ/(λ1)

1

 .

Iteratively plugging in yields

(5.9) z((1;λ), R) =



(n−λ1+1)n!
fλ

1

λ1
1 z→(20)((1;λ)/(1), R)

λ1
2 z→(20)((1;λ)/(2), R)

...

λ1! z→(20)((1;λ)/(λ1 − 1), R)

λ1! (n−λ1+1)!
fλ/(λ1)

1


This motivates us to wonder about a description of z→(20)((1;λ)/(i), R). Indeed, with the

same argument as above we get this distribution vector by applying the corresponding

distribution matrices of skew Young diagrams as

z→(20)((1;λ)/(i), R) = B(
(

1
i+1

)
λ/(i + 1)) · · ·B(

(
1
λ1

)
λ/(λ1))

(n− λ1 + 1)!

fλ/(λ1)
1.
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Thus we get the distribution vector as

z((1;λ), R) =



(n−λ1+1)n!
fλ

1

λ1
1 B(

(
1
2

)
λ/(2)) · · ·B(

(
1
λ1

)
λ/(λ1)) (n−λ1+1)!

fλ/(λ1)
1

λ1
2 B(

(
1
3

)
λ/(3)) · · ·B(

(
1
λ1

)
λ/(λ1)) (n−λ1+1)!

fλ/(λ1)
1

...

λ1! B(
(

1
λ1

)
λ/(λ1)) (n−λ1+1)!

fλ/(λ1)
1

λ1! (n−λ1+1)!
fλ/(λ1)

1


=

= (n− λ1 + 1)



z(λ,R)

λ1
1 z(λ/(1), R)

λ1
2 z(λ/(2), R)

...

λ1! z(λ/(λ1 − 1), R)

λ1! z(λ/(λ1), R)


.

We see that this distribution vector of the inset (1;λ) is built up from the distribution

vectors of the skew Young diagrams λ/(i), as its distribution matrix is built from the

distribution matrices of the top cells of these skew Young diagrams.



CHAPTER 2

Highly arc transitive Digraphs

Before I considered the jeu de taquin I worked on so called highly arc transitive

digraphs. I was just about to develop software to visualise parts of highly arc transitive

digraphs because with the methods I had at hand I reached a cul-de-sac. In this situation

a presentation by Krattenthaler dragged my attention to the complexity of the jeu de

taquin. One of my first ideas was to consider the digraph with fillings as vertices and

jeu de taquin steps as edges. As mentioned before, this graph neither helped to derive

the complexity theorems, nor was it of any use for constructing highly arc transitive

digraphs, but half a year later the first version of the involution proving the ∆-Theorem

was derived from it.

In this chapter, however, I present my results on highly arc transitive digraphs, that

were published before in Discrete Mathematics, i.e. the chapter is almost one to one

with my paper [Neu13].

1. Introduction

A digraph is highly arc transitive if its automorphism group acts transitively on

the set of its n-arcs for every n. We present a way to construct various highly arc

transitive digraphs as a fibre product. Doing so, we unify different constructions of highly

arc transitive digraphs presented in [CPW93], [DMŠ11] and [DL01] and obtain new

highly arc transitive digraphs. Depending on the number and structure of the factors,

the produced digraphs can have one or two (or in special cases infinitely many) ends.

Cameron, Praeger and Wormald studied highly arc transitive digraphs in [CPW93]

and made a conjecture about the subclass of digraphs which have an epimorphism onto

the integer line such that the preimages are finite. Möller [Möl02] constructed a di-

graph, that was believed to be a counterexample, but later Šparl [Špa] showed that it

is not transitive. We give digraphs that are direct fibre products and qualify as coun-

terexamples.

121
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Independently from our work, DeVos, Mohar and Šámal studied highly arc transitive

digraphs in [DMŠ11]. We must point out that [DMŠ11] contains results partially over-

lapping with ours.1 They answer a question from [CPW93] and clarify the mentioned

conjecture. For doing so, they use counterexamples that are isomorphic to ours, but they

obtain them with a different approach. Moreover they study the structure of highly arc

transitive digraphs with two ends. In Section 3.1 we explain the relation between the

present work and [DMŠ11].

The outline of Chapter 2 is as follows. In Section 1.1 we recall some notions from

[CPW93]. In Section 1.2 we introduce the direct fibre product. In Section 2 we use this

product to find a counterexample to the mentioned conjecture. In Section 3 we make

some remarks on the overlap with [DMŠ11], Möller’s digraph and the automorphisms

we needed for our construction in Section 2. In Section 4 we present further highly

arc transitive digraphs that can be constructed using the direct fibre product. This

includes representations of some known highly arc transitive digraphs, generalisations of

the factors and the thereby obtained new highly arc transitive digraphs.

1.1. Highly arc transitive digraphs. An n-arc in a digraph D is a series

(ei)i=0,...,n−1 of n directed edges ei = (xei , yei) such that yei = xei+1 for all i in the

range. A digraph is called n-arc transitive if its automorphism group acts transitively

on the nonempty set of its n-arcs. A digraph is called highly arc transitive (HAT)

if it is n-arc transitive for all n ∈ N. An alternating walk is a series (ei)i=0,...,n−1 of

n directed edges ei = (xei , yei) such that consecutive edges agree alternatingly on either

the initial or terminal vertex, i.e., for every even i in the range xei = xei+1 and yei = yei+1

for every odd i (or vice verse). Two edges are reachable from each other if there exists

an alternating walk that contains them both. Being reachable from each other is an

equivalence relation on the edge set of a digraph which we call reachability relation.

Let D = (V,E) be a HAT digraph and e ∈ E. Let ∆(e) be the subgraph of D that is

spanned by the equivalence class of e with respect to the reachability relation. ∆(e) is

independent from e i.e. for all e1, e2 ∈ E : ∆(e1) ∼= ∆(e2). Thus, we can speak of it as

∆(D) and call it the associated digraph of D. If ∆(D) 6= D then ∆(D) is bipartite.

Let Z = (Z, {(i, i+1) | i ∈ Z}) be the digraph representing the integer line. A digraph G

has Property Z if there is an epimorphism ϕ : G→ Z. Note that if G is HAT all edges

of ∆(e) are mapped to the same edge ϕ(e) by ϕ. The fibre ϕ−1((i, i+1)) of every edge of

Z induces a subgraph of G which we call (edge-)layer. If G is HAT all components of

1The results and constructions in this chapter were obtained independently from those of [DMŠ11]. As
a matter of fact, I learned about [DMŠ11] on the day I intended to put [Neu13] on the arXiv, when
a colleague dragged my attention to the fact that [DMŠ11] had appeared on the arXiv just the day
before. In view of this, [Neu13] was revised so that it took also into account [DMŠ11] and it was put
on the arXiv with a delay of a few days.
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every layer are isomorphic to ∆(G). We call a fibre ϕ−1(x) a (vertex-)layer. Moreover,

we will refer to a directed doubleray (i.e. a doubleray such that every finite, connected

subsequence is an arc) as line. For more details on these notions we refer to [CPW93]

or [Neu10].

In the paper [CPW93] on HAT digraphs, Cameron, Praeger and Wormald stated

the following conjecture.

Conjecture 1.1 (Cameron, Praeger, Wormald). Let D be a connected HAT

digraph with Property Z and finite fibres ϕ−1(x). Then the associated digraph ∆(D) is

complete bipartite.

1.2. The direct fibre product. The direct fibre product appeared earlier e.g. in

the construction of the Diestel–Leader digraph (also known as broom-digraph). It was

generalised to the horocyclic product which is defined in [BW08]. This generalisation

is related, but does not agree with the one that we are going to use. Our direct fibre

product is a proper subgraph of the direct product. It is induced by a subset of the

vertex set that is gained in the following way: given Property Z for both factors, one

restricts to vertices agreeing on their image.

Definition 1.2 (Direct fibre product). Let G1 = (V 1, E1) and G2 = (V 2, E2)

be digraphs with Property Z and let ϕ1 : V 1 → Z and ϕ2 : V 2 → Z be the arising

epimorphisms. The direct fibre product G1
ϕ1×ϕ2 G2 is the digraph (V,E) with

V = {(x, y) | x ∈ V 1, y ∈ V 2, ϕ1(x) = ϕ2(y)},

E = {((a, b), (x, y)) | (a, x) ∈ E1, (b, y) ∈ E2}.

If the factors are both connected HAT digraphs with Property Z, this direct fibre

product gives exactly a connected component of the ordinary direct product – in this

case these components are all isomorphic. For general factors, there is no need for the

components to be isomorphic. So, in the general case, the direct fibre product picks the

“central” component.

It is often convenient to denote the vertices as (n, x, y) where n = ϕ1(x) = ϕ2(y). In

the situation x = (i, a) and y = (j, b) and ϕ1,2 depend only on i and j respectively, it is

very convenient to denote the vertices by (n, a, b).

If we need to consider more factors, we generalise our definition of the direct fibre

product as follows.

Definition 1.3 (Direct fibre product). Let I be some set of indices and Gi =

(V i, Ei) for i ∈ I digraphs with Property Z and let Φ := {ϕi : V i → Z | i ∈ I} be the set

of arising epimorphisms. The direct fibre product
∏Φ
I := Gi is the digraph (V,E)
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with

V = {(xi)i∈I | xi ∈ V i, ∀j, k ∈ I : ϕj(xj) = ϕk(xk)},

E = {((xi)i∈I , (yi)i∈I) | ∀j ∈ I : (xj , yj) ∈ Ej}.

Again we denote the vertices by (n, (xi)i∈I) or (n, (ai)i∈I) respectively.

Remark 1.4 (Further generalisation). We could generalise the direct fibre product

by using epimorphisms to digraphs other than Z, as it is done with horocyclic prod-

ucts. This might yield interesting digraphs but we do neither need nor address such

constructions here.

Remark 1.5 (Automorphism groups). Consider the digraph G =
∏Φ
I G

i and the

automorphism groups Ai = Aut(Gi) and A = Aut(G).

(1) Some of the Gi may have shifts and some not. The product is then likely to

have no shifts as well. Say Aj is an automorphism group containing a shift. In

this case Aj is not a subgroup of A. The same might happen if the shifts of

two factors have different step width. Say the step width of the shifts in Ak

is 2 and the step width of shifts in Al is 3. Then the step width of the shifts

that may exist in A is likely to not be below 6 and thus neither Ak nor Al is a

subgroup of A. (It will become clear in a moment why we were using the term

“is likely” in this paragraph.)

(2) On the other hand, there might appear new shifts. Let I = {1, 2} and consider

the digraphs G1 = (V 1, E1) and G2 = (V 2, E2) with

V 1 = {(x, y) | x ∈ Z, y = 0 if x = 0, y ∈ {0, 1} if x 6= 0},

E1 = {((x, y), (a, b)) | (x, y), (a, b) ∈ V 1, x+ 1 = a},

V 2 = {(x, y) | x ∈ Z, y = 0 if x 6= 0, y ∈ {0, 1} if x = 0} and

E2 = {((x, y), (a, b)) | (x, y), (a, b) ∈ V 2, x+ 1 = a}.

The product G = G1
(x,y)7→x×(x,y)7→x G

2 enriches its automorphism group

with a shift of arbitrary step width. A1 and A2 are canonically embedded in

A. A1 ×A2 does not contain shifts and thus is a proper subgroup of A.

Finally, consider the digraph G′ = G1
(x,y)7→x×(x,y)7→x+1 G

2 with auto-

morphism group A′. In this case no shifts disappear or arise and we have

A1 ×A2 = A′. (Note that G and G′ only differ on the choice of Φ.)

(3) One might think that the shifts are the only problems that prevent us from

obtaining a relation like the one immediately above. This, however, is wrong.
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Let I = {2, 3} and consider the digraph G3 = (V 3, E3) to be defined by

V 3 = {(x, y) | x ∈ Z, y ∈ {0, 1} if − 1 ≤ x ≤ 1, y = 0 otherwise} and

E3 = {((x, y), (a, b)) | x+ 1 = a, y = b} ∪ {((−2, 0), (−1, 1)), ((1, 1), (2, 0))}

and the digraph G2 from above. In the product G = G2 (x,y)7→x×(x,y)7→x G3 the

diamond around the origin of G2 gets duplicated to the two branches of G3

around the origin. The automorphism group A of G can act on these branches

independently, whereas A2×A3 cannot do so. Hence the latter is again a proper

subgroup of the first.

(4) Summarising the above, all we can say, is: let A0
i be the groups of automor-

phisms of Gi that fix the images under ϕi (i.e. do not contain shifts) and let

A0 be analogously defined for the product. Then the direct product of the A0
i

acts canonically on the fibre product of the Gi but is not necessarily equal to

A0, i.e. ∏
I

A0
i ≤ A0.

2. The counterexample

Our counterexample for Conjecture 1.1 will be a direct fibre product of two factors

which we have to define first. Let L = (V L, EL) be the digraph with vertex set V L =

Z×{−1, 0, 1} and e = ((i, x), (i+1, y)) be an edge if i is even or if i is odd and x+y 6= 0

(the latter is a nice way to encode an alternating 6-cycle). Thus the layers of L are

alternating a K3,3 and an alternating 6-cycle (see Figure 1).

-2 -1 0 1 2 3 4

Figure 1. The digraph L

L has Property Z with ϕ1((i, x)) := i but ϕ2((i, x)) := i+ 1 is an epimorphism onto

Z too. We can now define our counterexample:

(2.1) D := L ϕ1×ϕ2 L.

For convenience, we denote −1/0/1 by -/o/+. As mentioned above, we extract the Z
coordinate and denote the vertices of D with (n, x, y) rather than by ((n, x), (n+ 1, y))

as if D had the vertex set Z× {-,o,+} × {-,o,+}.
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-2 -1 0 1 2

Figure 2. The digraph D

Lemma 2.1. Let AC6 be the alternating 6-cycle and D = (V (D), E(D)) the above

digraph. Let ψ1 : V (K3,3) → {0, 1} and ψ2 : AC6 → {0, 1} both map the initial vertices

to 0 and the terminal vertices to 1. Then ∆(e) is independent of e and thus, ∆(D) is

welldefined and

(2.2) ∆(D) = K3,3 ψ1×ψ2 AC6

is connected, 1-arc transitive, bipartite but not complete bipartite.

Proof. For x = (i, x1, x2) ∈ V (D) define ϕ(x) := i = ϕ1(x1) = ϕ2(x2). Thus, the

direct fibre product preserves Property Z. Thus, no alternating walk can leave the layer

in which it started. Thus, ∆(D) (if it exists) must be isomorphic to a subgraph of a

layer thus bipartite. By a flip of the coordinates the direct fibre product is commutative.

Thus, we do not need to distinguish between even and odd layers in the following. By the

construction of D, every layer is of the form of the right side of (2.2). If we consider the

subgraphs of a layer that are spanned by the vertices that agree on the second coordinate

(note that that means ignoring the Z-coordinate) we get three alternating 6–cycles. If we

consider the subgraph spanned by the vertices that have a - in their third coordinate we

get a K3,3 that connects the three cycles. Thus, the layer is connected and ∆(D) exists

since all layers are isomorphic. Thus, (2.2) holds. The 1-arc transitivity follows from

the 1-arc transitivity of the factors in the following way: every edge in one of the factors

corresponds to a copy of the other factor in the product. The edge sets of the collection

of these copies form a partition of the edge set of the product (compare Figure 3). By the

1-arc transitivity of each one factor its automorphism group acts transitively on these

copies and can be embedded in the automorphism group of ∆(D). Thus, one can adjust

in the first step the second coordinates of the endpoints of an edge and in the second

step the third coordinates – only restricted by the existence of edges. This is also the

main idea of the construction of D and will be used in pretty much every step in the
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Figure 3. ∆(D)

proof of Proposition 2.2. Finally the edge ((0,o,o), (1,o,o)) does not exist in ∆(D) and

thus it is not complete bipartite. �

Proposition 2.2. The digraph D defined in (2.1) is HAT.

Proof. We are going to prove very carefully that for every n-arc a (assume initial

vertex x with ϕ(x) = −m) in D there is an automorphism ψ ∈ Aut(D) such that

ψ(a) = z where

z = (((i, -, -), (i+ 1, -, -)))i=−n,...,−1.
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Figure 4. Two 4-arcs in D

In order to do so, we use a shift-automorphism σ, transitivity-automorphisms θo,

θ+, θ
o and θ+ and arranging-automorphisms αo, α+ and αo. For convenience, we denote

θ- = θ- = α- = α- = α+ = id . Our automorphism ψ will then have the form

(2.3) ψ := (σ−1 ◦ αin ◦ αi
n
) ◦ · · · ◦ (σ−1 ◦ αi1 ◦ αi

1
) ◦ θi0 ◦ θi

0 ◦ σm,

where m ∈ Z is of course meant to be a power rather than an index and ij , i
j ∈ {-,o,+}

where ij cannot take the value + for j > 0 because there are no edges ((0, x,-), (1, x,+)).

We are now going to explain the tasks of the above automorphisms and afterwards check

their existence and correctness one by one. In the following, we will refer to the line

with the vertices (i,-,-) as baseline.

• σ shifts D up by one layer i.e. ϕ+ 1 ≡ ϕ ◦ σ. Thus, σm shifts the initial vertex

of a to the zero-layer i.e. ϕ ◦ σm(x) = 0. Moreover, σ stabilises the baseline

setwise.

• The transitivity-automorphisms guarantee the transitivity of D. Their task is

to map σm(x) to the baseline. θ+ and θo map (0,+, y) and (0,o, y) respectively to

(0,-, y), thereby fixing the third coordinate. θ+ and θo map (0, x,o) and (0, x,+)

respectively to (0, x,-), thereby fixing the second coordinate. Thus, they can be

combined in a way to map any given vertex in the zero-layer to (0,-,-). There

is no need for the transitivity-automorphisms to stabilise the baseline.

• The arranging-automorphisms guarantee that D is (s + 1)-arc transitive if

it only is s-arc transitive (where we can understand the transitivity gained

from the transitivity-automorphisms as 0-arc transitivity). In order to achieve

this, we must be able to map the arcs ((0,-,-), (1, x, y)) onto ((0,-,-), (1,-,-))

and at the same time stabilise the negative half of the baseline. αo maps

((0,-,-), (1,o, y)) 7→ ((0,-,-), (1,-, y)) again fixing y. αo and α- respectively

map ((0,-,-), (1, x,o)) and ((0,-,-), (1, x,+)) respectively to ((0,-,-), (1, x,-)) yet

again fixing x.

• The brackets in (2.3) therefore map the arc with initial vertex (0,-,-) on the

baseline and shift D one step to the left to keep the working-layer the same.

We are now going to have a closer look at every single of these automorphisms:
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σ: We start with the shift-automorphism. It will increase the Z coordinate by one

and flip the other coordinates.

σ : (i, x, y) 7→ (i+ 1, y, x)

We recognise that we can describe the edge set ofD by joining the conditions

of the factors. Thus

((i, x1, y1), (i+ 1, x2, y2)) ∈ E(D) ⇐⇒ (1) or (2)

with the conditions

(1) i is even and y1 + y2 6= 0

(2) i is odd and x1 + x2 6= 0.

We have to prove that the image of every edge is again an edge. We consider

σ(((i, x1, y1), (i+ 1, x2, y2))) = (σ((i, x1, y1)), σ((i+ 1, x2, y2)))

= ((i+ 1, y1, x1), (i+ 2, y2, x2))

and the two cases:

(a) i is even. Then we must have y1 + y2 6= 0. Obviously, i+ 1 is odd and by

condition (2) from above ((i+ 1, y1, x1), (i+ 2, y2, x2)) is an edge.

(b) i is odd. Analogously, we have x1 + x2 6= 0 and i + 1 is even and by

condition (1) from above ((i+ 1, y1, x1), (i+ 2, y2, x2)) is an edge.

Since σ((i,-,-)) = (i+ 1,-,-), the baseline is stabilised setwise. Also

ϕ(σ((i, x, y))) = ϕ((i+ 1, y, x)) = i+ 1 = ϕ((i, x, y)) + 1

holds.

θo: The automorphism θo must map

θo : (0, o, y) 7→ (0, -, y).

We choose the automorphism that exchanges the vertices

(0, o, y) � (0, -, y) and

(−1, o, y) � (−1, +, y).

This is illustrated in Figure 5. Note that this figure shows D projected along

the third coordinate. Thus, two more vertices hide behind every vertex and a

K3,3 (AC6 respectively – depending on the layer) hides behind every edge. It

is enough to find an automorphism in that view. The third coordinate (that

is being projected along) cannot cause any problem since inside a layer all the

edges represent the same bipartite digraph (either K3,3 or AC6) and the third
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coordinate is stabilised. Within a layer, the edges that map onto each other

are highlighted with the same style. Note that this automorphism (like all the

following ones) involves 12 vertices and 126 edges. These are:

((−2, -, y), (−1, o, y)) � ((−2, -, y), (−1, +, y))

((−2, o, y), (−1, o, y)) � ((−2, o, y), (−1, +, y))

((−2, +, y), (−1, o, y)) � ((−2, +, y), (−1, +, y))

((−1, -, y), (0, -, y)) � ((−1, -, y), (0, o, y))

((−1, o, y), (0, +, y)) � ((−1, +, y), (0, +, y))

((−1, o, y), (0, -, y)) � ((−1, +, y), (0, o, y))

((0, -, y), (1, -, y)) � ((0, o, y), (1, -, y))

((0, -, y), (1, o, y)) � ((0, o, y), (1, o, y))

((0, -, y), (1, +, y)) � ((0, o, y), (1, +, y))
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Figure 5. θo

θ+: The automorphism θ+ must map

θ+ : (0, +, y) 7→ (0, -, y).

We choose the automorphism that exchanges the vertices

(0, +, y) � (0, -, y) and

(−1, +, y) � (−1, -, y).

This is illustrated in Figure 6. For the rest of the proof we will not list the

actions on the edges since they are obvious from the figures.
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Figure 6. θ+
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θo: The automorphism θo must map

θo : (0, x, o) 7→ (0, x, -).

We choose the automorphism that exchanges the vertices

(0, x, o) � (0, x, -) and

(1, x, o) � (1, x, +).

This is illustrated in Figure 7.
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Figure 7. θo

θ+: The automorphism θ+ must map

θ+ : (0, x, +) 7→ (0, x, -).

We choose the automorphism that exchanges the vertices

(0, x, +) � (0, x, -) and

(1, x, +) � (1, x, -).

This is illustrated in Figure 8.
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Figure 8. θ+

αo: The automorphism αo must map the edge

((0, -, -), (1, o, y)) 7→ ((0, -, -), (1, -, y)).

We choose the automorphism that exchanges the vertices

(1, o, y) � (1, -, y) and

(2, +, y) � (2, o, y).

This is illustrated in Figure 9.
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Figure 9. αo

α+: The automorphism α+ must map the edge

((0, -, -), (1, +, y)) 7→ ((0, -, -), (1, -, y)).

We choose the automorphism that exchanges the vertices

(1, +, y) � (1, -, y) and

(2, +, y) � (2, -, y).

This is illustrated in Figure 10.
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Figure 10. α+

αo: Finally, the automorphism αo must map the edge

((0, -, -), (1, x, o)) 7→ ((0, -, -), (1, x, -)).

We choose the automorphism that exchanges the vertices

(0, x, o) � (0, x, +) and

(1, x, -) � (1, x, o).

This is illustrated in Figure 11.
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Figure 11. αo
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Theorem 2.3. There is a connected HAT digraph with Property Z and finite fibres

which has an associated digraph that is not complete bipartite, i.e., Conjecture 1.1 does

not hold.

Proof. The digraph D defined in (2.1) has fibresize 9. By Lemma 2.1 its associated

digraph is not complete bipartite. It follows from Lemma 2.1 as well that D is connected.

By Proposition 2.2, D is HAT. �

3. Remarks

3.1. On the overlap with the work of DeVos, Mohar and Šámal. Our di-

graph D was recently constructed by DeVos, Mohar and Šámal [DMŠ11, Construction

2] without the use of the direct fibre product. They basically gave the joined condition

from the above proof directly and mixed the coordinates in a way such that the shift

does not need to flip coordinates. Our constructions from Section 4.2 corresponds in a

similar way to [DMŠ11, Construction 3].

3.2. Möller’s digraph. The digraph Möller constructed in [Möl02] looked promis-

ing because the arranging-automorphisms work. Unfortunately, he missed to check tran-

sitivity. His approach was to use an alternating eight cycle of K2,2 as ∆ and concatenate

them cleverly. The easiest way to see that his digraph is not HAT is probably to see

that an edge cannot be mapped to an edge that agrees on the terminal vertex and lies

in the same K2,2 (the contradiction arises soon in the outward direction).

3.3. On the automorphisms. In the proof of Proposition 2.2 we chose the n-arc

z = (((i, -, -), (i+ 1, -, -)))i=−n,...,−1

and the automorphism

ψ := (σ−1 ◦ αin ◦ αi
n
) ◦ · · · ◦ (σ−1 ◦ αi1 ◦ αi

1
) ◦ θi0 ◦ θi

0 ◦ σm.

We could as well have chosen the n-arc

z′ = (((i, -, -), (i+ 1, -, -)))i=0,...,n−1

in which case we would not need the shifts σ−1. Moreover, we would not need that the

shift stabilises the baseline. But we would have needed an argument that the arranging-

automorphisms work in every layer (this is not difficult, since all the layers look the

same, i.e., just differ by flips of the coordinates). The automorphism would then appear

as

ψ′ := (nαin ◦ nαi
n
) ◦ · · · ◦ (1αi1 ◦ 1α

i1) ◦ θi0 ◦ θi
0 ◦ σm,
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where the lower left indices denote the working-layer. More importantly, we notice that

the different α- and θ-automorphisms act only on one of the coordinates and thus we

need not perform them one after the other but can apply them simultaneously in every

layer. We can therefore denote

Θ :=

 id

θi0
θi

0

 , Aj :=

 id

jαij

jα
ij

 ,

and our automorphism reads

ψ′ = An ◦ · · · ◦A1 ◦Θ ◦ σm.

We chose to use the automorphisms ψ rather than ψ′ for the above proof because in that

way the number of needed α-automorphisms is finite.

4. More constructions

4.1. The example of McKay and Praeger. In [CPW93] a nontrivial HAT

digraph is constructed that has Property Z, finite fibres and complete bipartite digraphs

as associated digraph. This example can be realised using the direct fibre product. One

uses Kn,n instead of K3,3 and replaces AC6 with a matching (n horizontal edges). One

places m matchings in between the Kn,n and multiplies the digraph with its m shifts

(see Figure 12).

Kn,n Kn,n

Figure 12. Factor of the digraph of Praeger and McKay

4.2. Other factors. Considering the automorphisms in the proof, every 1-arc tran-

sitive, connected, noncomplete bipartite digraph (with equal partition sizes) concate-

nated with a suitable Kn,n would have done the job. (Connectedness is not necessary

in every situation.) From now on, we will refer to these noncomplete bipartite, 1-arc

transitive layers as involvers (unless they have outdegree smaller than 2). Figure 13

shows this situation where I stands for the involver.

Like in Section 4.1, we are not restricted to two factors. We are free to place arbitrary

many matchings (and some more Kn,n) between the Kn,n and the involver as long as

the factor stays periodic (say with the length l of the period). Then the product of the

l different shifts is again HAT.
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I Kn,n I Kn,n I Kn,n

Figure 13. Little variation of the factors of D

Moreover, we can use different 1-arc transitive, bipartite digraphs as involvers. We

just have to ensure that there is a Kn,n between each two of them. Again multiplying

the l shifts yield a HAT digraph (see Figure 14).

Kn,n I1 Kn,n Kn,n I2 Kn,n

Figure 14. More general factors

Indeed we do not even need to keep the fibresizes of the factor constant but can alter

them periodically.

Kn,m I1 Kr,r Kr,s I2 Kn,m

Figure 15. Even more general factors

Proposition 4.1. Let G be a digraph with Property Z and finite fibres such that

every layer is either complete bipartite, a matching, or an involver and such that between

any two involvers there is a complete bipartite layer. If G is periodic (i.e. there is a shift

σl ∈ Aut(G) such that ϕ ◦ σl(v) = ϕ(v) + l for all v ∈ V (G) and some l ∈ Z) then the

direct fibre product

G∗ =

{ϕ+i}∏
{i=0,1,...,l−1}

G

is highly arc transitive and two-ended.
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Proof. In this more general situation we need to think about the shift globally

and the transitivity- and arranging-automorphisms locally in one factor from the Kn,m

preceding an involver to the Kr,s succeeding it. Additionally, we need to take care

of the existence of a baseline. We choose some line b in G and label its vertices by

zero. The product of b with its shifts induces a line in G∗ that contains the vertices

(n, (0)i=1,...,l)n∈Z. We can use this line as baseline.

Kn,m I1 Kr,s

Figure 16. Local view of a factor

The shift simply increases the Z coordinate and circularly shifts the other coordi-

nates:

σ : (i, x1, . . . , xn) 7→ (i+ 1, xn, x1, . . . , xn−1).

We must consider the α- and θ-automorphisms in all the layers of the local view

(we can skip the θ for the very first and the θ and α for the very last layer because

they actually belong to the preceding or succeeding local view). In contrast to the proof

in Section 2 we are not looking for an automorphism that flips a single edge on the

baseline, but for an automorphism that maps an arc to the baseline in a single view.

That is, we treat one coordinate of the vertices along an arc without influencing the

other coordinates.

• The α-automorphisms for the Kn,m map an arbitrary edge e1 onto an other e0.

The corresponding map for the terminal vertices te1 7→ te0 will be transported

by the matchings to the involver. There it can be realised because the 1-arc

transitivity of the involver guarantees transitivity on the initial vertices. But

it will produce some permutation on its initial vertices (which is transported

back by the matchings and stopped at the Kn,m) and some permutation on its

terminal vertices (which is transported by the matchings to the Kr,s where it

is stopped).

• The θ-automorphisms for the terminal vertices of the Kn,m work in exactly the

same way.

• In the layers between the Kn,m and the involver there are no branchings, thus

we have α = id .
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• The θ-automorphisms in these layers must again be considered first in the for-

ward direction where they have some effect on the initial and terminal vertices

of the involver. These effects are again transported by the matchings to the

complete bipartite layers, where they are stopped.

• The same happens for the θ-automorphisms in the initial layer of the involver

– only the forward transportation to the involver is now trivial.

• For the α-automorphisms in the involver we need its 1-arc transitivity (which

is more than the transitivity on the initial vertices). But then we get the

transportation and stoppage as above.

• The rest of the layers can be dealt analogously by first considering the backward

direction.

Due to the construction the fibres of G∗ are finite. Hence G∗ cannot be one-ended.

For the same reason it cannot have infinitely many ends. Thus by any of the well

know 1-2-infinity theorems it must have two ends if it is only connected. We show the

connectedness inductively. G is connected because it contains complete bipartite layers

and every vertex of G is contained in some line. Suppose that the product G′ of the

first n− 1 factors of G∗ is connected. Consider two vertices v = (v′, g) and w = (w′, h)

in G′′ = G′ ϕ′×ϕ+n−1 G. Consider lines gG and hG in G containing g and h. Choose

some complete bipartite layer in G. gG intersects the initial vertex layer of the complete

bipartite layer in g0 and hG the corresponding terminal vertex layer in h0. The lines

induce copies of G′ in G′′ thus (since G is connected) there are paths connecting v with

all the vertices (·, g0) and paths connecting w with all the vertices (·, h0). Since we chose

a complete bipartite layer in G there exists an edge in G′′ connecting some vertex (·, g0)

with some vertex (·, h0). Thus there exists a path connecting v and w. Thus G′′ is

connected and by induction so is G∗. �

Considering the above proof, we can place more than one involver Ii between two

complete bipartite layers if they are compatible in the following sense: there are groups

of automorphism Ri < Aut(Ii) which act 1-arc transitive on the Ii such that the set of

permutations that is induced by Rn on the terminal vertices of In agrees with the set of

permutations that is induced by Rn+1 on the initial vertices of In+1.

This description arises from the philosophy of the above proof and can be expressed as

follows: consider the subdigraphs T ′ of G that are spanned by the vertices of the edge-

layers between two consecutive complete bipartite layers. The automorphism groups

Aut(T ′) act transitively on the sets of maximal arcs in T ′. We do not need to formulate

this condition for various subdigraphs T ′ but instead use a single subdigraph T . Namely,

let σ be a shift of G with step width equal to the period-length and K some complete

bipartite layer, then the subdigraph spanned by the edge-layers between K and σ(K)
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Kn,m I1 It Kr,s

Figure 17. Compatible involvers

qualifies as T . Such a digraph T corresponds to the template digraphs used in [DMŠ11].

We summarise these considerations in the proposition below.

Proposition 4.2. Let G be a digraph with Property Z and finite fibres that contains

complete bipartite layers and is periodic with period length l. Let the edge layers between a

complete bipartite layer and its next shift span a subdigraph T . If Aut(T ) acts transitively

on the set of maximal arcs of T then the direct fibre product

G∗ =

{ϕ+i}∏
{i=0,1,...,l−1}

G

is HAT and two-ended.

Proof. The proof runs in analogy to the proof of Proposition 4.1. �

4.3. Factors with infinite fibres. In the above proofs we used the finiteness of the

fibres to show the two-endedness. The latter was needed to construct counterexamples

to Conjecture 1.1, but we do not need it if we only want to construct a HAT digraph.

If we drop finiteness of fibres we can construct one-ended HAT digraphs.

Proposition 4.3. Let G be a digraph with Property Z that contains complete bipar-

tite layers and is periodic with period length l. Let the edge layers between a complete

bipartite layer and its next shift span a subdigraph T . If Aut(T ) acts transitively on the

set of maximal arcs of T then the direct fibre product

G∗ =

{ϕ+i}∏
i∈{0,1,...,l−1}

G

is HAT. Moreover, if G contains an infinite fibre, G∗ is one-ended.

Proof. It is enough to show the one-endedness since the highly arc transitivity

follows from the above proof. Thus suppose that G has an infinite vertex-layer. We

first show that G is not locally finite. Either all layers of G are infinite – in this case

G contains a K∞,∞ and is not locally finite – or there is a finite layer – then there is a



4. MORE CONSTRUCTIONS 139

finite vertex-layer followed by an infinite one. Since every layer must be 1-arc transitive,

all the vertices in a layer must have the same nonvanishing indegree. Thus the total

indegree of the infinite layer is infinite. Since it is equal to the total outdegree of the

preceding finite layer, G is not locally finite. To see that G∗ is one-ended, we recall

the proof of connectedness from above. There we chose a complete bipartite layer to

connect two lines. We could have chosen it to the right of the two points we intended

to connect. Doing this in every step of the above induction we get a path that connects

two arbitrary vertices without visiting any vertex that is to the left of the leftmost of

these two. Thus, if we cut off the left half of G∗ at any layer the remaining right half

stays connected. We show that no pair of rays can be finitely separated. In order to

do so, we show that the even stronger statement that no pair of vertices v and w can

be finitely separated. Since G∗ is HAT and not locally finite, every vertex has infinitely

many outneighbors. Thus no finite separator S can cut out all outneighbors of a certain

vertex. Thus v and w both lie on some right ray. Both these rays reach a region of G∗

that is to the right of the rightmost vertex of S. This region is connected and thus v

and w are connected. �

4.4. Infinitely many factors. Consider the factor from Figure 15 and let it be

non-periodic. We still could use it to construct a HAT digraph if we multiply all its

shifts (countably infinitely many). The vertices of such a product can be understood as

a Z coordinate together with a two way infinite sequence with entries at the i-th position

from the i-th layer of the factor (which is different for every shift).

Proposition 4.4. Let G be a digraph with Property Z that contains a complete

bipartite layer to the left and the right of any other layer. Let the edge layers between

two complete bipartite layers span subdigraphs Ti. If for all i the automorphism group

Aut(Ti) acts transitively on the set of maximal arcs of Ti then the direct fibre product

G∗ =

{ϕ+i}∏
i∈Z

G

is HAT and not locally finite. Moreover, if the distance between any two neighbouring

complete bipartite layers is bounded by some d ∈ N, then G∗ is one-ended.

Proof. The automorphisms Θ and Aj described in Section 3.3 will have infinitely

many entries. But, since the actions on the different coordinates have no effects on

one another, the parts in the above proofs concerning highly arc transitivity remain

valid. Since any layer of G∗ contains a product of infinitely many complete bipartite

factors, the vertices have infinite in- and outdegree. The one-endedness will follow from

the “right-connectedness” as above. Thus we are left to show the connectedness in the
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above sense. Since we have infinitely many factors, we cannot use the above induction,

but have to argue as follows. Let v and w be two arbitrary vertices in G∗. Without loss

of generality let v be the leftmost of these two vertices and set w0 = w. There is an

arc from v to some vertex v0 that agrees with w0 on the vertex-layer. We construct two

arcs av and aw starting in v0 and w0 that meet in wd = vd. Suppose the av and aw are

constructed up to the vertices vn and wn. Let In be the set of coordinates on which vn

and wn do not agree and let Jn be the set of coordinates jn such that vnjn and wnjn have

a common outneighbour xjn in G (note that vnjn and wnjn have in particular a common

outneighbour if vnjn = wnjn). We set vn+1
jn

= wn+1
jn

= xjn for jn ∈ Jn. For in ∈ In \ Jn
let yin be some outneighbour of vnin in G and zin some outneighbour of wnin and set

vn+1
in

= yin and wn+1
in

= zin . Due to the definition of the direct fibre product, there are

edges (vn, vn+1) and (wn, wn+1) in G∗ which we can attach to av and aw. Since we find

a complete bipartite layer in every coordinate after at most d steps,
⋃
i=0,...,d−1 Ji is an

exhaustion of the set of coordinates, and thus Id is empty. �

Intuitively the key part of the above constructions is the use of the Kn,m between

the involvers. We used them to stop the movement of the α- and θ-automorphisms into

both directions. But in order to construct HAT digraphs it is not necessary to stop this

movement if one can guarantee that it does not run into the baseline in backward direc-

tion. We can achieve this by using some compatible involvers (finitely many) embedded

in a line of matchings. Such a construction yields digraphs with uncountably many

components. In the following we denote the cardinality of the set of the real numbers

by c.

Proposition 4.5. Let G be a digraph with Property Z and let k < l be integers such

that for all j ≤ k and all j > l the j-th layer is a matching. Let the layers of G be at

most countably large. Let the edge-layers between these matchings span a subdigraph T .

If Aut(T ) acts transitively on the set of maximal arcs of T , then the direct fibre product

G∗ =

{ϕ+i}∏
i∈Z

G

is HAT. If all the involvers are locally finite, so is G∗. If the matchings are not trivial

then G∗ is not connected and actually the set of its components has cardinality c.

Proof. The proof for the highly arc transitivity runs as above. The permutations

that appear at the vertex-layers k and l are transported through the rest of the digraph,

but that does neither hinder the α- and θ-automorphisms to be automorphisms nor has

it any influence on the baseline. If all involvers are locally finite, the in- and outdegrees

are products whose factors are either 1 (almost all) or finite, and thus finite. If the



4. MORE CONSTRUCTIONS 141

matchings are not trivial, the vertices are defined by their layer and a two way infinite

sequence each of whose entries can take more than one value (mutually independently).

Thus, a layer contains c vertices. Every vertex is contained in some line, thus every

component contains a line, thus every component intersects the zero-layer. Hence, there

are at most c components. Every path starting and ending in the zero-layer passes

through a finite number of different layers. In every layer at most l− k coordinates can

be altered. Thus, a vertex v in the zero-layer is connected with another vertex of this

very layer only if they differ in at most finitely many coordinates. Thus, a component

can only contain countably many vertices of the same layer. Hence, G∗ has at least c

components, hence exactly c components. In particular, it is not connected. �

A special case of the factors from Proposition 4.5 realises a digraph constructed in

[CPW93].

Example 4.6. We consider the digraph that was constructed in [CPW93, Theorem

4.8] as the direct product (not the direct fibre product) of the so called sequences digraph

with Z. The vertices of the sequences digraph are two way infinite sequences (xi)i∈Z

with entries xi ∈ A for i ≤ 0 and xi ∈ B for i > 0, where A and B are some sets both

containing 0 such that almost all xi are 0. There is an edge ((xi)i∈Z, (yi)i∈Z) if xi = yi+1

for i 6= 0 and (x0, y1) is an edge of a 1-arc transitive bipartite digraph I with bipartition

A ∪ B that we chose beforehand. We rename the vertices of the HAT product by the

mapping

φ : (n, (xi)i∈Z) 7→ (n, (xn−i)i∈Z)

and call the resulting digraph D. Thus D = (V (D), E(D)) is defined by

V (D) = {(n, (xi)i∈Z) | n ∈ Z, xi<n ∈ B, xi≥n ∈ A},

E(D) = {((n, (xi)i∈Z), (n+ 1, (yi)i∈Z)) | xi = yi for i 6= n, (xn, yn) ∈ E(I)}.

Now we define a factor G by extending I with matchings on both sides, i.e. G =

(V (G), E(G)) with

V (G) = {n ∈ Z | n ≤ 0} ×A ∪ {n ∈ Z | n > 0} ×B,

E(G) = {((n, a), (n+ 1, x)) | n < 0, a = x} ∪

= {((0, a), (1, b)) | (a, b) ∈ E(I)} ∪

= {((n, b), (n+ 1, y)) | n > 0, b = y}.

Building the direct fibre product as in Proposition 4.5 yields a digraph G∗ with

V (G∗) = {(n, (xi)i∈Z) | n ∈ Z, xi≤n ∈ A, xi≥n ∈ B},

E(G∗) = {((n, (xi)i∈Z), (n+ 1, (yi)i∈Z)) | ((n, xi), (n+ 1, yi)) ∈ E(G)},
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where the names of the vertices of G are meant to respect the corresponding ϕi. Rewrit-

ing the condition on the edges of E(G∗) using the definition of E(G) yields

E(G∗) = {((n, (xi)i∈Z), (n+ 1, (yi)i∈Z)) | xi = yi for i 6= n, (xn, yn) ∈ E(I)}.

I

Figure 18. A factor realising a construction from [CPW93]

Hence, the map ψ : C → D, where C is the component of G∗ containing (0, (0)i∈Z)

defined by

ψ : (n, (xi)i∈Z) 7→ (n, (x2n−i)i∈Z)

is an isomorphism.

Note that I could be a K1,n. In that case, G∗ would be a tree and thus had infinitely

many ends (unless n = 1, in which case G∗ ∼= Z).

4.5. Nonisomorphic factors. Up to now we considered non-HAT factors and cre-

ated a HAT product. Finally, we want to build new HAT digraphs from existing HAT

digraphs. From [CPW93, Lemma 4.3, (a)] it follows that the direct fibre product of

two HAT digraphs with Property Z is again HAT with Property Z. If the factors have

finite fibres so has their product. If one of the factors has a noncomplete bipartite

associated digraph so has the product. Thus, we can obtain numerous HAT digraphs

with Property Z by multiplying some of the above digraphs, thereby gaining even more

counterexamples of Conjecture 1.1.

Building the direct fibre product of the regular tree with indegree 1 and outdegree

2 with the regular tree with indegree 2 and outdegree 1, one gets a Cayley graph of

the Lamplighter group. it has K2,2 as associated digraph. If one replaces the second

tree by the regular tree with indegree 3 and outdegree 1, one gets a digraph that is not

quasi-isomorphic to any Cayley graph, is has K3,2 as associated digraph. Such digraphs

are called Diestel-Leader graphs, and they got to fame for these mentioned properties.

Any other choice of regular trees will also yield a HAT product.

We close with a remark on the digraphs we mentioned above to realise the construc-

tion from [CPW93, Theorem 4.8]. Their direct fibre product with some HAT digraph

with Property Z will realise the digraphs from [CPW93, Corollary 4.9]. This follows
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from the mutual associativity of the direct product and the direct fibre product. This

associativity follows immediately from the definitions of the products.
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