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Abstract

Cayley–Catalan combinatorics refers to the study of combinatorial objects counted by (gener-
alised) Catalan numbers or Cayley numbers. Examples of classical combinatorial objects treated
in this thesis that fall into this category are Dyck paths, parking functions and core partitions.
These objects turn out to be closely related to the group of affine permutations and their inver-
sions. Many involved ideas carry over to arbitrary affine Weyl groups. Exploring this connection
we review the finite torus, the Shi arrangement and non-nesting parking functions. In particular,
we define new combinatorial models for these objects in terms of labelled lattice paths when the
crystallographic root system is of classical type.
Several combinatorial statistics on Catalan objects have been introduced to give combinatorial

interpretations for polynomials appearing in representation theory or algebraic geometry. For
example, Haglund’s bounce-statistic, Haiman’s dinv-statistic or Armstrong’s skew-length of a
partition have all been used to define q-analogues of Catalan numbers. We strengthen and expand
on previously known symmetry properties of the skew-length statistic. The dinv-statistic is
generalised to a statistic on the finite torus, allowing for a new definition of q-Catalan numbers for
arbitrary Weyl groups. Furthermore, we extend the notion of Shi tableaux to give a generalisation
of the skew-length statistic for affine Weyl groups, thereby enabling us to give a combinatorial
definition of rational q-Catalan numbers for Weyl groups.
An important bijection in this field is the so called zeta map. The original zeta map is a

bijection on the set of Dyck paths, however, it can be generalised to a uniform bijection attached
to any Weyl group. We prove that this bijection transforms the dinv-statistic on elements of the
finite torus into the area-statistic on non-nesting parking functions. Furthermore, we develop
the lattice path combinatorics of the zeta map for the infinite families of crystallographic root
systems in analogy to the connection to Dyck paths when the Weyl group is the symmetric
group. This leads to the discovery of two new bijections between ballot paths and lattice paths
in a square, both of which are known to be counted by central binomial coefficients.
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Zusammenfassung

Die Bezeichnung Cayley–Catalan Kombinatorik bezieht sich auf das Studium von kombina-
torischen Objekten, die von (verallgemeinerten) Catalan-Zahlen oder Cayley-Zahlen abgezählt
werden. Beispiele für klassische kombinatorische Objekte, die in dieser Dissertation behandelt
werden und in diese Kategorie fallen, sind Dyck-Pfade, Parkfunktionen oder Kernpartitionen.
Alle diese Objekte sind eng verwandt mit der Gruppe affiner Permutationen und deren Inver-
sionen. Viele der zu beobachtenden Konzepte lassen sich auf allgemeine affine Weyl-Gruppen
übertragen. In diesem Zusammenhang besprechen wir den endlichen Torus, das Shi-Gefüge und
nichtverschachtelte Parkfunktionen. Insbesondere definieren wir in den Fällen, in denen das zu-
grundeliegende kristallographische Wurzelsystem von klassischem Typ ist, neue kombinatorische
Modelle für diese Objekte anhand von bezeichneten Gitterpunktwegen.
Verschiedene kombinatorische Statistiken wurden auf Catalan-Objekten definiert, um Poly-

nomen, die in der Darstellungstheorie oder der algebraischen Geometrie auftauchen, eine kombi-
natorische Bedeutung zu verleihen. Zum Beispiel wurden Haglunds bounce-Statistik, Haimans
dinv-Statistik und Armstrongs Schieflänge einer Zahlenpartition benutzt, um q-Analoga der
Catalan-Zahlen zu definieren. Wir verfeinern und verallgemeinern bisher bekannte Symme-
trieeigenschaften der Schieflänge. Die dinv-Statisik wird zu einer Statistik auf den Elementen
des endlichen Torus verallgemeinert. Dies erlaubt es uns q-Catalan-Zahlen für beliebige Weyl-
Gruppen zu definieren. Zusätzlich erweitern wir den Begriff von Shi-Tafeln, um eine Verallge-
meinerung der Schieflänge für affine Weyl-Gruppen zu ermöglichen. Dadurch sind wir in der Lage,
eine kombinatorische Definition von rationalen q-Catalan-Zahlen für Weyl-Gruppen anzugeben.
Eine wichtige Bijection in diesem Gebiet ist die sogenannte Zeta-Abbildung. Die ursprüngliche

Zeta-Abbildung ist eine Bijektion auf der Menge der Dyck-Pfade, jedoch wurde sie einheitlich
zu einer einer beliebigen Weyl-Gruppe zugehörigen Bijektion verallgemeinert. Wir beweisen,
dass diese Bijektion die dinv-Statistik auf den Elementen des endlichen Torus auf das Gebiet der
entsprechenden nichtverschachtelten Parkfunktion überführt. Weiters entwickeln wir in Analogie
zu der Verbindung zu Dyck-Pfaden im Falle der symmetrischen Gruppe die Gitterpunktwegskom-
binatorik der Zeta-Abbildung für die unendlichen Familien von kristallographischen Wurzelsys-
temen. Dies führt zur Entdeckung von zwei neuen Bijektionen zwischen Abstimmungspfaden
und Gitterpunktwegen, die einem Quadrat eingeschrieben sind, von welchen jeweils bekannt ist,
dass sie von Zentralbinomialkoeffizienten abgezählt werden.

ix



CHAPTER 0

Introduction

Three of the most ubiquitous sequences of numbers in combinatorics are the factorials n!, the
Catalan numbers

(
2n
n

)
/(n+1) and the Cayley numbers (n+1)n−1. Factorials count permutations

of an n-set which can be represented as bijections between n-sets, as linear orders of an n-set or
as collections of labelled cycles. Catalan numbers count a wealth of combinatorial objects such
as binary trees, Dyck paths, non-crossing partitions, non-crossing perfect matchings, certain pat-
tern avoiding permutations, rooted plane trees, triangulations of polygons and many more [70].
Cayley numbers count most obviously maps from an (n− 1)-set to an (n+ 1)-set, most famously
labelled trees, but also parking functions and regions of the Shi arrangement among others.
It is one of the beautiful coincidences in algebraic combinatorics that these numbers are related

to each other elegantly by way of a group G acting on a set X such that

#G = n! , #X = (n+ 1)n−1 and #{Gx : x ∈ X} =
1

n+ 1

(
2n

n

)
.

As we shall see, a convenient choice is to take the symmetric group G = Sn acting on the set
X = PFn of parking functions. An integer vector with non-negative entries (f1, . . . , fn) ∈ Nn is
called parking function if there exists a permutation σ ∈ Sn such that fi < σ(i) for all i. For
example, there are sixteen parking functions of length three.

PF3 =
{

(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,0,2),(0,2,0),(2,0,0),(0,1,1),
(1,0,1),(1,1,0),(0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0)

}
Clearly the symmetric group acts on the set of parking functions via permutation of entries. At
this point the orbits {Gx : x ∈ X} are easily seen to be indexed by increasing parking functions,
which can be identified with Dyck paths. There are five increasing parking functions of length
three.

(0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 1, 1) (0, 1, 2)

Of course there are other equivalent choices for G and X.

The study of the parking function representation has given rise to a whole new branch in
algebraic combinatorics. It connects a variety of topics in mathematics – from Macdonald poly-
nomials, and symmetric functions in general [29, 19], and the representation theory of Weyl
groups and related algebras [9, 33], to hyperplane arrangements [5], Hilbert schemes [41, 42]
and knot invariants [34]. It is in part responsible for the revival of classical combinatorial objects
such as core partitions and abacus diagrams.

Over the years Catalan numbers have been generalised in many different directions, which I
prefer to view as dimensions. In this thesis the focus is on the following four dimensions.

The first is the introduction of a rational parameter, which encompasses the introduction of a
Fuß-parameter. Many of the objects counted by Catalan numbers listed above can be assigned

1



2 0. INTRODUCTION

Fuß-analogues and rational analogues counted by these two-parameter families of numbers. For
example, Dyck paths are lattice paths inside a square that do not cross the main diagonal. The
corresponding combinatorial objects counted by the rational Catalan number with parameter
n/p, where n, p ∈ N are assumed to be relatively prime, are lattice paths inside an n by p
rectangle that do not cross the diagonal of slope n/p.

The second generalisation is to pass from Catalan numbers to Cayley numbers. Algebraically
this can be viewed as the extension of a family of combinatorial objects by a group. The orbits of
our group action are counted by Catalan numbers, whereas the “full” set on which the group acts
is counted by Cayley numbers. Combinatorially we pass from unlabelled objects representing
the orbits to labelled objects. Typically the group, whose elements are realised as some kind of
permutations, acts by rearranging the labels.

Third is the transition to polynomials by introducing a q-statistic and a t-statistic. Here Catalan
numbers or Cayley numbers are replaced by the generating function of a family of combinatorial
objects counted by these numbers with respect to different statistics. The original sequences of
numbers are recovered when all variables are set to one. A great motivation for the study of
such statistics is that many of the polynomials that arise also have algebraic interpretations, for
example, as the Hilbert series of certain graded algebras, which may carry additional structure
such as a group acting on them as a group of linear transformations. Working out the precise
connections between polynomials arising in representation theory or algebraic geometry and their
combinatorial models is often rather difficult and has led to numerous deep results in the past
decades.

The fourth generalisation is to introduce the dependency on an irreducible crystallographic root
system. Many of the combinatorial objects in discussion can be viewed as special cases of more
general objects attached to a root system. For example, the role of the symmetric group is taken
by the corresponding Weyl group. Similarly, Dyck paths are generalised by ideals in the poset of
positive roots. The emerging Coxeter–Catalan numbers and Coxeter–Cayley numbers associated
to a root system have nice product formulas featuring important invariants of the respective
Weyl group.

It is of course desirable, although not always easy, to unify two or more directions of general-
isation. This principle serves as the motivation for a lot of the work done in this thesis. Each
such (common) generalisation forms a vertex of what I call the Catalan cube. Starting at the
origin, that is, the original Catalan numbers, we shall explore more and more vertices of this
four-dimensional cube, only to discover that the far vertex with all coordinates equal to one
remains out of our reach (for now).

This thesis aims at giving a thorough introduction from the point of view of affine Weyl groups,
which seem to appear naturally when combinatorial objects corresponding to a root system are
generalised to the level of rational Catalan numbers. I hope to make this beautiful topic in
algebraic combinatorics accessible to a wide range of readers. The only required prerequisites
are some familiarity with root systems of finite Coxeter groups. I include many proofs of known
results or sketch how they can be obtained in order to make the presentation more self contained
and to collect different techniques together in one place. I have also tried to provide the reader
with many conjectures and open problems, some well-known and some of my own.

The thesis is divided into six chapters. In Chapter 1 we recall some needed background and
settle conventions, with a focus on affine Weyl groups and their realisations as groups of bijections
on the integers. Chapter 2 begins the exploration of several objects related to Dyck paths and
parking functions, covering the first three dimensions mentioned above. In Chapter 3 we use
core partitions as a link between the combinatorics of Chapter 2 and the affine symmetric group.
As well as this, Section 3.4 also contains some original research. The skew-length is a statistic
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on cores that can be used to define rational q, t-Catalan numbers. We prove some symmetry
properties of the skew-length that refine known results and extend to previously untreated cases.
In Chapter 4 Coxeter–Catalan numbers are defined, that is, we take a first step in the dimension

of root systems. The main object of study is a quotient of the coroot lattice called the finite torus.
New contributions are the definition of a uniform statistic dinv on the finite torus extending a
statistic of Haiman, and the introduction of lattice path models for the finite torus in types Bn,
Cn and Dn.
Chapter 5 is devoted to the Shi arrangement and non-nesting parking functions, which provide

a second possible generalisation of Dyck path combinatorics to the level of Weyl groups. We
define new lattice path models for non-nesting parking functions, and extend the notion of Shi
tableaux, which encode the regions of the Shi arrangement, to the rational case. These rational
Shi tableaux provide us with an analogue of the skew-length statistic for Weyl groups and allows
us to define rational q-Coxeter–Catalan numbers.
Finally in Chapter 6 we discuss the zeta map, a bijection that connects the finite torus with

non-nesting parking functions. We apply the zeta map to establish a relation between the dinv-
statistic on the finite torus and the area-statistic on non-nesting parking function. Moreover
we explore the combinatorics of the zeta map types Bn, Cn and Dn using the lattice path
interpretations of the objects involved.





CHAPTER 1

Notation

In this Chapter we fix notation. Section 1.1 treats integer partitions, which we encounter in our
discussion of core partitions in Chapter 3. Section 1.2 contains notation on lattice paths, which
is used in the introduction to Catalan combinatorics based on Dyck paths in Chapter 2 and the
treatment of combinatorial zeta maps in Chapter 6. In Sections 1.3 and 1.4 facts on root systems
and affine permutation groups are presented, on which we shall rely in Chapters 3–6.

Let N denote the set of non-negative integers. The cardinality of a finite set S is denoted by
#S or |S|. Denote by S∗ the set of finite words (of any length) in the alphabet S. For n ∈ N
define [n] = {1, . . . , n} and [±n] = [n]∪ {−i : i ∈ [n]}. Given a function f : X → Y the image of
a subset S ⊆ X under f is denoted by f(S) = {f(s) : s ∈ S}. Denote the power set of a set X
by P(X) = {Y ⊆ X}.

1.1. Partitions

Let n ∈ N. An integer partition or simply partition of n is a weakly decreasing sequence
λ = (λ1, . . . , λr) of positive integers, that is, λ1 ≥ · · · ≥ λr > 0, such that λ1 + · · · + λr = n.
Equivalently, one can regard a partition of n as an infinite sequence (λ1, λ2, . . . ) of non-negative
integers such that λi ≥ λi+1 for all i ≥ 1 and

∑
i λi = n. To move from one description to

the other simply append or delete zeroes. The numbers λi are called summands or parts of the
partition. The size of the partition is the sum of its parts and is denoted by |λ|. The number of
positive parts is called the length of the partition and is denoted by `(λ). Note that there is a
unique partition of zero, namely the empty partition. The set of all partitions is denoted by Π.
A pair z ∈ Z2 is called a cell. Given a cell z = (i, j) ∈ Z2 we define its north, east, south and

west neighbours as

nz = (i− 1, j), ez = (i, j + 1), sz = (i+ 1, j), wz = (i, j − 1).

We identify a partition with a set of cells λ = {(i, j) ∈ N2 : i ∈ [`(λ)], j ∈ [λi]} called the Young
diagram of the partition. Given two partitions λ and µ we say λ contains µ if µ ⊆ λ when viewed
as Young diagrams. The pair (Π,⊆) defines a partial order on partitions called inclusion order.
The conjugate partition of a partition λ is defined to be the partition λ′ = {(j, i) : (i, j) ∈ λ}
obtained by transposing the Young diagram. The set of partitions of length at most k is denoted
by Πk. The set of bounded partitions, that is, partitions with λ1 ≤ k, is denoted by Π≤k. Clearly
conjugation is a bijection from Πk to Π≤k.
The hook-length of a cell (i, j) ∈ λ is defined as hλ(i, j) = λi − i + λ′j − j + 1. Thus, the hook

length of a cell z ∈ λ equals the number of cells in λ that lie in the same row as z and weakly
east of z, or in the same column as z and weakly south of z.
A north-east-path in λ is a sequence P = (z0, z1, . . . , zs) of cells zk ∈ λ such that zk ∈
{nzk−1, ezk−1} for all k ∈ [s]. Let `(P ) = s denote the length, α(P ) = z0 the tail and ω(P ) = zs
the head of the path P . A rim-hook of λ is a north-east-path h in λ such that sα(h) /∈ λ,
eω(h) /∈ λ and esz /∈ λ for all z ∈ h. For each cell (i, j) ∈ λ there is a (unique) rim-hook h with

5



6 1. NOTATION

Figure 1.1. A lattice path x = neeennneeeene ∈ L8,5 with partition λ(x) = (7, 3, 3, 3).

The rises of x are 2 and 3. Its valleys are (3, 2) and (7, 5).

α(h) = (λ′j , j) and ω(h) = (i, λi). This correspondence is a bijection between λ and the set of
rim-hooks of λ.

1.2. Lattice paths

Let r ∈ N, a, b ∈ Z2 and S ⊆ Z2 be a finite set. A lattice path from a to b with length r and steps
in S is a sequence (z0, . . . , zr) of points zi ∈ Z2 such that z0 = a, zr = b and zi − zi−1 ∈ S for
all i ∈ [r]. Instead of the lattice points zi that the path visits, we can also specify the sequence
of steps zi − zi−1. From this point of view a lattice path from a to b with steps in S is a word
s1 · · · sr such that si ∈ S for i ∈ [r] and

∑
i si = b− a.

Denote by Lm,n the set of lattice paths starting at the origin (0, 0) and ending at (m,n) with
step set S = {e,n}, where e = (1, 0) is called an east step and n = (0, 1) is called a north step
There is a third useful way to encode lattice paths if x ∈ Lm,n. For i ∈ [n] let xi denote the
x-coordinate of the i-th north step, that is, the number of east steps of x preceding the i-th
north step of x. Clearly the vector (x1, . . . , xn) fully determines x. Setting λ(x)i = xn−i+1 for
i ∈ [n] defines a partition λ(x). We call λ(x) the partition of x. This map restricts to a bijection
λ : Lm,n → Πn ∩Π≤m.
A pattern of the form nn is called a rise and a pattern of the form en is called a valley. More

precisely let x be a lattice path of length r consisting of east and north steps. A rise of x is an
index i ∈ [r] such that the i-th north step of x is immediately followed by another north step.
A valley of x is a pair (i, j) ∈ [r]2 such that the i-th east step of x is immediately followed by
its j-th north step. See Figure 1.1. Note that in Section 6.1 it is more convenient to work with
slightly different conventions when it comes to the valleys of ballot paths.

In order to define certain combinatorial maps on lattice paths we need the following building
blocks. Given j ∈ Z define a map −→w+

j : Zn → {e,n}∗ where the word −→w+
j (a) in the alphabet

{e,n} is obtained as follows: Initialise with the empty word. Read a from left to right. Whenever
an entry ai = j is encountered, append n. Whenever an entry ai = j+ 1 is encountered, append
e. Similarly define←−w+

j (a) except now a is read from right to left instead. Moreover define −→w−j (a)
as follows: Read a from left to right and append n for each encountered entry equal to −j and
e for each encountered entry equal to −j − 1. Define ←−w−j (a) analogously.

1.3. Roots, hyperplanes and reflections

In this section we fix notation and recall some facts on root systems and Weyl groups. The
reader is referred to [44] for further details.

Let Φ be an irreducible crystallographic root system with ambient space V , positive system Φ+

and simple system ∆ = {α1, . . . , αr}. The positive integer r is called the rank of Φ. Any root
α ∈ Φ can be written as a unique integer linear combination α =

∑r
i=1 ciαi, where all coefficients

ci are non-negative if α ∈ Φ+, or all coefficients are non-positive if α ∈ −Φ+. Define the height
of the root α by ht(α) =

∑r
i=1 ci. Thus ht(α) > 0 if and only if α ∈ Φ+, and ht(α) = 1 if and
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only if α ∈ ∆. There exists a unique highest root α̃ such that ht(α̃) ≥ ht(α) for all α ∈ Φ. The
Coxeter number of Φ can be defined as h = ht(α̃) + 1.

There are four infinite families of irreducible crystallographic root systems, which are commonly
referred to as types An−1, Bn, Cn and Dn. For each of these types we provide an example below.
The chosen conventions are used throughout the thesis. Let n ∈ N with n ≥ 2. The roots,
positive roots and simple roots of type An−1 are given by

Φ = {ei − ej : i, j ∈ [n], i 6= j},
Φ+ = {ei − ej : 1 ≤ i < j ≤ n}, and

∆ = {ei − ei+1 : i ∈ [n− 1]}.

We denote the simple roots by αAi = ei−ei+1 for i ∈ [n−1], and the highest root by α̃A = e1−en.
The roots, positive roots and simple roots of type Bn are given by

Φ = {±ei ± ej : 1 ≤ i < j ≤ n} ∪ {±ei : i ∈ [n]},
Φ+ = {±ei + ej : 1 ≤ i < j ≤ n} ∪ {ei : i ∈ [n]}, and

∆ = {−ei + ei+1 : i ∈ [n− 1]} ∪ {e1}.

We denote the simple roots by αB0 = e1 and αBi = ei+1 − ei for i ∈ [n− 1], and the highest root
by α̃B = en−1 + en.
The roots, positive roots and simple roots of type Cn are given by

Φ = {±ei ± ej : 1 ≤ i < j ≤ n} ∪ {±2ei : i ∈ [n]},
Φ+ = {±ei + ej : 1 ≤ i < j ≤ n} ∪ {2ei : i ∈ [n]}, and

∆ = {−ei + ei+1 : i ∈ [n− 1]} ∪ {2e1}.

We denote the simple roots by αC0 = 2e1 and αCi = ei+1− ei for i ∈ [n− 1], and the highest root
by α̃C = 2en.
Let n ≥ 3. The roots, positive roots and simple roots of type Dn are given by

Φ = {±ei ± ej : 1 ≤ i < j ≤ n},
Φ+ = {±ei + ej : 1 ≤ i < j ≤ n}, and

∆ = {−ei + ei+1 : i ∈ [n− 1]} ∪ {e1 + e2}.

We denote the simple roots by αD0 = e1 + e2 and αDi = ei+1 − ei for i ∈ [n− 1], and the highest
root by α̃D = en−1 + en.

Let δ be a formal variable. The set of affine roots is defined as

Φ̃ = {α+ kδ : α ∈ Φ, k ∈ Z} ⊆ V ⊕ Rδ.

The height of an affine root is defined by ht(α + kδ) = ht(α) + kh. This yields a linear map

ht : Φ̃→ Z. The sets of positive and simple affine roots are defined as

Φ̃+ = Φ+ ∪ {α+ kδ ∈ Φ̃ : α ∈ Φ, k > 0} and ∆̃ = ∆ ∪ {−α̃+ δ}.

Thus α+ kδ ∈ Φ̃+ if and only if ht(α+ kδ) > 0, and α+ kδ ∈ ∆̃ if and only if ht(α+ kδ) = 1.

A hyperplane arrangement in V is a set of affine hyperplanes H ⊆ V . The regions of a hyper-
plane arrangement A are defined as the connected components of V −

⋃
H∈AH. The Coxeter

arrangement Cox(Φ) consists of all hyperplanes of the form

Hα = {x ∈ V : 〈x, α〉 = 0}
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for α ∈ Φ. Its regions are called chambers. We define the dominant chamber as

C◦ =
{
x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆

}
.

The Weyl group W of Φ is the group of linear automorphisms of V generated by all reflections
in a hyperplane in Cox(Φ). That is, W is generated by the reflections sα : V → V defined by

sα(x) = x− 2〈x, α〉
〈α, α〉

α,

where α ranges over all roots in Φ. The Weyl group acts simply transitively on the chambers.
Thus identifying the identity e ∈ W with the dominant chamber, each chamber corresponds to
a unique Weyl group element. Note that by definition of a root system, the Weyl group acts on
the root system Φ.
The affine arrangement Aff(Φ) consists of all hyperplanes of the form

Hα,k =
{
x ∈ V : 〈x, α〉 = k

}
,

where α ∈ Φ and k ∈ Z. Its regions are called alcoves. We define the fundamental alcove as

A◦ =
{
x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆ and 〈x, α̃〉 < 1

}
.

The affine Weyl group W̃ of Φ is the group of affine transformations of V that is generated
by all reflections in a hyperplane in Aff(Φ). That is, W̃ is generated by the affine reflections
sα,k : V → V defined by

sα,k(x) = x− 2(〈x, α〉 − k)

〈α, α〉
α,

where α ranges over Φ and k ∈ Z. The affine Weyl group acts simply transitively on the set of
alcoves. By identifying the identity e ∈ W̃ with the fundamental alcove, every alcove corresponds
to a unique element of W̃ . An element ω ∈ W̃ is called dominant if and only if the alcove ω(A◦)
is contained in the dominant chamber C◦. We denote the set of dominant elements of the affine

Weyl group by W̃+.

The Weyl group W is generated by the set S = {sα1
, . . . , sαr

}, and (W,S) is a Coxeter system.

The affine Weyl group W̃ is generated by S̃ = S ∪ {sα̃,1}, and (W̃ , S̃) is also a Coxeter system.

The Weyl group is a parabolic subgroup of the affine Weyl group. Each element ω ∈ W̃

can be assigned a length `(ω) indicating the minimal number of generators t1, . . . , t` ∈ S̃ such
that ω can be expressed as a product of these generators, that is, ω = t1 · · · t`. Each coset
ωW ∈ W̃/W contains a unique representative of minimal length. These representatives are
called Graßmannian. An element ω ∈ W̃ is Graßmannian if and only if ω−1 is dominant.

Given a root α ∈ Φ its coroot is defined as α∨ = 2α/〈α, α〉. The coroot lattice is the integer
span of all coroots

Q̌ =
∑
α∈Φ

Zα∨ =

r⊕
i=1

Zα∨i ⊆ V.

The crystallographic property guarantees that Q̌ is a discrete free abelian subgroup of rank r in
V which is fixed by the action of the Weyl group on V . Thus W acts on Q̌. For each q ∈ Q̌ the
translation tq : V → V defined by tq(x) = x + q for all x ∈ V is an element of the affine Weyl

group. Identifying Q̌ with its translation group we obtain W̃ = W n Q̌. Note that if ω ∈ W̃ is
dominant and ω = tqs, where q ∈ Q̌ and s ∈ W , then in particular q lies in the closure of the
dominant chamber. Thus 〈α, q〉 ≥ 0 for each positive root α ∈ Φ+.

To an affine root α+ kδ we associate the half-space

Hα+kδ =
{
x ∈ V : 〈x, α〉 > −k

}
.
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The action of the affine Weyl group on half-spaces translates into the following action on Φ̃. If
ω ∈ W̃ has the unique decomposition ω = txs with x ∈ Q̌ and s ∈W then

ω · (α+ kδ) = s(α) + (k − 〈x, s(α)〉)δ.

Let A be a non-empty intersection of half-spaces of the form Hα+kδ, where α + kδ ∈ Φ̃. For
example, A could be an alcove. A hyperplane H ∈ Aff(Φ) is a wall of A if H supports a facet
of A. The hyperplane H is said to separate A and the fundamental alcove if A and A◦ lie in
different half-spaces bounded by H. In this case we say H is a separating hyperplane of A. A
wall H of A that separates A and the fundamental alcove A◦ is called a floor of A.
Note that positive affine roots correspond to those half spaces that contain the fundamental

alcove. Simple affine roots correspond to half spaces that contain the fundamental alcove and
share one of its walls. Floors and separating hyperplanes of an alcove can be expressed in the

language of affine roots and elements of the affine Weyl group. Let ω ∈ W̃ and α + kδ ∈ Φ̃+.

Then the hyperplane Hα,−k separates ω(A◦) from A◦ if and only if ω−1 · (α+ kδ) ∈ −Φ̃+. The

hyperplane Hα,−k is a floor of ω(A◦) if and only if ω−1 · (α+ kδ) ∈ −∆̃.

A positive affine root α + kδ ∈ Φ̃+ is an affine inversion of ω ∈ W̃ if ω · (α + kδ) ∈ −Φ̃+. It

follows from the previous paragraph that the number of affine inversions of an element ω ∈ W̃
equals the number of separating hyperplanes. One can show that this number also equals the
length of ω.

1.4. Affine permutations

The Weyl group of type An−1 is easily recognised to be the symmetric group Sn. We now
describe a combinatorial model for the affine Weyl group of type An−1. A detailed exposition is
found in [17, Sec. 8.3].

The affine symmetric group
∼
Sn is the group of bijections ω : Z→ Z such that ω(i+n) = ω(i)+n

for all i ∈ Z and ω(1)+· · ·+ω(n) = n(n+1)/2. Such a bijection ω is called an affine permutation.
Each affine permutation is uniquely determined by its window

[ω(1), ω(2), . . . , ω(n)].

The group
∼
Sn has a set of generators called simple transpositions of type An−1 given by

sAi = [1, . . . , i+ 1, i, . . . , n] for i ∈ [n− 1] and

sAn = [0, 2, . . . , n− 1, n+ 1].

The affine symmetric group and the set of simple transpositions form a Coxeter system isomorphic
to the affine Weyl group of type An−1. An explicit isomorphism between

∼
Sn and the affine Weyl

group of type An−1 can be given using the generators by mapping sAi to sαA
i

for i ∈ [n − 1]

and sAn to sα̃A,1. The symmetric group Sn can be seen as the subgroup of
∼
Sn consisting of all

affine permutations whose window is a permutation of [n]. This is just the parabolic subgroup
of
∼
Sn generated by sAi for i ∈ [n− 1] and agrees with the image of the Weyl group W under the

specified isomorphism. The length `(ω) of an affine permutation ω ∈ ∼Sn is the minimal number
` of simple transpositions in an expression of the form ω = sAi1s

A
i2
· · · sAi` , where ij ∈ [n] for all

j ∈ [`]. The Graßmannian affine permutations, that is, the minimal length representatives of
the cosets in

∼
Sn/Sn, are described in [17, Prop. 8.3.4].

Proposition 1.4.1. An affine permutation ω ∈ ∼Sn is the minimal length representative of its
coset ωSn ∈

∼
Sn/Sn if and only if its window is increasing, that is,

ω(1) < ω(2) < · · · < ω(n).
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We now give a combinatorial description of the decomposition of the affine symmetric group
as the semi-direct product of translations and permutations. The coroot lattice of type An−1 is
given by

Q̌ =
{
x ∈ Zn : x1 + · · ·+ xn = 0

}
.

The affine symmetric group acts on the coroot lattice via the following rules

sAi · x = (x1, . . . , xi+1, xi, . . . , xn) for i ∈ [n− 1] and

sAn · x = (xn + 1, x2, . . . , xn−1, x1 − 1).

Given ω ∈ ∼Sn write ω(i) = ain + bi for each i ∈ Z, where ai ∈ Z and bi ∈ [n]. For i ∈ [n] set
σ(ω, i) = bi, µ(ω, bi) = ai and ν(ω, i) = −ai.

Lemma 1.4.2. [73, Lem. 2.2]

(i) The assignment i 7→ σ(ω, i), where i ranges over [n], defines a permutation σ(ω) ∈ Sn.
(ii) The vectors µ(ω) = (µ(ω, 1), . . . , µ(ω, n)) and ν(ω) = (ν(ω, 1), . . . , ν(ω, n)) lie in the coroot

lattice Q̌ and for all i ∈ [n] we have

µ(sAi ω) = sAi · µ(ω), ν(ωsAi ) = sAi · ν(ω).

(iii) We have ω · 0 = µ(ω) and ω−1 · 0 = ν(ω).
(iv) We have µ(ω−1) = ν(ω) and σ(ω−1) = σ(ω)−1.
(v) We have µ(ω) = −σ(ω) · ν(ω).

Proof. Claims (i) and (v) are straight forward. Claims (iii) and (iv) follow immediately
from (ii), which can be shown by induction on the length of ω.
Clearly µ(e) = ν(e) = (0, . . . , 0) ∈ Q̌. Set σ = σ(ω) and suppose that µ(ω) ∈ Q̌.
Fix i ∈ [n− 1] and choose j, k ∈ [n] such that σ(j) = i and σ(k) = i + 1. Then sAi ω(`) = ω(`)

for all ` ∈ [n] − {j, k} and hence µ(sAi ω, `) = µ(ω, `) for all ` ∈ [n] − {i, i + 1}. Furthermore,
sAi ω(j) = sAi (ajn + i) = ajn + i + 1 and sAi ω(k) = sAi (akn + i + 1) = akn + i. It follows that
µ(sAi ω, i) = ak = µ(ω, i+ 1) and µ(sAi ω, i+ 1) = aj = µ(ω, i).
Next choose j, k ∈ [n] such that σ(j) = 1 and σ(k) = n. Then sAnω(`) = ω(`) for all ` ∈

[n]− {j, k}. Thus µ(sAnω, `) = µ(ω, `) for all ` ∈ [n]− {1, n}. Moreover, sAnω(j) = sAn (ajn+ 1) =
ajn + 0 = (aj − 1)n + n and sAnω(k) = sAn (akn + n) = akn + (n + 1) = (ak + 1)n + 1. Thus
µ(sAnω, 1) = ak + 1 = µ(ω, n) + 1 and µ(sAnω, n) = aj − 1 = µ(ω, 1)− 1.

We obtain µ(sAi ω) = sAi · µ(ω), and in particular µ(sAi ω) ∈ Q̌, for all i ∈ [n].
Now suppose ν(ω) ∈ Q̌ and fix i ∈ [n − 1]. Since ωsAi (j) = ω(j) for all j ∈ [n] − {i, i + 1}

we have ν(ωsAi , j) = ν(ω, j) for all j ∈ [n] − {i, i + 1}. Furthermore ωsAi (i) = ω(i + 1) and
ωsAi (i+ 1) = ω(i), thus ν(ωsAi , i) = ν(ω, i+ 1) and ν(ωsAi , i+ 1) = ν(ω, i).
Finally since ωsAn (j) = ω(j) for all j ∈ [n] − {1, n} we have ν(ωsAn , j) = ν(ω, j) for all j ∈

[n]−{1, n}. Moreover ωsAn (1) = ω(0) = ω(n−n) = ω(n)−n = (an−1)n+bn, hence ν(ωsAn , 1) =
−an + 1 = ν(ω, n) + 1. On the other hand ωsAn (n) = ω(n+ 1) = n+ω(1) = (a1 + 1)n+ b1. Thus
ν(ωsAn , n) = −a1 − 1 = ν(ω, 1)− 1.
We obtain that ν(ωsAi ) = sAi ·ν(ω), and in particular ν(ωsAi ) ∈ Q̌, for all i ∈ [n]. This concludes

the proof of claim (ii) and thus the proof of the lemma. �

For q ∈ Q̌ define an affine permutation tq ∈
∼
Sn by tq(i) = qin+ i for i ∈ [n]. We call an affine

permutation ω ∈ ∼Sn a translation if there exists q ∈ Q̌ such that ω · x = q + x for all x ∈ Q̌.

Theorem 1.4.3. [73, Thm. 2.3]

(i) Let ω ∈ ∼Sn be an affine permutation and set s = σ(ω), x = µ(ω) and y = ν(ω). Then
ω = txs = st−y.
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(ii) Let x, y ∈ Q̌. Then txty = tx+y and (tx)−1 = t−x. Hence we may view the coroot lattice Q̌
as a subgroup of

∼
Sn.

(iii) An affine permutation ω ∈ ∼Sn is a translation if and only if ω = tq for some q ∈ Q̌.
(iv) The affine symmetric group is the semi-direct product of the symmetric group and the coroot

lattice, that is,
∼
Sn = Sn n Q̌.

Proof. Claims (i) and (ii) are straightforward calculations. Claim (i) follows from

txs(i) = µ(ω, s(i))n+ s(i) = ω(i) = −ν(ω, i)n+ s(i) = s(−ν(ω, i)n+ i) = st−y(i).

On the other hand

txty(i) = tx(yin+ i) = yin+ tx(i) = (xi + yi)n+ i = tx+y(i)

implies (ii). To see (iii) note that tq · x = tqtx · 0 = tq+x · 0 = q + x. Conversely, if ω is a

translation by q ∈ Q̌ then q + x = ω · x = q + σ(ω) · x for all x ∈ Q̌, which implies σ(ω) = e.
Finally, SnQ̌ =

∼
Sn and Sn normalises Q̌ by (i). Since Sn ∩ Q̌ = {e}, we obtain (iv). �

Thus the decomposition of an affine permutation into a product of a translation and a permu-
tation can be obtained from its window in a simple and direct fashion. We remark that this
combinatorial decomposition has appeared in the literature before, for example in [16]. The
connection to the algebraic decomposition into a semi-direct product, which exists for any affine
Weyl group, is mentioned in [5, Sec. 4.2].

Note that the action of the affine symmetric group on left cosets
∼
Sn/Sn is isomorphic to the

action on the coroot lattice since

stqSn = ts(q)Sn

for all q ∈ Q̌ and s ∈ Sn. The following lemma describes this action viewed as an action on the
set of Graßmannian affine permutations.

Lemma 1.4.4. Let ω ∈ ∼Sn be a Graßmannian affine permutation, q ∈ Q̌ and s ∈ Sn such that
ω = tqs.

(i) Then for all i ∈ [n−1] the Graßmannian affine permutation ω′ ∈ sAi ωSn is given by ω′ = ω
if sAi (q) = q and ω′ = tsAi (q)s

A
i s otherwise.

(ii) The Graßmannian affine permutation ω′ ∈ sAnωSn is given by ω′ = ω if sAn (q) = q and
ω′ = tsAn (q)us, where u = [n, 2, . . . , n− 1, 1], otherwise.

Proof. The claim follows from Proposition 1.4.1 and a simple computation. �

The affine symmetric group possesses an involutive automorphism owing to the symmetry of
the Dynkin diagram of type An−1. Set (sAi )∗ = sAn−i for i ∈ [n − 1] and (sAn )∗ = sAn . This
correspondence extends to an automorphism ω 7→ ω∗ on

∼
Sn, where ω∗ is obtained by replacing

all instances of sAi in any expression of ω in terms of the simple transpositions by (sAi )∗. The
involutive automorphism has a simple explicit description in window notation and fulfils many
desirable properties well-known to experts.

Lemma 1.4.5. [73, Lem. 2.4]

(i) Let ω ∈ ∼Sn be an affine permutation and i ∈ Z. Then w∗(i) = 1− ω(1− i). In particular
the window of ω∗ is given by [n+ 1− ω(n), . . . , n+ 1− ω(1)].

(ii) The involutive automorphism preserves Sn, translations, Graßmannian affine permutations
and dominant affine permutations.
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Proof. We prove claim (i) by induction on the length of ω. Clearly (i) holds for the identity,
as e∗ = e. Thus assume it is true for ω. For i ∈ [n − 1] the right multiplication of ω by sAi
corresponds to exchanging the two numbers ω(i), ω(i+1) in the window of ω. On the other hand
multiplying ω∗ by (sAi )∗ from the right exchanges the numbers n + 1 − ω(i + 1), n + 1 − ω(i).
Claim (i) therefore also holds for ωsAi .
Claim (ii) follows from (i) and the fact that (ω−1)∗ = (ω∗)−1. �

1.5. Affine signed permutations

The affine Weyl groups of types Bn, Cn and Dn can be realised as groups of certain bijections
on integers as well. We still refer to [17] for a standard text book on the subject.
Set N = 2n+ 1. A bijection ω : Z→ Z is an affine signed permutation if ω(i+N) = ω(i) +N

and ω(−i) = −ω(i) for all i ∈ Z. The set of all such bijections forms a group under composition
which we denote by

∼
SC
n . As in type An−1 each affine permutation is fully determined by its

window

[ω(1), ω(2), . . . , ω(n)].

The group
∼
SC
n is generated by the following n+ 1 simple transpositions of type Cn, defined as

sC0 = [−1, 2, . . . , n],

sCi = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] for i ∈ [n− 1] and

sCn = [1, . . . , n− 1, n+ 1].

The group
∼
SC
n contains a subgroup

∼
SB
n that consists of all affine permutations ω such that the

finite set {i ∈ Z : i ≤ n, ω(i) > n} has even cardinality. This subgroup is generated by the simple
transpositions of type Bn, given by

sB0 = [−1, 2, . . . , n],

sBi = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] for i ∈ [n− 1] and

sBn = [1, . . . , n− 2, n+ 1, n+ 2].

The group
∼
SB
n contains a subgroup

∼
SD
n that consists of all affine permutations ω such that both

finite sets {i ∈ Z : i ≤ n, ω(i) > n} and {i ∈ Z : i ≥ 0, ω(i) < 0} have even cardinality. This
subgroup is generated by the simple transpositions of type Dn, that is,

sD0 = [−1,−2, 3, . . . , n],

sDi = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] for i ∈ [n− 1] and

sDn = [1, . . . , n− 2, n+ 1, n+ 2].

Let Φ be a root system of type Bn, Cn or Dn. The group
∼
SΦ
n is isomorphic to the affine Weyl

group W̃ of Φ. An explicit isomorphism in terms of the generators is obtained by mapping sΦ
i

to sαΦ
i

for 0 ≤ i ≤ n − 1, and sΦ
n to sα̃Φ,1. Let SΦ

n denote the subgroup of
∼
SΦ
n corresponding

to the Weyl group W under this isomorphism. Then an affine permutation ω ∈ ∼SΦ
n lies in SΦ

n

if and only if its window is a subset of [±n]. More precisely, SB
n = SC

n is the group of signed
permutations while SD

n ≤ SB
n consists of the signed permutations with an even number of sign

changes. Furthermore, this isomorphism affords an action of the affine permutations on the
coroot lattice Q̌ of Φ. The coroot lattices of types Bn, Cn and Dn are given by

Q̌B = Q̌D =
{
x ∈ Zn :

n∑
i=1

xi ∈ 2Z
}

and Q̌C = Zn.
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The action of
∼
SΦ
n on Q̌Φ is made explicit by the following rules

sC0 · (x1 . . . , xn) = (−x1, x2 . . . , xn),

sCi · (x1 . . . , xn) = (x1, . . . , xi+1, xi, . . . , xn), for i ∈ [n− 1],

sCn · (x1 . . . , xn) = (x1, . . . , xn−1,−xn + 1),

sBn · (x1 . . . , xn) = (x1, . . . , xn−2,−xn + 1,−xn−1 + 1) and

sD0 · (x1 . . . , xn) = (−x1,−x2, x3, . . . , xn).

A combinatorial description of the Graßmannian affine permutations in
∼
SΦ
n based on window

notation is given by Björner and Brenti.

Proposition 1.5.1. [17, Prop. 8.4.4, 8.5.4, and 8.6.4] Let Φ be a root system of type Bn, Cn
or Dn, and ω ∈ ∼SΦ

n an affine permutation. Then ω is Graßmannian if and only if{
0 < ω(1) < ω(2) < · · · < ω(n) if Φ is of type Bn or Cn,

0 < |ω(1)| < ω(2) < · · · < ω(n) if Φ is of type Dn.

As in the previous section we next develop a combinatorial description of the decomposition of
an affine permutation into a product of a translation by an element of the coroot lattice and an
element of the Weyl group, that is, a signed permutation. To this end, for ω ∈ ∼SΦ

n and each
i ∈ Z write ω(i) = aiN+bi such that ai ∈ Z and −n ≤ bi ≤ n. Given i ∈ [±n] define σ(ω, i) = bi,
µ(ω, bi) = −ai and ν(ω, i) = ai.

Lemma 1.5.2. [74, Lem. 3.2] Let ω ∈ ∼SΦ
n be an affine permutation.

(i) The map i 7→ σ(ω, i), where i ∈ [n], defines a signed permutation σ(ω) ∈ SΦ
n .

(ii) The vectors µ(ω) = (µ(ω, 1), . . . , µ(ω, n)) and ν(ω) = (ν(ω, 1), . . . , ν(ω, n)) lie in the coroot
lattice Q̌ of Φ, and for all i with 0 ≤ i ≤ n we have

µ(sΦ
i ω) = sΦ

i · µ(ω), ν(ωsΦ
i ) = sΦ

i · ν(ω).

(iii) We have µ(ω−1) = ν(ω) and σ(ω−1) = σ(ω)−1.
(iv) We have ω · (0, . . . , 0) = µ(ω) and ω−1 · (0, . . . , 0) = ν(ω).
(v) We have µ(ω) = −σ · ν(ω).

Proof. Claims (i) and (v) are immediate from the definitions while (iii) and (iv) follow
directly from (ii). Thus it only remains to show (ii) which is done for each type using induction
on the length of ω.
First assume that Φ is of type Cn. Clearly µ(e) = ν(e) = (0, . . . , 0) ∈ Q̌. Suppose that
µ(ω) ∈ Q̌.
Choose j ∈ [±n] such that σ(j) = 1. Then sC0 ω(k) = ω(k) for all k ∈ [n] − {|j|}, hence
µ(sC0 ω, k) = µ(ω, k) for all k ∈ [n] − {1}. Furthermore, sC0 ω(−j) = s0(−ajN − 1) = −ajN + 1
thus µ(sC0 ω, 1) = −µ(ω, 1).
Fix i with 1 ≤ i ≤ n − 1 and choose j, k ∈ [±n] such that σ(j) = i and σ(k) = i + 1. Then
sCi ω(`) = ω(`) for all ` ∈ [n]−{|j| , |k|}. It follows that µ(sCi ω, `) = µ(ω, `) for all ` ∈ [n]−{i, i+1}.
Furthermore, sCi ω(j) = sCi (ajN + i) = ajN + i + 1 and sCi ω(k) = sCi (akN + i + 1) = akN + i.
Thus µ(sCi ω, i) = µ(ω, i+ 1) and µ(sCi ω, i+ 1) = µ(ω, i).
Choose j ∈ [±n] such that σ(j) = n. Then sCnω(k) = ω(k) for all k ∈ [n] − {|j|}, hence
µ(sCnω, k) = µ(ω, k) for all k ∈ [n]−{n}. Moreover, sCnω(−j) = sCn (−ajN−n) = −ajN−n−1 =
(−aj − 1)N + n thus µ(sCnω, n) = −µ(ω, n) + 1.

We obtain that µ(sCi ω) = sCi · µ(ω), and in particular that µ(sCi ω) ∈ Q̌ for all i with 0 ≤ i ≤ n.
Now assume that ν(ω) ∈ Q̌. Clearly ωsC0 (j) = ω(j) for all j ∈ [n] − {1}, hence ν(ωsC0 , j) =
ν(ω, j) for all j ∈ [n]− {1}. Furthermore, ωsC0 (1) = −ω(1) thus ν(ωsC0 , 1) = −ν(ω, 1).
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Fix i with 1 ≤ i ≤ n−1 then ωsCi (j) = ω(j) for all j ∈ [n]−{i, i+1}. Hence ν(ωsCi , j) = ν(ω, j)
for all j ∈ [n] − {i, i + 1} Moreover ωsCi (i) = ω(i + 1) and ωsCi (i + 1) = ω(i). It follows that
ν(ωsCi , i) = ν(ω, i+ 1) and ν(ωsCi , i+ 1) = ν(ω, i).
Finally ωsCn (j) = ω(j) for all j ∈ [n−1] and therefore ν(ωsCn , j) = ν(ω, j) for all j ∈ [n−1]. On

the other hand ωsCn (n) = ω(N−n) = N−ω(n) = (−an+1)N−bn thus ν(ωsCn , n) = −ν(ω, n)+1.
We conclude that ν(ωsCi ) = sCi · ν(ω) and in particular ν(ωsCi ) ∈ Q̌ for all i with 0 ≤ i ≤ n.

In type Bn there is only one new case to treat, namely the simple transposition sBn .
Suppose that µ(ω) ∈ Q̌. Choose j, k ∈ [±n] such that σ(j) = n − 1 and σ(k) = n. Then
sBn ω(`) = ω(`) for all ` ∈ [n]− {|j| , |k|}, hence µ(sBn ω, `) = µ(ω, `) for all ` ∈ [n− 2]. Moreover,
sBn ω(−j) = sBn (−ajN − n+ 1) = −ajN − n− 1 = (−aj − 1)N + n and sBn ω(−k) = sBn (−akN −
n) = −akN − n − 2 = (−ak − 1)N + n − 1 thus µ(sBn ω, n − 1) = ak + 1 = −µ(ω, n) + 1 and
µ(sBn ω, n) = aj + 1 = −µ(ω, n− 1) + 1.

Now assume that ν(ω) ∈ Q̌. Clearly ωsBn (j) = ω(j) for all j ∈ [n− 2] and therefore ν(ωsBn , j) =
ν(ω, j) for all j ∈ [n− 2]. On the other hand ωsBn (n− 1) = ω(n+ 1) = ω(N − n) = N − ω(n) =
(−an+1)N − bn and ωsBn (n) = ω(n+2) = ω(N −n+1) = N −ω(n−1) = (−an−1 +1)N − bn−1.
Hence ν(ωsBn , n− 1) = −an + 1 = −ν(ω, n) + 1 and ν(ωsBn , n) = −an−1 + 1 = −ν(ω, n− 1) + 1.
We conclude that µ(sBn ω) = sBn · µ(ω) ∈ Q̌ and ν(ωsBn ) = sBn · ν(ω) ∈ Q̌ as needed.

Type Dn is similar to Bn, except for the treatment of the simple transposition sD0 .
Suppose that µ(ω) ∈ Q̌. Choose j, k ∈ [±n] such that σ(j) = 1 and σ(k) = 2. Then sD0 ω(k) =
ω(`) for all ` ∈ [n] − {|j| , |k|}, hence µ(sD0 ω, `) = µ(ω, `) for all ` ∈ [n] − {1, 2}. Furthermore,
sD0 ω(−j) = sD0 (−ajN − 1) = −ajN + 2 and sD0 ω(−k) = sD0 (−akN − 2) = −akN + 1, thus
µ(sD0 ω, 1) = ak = −µ(ω, 2) and µ(sD0 ω, 2) = aj = −µ(ω, 1).

Now assume that ν(ω) ∈ Q̌. Clearly ωsD0 (j) = ω(j) for all j ∈ [n] − {1, 2}, hence ν(ωsD0 , j) =
ν(ω, j) for all j ∈ [n] − {1, 2}. Furthermore, ωsD0 (1) = −ω(2) and ωsD0 (2) = −ω(1). Hence
ν(ωsD0 , 1) = −ν(ω, 2) and ν(ωsD0 , 2) = −ν(ω, 1).
We conclude that µ(sD0 ω) = sD0 · µ(ω) ∈ Q̌ and ν(ωsD0 ) = sD0 · ν(ω) ∈ Q̌ as needed. �

For q ∈ Q̌Φ define an affine permutation tq ∈
∼
SΦ
n by setting tq(i) = −qiN + i for i ∈ [n]. We

call an affine permutation ω ∈ ∼SΦ
n a translation by q ∈ Q̌Φ if ω · x = x+ q for all x ∈ Q̌Φ. Thus

by definition the translations in
∼
SΦ
n correspond to translations in W̃ .

Theorem 1.5.3. [74, Prop. 3.3]

(i) Let ω ∈ ∼SΦ
n be an affine permutation and set s = σ(ω), x = µ(ω) and y = ν(ω). Then

ω = txs = st−y.

(ii) Let x, y ∈ Q̌Φ. Then txty = tx+y and (tx)−1 = t−x. Hence we may view the coroot lattice

Q̌Φ as a subgroup of
∼
SΦ
n .

(iii) An affine permutation ω ∈ ∼SΦ
n is a translation if and only if ω = tq for some q ∈ Q̌Φ.

(iv) The affine symmetric group is the semi-direct product of the symmetric group and the coroot
lattice, that is,

∼
SΦ
n = SΦ

n n Q̌Φ.

Proof. To prove claim (i) let i ∈ [n] and ω(i) = aiN + bi such that ai ∈ Z and bi ∈ [±n].
Then

txs(i) = tx(σ(ω, i)) = tx(bi) = −µ(ω, bi)N + bi = aiN + bi,

st−y(i) = s(ν(ω, i)N + i) = s(aiN + i) = aiN + s(i) = aiN + bi.

To see claim (ii), note that for each i ∈ [n] we have

txty(i) = tx(−yiN + i) = −yiN + tx(i) = −(yi + xi)N + i = tx+y(i).

To see (iii) note that tq ·x = tqtx ·0 = tq+x ·0 = q+x, where we use (i), (ii) and Lemma 1.5.2 (iv).

Thus tq is indeed a translation. Conversely, if ω ∈ ∼SΦ
n is a translation by q ∈ Q̌Φ then q + x =
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ω · x = q + σ(ω) · x for all x ∈ Q̌Φ, which implies σ(ω) = e. Finally, SΦ
n Q̌

Φ =
∼
SΦ
n and SΦ

n

normalises Q̌Φ by (i). Since SΦ
n ∩ Q̌Φ = {e}, we obtain (iv). �

The following lemma is an easy consequence of the above that we will refer to in later sections.

Lemma 1.5.4. [74, Lem. 3.4] Let ω ∈ ∼SΦ
n be the minimal length coset representative of ωSΦ

n ,
set x = µ(ω) ∈ Q̌ and s = σ(ω) ∈ SΦ

n . Then for each i ∈ [n]∣∣s−1(i)
∣∣ = #

{
k ∈ [n] : |xkN − k| ≤ |xiN − i|

}
.

If Φ is of type Bn or Cn, or if Φ is of type Dn and
∣∣s−1(i)

∣∣ 6= 1, then s−1(i) > 0 if and only if

xi ≤ 0. However, if Φ is of type Dn and
∣∣s−1(i)

∣∣ = 1, then s−1(i) > 0 if and only if either xi ≤ 0
and the number of positive entries of x is even, or xi > 0 and the number of positive entries of
x is odd.

Proof. Since ω is a minimal length coset representative, the absolute values of the entries
of the window of ω must be increasing, that is, 0 < |ω(1)| < |ω(2)| < · · · < |ω(n)|. On the other
hand, |s(j)| = i if and only if ω(j) = |xiN − i|. Hence |s(j)| = i is equivalent to

j = #
{
k ∈ [n] : |xkN − k| ≤ |xiN − i|

}
.

Furthermore, if Φ is of type Bn or Cn, or if Φ is of type Dn and
∣∣s−1(i)

∣∣ 6= 1, then ω(i) > 0.
Hence s(i) > 0 if and only if −xiN + i > 0, which is the case if and only if xi ≤ 0.
If Φ is of type Dn then the sign of ω(1) possibly has to be changed such that there is an even

number of integers j ∈ Z with j ≥ 0 and ω(j) < 0. �





CHAPTER 2

Exploring the Catalan-cube

The present chapter provides an overview of several combinatorial objects related to Dyck
paths and parking functions to illustrate different generalisations of the Catalan numbers. In
Section 2.1 Catalan numbers and Dyck paths are introduced. In Section 2.2 we generalise to
Catalan numbers depending on a rational parameter and Dyck paths that stay above a rational
slope. Section 2.3 introduces Cayley numbers and parking functions, which are shown to have an
interpretation as labelled Dyck paths. In Section 2.4 rational Dyck paths and parking functions
are combined to define rational Cayley numbers. In Section 2.5 several statistics on Dyck paths
are introduced, which we use to define q, t-Catalan numbers. Section 2.6 combines the ideas from
Sections 2.3 and 2.5 to define polynomials versions of the Cayley numbers. Finally, in Section 2.7
we take q, t-Catalan numbers to the rational level.
None of the contents of this chapter are new, and ample references are provided in the text. To

make this introduction as self-contained as possible, I have included proofs whenever this seemed
reasonable. The generalisation of the objects discussed in the present chapter to the Weyl group
setting will be a recurring theme and an important motivation in the remainder of the thesis.

2.1. Dyck paths and Catalan numbers

Figure 2.1. The fourteen Dyck paths of length four.

The Catalan numbers [64, A000108] are given by

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
=

(
2n

n

)
−
(

2n

n+ 1

)
.

A plethora of combinatorial problems involving these numbers can be found in a book of Stan-
ley [70], including an appendix on the history of the Catalan numbers written by Pak [54]. In
these initial sections we shall focus our attention on just one kind of Catalan objects, namely,
Dyck paths.
A Dyck path of length n is a lattice path x ∈ Ln,n visiting no lattice point (i, j) ∈ Z2 with i > j.

Equivalently, a Dyck path is a word s1 · · · s2n consisting of n east steps and n north steps such
that every initial subword s1 · · · sr contains at least as many north steps as east steps. Denote
the set of Dyck paths in Ln,n by Dn. For example the paths in D4 are shown in Figure 2.1.

17

http://oeis.org/A000108
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Figure 2.2. The twelve 2-Dyck paths of length three.

Proposition 2.1.1. The number of Dyck paths of length n is given by the n-th Catalan number.
That is, #Dn = Cn.

Proof. A classical proof of this result uses the so called reflection principle. The number of
all lattice paths from (0, 0) to (n, n) using east and north steps is #Ln,n =

(
2n
n

)
. Thus it suffices

to show that the number of paths in Ln,n that go below the diagonal are counted by
(

2n
n+1

)
. If x

is such a path then there exists a unique Dyck path y and lattice path z such that x = yez. If
we now reflect z, that is, replace each east step by a north step and vice versa, then we obtain
a lattice path φ(x) = yez′ ∈ Ln+1,n−1. Conversely, for every lattice path x ∈ Ln+1,n−1 there
exists a unique Dyck path y and lattice path z such that x = yez. Reflecting once more yields
a lattice path φ(x) = yez′ in Ln,n that goes below the diagonal. Hence the map x 7→ φ(x) is a

bijection and the claim follows from #Ln+1,n−1 =
(

2n
n+1

)
. �

For more details on the reflection principle see [83, 31].

Proposition 2.1.2. The Catalan numbers satisfy the recursion Cn+1 =
∑n
k=0 CkCn−k for all

n ≥ 0, where C0 = 1.

Proof. A convenient way of proving the result is to use a simple combinatorial decomposi-
tion of Dyck paths. For each non-empty Dyck path x there exist unique (possibly empty) Dyck
paths y and z such that x = nyez. Conversely, given two Dyck paths y and z, the concatenation
x = nyez is again a Dyck path. �

Using the recursion from Proposition 2.1.2 the generating function for Catalan numbers can be
obtained by a routine computation.

Corollary 2.1.3. The generating function of the Catalan numbers satisfies the equation F(z) =
1 + zF(z)2 and has the closed formula∑

n≥0

Cnz
n =

1−
√

1− 4z

2z
.

�

2.2. Rational Catalan numbers

A first generalisation of Catalan numbers are the Fuß–Catalan numbers that depend on two
parameters m,n ∈ N and are defined as

Cn,nm+1 =
1

mn+ 1

(
mn+ n

n

)
.

Evidently, the Fuß–Catalan numbers reduce to the Catalan numbers when m = 1.
Many of the objects encountered in the study of Catalan numbers have been given generalisa-

tions counted by Fuß–Catalan numbers. For example, there is a family of lattice paths counted
by Fuß–Catalan numbers that generalises Dyck paths. An m-Dyck path of length n is a lattice
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Figure 2.3. The seven Dyck paths of rational slope 5/3.

path x ∈ Lmn,n that visits no lattice point (i, j) with i > mj. Denote the set of m-Dyck paths

of length n by D
(m)
n . The paths in D

(m)
3 are shown in Figure 2.2.

Instead of spending much time on Fuß–Catalan objects we move one step ahead. The rational
Catalan numbers depend on a rational parameter n/p where n, p ∈ N are assumed to be relatively
prime. They are defined by

Cn,p =
1

n+ p

(
n+ p

n

)
.

It is easily verified that rational Catalan numbers reduce to Fuß–Catalan numbers when p =
mn+ 1.
There are yet more variations of Dyck paths that are counted by rational Catalan numbers.

A lattice path x ∈ Lp,n is called a rational Dyck path of slope n/p if it does not go below the
diagonal with slope n/p. That is, if x = (z0, . . . , zn+p) then x is a rational Dyck path if and only
if nzi1 ≤ pzi2 for all i ∈ [n+ p]. Denote the set of rational Dyck paths with slope n/p by Dn,p.
For example, the paths in D5,3 are shown in Figure 2.3.
More generally, define a function wpn : Z2 → Z where the weight of a lattice point (i, j) is given

by wpn(i, j) = jp − in. The statistic neg : Lp,n → N counts the number of points visited by a
lattice path that have a negative weight. That is, for x ∈ Lp,n we set

neg(x) = #
{
i ∈ [n+ p] : wpn(zi) < 0

}
.

Clearly Dn,p = {x ∈ Lp,n : neg(x) = 0}. To count the fibres of neg we use the following result
due to Spitzer, which is often referred to as the Cycle Lemma.

Theorem 2.2.1. [66, Thm. 2.1] Let a1, . . . , an ∈ R be such that
∑
i ai = 0, but ar + · · · +

ar+s−1 6= 0 for all r ∈ [n] and s ∈ [n − 1], where we set ak+n = ak for all k ∈ [n]. That is,
the numbers a1, . . . , an sum up to zero, but no non-trivial cyclically connected sub-sum vanishes.
Then for each k ∈ {0, . . . , n − 1} there exists a unique r ∈ [n] such that exactly k sub-sums of
the form ar + · · ·+ ar+s−1 with s ∈ [n] are negative.

Proof. By assumption the sub-sums bs = a1 + · · · + as with s ∈ [n] are pairwise distinct.
Hence there exists a unique permutation σ ∈ Sn such that bσ(1) < · · · < bσ(n). The number

of negative sub-sums of the form ar + · · · + ar+s−1 where s ∈ [n] is given by σ−1(r) − 1 for all
r ∈ [n]. �

We derive a result due to Bizley [15], namely that rational Dyck paths are counted by rational
Catalan numbers.

Theorem 2.2.2. Let n, p ∈ N be relatively prime, and k ∈ {0, . . . , n + p − 1}. Then #{x ∈
Lp,n : neg(x) = k} = Cn,p. In particular, #Dn,p = Cn,p.

Proof. Assign weights wpn(n) = p and wpn(e) = −n. Given a path x ∈ Lp,n set ai = wpn(si).
Clearly a1 + · · · + an+p = 0, and since n and p are relatively prime, this is the only vanishing
cyclically connected sub-sum. Moreover, the sub-sums a1 + · · · + as are precisely the weights
wpn(zs) of the points visited by x. The cyclic group of order n + p acts on Lp,n by cyclic
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x y ρ(x)

Figure 2.4. The paths x ∈ D5,3 and y ∈ L3,5 lie in the same orbit under cyclic permutation
of the steps. The path ρ(x) ∈ D5,3 is the reverse path of y.

permutation of the steps. By Theorem 2.2.1 each orbit under this action contains exactly one
path from each fibre of neg. �

An immediate corollary is the following.

Corollary 2.2.3. Let n, p ∈ N be relatively prime, then the rational Catalan number Cn,p is
an integer. �

Furthermore Theorem 2.2.2 can be used to count m-Dyck paths.

Corollary 2.2.4. For all n,m ∈ N the number of m-Dyck paths of length n is given by the
Fuß–Catalan number Cn,mn+1.

Proof. We claim that the map φ : D
(m)
n → Dn,mn+1 defined by x 7→ xe is a bijection. To

see this it suffices to verify that j(mn) < in implies j(mn+ 1) ≤ in for all j ∈ [n]. �

Next, note that {x ∈ Lp,n : neg(x) = n+p−1} consists of all paths in Lp,n that do not go above
the diagonal of slope n/p. These paths turn into rational Dyck paths when the sequence of steps
is reversed. By the proof of Theorem 2.2.2 each orbit of Lp,n under cyclic permutation of the
steps contains exactly one path from each fibre of neg. Let ρ : Dn,p → Dn,p denote the map that
sends x to the reverse path of y where y ∈ Lp,n is the unique lattice path with neg(y) = n+p−1
that is a cyclic permutation of x. See Figure 2.4 for an example.

Corollary 2.2.5. The map ρ : Dn,p → Dn,p is an involution. �

The map ρ appears in different places in the literature. For example Xin [80] calls it the rank
complement, while Ceballos, Denton and Hanusa [21] call it conjugation on Dyck paths.

Recently Ceballos and González D’León [22] have generalised many Catalan objects beyond
the rational level. These objects are counted by so called s-Catalan numbers, which depend on
a signature s ∈ Nk.

2.3. Cayley numbers and parking functions

The Cayley numbers [64, A000272] are defined as

Cn = (n+ 1)n−1.

Cayley [20] famously proved that they count labelled trees. This can be seen via different
beautiful combinatorial arguments such as Prüfer sequences [56] or the proof of Joyal [46]. See
also [1, Chap. 30].
The objects counted by Cayley numbers we are most interested in are parking functions. A

vector f ∈ Nn is called a parking function of length n if there exists a permutation σ ∈ Sn such
that fσ(i) < i for all i ∈ [n]. Equivalently, f is a parking function if #{j ∈ [n] : fj < i} ≥ i for
all i ∈ [n]. Let PFn denote the set of all parking functions of length n. Note that the symmetric
group Sn acts on PFn by permuting entries.

http://oeis.org/A000272
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1
3
4
6

5
2

Figure 2.5. A vertically labelled Dyck path of length six.

Parking functions were first considered and enumerated by Konheim and Weiss [47] in connec-
tion with hash functions 1. Before we derive the number of parking functions ourselves, we need
an important connection between parking functions and Dyck paths.
Let x ∈ Lm,n be a lattice path. Recall that a rise of x is an index i ∈ [n] such that the i-th north

step of x is immediately followed by another north step. A valley of x is a pair (i, j) ∈ [m]× [n]
such that the i-th east step of x is immediately followed by the j-th north step of x. Let σ ∈ Sn

be a permutation. A descent of σ is a number i ∈ [n− 1] such that σ(i) > σ(i+ 1). Otherwise i
is called an ascent.
A vertically labelled Dyck path of length n is a pair (σ, x) of a Dyck path x ∈ Dn and a

permutation σ ∈ Sn such that every rise of x is an ascent of σ. If we picture a vertically labelled
Dyck path by placing the label σ(i) next to the i-th north step of x then this condition translates
to labels increasing along columns. We denote the set of all vertically labelled Dyck paths of
length n by Vert(An−1). For an example see Figure 2.5.
Alternatively define an equivalence relation on Sn ×Dn by (σ, x) ∼ (τ, y) if and only if x = y

and σH = τH, where H ≤ Sn is the subgroup generated by the simple transpositions{
sAi : i is a rise of x

}
.

We may then view vertically labelled Dyck paths as equivalence classes

Vert(An−1) =
{

[σ, x]∼ : x ∈ Dn, σ ∈ Sn

}
.

More precisely each equivalence class [τ, x]∼ contains a unique vertically labelled Dyck path
(σ, x), where σ is the representative of the coset τH of minimal length. The set Vert(An−1)
thus inherits a natural Sn-action given by τ · [σ, x] = [τσ, x]. The following well-known result
establishes that this action is isomorphic to the action on PFn by permuting entries.

Proposition 2.3.1. Parking functions and vertically labelled Dyck paths are isomorphic Sn-
sets.

Proof. An Sn-equivariant bijection φA : Vert(An−1) → PFn is given by φA(σ, x) = f ,
where fσ(i) = j if the i-th north step of x is preceded by j east steps of x. �

For example, the vertically labelled Dyck path from Figure 2.5 is mapped to the parking function
f = (0, 3, 0, 0, 2, 0).

Corollary 2.3.2. The orbits of PFn under the Sn-action defined by permutation of entries,
which are indexed by increasing parking functions, are counted by the Catalan numbers, that is,
#{Sn · f : f ∈ PFn} = Cn. �

Next we give a bijection between parking functions and labelled trees. The first such bijection
is due to Schützenberger [58].

1Konheim and Weiss also included an explanation for the name “parking function”, although it was later
pointed out to be “politically incorrect” by Stanley [68].
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Proposition 2.3.3. Parking functions are counted by the Cayley numbers, that is, # PFn = Cn.

Proof. We give a bijection from Vert(An−1) to the set of rooted labelled forests on n
vertices, which in turn are in bijection with labelled trees on n + 1 vertices. Together with
Proposition 2.3.1 this yields the claim.
Define a map φ recursively. Given (σ, x) ∈ Vert(An), let y and z be Dyck paths determined by
x = nyez. Furthermore let k = σ(1), S ⊆ [n] be the set of labels assigned to the north steps of
y and S = [n]− (S ∪ {k}) be the set of labels assigned to the north steps of z. Then φ maps the
y-portion of (σ, x) to an S-labelled rooted forest F1 and the z-portion to an S-labelled rooted
forest F2. The image F of (σ, x) under φ is defined as the union of F1 and the tree obtained by
joining the roots of all trees in F2 to a new root vertex labelled k.
Conversely, let F be a labelled rooted forest on n vertices. Then the forests F1 and F2 are

obtained as F1 = F −T and F2 = T −{r}, where T is the tree in F whose root r has the minimal
label among all roots of F . Hence φ is a bijection. �

From the recursive definition of the bijection in the proof of Proposition 2.3.3 it is particularly
easy to see that it is surjective and invertible. One can also give a more explicit description of
the same bijection. See [37, Sec. 4] or [36, Chap. 5].
Furthermore note that for n > 2 the Sn-action on labelled trees on n + 1 vertices defined via

permuting labels is not isomorphic to PFn.

2.4. Rational parking functions

The rational Cayley numbers depend on a rational parameter n/p, where n, p ∈ N are assumed
to be relatively prime, and are defined as

Cn,p = pn−1.

These numbers count rational parking functions, which are in bijection with vertically labelled
rational Dyck paths.
A vector f ∈ Nn is a rational parking function of slope n/p if there exists a permutation σ ∈ Sn

such that fσ(i) ≤ (i − 1)p/n for all i ∈ [n]. Equivalently f is a rational parking function if and
only if

#
{
j ∈ [n] : fj ≤ (i− 1)p/n

}
≥ i

for all i ∈ [n], which is the case if and only if

#
{
j ∈ [n] : fj < i

}
≥ in

p

for all i ∈ [p]. We denote the set of rational parking functions with slope n/p by PFn,p. Clearly
the symmetric group Sn acts on PFn,p via permutation of entries. Moreover note that PFn =
PFn,n+1.
Compared to classical parking functions, the interest in rational parking functions is quite

recent. See for example [8, 33].
Our proof of the fact that rational parking functions are counted by rational Cayley numbers

is taken from [75] and relates parking functions to residue classes modulo p. Given a vector
f ∈ (Z/pZ)n choose a representative f = (f1, . . . , fn) with 0 ≤ fi < p for all i ∈ [n] and set
sum(f) = f1 + · · ·+ fn. This defines a statistic sum : (Z/pZ)n → N.

Theorem 2.4.1. Let n, p ∈ N be relatively prime, and let A ≤ (Z/pZ)n denote the subgroup
generated by the element (1, . . . , 1). Then each coset in (Z/pZ)n/A contains a unique rational
parking function. The bijection mapping a rational parking function to its coset is an isomorphism
of Sn-sets. In particular # PFn,p = Cn,p.
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Proof. Since n and p are relatively prime, for each coset H ∈ (Z/pZ)n/A the sums
∑
i xi,

where x ranges over H, are distinct modulo p. Hence there is a unique element f ∈ H such that
sum(f) is minimal. It suffices to show that a vector f ∈ Nn lies in PFn,p if and only if sum(f)
equals the minimum of {sum(x) : x ∈ f +A}. To see this note that for all i ∈ [p] the inequality

sum(f) ≤ sum
(
f − (i, . . . , i)

)
= sum(f)− ni+ p ·#

{
j ∈ [n] : fj − i < 0

}
is equivalent to #{j ∈ [n] : fj < i} ≥ in/p. �

Next consider the set Vert(An−1, p) of vertically labelled rational Dyck paths. The definition
is completely analogous to the definition in Section 2.3. A vertically labelled rational Dyck path
of slope n/p is a pair (σ, x) of a permutation σ ∈ Sn and a Dyck path x ∈ Dn,p such that
rises of x are ascents of σ. Equivalently we may view Vert(An−1, p) as a set of equivalence
classes {[σ, x] : σ ∈ Sn, x ∈ Dn,p}, where (σ, x) ∼ (τ, y) if and only if x = y and σH = τH
where H ≤ Sn is generated by the simple transpositions corresponding to the rises of x. Thus
Vert(An−1, p) inherits a natural Sn-action, which turns out to be isomorphic to the action on
parking functions.
The proof of Proposition 2.4.2 below is the same as the proof of Proposition 2.3.1.

Proposition 2.4.2. Let n, p ∈ N be relatively prime. Then PFn,p and Vert(An−1, p) are iso-
morphic Sn-sets. �

As a corollary of Proposition 2.4.2 and Theorem 2.2.2 we obtain the number of increasing
parking functions of slope n/p.

Corollary 2.4.3. Let n, p ∈ N be relatively prime. Then the number of Sn-orbits of PFn,p
equals Cn,p. �

2.5. The q, t-Catalan numbers

There are many ways to introduce q-analogues of the Catalan numbers [28]. We are particularly
interested in generating polynomials of Dyck paths with respect to certain statistics. Our starting
point will be a q-analogue of the recursion from Proposition 2.1.2. The Carlitz–Riordan q-Catalan
numbers [18] are defined by way of the recursion

Cn+1(q) =

n∑
k=0

qkCk(q)Cn−k(q)

for all n ∈ N, with initial condition C0(q) = 1. Clearly Cn(1) = Cn due to Proposition 2.1.2. We
will give three interpretations of Cn(q) as the generating function of Dyck paths with respect to
different statistics later on. Here we start out with the most natural one.
First define the inversion statistic inv : Ln,m → N. Given a lattice path x ∈ Ln,m corresponding

to the word s1 · · · sm+n set

inv(x) = #
{

(i, j) ∈ [m+ n]2 : i < j, si = n and sj = e
}
.

Thereby inv(x) measures the area below the path x.
Define the area statistic area : Dn → N as the number of lattice points (i, j) ∈ Z2 with positive

weight wn+1
n (i, j) = n(j − i) + j that lie below a Dyck path. Equivalently, for x ∈ Dn let

area(x) = inv(x)−
(
n+ 1

2

)
.

In some sense the area statistic measures the area between a Dyck path and the main diagonal.
Turn P = {(i, j) ∈ [n]2 : i < j} into a poset by equipping it with the order defined by (i, j) ≤ (k, `)
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Figure 2.6. Different interpretations of the area statistic of a Dyck path x ∈ D6, where area(x) = 10.

if and only if k ≤ i < j ≤ `. The set of valleys of a Dyck path forms an anti-chain in P . Given
x ∈ Dn define an order ideal

Ix = P −
⋃

(i,j) is a valley of x

{
(k, `) ∈ P : (i, j) ≤ (k, `)

}
.(2.1)

Then area(x) = |Ix| and the pairs (i, j) ∈ Ix correspond to unit squares between the path x and
the main diagonal. The poset P is just the poset of positive roots in type An−1, thus we get a
first glimpse at possible generalisations to other root systems.
We now demonstrate that the statistic area naturally leads to the q-Catalan numbers.

Proposition 2.5.1. For all n ∈ N we have Cn(q) =
∑
x∈Dn

qarea(x).

Proof. The proof is a straightforward generalisation of the proof of Proposition 2.1.2. Let
y ∈ Dk and z ∈ Dn−k be Dyck paths and set x = nyez. Then x ∈ Dn+1 and area(x) =
k+ area(y) + area(z). Hence the area generating function and the q-Catalan numbers satisfy the
same recursion and initial condition. �

Garsia and Haiman defined q, t-Catalan numbers algebraically as the Hilbert series of the sign
component DHεn of a bigraded representation DHn of the symmetric group Sn called diagonal
harmonics.

Cn(q, t) = Hilb(DHεn; q, t) =
∑
i,j

dim(DHεn)i,jq
itj .

For more information on this representation see for example [40, 30]. Haglund conjectured [35]
and later proved together with Garsia [29] that this series has a combinatorial interpretation as
the bivariate generating polynomial of Dyck paths with respect to certain statistics. Namely,
they proved that

Cn(q, t) =
∑
x∈Dn

qdinv(x)tarea(x) =
∑
x∈Dn

qarea(x)tbounce(x).

Two new statistics make an appearance in addition to the area statistic. The bounce statistic
was defined by Haglund in [35]. The dinv statistic was found by Haiman [36, Chap. 3]2. The
two combinatorial models were shown to be equivalent by Haglund using the so called zeta map.
Two constructions used by Haglund, namely the bounce path and bounce points of a Dyck path,

2Allegedly Garsia informed Haiman in an email of Haglund’s discovery of a suitable statistic without indi-
cating what that statistic was. Thus Haiman sat down and worked out such a statistic of his own. Of course the

two statistics turned out not to be the same. Garsia later expressed his regrets for not writing this email two
years earlier.
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Figure 2.7. A Dyck path x ∈ D6 (left) and its bounce path with bounce points (right), where
bounce(x) = 6.

as well as the inverse of the zeta map actually date back even further to a paper of Andrews,
Krattenthaler, Orsina and Papi [3].

The area vector (a1, . . . , an) of a Dyck path x ∈ Dn is defined by

ai = i− j − 1

where j is the number of east steps of x preceding the i-th north step of x. Equivalently ai
equals the number of lattice points (j, k) ∈ Z2 below the path x such that the weight wn+1

n (j, k)
is positive and wn+1

n (j, k) ≡ i−1 modulo n. The area vector determines the Dyck path uniquely.
It is easy to show that (a1, . . . , an) ∈ Nn is the area vector of a Dyck path if and only if a1 = 0
and ai+1 ≤ ai + 1 for all i ∈ [n − 1]. Moreover the sum of the entries of the area vector equals
the area statistic. In particular, the entry ai encodes the area between the i-th north step of the
Dyck path and the diagonal.
The second statistic involved is the somewhat mysterious dinv statistic dinv : Dn → N, which

is defined as

dinv(x) = #
{

(i, j) ∈ [n]2 : i < j and either ai = aj or ai = aj + 1
}
,

where (a1, . . . , an) is the area vector of x ∈ Dn. The word dinv stands for “diagonal inversion”.
Finally, there is the bounce statistic bounce : Dn → N. Given x ∈ Dn we first construct another

Dyck path y ∈ Dn called the bounce path of x as follows. Starting at (0, 0) draw north steps until
the starting point of an east step of x is reached. Then draw east steps until the path touches
the diagonal. Now draw north steps again until the starting point of an east step of x is reached,
and repeat this process until the path ends at (n, n). Suppose the bounce path of x has the form
ni1ei1 · · ·nireir . That is, the bounce path returns to the diagonal at the points (bj , bj) where
bj = i1 + · · ·+ ij for j ∈ [r]. Then the bounce statistic is given by

bounce(x) = rn−
r∑
j=1

ij(r − j + 1) =

r∑
j=1

(n− bj).

See Figure 2.7 for an example.

The three statistics are related by the following map on Dyck paths called the zeta map. Let
x ∈ Dn be a Dyck path with area vector a = (a1, . . . , an). Set

ζA(x) = −→w−0 (a)−→w−−1(a) · · · −→w−−n(a).

A priori ζA(x) is a word in the alphabet {e,n}. Since every entry of a contributes exactly one
copy of the letter n and one copy of the letter e, where the north step occurs before the east
step, we see that ζA(x) gives rise to a Dyck path. Thus we view ζA : Dn → Dn as a map to
Dyck paths. For example, the words used to construct ζA(x) in Figure 2.8 are −→w−0 (a) = nn,
−→w−−1(a) = enen, −→w−−2(a) = enne and −→w−−3(a) = ee.
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x ζA(x)

Figure 2.8. The dyck path x ∈ D6 with area vector a = (0, 1, 2, 2, 0, 1) (left) and the path

ζA(x) ∈ D6 (right).

Theorem 2.5.2. [36, Thm. 3.15] The map ζA : Dn → Dn is a bijection and satisfies

dinv(x) = area(ζA(x)), area(x) = bounce(ζA(x))

for all x ∈ Dn.

Proof. For each Dyck path y ∈ Dn there exists a unique decomposition y = y0y1 · · · ym+1

into words yj in the alphabet {e,n}, where m ∈ N, such that the following conditions are fulfilled:
(i) y0 consists of north steps, (ii) yj begins with an east step for all j ∈ [m + 1], and (iii) the
number of east steps in yj equals the number of north steps in yj−1 for all j ∈ [m+ 1].

Let x ∈ Dn be a Dyck path with area vector a. Set bi = #{j ∈ [n] : aj = i} and let m be the
maximal entry of a. Then −→w−−j(a) is empty for j > m+ 1 and the decomposition

ζA(x) = −→w−0 (a)−→w−−1(a) · · · −→w−−m−1(a)

satisfies the properties (i)–(iii). It follows that ζA is injective and hence bijective.

It is not hard to see that the bounce path of ζA(x) has precisely m+ 1 bounce points, namely

(
∑j−1
i=0 bi,

∑j−1
i=0 bi) for j ∈ [m]. Therefore

bounce(ζA(x)) =

m+1∑
j=1

(
n−

j−1∑
i=0

bi

)
=

m∑
j=1

n∑
i=j

bi =

m∑
j=1

jbj = area(x).

Finally, dividing the area of ζA(x) into the squares between ζA(x) and its bounce path and the
squares below the bounce path, we obtain

area(ζA(x)) =

m∑
j=1

((bi
2

)
+ inv

(−→w−−j(a)
))

= dinv(x),

where −→w−−j(a) is viewed as a lattice path in Lbj−1,bj . �

Note that the decomposition of a Dyck path described in the above proof can be obtained by
dissecting x at the peaks of its bounce path. See Figures 2.7 and 2.8. This yields a simple
combinatorial description of the inverse zeta map.

As a consequence of Theorem 2.5.2 the three introduced statistics all have the same distribution.

Corollary 2.5.3. For all n ∈ N we have

Cn(q) =
∑
x∈Dn

qdinv(x) =
∑
x∈Dn

qarea(x) =
∑
x∈Dn

qbounce(x).

�

Note that it is a trivial consequence of the definition of DHn that the q, t-Catalan polynomials
are symmetric in q and t, that is,

Cn(q, t) = Cn(t, q).
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Corollary 2.5.3 yields the much weaker result Cn(q, 1) = Cn(1, q). It would be desirable to have
a combinatorial explanation for the symmetric joint distribution of the statistics giving rise to
the q, t-Catalan numbers. An example of such a result for two entirely different statistics is given
in the next paragraph.
Let x ∈ Dn. The initial rise inr : Dn → N is defined by inr(x) = r where x = nrey begins

with r north steps. Moreover ret : Dn → N counts the number of returns of a Dyck path to the
diagonal, that is, ret(x) denotes the number of indices i ∈ [n] such that x visits the lattice point
(i, i). Note that ret(x) = inr ◦ζ(x) for all x ∈ Dn.

Proposition 2.5.4. The statistics inr and ret are jointly symmetrically distributed.

Proof. Define a map φ : Dn → Dn recursively as follows. Map the empty path to itself.
Given x ∈ Dn for n ≥ 1 let y and z be Dyck paths such that x = nyez. Set φ(x) = nφ(z)eφ(y).
The map φ is clearly an involution and exchanges the two statistics inr and ret. �

Unfortunately such a simple combinatorial explanation for the symmetry of the q, t-Catalan
numbers seems to be completely out of reach so far.

Open Problem 2.5.5. [36, Prob. 3.11] Find a bijection (maybe even an involution) φ : Dn →
Dn exchanging the statistics area and bounce.

2.6. The q, t-Cayley numbers

Instead of considering only the sign component of the diagonal harmonics DHn it is natural to
ask for the full Hilbert series

Cn(q, t) = Hilb(DHn; q, t) =
∑
i,j

dim(DHn)i,jq
itj .

As it turns out combinatorial models for these polynomials have been found, extending those of
the previous section to labelled Dyck paths.
Define the statistic dinv′ : Vert(An−1) → N as follows. Given a vertically labelled Dyck path

(σ, x) ∈ Vert(An−1) set

dinv′(σ, x) = #
{

(i, j) ∈ [n]2 : i < j and ai = aj and σ(i) < σ(j)
}

+ #
{

(i, j) ∈ [n]2 : i < j and ai = aj + 1 and σ(j) < σ(i)
}
.

Haglund and Loehr [37] conjectured the following combinatorial interpretation of the bivariate
Hilbert series of diagonal harmonics, which serves as our definition of q, t-Cayley numbers.

Cn(q, t) =
∑

(σ,x)∈Vert(An−1)

qdinv′(σ,x)tarea(x)

In the same paper they also provided an alternative model that relies on the bounce statistic,
and a generalised zeta map connecting the two approaches.

A diagonally labelled Dyck path of length n is a pair (σ, x) of a permutation σ ∈ Sn and a Dyck
path x ∈ Dn such that σ(i) < σ(j) for all valleys (i, j) of x. Let Diag(An−1) denote the set of
all diagonally labelled Dyck paths of length n. The set Diag(An−1) is endowed with a modified
area statistic. Recall that area(x) equals the number of pairs (i, j) in the order ideal Ix defined
in (2.1). Define the statistic area′ : Diag(An−1)→ N by letting

area′(σ, x) =
{

(i, j) ∈ Ix : σ(i) < σ(j)
}
.

The diagonal reading word of a pair (σ, x) ∈ Sn×Dn is the permutation drwA(σ, x) ∈ Sn given
by

drwA(σ, x)(i) = #
{
r ∈ [n] : nµr + r ≤ nµi + i

}
,
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Figure 2.9. The diagonal reading order.

where µ is the area vector of x. Alternatively the diagonal reading word can be read off quickly
by scanning all unit squares that may contain a label in the diagonal reading order depicted in
Figure 2.9, and writing down the labels in the order in which they are encountered.
Define a zeta map on labelled Dyck paths ζA : Sn ×Dn → Sn ×Dn via

ζA(σ, x) = (drwA(σ, x), ζA(x)).

The properties of the map ζA are closely tied to valleys and rises of labelled Dyck paths. Let
(σ, x) ∈ Sn ×Dn. Given a rise i of x, we say that i is a rise of (σ, x) labelled by (σ(i), σ(i+ 1)).
Similarly, let (i, j) be a valley of x. We say (i, j) is a valley of (σ, x) labelled by (σ(i), σ(j)).
The next result demonstrates the significance of the diagonal reading word.

Lemma 2.6.1. Let (σ, x) ∈ Sn ×Dn and a, b ∈ [n]. Then (σ, x) has a rise labelled (a, b) if and
only if ζA(σ, x) has a valley labelled (a, b).

Proof. To see this, note that the valleys of ζA(x) only occur within a sequence −→w−−j(µ),
where µ denotes the area vector of x, and correspond precisely to the rises of x. It is left to
the reader to verify that the labels work out. See also Sections 6.3, 6.4 and 6.5 for similar
computations. �

Note that Lemma 2.6.1 furnishes a second description of the map ζA. The valleys of ζA(x) can
be filled in using the diagonal reading word drwA(e, x). Since each Dyck path is determined
uniquely by its valleys, we obtain ζA(x).
Lemma 2.6.1 establishes the main result of this section.

Theorem 2.6.2. [37, pp. 17–20] The map ζA restricts to a bijection ζA : Vert(An−1) →
Diag(An−1). Moreover

dinv′(σ, x) = area′(ζA(σ, x)).

for all (σ, x) ∈ Vert(An−1).
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Figure 2.10. A vertically labelled Dyck path (σ, x) ∈ Vert(A5) with area vector (0, 1, 2, 3, 2, 2),

diagonal reading word drwA(σ, x) = [1, 3, 4, 5, 2, 6] and dinv′(σ, x) = 3. Furthermore its image
under the zeta map ζ(σ, x) ∈ Diag(A5) with area′ ◦ζ(σ, x) = 3.
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Figure 2.11. A Dyck path x ∈ D5,8 and its image under the zeta map ζ(x) ∈ D5,8. The

permutation used to sort the steps is u = [1, 13, 10, 2, 7, 12, 4, 9, 6, 11, 3, 8, 5] ∈ S13. We have

area(x) = 5.

Proof. It is easy to see that ζA : Sn ×Dn → Sn ×Dn is bijective since ζA : Dn → Dn is
bijective. Lemma 2.6.1 guarantees that (σ, x) ∈ Vert(An−1) if and only if ζA(σ, x) ∈ Diag(An−1).
The proof of the statement on the statistics is omitted here. It can be verified in the spirit of
Theorem 2.5.2 and Lemma 2.6.1. �

As a consequence we obtain the second combinatorial interpretation of the Hilbert series of
diagonal harmonics as

Cn(q, t) =
∑

(σ,x)∈Diag(An−1)

qarea′(σ,x)tbounce(σ,x).

The equivalence of the combinatorial and the algebraic definitions of Cn(q, t) was established
only recently when Carlsson and Mellit proved the compositional shuffle conjecture [19]. For
more information on related conjectures (open and proved) see for example [36, 38, 39, 82].
Note that, as in previous section, there remains the problem of finding a combinatorial expla-

nation for the symmetry Cn(q, t) = Cn(t, q).

2.7. Rational q, t-Catalan numbers

The area statistic generalises naturally to the rational case. Define the statistic area : Dn,p → N
by letting area(x) equal the number of points (i, j) ∈ Z2 below the path x such that the weight
wpn(i, j) is positive.
Furthermore given a lattice path x ∈ Lp,n, recall that the weights wpn(zi−1) of the lattice points

visited by x, where i ∈ [n+ p], are pairwise distinct as in the proof of Theorem 2.2.2. Therefore
there exists a unique permutation u ∈ Sn such that wpn(zu(i)−1) < wpn(zu(i+1)−1) for all i ∈ [n+p].
Define the rational zeta map, which is also called sweep map, ζ : Lp,n → Lp,n by mapping x to
the path

ζ(x) = su(1)su(2) · · · su(n+p),

where si denotes the i-th step of x. This definition of the rational zeta map is due to Armstrong,
Loehr and Warrington [7]. They also discuss multiple equivalent descriptions that have appeared
in the literature, some of which we will treat in later chapters.

Note that a cyclic shift of the steps does not change the image of a path under the zeta map.
That is, ζ is constant on the orbits of Lp,n under the action of the cyclic group of order n+ p.

Theorem 2.7.1. The zeta map restricts to a bijection ζ : Dn,p → Dn,p.

Armstrong, Loehr and Warrington [7, Prop. 3.2, Conj 3.3] showed that the sweep map sends
Dyck paths to Dyck paths, and conjectured its bijectivity. Thomas and Williams [79] recently
proved that the sweep map is a bijection.
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It is not too difficult to show that the rational zeta map generalises the map ζA on Dyck paths
defined in Section 2.5.

Proposition 2.7.2. The zeta map and the rational zeta map agree under the identification of
Dn and Dn,n+1. That is, ζA(x)e = ζ(xe) for all x ∈ Dn.

The proof of Proposition 2.7.2 is omitted. The interested reader may wish to compare with the
proof of Theorem 6.3.7, which is very similar in style.

In analogy to Section 2.5 we define the rational q, t-Catalan numbers as the generating polyno-
mials of rational Dyck paths with respect to the area statistic and its push forward under the
sweep map.

Cn,p(q, t) =
∑

x∈Dn,p

qarea(x)tarea(ζ(x))

Rational q, t-Catalan numbers and related conjectures were introduced for example in [32, 6, 7,
33]. Often their definition serves as a motivation for the introduction of a map related to the
sweep map in some form.
Also the rational q, t-Catalan polynomials exhibit a symmetry in the variables q and t. The only

known proof of this fact relies on the proof of the rational shuffle conjecture due to Mellit [52],
which provides an equivalent algebraic definition of the polynomials Cn,p(q, t).

We shall encounter rational q, t-Cayley numbers later in this thesis. For now our investigation
of the Catalan-cube using Dyck paths comes to an end as we turn to combinatorial objects of a
different flavour and prepare to bring Weyl groups into the picture.



CHAPTER 3

Core partitions

Core partitions are a special set of integer partitions and were originally introduced in the
modular representation theory of the symmetric group. See for example [45, Chap. 2]. Recently
cores and in particular simultaneous cores have experienced a resurgence in combinatorics.
Lascoux [51] made the connection between cores and affine permutations. Cores naturally

appeared in the attempt to attack the positivity conjecture for Macdonald polynomials by in-
troducing k-Schur functions. See for example the exposition in [48]. Armstrong, Hanusa and
Jones [6] popularised the study of the finite set of simultaneous cores. For example, the average
size and the poset structure with respect to inclusion have been of interest. We refer to [77, 25]
and the references therein.
In Section 3.1 cores are defined and equipped with an action of the affine symmetric group

following the ideas of Lascoux. In Section 3.2 we expand on the results of Section 3.1 by showing
how the length function of the affine symmetric group fits into the picture. Section 3.3 is devoted
to the relation between simultaneous cores, rational Dyck paths and their counterparts inside the
affine symmetric group. In Section 3.4 we treat a statistic on core partitions called skew-length,
which was introduced by Armstrong, Hanusa and Jones in order to define q, t-Catalan numbers
via cores. Here the exposition follows [73].
Most results collected in this chapter are already known, except for Section 3.4 where a number

of new results and conjectures are presented.

3.1. Cores and the affine symmetric group

∅ 1 2 1
1

2

1

4 2 1

1

2

4 1

1

2

4

7

1

4 2 1

Figure 3.1. All seven partitions that are both 3-cores and 5-cores with their hook-lengths filled in.

Let n ∈ N. Recall that the hook-length hλ(x) of a cell x in the Young diagram of a partition
λ is defined as the number of cells in the same row and east of x, plus the number of cells in
the same column and south of x, plus one (for the cell itself). A partition λ is called an n-core
if no cell of λ has hook-length equal to n. Let Cn denote the set of all n-cores. For example,
Figure 3.1 shows all the partitions that are both a 3-core and a 5-core.

Lemma 3.1.1. Let κ be a partition. Then the following are equivalent: (i) The partition κ is an
n-core. (ii) No rim-hook of κ has length divisible by n. (iii) No cell in κ has hook-length divisible
by n.

Proof. Dividing a rim-hook of length divisible by n into connected subsets of size n yields
at least one rim hook of length n. See Figure 3.2. A rim hook of length m corresponds to a cell

31
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Figure 3.2. The existence of a rim-hook of length fifteen implies the existence of a rim-hook
of length five.

with hook-length m, so (i) implies (ii) and (ii) implies (iii). Finally, (i) is a trivial consequence
of (iii). �

Define functions c : Z2 → Z and rn : Z2 → Z/nZ as follows. The content of a cell x = (i, j)
in the i-th row and the j-th column is defined as c(x) = j − i. The n-residue rn(x) of a cell is
defined as its content modulo n. See Figure 3.3. A cell x is called addable for λ if x /∈ λ and
λ ∪ {x} is again the Young diagram of a partition. A cell x ∈ λ is called removable for λ if
λ− {x} is again the Young diagram of a partition.

Lemma 3.1.2. An n-core cannot have an addable cell and a removable cell with the same n-
residue.

Proof. Let x, y be two cells with n-residue i, and assume that x is addable and y removable
for a partition λ. Any rim hook h with head α(h) = x and tail ω(h) = y has length mn+ 1 for
some m ≥ 1. Thus λ has a rim hook of length mn and cannot be an n-core by Lemma 3.1.1. �

We now state the two fundamental results of this section relating cores and the affine symmetric
group, both of which are due to Lascoux [51].

Theorem 3.1.3. The affine symmetric group
∼
Sn acts on the set Cn via the following rules:

Let κ be an n-core and sAi a simple transposition. (i) If there are any addable cells for κ of
n-residue i, then sAi · κ is obtained from κ by adding all of them. (ii) If instead there are any
removable cells of n-residue i, then sAi · κ is obtained from κ by removing all of them. (iii)
Otherwise κ is left invariant.

An example for the action defined in Theorem 3.1.3 is found in Figure 3.4.
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0

Figure 3.3. The 4-core κ = (5, 2, 13) filled with its hook-lengths (left), its contents (middle),
and its 4-residues (right).
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κ = sA2 · κ
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Figure 3.4. A 4-core κ and its images under the action by three simple transpositions.

Theorem 3.1.4. The action of the affine symmetric group
∼
Sn on Cn is isomorphic to the

canonical action on the left cosets
∼
Sn/Sn. In particular, the symmetric group Sn is the sta-

biliser subgroup of the empty partition, and the induced map
∼
Sn/Sn → Cn sending each affine

Graßmannian permutation ω to ω · ∅ is a bijection.

We first attempt a direct proof of Theorem 3.1.3 using the understanding of n-cores we have
developed so far. However, this turns out to be not fully satisfactory. Below a different approach
involving other combinatorial objects is demonstrated that proves to be much more insightful
and extends naturally to a proof of Theorem 3.1.4.

Proof of Theorem 3.1.3 (Sketch). By Lemma 3.1.2 sAi · κ is a well-defined partition.
We show that sAi · κ is an n-core. Suppose we are in case (i). If sAi · κ is not an n-core then
it contains a rim hook h of length n. Since κ is an n-core, h contains a newly added cell x of
residue i, and x is the head or the tail of h. Without loss of generality assume that x is the head
of h. Then the tail of h is adjacent to an addable cell of residue i which is a contradiction.
Similarly, in case (ii) if sAi ·κ contains a rim hook h of length n then the head (or tail) of h must

be adjacent to a cell x which was removed from κ. But then the tail (respectively the head) of
h is removable and of the same residue as x.
It remains to show that the rules (i)–(iii) define a group action. The obvious idea is to check that

the relations between the generators sAi are compatible with these rules. Clearly, sAi · (sAi ·κ) = κ
and sAi · (sAj · κ) = sAj · (sAi · κ) when |j − i| > 2 modulo n. To show that the braid relations

sAi · (sAi+1 · (sAi · κ)) = sAi+1 · (sAi · (sAi+1 · κ))

are fulfilled one needs to distinguish a lot of cases. While this can be done, it is cumbersome
and we do not attempt it here. �

Instead we want to develop a different description of n-cores in terms of abaci.
A subset A ⊆ Z is called abacus if there exist integers a, b ∈ Z such that z ∈ A for all z with
z < a, and z /∈ A for all z with z > b. The elements of A are called beads and the elements of
Z − A are called gaps. We visualise an abacus as an arrangement of k columns called runners
labelled 1, . . . , k. The runner i contains the integers zij = jk + i for j ∈ Z. The level of zij
is defined to be j + 1, such that the number 0 appears in level zero. We draw the runners in
increasing order from left to right and arrange their elements in increasing order from top to
bottom. That is, imagine −∞ at the top and ∞ at the bottom, such that numbers with the
same level are horizontally aligned. Finally the beads of A are circled.
An abacus is normalised if zero is a gap and there are no negative gaps. An abacus is balanced

if the number of positive beads equals the number of non-positive gaps, that is,

#(A ∩ N+) = #(Z− (A ∪ N+)).

An abacus A is n-flush if z − n ∈ A for all z ∈ A.
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Figure 3.5. The partition λ = (3, 2, 2, 1, 1) and the corresponding balanced abacus α(λ) and

normalised abacus β(λ). Note that α(λ) is not 5-flush, however, it is, for example, 6-flush.

Note that the formal definition of an abacus does not a priori determine the number of runners.
If we want to emphasise a fixed number of runners we shall call A an abacus on k runners or
simply a k-abacus.
The theorem below is a version of the classical result that n-cores correspond to abacus diagrams

that are n-flush (see for example [45, 2.7.13]). Let λ be a partition and H denote the set of
hook-lengths appearing in the first column of λ. Define two maps α : Π→ P(Z), β : Π→ P(Z)
via

α(λ) = {λi − i+ 1 : i ≥ 1} and β(λ) = H ∪ {z ∈ Z : z < 0},

where by convention λi = 0 when i > `(λ). Note that β(λ) = {z + `(λ) − 1 : z ∈ α(λ)}. See
Figure 3.5 for an example.

Theorem 3.1.5. The map α is a bijection between partitions and balanced abaci. The map β is
a bijection between partitions and normalised abaci. Furthermore, the following are equivalent:
(i) λ is an n-core. (ii) α(λ) is n-flush. (iii) β(λ) is n-flush.

Proof. Clearly A = α(λ) andB = β(λ) are abaci. The abacusB is normalised by definition,
contains `(λ) positive beads, and β is a bijection. Since A is obtained from B by subtracting
`(λ)− 1 from each bead it must be balanced, and α is bijective as well.
The equivalence of (ii) and (iii) is obvious, thus it suffices to show that (i) and (ii) are equivalent.

The key idea is pictured in Figure 3.6. Assume that λ contains a rim-hook h of length n with
head in row i and tail in row i+ d. Let µ be the partition obtained from λ by removing h. Then

µi = λi+1 − 1, µi+1 = λi+2 − 1, . . . , µi+d−1 = λi+d − 1

and µi+d = λi − n+ d. Thus, α(µ) is obtained from A by replacing λi − i+ 1 by

(λi − n+ d)− (i+ d) + 1 = (λi − i+ 1)− n.

This corresponds to moving the bead λi− i+ 1 upward by one level. Conversely, if a bead b ∈ A
can be moved upward because b− n /∈ A, then let

b = λi − i+ 1, . . . , λi+d − (i+ d) + 1
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Figure 3.6. Removing a rim-hook of length five from the partition λ = (3, 2, 2, 1, 1) corre-
sponds to moving the bead b = 1 in the balanced abacus α(λ) up by one level. The resulting

partition is a 5-core, and the resulting abacus is 5-flush.

be all beads between b and b−n. To show that there is a rim-hook of length n with head in row
i and tail in row i+ d it suffices to show that λi+d+1 ≤ λi − n+ d. But this is equivalent to

λi+d+1 − (i+ d+ 1) + 1 < (λi − n+ d+ 1)− i− d = (λi − i+ 1)− n

which is true by assumption. �

From the above proof we immediately get another surprising result.

Corollary 3.1.6. [45, 2.7.16] For each partition λ there exists a unique n-core which can be
obtained by successively removing rim-hooks of length n. �

We now carry the action of
∼
Sn on the coroot lattice Q̌ over to balanced n-flush abaci. See

Figure 3.7.

Theorem 3.1.7. The canonical action of
∼
Sn on left cosets

∼
Sn/Sn is isomorphic to the following

action on balanced n-flush abaci.
Let A be such an abacus on n runners. Then sAi · A is obtained from A in the following way:

For all integers z = i + jn compare z and z + 1. If one is a gap and the other is a bead then
exchange the roles of the two.

Proof. Let A be an n-flush abacus on n runners and let x1, . . . , xn denote the levels of the
lowest bead in each runner. Since A is balanced if and only if

∑
xi = 0 the map φ defined by

A 7→ (x1, . . . , xk) is a bijection from the set of balanced n-flush abaci to the coroot lattice Q̌. It
suffices to verify that sAi · φ(A) = φ(sAi ·A).
Clearly, if i ∈ [n − 1] then applying sAi to A exchanges the levels xi and xi + 1 (since z and
z + 1 are in the same level). On the other hand, applying sAn to A exchanges x1 and xn and
then removes one bead in runner n and adds one bead in runner 1 (since here z appears in the
level above z + 1). This corresponds exactly to the action of

∼
Sn on Q̌, which is isomorphic to

the action on left cosets. �

The obtained correspondence between Graßmannian affine permutations and n-flush abaci can
easily be made explicit by mapping ω to the abacus

ω · {z ∈ Z : z ≤ 0} = {ω(z) : −z ∈ N}.
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Figure 3.7. The balanced 4-flush abacus A = α(κ) corresponding to the 4-core κ from Fig-

ure 3.4 and its images under the action of three simple transpositions.

We also formulate this bijection in terms of dominant affine permutations. Define γ :
∼
Sn → P(Z)

by

γ(ω) = {z ∈ Z : ω(z) ≤ 0}.

Proposition 3.1.8. The map γ restricts to a bijection from dominant affine permutations to
balanced n-flush abaci. If γ(ω) is viewed as an n-abacus then the set of minimal gaps in each
runner of γ(ω) equals {ω−1(1), . . . , ω−1(n)}, that is, the minimal gaps of γ(ω) constitute the
window of the Graßmannian affine permutation ω−1. The levels x1, . . . , xn of the maximal beads
in each runner of γ(ω) are given by (x1, . . . , xn) = ω−1 · 0. �

See Figure 3.8 for an example.

By now all the necessary tools are at our disposal.

Proof of Theorems 3.1.3 and 3.1.4. Due to Theorem 3.1.5 and Theorem 3.1.7 it suf-
fices to verify that α(sAi · κ) = sAi · α(κ) for all n-cores κ ∈ Cn.
Let bj = κj − j + 1. There is an addable cell u of residue i in the j-th row of κ if and only if
bj ≡ i mod n and bj + 1 /∈ α(κ) (either because j = 1 in which case bj is the largest bead of
α(κ), or because κj−1 > κj when bj−1 ≥ bj + 2). Adding the cell u increases the length of row j
by one, which corresponds to moving the bead bj from runner i to runner i+ 1.
There is a removable cell u of residue i in the j-the row of κ if and only if bj ≡ i + 1 mod n

and bj − 1 /∈ α(κ) (as κj+1 < κj implies bj+1 ≤ bj − 2). Removing the cell u decreases the length
of row j by one, which corresponds to moving the bead bj from runner i+ 1 to runner i.
We conclude that indeed α(sAi · κ) = sAi · β(κ) and the claims follow. �

We end this section with a result connecting conjugation on cores to the involutive automorphism
on affine permutations. Clearly κ ∈ Cn if and only if κ′ ∈ Cn.

Proposition 3.1.9. [73, Prop. 2.17] Let ω ∈ ∼Sn be a dominant affine permutation. Then
α−1 ◦ γ(ω∗) is the conjugate partition of α−1 ◦ γ(ω).

Proof. This is best understood using a different description of the map α−1 ◦ γ. Following
[48, Sec. 1.2] we read the one-line notation of the dominant affine permutation ω from left to
right, drawing a north step for each encountered non-positive number and an east step for each
encountered positive number. The resulting path P outlines the south-west boundary of the
partition α−1 ◦ γ(ω).
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κ = α−1 ◦ γ(ω)

A′ = α(ω∗)

−9

−4

1

6

−8

−3

2

7

−7

−2

3

8

−6

−1

4

9

−5

0

5

10

...

...

...

...

...

...

...

...

...

... κ′ = α−1 ◦ γ(ω∗)

Figure 3.8. The balanced 5-flush abaci A,A′ and the 5-cores κ, κ′corresponding to the

dominant affine permutations ω = [−1, 6, 0, 3, 7] and ω∗ = [−1, 3, 6, 0, 7]. Note that the
window of ω−1 = [−3, 0, 4, 6, 8] consists of the minimal gaps in each runner of A, and

ω−1(0) = (1,−1, 1, 0,−1) agrees with the levels of the maximal beads in each runner of

A.

By Lemma 1.4.5 (i) (ω−1)∗(i) = 1 − ω−1(1 − i) Hence (ω−1)∗(i) ≤ 0 if and only if ω−1(1 − i)
is positive. Reading the one-line notation of (ω−1)∗ from left to right and drawing a path as
prescribed therefore yields the reverse path of P with north and east step exchanged. �

See Figure 3.8.

3.2. Affine inversions

In this section we strengthen Theorem 3.1.4 by taking the length function of
∼
Sn into account,

thereby deepening our understanding of the inversion statistic on the affine symmetric group.

Let ω ∈ ∼Sn be an affine permutation. An affine inversion of ω is a pair (i, j) ∈ [n] × N such
that i < j and ω(i) > ω(j). Note that this definition coincides with the usual definition of
inversions if ω ∈ Sn. Clearly each affine permutation has only finitely many affine inversions.
We may thus define the statistic inv :

∼
Sn → N by letting inv(ω) denote the number of affine

inversions of ω. Moreover define a refinement of the inversion statistic inv :
∼
Sn → Nn by letting

inv(ω, i) denote the number of inversions of ω of the form (j, kn + i) with j, k ∈ N. If ω is a
Graßmannian affine permutation then inv(ω) is decreasing and inv(ω, n) = 0. This yields a map
inv :

∼
Sn/Sn → Πn−1 from Graßmannian affine permutations to partitions with at most n − 1

positive parts.

Lemma 3.2.1. Let ω ∈ ∼Sn. Then

inv(ω) =
∑
i,j

∣∣∣∣⌊ω(j)− ω(i)

n

⌋∣∣∣∣ ,
where the sum is taken over all i, j ∈ [n] such that i < j.

Proof. Let i, j ∈ [n] with i < j. If ω(i) < ω(j) then (j, kn+ i) is an affine inversion of ω if
and only if k ≥ 1 and

ω(i+ kn) < ω(j)⇔ kn < ω(j)− ω(i)⇔ k ≤
⌊
ω(j)− ω(i)

n

⌋
.
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On the other hand if ω(i) > ω(j) then (i, kn+ j) is an affine inversion of ω if and only if k ≥ 0
and

k ≤
⌊
ω(i)− ω(j)

n

⌋
=

∣∣∣∣⌊ω(j)− ω(i)

n

⌋∣∣∣∣− 1.

�

Lemma 3.2.2. Let ω ∈ ∼Sn be a Graßmannian affine permutation and choose x ∈ Q̌ and s ∈ Sn

such that ω = txs. Then

inv(ω, i) =
∑

j∈[n],i<j

⌊
ω(j)− ω(i)

n

⌋
=

∑
j∈[n],xk<xj

(
xj − xk +

⌊
j − k
n

⌋)
,

where k = s(i).

Proof. If ω is Graßmannian then we are always in the first case in the proof of Lemma 3.2.1.
The claim follows from a simple computation. �

The numbers
∣∣∣⌊ω(j)−ω(i)

n

⌋∣∣∣ were first considered by Shi who connected the inversion statistic to

the length function by proving Theorem 3.2.3 below. This theorem was rediscovered by Björner
and Brenti who also studied the affine symmetric group via affine inversions. Lemma 3.2.1 should
be compared to the discussion preceding [17, Prop. 8.3.1].
The next theorem extends a well-known fact about permutations, namely that their length

equals their number of inversions, to the affine symmetric group.

Theorem 3.2.3. [60, Lem. 4.2.2] Let ω ∈ ∼Sn be an affine permutation. Then inv(ω) = `(ω).

Lemma 3.2.2 together with Lemma 1.4.4 reveal the effect that acting from the left by a simple
transposition has on the affine inversions of Graßmannian affine permutations.

Lemma 3.2.4. Let ω ∈ ∼Sn be a Graßmannian affine permutation, x ∈ Q̌ and s ∈ Sn such that
ω = txs.

(i) For all i ∈ [n− 1]

inv(ω′, j) =


inv(ω, j) + 1 if s(j) = i+ 1 and xi+1 < xi,

inv(ω, j)− 1 if s(j) = i and xi < xi+1,

inv(ω, j) otherwise,

where ω′ is the Graßmannian representative of the coset sAi ωSn.
(ii) Furthermore,

inv(ω′, j) =


inv(ω, j) + 1 if s(j) = 1 and x1 < xn + 1,

inv(ω, j)− 1 if s(j) = n and xn < x1 − 1,

inv(ω, j) otherwise,

where ω′ is the Graßmannian representative of the coset sAnωSn.

Proof. First consider (i). Set y = sAi · x. The claim is trivial if y = x thus assume the
contrary. Lemma 1.4.4 yields ω′ = tys

A
i s. Set J = s(j) and k = sAi (J) and compute

inv(ω′, j) =
∑

`∈[n],yk<y`

(
y` − yk +

⌊
`− k
n

⌋)
=

∑
`∈[n],xJ<x`

(
x` − xJ +

⌊
sAi (`)− sAi (J)

n

⌋)

= inv(ω, j) +
∑

`∈[n],xJ<x`

(⌊
sAi (`)− sAi (J)

n

⌋
−
⌊
`− J
n

⌋)
.
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Figure 3.9. A 7-core κ (left), its bounded partition δ(κ) (middle), and the reconstruction of

the core (right). We have |κ|7 = 19.

The first claim follows since ⌊
sAi (`)− sAi (J)

n

⌋
−
⌊
`− J
n

⌋
= 0

for all `, J ∈ [n] with ` 6= J unless {`, J} = {i, i+ 1}.
The proof of (ii) is completely analogous but the computations are more tedious. �

The inversion statistic on affine permutations has a nice counterpart in the world of cores. For
any partition λ define the n-size |λ|n as the number of cells with hook-length at most n.
Define a map δ : Cn → Π≤n−1 from core partitions to bounded partitions as follows. For any
n-core κ let δ(κ) = λ where λi is defined as the number of cells in the i-th row of κ that have a
hook-length less then n. See Figure 3.9.

Proposition 3.2.5. [50, Thm. 7] The map δ : Cn → Π≤n−1 is a bijection between n-cores and
partitions with parts at most n− 1, such that |κ|n = |δ(κ)|.

Proof. The only non-trivial claim is that δ is bijective. We will describe the inverse map.
Given λ ∈ Π≤n−1, the core κ is obtained as follows. Take λ and leave its last row unchanged.
Then shift all other rows east until the cells in the second to last row have hook-lengths less than
n in the resulting skew diagram. Repeat this shifting procedure for each row of λ. If µ/ν is the
obtained skew diagram then κ = µ is the desired n-core. �

The following result keeps track of the effect that acting by an affine permutation has on the
bounded partition δ(κ).

Lemma 3.2.6. Let κ be an n-core such that sAi ·κ is obtained from κ by adding cells of n-residue
i. Let x = (r, s) be the cell added to κ such that s is minimal. Then δ(si · κ) is obtained from
δ(κ) by adding a single cell in row r.

Proof. Let x1, . . . , xd be the addable cells for κ of n-residue i ordered from west to east,
that is, x = x1. Then the rim-hook connecting two consecutive cells xj and xj+1 has length
(n− 1) +mn. Since sAi · κ contains no rim-hook of length n and no addable cells of n-residue i,
we must have m = 0. Thus xj and xj+1 appear in consecutive diagonals of n-residue i.
The rim-hook connecting them corresponds to a cell yj+1 with hook-lengths hκ(yj+1) = n − 1

and hsAi ·κ(yj+1) = n+ 1. Moreover it is easy to see that these cells are the only cells which have

small hook-length in κ but large hook-length in sAi ·κ. (Such a cell y must align horizontally and
vertically with a newly added cell. In addition, these two cells must lie in consecutive diagonals
of n-residue i as otherwise the original hook-length hκ(y) is too large.)
Since yj+1 and xj+1 appear in the same row, their effects on δ(sAi · κ) cancel each other. Hence
δ(sAi · κ) is obtained from δ(κ) by adding a single cell in row r corresponding to x. �
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Lemma 3.2.7. Let κ be an n-core with corresponding abacus α(κ) and bounded partition λ =
δ(κ), and set b = κr − r + 1. Then λr equals the number of gaps of α(κ) between b and b− n.

Proof. A cell (r, κr − n + i + 1) with i ∈ [n − 1] has hook-length less than n if and only
if κr+i ≤ κr − n + i. Hence λr equals the number of indices i ∈ [n − 1] such that the bead
b′ = κr+i − r − i + 1 satisfies b′ ≤ b − n. But this is just the number of gaps g of α(κ) with
b < g < b− n. �

These preparations lead to the main result of the present section. Theorem 3.2.8 was mentioned
in [50]. A very compact proof was provided in [49, Prop. 8.15].

Theorem 3.2.8. Let ω ∈ ∼Sn be a Graßmannian affine permutation and κ = ω · ∅ the cor-
responding n-core. Then the partition inv(ω) ∈ Πn−1 is the conjugate of δ(κ) ∈ Π≤n−1. In
particular, `(ω) = |κ|n.

Proof. Apply induction on the length of ω. Clearly, inv(e) = (0, . . . , 0) = δ(∅)′. Thus it
suffices to show that inv(ω) = δ(κ)′ implies inv(sAi ω) = δ(sAi · κ)′ whenever `(sAi ω) = `(ω) + 1.

Let i ∈ [n − 1] and set x = ω(0). By Lemma 3.2.4 (i) inv(sAi ω) is obtained from inv(ω) by
adding a single cell to row j, where ω(j) ≡ i+ 1 modulo n, and xi+1 < xi. In terms of abaci (see
Theorem 3.1.7) this means that beads from runner i are moved to runner i+1. By Theorem 3.1.3
sAi · κ is obtained from κ by adding cells of n-residue i.
If i = n then by Lemma 3.2.4 (ii) the partition inv(sAnω) is obtained from inv(ω) by adding a

single cell to row j, where ω(j) ≡ 1 modulo n, and x1 < xn+1. Therefore beads are moved from
runner n to runner 1 in the abacus setting, and cells of n-residue 0 are added in the core setting.

Let u = (r, s) be the cell of n-residue i added to κ when sAi is applied that minimises s. Let
b = κr − r + 2 be the bead of α(sAi · κ) corresponding to the row of sAi · κ containing u. Due to
Lemmas 3.2.6 and 3.2.7 the partition δ(sAi · κ) is obtained from δ(κ) by adding a cell to column
m where m is the number of gaps of α(sAi ·κ) between b and b−n. But b is just the minimal gap
in runner i+ 1 of α(κ). Hence m equals the number of gaps g of α(κ) such that b ≤ g < b− n.
This implies j = m where we use Proposition 3.1.8. �

We remark that on a similar note cores and their bounded partitions have been used to obtain
canonical reduced expressions of Graßmannian affine permutations in terms of simple transposi-
tions [50]. Furthermore, similar theories relating permutations to abaci and cores have also been
developed for the other infinite families of root systems [43].

An immediate consequence of Theorem 3.2.8 is the following.

Corollary 3.2.9. The induced map

inv :
∼
Sn/Sn → Πn−1

is a bijection between Graßmannian affine permutations and partitions of length at most n− 1.
�

In the literature sometimes a different convention for encoding the inversions of affine per-
mutations in a vector is preferred. Define a second refinement of the inversion statistic in
inv∗ :

∼
Sn → Nn by letting inv∗(ω, i) denote the number of affine inversions of ω of the form

(i, j) with j ∈ N. If ω is Graßmannian then inv∗ is increasing and inv∗(ω, 1) = 0. Thus we
obtain another map inv∗ :

∼
Sn/Sn → Πn−1. It is not difficult to see that inv∗(ω) = inv(ω∗)

and therefore inv∗ induces a bijection between Graßmannian affine permutations and bounded
partitions. This result is due to Björner and Brenti [16, Thm. 4.4].
The domain of the bijection in Corollary 3.2.9 can be extended to encompass the whole affine

symmetric group. This nice consequence can be seen as a generalisation of the fact that each
permutation is uniquely determined by its Lehmer code to the affine case.
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Figure 3.10. A simultaneous 5, 9-core κ ∈ C5,9 and its image x ∈ D5,9 under Anderson’s bijection.

Theorem 3.2.10. [16, Thm. 4.6] The map

inv∗ :
∼
Sn →

{
(z1, . . . , zn) ∈ Nn : zi = 0 for some i ∈ [n]

}
is a bijection between affine permutations and non-positive vectors with non-negative integer
entries.

Moreover we obtain an involution on the set of bounded partitions Πn−1 by sending inv(ω)
to inv∗(ω). By Proposition 3.1.9 this is equivalent to sending δ(κ) to δ(κ′). This involution is
called n-conjugation in [48].
Having different perspectives on this involution can be very useful. For example, every partition

in Πn−1 can be viewed as a partition in Πn. It is then trivial from the core setting that n-
conjugation “converges” to the ordinary conjugation of partitions as n tends to infinity.

3.3. Simultaneous core partitions

In this section we make the connection between cores and Dyck paths. Given n, p ∈ N a partition
κ is called simultaneous n, p-core or simply n, p-core if it is both an n-core and a p-core. Let
Cn,p = Cn ∩ Cp denote the set of simultaneous n, p-cores. By Theorem 3.1.5 simultaneous cores
correspond to abaci that are both n-flush and p-flush.

The following construction due to Anderson [2] relates n, p-cores to rational slope Dyck paths.
Assume that n and p are relatively prime. For any finite set H = {h1, . . . , hk} of positive

integers there exists a unique partition λ such that H is the set of hook-lengths of the cells in
the first column of λ. For x ∈ Dn,p let ϕ(x) be the partition such that the set of hook-lengths of
the cells in its first column equals the set H(x) of positive weights wpn(i, j) = jp − in of lattice
points (i, j) ∈ Z2 below the path x.

Theorem 3.3.1. [2, Prop. 1] Let n and p be relatively prime. Then the map ϕ : Dn,p → Cn,p is
a bijection. Furthermore area(x) = `(ϕ(x)) for all x ∈ Dn,p.

Proof. The claim follows from Theorem 3.1.5 since the map sending x to the set H of
positive weights of lattice points below x is clearly a bijection from Dn,p to the set of normalised
abaci that are both n-flush and p-flush, and since ϕ(x) = β−1(H(x) ∪ {z ∈ Z : z < 0}) by
definition. �

Let A : Cn,p → Dn,p denote the inverse of the map ϕ above. An example is found in Figure 3.10.
As a consequence it is now easy to enumerate simultaneous cores.

Corollary 3.3.2. The set Cn,p is finite if and only if n and p are relatively prime. If this is
the case then |Cn,p| = Cn,p. �
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Figure 3.11. The balanced abacus A (left), the normalised abacus B (middle) and the rational

Dyck path x (right) corresponding to the affine permutation ω′ = [0, 8,−1, 2, 6] ∈ ∼S8
5. Note

that ω′ = [3, 1, 2, 5, 4] ·ω, where ω = [−1, 6, 0, 3, 7] ∈ ∼S8
5 is dominant, thus A equals α(ω) from

Figure 3.8. We have Mω′ = −3, (g1, g2, g3, g4, g5) = (0, 3, 11, 9, 7) and σ = [3, 1, 4, 5, 2]. Hence
(σ, x) = AA(ω′) ∈ Vert(A4, 8).

It is natural to ask for the counterpart of n, p-cores in the setting of the affine symmetric group.
The appropriate set of affine permutations was studied by Gorsky, Mazin and Vazirani [33]. An
affine permutation ω ∈ ∼Sn is called p-stable if ω(i) < ω(i + p) for all i ∈ Z. Let

∼
Sp
n denote the

set of all p-stable elements of
∼
Sn.

Proposition 3.3.3. Let n and p be relatively prime and ω ∈ ∼Sn/Sn be a Graßmannian affine
permutation. Then ω · ∅ ∈ Cn,p if and only if ω−1 ∈ ∼Sp

n. That is, simultaneous n, p-cores are in
bijection with dominant p-stable elements of

∼
Sn.

Proof. This is an immediate consequence of the results of Section 3.1. �

Conjugation of the core also has a nice counterpart on rational Dyck paths under the Anderson
map.

Proposition 3.3.4. [21, Thm. 4.1] Let n and p be relatively prime and κ ∈ Cn,p. Then
A(κ′) = ρ(A(κ)), where ρ : Dn,p → Dn,p is the involution of Corollary 2.2.5.

The proof is simple, but we omit it.

Gorsky, Mazin and Vazirani [33, Sec. 3.1] defined a function called Anderson map AA :
∼
Sp
n →

Vert(An−1, p) that yields a bijective correspondence between the set of p-stable affine permuta-
tions and the set of rational parking functions. Their map should be seen as the Cayley analogue
of the bijection of Anderson. Instead of Dyck paths it involves labelled paths. On the other
hand, dominant p-stable affine permutations can be seen as orbits of

∼
Sp
n under an action of Sn.

See Section 5.4.
Given ω ∈ ∼Sp

n define

AA(ω) = (σ,A ◦ α−1 ◦ γ(ω)),

where σ ∈ Sn is defined by σ(i) = ω(gi + Mω), Mω is the minimal gap of γ(ω) and gi is the
minimal gap of β◦α−1◦γ(ω) congruent to (i−1)p modulo n. An example is found in Figure 3.11.
Note that γ(ω) = γ(ω′), where ω′ ∈ Snω is dominant.

Theorem 3.3.5. [33, Thm. 3.4] Let n and p be relatively prime. Then the map AA :
∼
Sp
n →

Vert(An−1, p) is a bijection.
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Proof (Sketch). Set κ = α−1 ◦ γ(ω), x = A(κ) and B = β(κ). It is not difficult to see
that AA(ω) = (σ, x) really is a vertically labelled Dyck path.
First note that

B =
{
z −Mω : z ∈ γ(ω)

}
.

Hence if gi is a minimal gap of B in its residue class modulo n then gi + Mω is a minimal gap
of γ(ω). Thus ω(gi +Mω) > 0 but ω(gi +Mω − n) ≤ 0. It follows that σ(i) ∈ [n] for all i ∈ [n]
and σ is indeed a permutation.
Secondly, if i ∈ [n− 1] is a rise of x then gi+1 = gi + p and therefore σ(i) < σ(i+ 1) because ω

is assumed to be p-stable.

To see that AA is injective let σ ∈ Sn and ω ∈ Sp
n be dominant such that σω ∈ Sp

n. Then
AA(σω) = (στ, x), where (τ, x) = AA(ω), and the injectivity of AA follows from Theorem 3.3.1.
To see that AA is surjective it suffices to show that σω ∈ Sp

n for all dominant ω ∈ Sp
n and all

σ ∈ Sn such that (σ, x) ∈ Vert(An−1, p). This requires some work and we omit the details. �

Note that AA does not map dominant p-stable affine permutations to increasing parking func-
tions. However, the image of the set of dominant stable affine permutations has a simple char-
acterisation using the diagonal reading word in the case p = n+ 1.

Proposition 3.3.6. Let ω ∈ ∼Sn+1
n be dominant. Then AA(ω) is of the form (drwA(e, x)−1, x).

Proof. Let (σ, x) = AA(ω) and regard B = β ◦ α−1 ◦ γ(ω) as an abacus on n runners.
Define τ ∈ Sn by τ(i) ≡ i− 1 modulo n.
The diagonal reading word drw(e, x) sorts the minimal gaps of B increasingly. If ω = tqu

with q ∈ Q̌ and u ∈ Sn then u−1 sorts the minimal gaps of γ(ω) increasingly. It follows that
drw(e, x) = τ−Mωu−1.
On the other hand σ(i) = ω(gi +Mω) where gi is the minimal gap of B in runner τ(i). Equiv-

alently σ(i) = ω(Gi) where Gi is the minimal gap of γ(ω) in runner τMω (i). Now Gi = ω−1(j)
for some j ∈ [n], and σ(i) = j if and only if uτMω (i) = j It follows that σ = uτMω . �

As a consequence of Theorem 3.3.5 we obtain that p-stable affine permutations are counted by
the rational Cayley numbers.

Corollary 3.3.7. Let n and p be relatively prime. Then |∼Sp
n| = Cn,p.

Alternatively we could derive this enumerative result in a different way (see Theorem 4.4.6) and
use Corollary 3.3.7 to complete the proof of Theorem 3.3.5.

3.4. The skew-length statistic

Armstrong, Hanusa and Jones [6] devised the skew-length statistic to give an alternative defi-
nition of the polynomials Cn(q, t) using core partitions.

Let λ be a partition. Given the hook-length h of a cell x in the top row of λ we denote by Hc(h)
the set of hook-lengths of cells in the same column as x. Given the hook-length h of a cell x in
the first column of λ we denote by Hr(h) the set of hook-lengths of cells in the same row as x. If
h is not the hook-length of a suitable cell, set Hr(h) = ∅ respectively Hc(h) = ∅. For example,
in Figure 3.12 we have Hc(12) = {12, 5} and Hr(12) = {12, 10, 5, 3, 1} and Hr(11) = ∅.
For our purposes in this section we need the following simple consequence of Theorem 3.1.5.

Lemma 3.4.1. Let κ ∈ Cn be an n-core and z ≥ 0. Then z+n ∈ Hr(h) implies z ∈ Hr(h), and
z + n ∈ Hc(h) implies z ∈ Hc(h).
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Figure 3.12. A simultaneous 7, 16-core κ ∈ C7,16 with the multisets H7,16(κ) in red and
H16,7(κ) in green.

Proof. By Theorem 3.1.5 the set of n-cores is characterised by the property that z + n ∈
Hc(m) implies z ∈ Hc(m) for all z ≥ 0, where m is the maximal hook-length of κ. The claim
follows since conjugation and deletion of the first column map n-cores to n-cores. �

Let κ ∈ Cn,p be a simultaneous core with maximal hook-length m. Moreover choose an element
h ∈ Hc(m). We call the row of κ with maximal hook-length h an n-row (respectively a p-row) if
h+n /∈ Hc(m) (respectively h+p /∈ Hc(m)). Similarly, given h ∈ Hr(m) we call the column with
maximal hook-length h an n-column (respectively a p-column) if h + n /∈ Hr(m) (respectively
h+ p /∈ Hr(m)). In Figure 3.12 the maximal hook-lengths of the 7-rows are 31, 15, 13, 12 and 4,
and the maximal hook-lengths of the 7-columns are 31, 29, 20, 12, 11 and 9.
Define the skew-length statistic skl : Cn,p → N by letting skl(κ) equal the number of cells that

are contained in an n-row of κ and have hook-length less than p.

Guoce Xin [80] and independently Ceballos, Denton and Hanusa [21] recently proved that this
statistic fulfils certain symmetry properties in the case where n and p are relatively prime. See
Corollaries 3.4.4 and 3.4.5 below. While neither of these results are obvious at first glance, it will
become clear in Section 5.4 that these symmetries should be viewed as shadows of the involutive
automorphism of

∼
Sn and follow from Proposition 3.1.9. However, they are also shadows of a

much stronger combinatorial symmetry which only becomes apparent using a different definition
of skew-length.
Given κ ∈ Cn,p denote by Hn,p(κ) the multiset of hook-lengths of cells that are contained both

in an n-row and in a p-column of κ. See Figure 3.12 for an example. The multi-set Hn,p(κ)
allows for a new equivalent definition of skl(κ).

Proposition 3.4.2. [73, Prop. 1.4] Let κ ∈ Cn,p be an n, p-core. Then skl(κ) = #Hn,p(κ).

Proof. Fix an n-row with largest hook-length h. On the one hand by Lemma 3.4.1 a cell
x in this row has hook-length less than p if and only if hκ(x) is the minimal representative of
its residue class modulo p in Hr(h). On the other hand x is contained in a p-column if and only
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if hκ(x) is the maximal representative of its residue class modulo p in Hr(h). Thus both skl(κ)
and #Hn,p(κ) count the number of residue classes modulo p with a representative in Hr(h). �

This section’s first main result is a surprising symmetry property of the multiset Hn,p(κ).

Theorem 3.4.3. [73, Thm. 1.3] Let κ ∈ Cn,p be an n, p-core. Then Hn,p(κ) = Hp,n(κ).

Proof. We prove the claim by induction on the size of κ. Denote by κ̃ the partition obtained
from κ by deleting the first column. Clearly κ̃ ∈ Cn,p and we may assume that Hn,p(κ̃) = Hp,n(κ̃).
Let m denote the maximal hook-length in κ. Note that each n-row of κ̃ is an n-row of κ.

The only p-column of κ̃ that is not a p-column of κ has maximal hook-length m − p. Thus
there exist sets A ⊆ Hc(m) and B ⊆ Hc(m − p) with Hn,p(κ) = (Hn,p(κ̃) ∪ A) − B. Similarly
Hp,n(κ) = (Hp,n(κ̃)∪C)−D for some sets C ⊆ Hc(m) and D ⊆ Hc(m− n). It suffices to show
that A−B = C −D and B −A = D − C.
Suppose z ∈ A but z /∈ B. Then z ∈ Hc(m) and z + n /∈ Hc(m). On the one hand we

obtain z /∈ Hc(m − n) and z /∈ D. It follows that A ∩ D = ∅. On the other hand we obtain
z+n+p /∈ Hc(m) and therefore z+n /∈ Hc(m−p). Since z /∈ B this implies z /∈ Hc(m−p) and
consequently z + p /∈ Hc(m). We obtain z ∈ C. Therefore A−B ⊆ C −D, and A−B = C −D
by symmetry.
Conversely suppose z ∈ B but z /∈ A. By symmetry we have B ∩ C = ∅ and z /∈ C. On

the other hand z + n /∈ Hc(m − p) implies z + n + p /∈ Hc(m) and thus z + p /∈ Hc(m − n).
Moreover z ∈ Hc(m−p) implies z+p ∈ Hc(m) and therefore z ∈ Hc(m). Since z /∈ A we obtain
z + n ∈ Hc(m) and z ∈ Hc(m− n). We conclude that z ∈ D and the proof is complete. �

From Theorem 3.4.3 we immediately recover the two mentioned results due to Guoce Xin and
Ceballos, Denton and Hanusa. Note that we do not require n and p to be relatively prime in
Theorem 3.4.3. Thus our results extend to previously untreated territory.

Corollary 3.4.4. The skew-length of an n, p-core is independent of the order of n and p. �

Corollary 3.4.5. Let κ ∈ Cn,p be an n, p-core with conjugate κ′. Then skl(κ) = skl(κ′). �

Indeed, with our alternative definition of skew-length given in Proposition 3.4.2 the statements
of Corollaries 3.4.4 and 3.4.5 are identical.

The multiset Hn,p(κ) promises to have further interesting property that need to be investigated
and might shed some light on the nature of skew-length statistic. We present two equivalent
conjectural properties of Hn,p(κ).

Conjecture 3.4.6. [73, Conj. 1.7] Let n and p be relatively prime, and κ ∈ Cn,p. Then the
hook-length of each cell of κ appears in Hn,p(κ) with multiplicity at least one.

Conjecture 3.4.7. [73, Conj. 1.8] Let n and p by relatively prime, z ∈ N and κ ∈ Cn,p. Then
z + n ∈ Hn,p(κ) implies z ∈ Hn,p(κ).

Next we present a way for computing the skew-length of a core κ ∈ Cn,p using the corresponding
rational Dyck path A−1(κ).

Given a rational Dyck path x ∈ Dn,p, we assign to each of its steps the label wpn(i, j), where
(i, j) is the starting point of the step. Let (g1, g2, . . . , gn) be the vector consisting of the labels
of the north steps of x ordered increasingly. As before denote by H(x) the set of positive labels
of lattice points below x. See Figure 3.13.
A codinv pair of x is a pair of integers (g, b) such that g is the label of a north step of x and
b ∈ H(x) and g < b < g + p. The codinv tableau of x is the collection of numbers

di,j(x) = #
{

(gi, b) : b ∈ H(x), gi < b < gi + p and b ≡ gj mod n
}

(3.1)
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Figure 3.13. A Dyck path x ∈ D7,16 with H(x) = {1, 3, 4, 5, 6, 8, 10, 12, 13, 15, 17, 24, 31}, and
north steps labelled by (g1, g2, g3, g4, g5, g6, g7) = (0, 2, 11, 19, 20, 22, 38).

where i, j ∈ [n] with i < j. For example, the Dyck path in Figure 3.13 has codinv pairs

(0, 4), (0, 6), (0, 13), (0, 1), (0, 8), (0, 15), (0, 3), (0, 10), (0, 5), (0, 12),
(2, 4), (2, 6), (2, 13), (2, 8), (2, 15), (2, 3), (2, 10), (2, 17), (2, 5), (2, 12),

(11, 13), (11, 15), (11, 17), (11, 24), (11, 12),
(19, 24), (19, 31), (20, 24), (20, 31), (22, 24), (22, 31).

Its codinv tableau is found in Figure 3.14.

Similar constructions have appeared in the literature before. First we remark that the codinv
tableau is related to, albeit not the same as, the laser fillings of Ceballos, Denton and Hanusa [21,
Def. 5.13]. The row-sums and column-sums of the codinv tableau and the laser filling of a Dyck
path agree. However, the codinv tableau is always of staircase shape while the laser filling
sits inside the boxes below the rational Dyck path. Secondly we note that codinv pairs have
been considered by Gorsky and Mazin [32] using slightly different notation. However, they only
considered the column-sums of the codinv tableau. See also the remarks following Theorem 6.1.1.

The skew-length of A(x) can be computed from the codinv tableau by taking the sum of all
entries.

Proposition 3.4.8. Let n and p be relatively prime and x ∈ Dn,p a rational Dyck path. Then

skl ◦A−1(x) =
∑
i,j

di,j(x).
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Figure 3.14. The codinv tableau of the Dyck path in Figure 3.13.
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Figure 3.15. The image ζ(x) of the rational Dyck path in Figure 3.13 under the zeta map,

and the (rotated) path η(x) below the diagonal.

Proof. Consider the normalised abacus A = H(x) ∪ {z ∈ Z : z < 0} as an abacus on n
runners. The numbers g1, . . . , gn are the minimal gaps of A in each runner. The sum Σj =∑
i di,j(x) counts pairs of the form (g, b) where g is a minimal gap of A and b is a bead of A in

runner j such that g < b < g + p. Hence Σj also counts pairs of the form (g, b) where b is the
maximal bead in runner j of A and g is a gap such that b − p < g < b. By Lemma 3.2.7 Σj
equals the number of cells with hook-length less then p in the n-row of residue j. �

A third interpretation of the skew-length coming from the universe of p-stable affine permuta-
tions using rational Shi tableaux is developed in Section 5.4.

Define the n by p staircase ∆n,p as the maximal partition that fits inside the n by p rectangle
and above the diagonal of slope n/p. That is,

(∆n,p)i =

⌊
(n− i)p

n

⌋
.

Each rational Dyck path x ∈ Dn,p is the south-east boundary of a partition λ(x) ⊆ ∆n,p. Recall
that λ(x) is called the partition of x. In fact, we obtain a bijection

λ : Dn,p →
{
µ ∈ Π : µ ⊆ ∆n,p

}
.

For example, the partition of the Dyck path x in Figure 3.13 is the partition λ = (11, 6, 6, 4, 3, 2, 0).

The zeta map on rational Dyck paths defined in Section 2.7 comes with a dual map η : Dn,p →
Dn,p, called eta map by Ceballos, Denton and Hanusa, which is defined by η(x) = ζ(ρ(x)).
The following result relating the skew-length and the zeta map has appeared in the literature

in many guises.

Theorem 3.4.9. [73, Thm. 3.4] Let n, p be positive coprime integers and x ∈ Dn,p. Then the
partition of ζ(x) equals the row-sums of the codinv tableau of x. Moreover, the partition of η(x)
equals the column-sums of the codinv tableau of x.

Proof. Consider the j-th north step of ζ(x). An east step of x precedes this north step in
ζ(x) if and only if its label is less than gj . Let L be the set of lines of slope n/p through a lattice
point labelled by gj − kn for some k > 0. The label of an east step of x is less than gj if and
only if the east step is intersected by a line in L.
Moreover each east step of x is intersected by at most one such line. Thus the number of east

steps preceding the j-th north step of ζ(x) is counted by the number of intersections of an east
step of x and a line in L.
For each line in L the number of intersected east steps equals the number of intersected north

steps. Thus the number of east steps preceding the j-th north step of ζ(x) is counted by the
number of intersections of a north step of x and a line in L.
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It takes a moment of thought to verify that this number is given by the sum
∑j−1
i=1 di,j(x) of a

row of the codinv tableau. Indeed the number di,j(x) counts the number of intersections of the
north step of x labelled gi and a line in L. equals fn−j+1(ω).

The dual statement concerning the eta map could be deduced analogously. However, it follows
immediately using the involutive automorphism (see Proposition 5.4.13 and Proposition 3.1.9).

�

Our proof is inspired by the resemblance of codinv tableaux and laser fillings. Theorem 3.4.9
should therefore be compared with [21, Thm. 5.15]. Moreover we remark that taking the
column-sums of the codinv tableau actually coincides with the definition of a map of Gorsky
and Mazin [32, Def. 3.3], which is the eta map in our notation. Thus it is well worth com-
paring Theorem 3.4.9 to [7, Thm. 4.12]. Finally, Theorem 3.4.9 together with the proof of
Proposition 3.4.8 provides a different description of the zeta map using simultaneous cores. This
coincides with Armstrong’s definition of the zeta map given in [7, Sec. 4.2].

Having verified that skl(A−1(x)) = (n−1)(p−1)/2−area(ζ(x)) we obtain another combinatorial
interpretation of the rational q, t-Catalan numbers.

Corollary 3.4.10. Let n and p be relatively prime. Then

Cn,p(q, t) =
∑

κ∈Cn,p

q`(κ)t(p−1)(n−1)/2−skl(κ).

�

As we have seen rational Dyck paths are in bijection with two different sets of partitions:
simultaneous n, p-cores on the one hand and partitions that fit inside the n by p staircase on the
other hand. We close this section with a conjecture that relates the poset structures of these sets
of partitions with respect to inclusion via the zeta map. To this end view ζ as a map from Cn,p
to {λ ∈ Π : λ ⊆ ∆n,p} by defining ζ(κ) to be the partition of ζ(A(κ)).

Conjecture 3.4.11. Let n and p be relatively prime and κ, λ ∈ Cn,p. Then ζ(λ) ⊆ ζ(κ) implies
λ ⊆ κ.

Conjecture 3.4.11 is open beyond the Catalan case p = n + 1 where a proof was found by
Aigner and the author. To see that Conjecture 3.4.11 is quite strong note that it readily implies
Theorem 2.7.1. Suppose ζ(λ) = ζ(κ) then λ ⊆ κ and κ ⊆ λ. Hence ζ is injective. Furthermore
Conjecture 3.4.11 implies another non-trivial result on the poset structure of cores, namely the
existence of a maximum with respect to inclusion [25, Thm. 5.1].
Secondly note that ζ−1 is merely an order preserving bijection, but not an isomorphism of

posets. In fact the two posets under consideration are not isomorphic.
Finally it should be mentioned that also other posets of partitions have been considered in

connection with simultaneous cores and parking functions. See for example [78]. Additional
relations between these different types of partitions likely wait to be discovered.



CHAPTER 4

The finite torus

Having seen first connections between Catalan objects such as rational Dyck paths and core
partitions and the affine Weyl group of type An−1, we now fully turn our attention to root
systems.
In Section 4.1 we review some background from invariant theory and define Coxeter–Catalan

numbers. Our main object of study in this chapter, the finite torus, is introduced in Section 4.2.
The enumerative results stated in this section are due to Haiman. In Section 4.3 we explore the
relation between the finite torus of type An−1 and vertically labelled Dyck paths, and define
similar lattice path models for the other three infinite families of root systems. The contents
of these sections were anticipated in [74] but are now presented in a more general form. In
Section 4.4 we discuss a generalisation of p-stable affine permutations and the Anderson map
due to Thiel. Finally in Section 4.5 we define q-analogues of Coxeter–Catalan and Coxeter–
Cayley numbers using a uniform dinv statistic on the finite torus that generalises Haiman’s
statistic from Section 2.5 and a type Cn analogue found by Thiel and the author.

4.1. Coxeter–Catalan numbers

Before we are able to generalise Catalan numbers to the level of crystallographic root systems
we need to define certain invariants associated to the Weyl group of such a root system. Coinci-
dentally these invariants come up in invariant theory.
In fact, an important motivation for the study of reflection groups comes from invariant theory.

Let G be a finite group with a representation ρ : G → GL(V ) for some real vector space
V . Furthermore let R[V ] be the algebra of polynomial functions on V , that is, the R-algebra
generated by the linear functionals V ∗ with pointwise multiplication. Then there is a natural
way to turn R[V ] into a representation of G. The eponymous problem of invariant theory is to
describe the ring R[V ]G of polynomials left invariant under this action.
As an example consider the standard representation of the symmetric group Sn on V = Rn that

is defined by permutation of the standard basis. Then R[V ] = R[x1, . . . , xn] is the polynomial
ring generated by the coordinate functions. The ring of invariant polynomials Λ = R[V ]Sn is
the ring of symmetric polynomials that was already studied by Newton. It turns out that Λ
is again a polynomial ring, that is, it is generated as an algebra over the reals by algebraically
independent polynomials. For example, as sets of algebraically independent generators we could
choose the elementary symmetric polynomials

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik

or the power sum symmetric polynomials

pk(x1, . . . , xn) =

n∑
i=1

xki

where k ∈ [n] in each case.

49



50 4. THE FINITE TORUS

The celebrated Theorem of Chevalley–Shephard–Todd asserts that this desirable behaviour
characterises finite reflection groups. The original proof is due to Shephard and Todd and relies
on the classification of finite reflection groups. Chevalley gave the first uniform proof.

Theorem 4.1.1. [59, Thm. 5.1] Let V be an r-dimensional Euclidean vector space and G ≤
GL(V ) be a finite group. Then the following three statements are equivalent. (i) The group G
is generated by reflections. (ii) There exist r algebraically independent invariant polynomials of
degrees d1, . . . , dr such that #G =

∏r
i=1 di. (iii) The ring of invariants R[V ]G is generated by r

algebraically independent polynomials.

Let W be the reflection group of an irreducible root system Φ. The numbers d1, . . . , dr are
invariants of the group W and are called the degrees of Φ. For example, the degrees of the
reflection representation of the symmetric group Sn are 2, . . . , n. Interestingly there is a second
interpretation for these numbers.
A Coxeter element of W is a product c = s1 · · · sr of all simple transpositions. The order h of

a Coxeter element is called Coxeter number of Φ. A priori c depends on a choice of simple roots
and on the chosen order on the simple roots, however, it is not difficult to show that any two
Coxeter elements are conjugate to each other in W . Thus the Coxeter number is an invariant
of the group W . An explanation why this definition is equivalent to the definition given in
Section 1.3 is found in [44, Chap. 3.20]. For example, consider the symmetric group Sn. The
Coxeter elements are the long cycles and the Coxeter number is n.
Coxeter [24] showed the following.

Theorem 4.1.2. Let W be a finite reflection group of rank r with Coxeter element c and Coxeter
number h. Then the eigenvalues of c are given by ωe1 , . . . , ωer , where ω = e2iπ/h and

{e1 + 1, . . . , er + 1} = {d1, . . . , dr}
are the degrees of W .

The numbers e1, . . . , er are also called the exponents of Φ.

With these definitions at our disposal we are set to define the Coxeter–Catalan numbers as

CΦ =

r∏
i=1

ei + h+ 1

ei + 1
=

1

|W |

r∏
i=1

(di + h).

Although there is no need to be so restrictive, Φ will always denote an irreducible crystallographic
root system.
Coxeter–Catalan numbers have appeared in many different contexts. For example, they count

positive sign types studied by Shi [62, 63] and ideals in the root poset Φ+. Athanasiadis [11]
proved that the dominant regions of the generalised Shi arrangement, to which we return in
Section 5.1, are counted by Coxeter–Fuß–Catalan numbers

CΦ,mn+1 =
1

|W |

n∏
i=1

(di +mh).

Haiman [40] studying the action of the Weyl group on a quotient of the root lattice, which is
the focus of Section 4.2, encountered the rational Coxeter–Catalan numbers

CΦ,p =
1

|W |

n∏
i=1

(ei + p),

where p and the Coxeter number h of Φ are assumed to be relatively prime. We also refer to [4]
for more background and an excellent exposition of the non-crossing side of the story, which is
not treated in this thesis.
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For now our knowledge only just suffices to verify that the Coxeter–Catalan numbers specialise
to the numbers defined in the previous chapters when Φ is of type An−1. However, we shall soon
see how the uniformly defined objects mentioned above, which are of a more geometric flavour,
relate to combinatorial objects such as lattice paths.

4.2. The finite torus

The Cayley numbers associated to an irreducible crystallographic root system Φ are defined as

CΦ = (h+ 1)r

where h denotes the Coxeter number and r denotes the rank of Φ. If Φ is of type An−1 then we
recover the Cayley numbers Cn. Similarly, we define rational Coxeter–Cayley numbers as

CΦ,p = pr

where the parameter p ∈ N is assumed to be relatively prime to the Coxeter number h of Φ. The
(rational) Coxeter–Cayley numbers count the elements in the finite torus defined as the quotient

Q̌/pQ̌

of the coroot lattice Q̌ of Φ. If we restrict ourselves to the Fuß–Catalan case then the Coxeter–
Cayley numbers also count the regions of the Shi arrangement of Φ as we shall see in Section 5.1.

The Weyl group W acts on the coroot lattice Q̌ and fixes the sub-lattice pQ̌. Thus also the
finite torus is equipped with a natural action of the Weyl group. Moreover, the affine Weyl group
W̃ contains the subgroup W̃ p = W npQ̌ that acts on the coroot lattice. Haiman has determined
the orbits and the stabiliser subgroups of these actions.

Theorem 4.2.1. [40, Lem. 7.4.1] Let Φ be an irreducible crystallographic root system with Weyl
group W , coroot lattice Q̌ and Coxeter number h, and let p ∈ N be relatively prime to h. Then
the following objects are in bijection: (i) W -orbits of Q̌/pQ̌, (ii) W̃ p-orbits of Q̌, and (iii) coroot

lattice points in Q̌ ∩ pA◦. Furthermore, let X ∈ Q̌/pQ̌ be an element of the orbit corresponding
to q ∈ Q̌ ∩ pA◦. Then the stabiliser subgroup H ≤W of X is generated by the reflections{

sα : q is contained in the wall of pA◦ perpendicular to α ∈ Φ+
}
.

Proof. In fact, the W̃ p-orbit of an element q ∈ Q̌ is precisely the W -orbit of q+pQ̌ ∈ Q̌/pQ̌.

Moreover the dilated fundamental alcove pA◦ is a fundamental domain for W̃ p. Thus Q̌ ∩ pA◦
is a system of representatives for the orbits of Q̌ under the action of W̃ p. The last claim follows
from the general fact about reflection groups that the stabiliser subgroup of any element x ∈ V is
generated by the reflections it contains. See [44, Chap. 1.12 and 4.8] for the omitted details. �

Theorem 4.2.1 allows for a nice description of the elements of the finite torus in terms of a
canonical representative.

Lemma 4.2.2. [74, Lem. 2.5] Let Φ be an irreducible crystallographic root system with Weyl
group W , coroot lattice Q̌ and Coxeter number h, and let p ∈ N be relatively prime to h. Then
every element X ∈ Q̌/pQ̌ can be written uniquely as w(q) + pQ̌, where q ∈ Q̌ ∩ pA◦ and w ∈W
satisfies w(α) ∈ Φ+ for all α ∈ ∆ with 〈q, α〉 = 0, and w(−α̃) ∈ Φ+ if 〈q, α̃〉 = p.

Proof. The claim follows from the fact that the stabiliser subgroup H ≤W of an element
X is a parabolic subgroup of W , which is shown in the proof of [65, Thm. 4.6]. �

Haiman proceeds to count the W -orbits of Q̌/pQ̌, which now amounts to counting Q̌-lattice
points in the dilated simplex pA◦.
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Theorem 4.2.3. [40, Thm. 7.4.4] Let Φ be an irreducible crystallographic root system with Weyl
group W , coroot lattice Q̌ and Coxeter number h, and let p ∈ N be relatively prime to h. Then
the number of W -orbits of Q̌/pQ̌ equals CΦ,p.

Haiman’s proof of Theorem 4.2.3 is very instructive as it combines ideas from rather different
areas of combinatorics. By Theorem 4.2.1 the proof is reduced to counting lattice points in a
dilated simplex which is achieved by Ehrhart theory. Another ingredient is the following formula
due to Shephard–Todd [59, Thm. 5.3],∑

w∈W
tn−dim Fix(w) =

n∏
i=1

(1 + eit),

which relates the exponents of W to the dimensions of the fixed spaces of the elements of W .
The connection between the number of orbits and the Shephard–Todd-formula is made via Pólya
theory. The proof also uses explicitly the fact that h and p are relatively prime.

4.3. Lattice path models for the finite torus

Figure 4.1. The finite torus Q̌/4Q̌ of type A2 forms a hexagon.

Let Φ by a root system of type An−1 and p ∈ N be relatively prime to the Coxeter number n.
Clearly the Coxeter–Cayley numbers CΦ,p agree with the rational Cayley numbers Cn,p in this
case. Let us explain why the finite torus generalises parking functions. The coroot lattice of type
An−1 is given by

Q̌ =
{
x ∈ Zn :

n∑
i=1

xi = 0
}
.

Hence the finite torus can be identified with

Q̌/pQ̌ =
{
x ∈ (Z/pZ)n :

n∑
i=1

xi ≡ 0 mod p
}
.

If n and p are relatively prime then each coset in

(Z/pZ)n/A,

where A ≤ (Z/pZ)n denotes the subgroup generated by the element (1, . . . , 1), contains exactly
one representative x ∈ (Z/pZ)n such that xi ∈ {0, . . . , p} for all i ∈ [n] and

∑
i xi ≡ 0 modulo

p. Thus the finite torus is in bijection with (Z/pZ)n/A. Using Theorem 2.4.1 we obtain the
following result.

Proposition 4.3.1. Let Φ be a root system of type An−1 with coroot lattice Q̌ and p ∈ N
relatively prime to n. Let ψA(x + pQ̌) denote the parking function representative of the coset
−x+ pZn +A. Then ψA : Q̌/pQ̌→ PFn,p is an Sn-equivariant bijection from the finite torus to
the set of rational parking functions. �
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It follows that the rational Coxeter–Catalan numbers CΦ,n of type An−1 equal the rational
Catalan numbers Cn,p. However, the correspondence described above does not restrict to a

bijection between increasing parking functions and the elements of Q̌ ∩ pA◦. Together with the
image of the set of dominant p-stable affine permutations under the Anderson map this yields
three different distinguished subsets of PFn,p of Catalan cardinality, all of which form a system
of representatives for the Sn-orbits.

Figure 4.2. The finite torus Q̌/7Q̌ of type B3 forms a rhombic dodecahedron1.

4.3.1. Type Bn. Let Φ be a root system of type Bn. The Coxeter number of Φ is h = 2n.
Let p ∈ N be relatively prime to h. The coroot lattice of Φ is given by

Q̌ =
{
x ∈ Zn :

n∑
i=1

xi ∈ 2Z
}
.

Moreover a system of representatives for the orbits of the finite torus under the action of the
Weyl group SB

n is given by

Q̌ ∩ pA◦ =
{
x ∈ Zn :

n∑
i=1

xi ∈ 2Z, 0 ≤ x1 ≤ · · · ≤ xn and xn−1 + xn ≤ p
}
.

The stabiliser subgroup H ≤ SB
n of x + pQ̌ for x ∈ Q̌ ∩ pA◦ is generated by S, where sBi ∈ S

with i ∈ [n− 1] whenever xi = xi+1, sB0 ∈ S if x1 = 0, and sα̃B ∈ S if xn−1 + xn = p. Note that
Athanasiadis [12, Sec. 5.3] already considered the Fuß–Catalan case p = mh+ 1. An example of
the finite torus is found in Figure 4.2.

Given a lattice path x ∈ L(p−1)/2,n let Hx ≤ SB
n denote the subgroup generated by S, where

sBi ∈ S if and only if i ∈ [n − 1] is a rise of x and sB0 ∈ S if and only if S begins with a north
step. Define an equivalence relation ∼ on the set SB

n × L(p−1)/2,n via (s, x) ∼ (t, y) if and only
if x = y and sHx = tHx. The set of equivalence classes is denoted by

Vert(Bn, p) =
{

[s, x]∼ : s ∈ SB
n , x ∈ L(p−1)/2,n

}
and carries a natural action of the group of signed permutations given by s · [t, x] = [st, x] for all
s, t ∈ SB

n and x ∈ L(p−1)/2,n. We call Vert(Bn, p) the set of vertically labelled lattice paths. To

see why note that cosets in SB
n /Hx are in bijection with signed permutations s ∈ SB

n satisfying
s(i) < s(i + 1) for all rises i of x and s(1) > 0 if x begins with a north step. These signed

1Coincidentally the rhombic dodecahedron belongs to a family called Catalan solids.
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Figure 4.3. The finite torus Q̌/7Q̌ of type C3 forms a cube.

permutations are precisely those of minimal length in their respective cosets. Hence Vert(Bn, p)
has a nice combinatorial interpretation similar to the vertically labelled Dyck paths of type An−1.
By writing (s, x) ∈ Vert(Bn, p) we mean (s, x) to be the canonical representative of [s, x]∼. A
lattice path x ∈ L(p−1)/2,n with labelled north steps lies in Vert(Bn, p) if and only if labels are
increasing along columns and labels in the “zeroth” column are positive.
The following lemma was known to Athanasiadis in the Fuß–Catalan case and asserts that
SB
n -orbits of the finite torus Q̌/pQ̌ can be identified with lattice paths in L(p−1)/2,n. To this

end recall that x ∈ L(p−1)/2,n is encoded by the numbers xi counting the number of east steps
preceding the i-th north step of x. Define a vector q =∈ Nn by qi = xi for i ∈ [n− 1] and

qn =

{
2xn − xn−1 if x1 + · · ·+ xn−2 is even,

p− 2xn + xn−1 if x1 + · · ·+ xn−2 is odd.

We denote q = ψB(x).

Lemma 4.3.2. [74, Prop. 6.1] Let Φ be a root system of type Bn with coroot lattice Q̌ and let p
be relatively prime to the Coxeter number. The map ψB : L(p−1)/2,n → Q̌ ∩ pA◦ is a bijection.

Proof. By definition q ∈ Q̌ ∩ pA◦. Moreover ψB is injective. Finally ψB is surjective since
qn−1 + qn < p and qn−1 ≤ qn imply xn ≤ p/2. �

The next theorem extends the above bijection to an SB
n -equivariant bijection from Vert(Bn, p)

to the finite torus. For x ∈ L(p−1)/2,n define a signed permutation ux ∈ SB
n by

ux = [1, . . . , n− 1, (−1)xn−1+xnn],

where xi is defined as above. Moreover given [s, x] ∈ Vert(Bn, p) set ψB([s, x]) = sux(q) + pQ̌.

Theorem 4.3.3. [74, Prop. 6.3] Let Φ be a root system of type Bn with coroot lattice Q̌, and
let p be relatively prime to the Coxeter number. Then the map ψB : Vert(Bn, p) → Q̌/pQ̌ given
by ψB([s, x]) = sux(q) + pQ̌ is a well defined SB

n -equivariant bijection.

Proof. Let x ∈ L(p−1)/2,n and q = ψB(x) ∈ Q̌∩pA◦. We claim that the stabiliser subgroup

H ≤ SB
n of q+ pQ̌ equals uxHxu

−1
x . That is, H is a conjugate of the subgroup generated by the

rises (and an initial north step) of x. To see this note that uxs
B
n u
−1
x = sBn if qn = 2xn − xn−1

and uxs
B
n u
−1
x = sα̃B if qn = p− 2xn + xn−1. The claim follows. �

4.3.2. Type Cn. Next consider a root system Φ of type Cn and let p ∈ N be relatively
prime to the Coxeter number h = 2n of Φ. The coroot lattice is simply given by Q̌ = Zn. Hence
the finite torus equals

Q̌/pQ̌ = (Z/pZ)n.
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A system of representatives for the orbits of the finite torus under the action of the Weyl group
SB
n is given by

Q̌ ∩ pA◦ =
{
q ∈ Zn : 0 ≤ q1 ≤ · · · ≤ qn ≤ (p− 1)/2

}
,

and the stabiliser subgroup H ≤ SB
n of such a q is generated by the simple transpositions sBi for

each i ∈ [n− 1] with qi = qi+1, and the simple transposition sB0 if q1 = 0. This was pointed out
by Athanasiadis [12, Sec. 5.2] in the case where p = mh+ 1.

The connection between the finite torus of type Cn and vertically labelled lattice paths is even
smoother than in type Bn.

Theorem 4.3.4. [74, Prop. 4.2] Let Φ be a root system of type Cn with coroot lattice Q̌, and
let p be relatively prime to the Coxeter number. Then the map ψC : Vert(Bn, p) → Q̌/pQ̌ given
by ψC([s, x]) = s(q) +pQ̌, where qi denotes the number of east steps preceding the i-th north step
of the lattice path x ∈ L(p−1)/2,n, is a well-defined SB

n -equivariant bijection.

Proof. Given a path x ∈ L(p−1)/2,n let qi be the number of east steps preceding the i-
th north step of x. The resulting vector q satisfies 0 ≤ q1 ≤ · · · ≤ qn ≤ (p − 1)/2 and this
correspondence is a bijection from L(p−1)/2,n to Q̌ ∩ pA◦. Moreover the stabiliser subgroup

H ≤ SB
n of q + pQ̌ is equal to the subgroup of Hx generated by the rises (an an initial north

step) of x. To see this note that no element q ∈ Q̌ satisfies 〈q, α̃C〉 = p since p is odd by
assumption. �

We also write Vert(Cn, p) = Vert(Bn, p). As is remarked in [74] the Theorems 4.3.3 and 4.3.4
provide an explicit SB

n -equivariant bijection between the finite tori of types Bn and Cn. While the
existence of such a bijection is not surprising (the quotients Q̌/pQ̌ and Q/pQ, where Q denotes
the root lattice, are isomorphic as W -sets), the author is unaware of a previous appearance of
such an isomorphism in the literature.

4.3.3. Type Dn. Finally we turn to type Dn. Let Φ be a root system of type Dn and let
p ∈ N be relatively prime to the Coxeter number h = 2n− 2. The coroot lattice and finite torus
equal those of type Bn and a system of representatives for the SD

n -orbits of Q̌/pQ̌ is given by

Q̌ ∩ pA◦ =
{
q ∈ Z :

n∑
i=1

qi ∈ 2Z, 0 ≤ |q1| ≤ q2 ≤ · · · ≤ qn and qn−1 + qn ≤ p
}
.

The stabiliser subgroup H ≤ SD
n of q + pQ̌ is generated by S, where sDi ∈ S for each i ∈ [n− 1]

with qi = qi+1, sα̃D ∈ S if qn−1 + qn = p, and sD0 ∈ S if q1 = −q2. Recall that sα̃D exchanges
the entries qn−1 and qn and changes the signs of these entries, and sD0 exchanges q1 and q2 and
changes the signs of these entries. Again this was pointed out by Athanasiadis [12, Sec. 5.4] in
the Fuß–Catalan case.

A signed lattice path is a lattice path in Lm,n except that if it begins with an east step then
this east step is replaced by a signed east step from the set {e+, e−}. Denote the set of all such
paths by L•m,n. We also define a sign function ε : L•m,n → {±1} on signed lattice paths by setting

ε(x) = −1 if x contains e− and ε(x) = 1 otherwise.

⊕ 	

Figure 4.4. The signed lattice paths in L•1,2.

For example the set L•1,2 = {e+nn, e−nn,nen,nne} is displayed in Figure 4.4.
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Given a signed lattice path x ∈ L•(p−1)/2,n let xi denote the number of east steps (with or

without sign) of x that precede the i-th north step of x. Define a vector q ∈ Zn by setting
q1 = ε(x)x1, qi = xi for 1 < i < n and

qn =

{
2xn − xn−1 if x1 + · · ·+ xn−2 is even,

p− 2xn + xn−1 if x1 + · · ·+ xn−2 is odd.

Denote q = ψD(x).
It is easy to see that signed lattice paths represent the orbits of the finite torus under the action

of the Weyl group.

Proposition 4.3.5. [74, Prop. 5.3] Let Φ be a root system of type Dn with coroot lattice Q̌,
and let p be relatively prime to the Coxeter number. Then the map ψD : L•(p−1)/2,n → Q̌ ∩ pA◦
defined above is a bijection.

Proof. Suppose x ∈ L•n−1,n is a signed lattice path. Clearly |q1| ≤ q2 ≤ · · · ≤ qn−1.
Moreover, xn−1 ≤ 2xn − xn−1 < p − xn−1 and xn−1 < p − 2xn + xn−1 ≤ p − xn−1 hence
qn−1 ≤ qn ≤ p − qn−1. Since q1 + · · · + qn is even by definition, we conclude that q ∈ Q̌ ∩ pA◦.
Moreover, ψD is clearly injective and surjective. �

By adding suitable labels to the signed lattice paths, we obtain a combinatorial model for the
finite torus of type Dn. This definition is very much in the spirit of the vertically labelled Dyck
paths in type An−1 and the vertically labelled lattice paths in types Bn and Cn, although things
are a bit less obvious in type Dn.
Given a signed lattice path x ∈ L•(p−1)/2,n define Hx ≤ SD

n as the subgroup generated by S,

where sDi ∈ S whenever i is a rise of x, and sD0 ∈ S if x begins with two north steps. Moreover
let

ux = [ε(x), 2, . . . , n− 1, (−1)qn−1+qnn] ∈ SB
n ,(4.1)

where q = ψD(x) is defined as in Proposition 4.3.5. Define an equivalence relation on SD
n ux ×

L•(p−1)/2,n via (s, x) ∼ (t, y) if and only if x = y and sHx = tHx. The set of vertically labelled

signed lattice paths is defined as the set of equivalence classes

Vert(Dn, p) =
{

[s, x]∼ : s ∈ SD
n ux, x ∈ L•(p−1)/2,n

}
and carries a natural SD

n action.
The picture to keep in mind is as follows. Each vertically labelled signed lattice path [t, x] ∈

Vert(Dn, p) contains a unique pair (s, x) ∼ (t, x) of a signed permutation s ∈ SB
n and a signed

lattice path x ∈ L•(p−1)/2,n such that s(i) < s(i+ 1) for each rise i of x, |s(1)| < s(2) if x begins

with two north steps, and

n∏
i=1

sgn(s(i)) = ε(x)(−1)qn−1+qn .

By writing (s, x) ∈ Vert(Dn, p) we mean (s, x) to be the canonical representative of [s, x]. See
Figure 4.5.
The fact that s is not necessarily an even signed permutation is unintuitive at first sight. The

reason why it is natural to work with the “odd” signed permutation s is that it satisfies s(α) ∈ Φ+

for all α ∈ ∆ with sα ∈ S. The even signed permutation sux thus satisfies sux(α) ∈ Φ+ for all
α ∈ ∆∪{−α̃} with sα ∈ uxSu−1

x . The significance of the conjugate subgroup uxHxu
−1
x becomes

clear from the next theorem.
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Figure 4.5. A vertically labelled signed lattice paths (s, x) ∈ Vert(D6, 11). We have
ψD(x) = (1, 1, 2, 3, 5, 6), ε(x) = 1, ux = [1, 2, 3, 4, 5,−6], s = [1, 3,−2,−5,−4, 6] ∈ SD6 ux,

and ψD(s, x) = (1,−2, 1,−5,−3,−6) + 11Q̌.

Theorem 4.3.6. [74, Prop. 5.6] Let Φ be a root system of type Dn with coroot lattice Q̌, and
let p ∈ N be relatively prime to the Coxeter number. Then the map ψD : Vert(Dn, p) → Q̌/pQ̌
given by ψD([s, x]) = sux(ψD(x)) + pQ̌ is a well-defined SD

n -equivariant bijection.

Proof. By Proposition 4.3.5 the orbits of both sets are in bijection. Suppose q = ψD(x) ∈
Q̌ ∩ pA◦ corresponds to x ∈ L•(p−1)/2,n. Then the stabiliser subgroup H ≤ SD

n of q + pQ̌ equals

uxHxu
−1
x where Hx ≤ SD

n is generated by the rises (and two initial north steps) of x and ux ∈ SB
n

is defined in (4.1). To see this note that uxs
D
1 u
−1
x = sD0 if ε(x) = −1 and uxs

D
n−1u

−1
x = sα̃D if

qn+1 + qn is odd. The claim follows. �

4.4. p-stable elements of the affine Weyl group
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Figure 4.6. The Sommers region of type A2.

We have seen in Section 3.3 that the set of vertically labelled Dyck paths Vert(An−1, p) is
in bijection with p-stable elements of the affine Weyl group

∼
Sn of type An−1. As part of his

thesis [75] Thiel generalised this correspondence to a bijection between the elements of the finite
torus and a subset of the affine Weyl group of the same type.
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Let Φ be an irreducible crystallographic root system and p be a positive integer relatively prime
to the Coxeter number h. An element ω ∈ W̃ is called p-stable if it has no inversions of height
p. That is,

ω(Φ̃p) ⊆ Φ̃+,

where Φ̃p = {α + kδ ∈ Φ̃ : ht(α + kδ) = p}. Let W̃ p denote the set of p-stable elements in W̃ .
It is easy to see that the definition of p-stable elements of the affine Weyl group of type An−1

coincides with the set of p-stable affine permutations considered by Gorsky, Mazin and Vazirani.
Note that ω ∈ W̃ p if and only if ω−1(A◦) lies in the region bounded by the hyperplanes of

height p. This region is called Sommers region. One can show that the Sommers region is not
only bounded but isometric to the p-fold dilation of the r-dimensional simplex A◦. In fact an
even stronger statement holds.

Theorem 4.4.1. [75, Thms. 3.6.3 and 3.6.4] Let Φ be an irreducible crystallographic root system

and p relatively prime to the Coxeter number. Then there exists a unique element ωp ∈ W̃ of
the affine Weyl group that maps the Sommers region bijectively to the dilated fundamental alcove
pA◦.

Instead of discussing the proof of Theorem 4.4.1 we provide an explicit description of the element
ωp in those cases, where we need it.

Lemma 4.4.2. (i) If Φ is a root system of type Bn then the element ωBh+1 = txs ∈ W̃ , where

x =

{
(1, 2, . . . , n− 1, n)

(1, 2, . . . , n− 1, n+ 1)
and s =

{
[1, 2, . . . , n− 1, n] if n ≡ 0, 3 mod 4,

[1, 2, . . . , n− 1,−n] if n ≡ 1, 2 mod 4,

maps the Sommers region to the dilated fundamental alcove (h+ 1)A◦.

(ii) If Φ is a root system of type Cn then the element ωCh+1 = txs ∈ W̃ , where

x = (1, 2, . . . , n− 1, n) and s = [−n,−n+ 1, . . . ,−2,−1],

maps the Sommers region to the dilated fundamental alcove (h+ 1)A◦.

(iii) If Φ is a root system of type Dn then the element ωDh+1 = txs ∈ W̃ , where

x =

{
(0, 1, 2, . . . , n− 2, n− 1)

(0, 1, 2, . . . , n− 2, n)
and s =

{
[1, 2, . . . , n− 1, n] if n ≡ 0, 3 mod 4,

[−1, 2, . . . , n− 1,−n] if n ≡ 1, 2 mod 4,

maps the Sommers region to the dilated fundamental alcove (h+ 1)A◦.

Proof. It suffices to show that

ωh+1

(
(∆ + δ) ∪ {−α̃+ 2δ}

)
= ∆ ∪ {−α̃+ (h+ 1)δ},

which can be verified by a routine computation.

To see claim (i) first suppose n ≡ 0, 3 modulo 4. Then ωBh+1(α + δ) = α for all α ∈ ∆ and

ωBh+1(−α̃B + 2δ) = −α̃B + (2n + 1)δ. If instead n ≡ 1, 2 modulo 4 then the only difference is

that ωBh+1(en − en−1) + δ = −α̃B + (h+ 1)δ and ωBh+1(−α̃B + 2δ) = en − en−1.

Claim (ii) follows from ωCh+1(ei+1 − ei + δ) = en−i+1 − en−i for all i ∈ [n− 1], ωCh+1(2e1 + δ) =

−α̃C + (h+ 1)δ and ωCh+1(α̃C + 2δ) = 2e1.

To see claim (iii) first suppose n ≡ 0, 3 modulo 4. Then ωDh+1(α + δ) = α for all α ∈ ∆ and

ωDh+1(−α̃D+2δ) = −α̃D+(2n+1)δ. If n ≡ 1, 2 modulo 4 then ωDh+1(en−en−1)+δ = −α̃D+(h+1)δ

and ωDh+1(−α̃D + 2δ) = en− en−1 as in type Bn above, and now ωDh+1(e2− e1) + δ = e1 + e2 and

ωDh+1(e1 + e2 + δ) = e2 − e1. �
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Figure 4.7. The Sommers region of type C2.

We remark that the element ωp is related to a problem we have already touched on at the end
of Section 3.4, namely the existence of a maximal n, p-core with respect to inclusion. If Φ is of
type An−1 then the Anderson map sends ωp to the maximum of Cn,p. Lascoux showed that this

is equivalent to ωp being a maximum of W̃ p
+, the set of dominant p-stable elements of the affine

Weyl group, with respect to the Bruhat order [51, Prop. 1]. Fayers [25, Sec. 5] pointed out that

even more is true. Indeed the element ωp is a maximum of W̃ p
+ with respect to the weak order.

Thiel and Williams conjecture that this should hold for arbitrary root systems.

Conjecture 4.4.3. [77, Conj. 6.14] Let Φ be an irreducible root system and p relatively prime

to the Coxeter number. Then ωp is a maximum of W̃ p
+ with respect to the weak order.

As a consequence of Theorem 4.4.1 we obtain the desired bijection A : W̃ p → Q̌/pQ̌ between
p-stable elements and the finite torus by letting

A(ω) = −ωω−1
p (0) + pQ̌.

Theorem 4.4.4. [75, Thm. 3.6.6] Let Φ be an irreducible crystallographic root system and p a

positive integer relatively prime to the Coxeter number. Then the map A : W̃ p → Q̌/pQ̌ is a
bijection.

Proof. By Theorem 4.4.1 the map ω 7→ ωpω
−1 is a bijection from W̃ p to the set of alcoves

contained in pA◦. Since A◦ is a fundamental domain for the action of W̃ on V , pA◦ is a
fundamental domain for the action of W̃ p on V and the alcoves contained in pA◦ form a system

of representatives for the right cosets in W̃ p \ W̃ . Another system of representatives is formed
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by the translations tx where x ranges over a system of representatives for Q̌/pQ̌. Hence the map

from {ω ∈ W̃ : ω(A◦) ⊆ pA◦} to Q̌/pQ̌ sending ω to a translation representative of its coset is a
bijection. Explicitly, if ω = txs with x ∈ Q̌ and s ∈W then the claim follows from

W̃ ptxs = W̃ pts−1(x) = W̃ pt−ω−1(0).

�

The map A is called the uniform Anderson map. It generalises the Anderson map of Gorsky,
Mazin and Vazirani in the following sense.

Theorem 4.4.5. [75, Thm. 3.7.1] Let Φ be a root system of type An−1, let p be relatively
prime to n and ω ∈ ∼Sp

n. Then the parking function corresponding to AA(ω) matches the parking
function corresponding to A(ω). That is,

ψA ◦ A = φ ◦ AA,

where ψA : Q̌/(n + 1)Q̌ → PFn is defined as in Proposition 4.3.1 and φA : Vert(An−1) → PFn
is defined as in Proposition 2.3.1.

The proof of Theorem 4.4.5 is surprisingly involved so we leave it at a reference.

Using Theorem 4.4.1 it becomes clear that the number of p-stable elements is in fact given by a
power pr. Moreover applying the uniform Anderson it can be shown that the dominant elements
of W̃ p are counted by rational Catalan numbers.

Theorem 4.4.6. [75, Cors. 3.6.5 and 3.9.4] Let Φ be an irreducible crystallographic root system
and p a positive integer relatively prime to the Coxeter number. The number of p-stable elements
in the affine Weyl group W̃ equals CΦ,p. The number of dominant p-stable elements in W̃ is
given by CΦ,p.

4.5. The dinv-statistic

We conclude our treatment of the finite torus by defining first q-analogues of the Coxeter–
Catalan and Coxeter–Cayley numbers.
Define the uniform dinv statistic dinv : Q̌ ∩ (h+ 1)A◦ → N by

dinv(x) = #
{
α ∈ Φ+ : 〈x, α〉 ∈ {ht(α),ht(α) + 1}

}
.

Furthermore define the statistic dinv′ : Q̌/(h+ 1)Q̌→ N by

dinv′(X) = #
{
α ∈ Φ+ : 〈x, α〉 = ht(α) and w(α) ∈ Φ+

}
+ #

{
α ∈ Φ+ : 〈x, α〉 = ht(α) + 1 and w(α) ∈ −Φ+

}
,

where w(x) ∈ X is assumed to be the canonical representative as in Lemma 4.2.2. Define the
q-Coxeter–Catalan numbers and the q-Coxeter–Cayley numbers respectively as

CΦ(q) =
∑

x∈Q̌∩(h+1)A◦

qdinv(x) and CΦ(q) =
∑

X∈Q̌/(h+1)Q̌

qdinv′(X).

The following theorem asserts that these q-analogues specialise to the polynomials Cn(q) and
Cn(q) when Φ is of type An−1.

Theorem 4.5.1. Let Φ be a root system of type An−1 with coroot lattice Q̌, (s, π) ∈ Vert(An−1)
a vertically labelled Dyck path and w(x) + (h+ 1)Q̌ = ψ−1

A ◦ φA(s, π) the corresponding element
of the finite torus in the sense of Propositions 2.3.1 and 4.3.1. Then

dinv(x) = dinv(π) and dinv′
(
w(x) + (h+ 1)Q̌

)
= dinv′(s, π).
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We avoid a direct proof of Theorem 4.5.1 and postpone it until Section 6.2.

A dinv statistic was also defined in type Cn in [74]. Compared to Theorem 4.5.1 it is quite
straightforward to check that the uniform dinv statistic specialises to dinvC when Φ is of type
Cn.





CHAPTER 5

The Shi arrangement

The second important geometric object in non-nesting Catalan combinatorics is the Shi arrange-
ment. The definition of the Shi arrangement and the so called non-nesting parking functions
together with some background are presented in Section 5.1. Section 5.2 offers an explanation
how these objects are related to Dyck paths and parking functions, and provides lattice path
models for the non-nesting parking functions of types Bn, Cn and Dn, which are also found
in [74]. In Section 5.3 we define a uniform area statistic on non-nesting parking functions to give
a second interpretation of q-Coxeter–Catalan and q-Coxeter–Cayley numbers that uses the Shi
arrangement instead of the finite torus. In Section 5.4 we turn our attention to a construction of
Fishel, Tzanaki and Vazirani who encoded dominant regions of the Shi arrangement as tableaux
on the root poset. Following [73] we generalise Shi tableaux to the rational Catalan level. Ra-
tional Shi tableaux are then used to define rational q-Coxeter–Catalan numbers. Furthermore
a conjecture on the invertibility of the construction of rational Shi tableaux is presented, which
we finally prove in type An−1 by exploiting some beautiful connections to the combinatorics of
cores and the contents of Chapter 3.

5.1. Non-nesting parking functions and the Shi arrangement

Let Φ be an irreducible crystallographic root system with Weyl group W and affine Weyl group
W̃ . Shi [60, 61] indexed the regions of the affine arrangement Aff(Φ) as follows. Given α ∈ Φ+

and ω ∈ W̃ define k(α, ω) as the integer satisfying

k(α, ω) < 〈x, α〉 < k(α, ω) + 1

for all x ∈ ω(A◦). The induced map k(ω) : Φ+ → N defined by α 7→ k(α, ω) is called the address

or the Shi coordinates of ω. Clearly no two elements of W̃ have the same Shi coordinates, that
is, the map k : W̃ → {k : Φ+ → N} is a bijection onto its image. Shi proceeds to characterise

the set k(W̃ ) of functions that appear as the Shi coordinates of some element ω ∈ W̃ .
Regarding only the signs of the integers k(α, ω) one obtains the sign type of ω. The set of sign

types is in bijection with the regions of the hyperplane arrangement

Shi(Φ) =
{
Hα,k : α ∈ Φ+, k ∈ {0, 1}

}
,

which we call the Shi arrangement of Φ. The regions of Shi(Φ) are commonly called Shi regions.

Indeed, two elements ω, ω′ ∈ W̃ have the same sign type if and only if ω(A◦) and ω′(A◦) lie in
the same region of Shi(Φ). Shi [62] proved that the sign types of Φ are counted by the Cayley
numbers (h+ 1)r.
The regions of the Shi arrangement that lie inside the dominant chamber correspond precisely

to the sign types that have no negative entries. In [63] Shi counted the number of dominant
Shi regions by relating them to ideals in the root poset Φ+. We collect the results of Shi in the
following theorem.

Theorem 5.1.1. Let Φ be an irreducible crystallographic root system. The number of sign types
of Φ equals the number of regions of Shi(Φ) and is given by the Cayley number CΦ. The map

63
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sending each dominant region R of Shi(Φ) to the set{
α ∈ Φ+ : Hα,1 is a floor of R

}
is a bijection between the dominant regions of the Shi arrangement and the anti-chains in the
root poset Φ+. The number of dominant regions of Shi(Φ) is given by the Catalan number CΦ.

A few years later deformations of the Coxeter arrangement rose in popularity [10, 55] and
people started to study the generalised Shi arrangement or m-Shi arrangement that depends on
a positive integer m and is defined as

Shim(Φ) =
{
Hα,k : α ∈ Φ+,−m < k ≤ m

}
.

The m-Shi arrangement retains many of the nice enumerative properties of the Shi arrangement.
Yoshinaga [81] used the theory of free arrangements to show that the regions of the m-Shi
arrangement are counted by generalised Cayley numbers. Athanasiadis [11, 12] proved that the
dominant regions of the m-Shi arrangement are counted by Fuß–Catalan numbers by setting up
a bijection with certain chains of ideals in the root poset. We collect these results in the following
theorem.

Theorem 5.1.2. Let Φ be an irreducible crystallographic root system and m be a positive integer.
Then the number of regions of the m-Shi arrangement Shim(Φ) is given by CΦ,mh+1. The number
of dominant regions of Shim(Φ) is given by CΦ,mh+1.

In order to work with the regions of the Shi arrangement it is very useful to associate them with
certain elements of the affine Weyl group. The following theorem was proven by Shi in the case
m = 1, by Athanasiadis for dominant regions and by Thiel [75, Sec. 4] in its general form.

Theorem 5.1.3. Let Φ be an irreducible crystallographic root system and m be a positive integer.
Then every region of Shim(Φ) contains a unique alcove ω(A◦), where ω ∈ W̃ , that satisfies the
following equivalent conditions.

(i) All floors of ω(A◦) are elements of Shim(Φ).
(ii) The floors of ω(A◦) are precisely the floors of the region R of the m-Shi arrangement that

contains ω(A◦).

(iii) We have k(α, ω) ≤ k(α, ω′) for all α ∈ Φ+ and all ω′ ∈ W̃ such that ω(A◦) and ω′(A◦) are
contained in the same region of the m-Shi arrangement.

The alcoves described by Theorem 5.1.3 are called Shi alcoves or minimal alcoves of a Shi region.

Armstrong, Reiner and Rhoades [9] found a description of the Shi arrangement that carries a
natural action of the Weyl group. Denote the set of anti-chains in the root poset by AC(Φ+).
Define an equivalence relation on W × AC(Φ+) via (s,A) ∼ (t, B) if and only if A = B and
sH = tH, where H ≤ W is the subgroup generated by the reflections {sα : α ∈ A}. The
non-nesting parking functions of Φ are defined as equivalence classes

Park(Φ) =
{

[s,A]∼ : s ∈W,A ⊆ Φ+ is an anti-chain
}
.

Clearly, the Weyl group acts on the non-nesting parking functions via s · [t, A] = [st, A] for all
s, t ∈W and all anti-chains A ⊆ Φ+.
The following lemma allows the selection of a canonic representative in each non-nesting parking

function.

Lemma 5.1.4. Let t ∈W and A ⊆ Φ+ be an anti-chain. Then the non-nesting parking function
[t, A] contains a unique element (s,A) such that s(A) ⊆ Φ+.

Proof. This follows from the result of Sommers [65, Thm. 6.4] that the subgroup H ≤W
generated by the reflections {sα : α ∈ A} is parabolic. �
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Non-nesting parking functions can be related to the regions of the Shi arrangement by extending
the correspondence between dominant regions and anti-chains from Theorem 5.1.1.

Theorem 5.1.5. [76, Thm. 15.2] Let Φ be an irreducible crystallographic root system. Then
the map Θ : {R is a region of Shi(Φ)} → Park(Φ) that sends each region R of Shi(Φ) to the
non-nesting parking function [s,A], where R ⊆ sC◦ and α ∈ A if and only if α ∈ Φ+ and Hα,1

is a floor of s−1R, is a bijection.

Note that a similar bijection using ceilings instead of floors was given in [9, Prop. 10.3].
The concept of non-nesting parking functions was extended to the Fuß–Catalan level to encom-

pass the m-Shi arrangement by Rhoades [57].

5.2. Lattice path models for non-nesting parking functions
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Figure 5.1. The Shi arrangement of type A2.

The regions of the Shi arrangement of type An−1 have early on been related to classical parking
functions. Bijections between the two sets are due to Pak and Stanley [67, 69] and Athanasiadis
and Linusson [13]. Later Armstrong [5] gave an interpretation of the q, t-Catalan numbers in
terms of the dominant regions of the Shi arrangement. Gorsky, Mazin and Vazirani [33] extended
the above ideas to the rational case.
The foundation of this correspondence is the well-known fact that ideals (respectively, order

filters or anti-chains) in the root poset Φ+ of type An−1 are in bijection with Dyck paths. Given
π ∈ Dn set

AAπ =
{
ei − ej : (i, j) is a valley of π

}
.

Lemma 5.2.1. Let Φ be a root system of type An−1. Then the map ϕA : Dn → AC(Φ+) given
by π 7→ AAπ is a bijection between Dyck paths and anti-chains in the root poset. �

Extending Lemma 5.2.1 we construct a bijection between diagonally labelled Dyck paths and
non-nesting parking functions of type An−1. The regions of the Shi arrangement are therefore
in bijection with diagonally labelled Dyck paths.



66 5. THE SHI ARRANGEMENT

Proposition 5.2.2. Let Φ be a root system of type An−1. Then the map ϕA : Diag(An−1) →
Park(Φ) defined by (s, π) 7→ [s,AAπ ] is a bijection between diagonally labelled Dyck paths and
non-nesting parking functions.

Proof. The claim follows from Lemmas 5.1.4 and 5.2.1, since clearly s(ei− ej) ∈ Φ+ if and
only if s(i) < s(j) for all i, j ∈ [n] with i < j. �

We give similar combinatorial interpretations for the non-nesting parking functions of types Bn,
Cn and Dn. Note that m-non-nesting parking functions and the regions of the m-Shi arrangement
are connected to m-Dyck paths. In the discussion below we limit ourselves to the Catalan case,
although the more general setting should be explored in the future.

5.2.1. Type Bn. The correct lattice paths to consider in type Bn are ballot paths. A ballot
path is a lattice path starting at the origin (0, 0) using only north and east steps such that every
initial sub-word of steps s1 · · · sk contains at least as many north steps as east steps. Thus the
path never goes below the main diagonal x = y. Denote the set of ballot paths with n steps by
Bn. Moreover we fix the following convention concerning the valleys of ballot paths. Let β ∈ Bn.
As usual a pair (i, j) is a valley of β if the i-th east step of β is immediately followed by its j-th
north step. Moreover we call (i, n− i+ 1) a valley of β if the last step of β is its i-th east step.
Let Φ be a root system of type Bn and β ∈ B2n be a ballot path with valley (i, j). Define the

root αi,j ∈ Φ+ as

αi,j =


en+1−i − en+1−j if j < n+ 1,

en+1−i if j = n+ 1,

en+1−i + ej−n−1 if j > n+ 1.

Furthermore set

ABβ =
{
αi,j : (i, j) is a valley of β

}
.

The following folklore lemma asserts that this correspondence identifies ballot paths with anti-
chains in the root poset.

Lemma 5.2.3. [74, Lem. 6.6] Let Φ be a root system of type Bn. The map ϕB : B2n → AC(Φ+)
given by β 7→ ABβ is a bijection between ballot paths of length 2n and the anti-chains in the root
poset. �

A diagonally labelled ballot path of type Bn is a pair (s, β) of a signed permutation s ∈ SB
n and

a ballot path β ∈ B2n such that for each valley (i, j) of β we have

s(n+ 1− i) > s(n+ 1− j).

Let Diag(Bn) denote the set of all diagonally labelled ballot paths of type Bn.
We visualise such a labelled path by writing the entries s(i) for i = n, n−1 . . . , 1, 0,−1, . . . ,−n,

in the main diagonal next to the ballot path. Thereby a pair (s, β) ∈ SB
n ×B2n lies in Diag(Bn)

if and only if for each valley the number below is greater than the number to its right. See
Figure 5.2.

Proposition 5.2.4. [74, Prop. 6.9] The map ϕB : Diag(Bn) → Park(Bn) given by (s, β) 7→
[s,ABβ ] is a bijection.

Proof. Let β ∈ B2n be a ballot path and s ∈ SB
n be a signed permutation. By Lemmas 5.2.3

and 5.1.4 it suffices to show that (s, β) ∈ Diag(Bn) if and only if s(ABβ ) ⊆ Φ+. Suppose
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Figure 5.2. A diagonally labelled ballot path (s, β) ∈ Diag(B6), where s = [6, 5, 3, 1, 4, 2].

s(ABβ ) ⊆ Φ+. Then an easy case-by-case check reveals

(i, j) is a valley of β ⇔ αi,j ∈ ABβ
⇒ s(αi,j) ∈ Φ+ ⇔ s(n+ 1− i) > s(n+ 1− j).

Conversely if (s, β) ∈ Diag(Bn) then

αi,j ∈ ABβ ⇔ (i, j) is a valley of β

⇒ s(n+ 1− i) > s(n+ 1− j)⇔ s(αi,j) ∈ Φ+.

�

5.2.2. Type Cn. Since the root posets of types Bn and Cn are isomorphic it is no surprise
that ballot paths are the correct paths to use in type Cn as well. Let β ∈ B2n be a ballot path
and (i, j) a valley of β. Define the positive root

αi,j =

{
en+1−i − en+1−j if j ≤ n,
en+1−i + ej−n if j > n.

Furthermore set

ACβ =
{
αi,j : (i, j) is a valley of β

}
.

The following result is well-known and identifies ballot paths with the anti-chains in the root
poset of type Cn.

Lemma 5.2.5. [74, Lem. 4.5] Let Φ be a root system of type Cn. The map ϕC : B2n → AC(Φ+)
given by β 7→ ACβ is a bijection between ballot paths of length 2n and the set of anti-chains in the

root poset Φ+. �

A diagonally labelled ballot path of type Cn is a pair (s, β) of a signed permutation s ∈ SB
n and

a ballot path β ∈ B2n such that

s(n+ 1− i) >

{
s(n+ 1− j) if j ≤ n,
s(j − n) if j > n.
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Figure 5.3. The Shi arrangement of type C2.

for each valley (i, j) of β. We denote the set of all diagonally labelled ballot paths of type Cn by
Diag(Cn).
We picture diagonally labelled ballot paths of type Cn as follows. Given s ∈ SB

n and β ∈ B2n

place the labels s(i), where i = n, n−1, . . . , 1,−1, . . . ,−n, in the diagonal as in Figure 5.4. Then
(s, β) ∈ Diag(Cn) if and only if for each valley of β the label to its right is smaller than the label
below it. In particular, if the path ends with an east step then the label below must be positive.

Taking labels into account, we extend Lemma 5.2.5 to a bijection between diagonally labelled
ballot paths and non-nesting parking functions.

Proposition 5.2.6. [74, Prop. 4.7] The map ϕC : Diag(Cn) → Park(Cn) given by (s, β) 7→
[s,ACβ ] is a bijection.

Proof. Let s ∈ SB
n a signed permutation and β ∈ B2n be a ballot path. Using Lemmas 5.2.5

and 5.1.4 it suffices to show that (s, β) ∈ Diag(Cn) if and only if s(ACβ ) ⊆ Φ+. Assume j ≤ n. If

(s, β) ∈ Diag(Cn) then

αi,j ∈ ACβ ⇔ (i, j) is a valley of β

⇒ s(n+ 1− i) > s(n+ 1− j)⇔ s(αi,j) ∈ Φ+.

Conversely, if s(ACβ ) ⊆ Φ+ then

(i, j) is a valley of β ⇔ αi,j ∈ ACβ
⇒ s(αi,j) ∈ Φ+ ⇔ s(n+ 1− i) > s(n+ 1− j).

The case j > n is treated similarly. �
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Figure 5.4. The diagonally labelled ballot path ([−2, 1, 3, 4, 6, 5],nnenennenene) ∈ Diag(C6).

We remark that a different combinatorial model for the regions of the type Cn Shi arrangement
has been considered by Mészáros [53]. Her approach is related to the bijection of Athanasiadis
and Linusson for type An−1.

5.2.3. Type Dn. Finally we present a lattice path interpretation of the non-nesting parking
functions of type Dn in terms of labelled ballot paths of odd length. One aspect in which the
root system of type Dn differs from the other infinite families is that the root poset is not planar.
For this reason its anti-chains are seldom associated with lattice paths in the literature. Still
there is a natural way to identify anti-chains with ballot paths of odd length by adding a sign to
a certain east step.
A signed ballot path β ∈ B•2n−1 is a ballot path with 2n − 1 steps except that if its n-th north

step is followed by an east step, then this east step is replaced by a signed east step from the set
{e+, e−}. Define a sign function ε : B•2n−1 → {±1} in the same way as for signed lattice paths,
that is, ε(β) = −1 if β contains the step e− and ε(β) = 1 otherwise. For example, the paths in
B•3 = {nen,nne+,nne−,nnn} are drawn in Figure 5.5.

⊕ 	

Figure 5.5. The set B•3 of signed ballot paths of length three.

Valleys of signed ballot paths obey the same conventions as valleys of ballot paths, with one
exception. If β has a valley of the form (i, n) and the n-th north step of β is not followed by an
east step, then (i, n+ 1) is also counted as a valley of β. Let β ∈ B•2n−1 be a signed ballot path
and (i, j) a valley of β. Define the corresponding positive root as

αi,j =


en+1−i − en+1−j if j ≤ n− 1,

en+1−i − ε(β)e1 if j = n,

en+1−i + ε(β)e1 if j = n+ 1,

en+1−i + ej−n if j ≥ n+ 2.
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Figure 5.6. A diagonally labelled signed ballot path (s, β) ∈ Diag(Dn). We have ε(β) = −1,
s = [−3,−2,−5, 6, 4,−1], and ADβ = {e6 − e1, e5 + e4}.

Furthermore set

ADβ =
{
αi,j : (i, j) is a valley of β

}
.

Note that if β has a valley of the form (i, n) and the n-th north step of β is not followed by an
east step, then both αi,n and αi,n+1 are added to Aβ . It is easy to check that this correspondence
identifies signed ballot paths with anti-chains in the root poset.

Lemma 5.2.7. [74, Prop. 5.8] Let Φ be a root system of type Dn. The map ϕD : B•2n−1 →
AC(Φ+) given by β 7→ ADβ is a bijection between signed ballot paths and anti-chains in the root
poset. �

A diagonally labelled signed ballot path (s, β) is a pair of an even signed permutation s ∈ SD
n

and a signed ballot path β ∈ B•2n−1 such that for each valley (i, j) of β we have

s(n+ 1− i) >


s(n+ 1− j) if j ≤ n− 1,

ε(β)s(1) if j = n,

−ε(β)s(1) if j = n+ 1,

s(n− j) if j ≥ n+ 2.

Denote the set of all diagonally labelled signed ballot paths by Diag(Dn).

Diagonally labelled signed lattice paths can be visualised as follows. Given an even signed
permutation s ∈ SD

n and a signed ballot path β ∈ B•2n−1, place the labels s(i), where i = n, n−
1, . . . , 2, ε(β),−ε(β),−2, . . . ,−n, on the diagonal as in Figure 5.6. Thereby, (s, β) ∈ Diag(Dn) if
and only if for each valley the label to its right is smaller than the label below it.
We conclude this section by extending Lemma 5.2.7 to a bijection between diagonally labelled

signed ballot paths an non-nesting parking functions of type Dn.

Proposition 5.2.8. [74, Prop. 5.12] The map ϕD : Diag(Dn) → Park(Dn) given by (s, β) 7→
[s,ADβ ] is a bijection.

Proof. Let s ∈ SD
n be an even signed permutation and β ∈ B•2n−1 a signed ballot path.

Using Lemmas 5.2.7 and 5.1.4 it suffices to show that (s, β) ∈ Diag(Dn) if and only if s(ADβ ) ⊆
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Φ+. This can be accomplished easily distinguishing a few cases. For example, assume that
(s, β) ∈ Diag(Dn). Then

αi,n = en+1−i − ε(β)e1 ∈ ADβ ⇔ (i, n) is a valley of β

⇒ s(n+ 1− i) > ε(β)s(1)⇔ s(αi,n) ∈ Φ+.

Conversely, suppose that s(ADβ ) ⊆ Φ+. Then

(i, n) is a valley of β ⇔ αi,n ∈ ADβ
⇒ s(αi,n) ∈ Φ+ ⇔ s(n+ 1− i) > ε(β)s(1).

Other roots are treated similarly. �

5.3. The area-statistic

In this section the non-nesting parking functions are used to define q-analogues of the Coxeter–
Catalan and Coxeter–Cayley numbers.

Let Φ be an irreducible crystallographic root system. To each anti-chain A ⊆ Φ+ associate an
order ideal

I(A) = Φ+ −
⋃
α∈A
{β ∈ Φ+ : α ≤ β}.

Note that I(A) is the complement of the minimal order filter containing A, hence it is the
maximal order ideal not containing any elements of A. Define the uniform area statistic area :
AC(Φ+)→ N as the cardinality

area(A) = |I(A)| .

Moreover, define the statistic area′ : Park(Φ)→ N by

area′(X) = #
{
α ∈ I(A) : s(α) ∈ Φ+

}
,

where (s,A) ∈ X is assumed to be the canonical representative as in Lemma 5.1.4.
Equivalent definitions of these statistics make use of the Shi arrangement and are due to Arm-

strong [5] and Stump [72].

The following proposition establishes that the statistics area and area′ can be used to generalise
the q-Catalan numbers of Section 2.5 and their Cayley analogues from Section 2.6 to the level of
Weyl groups. In fact we shall see in Theorem 6.2.2 that the polynomials

CΦ(q) =
∑

A∈AC(Φ+)

qarea(A) and CΦ(q) =
∑

[s,A]∈Park(Φ)

qarea′([s,A])

agree with the polynomials CΦ(q) and CΦ(q) defined in Section 4.5.

Proposition 5.3.1. Let Φ be the root system of type An−1 and (s, π) ∈ Diag(An−1). Then
area(π) = area(Aπ) and area′(s, π) = area′([s,Aπ]). In particular,

Cn(q) =
∑

A∈AC(Φ+)

qarea(A) and Cn(q) =
∑

[s,A]∈Park(Φ)

qarea′([s,A]).

Proof. The claim follows directly from Lemma 5.2.1 and Proposition 5.2.2 and the defini-
tions of the bijections used therein. �

Combinatorial area statistics were also defined in type Cn [74]. Let (s, β) ∈ Diag(Cn) be a
diagonally labelled ballot path. Then areaC(β) denotes the number of unit squares between the
ballot path and the diagonal. Moreover, area′C(s, β) denotes the number of unit squares below
the path such that the label to its right is less than the label below it. See Figure 5.7
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Figure 5.7. A ballot path β ∈ B12 with areaC(β) = 9 (left), and a diagonally labelled ballot
path (s, β) ∈ Diag(C6) with area′C(s, β) = 6 (right). The contributing squares below the paths

are shaded grey.

It is an easy consequence of Lemma 5.2.5 and Proposition 5.2.6 that the uniform statistics area
and area′ generalise their combinatorial counterparts in type Cn.

Proposition 5.3.2. Let Φ be a root system of type Cn and (s, β) ∈ Diag(Cn). Then areaC(β) =
area(Aβ) and area′C(s, β) = area′([s,Aβ ]). �

5.4. Rational Shi tableaux

Having found such a nice Fuß-analogue of the Shi arrangement, namely the m-Shi arrangement,
it is only natural to ask for a rational analogue. Since the m-Shi arrangement consists precisely
of the hyperplanes Hα,k with α ∈ Φ+ and k ∈ Z such that |ht(−α+ kδ)| < mh+1, a first natural
candidate for a rational analogue is the arrangement{

Hα,k : α ∈ Φ+, k ∈ Z, |ht(−α+ kδ)| < p
}
.

In terms of Shi alcoves this corresponds to the set of elements ω ∈ W̃ such that all floors of
ω(A◦) have height less than p. Unfortunately these sets do not seem to have similarly appealing
enumerative properties as the Shi arrangement itself. Instead a different interpretation of Shi
alcoves comes to the rescue.

Theorem 5.4.1. [75, Thm. 4.3.6] Let Φ be an irreducible crystallographic root system, m ∈ N
and ω ∈ W̃ an element of the affine Weyl group. Then ω(A◦) is the minimal alcove of a region

of Shim(Φ) if and only if ω has no inversions of height mh+ 1, that is, ω ∈ W̃mh+1.

Hence the p-stable elements of the affine Weyl group known to us from Section 4.4 are a perfectly
suitable rational analogue of Shi alcoves. In the remainder of this section we aim to strengthen
this claim by investigating whether additional properties of Shi alcoves are inherited by the
elements of W̃ p. We first demonstrate that the set of p-stable elements of the affine Weyl group
can be equipped with a W -action similar to the action on non-nesting parking functions.

Define an equivalence relation on the set of pairs W × W̃ p
+ by letting (s, ω) ∼ (t, ω′) if and only

if ω = ω′ and sH = tH, where H ≤W is the subgroup generated by the set{
sα : α ∈ Φ+ ∩ ω · (Φ̃p)

}
.
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The set of equivalence classes

W̃ (p) =
{

[s, ω]∼ : s ∈W,ω ∈ W̃ p
+

}
carries a natural W -action, given by s · [t, ω] = [st, ω] for all s, t ∈W and ω ∈ W̃ p

+.

Proposition 5.4.2. Let Φ be an irreducible crystallographic root system and p be relatively
prime to the Coxeter number. Then each class [t, ω] ∈ W̃ (p) contains a unique element (s, ω)

such that sω ∈ W̃ p. The induced map φ : W̃ (p) → W̃ p defined by [t, ω] 7→ sω is a bijection.

Proof. First note that Φ+ ∩ ω · (Φ̃p) is an anti-chain in the root poset Φ+. To see this
suppose that α, β, α+ β ∈ Φ+. Then

ht(ω−1(α+ β)) = ht(ω−1(α)) + ht(ω−1(β)) 6= ht(ω−1(α)).

For s ∈W and ω ∈ W̃ p we have sω ∈ W̃ p if and only if s(α) ∈ Φ+ for all α ∈ Φ+∩ω · (Φ̃p). Thus

the existence of a unique representative (s, ω) ∈ [t, ω] with sω ∈ W̃ p follows from [65, Thm. 6.4].

The map φ is clearly injective. Moreover [75, Lem. 3.9.2] asserts that for any ω ∈ W̃ p and

s ∈W with ω(A◦) ⊆ sC◦ also s−1ω ∈ W̃ p. Hence the φ is also surjective. �

Furthermore, we would like the fact that each dominant Shi alcove is uniquely determined
by the Shi hyperplanes that separate it from the fundamental alcove to hold in the rational
setting. See Conjecture 5.4.10 for a precise formulation. In passing we use the set W̃ p to define
a common generalisation of the polynomials Cn,p(q) and CΦ(q). Thus we reach the rational
q-Coxeter–Catalan numbers in the Catalan cube.
However, we first need to return to the study affine inversions initiated in Section 3.2.

For each α ∈ Φ+ and ω ∈ W̃ the number |k(α, ω)| counts how many hyperplanes of the form
Hα,k with k ∈ Z separate ω(A◦) from the fundamental alcove. Equivalently, |k(α, ω)| counts the
inversions of ω−1 of the form α+ kδ. That is,

|k(α, ω)| = #
{
± α+ kδ ∈ Φ̃+ ∩ ω · (−Φ̃+)

}
.

The sum ∑
α∈Φ+

|k(α, ω)|

therefore gives the number of inversions of ω and also equals the length of ω. Furthermore the
map t(ω) : Φ+ → N given by α 7→ |k(α, ω)| equals the address of ω if and only if ω is dominant.

We call t(ω) the inversion table of ω. Note that two elements of W̃ can have the same inversion
table. However, if we restrict the domain to dominant elements of the affine Weyl group, then

the map t : W̃+ → {t : Φ+ → N} is injective. All of this was first observed by Shi [60, 62] and
later rediscovered by Björner and Brenti [16] in type An−1.
The inversion table can be computed directly using the decomposition of the affine Weyl group

into a semi-direct product.

Lemma 5.4.3. [73, Lem. 2.7] Let α ∈ Φ+ be a positive root and ω ∈ W̃ an element of the affine
Weyl group. If ω = tqs, where q ∈ Q̌ and s ∈W , then

|k(α, ω)| =

{
|〈q, α〉| if s−1 · α ∈ Φ+,

|〈q, α〉 − 1| if s−1 · α ∈ −Φ+.

Proof. Set β = s−1(α). For k ≥ 0

ω−1 · (α+ kδ) = β + (k + 〈q, α〉)δ ∈ −Φ̃+
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Figure 5.8. The inversion table of the affine permutation ω = [−2, 15,−1, 16,−14, 10, 4] ∈ ∼S7

with inverse ω−1 = [−12,−10,−1, 7, 8, 10, 26].

if and only if either k < −〈q, α〉 or both k = −〈q, α〉 and β ∈ −Φ+. On the other hand for k ≥ 1

ω−1 · (−α+ kδ) = −β + (k − 〈q, α〉)δ ∈ −Φ̃+

if and only if k < 〈q, α〉 or both k = 〈q, α〉 and β ∈ Φ+. Combined this implies the claim. �

The type An−1 inversion table is closely related to the contents of Section 3.2. For i, j ∈ [n] with
i < j and ω ∈ ∼Sn set ki,j(ω) = |k(ei − ej , ω)|. We arrange the numbers ki,j(ω) in a staircase
tableaux as in Figure 5.8.

Proposition 5.4.4. [73, Prop. 2.8] Let i, j ∈ [n] with i < j and ω ∈ ∼Sn. Then

ki,j(ω) =

∣∣∣∣⌊ω−1(j)− ω−1(i)

n

⌋∣∣∣∣ .
Proof. Write ω = tqs, where q ∈ Q̌ and s ∈ Sn. The claim follows from Lemma 5.4.3 and∣∣∣∣⌊ω−1(j)− ω−1(i)

n

⌋∣∣∣∣ =

∣∣∣∣⌊−qjn+ s−1(j)− (−qin+ s−1(i))

n

⌋∣∣∣∣
=

{
|qi − qj | if s−1(i) < s−1(j),

|qi − qj − 1| if s−1(i) > s−1(j).
�

Recall that the numbers ki,j(ω) already appeared in Lemma 3.2.1 with the only difference
that now we consider them from the perspective of dominant affine permutations instead of
Graßmannian affine permutations. If ω is dominant, then by Lemma 3.2.2 the partition given
by the row-sums of the inversion table of ω equals inv(ω−1). That is,

inv(ω−1, j) =

n∑
i=1

ki,j(ω)

for j ∈ [n].

A simple computation reveals the effect of the involutive automorphism on the inversion table.

Lemma 5.4.5. [73, Prop. 2.6] Let ω ∈ ∼Sn be an affine permutation. Then the inversion table
of ω∗ is the transpose of the inversion table of ω. That is, ki,j(ω

∗) = kn+1−j,n+1−i(ω) for all
i, j ∈ [n] with i < j.
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Proof. We compute

ki,j(ω
∗) =

∣∣∣∣⌊n+ 1− (ω∗)−1(i)− (n+ 1) + (ω∗)−1(j)

n

⌋∣∣∣∣
=

∣∣∣∣⌊ (ω−1)∗(n+ 1− i)− (ω−1)∗(n+ 1− j)
n

⌋∣∣∣∣
=

∣∣∣∣⌊ω−1(n+ 1− i)− ω−1(n+ 1− j)
n

⌋∣∣∣∣ = kn+1−j,n+1−i(ω). �

As a consequence of Lemma 5.4.5 the partition formed by the column-sums
∑
j ki,j(ω)of the

inversion table of ω equals inv∗(ω−1). We obtain an interesting alternative description of the
n-conjugation on bounded partitions by partitioning the summands of the bounded partition in
a clever way and recombining them afterwards.

Fishel, Tzanaki and Vazirani [27] encoded the dominant regions of the m-Shi arrangement using
Shi tableaux, which are closely related to inversion tables. Although they only considered type
An−1 at the time, their definition applies to the uniform case without changes.

Given ω ∈ W̃mh+1
+ and α ∈ Φ+ set

tmh+1(α, ω) = min(k(α, ω),m).

The map tmh+1(ω) : Φ+ → N given by α 7→ tmh+1(α, ω) is called the m-Shi tableau of ω. The

idea behind the definition of the Shi tableau of ω ∈ W̃mh+1
+ is to consider only those inversions

that stem from a hyperplane in Shim(Φ). The set of Shi tableaux was characterised by the work
of Athanasiadis [11] on geometric chains of ideals in the root poset.

Theorem 5.4.6. [27, Lem. 2.5] The map

tmh+1 : W̃mh+1
+ → {t : Φ+ → N}

is a bijection onto its image. Furthermore t : Φ+ → N lies in the image of tmh+1 if and only if

min(t(α) + t(β),m) ≤ t(α+ β) ≤ min(t(α) + t(β) + 1,m)

whenever α, β, α+ β ∈ Φ+.

We generalise Shi tableaux to the rational level of Catalan combinatorics as follows. Given

ω ∈ W̃ p
+ and α ∈ Φ+ define

tp(α, ω) = #
{
− α+ kδ ∈ Φ̃+ ∩ ω · (−Φ̃+

<p)
}
.

The map tp(ω) : Φ+ → N defined by α 7→ tp(α, ω) is called rational Shi tableau of ω. Note that
tp(α, ω) counts certain affine inversions of ω−1, which correspond to separating hyperplanes of
ω. Proposition 5.4.9 below shows that tp(ω) is well-defined when p = mh+ 1.

The following is a useful lemma on dominant elements of the affine Weyl group.

Lemma 5.4.7. Let α ∈ Φ+ be a positive root and ω ∈ W̃+ be dominant with ω = tqs, where

q ∈ Q̌ and s ∈W . If 〈q, α〉 = 0 then s−1(α) ∈ Φ+.

Proof. Suppose 〈q, α〉 = 0. The height function ht : Φ → R extends to a linear functional
on V . Thus we may choose v ∈ V with 〈v, β〉 = ht(β)/h for all β ∈ Φ, where h is the Coxeter
number of Φ. Note that v ∈ A◦ by definition. Thus 〈ω(v), α〉 > 0 since ω is dominant. We
compute

ht(s−1(α))

h
= 〈v, s−1(α)〉 = 〈s(v), α〉 = 〈q + s(v), α〉 = 〈ω(v), α〉 > 0. �
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The rational Shi tableau of a dominant p-stable element of the affine Weyl group can be com-
puted directly using the decomposition of the affine Weyl group into a semi-direct product.

Proposition 5.4.8. [73, Prop. 2.11] Let m ∈ N and r ∈ [h− 1], where h is the Coxeter number

of Φ, and α ∈ Φ+ be a positive root. Set p = mh+ r and let ω ∈ W̃ p
+ be dominant and p-stable.

If ω = tqs, where q ∈ Q̌ and s ∈W , then

tp(α, ω) =

{
min(k(α, ω),m) if r − h < ht(s−1(α)) < 0 or r < ht(s−1(α)),

min(k(α, ω),m+ 1) otherwise.

Proof. Set β = s−1(α). Recall that 〈q, α〉 ≥ 0 because ω is dominant. If ht(β) = r then

β +mδ ∈ Φ̃p and therefore

α+ (m− 〈q, α〉)δ = ω · (β +mδ) ∈ Φ̃+

since ω ∈ W̃ p. If instead ht(β) = r − h then β + (m+ 1)δ ∈ Φ̃p and

α+ (m+ 1− 〈q, α〉)δ = ω · (β + (m+ 1)δ) ∈ Φ̃+.

Consequently ht(β) = r implies 〈q, α〉 ≤ m, and ht(β) = r − h implies 〈q, α〉 ≤ m + 1. Now let
k ≥ 1. Then

0 < ht
(
− ω−1 · (−α+ kδ)

)
= ht(β) + (〈q, α〉 − k)h < p = mh+ r

if and only if one of the following (mutually exclusive) cases occurs

m > 0 and k = 〈q, α〉 and 0 < ht(β),

m = 0 and k = 〈q, α〉 and 0 < ht(β) < r,

−m < k − 〈q, α〉 < 0,

m > 0 and −m = k − 〈q, α〉 and ht(β) < r,

−m− 1 = k − 〈q, α〉 and ht(β) < −h+ r.

Equivalently −α+ kδ contributes to tp(α, ω) if and only if

k ∈ {1, 2, . . . } ∩


{〈q, α〉 −m+ 1, . . . , 〈q, α〉} if r ≤ ht(β),

{〈q, α〉 −m, . . . , 〈q, α〉} if 0 < ht(β) ≤ r,
{〈q, α〉 −m, . . . , 〈q, α〉 − 1} if r − h ≤ ht(β) < 0,

{〈q, α〉 −m− 1, . . . , 〈q, α〉 − 1} if ht(β) ≤ r − h.

The claim now follows from Lemma 5.4.3. Note that in the last two cases 〈q, α〉−1 ≥ 0 is ensured
by Lemma 5.4.7. �

Given ω ∈ W̃ p
+ the map χp(ω) : Φ+ → N defined by

χp(α, ω) =

{
m if r − h < ht(s−1 · α) < 0 or r < ht(s−1 · α),

m+ 1 otherwise,

where p = mh + r with m ∈ N and r ∈ [h − 1] and ω = tqs with q ∈ Q̌ and s ∈ W , is called
min-tableau of ω.

Armed with Proposition 5.4.8 we can affirm that the rational Shi tableau generalises the m-Shi
tableau of Fishel, Tzanaki and Vazirani. That is, the two definitions of tmh+1(α, ω) agree.

Proposition 5.4.9. Let α ∈ Φ+ be a positive root and ω ∈ W̃mh+1
+ . Then

min(k(α, ω),m) = #
{
− α+ kδ ∈ Φ̃+ ∩ ω · (−Φ̃+

<mh+1)
}
.
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Proof. By Proposition 5.4.8 it suffices to show that k(α, ω) ≤ m whenever χmh+1(α, ω) =
m+ 1, which is the case if and only if s−1(α) ∈ ∆ ∪ {−α̃}. If s−1(α) = −α̃ then

α+ (m+ 1− 〈q, α〉)δ = ω(−α̃+ (m+ 1)δ) ∈ ω(Φ̃mh+1) ⊆ Φ̃+

since ω ∈ W̃mh+1
+ and thus 〈q, α〉 − 1 ≤ m. If s−1(α) ∈ ∆ then

α+ (m− 〈q, α〉)δ = ω(s−1(α) +mδ) ∈ ω(Φ̃mh+1) ⊆ Φ̃+

and therefore 〈q, α〉 ≤ m. The claim follows from Lemma 5.4.3. �

Note that the min-tableau of an element ω ∈ W̃mh+1
+ is not in general constant.

The following conjecture and open problem are in the spirit of Theorem 5.4.6.

Conjecture 5.4.10. [73, Conj. 2.13] Let Φ be an irreducible crystallographic root system and

p be a positive integer relatively prime to the Coxeter number. Then the map tp : W̃ p
+ → {t :

Φ+ → N} is injective.

Open Problem 5.4.11. Characterise the set tp(W̃ p
+) ⊆ {t : Φ+ → N}.

Conjecture 5.4.10 is known to be true if p = mh±1. The case p = mh−1 is related to bounded
regions of the m-Shi arrangement and was studied by Athanasiadis and Tzanaki [14]. We show
that the conjecture holds in type An−1.

Theorem 5.4.12. [73, Thm. 2.14] Let Φ be a root system of type An−1 and p be relatively prime

to n. Then the map tp : W̃ p
+ → {t : Φ+ → N} is injective.

The proof of Theorem 5.4.12 turns out to be very combinatorial as it uses many of the bijections
encountered in our study of Dyck paths and cores. First we observe that the rational Shi tableau
behaves similarly to the inversion table under the involutive automorphism. To simplify notation
set tpi,j(ω) = tp(ei − ej , ω) and χpi,j(ω) = χp(ei − ej , ω) for i, j ∈ [n] with i < j when Φ is of type
An−1.

Proposition 5.4.13. [73, Prop. 2.9] Let ω ∈ ∼Sp
n be a dominant p-stable affine permutation.

Then the rational Shi tableau of ω∗ is the transpose of the rational Shi tableau of ω. That is,
tpi,j(ω

∗) = tpn+1−j,n+1−i(ω) for all i, j ∈ [n] with i < j.

Proof. The claim follows from Lemma 5.4.5, Proposition 5.4.8 and the fact that the invo-
lutive automorphism also transposes the min-tableau. To see this note that ht(ei − ej) = j − i
and

k ≤ s(j)− s(i)⇔ k ≤ s∗(n+ 1− i)− s∗(n+ 1− j),

for all k ∈ Z, i, j ∈ [n] and s ∈ Sn due to Lemma 1.4.5 (i). �

The following theorem is a key step towards the proof of Theorem 5.4.12.

Theorem 5.4.14. [73, Thm. 3.2] Let n, p be positive coprime integers and ω ∈ ∼Sp
n be a dominant

p-stable affine permutation. Then the rational Shi tableau of ω equals the codinv tableau of
A ◦ α−1 ◦ γ(ω). That is, tpi,j(ω) = di,j(A ◦ α−1 ◦ γ(ω)) for all i, j ∈ [n] with i < j.

Proof. Let ω−1 = tqs where q ∈ Q̌ and s ∈ Sn, and fix i, j ∈ [n] such that i < j. By
Lemma 3.2.2 tpi,j(ω) equals the number of inversions (j, kn+ i) of ω−1 such that

ω−1(j)− ω−1(kn+ i) < p.
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Figure 5.9. The balanced abacus A = γ(ω), where ω = [−2, 15,−1, 16,−14, 10, 4], (left)
and the normalised abacus B = β ◦ α−1(A) (right), both depicted on 7 runners. With the

notation of the proof of Theorem 5.4.14 we have ω−1 = [−12,−10,−1, 7, 8, 10, 26] and s =
[2, 4, 6, 7, 1, 3, 5] and σ = [7, 2, 4, 5, 6, 1, 3]. Moreover A ◦ α−1(A) = A ◦ β−1(B) is the rational

Dyck path of Figure 3.13.

Let A = γ(ω) be an abacus on n runners (see Figure 5.9). Then ω−1(j) is the minimal gap of
A in the runner s(j). Moreover, (j, kn + i) is an inversion of ω−1 contributing to tpi,j(ω) if and

only if ω−1(kn+ i) is a non-minimal gap of A in the runner s(i) and

ω−1(j)− p < ω−1(nk + i) < ω−1(j).

Hence tpi,j(ω) counts the number of non-minimal gaps g in runner s(i) such that m− p < g < m

where m is the minimal gap in runner s(j).
Equivalently tpi,j(ω) counts the number of beads b in runner s(j) such that m < b < m+p where

m is the minimal gap in runner s(i). Define a normalised abacus on n runners, namely

B = β ◦ α−1 ◦ γ = {z + `− 1 : z ∈ A},

where ` is the length of the partition α−1 ◦ γ(ω). Moreover define σ ∈ Sn by σ(i) ≡ s(i) + `− 1
modulo n. Then tpi,j(ω) counts the number of beads b in the runner σ(j) of B such that m <

b < m+ p where m is the minimal gap in the runner σ(i) of B.
Set x = A ◦ α−1 ◦ γ(ω) ∈ Dn,p. Since B is normalised, the minimal gap of each runner of B is

non-negative. Thus it is the same to consider only positive beads of B. But the positive beads
of B are just the hook-lengths of the cells in the first column of α−1 ◦ γ and therefore make up
the set H(x). Moreover the minimal gaps of the runners of B are just the labels of the north
steps of x. (See the definition of a codinv pair.)
The theorem now follows from the observation that σ sorts the minimal gaps of B increasingly.

This is implied by the fact that s sorts the minimal gaps of A increasingly, which form the
window of the affine Graßmannian permutation ω−1. �

From Theorem 5.4.14 we derive many interesting consequences. Together with Proposition 5.4.13
and Proposition 3.1.9 we obtain an interesting result for free.
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Corollary 5.4.15. [73, Cor. 3.3] Let n, p be positive coprime integers and x ∈ Dn,p be a
rational Dyck path. Then the codinv tableau of ρ(x) is the transpose of the codinv tableau of x.

Corollary 5.4.15 is another strengthening of Corollary 3.4.5.

Pak and Stanley [67, 69] found a bijection between the regions of the (m-extended) Shi arrange-
ment of type An−1 and the set of parking functions PFn,mn+1. Gorsky, Mazin and Vazirani [33,
Def. 3.8] generalised this bijection to a map f :

∼
Sp
n → PFn,p. The rational Pak–Stanley labelling

f(ω) is defined by

f(ω, i) = #
{

(a, b) ∈ [n]× N : a < b < a+ p, ω(a) > ω(b) and ω(b) ≡ i modulo n
}
,

for i ∈ [n]. If ω is a dominant p-stable affine permutation then the Pak–Stanley labelling is
obtained by taking the row-sums of the Shi tableau of ω. That is,

f(ω, j) =

j−1∑
i=1

tpi,j(ω).

Consequently the dual Pak–Stanley labelling , which we define by f∗(ω, i) = f(ω∗, i), is obtained
by taking the column-sums of the Shi tableau of ω. That is,

f∗(ω, i) =
n∑

j=n−i+2

tpn−i+1,j(ω).

As consequence of Theorem 5.4.14 together with Theorem 3.4.9 we obtain a connection between
the Anderson map, the zeta map and the Pak–Stanley labelling that was already observed in
[33, Thm. 5.3].

Corollary 5.4.16. [73, Thm. 3.4] Let n, p be positive coprime integers and ω ∈ ∼
Sp
n be a

dominant p-stable affine permutation. Then the partition of ζ(AA(ω)) equals the (reversed1)
Pak–Stanley labelling f(ω). Moreover, the partition of η(AA(ω)) equals the (reversed) dual Pak–
Stanley labelling f∗(ω).

We are now in a position to use a result of Ceballos, Denton and Hanusa to prove that each
rational Dyck path is determined uniquely by its codinv tableau, and equivalently, that each
dominant p-stable affine permutation is determined uniquely by its rational Shi tableau.

Proof of Theorem 5.4.12. We deduce the claim from [21, Thm. 6.3], which asserts that

any rational Dyck path x can be reconstructed from the pair (ζ(x), η(x)). Let ω ∈ W̃ p
+ and

x = A ◦ α−1γ(ω). By Corollary 5.4.16 the rational Shi tableau of ω encodes both ζ(x) and η(x)
in terms of column-sums and row-sums. Therefore it contains enough information to determine
the path x uniquely. Using the Anderson map again we we recover ω. �

The bijectivity of the zeta map is equivalent to the fact that we obtain a well-defined area-
preserving involution on the set {λ ∈ Π : λ ⊆ ∆n,p} by mapping f(ω) to f∗(ω). We call
this involution n, p-conjugation. In some sense n, p-conjugation is to n-conjugation what n-
conjugation is to ordinary conjugation of partitions. For example, n, p-conjugation “converges”
to n-conjugation as p tends to infinity.
Ceballos, Denton and Hanusa posed the following problem in [21].

Open Problem 5.4.17. Find a combinatorial description of n, p-conjugation that does not use
the inverse zeta map.

1In our convention partitions are weakly decreasing while f(ω) is weakly increasing.
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Rational Shi tableaux offer a new perspective on this involution and show that f∗(ω) can be
computed from f(ω) by partitioning each summand in a clever way and recombining the parts
afterwards. However, this does not solve Problem 5.4.17 because we still need the inverse zeta
map to compute ω and its rational Shi tableau from f(ω).
If p = mh+ 1 then Fishel, Kallipoliti and Tzanaki [26, Thm. 4.2] proved an explicit (recursive)

formula for the entries of the rational Shi tableau which they attribute to Conflitti. Ceballos and
the author have found a conjectural generalisation of this formula, however, we require that the
min-tableau is already known.

Conjecture 5.4.18. Let n and p be relatively prime and ω ∈ ∼Sp
n be dominant. Then

tpi,j(ω) = min

χpi,j(ω),


(
f(ω, j)−

∑i−1
k=1 t

p
k,j(ω)

)
χpi,j(ω) +

∑j−1
k=i+1 t

p
i,k(ω)χpi,k(ω)

1 +
∑j
k=i+1 χ

p
i,k(ω)


 .

Given an irreducible crystallographic root system Φ with rank r and a positive integer p relatively
prime to the Coxeter number h, define the rational q-Coxeter–Catalan numbers as

CΦ,p(q) = q(p−1)r/2
∑
ω∈W̃p

+

∏
α∈Φ+

q−t
p(α,ω) .

The sum of the entries of the Shi tableau generalises the height statistic used by Stump in [72,
Conj. 3.14]. Thus the polynomials CΦ,p(q) generalise the q-Fuß–Catalan numbers proposed
therein. The conjecture of Stump concernes an algebraic interpretation of these q-Fuß–Catalan
numbers and is still open beyond type An−1 even in the Catalan case.

Proposition 5.4.19. The polynomials CΦ,p(q) are a common generalisation of the rational
q-Catalan numbers defined in Section 2.7 when Φ is of type An−1, and the q-Coxeter–Catalan
numbers defined in Section 5.3 when p = n+ 1.

Proof. The first claim is a consequence of Corollary 5.4.16 and the fact that the zeta map
is a bijection. The second claim follows directly from the definitions. �

Note that the apparently complicated skew-length statistic can be given a uniform definition
for different Weyl groups. At the same time the natural length statistic has turned out to be
much more resistant in this regard.

Gorsky, Mazin and Vazirani use the Pak–Stanley labelling and the Anderson map to define
rational q, t-Cayley numbers as

Cn,p(q, t) =
∑
ω∈Sp

n

q(p−1)(n−1)/2−
∑
AA(ω,i)t(p−1)(n−1)/2−

∑
f(ω,i).

Two natural questions that remain open are whether the polynomials CΦ,p(q) lead to an inter-
esting Cayley analogue CΦ,p(q), and if there is an algebraic interpretation perhaps coming from
rational Cherednik algebras.

Using the stronger Theorem 2.7.1 instead of [21, Thm. 6.3] in the proof of Theorem 5.4.12
allows for a proof that each dominant p-stable affine permutation is determined uniquely by its
Pak–Stanley labelling. The equivalent statement for the set of all p-stable affine permutations is
still open.

Conjecture 5.4.20. [33, Conj. 1.4] Let n and p be relatively prime. Then the rational Pak–
Stanley labelling f :

∼
Sp
n → PFn,p is a bijection.
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In some sense Conjecture 5.4.20 is to Theorem 2.7.1 what Theorem 3.2.10 is to Corollary 3.2.9.

We conclude this section by stating a somewhat wild conjecture that should be seen as attempt
to generalise the rational Pak–Stanley labelling on dominant elements of the affine symmetric
group to arbitrary crystallographic root systems.

Conjecture 5.4.21. Let Φ be a root system of type An−1, Bn, Cn or Dn. Then the map
assigning to each dominant p-stable element of the affine Weyl group the vector obtained by
taking the row-sums of its rational Shi tableau is injective.

Note that the root posets of these types are commonly pictured by arranging the positive roots
in a “staircase” (see Sections 5.2.1–5.2.3). Row-sums in the above conjecture are defined by
arranging the numbers tp(α, ω), where α ranges over Φ+, in the same way.
Conjecture 5.4.21 is ambitious in the sense that I currently do not know what the inherent

meaning of row-sums should be for different types of root systems. Quite possible there exists a
different formulation of the same phenomenon that turns out to be more natural.





CHAPTER 6

The zeta map

In this section we connect the worlds of the finite torus and its orbits under the action of the
Weyl group, and of non-nesting parking functions and (chains of) ideals in the root poset. In
Section 6.1 we introduce and discuss a uniform zeta map that was defined by Thiel. In Section 6.2
we use the zeta map to relate the area statistic of Section 5.3 to the dinv statistic of Section 4.5.
In type An−1 the uniform zeta map is equivalent to the maps on (labelled) Dyck paths studied by
Haglund and Loehr that were introduced in Sections 2.5 and 2.6. In Sections 6.3–6.5 we describe
the lattice path combinatorics for the other three infinite families of root systems Cn, Dn and
Bn. The presentation closely follows [74]. Throughout this section we restrict ourselves to the
Coxeter–Catalan case, that is, p = h + 1. Since the finite torus, non-nesting parking functions
and the uniform zeta map have all been defined at least at the Fuß–Catalan level, it is certainly
a project for the future to generalise the combinatorics developed here to the more general case
p = mh + 1. Note that the usual order of first generalising type An−1 combinatorics to type
Bn or Cn and then finding a uniform description of the witnessed phenomena is reversed here.
The uniform zeta map predates the combinatorics in types different from An−1. However, it
is still worth investigating what the combinatorial picture in other types looks like. First, this
leads to new combinatorial results that are interesting by themselves. For example, we obtain
two new bijections between square lattice paths Ln,n and ballot paths B2n, both of which are
known to be counted by central binomial coefficients. Secondly, we have seen in Section 5.4 that
a profound understanding of the combinatorics behind provides a better intuition and allows for
proofs that are not feasible otherwise. In particular it would be interesting if the combinatorial
maps described in Sections 6.3–6.5 led to a better understanding of the intricacies of the rational
combinatorics of their respective root systems.

6.1. The uniform zeta map

Recall that the zeta map from Section 2.6 is a bijection from vertically labelled Dyck paths
onto diagonally labelled Dyck paths. In the past chapters these objects were shown to be the
type An−1 instances of the finite torus and non-nesting parking functions respectively. Thiel [76]
found a Weyl group analogue of the zeta map that maps the elements of the finite torus bijectively
to the set of non-nesting parking functions.
The uniform zeta map originates in a paper by Cellini and Papi [23] who gave a bijection between

the W orbits of the finite torus Q̌/(h + 1)Q̌ and the set of anti-chains in the root poset, which
are in turn in bijection with the dominant regions of the Shi arrangement. Athanasiadis [12]
extended this map to the Fuß–Catalan case, that is, he showed that the W orbits of the finite
torus Q̌/(mh+1)Q̌ are in bijection with the dominant regions of the m-extended Shi arrangement.
Finally, Thiel lifted these results to a bijection from Q̌/(mh + 1)Q̌ to the set of m-non-nesting
parking functions.
Here, we restrict ourselves to the case m = 1.

83
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Let Φ be an irreducible crystallographic root system. Define the uniform zeta map

ζ : Q̌/(h+ 1)Q̌→ Park(Φ)

via ζ = Θ−1 ◦A−1, where Θ is the bijection from Theorem 5.1.5 and A is the uniform Anderson
map from Theorem 4.4.4.
The following theorem provides a more explicit description of the zeta map. Moreover it shows

that the zeta map is W -equivariant.

Theorem 6.1.1. [74, Props. 2.10 and 2.11] Let Φ be an irreducible crystallographic root system

with Weyl group W , coroot lattice Q̌ and Coxeter number h. Let ω ∈ W̃h+1
+ and v ∈ W such

that vω ∈ W̃h+1. Choose x, y ∈ Q̌ and s, u ∈ W such that ωh+1 = txs and ω = tyu. Let

q ∈ Q̌ ∩ (h+ 1)A◦ and w ∈W be such that w(A) ⊆ Φ+, where

A =
{
α ∈ ∆ ∪ {−α̃} : q lies in the wall of (h+ 1)A◦ perpendicular to α

}
,

and such that

w(q) + (h+ 1)Q̌ = −vωω−1
h+1(0) + (h+ 1)Q̌.

Note that w(q) is a canonical representative in the sense of Lemma 4.2.2. Then

ζ
(
w(q) + (h+ 1)Q̌

)
= [wsu−1, us−1(A)].

Proof. First note that by assumption

w(q) + (h+ 1)Q̌ = −vtyus−1t−x(0) + (h+ 1)Q̌ = vus−1(x− su−1(y)) + (h+ 1)Q̌

Since q and

x− su−1(y) = txsu
−1t−y(0) = ωh+1ω

−1(0)

lie in the same W -orbit and are both elements of (h+ 1)A◦ Theorem 4.2.1 asserts that

q = x− su−1(y).

Let β ∈ Φ+. Then

Hβ,1 is a floor of ω(A◦)⇔ ω−1(−β + δ) ∈ −∆̃

⇔ ωh+1ω
−1(β − δ) ∈ ωh+1(∆̃) = (∆− δ) ∪ {−α̃+ hδ}

⇔ txsu
−1t−y(β) = tqsu

−1(β) ∈ ∆ ∪ {−α̃+ (h+ 1)δ}

⇔

{
su−1(β) ∈ ∆ and 〈q, su−1(β)〉 = 0 or

su−1(β) = −α̃ and 〈q, su−1(β)〉 = h+ 1

⇔ su−1(β) ∈ A.

Thus we conclude that ζ(w(q) + (h+ 1)Q̌) = [v, us−1(A)].
It remains to show that v = wsu−1. By the above computation su−1v−1w lies in the stabiliser

subgroup of q+(h+1)Q̌ inW , which is generated by the reflections sα for α ∈ A by Theorem 4.2.1.
Therefore

v−1wsu−1 ∈ us−1〈sα : α ∈ A〉su−1 = 〈sus−1(α) : α ∈ A〉 = 〈sβ : β ∈ su−1(A)〉.

In other words vH = wsu−1H where H = 〈sβ : β ∈ su−1(A)〉. On the one hand vsu−1(A) ⊆ Φ+

due to the fact that vω(A◦) is a Shi alcove contained in the chamber v(C◦) [76, Sec. 12.3]. On
the other hand wsu−1(su−1(A)) = w(A) ⊆ Φ+ by choice of w. Since there is only one element
in the coset vH mapping su−1(A) to a subset of Φ+, we must have v = wsu−1 as claimed. �
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Since the zeta map is W -equivariant it induces a bijection ζ : Q̌ ∩ (h+ 1)A◦ → AC(Φ+), which
is equivalent to the map of Cellini and Papi mentioned above. If Φ is of type An−1 the uniform
zeta map on orbits specialises to the zeta map on Dyck paths. Moreover, the uniform zeta map
with domain equal to the finite torus corresponds to the zeta map from vertically labelled Dyck
paths to diagonally labelled Dyck paths.

Theorem 6.1.2. [75, Thm. 5.6.3] Let Φ be a root system of type An−1. Then ζA = ϕ−1
A ◦ ζ ◦

ψ−1
A ◦ φA.

Proof. Let (s, x) ∈ Vert(An−1) such that s = drw(e, x)−1. Then Theorem 4.4.5 and
Proposition 3.3.6 imply that A◦ψ−1

A ◦φA(s, x) = AA(s, x) is dominant. Hence ζ ◦ψ−1
A ◦φ(s, x) =

[e,A] for some anti-chain A ∈ AC(Φ+). Set (e, y) = ϕ−1
A ([e,A]). We apply a useful trick due to

Thiel. The stabiliser of (s, x) is generated by{
sα : α = es(i) − es(i+1) where i is a rise of x

}
.

The stabiliser of [e,A] equals{
sα : α = ei − ej where (i, j) is a valley of y

}
.

Since ζ ◦ ψ−1
A ◦ φA is Sn-equivariant it follows that the two stabilisers coincide. It follows that

the valleys of y correspond precisely to the rises of x which proves ζA(s, x) = (e, y) because of
Lemma 2.6.1.
The claim for arbitrary s follows by using again the fact that the involved functions are Sn-

equivariant. �

6.2. From area to dinv

In this section the dinv-statistic on the finite torus is connected to the area-statistic on non-
nesting parking functions via the zeta map.

Lemma 6.2.1. Let α ∈ Φ+ be a positive root and x ∈ Q̌, s ∈W such that ωh+1 = txs. Then

〈ωh+1(0), α〉 =

{
ht(α) if s−1(α) ∈ Φ+,

ht(α) + 1 if s−1(α) ∈ −Φ+.

Proof. Choose v ∈ V such that 〈v, α〉 = ht(α)/h for all α ∈ Φ+. By [75, Thm. 3.6.2]
ωh+1(v) = (h+ 1)v. It follows that

〈ωh+1(0), α〉 = 〈(h+ 1)v − s(v), α〉 = ht(α) +
1

h

(
ht(α)− ht(s−1(α))

)
.

The claim follows since 〈x, α〉 is an integer. �

Theorem 6.2.2. Let Φ be an irreducible crystallographic root system with Weyl group W , coroot
lattice Q̌, Coxeter number h and zeta map ζ, and let X ∈ Q̌/(h + 1)Q̌. Let q ∈ Q̌ ∩ (h + 1)A◦
and w ∈W such that w(q) ∈ X is the canonical representative as in Lemma 4.2.2. Then

dinv(q) = area(ζ(q)) and dinv′(X) = area′(ζ(X)).

Proof. Choose ω ∈ W̃h+1
+ , x, y ∈ Q̌ and s, u, v ∈ W such that ωh+1 = txs, ω = tyu,

vω ∈ W̃h+1 and

w(q) = −vωω−1
h+1(0) = −v(y) + vus−1(x).

Theorem 6.1.1 yields

ζ(w(q) + (h+ 1)Q̌) = [wsu−1, us−1A].
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We prove the more precise statement that the bijection

I(us−1A)→
{
± su−1(β) : β ∈ I(us−1A)

}
∩ Φ+

maps the positive roots contributing to area(ζ(q)) to the positive roots contributing to dinv(q).
Furthermore this map restricts to a bijection between the positive roots contributing to area′

and dinv′.
On the one hand a computation shows that

〈q, α〉 = 〈x− su−1(y), α〉

= ht(α) +
1

h

(
ht(α)− ht(s−1(α))

)
− 〈y, us−1(α)〉

= ht(α)− 〈y, us−1(α)〉+

{
0 if s−1(α) ∈ Φ+,

1 if s−1(α) ∈ −Φ+,

for all α ∈ Φ+ due to Lemma 6.2.1.
On the other hand for each β ∈ Φ+ we have β ∈ us−1A if and only if Hβ,1 is a floor of ω(A◦)

by the definition of the zeta map. Thus

β ∈ I(us−1A)⇔ Hβ,1 does not separate ω(A◦) and A◦

⇔ ω−1(−β + δ) = −u−1(β) + (1− 〈y, β〉)δ ∈ Φ̃+

⇔ 〈y, β〉 = 0 or 〈y, β〉 = 1,−u−1(β) ∈ Φ+.

The proof is completed by distinguishing a few cases.
Let β ∈ Φ+ and choose α ∈ {±su−1(β)} ∩ Φ+. First assume 〈y, β〉 = 0 then u−1(β) ∈ Φ+ by

Lemma 5.4.7. Also 0 = 〈y, β〉 = 〈y, us−1(α)〉. If su−1(β) ∈ Φ+ then s−1(α) = u−1(β) ∈ Φ+ and
〈q, α〉 = ht(α). If su−1(β) ∈ −Φ+ then s−1(α) = −u−1(β) ∈ −Φ+. Hence 〈q, α〉 = ht(α) + 1.
Moreover wsu−1(β) ∈ Φ+ implies that w(α) ∈ Φ+ if and only if su−1(β) ∈ Φ+.
Secondly suppose that 〈y, β〉 = 1 and u−1(β) ∈ −Φ+. If su−1(β) ∈ Φ+ then s−1(α) ∈ −Φ+

and 〈y, us−1(α)〉 = 〈y, β〉 = 1. It follows that 〈q, α〉 = ht(α)− 1 + 1 = ht(α). If su−1(β) ∈ −Φ+

then s−1(α) ∈ Φ+ and 〈y, us−1(α)〉 = −1. Thus 〈q, α〉 = ht(α) + 1. Moreover, wsu−1(β) ∈ Φ+

implies that w(α) ∈ Φ+ if and only if su−1(β) ∈ Φ+.
Conversely let α ∈ Φ+ and choose β ∈ {±us−1(α)} ∩ Φ+. First assume 〈q, α〉 = ht(α). If
s−1(α) ∈ Φ+ then 0 = 〈y, us−1(α)〉 = 〈y, β〉. By Lemma 5.4.7 u−1(β) ∈ Φ+ and thus β =
us−1(α). Consequently w(α) ∈ Φ+ implies wsu−1(β) = w(α) ∈ Φ+. If s−1(α) ∈ −Φ+ then
〈y, us−1(α)〉 = 1 and therefore us−1(α) ∈ Φ+ since y ∈ C◦. We obtain 〈y, β〉 = 1 and u−1(β) =
s−1(α) ∈ −Φ+. Moreover w(α) ∈ Φ+ implies wsu−1(β) ∈ Φ+ as above.
Finally assume that 〈q, α〉 = ht(α) + 1. If s−1 ∈ Φ+ then 〈y, us−1(α)〉 = −1 and therefore
us−1(α) ∈ −Φ+ since y ∈ C◦. Hence 〈y, β〉 = 1 and −u−1(β) = s−1(α) ∈ Φ+. Moreover,
w(α) ∈ −Φ+ implies wsu−1(β) = −w(α) ∈ Φ+. If s−1 ∈ −Φ+ then 0 = 〈y, us−1(α)〉 =
〈y, β〉 and thus u−1(β) ∈ Φ+. It follows that β = −us−1(α) and hence w(α) ∈ −Φ+ implies
wsu−1(β) = −w(α) ∈ Φ+. �

Finally we give a proof that the dinv statistic of type An−1 is a special case of the uniform dinv
statistic.
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Proof of Theorem 4.5.1. Let (s, x) ∈ Vert(An−1) be a vertically labelled Dyck path.
Then

dinv′(s, x) = area′ ◦ζA(s, x)

= area′ ◦ϕA ◦ ζA(s, x)

= dinv′ ◦ζ−1 ◦ ϕA ◦ ζA(s, x)

= dinv′ ◦ψ−1
A ◦ φA(s, x),

where we use Theorem 2.6.2, Proposition 5.3.1, Theorem 6.2.2 and Theorem 6.1.2 in that order.
�

There exist generalisations of the algebraic background motivating the definition of q, t-Catalan
numbers that replace the symmetric group by a Weyl group. Consequently q, t-Coxeter–Catalan
numbers CΦ(q, t) can be defined as the bivariate Hilbert series of certain W -modules. See for
example [71, Appendix A] for a list of the first few polynomials obtained in this way. It is an
open problem to find a combinatorial interpretation of these polynomials.

Open Problem 6.2.3. Find a statistic tstat on the anti-chains in the root poset Φ+ such that

CΦ(q, t) =
∑

A∈AC(Φ+)

qarea(A)ttstat(A).

Alternatively, find a statistic tstat on the W -orbits of the finite torus Q̌/(h+ 1)Q̌ such that

CΦ(q, t) =
∑

q∈Q̌∩(h+1)A◦

qdinv(q)ttstat(q).

Problem 6.2.3 was suggested by Stump and remains unsolved beyond type An−1. Note that
even a partial solution in the form of a conjectured statistic say in type Bn or Cn would be of
interest.
One might assume at first glance that knowing the dinv statistic as well as the area statistic

should be sufficient to obtain the q, t-Catalan numbers, as is the case in type An−1. However,
let me emphasise that the dinv statistic is only known for W -orbits of the finite torus, while the
area statistic is only known for anti-chains of the root poset. It is a spectacular coincidence that
in type An−1 these two objects both correspond naturally to Dyck paths in such a way that the
area statistic, which is natural in the world of anti-chains, serves as the mysterious statistic tstat
in the world of W -orbits.

6.3. Combinatorics in type Cn

Let π ∈ Ln,n and for i ∈ [n] let qi denote the number of east steps of π preceding its i-th north

step. Moreover let x ∈ Q̌ and s ∈ SB
n be as in Lemma 4.4.2 (ii) such that ωCh+1 = txs. Define

the type Cn area vector of π as

µ = s(q − x) = s(q1 − 1, q2 − 2 . . . , qn − n) = (n− qn, . . . , 2− q2, 1− q1).

Indeed observe that µn−i+1 counts the number of unit squares in the i-th row between the path
π and the path (en)n ∈ Ln,n consisting of alternating north and east steps. In this regard µ
is quite similar to the type An−1 area vector of a Dyck path. The entries of the type Cn area
vector are negative whenever π is east of (en)n in the respective row. See Figure 6.1.
The following is an auxiliary result on area vectors for later use.

Lemma 6.3.1. [74, Lem. 4.11] Let π ∈ Ln,n be a lattice path with type Cn area vector µ.

(i) Let i, j ∈ [n] with i < j such that µj = µi − 1 and µ` /∈ {µi − 1, µi} for all ` with i < ` < j.
Then j = i+ 1.
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Figure 6.1. The lattice paths with type Cn area vectors (0, 0, 0, 0), (0,−1, 1, 1) and (1, 0,−1,−2).

(ii) For all i ∈ [n− 1] we have µi ≤ µi+1 + 1.
(iii) Let j ∈ [n] such that µj < 0. Then there exist i ∈ [j − 1] with µi = µj + 1.
(iv) Let i ∈ [n] such that µi > 1. Then there exists j ∈ [n] with i < j such that µj = µi − 1.
(v) Let i ∈ [n] such that µi = 1 and µ` /∈ {0, 1} for all ` ∈ [n] with i < `. Then i = n.

Proof. We start by proving claim (i). From µ = s(q−x) we obtain qn+1−` = n+1−`−µ` /∈
{n + 1 − ` − µi, n + 2 − ` − µi} for all ` with i < ` < j. Since qn+1−j = n + 2 − j − µi and
qn−` ≤ qn+1−` it follows inductively that n + 2 − ` − µi < qn+1−` for all ` with i < ` < j. But
this yields a contradiction for ` = i+ 1, namely qn−i > n+ 1− i− µi = qn+1−i. Thus j = i+ 1.
Claim (ii) is an immediate consequence of qn−i ≤ qn+1−i for all i ∈ [n− 1]. Claim (iii) follows

from (ii) and µ1 ≥ 0. Similarly claims (iv) and (v) follow from (ii) and µn ≤ 1. �

Let (w, π) ∈ SB
n × Ln,n be a vertically labelled lattice path and µ the type Cn area vector of

π. Define the type Cn diagonal reading word drwC(w, π) as follows: For each i = 0, 1, . . . , n first
write down the negative labels −w(j) of the rows with µn+1−j = −i from top to bottom, then
write down the labels w(j) of rows with µn+1−j = i+ 1 from bottom to top.

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

−5

−4

2

3

6

Figure 6.2. The diagonal reading order of type C6 indicated left, and a vertically labelled

lattice path with drwC(w, π) = [−2, 1, 3, 4, 6, 5] on the right.

The diagonal reading word of type Cn can also be read off quickly by scanning all unit squares
that may contain labels according to the diagonal reading order, which is indicated in Figure 6.2
(left).
The next result confirms that the diagonal reading word is the correct signed permutation. We

abbreviate Vert(Cn) = Vert(Cn, h+ 1).

Proposition 6.3.2. [74, Prop. 4.14] Let (w, π) ∈ Vert(Cn) be a vertically labelled lattice path
with area vector µ, let s be defined as in Lemma 4.4.2 (ii), and define u ∈ SB

n such that tµu
−1

is Graßmannian. Then drwC(w, π) = wsu−1.
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Figure 6.3. A vertically labelled lattice path and its image under the zeta map.

Proof. Let i, j ∈ [n] and recall that N = 2n+ 1. By definition we have |drwC(w, π)(i)| =
|w(j)| if and only if

i = #
{
r ∈ [n], |µr| < |µn+1−j |

}
+ #

{
r ∈ [n+ 1− j] : µr = µn+1−j > 0

}
+ #

{
r ∈ [n] : r ≥ n+ 1− j, µr = µn+1−j ≤ 0

}
+ #

{
r ∈ [n], µr = −µn+1−j > 0

}
=
{
r ∈ [n] : |µrN − r| ≤ |µn+1−jN − (n+ 1− j)|

}
.

By Lemma 1.5.4 we obtain
∣∣u−1(i)

∣∣ = n+ 1− j, hence

|drwC(w, π)(i)| = |w(j)| =
∣∣w(n+ 1−

∣∣u−1(i)
∣∣)∣∣ =

∣∣wsu−1(i)
∣∣ .

Moreover drwC(w, π)(i) = w(j) if and only if µn+1−j > 0. On the other hand su−1(i) = j
is equivalent to u−1(i) = −(n + 1 − j) < 0, which is the case if and only if µn+1−j > 0 by
Lemma 1.5.4. Thus we may drop the absolute values in the identity above and the proof is
complete. �

We are now in a position to define the combinatorial zeta map of type Cn, which is made up of
the building blocks defined in Section 1.2.
Define the type Cn zeta map on lattice paths ζC : Ln,n → B2n by

ζC(π) =←−w−n (µ)−→w+
n (µ)←−w−n−1(µ)−→w+

n−1(µ) · · ·←−w−1 (µ)−→w+
1 (µ)←−w−0 (µ)−→w+

0 (µ),

where µ is the type Cn area vector of π ∈ Ln,n. Define the type Cn zeta map on labelled paths
ζC : SB

n × Ln,n → SB
n × B2n by

ζC(w, π) =
(

drwC(w, π), ζC(π)
)
.

It is easy to see that ζC(π) really is a ballot path for all π ∈ Ln,n.
Our first main result of this section is the fact that the zeta map can be inverted using a

construction reminiscent of the bounce path of a Dyck path in type An−1.

Theorem 6.3.3. [74, Thm. 4.17] The map ζC : Ln,n → B2n is a bijection.

Proof. Let π ∈ Ln,n be a lattice path with type Cn area vector µ. For each k with
0 ≤ k ≤ n let αk denote the number of indices i ∈ [n] such that |µi| = k.
Define the bounce path of a ballot path β ∈ B2n as follows: start at the end point of β and go

south until you hit the diagonal. Bounce off it and travel to the west until you reach the upper
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end of a north step of β. Bounce off the path β to the south until you hit the diagonal again,
and repeat until you arrive at (0, 0).
Now suppose that β = ζC(π). By definition of the zeta map the end point of β is (n−α0, n+α0).

The bounce path of β meets the diagonal for the first time in the point (n − α0, n − α0), and
then travels west to the point (n− α0 − α1, n− α0), which is the starting point of the segment
←−w−0 (µ)−→w+

0 (µ). We claim that this point is a peak of the bounce path.
To see this note that Lemma 6.3.1 (iii) and (iv) imply that each non-empty segment ←−w−j (µ) or
−→w+
j (µ) ends with a north step, except possibly −→w+

0 (µ). In particular, the starting point of any

segment ←−w−j (µ)−→wj(µ) is either (0, 0) or the endpoint of a north step of β.
Inductively the peaks of the bounce path therefore encode the numbers α0, α1, . . . , αn.
Knowing α0 and α1 we can recover the number and relative order of zeroes, ones and minus

ones in µ from the segment ←−w−0 (µ)−→w+
0 (µ). Since ←−w−0 (µ) ends with a north step, we first obtain

the sequences ←−w−0 (µ) and −→w+
0 (µ) and thus the number occurrences of ones and minus ones in

µ. Moreover these paths encode the relative order of zeroes and minus ones, respectively the
relative order of zeroes and ones. The relative order of ones and minus ones is implied by the
following observation: If µi = 1 and µj = −1 for some i, j ∈ [n] with i < j then there exists `
with i < ` < j and µ` = 0 due to Lemma 6.3.1 (ii).
Similarly one now reconstructs the numbers of twos and minus twos, as well as the relative order

of zeroes, ones, minus ones, twos and minus twos, using the segment ←−w−1 (µ)−→w+
1 (µ). Continuing

in this fashion one recovers the entire area vector µ. Thus ζC is injective. Since Ln,n and B2n

both have cardinality
(

2n
n

)
it is also bijective. �

As an easy consequence of Theorem 6.3.3 it follows that the zeta map on labelled paths is
a bijection as well. More interesting is the result that this map restricts to a bijection from
vertically labelled lattice paths to diagonally labelled ballot paths.

Theorem 6.3.4. [74, Thm. 4.18] The zeta map ζC : Vert(Cn)→ Diag(Cn) is a bijection.

Theorem 6.3.4 follows from Theorem 6.3.5 below that relates the rises of a vertically labelled
path to the valleys of the corresponding diagonally labelled path.

Let (w, π) ∈ SB
n × Ln,n and i ∈ [n] be a rise of π. We say i is a rise of (w, π) labelled by

(w(i), w(i+ 1)). Similarly, let (v, β) ∈ SB
n × B2n and (i, j) be a valley of β. Then we say

(i, j) is a valley of (v, β) labelled by

{(
v(n+ 1− i), v(n+ 1− j)

)
if j ≤ n,(

v(n+ 1− i), v(n− j)
)

if j > n.

Note that with our usual way of picturing diagonally labelled ballot paths, each valley is labelled
by the number below it and the number to its right.

Theorem 6.3.5. [74, Thm. 4.20] Let (w, π) ∈ SB
n × Ln,n and a, b ∈ w([n]). Then (w, π) has a

rise labelled by (a, b) if and only if ζC(w, π) has a valley labelled by (b, a) or (−a,−b). Moreover
π begins with a north step and w(1) = a if and only if ζC(w, π) has a valley labelled by (a,−a).

Proof. (Part 1) We first assume that we are given a valley of ζC(w, π) and show that
there exists a fitting rise in (w, π). Let µ be the area vector of π. Choose u ∈ SB

n such that
tµu
−1 is a Graßmannian affine permutation, and define s ∈ SB

n as in Lemma 4.4.2 (ii). A valley
of ζC(π) can either occur within a sequence←−w−k (µ) or −→w+

k (µ), or if ζC(π) ends with an east step.
We treat these three cases independently. No valley may arise at the join of two such sequences
because of Lemma 6.3.1 (iii) and (iv).
(1.1) There is a valley within the sequence ←−w−k (µ). Then there exist indices i, j ∈ [n] with
i < j such that µi = −k, µj = −k − 1 and µ` /∈ {−k − 1,−k} for all ` with i < ` < j. By
Lemma 6.3.1 (i) we have j = i + 1. Hence qn−i = n − i − µi+1 = n + 1 − i − µi = qn+1−i
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and n − i is a rise of π. We claim that the labels of our valley are compatible with the labels
(w(n− 1), w(n− i+ 1)) of this rise.
Suppose (x, y) is our valley. Then x equals the number of east steps in the sequence

←−w−n (µ)−→w+
n (µ) · · ·←−w−k+1(µ)−→w+

k+1(µ)←−w−k (µi+1, . . . , µn).

In other words

x = #
{
r ∈ [n] : |µr| > k + 1

}
+ #

{
r ∈ [n] : r ≥ i+ 1, µr = −k − 1

}
= #

{
r ∈ [n] : |µrN − r| ≥ |(−k − 1)N − (i+ 1)|

}
.

By Lemma 1.5.4 we obtain

n+ 1− x = #
{
r ∈ [n] : |µrN − r| ≤ |µi+1N − (i+ 1)|

}
= |u(i+ 1)| .

Since µi+1 ≤ 0 we have u(i+ 1) > 0 and thus

drwC(w, π)(n+ 1− x) = wsu−1(n+ 1− x) = ws(i+ 1) = −w(n− i).
Similarly y equals the number of north steps in the sequence

←−w−n (µ)−→w+
n (µ) · · ·←−w−k+1(µ)−→w+

k+1(µ)←−w−k (µi, . . . , µn).

We may rewrite this as

y = #
{
r ∈ [n] : |µr| > k

}
+ #

{
r ∈ [n] : r ≥ i, µr = −k

}
= #

{
r ∈ [n] : |µrN − r| ≥ |−kN − i|

}
.

As before Lemma 1.5.4 provides

n+ 1− y = #
{
r ∈ [n] : |µrN − r| ≤ |µiN − i|

}
= |u(i)| = u(i)

and we compute

drwC(w, π)(n+ 1− y) = wsu−1(n+ 1− y) = ws(i) = −w(n+ 1− i).

(1.2) The valley appears within the sequence −→w+
k (µ). Then there exist indices i, j ∈ [n] with

i < j such that µi = k + 1, µj = k and µ` /∈ {k, k + 1} for all ` with i < ` < j. We obtain
j = i+ 1 and n− i is a rise of π just as in (1.1).
Let (x, y) be our valley. Then x equals the number of east steps in

←−w−n (µ)−→w+
n (µ) · · ·←−w−k (µ)−→w+

k (µ1, . . . , µi).

Equivalently

x = #
{
r ∈ [n] : |µr| > k + 1

}
+ #

{
r ∈ [n] : µr = −k − 1

}
+ #

{
r ∈ [i] : µr = k + 1

}
= #

{
r ∈ [n] : |µrN − r| ≥ |(k + 1)N − i|

}
.

Since µi > 0 Lemma 1.5.4 implies

n+ 1− x = #
{
r ∈ [n] : |µrN − r| ≤ |µiN − i|

}
= |u(i)| = −u(i)

and we compute

drwC(w, π)(n+ 1− x) = wsu−1(n+ 1− x) = −ws(i) = w(n+ 1− i).
On the other hand y equals the number of north steps in the sequence

←−w−n (µ)−→w+
n (µ) · · ·←−w−k (µ)−→w+

k (µ1, . . . , µi+1).

If k > 0 then

y = #
{
r ∈ [n] : |µr| > k

}
+ #

{
r ∈ [n] : µr = −k

}
+ #

{
r ∈ [i+ 1] : µr = k

}
= #

{
r ∈ [n] : |µrN − r| ≥ |kN − (i+ 1)|

}
,
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and Lemma 1.5.4 provides

n+ 1− y = #
{
r ∈ [n] : |µrN − r| ≤ |µi+1N − (i+ 1)|

}
= |u(i+ 1)| = −u(i+ 1).

In particular y ≤ n and we compute

drwC(w, π)(n+ 1− y) = wsu−1(n+ 1− y) = −ws(i+ 1) = w(n− i).

Otherwise k = 0 and

y = n+ #
{
r ∈ [i+ 1] : µr = 0

}
= n+ #

{
r ∈ [n] : |µrN − r| ≤ i+ 1

}
.

From Lemma 1.5.4 we obtain

y − n = #
{
r ∈ [n] : |µrN − r| ≤ |µi+1N − (i+ 1)|

}
= |u(i+ 1)| = u(i+ 1).

Since y > n the second label of the valley is given by

drwC(w, π)(n− y) = −wsu−1(y − n) = −ws(i+ 1) = w(n− i).

(1.3) The path ζC(π) ends with an east step. Then there exists i ∈ [n] such that µi = 1 and
µ` /∈ {0, 1} for all ` with i < `. From Lemma 6.3.1 (v) we know that i = n. Consequently
q1 = 1− µn = 0 and π begins with a north step.
Let (x, y) be the valley above the final east step. Then x equals the number of east steps in
ζC(π), that is,

x = #
{
r ∈ [n] : |µr| > 0

}
= #

{
r ∈ [n] : |µrN − r| ≥ n+ 1

}
n+ 1− x = #

{
r ∈ [n] : |µrN − r| ≤ |µnN − n|

}
= |u(n)| = −u(n).

The valley’s first label is

drwC(w, π)(n+ 1− x) = wsu−1(n+ 1− x) = −ws(n) = w(1).

On the other hand, y equals the number of north steps of ζC(π) plus one. We have

y = n+ 1 + #
{
r ∈ [n] : |µrN − r| ≤ n

}
y − n = #

{
r ∈ [n] : |µrN − r| ≥ n+ 1

}
= −u(n).

Hence the valley’s second label is

drwC(w, π)(n− y) = −wsu−1(y − n) = ws(n) = −w(1).

(Part 2) To complete the proof we need to demonstrate the reverse implication. Thus assume
that i ∈ [n− 1] is a rise of π, that is, qi = qi+1. Then µn+1−i = i− qi and µn−i = i+ 1− qi+1 =
µn+1−i + 1.
If µn−i = −k ≤ 0 then µn+1−i = −k−1 and we are in the situation of (1.1). If µn−i = k+1 > 0

then µn+1−i = k and we are in the situation of (1.2).
Finally assume that π begins with a north step. Then q1 = 0 and µn = 1 − q1 = 1. Hence we

are in the situation of (1.3). �

By use of Theorem 6.3.5 one can prove that the combinatorial zeta map ζC is equivalent to the
uniform zeta map under the identification of the finite torus with vertically labelled lattice paths
and of the non-nesting parking functions with diagonally labelled ballot paths.

Theorem 6.3.6. [74, Thm. 4.21] Let Φ be a root system of type Cn with coroot lattice Q̌ and
zeta map ζ. Then the following diagram commutes.
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Q̌/(2n+ 1)Q̌ Park(Φ)

Vert(Cn) Diag(Cn)

ζ

ζC

ψC ϕC

Proof. Let (w, π) ∈ Vert(Cn) and (v, β) = ζC(w, π) ∈ Diag(Cn). Moreover let q be the
partition with south-east boundary π, define s ∈ SB

n as in Lemma 4.4.2 (ii), and let µ be the
area vector of π. Choose u ∈ SB

n such that tµu
−1 is a Graßmannian affine permutation.

Comparing to Theorem 6.1.1 it suffices to show that v = wsu−1 and ACβ = A, where

A =
{
us−1(α) : α ∈ ∆ ∪ {−α̃C} and sα(q) = q

}
.

The claim on the diagonal reading word is established by an appeal to Proposition 6.3.2.
To see the claim involving the anti-chains we first prove that A ⊆ ACβ . To this end let i ∈ [n−1].

Then us−1(αi) ∈ A implies qi = qi+1 and i is a rise of π. By Theorem 6.3.5 (v, β) has a valley
(x, y) labelled by (w(i+ 1), w(i)) or (−w(i),−w(i+ 1)). Moreover, a closer look at the proof of
Theorem 6.3.5 reveals that the second case only occurs if y ≤ n. That is,

w(i+ 1) = v(n+ 1− x) or −w(i) = v(n+ 1− x),

w(i) =

{
v(n+ 1− y) if y ≤ n,
v(n− y) if y > n,

−w(i+ 1) = v(n+ 1− y) and y ≤ n.

Multiplication by w−1 in the above identities yields

i+ 1 = su−1(n+ 1− x) or −i = su−1(n+ 1− x)

i =

{
su−1(n+ 1− y) if y ≤ n,
su−1(n− y) if y > n,

−i− 1 = su−1(n+ 1− y) and y ≤ n.

We obtain

us−1(αCi ) = αx,y ∈ ACβ .

Furthermore us−1(α0) ∈ A yields q1 = 0 and thus π begins with a north step. By Theorem 6.3.5
this is equivalent to (v, β) ending with an east step such that the corresponding valley (x, y) has
labels (v(n+ 1− x), v(n− y)) = (v(1),−v(1)). Thus su−1(n+ 1− x) = 1 = su−1(y − n) and we
obtain

us−1(αC0 ) = αx,y ∈ ACβ .

Finally since we already observed that us−1(−α̃C) /∈ A, the first inclusion holds.
Conversely, let αx,y ∈ ACβ . By similar reasoning as above it follows that su−1(αx,y) is of the

form ei+1 − ei for a rise i of π, unless the valley comes from a terminal east step of β, in which
case π begins with a north step and su−1(αx,y) = 2e1 = αC0 . Hence, the second inclusion ACβ ⊆ A
holds as well and the proof is complete. �

In the remainder of this section we provide another interpretation of the type Cn zeta map that
is in the spirit of the type An−1 sweep map defined in Section 2.7. Recall the concept of the
sweep map: Given a path one assigns to each step a label, the labels being distinct integers. To
obtain the image of a path under the sweep map, one rearranges the steps such that the labels
are in increasing order.
Let π = s1s2, . . . , s2n ∈ Ln,n with si ∈ {e,n}. Assign a label `i to each step si by setting `1 = 0,

and `i+1 = `i + 2n + 1 if si = n, and `i+1 = `i − 2n if si = e. Define a collection X of labelled
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steps as follows. If `i < 0 then add (si, `i) to X. If `i > 0 then add (si−1,−`i). Finally, for the
step s1 which is the only step labelled 0, add (s2n,−n). Thus X contains 2n labelled steps.
Now draw a path as follows. Choose (s, `) ∈ X such that ` is the minimal label among all pairs

in X. Draw the step s and remove (s, `) from X. Repeat until X is empty. We denote the path
obtained in this way by sw(π). The resulting map sw : Ln,n → {e,n}∗ is called the sweep map
of type Cn. See Figure 6.4.

13 1 −11−23

30 18

0

−35

−22

−9

4

17 −11 −23 −35 −22 −9

−13 −1 −4

−17 −30 −18
−6

−35

−30

−22

−17

−13

−9

−4

−23

−18

−11

−6

−1

Figure 6.4. The labelling of π (left), the set X of labelled steps (middle), and the path sw(π)

of steps in increasing order (right).

Theorem 6.3.7. [74, Thm. 4.22] For each lattice path π ∈ Ln,n we have sw(π) = ζC(π). In
particular the sweep map sw : Ln,n → B2n is a bijection.

Proof. The proof consists of a straightforward but rather tedious case-by-case analysis of
the involved labels. Let µ be the type Cn area vector of a path π ∈ Ln,n. We use the following
notation. The label of the i-th north step of π is denoted by `ni . The corresponding labelled step
which is added to X is denoted by (sni , x

n
i ).

We pair each north step with an east step. If the north step has a non-negative label, this is the
next east step in the same diagonal. If the north step has a negative label, this is the previous
east step in the same diagonal. We denote by `ei the label of the east step corresponding to the
i-th north step, and by (sei , x

e
i ) the associated labelled step in X.

For example in Figure 6.4 we have `n4 = −9, (sn4 , x
n
4 ) = (n,−9), `e4 = 1, and (se4, x

e
4) = (e,−1).

Also `n6 = 17, (sn6 , x
n
6 ) = (n,−17), `e6 = 30, and (se6, x

e
6) = (n,−30).

The label of the i-th north step is

`ni = (i− 1)(2n+ 1)− (i− µn−i+1)(2n) = 2n(µn−i+1 − 1) + i− 1.(6.1)

First consider the case µn−i+1 > 0. Then

2n|µn−i+1| − 2n ≤ `ni < 2n|µn−i+1| − n.
If i > 1 then xni = −`ni . If i = 1 then xni = −n. Hence

−2n|µn−i+1|+ n ≤ xni < −2n|µn−i+1|+ 2n.

On the other hand, if µn−i+1 ≤ 0 then

−2n|µn−i+1| − 2n ≤ `ni = xni < −2n|µn−i+1| − n.
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Now, let us treat the east steps. We start with the case µn−i+1 > 0. Then

`ei = `ni + 2n+ ki = 2n|µn−i+1|+ i− 1 + ki,

for some ki ∈ [n− i+ 1]. Since xei = −`ei , we obtain

−2n|µn−i+1| − n ≤ xei < −2n|µn−i+1|.(6.2)

If µn−i+1 ≤ 0 then

`ei = `ni + 2n− ki = −2n|µn−i+1|+ i− 1− ki,
for some ki ∈ {0, . . . , i− 1}. If µn+i−1 < 0 then

−2n|µn−i+1| ≤ `ei = xei < −2n|µn−i+1|+ n.

Finally assume µn−i+1 = 0. If `ei = 0 then xei = −n. Otherwise xei = −`ei . Combined this yields

−n ≤ xei < 0,

which is a special case of (6.2).

We make the following observation. If −2nk ≤ xsi < −2nk + n, where k = 1, 2, . . . , then either
s = e and µn−i+1 = −k, or s = n and µn−i+1 = −k+1. Similarly, if −2nk+n ≤ xsi < −2nk+2n,
where k = 1, 2, . . . , then either s = n and µn−i+1 = k or s = e and µn−i+1 = k − 1.
Thus by definition the path sw(π) is composed of segments T (−k,−k + 1), T (k − 1, k), where
k = 1, 2, . . . , such that each step of T (−k,−k + 1) corresponds to an entry of the area vector
µn−i+1 ∈ {−k,−k + 1}, and each step of T (k − 1, k) corresponds an entry µn−i+1 ∈ {k − 1, k}.
This is a good sign because the path ζC(π) is also composed of segments with the same property.

Indeed we will carry out the proof by showing that T (−k,−k+ 1) =←−w−k−1(µ) and T (k− 1, k) =
−→w+
k−1(µ).

We first prove that T (−k,−k + 1) = ←−w−k−1(µ) for k ≥ 1. As µn−i+1 = −k < 0 implies
xei = `ei < 0 and µn−i+1 = −k + 1 ≤ 0 implies xni = `ni < 0, we have sei = e and snj = n.
That is, every entry µn−i+1 = −k will contribute an east step while each entry µn−i+1 = −k+ 1
contributes a north step. This is consistent with the definition of the zeta map. Therefore, it
suffices to check that i < j implies

xei < xnj if µn−j+1 = −k + 1, µn−i+1 = −k,(6.3)

xni < xej if µn−j+1 = −k, µn−i+1 = −k + 1.(6.4)

Inequality (6.3) is trivial as

xei = −2nk + i− 1− ki < 2n(−k + 1− 1) + j − 1 = xnj .

To see (6.4) note that µn−j+1 = −k and µn−i+1 = −k + 1 imply that the path π has an east
step in the same diagonal as its i-th north step somewhere between its i-th and j-th north steps.
That is, kj ≤ j − i− 1 and therefore

xni = 2n(−k + 1− 1) + i− 1 < −2nk + j − 1− kj = xej .

Next we show that T (k− 1, k) = −→w+
k−1(µ) for k ≥ 2. In this case µn−i+1 = k > 1 implies `ni > 0

and µn−i+1 = k − 1 > 0 implies `ei > 0. This case is more difficult (confusing) because we do
not necessarily have sei = e and snj = n. Instead, if µn−i+1 = k − 1 and µn−j+1 = k then

sei =

{
e if µn−i = k,

n if µn−i ≤ k − 1 or i = n,
snj =

{
n if µn−j+2 = k − 1,

e if µn−j+2 ≥ k.

Thus an entry µn−i+1 = k − 1 contributes an east step instead of a north step if and only if
the previous entry µn−i = k contributes a north step instead of an east step. We see that the
number of east and north steps in T (k − 1, k) is consistent with the definition of the zeta map.
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To see that also the relative orders of the steps in T (k − 1, k) and −→w+
k−1(µ) agree, it suffices to

prove that i < j implies

xej < xei if µn−j+1 = µn−i+1 = k − 1,(6.5)

xnj < xni if µn−j+1 = µn−i+1 = k,(6.6)

xej < xni if µn−j+1 = k − 1, µn−i+1 = k.(6.7)

Moreover, let i < j, µn−j+1 = k and µn−i+1 = k − 1. Then we require that

xei < xnj(6.8)

if and only if there exists no r such that i < r < j and µn−r+1 = k − 1.
From (6.5)–(6.8) it follows that the order of the steps is (almost) obtained by reading the area

vector from left to right drawing sei whenever µn−i+1 = k − 1, and sni whenever µn−i+1 = k.
The only exception to this rule is when µn−i+1 = k − 1 and µn−i = k. In this case one has to
draw the step sei = e before the step sni+1 = n. 1

We now prove the claims (6.5)–(6.8). If i < j and µn−i+1 = µn−j+1 = k− 1 then there must be
an east step on the diagonal between the i-th and j-th north steps of π. Hence ki ≤ j − i and
we obtain (6.5).

xei = −2n(k − 1)− i+ 1− ki ≥ −2n(k − 1)− j + 1 > −2n(k − 1)− j + 1− kj = xej

The inequalities (6.6) and (6.7) are trivial as

xni = −2n(k − 1)− i+ 1 >

{
−2n(k − 1)− j + 1 = xnj ,

−2n(k − 1)− j + 1− kj = xej .

To see claim (6.8), first assume that there is no r with i < r < j and µn−r+1 = k − 1. Then
ki ≥ j − i+ 1 and

xei = −2n(k − 1)− i+ 1− ki ≤ −2n(k − 1)− j < −2n(k − 1)− j + 1 = xnj .

On the other hand, if there is such an r then ki ≤ r − i < j − i and we obtain

xei = −2n(k − 1)− i+ 1− ki > −2n(k − 1)− j + 1 = xnj .

Finally, we need to show T (0, 1) = −→w+
0 (µ). Let µn−j+1 = 0 and assume `ej 6= 0. Then

xej = −j + 1 + kj . Choose i maximal such that i < j and µn−i+1 ∈ {0, 1}. Note that such an i
always exists. Then

sej =

{
n if µn−i+1 = 0,

e if µn−i+1 = 1.

If `ej = 0 then xej = −n. In this case µn−i+1 < 0 for all i < j. Instead choose i ≤ n maximal
such that µn−i+1 ∈ {0, 1}. Then

sej =

{
n if µn−i+1 = 0,

e if µn−i+1 = 1.

Now let µn−j+1 = 1 and assume j > 1. Then xnj = −j + 1. Choose i maximal such that i < j
and µn−i+1 ∈ {0, 1}. Again such an i always exists. Then

snj =

{
n if µn−i+1 = 0,

e if µn−i+1 = 1.

1In fact, one also draws sei = e before all the east steps coming from entries of the area vector equal to
k occurring between the (n − i + 1)-th and the (n − t + 1)-th entry, where t is minimal such that i < t and
µn−t+1 = k − 1. However, permuting east steps clearly has no effect on the resulting path.
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If j = 1 then `nj = 0 and xnj = −n. In this case choose i ≤ n maximal such that µn−i+1 ∈ {0, 1}.
Then

snj =

{
n if µn−i+1 = 0,

e if µn−i+1 = 1.

We see that every entry of the area vector equal to zero contributes a north step and every entry
equal to one contributes an east step. Again this is consistent with the zeta map. To see that
the relative orders of north and east steps in T (0, 1) and −→w+

0 (µ) are the same, it suffices to show
that for all i < j

−n < xei if `ei 6= 0,

−n < xni if i > 1,

xej < xei if µn−j+1 = µn−i+1 = 0, `ei 6= 0,

xnj < xni if µn−j+1 = µn−i+1 = 1, i > 1,

xej < xni if µn−j+1 = 0, µn−i+1 = 1, i > 1,

xnj < xei if µn−j+1 = 0, µn−i+1 = 1, `ei 6= 0.

�

6.4. Combinatorics in type Dn

⊕
	

Figure 6.5. Signed lattice paths with area vectors (0,−1, 2, 1, 0), (−1, 0, 0, 0, 1, 0) and (−3, 2, 1, 0, 2).

Let π ∈ L•n−1,n be a signed lattice path, and define q = ψD(π) as in Proposition 4.3.5, and x ∈ Q̌
and s ∈ SD

n as in Lemma 4.4.2 (iii). We define the type Dn area vector of π as µ = s(q − x).

Indeed note that for 1 < i < n the entry µi counts the number of unit squares in the i-th row
between the path π and the alternating path n(en)n−1 ∈ Ln−1,n (the number being negative
while π is above n(en)n−1). Furthermore µ1 counts the number of unit squares in the first row
up to a sign, while µn is a little mysterious if one only looks at the picture of π.
The description of the representatives for the orbits of the Weyl group action on the finite torus

imposes certain restrictions on the area vector of a signed lattice path. The following lemma
captures some of these properties.

Lemma 6.4.1. [74, Lem. 5.16] Let π ∈ L•n−1,n be a signed lattice path with area vector µ.

(i) Let i, j ∈ [n] with i < j such that µj = µi − 1 and µ` /∈ {µi − 1, µi} for all ` with i < ` < j.
Then j = i+ 1.

(ii) Let i ∈ [n] such that µi ≤ 0 and µ` /∈ {µi, µi + 1} for all ` with 1 ≤ ` < i. Then i = 1 or
i = 2, µ2 = 0.

(iii) If µ1 < 0 then there exists i ∈ [n] with µi ∈ {−µ1 − 1,−µ1}.
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(iv) Assume µ1 < 0 and let i ∈ [n] such that µi = −µ1 − 1 and µ` /∈ {−µ1,−µ1 − 1} for all `
with 1 < ` < i. Then i = 2.

(v) Let i ∈ [n] such that µi > 0 and µ` /∈ {µi − 1, µi} for all ` with i < ` ≤ n. Then i = n.
(vi) If µn > 0 then there exists i ∈ [n] with µi ∈ {−µn − 1,−µn}.

(vii) Assume µn > 0 and let i ∈ [n − 1] such that µi = −µn + 2 and µ` /∈ {−µn + 1,−µn + 2}
for all ` with i < ` < n. Then i = n− 1.

Proof. We first prove claim (i). From q = s(µ) + x we obtain q` = µ` + `− 1 for all ` with
1 < ` < n. Thus, in the described situation we have q` /∈ {µi + ` − 2, µi + ` − 1} for all ` with
i < ` < j. If n − 1 ≡ 0, 3 modulo 4 or if j < n then qj = µi + j − 2. Hence q` ≤ q`+1 implies
q` < µi + `− 2 for all ` with i < ` < j. On the other hand if n− 1 ≡ 1, 2 modulo 4 and j = n,
then qn = −µi + n + 1. Since qn−1 + qn ≤ 2n− 1 we obtain that qn−1 ≤ µi + n− 2, and again
we have q` < µi + ` − 2 for all ` with i < ` < j. But for ` = i + 1 this yields a contradiction,
namely |qi| = |µi + i− 1| ≤ qi+1 < µi + i− 1. Therefore we must have j = i+ 1.
To see (ii) note that by the same argument as in the proof of (i) we obtain q` < µi + `− 1 for

all ` with 1 < ` < i. Thus if i > 2 then 0 ≤ q2 < µi + 1 implies µi = 0, q2 = 0 and µ1 = q1 = 0,
which is a contradiction. If i = 2 and µ2 = −1 then q2 = 0 and µ1 = q1 = 0, which is again a
contradiction. Hence either i = 1 or i = 2 and µ2 = 0 as claimed.
To see claim (iii) assume that µi /∈ {−µ1 − 1,−µ1} for all i ∈ [n]. From qi ≥ |qi−1| we obtain
qi > i− 1− µ1 ≥ i for all i with 1 < i < n. In particular qn−1 ≥ n, which is a contradiction.
Similarly in the situation of (iv) we have q` > `− 1− µ1 for all ` with 1 < ` < i. If 2 < i < n,

then we obtain qi−1 > i− 2−µ1 = qi which is a contradiction. If i = n > 2 then qn−1 ≥ n is the
same contradiction as in the proof of (iii). Thus i = 2 by elimination.
In the situation of (v) we have q` > `−1 +µi ≥ ` for all ` with i < ` < n by the same argument

as in the proof of (iii). Hence, if i < n − 1 then qn−1 ≥ n is a contradiction. If i = n − 1 and
µn−1 = 1, then qn−1 = n−1. Therefore qn ∈ {n−1, n} and µn ∈ {0, 1}, which is a contradiction.
The only remaining possibility is i = n.
To see (vi) assume that µ` /∈ {−µn − 1,−µn} for all ` ∈ [n]. Then, by similar reasoning as in

the proof of (i), we have q` < `− µn − 2 for all ` with 1 < ` < n. This yields a contradiction for
` = 2.
Next consider claim (vii). If n− 1 ≡ 0, 3 modulo 4 then 2n− 1− qn = n− µn. If n− 1 ≡ 1, 2

modulo 4 then qn = n−µn. In both cases we have qn−1 ≤ n−µn. Hence q` /∈ {`−µn, `−µn+1}
implies q` < ` − µn for all ` with i < ` < n. This yields a contradiction for ` = i + 1, namely
qi+1 < i+ 1− µn = |qi|. Therefore we must have i = n− 1. �

Let (w, π) ∈ SB
n × L•n−1,n be a pair of a signed permutation and a signed lattice path, and let

µ denote the type Dn area vector of π. Define the type Dn diagonal reading word drwD(w, π)
of (w, π) as follows: For each i = 0, 1, 2, . . . first write down the labels w(j) of the rows with
µj = −i from bottom to top, then write down the negative labels −w(j) of rows with µj = i+ 1
from top to bottom. Finally we need to adjust some signs: Multiply the label coming from the
top row by (−1)1+µn−1+µn and the label coming from the bottom row by ε(π)(−1)1+xn−1+xn .
Then change the sign of drwD(w, π)(1) if the number of positive entries of µ is odd.

Except for some necessary twists, the definition of the diagonal reading word of type Dn follows
very similar rules as the counterparts in types An−1 and Cn. Note that drwD(w, π) ∈ SD

n , that
is, the diagonal reading word has an even number of sign changes, if and only if w ∈ SB

n uπ,
where uπ is defined as in (4.1).

The following proposition asserts that our definition always yields the desired signed permuta-
tion. We denote Vert(Dn) = Vert(Dn, h+ 1).
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Proposition 6.4.2. [74, Prop. 5.19] Let (w, π) ∈ Vert(Dn) be a vertically labelled signed lattice
path with area vector µ and choose u ∈ SD

n such that tµu
−1 is Graßmannian. Moreover let uπ ∈

SB
n be defined as in (4.1), and s ∈ SD

n as in Lemma 4.4.2 (iii). Then drwD(w, π) = wuπsu
−1.

Proof. By Lemma 1.5.4 we have
∣∣u−1(i)

∣∣ = j if and only if

i = #
{
r ∈ [n], |µr| < |µj |

}
+ #

{
r ∈ [n] : j ≤ r ≤ n, µr = µj > 0

}
+ #

{
r ∈ [j], µr = µj ≤ 0

}
+ #

{
r ∈ [n], µr = −µj > 0

}
.

Comparing this to the definition of drwD(w, π) we obtain

|drwD(w, π)(i)| = |w(j)| =
∣∣wu−1(i)

∣∣ =
∣∣wuπsu−1(i)

∣∣ .
Comparing Lemma 1.5.4 to the description of uπ, s and the definition of the diagonal reading
word, one can check that all signs work out and we may indeed drop the absolute value in the
above identity. Compare with the proof of Proposition 6.5.1. �

We are now in a position to present the definition of the combinatorial zeta map.
Define the type Dn zeta map on lattice paths ζD : L•n−1,n → B•2n−1 by mapping be a signed

lattice π path with area vector µ to the path obtained from

←−w−2n−1(µ)−→w+
2n−1(µ)←−w−2n−2(µ)−→w+

2n−2(µ) · · ·←−w−1 (µ)−→w+
1 (µ)←−w−0 (µ)−→w+

0 (µ),

by deleting the last step and, if its n-th north step is followed by an east step, adding a sign to
this east step such that

ε(ζD(π)) = (−1)#{r∈[n]:µr>0}.

Moreover, define the type Dn zeta map on labelled objects ζD : SB
n ×L•n−1,n → SB

n ×B•2n−1 via

ζD(w, π) = (drwD(w, π), ζD(π)).

Note that by definition the image ζD(π) of a signed lattice path is a signed ballot path, that is,
we really obtain a map ζD : L•n−1,n → B•2n−1. See Figures 6.6, 6.7 and 6.8 for examples.

The following theorem is the main result of this section.

Theorem 6.4.3. [74, Thm. 5.22] The zeta map restricts to a bijection ζD : Vert(Dn) →
Diag(Dn) from vertically labelled signed lattice paths to diagonally labelled signed ballot paths.
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Our strategy for proving Theorem 6.4.3 is to demonstrate that the type Dn zeta map with
domain Vert(Dn) is equivalent to the uniform zeta map defined in Section 6.1. More precisely,
Theorem 6.4.3 follows from Theorems 6.4.8 and 6.4.9 below.
Note that Theorem 6.4.3 immediately implies the bijectivity of the map ζD : L•n−1 → B•n−1

since the underlying ballot path of ζD(w, π) only depends on π and not on w.

Theorem 6.4.4. [74, Thm. 5.23] The map ζD : L•n−1,n → B•2n−1 is a bijection from signed
lattice paths to signed ballot paths. �

So far using Theorem 6.4.3 is our only way of proving Theorem 6.4.4. Compare with the proof
of Theorem 6.3.3.

Open Problem 6.4.5. Find a combinatorial description of the inverse of the map ζD : L•n−1,n →
B•2n−1 (perhaps using some kind bounce paths).

Given any signed path π define π∗ as the path obtained from π by replacing all signed east
steps e+, e− by simple east steps e. Set ζ∗D(π∗) = (ζD(π))∗ for all π ∈ L•n−1,n. The zeta map
of type Dn thereby gives rise to a new bijection between lattice paths in an n− 1× n rectangle
and ballot paths of odd length.

Theorem 6.4.6. [74, Thm. 5.24] The map ζ∗D : Ln−1,n → B2n−1 is a well-defined bijection.

Proof. Suppose π, ρ ∈ L•n−1,n differ only by the sign of the initial east step. Then their
respective area vectors differ only by the sign of the first entry. It is easy to see that ζD(π) and
ζD(ρ) can only differ by the sign of an east step. For example, suppose a = (k, a2, . . . , a2) and
b = (−k, a2, . . . , an), where k > 0, then

←−w−k (a)n =←−w−k (b) and −→w+
k (a) = n−→w+

k (b).

Hence

←−w−k (a)−→w+
k (a) =←−w−k (b)−→w+

k (b).

Consequently ζ∗D is well-defined and bijectivity follows from Theorem 6.4.4. �

Before we attack the proof of Theorem 6.4.3 we need another auxiliary result.
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Lemma 6.4.7. [74, Lem. 5.25] Let π be a signed lattice path with area vector µ, and let i ∈ [n]
be such that

1 = #
{
r ∈ [n] : |µrN − r| ≤ |µiN − i|

}
.

Then either i is minimal such that µi = 0 or µj 6= 0 for all j ∈ [n], µn = 1 and i = n.

Proof. Clearly µi 6= 0 implies that µ` 6= 0 for all ` ∈ [n]. Moreover µ` 6= 0 for all ` ∈ [n]
and µn = 1 implies i = n. Thus assume that µ` 6= 0 for all ` ∈ [n] and µn 6= 1. From
qn−1 ≤ min{qn, 2n − 1 − qn} we obtain µn−1 < 0. Thus µ` < 0 for all ` with 1 < ` < n which
yields a contradiction for ` = 2. �

As in types An−1 and Cn there exists a correspondence between the rises of (w, π) and the
valleys of ζD(w, π).
Let (w, π) ∈ SB

n × L•n−1,n and i be a rise of π. We say i is a rise of (w, π) labelled by
(w(i), w(i + 1)). In the special case where π begins with two north steps and i = 1, we say i is
labelled by (± |w(i)| , w(i+ 1)) instead. Similarly let (v, β) ∈ SD

n × B•2n−1 and (i, j) be a valley
of β. We say

(i, j) is a valley of (v, β) labelled by


(
v(n+ 1− i), v(n+ 1− j)

)
if j < n,(

v(n+ 1− i), ε(β)v(1)
)

if j = n,(
v(n+ 1− i), ε(β)v(−1)

)
if j = n+ 1,(

v(n+ 1− i), v(n− j)
)

if j > n+ 1.

Recall that there is a special convention concerning the valleys of signed ballot paths. If j = n
and the n-th north step of β is not followed by an east step, then we count both (i, n) and
(i, n+ 1) as valleys. These two valleys are labelled (v(n+ 1− i),± |v(1)|).
Note that by placing the labels v(i), where i = n, . . . , 2, ε(β),−ε(β),−2, . . . ,−n, in the diagonal,

each valley is labelled by the number below it and the number to its right.

Theorem 6.4.8. [74, Thm. 5.26] Let (w, π) ∈ SB
n × L•n−1,n and a, b ∈ w([n]). Then (w, π)

has a rise labelled (a, b) if and only if ζD(w, π) has a valley labelled (b, a) or (−a,−b). Moreover
(w, π) has a rise labelled (± |a| , b) if and only if ζD(w, π) has valleys labelled (b,± |a|).

Proof. Let πi denote the number of east steps that occur before the i-th north step of π.
Let q = ψD(pi) ∈ Q̌ ∩ (h + 1)A◦, let µ be the type Dn area vector of π and choose u ∈ SD

n

such that tµu
−1 is Graßmannian. Define uπ ∈ SB

n as in Theorem 4.3.6 and s ∈ SD
n as in

Lemma 4.4.2 (iii).
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(Part 1) We start out by demonstrating the backward implication. Therefore assume that
ζD(π) has a valley (x, y). Recall that ζD(π) is the concatenation of sequences←−w−k (µ) and −→w+

k (µ),
thus there are multiple situations in which a valley can arise: within such a sequence or at the
join of two sequences. These cases, while being similar, have to be treated separately.
(1.1) The valley (x, y) appears within a sequence ←−w−k (µ). Then there exist indices i, j ∈ [n]

with i < j such that µi = −k, µj = −k − 1 and µ` /∈ {−k,−k − 1} for all ` with i < ` < j. By
Lemma 6.4.1 (i) we have j = i+ 1.
If i = 1 then q2 = 1 + µ2 = −k ≤ 0 thus q1 = q2 = 0. It follows that π1 = π2 = 0 and i is a rise

of π. If n− 1 ≡ 1, 2 modulo 4 and i = n− 1 then qn = n− µn = n+ k+ 1 and qn−1 = n− 2− k.
Hence qn−1 +qn = 2n−1 and i is a rise of π. In all other cases qi = i−1−k and qi+1 = i−k−1.
Thus πi = qi = qi+1 = πi+1 and again i is a rise of π.
The number x equals the number of east steps in the sequence

←−w−2n+1(µ)−→w+
2n−1(µ) · · ·←−w−k+1(µ)−→w+

k+1(µ)←−w−k (µi+1, . . . , µn).

Hence,

x = #
{
r ∈ [n] : |µr| > k + 1

}
+ #

{
r ∈ [n] : i+ 1 ≤ r, µr = −k − 1

}
= #

{
r ∈ [n] : |µrN − r| ≥ |(−k − 1)N − (i+ 1)|

}
.

Note that |u(i+ 1)| 6= 1 by Lemma 6.4.7 because µi+1 < 0. Lemma 1.5.4 therefore provides

n+ 1− x = #
{
r ∈ [n] : |µrN − r| ≤ |µi+1N − (i+ 1)|

}
= |u(i+ 1)| = u(i+ 1).

We conclude that

drwD(w, π)(n+ 1− x) = wuπsu
−1(n+ 1− x) = wuπs(i+ 1) = w(i+ 1)

because even if i+ 1 = n we have µn−1 + µn = −2k − 1, which is odd.
On the other hand, y equals the number of north steps in the sequence

←−w−2n−1(µ)−→w+
2n−1(µ) · · ·←−w−k+1(µ)−→w+

k+1(µ)←−w−k (µi, . . . , µn).

By Lemma 1.5.4 we therefore have

n+ 1− y = #
{
r ∈ [n] : |µrN − r| ≤ |µiN − i|

}
= |u(i)| .

We first treat the case where |u(i)| 6= 1. Note that this implies i > 1. Then by Lemma 1.5.4 we
have n+ 1− y = u(i) because µi ≤ 0. We conclude that

drwD(w, π)(n+ 1− y) = wuπsu
−1(n+ 1− y) = wuπs(i) = w(i),

and the valley is labelled by (w(i+ 1), w(i)).
Next assume that |u(i)| = 1, that is, y = n. Then k = 0. If i = 1 then we have already seen

that π begins with two north steps. Since ←−w−0 (µ) ends with a valley and −→w+
0 (µ) begins with a

north step, we are in the special situation that the valleys (x, n) and (x, n + 1) are labelled by
(w(2),± |w(1)|).
Finally if i > 1 then µ` 6= 0 for all ` with 1 ≤ ` < i. It follows that there has to be an index
` ∈ [i − 1] such that µ` ∈ {1,−1} and thus the n-th north step of ζD(π) is followed by an east
step. Consequently ζD(π) contains a signed east step whose sign is determined by the number
of positive entries of µ. We conclude that

drwD(w, π)(1) = wuπsu
−1(1) = (−1)#{r∈[n]:µr>0}wuπs(i) = ε(ζD(π))w(i),

in which case the valley is labelled by (w(i+ 1), w(i)).
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(1.2) Secondly, assume that the valley (x, y) arises within a sequence −→w+
k (µ) for some k > 0.

Then there exist indices i, j ∈ [n] with i < j such that µi = k+ 1, µj = k and µ` /∈ {k, k+ 1} for
all ` with i < ` < j. From Lemma 6.4.1 (i) we obtain j = i+ 1.
If n−1 ≡ 1, 2 modulo 4 and i = 1, then q1 = −k−1 < 0 and q2 = 1+k. Hence π1 = π2 = k+1,
ε(π) = −1 and i is a rise of π. Note that i = n−1 yields a contradiction: Either n−1 ≡ 0, 3 modulo
4, then qn−1 = (n−2)+(k+1) and qn = n−1+k thus qn−1 +qn ≥ 2n, or n−1 ≡ 1, 2 modulo 4,
then qn = n−k and qn−1 > qn. In all other cases we have qi = (i−1)+(k+1) = i+k = qi+1. Thus
πi = πi+1 and i is a rise of π. Note that if n− 1 ≡ 0, 3 modulo 4 and i = 1 then q1 = k + 1 > 0
and ε(π) = 1.
Similar to the case above, x equals the number of east steps in the sequence

←−w−2n−1(µ)−→w+
2n−1(µ) · · · −→w+

k+1(µ)←−w−k (µ)−→w+
k (µ1, . . . , µi).

Using Lemma 1.5.4 we conclude

n+ 1− x = #
{
r ∈ [n] : |µrN − r| ≤ |µiN − i|

}
= |u(i)| .

By Lemma 6.4.7 we have |u(i)| 6= 1 because µi > 1, thus Lemma 1.5.4 yields −u(i) = n+ 1− x.
We obtain

drwD(w, π)(n+ 1− x) = wuπsu
−1(n+ 1− x) = −wuπs(i) = −w(i),

where we use that ε(π) = −1 if and only if n− 1 ≡ 1, 2 modulo 4 in the case where i = 1.
On the other hand, y equals the number of north steps in the sequence

←−w−2n−1(µ)−→w+
2n−1(µ) · · · −→w+

k+1(µ)←−w−k (µ)−→w+
k (µ1, . . . , µi+1).

It follows that

n+ 1− y = #
{
r ∈ [n] : |µrN − r| ≤ |µi+1N − (i+ 1)|

}
= |u(i+ 1)| .

Suppose y = n, then by Lemma 6.4.7 we see that µ` 6= 0 for all ` ∈ [n], k = 1 and i + 1 = n,
which is a contradiction as mentioned above. Thus y < n. From µi+1 > 0 and Lemma 1.5.4 we
obtain −u(i+ 1) = n+ 1− y. Therefore

drwD(w, π)(n+ 1− y) = wuπsu
−1(n+ 1− y) = −wuπs(i+ 1) = −w(i+ 1),

and the valley is labelled by (−w(i),−w(i+ 1)).
(1.3) The sequence ←−w−k (µ) ends with an east step and the next non-empty sequence begins

with a north step. If ←−w−k (µ) ends with an east step then there exists an index i ∈ [n] such that
µi = −k − 1 and µ` /∈ {−k − 1,−k} for all ` with 1 ≤ ` < i. By Lemma 6.4.1 (ii) we have i = 1.
Consequently by Lemma 6.4.1 (iii) the sequence −→w+

k (µ) is non-empty. By assumption this means
that there exists an index j ∈ [n] such that µj = k = −µ1 − 1 and µ` /∈ {k, k + 1} for all ` with
1 < ` < j. Now Lemma 6.4.1 (iv) implies that j = 2.
If n−1 ≡ 0, 3 modulo 4 then q1 = −k−1 and q2 = k+1. Hence π1 = π2 = k+1 and ε(π) = −1.

On the other hand if n − 1 ≡ 1, 2 modulo 4 then π1 = q1 = k + 1 = q2 = π2 and ε(π) = 1. In
both cases i is a rise of π.
(1.3.1) Assume that k > 0, and let (x, y) be the valley under consideration. Then x equals the

number of east steps in the sequence
←−w−2n−1(µ)−→w+

2n−1(µ) · · · −→w+
k+1(µ)←−w−k (µ).

We deduce that

n+ 1− x = #
{
r ∈ [n] : |µrN − r| ≤ |(−k − 1)N − 1|

}
= |u(1)| ,

and, since µ1 < 0 implies |u(1)| 6= 1, that n+ 1− x = u(1). Moreover

drwD(w, π)(n+ 1− x) = wuπsu
−1(n+ 1− x) = wuπs(1) = −w(1),
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because ε(π) = −1 if and only if n− 1 ≡ 0, 3 modulo 4.
On the other hand, y equals the number of north steps in the sequence

←−w−2n−1(µ)−→w+
2n−1(µ) · · · −→w+

k+1(µ)←−w−k (µ)−→w+
k (µ1, µ2).

As before we obtain

n+ 1− y = #
{
r ∈ [n] : |µrN − r| ≤ |kN − 2|

}
= |u(2)| .

We know that |u(2)| 6= 1 because of Lemma 6.4.7. Since µ2 = k > 0 we conclude

drwD(w, π)(n+ 1− y) = wuπsu
−1(n+ 1− y) = −wuπs(2) = −w(2).

(1.3.2) Next assume that k = 0. In this case the valley is of the form (x, n + 1), where
n + 1 − x = u(1) just as in (1.3.1) above. On the other hand by Lemma 6.4.7 we see that
|u(2)| = 1. Note that ←−w−0 (µ) ending with an east step implies that the n-th north step of ζD(π)
is followed by an east step. We obtain

drwD(w, π)(1) = wuπsu
−1(1) = (−1)#{r∈[n]:µr>0}wuπs(2) = ε(ζD(π))w(2),

and the valley (x, n+ 1) is labelled by(
drwD(w, π)(n+ 1− x),−ε(ζD(π)) drwD(w, π)(1)

)
=
(
− w(1),−w(2)

)
.

(1.4) For some k > 0 the sequence −→w+
k (µ) ends with an east step and the next non-empty

sequence begins with a north step. Then there exists an index j ∈ [n] such that µj = k + 1 and
µ` /∈ {k, k + 1} for all ` with j < ` ≤ n. By Lemma 6.4.1 (v) and (vi) we know that j = n and
that ←−w−k−1(µ) is non-empty. By assumption ←−w−k−1(µ) begins with a north step, thus there exists
an index i ∈ [n] such that µi = −k + 1 and µ` /∈ {−k,−k + 1} for all ` with i < ` ≤ n. Using
Lemma 6.4.1 (vii) we see that i = n− 1.
If n− 1 ≡ 0, 3 modulo 4 then qn−1 + qn = (n− k− 1) + (n+ k) = 2n− 1. If n− 1 ≡ 1, 2 modulo

4 then qn−1 = n− k − 1 = qn. In both cases i is a rise of π.
Once more let (x, y) be the valley under consideration. Then x is the number of east steps in

the sequence
←−w−2n−1(µ)−→w+

2n−1(µ) · · ·←−w−k (µ)−→w+
k (µ),

and therefore

n+ 1− x = #
{
r ∈ [n] : |µrN − r| ≤ |(k + 1)N − n|

}
= |u(n)| .

From µn > 1 we obtain n+ 1− x = −u(n) and

drwD(w, π)(n+ 1− x) = wuπsu
−1(n+ 1− x) = −wuπs(n) = w(n)

because µn−1 + µn = (k + 1) + (−k + 1) = 2 is even.
Moreover y equals the number of north steps in the sequence

←−w−2n−1(µ)−→w+
2n−1(µ) · · ·←−w−k (µ)−→w+

k (µ)←−w−k−1(µn−1, µn).

Thus,

n+ 1− y = #
{
r ∈ [n] : |µrN − r| ≤ |(−k + 1)N − (n− 1)|

}
= |u(n− 1)| .

First suppose that |u(n− 1)| 6= 1. Then µn−1 ≤ 0 implies n+ 1− y = u(n− 1), and we obtain

drwD(w, π)(n+ 1− y) = wuπsu
−1(n+ 1− y) = wuπs(n− 1) = w(n− 1).

On the other hand if |u(n− 1)| = 1 then y = n, µn−1 = 0, k = 1 and µ` 6= 0 for all ` ∈ [n−2]. We
claim that the n-th north step of ζD(π), which belongs to ←−w−0 (µ) and corresponds to µn−1 = 0,
is followed by an east step. To see this assume that µ` /∈ {0,−1} for all ` ∈ [n− 2]. Then there
has to be an index ` ∈ [n− 2] with µ` = 1. Thus −→w+

0 (µ) begins with an east step and this east
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step is not the last step of −→w+
0 (µ). Consequently, this east step is replaced by a signed east step

such that ε(ζD(π)) = (−1)#{r∈[n]:µr>0}. From

drwD(w, π)(1) = wuπsu
−1(1) = (−1)#{r∈[n]:µr>0}wuπs(n− 1) = ε(ζD(π))w(n− 1).

we obtain that the valley is labelled by (w(n), w(n− 1)).
(1.5) The the valley arises within (or at the end of) the sequence −→w+

0 (µ). Note that −→w+
0 (µ)

is non-empty by Lemma 6.4.7, and recall that the last letter of −→w+
0 (µ) does not contribute to

ζD(π).
(1.5.1) There exist indices i, j ∈ [n] with i < j such that µi = 1, µj = 0 and µ` /∈ {0, 1} for

all ` with i < ` < j. Note that it does not make a difference if the north step corresponding to
µj = 0 is deleted. In this case ζD(π) ends with an east step, which is still counted as a valley.
By Lemma 6.4.1 (i) we have j = i+ 1.
If i = 1 and n−1 ≡ 1, 2 modulo 4, then q1 = −1 and q2 = 1. Hence π1 = π2 = 1 and ε(π) = −1.

If i = n − 1 and n − 1 ≡ 1, 2 modulo 4, then qn−1 = n − 1, qn = n and qn−1 + qn = 2n − 1.
Otherwise πi = qi = i = qi+1 = πi+1. In all cases i is a rise of π. Also note that ε(π) = 1 if i = 1
and n− 1 ≡ 0, 3 modulo 4.
Let (x, y) be the present valley. Then x equals the number of east steps in the sequence

←−w−2n−1(µ)−→w+
2n−1(µ) · · ·←−w−0 (µ)−→w+

0 (µ1, . . . , µi).

We obtain

n+ 1− x = #
{
r ∈ [n] : |µrN − r| ≤ |N − i|

}
= |u(i)| .

Since µi = 1 and µi+1 = 0 we have |u(i)| 6= 1 and −u(i) = n+ 1− x. Thus

drwD(w, π)(n+ 1− x) = wuπsu
−1(n+ 1− x) = −wuπs(i) = −w(i)

as even if i = 1 we have ε(π) = −1 if and only if n− 1 ≡ 1, 2 modulo 4.
On the other hand y is the number of north steps in the sequence

←−w−2n−1(µ)−→w+
2n−1(µ) · · ·←−w−0 (µ)−→w+

0 (µ1, . . . , µi+1).

Hence

y − n = #
{
r ∈ [i+ 1] : µr = 0

}
=
{
r ∈ [n] : |µrN − r| ≤ i+ 1

}
= |u(i+ 1)| .

First assume that y > n+ 1, then by Lemma 1.5.4 we have u(i+ 1) = y − n since µi+1 = 0. It
follows that

drwD(w, π)(n− y) = −wuπsu−1(y − n) = −wuπs(i+ 1) = −w(i+ 1)

because even if i+ 1 = n then µn−1 +µn = 1, which is odd. Thus the valley under consideration
is labelled by (−w(i),−w(i+ 1)).
If y = n + 1 then there are exactly n north steps in ζD(π) that occur before the east step

corresponding to µi = 1. Hence the n-th north step of ζD(π) is followed by an east step, and
ζD(π) contains a signed east step. Thus

drwD(w, π)(y) = wuπsu
−1(1) = (−1)#{r∈[n]:µr>0}wuπs(i+ 1) = ε(ζD(π))w(i+ 1)

because even if i+ 1 = n then µn−1 +µn = 1, which is odd. Thus the valley (x, n+ 1) is labelled
by (−w(i),−w(i+ 1)) in this case as well.
(1.5.2) There exist indices i, j ∈ [n] with i < j such that µi = µj = 1 and µ` /∈ {0, 1} for all `

with i < ` < j or j < ` ≤ n. In this case the final two steps of −→w+
0 (µ) are east steps. The latter

one is deleted and ζD(π) ends with an east step.
From Lemma 6.4.1 (v) we obtain j = n, hence by Lemma 6.4.1 (vii) we have i = n − 1. If
n − 1 ≡ 0, 3 modulo 4 then qn = n and qn−1 = n − 1 hence qn−1 + qn = 2n − 1. On the other
hand, if n− 1 ≡ 1, 2 modulo 4 then qn−1 = qn = n− 1. In both cases i is a rise of π.
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Let (x, y) be the valley under consideration. Then x equals the number of east steps in the
sequence

←−w−2n−1(µ)−→w+
2n−1(µ) · · ·←−w−0 (µ)−→w+

0 (µ1, . . . , µn−1).

Therefore

n+ 1− x = #
{
r ∈ [n] : |µrN − r| ≤ n+ 2

}
= |u(n− 1)| .

From Lemmas 1.5.4 and 6.4.7 we obtain n+ 1− x = −u(n− 1) because µn−1 = 1. As above we
conclude that

drwD(w, π)(n+ 1− x) = wuπsu
−1(n+ 1− x) = −wuπs(n− 1) = −w(n− 1).

On the other hand y equals one plus the number of north steps in ζD(π), that is,

y − n = 1 + #
{
r ∈ [n] : µr = 0

}
= #

{
r ∈ [n] : |µrN − r| ≤ n+ 1

}
= |u(n)| .

First assume that µ` = 0 for some ` ∈ [n]. Then |u(n)| 6= 1. Lemmas 1.5.4 and 6.4.7 therefore
imply y − n = −u(n), and we obtain

drwD(w, π)(n− y) = −wuπsu−1(y − n) = wuπs(n) = −w(i)

because µn−1 + µn = 2, which is even. The valley is thus labelled by (−w(n− 1),−w(n)).
On the other hand if µ` 6= 0 for all ` ∈ [n], then y − n = |u(n)| = 1 by Lemma 6.4.7. Note that

the n-th north step of ζD(π) is followed by an east step, because ζD(π) only has n north steps
and ends with an east step. Hence ζD(π) contains a signed east step. Since µn = 1, Lemma 1.5.4
then implies that

drwD(w, π)(1) = wuπsu
−1(1) = −(−1)#{r∈[n]:µr=0}wuπs(n) = ε(ζD(π))w(n),

where we again use that µn−1 + µn is even. The valley under consideration is labelled by(
drwD(w, π)(n+ 1− x),−ε(ζD(π)) drwD(w, π)(1)

)
=
(
− w(n− 1),−w(n)

)
.

(Part 2) In the second part of the proof we demonstrate the forward implication. Therefore
let i ∈ [n − 1] be a rise of π. We have to show that we are in one of the five cases of Part 1 of
the proof.
(2.1) Assume 1 < i < n − 1. Then πi = qi = i − 1 + µi and πi+1 = qi+1 = i + µi+1, hence
πi = πi+1 implies

µi = µi+1 + 1.

If µi = −k ≤ 0 then there is a valley in the sequence ←−w−k (µ) and we are in case (1.1). If

µi = k + 1 > 0 then there is a valley in the sequence −→w+
k (µ) and we are in case (1.2) or (1.5.1).

(2.2) Next assume i = 1. Then π1 = |q1| = |µ1| and π2 = q2 = 1 + µ2, hence π1 = π2 implies
|µ1| = µ2 + 1. If µ1 ≥ 0 we are in the same situation as in (2.1). On the other hand if µ1 < 0
then

−µ1 = µ2 + 1.

Set −k−1 = µ1 then the sequence←−w−k (µ) ends with an east step and the sequence −→w+
k (µ) begins

with a north step. We are therefore in case (1.3).
(2.3) Finally assume that i = n− 1. Then πn−1 = qn−1 = n− 2 + µn−1.
(2.3.1) Suppose n − 1 ≡ 0, 3 modulo 4, thus qn = n − 1 + µn. If π1 + · · · + πn−2 is even,

then πn−1 = πn implies qn = 2πn − πn−1 = πn−1 and µn−1 = µn + 1 as in (2.1). Otherwise
π1 + · · ·+ πn−2 is odd and πn−1 = πn implies qn = 2n− 1− 2πn + πn−1 = 2n− 1− πn−1 and

µn−1 = −µn + 2.
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If µn−1 = −k ≤ 0 then the sequence −→w+
k+1(µ) ends with an east step and the sequence ←−w−k (µ)

begins with a north step. We are therefore in case (1.4). If µn−1 = k + 1 > 1 then the sequence
−→w+
k (µ) ends with an east step while the sequence ←−w−k−1(µ) begins with a north step. This again

corresponds to case (1.4). If µn−1 = 1 then also µn = 1 which puts us into case (1.5.2).
(2.3.2) Suppose n − 1 ≡ 1, 2 modulo 4, thus qn = n − µn. If π1 + · · · + πn−2 is even, then
πn−1 = πn implies qn = πn−1 and −µn−1 = µn + 2. If π1 + · · · + πn−2 is odd, then πn−1 = πn
implies qn = 2n−1−πn−1 and µn−1 = µn+1. Hence we are in the same situation as in (2.3.1). �

By use of Theorem 6.4.8 it can be shown that the type Dn instance of the uniform zeta map is
equivalent to the combinatorial map introduced in this section.

Theorem 6.4.9. [74, Thm. 5.28] Let Φ be a root system of type Dn with coroot lattice Q̌ and
zeta map ζ, and let ψD and ϕD be defined as in Theorem 4.3.6 and Proposition 5.2.8. Then the
following diagram commutes.

Q̌/(2n− 1)Q̌ Park(Φ)

Vert(Dn) Diag(Dn)

ζ

ζD

ψD ϕD

Proof. Let (w, π) ∈ Vert(Dn) and (v, β) = ζD(w, π) ∈ Diag(Dn). Furthermore, let q =
ψD(π) and uπ be defined as in Proposition 4.3.5 and (4.1) such that ψD(w, π) = wuπ(q) + (2n−
1)Q̌. Finally, let µ be the area vector of π, choose u ∈ SD

n such that tµu
−1 is a Graßmannian

affine permutation and fix s as in Lemma 4.4.2(iii). Recall from Theorem 6.1.1 that it suffices
to show v = wuπsu

−1 and Aβ = A, where

A =
{
us−1(α) : α ∈ ∆ ∪ {−α̃D} and sα(q) = q

}
.

The first claim is immediate from Proposition 6.4.2. In order to show the second claim, we first
prove A ⊆ ADβ . Assume us−1(αDi ) ∈ A for some i ∈ [n − 1]. Then sDi (q) = q implies qi = qi+1.

Thus πi = πi+1 and i is a rise of π. By Theorem 6.4.8 ζD(w, π) has a valley (x, y) labelled either
(w(i+ 1), w(i)) or (−w(i),−w(i+ 1)). That is, either wuπ(i+ 1) = v(n+ 1− x) and

wuπ(i) =


v(n+ 1− y) if y < n,

v(ε(β)) if y = n,

v(−ε(β)) if y = n+ 1,

v(n− y) if y > n+ 1,

or −wuπ(i) = v(n+ 1− x) and

−wuπ(i+ 1) =


v(n+ 1− y) if y < n,

v(ε(β)) if y = n,

v(−ε(β)) if y = n+ 1,

v(n− y) if y > n+ 1.

Note that we may replace w(i), w(i+1) by wuπ(i), wuπ(i+1) by choice of i. Applying (wuπ)−1 to
the above identities and using v = wuπsu

−1, we see that su−1(αx,y) = αDi . Hence us−1(αDi ) =
αx,y ∈ ADβ .

Next set S = {us−1(αD0 ), us−1(αD1 )}. If S ∩ A = {us−1(αD1 )} then q1 = q2 > 0. We have
ε(π) = 1 and 1 is a rise of π. In particular wuπ(1) = w(1). By Theorem 6.4.8 (v, β) has a valley
(x, y) labelled by (wuπ(2), wuπ(1)) or (−wuπ(1),−wuπ(2)). We obtain su−1(αx,y) = e2−e1 and
consequently us−1(αD1 ) = αx,y ∈ ADβ .
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If S∩A = {us−1(αD0 )} then q1 = −q2 > 0. We have ε(π) = −1 and 1 is a rise of π. In particular
wuπ(1) = −w(1). By Theorem 6.4.8 (v, β) has a valley (x, y) labelled by (wuπ(2),−wuπ(1)) or
(wuπ(1),−wuπ(2)). We obtain su−1(αx,y) = e2 + e1 and thus us−1(αD1 ) = αx,y ∈ ADβ .

If S ⊆ A then q1 = q2 = 0 and π begins with two north steps. By Theorem 6.4.8 (v, β)
has special valleys (x, n), (x, n + 1) labelled by (wuπ(2),± |wuπ(1)|). As above we see that
su−1({αx,n, αx,n+1}) = {αD0 , αD1 }. Hence S ⊆ ADβ .

If us−1(αDn−1) ∈ A then qn−1 = qn. It follows that πn−1 = πn, that is, n− 1 is a rise of π, and
π1 + · · · + πn−2 is even. Moreover wuπ(n) = w(n). By Theorem 6.4.8 (v, β) has a valley (x, y)
labelled (wuπ(n), wuπ(n − 1)) or (−wuπ(n − 1),−wuπ(n)). We obtain su−1(αx,y) = en − en−1

and therefore us−1(αDn−1) ∈ ADβ .

If us−1(−α̃D) ∈ A then qn−1 + qn = 2n − 1. It follows that πn−1 = πn and π1 + · · · +
πn−2 is odd. Moreover wuπ(n) = −w(n). By Theorem 6.4.8 (v, β) has a valley (x, y) labelled
(−wuπ(n), wuπ(n−1)) or (−wuπ(n−1), wuπ(n)). We obtain su−1(αx,y) = −en−1−en and thus
us−1(−α̃D) ∈ ADβ .

To complete the proof we need to demonstrate ADβ ⊆ A. Therefore suppose αx,y ∈ ADβ for

some valley (x, y) of (v, β). Then by Theorem 6.4.8 (x, y) is labelled either (w(i + 1), w(i))
or (−w(i),−w(i + 1)) for some rise i of π; or we are in the special case were y = n and the
valley (x, n) is not followed by an east step, in which the valleys (x, n), (x, n + 1) are labelled
(w(2),± |w(1)|).
If wuπ(i) = w(i) and wuπ(i+1) = w(i+1) then the valley (x, y) is labelled by (wuπ(i+1), wuπ(i))

or (−wuπ(i),−wuπ(i+1)), and su−1(αx,y) = αDi for a rise i of π. By similar arguments as above
we see that αx,y ∈ A.
If i = 1 and wuπ(1) = −w(1) then su−1(αx,y) = αD0 , and q1 = −q2. Again we obtain αx,y ∈ A.
If i = n− 1 and wuπ(n) = −w(n) then su−1(αx,y) = −α̃D and qn−1 + qn = 2n− 1. Again we

obtain αx,y ∈ A.
Finally, if the valley is of the special form (x, n) and is not followed by an east step then
su−1({αx,n, αx,n+1}) = {α0, α1}, π begins with two north steps and q1 = q2 = 0. We see that
αx,n, αx,n+1 ∈ A. Thus ADβ ⊆ A and the proof is complete. �

6.5. Combinatorics in type Bn

Figure 6.9. The lattice paths with type B area vectors (−1, 2, 1, 0,−1, 3) and (0, 0,−1, 3).

Let π ∈ Ln,n be a lattice path, q = ψB(π) be defined as in Lemma 4.3.2 and x ∈ Q̌ and s ∈ SB
n

as in Lemma 4.4.2 (i). Define the type Bn area vector of π as

µ = s(q − x) =

{
(q1 − 1, . . . , qn−1 − n+ 1, qn − n) if n ≡ 0, 3 mod 4,

(q1 − 1, . . . , qn−1 − n+ 1, n+ 1− qn) if n ≡ 1, 2 mod 4.

Note that similarly to the other types, the entry µi of the area vector counts the number of boxes
in the i-th row that lie between the path π and the alternating path (en)n ∈ Ln,n, where µi is
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negative as long as π is above (en)n. The only exception to this rule is the top row, where µn
does not have as nice of an interpretation.
Let (w, π) ∈ SB

n × Ln,n and µ be the type Bn area vector of π. Define the type Bn diagonal
reading word drwB(w, π) as follows: For each i = 0, 1, 2, . . . first write down the labels w(j) of
the rows with µj = −i from bottom to top, then write down the negative labels −w(j) of rows
with µj = i + 1 from top to bottom. Finally, if µn−1 + µn is even, change the sign of the label
coming from the top row.

Note that the diagonal reading word of type Bn is closely related to that of type Dn. Indeed the
two definitions almost coincide except that some technical details are less complicated in type
Bn.

The following proposition asserts that the diagonal reading word is the correct signed permu-
tation to consider. To simplify notation we denote Vert(Bn) = Vert(Bn, h+ 1).

Proposition 6.5.1. [74, Prop. 6.15] Let (w, π) ∈ Vert(Bn) be a vertically labelled lattice path
with area vector µ, define uπ ∈ SB

n as in Theorem 4.3.3, s ∈ SB
n as in Lemma 4.4.2 (i) and

u ∈ SB
n such that tµu

−1 is a Graßmannian affine permutation. Then drwB(w, π) = wuπsu
−1.

Proof. Let i ∈ [n] and choose j ∈ [n] such that |drwB(w, π)(i)| = |w(j)|. Then by
Lemma 1.5.4

i = #
{
r ∈ [n] : |µr| < |µj |

}
+ #

{
r ∈ [n] : j ≤ r, µr = µj > 0

}
+ #

{
r ∈ [j], µr = µj ≤ 0

}
+ #

{
r ∈ [n], µr = −µj > 0

}
= #

{
r ∈ [r] : |µrN + r| ≤ |µjN − j|

}
= |u(j)| .

Thus |drwB(w, π)(i)| =
∣∣wu−1(i)

∣∣ =
∣∣wuπsu−1(i)

∣∣. If j < n then drwB(w, π) = w(j) = wuπs(j)

if and only if µj ≤ 0, which is the case if and only if u−1(i) = j. If j < n and µj > 0 then
drwB(w, π) = −wuπs(j) and u−1(i) = −j. If j = n and µn ≤ 0 then

drwB(w, π) = (−1)1+µn−1+µnw(n)

= (−1)1+µn−1+µn(−1)qn−1+qnwuπ(n)

= (−1)1+xn−1+xnwuπ(n)

= wuπs(n) = wuπsu
−1(j)

and analogously one treats the case where j = n and µn > 0. �

As it turns out the zeta map of type Bn is closely related to the zeta map of type Dn+1.
Define the type Bn zeta map on lattice paths ζB : Ln,n → B2n by mapping a lattice path
π ∈ Ln,n with the type Bn area vector µ to the path

ζB(π) =←−w−2n(µ)−→w+
2n(µ)←−w−2n−1(µ)−→w+

2n−1(µ) · · ·←−w−1 (µ)−→w+
1 (µ)←−w−0 (µ)

(
n−→w+

0 (µ)
)◦
,

where (n−→w+
0 (µ))◦ is obtained from n−→w+

0 (µ) by deleting the last letter. It takes little effort to
prove that ζB(π) is indeed a ballot path of length 2n.
Define the type Bn zeta map on labelled objects ζB : SB

n × Ln,n → SB
n × B2n via

ζB(w, π) = (drwB(w, π), ζB(π)).

As expected the type Bn zeta map yields a bijection from square lattice paths to ballot paths.
We deduce the respective result from the analogous claim in type Dn+1. Also compare with Prob-
lem 6.4.5.

Theorem 6.5.2. [74, Thm. 6.18] The zeta map ζB : Ln,n → B2n is a bijection.
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Figure 6.10. A vertically labelled lattice path and its image under the Haglund–Loehr-zeta map.

Proof. Let π ∈ Ln,n be a lattice path with type Bn area vector µ. Consider the path
nπ ∈ Ln,n+1. Recalling the bijection ζ∗D : Ln,n+1 → B2n+1 from Theorem 6.4.6 we have

ζ∗D(nπ) =←−w−2n(µ)−→w+
2n(µ)←−w−2n−1(µ)−→w+

2n−1(µ) · · ·←−w−1 (µ)−→w+
1 (µ)←−w−0 (µ)n

(
n−→w+

0 (µ)
)◦
.

It follows from the proof of Theorem 6.4.6 that ζ∗D restricts to a bijection from the set of lattice
paths in Ln,n+1 that begin with a north step to the set of ballot paths in B2n+1 whose (n+ 1)-
st north step is not followed by an east step. Since ζ∗D(nπ) is easily obtained from ζB(π) by
inserting a north step, we conclude that ζB is also a bijection. �

The next theorem further exploits the relation between ζB and ζD to connect the rises of (w, π)
to the valleys of ζB(w, π).
Let (w, π) ∈ SB

n × Ln,n and i ∈ [n] be a rise of π. We say i is a rise of (w, π) labelled
(w(i), w(i+ 1)). Similarly let (v, β) ∈ SB

n ×B2n and (i, j) be a valley of β. Then we say (i, j) is
a valley of (v, β) labelled by (v(n+ 1− i), v(n+ 1− j)).

Theorem 6.5.3. [74, Thm. 6.19] Let (w, π) ∈ SB
n × Ln,n and a, b ∈ w([n]). Then (w, π) has a

rise labelled (a, b) if and only if ζB(w, π) has a valley labelled (b, a) or (−a,−b). Furthermore π
begins with a north step if and only if ζB(w, π) has a valley labelled (v(1), 0).

Proof. Let (w, π) ∈ SB
n ×Ln,n and consider the labelled path (nπ,w′) where we label the

initial north step by 0 and π retains the labelling v. This is basically an element of SB
n ×Ln,n+1

except that the absolute values of all labels have been decreased by one.
The claim is obtained from Theorem 6.4.8. First notice that ζB(w, π) is obtained from ζD(nπ,w′)

simply by deleting the (n + 1)-st north step and its label, which is always 0. Furthermore let
a, b ∈ Z − {0}, then (w, π) has a rise i labelled (a, b) if and only if (nπ,w′) has a rise i + 1
labelled (a, b). This is the case if and only if ζD(nπ,w′) has a valley labelled (b, a) or (−a,−b)
and equivalently ζB(w, π) has a valley labelled (a, b) or (−a,−b). On the other hand π begins
with a north step if and only if (nπ,w′) has rise i = 1 labelled by (±0, v(1)). This is equivalent
to ζD(nπ,w′) having two valleys labelled (v(1),±0), which is the case if and only if ζB(w, π) has
a valley labelled (v(1), 0). �

Theorems 6.5.2 and 6.5.3 imply the main result of this section.



6.5. COMBINATORICS IN TYPE BN 111

Theorem 6.5.4. [74, Thm. 6.20] The type Bn zeta map restricts to a bijection ζB : Vert(Bn)→
Diag(Bn).

We conclude this section by proving that the combinatorial zeta ζB map is indeed the type Bn
instance of the uniform zeta map.

Theorem 6.5.5. [74, Thm. 6.21] Let Φ be a root system of type Bn with coroot lattice Q̌ and
zeta map ζ, and define ψB and ϕB as in Theorem 4.3.3 and Proposition 5.2.4 respectively. Then
the following diagram commutes.

Q̌/(2n+ 1)Q̌ Park(Φ)

Vert(Bn) Diag(Bn)

ζ

ζB

ψB ϕB

Proof. Let (w, π) ∈ Vert(Bn) and set (v, β) = ζB(w, π) ∈ Diag(Bn). Define q ∈ Q̌ and uπ
as in Lemma 4.3.2 and Theorem 4.3.3 such that ψB(w, π) = wuπ(q) + (2n + 1)Q̌. Let s ∈ SB

n

be defined as in Lemma 4.4.2 (i) and µ be the type Bn area vector of π. Choose u ∈ SB
n such

that tµu
−1 is a Graßmannian affine permutation.

Recall that by Theorem 6.1.1 it suffices to show that v = wuπsu
−1 and ABβ = A, where

A =
{

(us−1(α) : α ∈ ∆ ∪ {−α̃B} and sα(q) = q
}
.

The first claim is taken care of by Proposition 6.5.1. In order to demonstrate the second claim
we first show A ⊆ ABβ . Therefore let i ∈ [n−1] and suppose that us−1(αBi ) ∈ A. Then qi = qi+1,

hence πi = πi+1 and i is a rise of π. By Theorem 6.5.3 (v, β) has a valley (x, y) labelled either
(w(i+1), w(i)) or (−w(i),−w(i+1)). Note that in particular y 6= n+1. Moreover wuπ(i) = w(i)
and wuπ(i+ 1) = w(i+ 1) for this choice of i. We obtain

(v(n+ 1− x), v(n+ 1− y)) ∈
{

(wuπ(i+ 1), wuπ(i)), (−wuπ(i),−wuπ(i+ 1))
}
.

Applying (wuπ)−1 and using the fact that v = wuπsu
−1, yields

(su−1(n+ 1− x), su−1(n+ 1− y) ∈
{

(i+ 1, i), (−i,−i− 1)
}
.

Recalling that

αx,y =

{
en+1−x + en+1−y if y < n+ 1,

en+1−x − ey−n−1 if y < n+ 1,

we compute us−1(αBi ) = αx,y ∈ ABβ in all cases.

Next suppose us−1(αB0 ) ∈ A. Then q1 = 0 and thus π1 = 0. By Theorem 6.5.3 (v, β) has a
valley (x, n+1) labelled (w(1), 0) = (wuπ(1), 0). From wuπsu

−1(n+1−x) = v(n+1−x) = w(1)
we obtain su−1(n+ 1− x) = 1, and compute us−1(αB0 ) = en+1−x = αx,n+1 ∈ ABβ .

Similarly suppose us−1(αBn−1) ∈ A. Then qn−1 = qn. Consequently πn−1 = πn, that is, n− 1 is
a rise of π and π1 + · · · + πn−2 is even. In particular wuπ(n) = w(n). By Theorem 6.5.3 (v, β)
has a valley (x, y) labelled (wuπ(n), wuπ(n − 1)) or (−wuπ(n − 1),−wuπ(n)). As in the cases
above we conclude that us−1(αBn−1) = αx,y ∈ ABβ .

Finally suppose us−1(−α̃B) ∈ A. Then qn−1 +qn = 2n+1. Here again πn−1 = πn, but contrary
to the previous case π1 + · · ·+ πn−2 is now odd. Therefore wuπ(n) = −w(n). By Theorem 6.5.3
(v, β) has a valley labelled (wuπ(n − 1),−wuπ(n)) or (wuπ(n),−wuπ(n − 1)). As before we
compute us−1(−α̃B) = αx,y ∈ ABβ .
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It remains to prove the reverse inclusion ABβ ⊆ A. Therefore assume αx,y ∈ ABβ for some valley

(x, y) of (v, β).
If y < n + 1 then αx,y = en+1−x − en+1−y. Furthermore by Theorem 6.5.3 the valley (x, y) is

labelled by

(v(n+ 1− x), v(n+ 1− y)) ∈
{

(w(i+ 1), w(i)), (−w(i),−w(i+ 1))
}

for some rise i of π. If i < n − 1 or if π1 + · · · + πn−2 is even, then qi = πi = πi+1 = qi+1 and
w(i) = wuπ(i) and w(i+ 1) = wuπ(i+ 1). Thus sBi (q) = q and we obtain

αx,y = us−1(αBi ) ∈ A.
If i = n − 1 and π1 + · · · + πn−2 is odd, then qn−1 + qn = 2n + 1 and wuπ(n) = −w(n). We
obtain sα̃B (q) = q and αx,y = us−1(−α̃B) ∈ A.
If y = n+ 1 then αx,y = en+1−x and the valley (x, y) is labelled (v(n+ 1− x, 0) = (w(1), 0) by

Theorem 6.5.3. Moreover π begins with a north step, that is, q1 = π1 = 0, and s0B (q) = q. We
conclude αx,y = us−1(αB0 ) ∈ A.
Finally the case y > n+ 1 can be treated in a similar fashion as the case y < n+ 1 above, which

completes the proof and this thesis. �
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rational, 51

q-Coxeter–Cayley number, 60

Coxeter–Fuß–Catalan number, 50

degrees

of a Weyl group, 50

descent, 21

diagonal harmonics, 24

diagonal reading order

of type An−1, 28

of type Cn, 88

diagonal reading word

of type An−1, 27

of type Bn, 109

of type Cn, 88

of type Dn, 98

dinv statistic, 25

uniform, 60

dominant

element of the affine Weyl group, 8

Dyck path, 17

diagonally labelled, 27

rational, 19

vertically labelled, 21

vertically labelled rational, 23

m-Dyck path, 18

east step, 6

signed, 69

eta map, 47

exponents

of a Weyl group, 50
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finite torus, 51

floor, 9

Fuß–Catalan number, 18

gap, 33

Graßmannian

element of the affine Weyl group, 8

head

of a path in a partition, 5

height

of a root, 6

of an affine root, 7

hook-length, 5, 31

inclusion order, 5

inversion

affine, 9, 37

of a lattice path, 23

table, 73

involutive automorphism, 11

lattice path, 6

signed, 55

vertically labelled, 53

vertically labelled signed, 56

length

of a Dyck path, 17

of a diagonally labelled Dyck path, 27

of a lattice path, 6

of a parking function, 20

of a partition, 5

of a path in a partition, 5

of an m-Dyck path, 18

of an affine permutation, 9

of an element of the affine Weyl group, 8

level, 33

min-tableau, 76

north step, 6

north-east-path

in a partition, 5

Pak–Stanley labelling

dual, 79

rational, 79

parking function, 20

non-nesting, 64

rational, 22

part

of a partition, 5

partition, 5

bounded, 5

integer, 5

of a lattice path, 6

permutation

affine, 9

affine signed, 12

Graßmannian affine, 9

signed, 12

p-stable affine, 42

rank

of a root system, 6

rank complement, 20

reflection principle, 18

region, 7

Shi, 63

Sommers, 58

removable

cell for a partition, 32

n-residue, 32

return, 27

rim-hook, 5

rise

initial, 27

of a labelled Dyck path, 28

of a labelled lattice path, 90, 110

of a labelled signed lattice path, 101

of a lattice path, 6

root

affine, 7

affine positive, 7

affine simple, 7

highest, 7

root system, 6

crystallographic, 6

irreducible, 6

positive, 6

simple, 6

n-row, 44

runner, 33

separating hyperplane, 9

Shi tableau

rational, 75

m-Shi tableau, 75

sign

of a signed ballot path, 69

of a signed lattice path, 55

type, 63

simple transposition

of type An−1, 9

of type Bn, 12

of type Cn, 12

of type Dn, 12

size

of a partition, 5

n-size, 39

skew-length statistic, 44

slope

of a rational Dyck path, 19

of a rational parking function, 22

of a vertically labelled rational Dyck path, 23

p-stable

element of the affine Weyl group, 58

staircase, 47

step

of a lattice path, 6
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summand
of a partition, 5

sweep map

of type An−1, 29
of type Cn, 94

symmetric group, 9

affine, 9

tail

of a path in a partition, 5

valley

of a ballot path, 66
of a labelled ballot path, 90, 110

of a labelled Dyck path, 28

of a labelled signed ballot path, 101
of a lattice path, 6

wall, 9
weight

of a lattice point, 19

Weyl group, 8
affine, 8

window, 9, 12

Young diagram, 5

zeta map, 25, 28

of type Bn, 109
of type Cn, 89

of type Dn, 99

rational, 29
uniform, 84
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