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S U M M A RY

The present thesis contains four main contributions to the Catalan combinatorics of crystallo-
graphic root systems.

The first is a uniform bijection A that generalises the bijection AGMV defined by Gorsky,
Mazin and Vazirani for the affine symmetric group in their study of a rational generalisation of
the Hilbert series of the space of diagonal harmonics.

The second is a uniform bijection ζ that generalises the bijection ζHL defined by Haglund and
Loehr, also in the context of diagonal harmonics.

The third is a proof of a conjecture of Armstrong relating floors and ceilings of the m-Shi
arrangement. In this proof, a bijection that provides more refined enumerative information is
introduced.

The fourth is a proof of the H = F correspondence, originally conjectured by Chapoton and
then generalised by Armstrong. The H = F correspondence describes a way of transforming a
refined enumeration of the faces of the m-cluster complex Assoc

(m)
Φ to a refined enumeration

of the set NN(m)
Φ of m-generalised nonnesting partitions by means of an invertible change of

variables. The proof uses a uniform bijection together with a case-by-case verification.
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Z U S A M M E N FA S S U N G

Die vorliegende Dissertation enthält vier hauptsächliche Beiträge zur Catalan-Kombinatorik
der kristallographischen Wurzelsysteme.

Der erste ist eine einheitliche Anderson-Abbildung A die die kombinatorische Anderson-
Abbildung AGMV verallgemeinert. Die kombinatorische Anderson-Abbildung wurde von
Gorsky, Mazin und Vazirani für die affine symmetrische Gruppe definiert um eine rationale
Verallgemeinerung der Hilbertreihe des Raumes der diagonalen harmonischen Polynome zu
erhalten.

Der zweite ist eine einheitliche Zeta-Abbildung ζ die die kombinatorische Zeta-Abbildung
ζHL verallgemeinert. Die kombinatorische Zeta-Abbildung wurde von Haglund und Loehr
definiert, auch im Kontext der diagonalen harmonischen Polynome.

Der dritte ist der Beweis einer Vermutung von Armstrong die die Böden und die Decken
von dominanten Regionen des m-Shi-Gefüges in Verbindung setzt. In dem Beweis wird eine
Bijektion eingeführt die noch feinere Abzählungen ermöglicht.

Der vierte ist der Beweis der H = F Korrespondenz. Diese wurde zuerst von Chapoton
vermutet und später durch Armstrong verallgemeinert. Sie beschreibt eine invertierbare Vari-
ablensubstitution die eine verfeinerte Abzählung der Seiten des Cluster-Komplexes Assoc

(m)
Φ in

eine verfeinerte Abzählung der Menge NN
(m)
Φ der m-nichtschachtelnden Partitionen umwandelt.

Der Beweis verwendet eine einheitliche Bijektion sowie eine Fallunterscheidung.
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1
I N T R O D U C T I O N

1.1 catalan combinatorics

1.1.1 Catalan numbers

One of the most famous number sequences in combinatorics is the sequence of Catalan numbers
1, 1, 2, 5, 14, 42, 132, . . . given by the formula

Catn :=
1

2n + 1

(
2n + 1

n

)
.

A vast variety of combinatorial objects are counted by the Catalan numbers and may thus justly
be called Catalan objects. Many of them have been collected by Stanley [Sta]. Some Catalan
objects are

(Assoc) triangulations of a convex (n + 2)-gon,

(NC) noncrossing partitions of [n] := {1, 2, . . . , n},

(NN) nonnesting partitions of [n], and

(Q̌) increasing parking functions of length [n].

1.1.2 Coxeter-Catalan numbers

In algebraic combinatorics, a common theme is to take combinatorial objects and view them
as emerging from or sitting inside some algebraic structure. Doing this may reveal further
structure or suggest possible generalisations.

In our case, the four Catalan objects mentioned in Section 1.1.1 may be seen as objects associated
with the symmetric group Sn and its root system, which is of Dynkin type An−1. This makes
it possible to generalise each of them to all irreducible crystallographic root systems Φ. For
background on crystallographic root systems refer to Chapter 2. These generalisations are

(Assoc) maximal sets of pairwise compatible almost positive roots,

(NC) minimal factorisations of a Coxeter element c into two Weyl group elements,

(NN) order filters in the root poset of Φ, and

(Q̌) orbits of the action of the Weyl group W on the finite torus Q̌/(h + 1)Q̌.

Surprisingly, the Catalan numbers survive these generalisations: each of these objects is counted
by the same number CatΦ, the Coxeter-Catalan number of Φ. It is defined as

CatΦ :=
1
|W|

r

∏
i=1

(h + 1 + ei).

Here r is the rank of Φ, W is its Weyl group, h is its Coxeter number and e1, e2, . . . , er are its
exponents. When Φ is of Dynkin type An−1, the Coxeter-Catalan number CatΦ equals the
classical Catalan number Catn.

9
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1.1.3 Fuß-Catalan numbers

Further generalisations of Coxeter-Catalan objects are found by introducing a positive integer
m as a Fuß parameter. This gives rise to the following Fuß-Catalan objects:

(Assoc) maximal sets of pairwise compatible m-coloured almost positive roots,

(NC) minimal factorisations of a Coxeter element c into (m + 1) Weyl group elements,

(NN) geometric chains of m order filters in the root poset of Φ, and

(Q̌) W-orbits of the finite torus Q̌/(mh + 1)Q̌.

All of these are counted by the Fuß-Catalan number

Cat
(m)
Φ :=

1
|W|

r

∏
i=1

(mh + 1 + ei).

They specialise to the corresponding Coxeter-Catalan objects in the case where m = 1.

If Φ is of type An−1, the Fuß-Catalan number Cat
(m)
Φ equals the classical Fuß-Catalan num-

ber

Cat
(m)
n :=

1
(m + 1)n + 1

(
(m + 1)n + 1

n

)
.

One underlying philosophy of the field of Fuß-Catalan combinatorics is that uniform theorems
ask for uniform proofs. That is, when a statement holds for all irreducible crystallographic root
systems, one should try to prove it without appealing to their classification.

Given this philosophy, it is helpful to divide the Fuß-Catalan objects into two different worlds:
the noncrossing world containing (Assoc) and (NC) and the nonnesting world containing (NN) and
(Q̌). There are uniform bijections known between the objects within each world, but none
between objects of different worlds.

Each world has its own unique flavour: in the noncrossing world, there are Cambrian re-
currences and generalisations to noncrystallographic root systems [STW15]. On the other hand,
in the nonnesting world there is a uniform proof of the fact that the Fuß-Catalan objects are
indeed counted by the Fuß-Catalan number Cat

(m)
Φ . Our focus in this thesis will be on the

nonnesting world.

1.1.4 Rational Catalan numbers

A further generalisation of Fuß-Catalan numbers are rational Catalan numbers. For any irre-
ducible crystallographic root system Φ and a positive integer p relatively prime to the Coxeter
number h of Φ define the rational Catalan number

Catp/Φ :=
1
|W|

r

∏
i=1

(p + ei).

It reduces to the Fuß-Catalan number Cat(m)
Φ when p = mh + 1. The rational Catalan numbers

count

(Q̌) W-orbits of the finite torus Q̌/pQ̌.

For the (Assoc), (NC) and (NN) Fuß-Catalan objects there is no satisfactory generalisation to
the rational Catalan level yet. However, (Assoc) and (NC) rational Catalan objects have been
proposed for type An−1 [ARW13].

If Φ is of type An−1, the rational Catalan number Catp/Φ equals the rational (p/n)-Catalan
number

Catp/n :=
1

n + p

(
n + p

n

)
.
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1.2 diagonal harmonics

A different generalisation of the Catalan numbers are the (q, t)-Catalan numbers Catn(q, t).
They are polynomials in q and t that were defined by Garsia and Haiman as the bigraded
Hilbert series of the space of diagonal harmonic alternants of the symmetric group Sn [GH96].
There are two equivalent combinatorial interpretations of them: we have

Catn(q, t) = ∑
P

qdinv(P)tarea(P) = ∑
P

qarea(P)tbounce(P),

where both sums are over all Dyck paths P of length n and dinv, area and bounce are three
statistics on Dyck paths [Hag08, Corollary 3.2.1]. There is a bijection ζH on Dyck paths due
to Haglund that sends dinv to area and area to bounce, proving the second equality [Hag08,
Theorem 3.15]. In particular we have the specialisation Catn(1, 1) = Catn.

It is natural to also consider the Hilbert series DHn(q, t) of the space of all diagonal har-
monics of Sn. This also has two equivalent (conjectural) combinatorial interpretations: we
have

DHn(q, t) = ∑
(P,σ)∈PFn

qdinv’(P,σ)tarea(P,σ) = ∑
(w,D)∈Dn

qarea’(w,D)tbounce(w,D),

where PFn is the set of parking functions of length n viewed as vertically labelled Dyck paths and
Dn is the set of diagonally labelled Dyck paths of length n. There is a bijection ζHL due to Haglund
and Loehr [Hag08, Theorem 5.6] that maps PFn to Dn and sends the bistatistic (dinv’, area) to
(area’, bounce), demonstrating the second equality.

Armstrong has given a third equivalent (conjectural) combinatorial interpretation of DHn(q, t)
as a sum over the Shi alcoves of the root system of type An−1 [Arm13]. This allowed him to
generalise to the Fuß-Catalan level by defining a similar combinatorial Hilbert series as a sum
over m-Shi alcoves. This connects to the nonnesting Fuß-Catalan combinatorics, since there is a
natural bijection between geometric chains of m order filters in the root poset and dominant
m-Shi alcoves [Ath05].

Gorsky, Mazin and Vazirani generalised further to the rational Catalan level by defining
an analogous combinatorial Hilbert series as a sum over the set S̃p

n of p-stable affine permutations
for any p relatively prime to n [GMV14]. When p = mn + 1, these correspond to the m-Shi
alcoves. In their construction, they defined the Anderson map AGMV as a bijection from S̃p

n to
the set of rational p/n-parking functions PF p/n.

1.3 structure of the thesis

The thesis is structured as follows.

In Chapter 2 we give an overview of the theory of crystallographic root systems and their Weyl
groups. We also introduce the corresponding affine root systems and affine Weyl groups. All
the material in this chapter is well-known, so the expert reader may choose to skip it and only
refer to it as needed.

In Chapter 3 we generalise the Anderson map AGMV of Gorsky, Mazin and Vazirani to
an Anderson map A that is defined uniformly for all irreducible crystallographic root systems.
It is a bijection from the set W̃p of p-stable affine Weyl group elements to the finite torus Q̌/pQ̌.

In Chapter 4 we introduce the m-Shi arrangement. This hyperplane arrangement is central
to this thesis and to the field of nonnesting Fuß-Catalan combinatorics as a whole. We use
the Anderson map A in the special case where p = mh + 1 to recover a number of known
enumerative properties of it.
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In Chapter 5 we use the Anderson map A in the case where p = mh + 1 to obtain a uni-
form generalisation of the zeta map ζHL of Haglund and Loehr to all irreducible crystallographic
root systems and to the Fuß-Catalan level of generality.

In Chapter 6 we prove a conjecture of Armstrong [Arm09, Conjecture 5.1.24] relating floors and
ceilings of dominant regions of the m-Shi arrangement. We do this by introducing a bijection
that provides even more refined enumerative information.

In Chapter 7 we prove the H = F correspondence, a close enumerative correspondence
between the (NN) and (Assoc) Fuß-Catalan objects that was originally conjectured by Chapoton
at the Coxeter-Catalan level of generality [Cha06, Conjecture 6.1] and later generalised to the
Fuß-Catalan level by Armstrong [Arm09, Conjecture 5.3.1].



2
B A S I C N O T I O N S

In this chapter we provide an introduction to crystallographic root systems, their Weyl groups
and associated hyperplane arrangements. All the content of this chapter is well-known. A good
reference is [Hum90].

2.1 root systems and reflection groups

In the structure theory of Lie algebras, crystallographic root systems naturally arise as the sets
of weights of the adjoint representation of a semisimple complex Lie algebra. But they are also
interesting objects to study in their own right, and can be defined abstractly without referring
to Lie algebras as follows.

2.1.1 Definition of a root system

Let V be a finite dimensional real vector space with an inner product 〈·, ·〉. A root system is a
finite set Φ ⊆ V of nonzero vectors (called roots) such that:

1. RΦ = V,

2. For α ∈ Φ, we have Φ ∩R{α} = {α,−α}, and

3. For α, β ∈ Φ, we have β− 2 〈β,α〉
〈α,α〉α ∈ Φ.

We call a root system crystallographic if it also satisfies

4. For α, β ∈ Φ, we have 2 〈β,α〉
〈α,α〉 ∈ Z.

The most interesting property here is the third: For α ∈ Φ, consider the linear endomorphism
of V defined by

sα : x 7→ x− 2
〈x, α〉
〈α, α〉α.

This is the reflection through the linear hyperplane

Hα := {x ∈ V : 〈x, α〉 = 0}.

In particular it is an orthogonal transformation of V and the third property of root systems
just says that it permutes the roots in Φ. Let T := {sα : α ∈ Φ} be the set of all reflections
through linear hyperplanes orthogonal to the roots in Φ. We are led to consider the reflection
group W := 〈T〉 generated by all these reflections. It acts on the root system Φ.

In this thesis, we restrict our attention to crystallographic root systems. In that case, we
call W the Weyl group of Φ.

Example. Let n be a positive integer and let ei be the i-th vector in the standard basis
for Rn for i ∈ [n]. The crystallographic root system of type An−1 is defined as the set
of roots

Φ := {ei − ej : i, j ∈ [n], i 6= j}
spanning the vector space

V := {(x1, x2, . . . , xn) ∈ Rn :
n

∑
i=1

xi = 0}.

13



14 basic notions

The reflection sei−ej ∈ T acts on V by exchanging the i-th with the j-th coordinate.
Thus the Weyl group W = 〈T〉 is the symmetric group Sn acting on V by permuting
coordinates.

2.1.2 Positive roots and simple roots

Let Φ be a crystallographic root system and choose any linear hyperplane H in V that does not
contain any root. The vector space V is then divided into two parts by H, pick one of them and
call all roots in it positive. Then Φ can be written as a disjoint union of the set of positive roots
Φ+ and the set of negative roots −Φ+.

A1 × A1 A2 B2

Φ+

−Φ+

Φ+
Φ+

−Φ+ −Φ+

α1

α2

α1

α2

α1

α2

Figure 2.1.1: Three crystallographic root systems in two dimensions. For each root
system, the blue hyperplane separates the positive roots in Φ+ from the negative
roots in −Φ+ and the simple roots in ∆ are labelled α1 and α2.

Those positive roots that cannot be written as a sum of other positive roots are called simple.
The set ∆ of simple roots is a basis of V, and if a positive root is written in terms of this basis, all
coefficients are nonnegative integers. Thus the number r of simple roots equals the dimension
of V. It is called the rank of the root system. We will sometimes choose to index our set of
simple roots as ∆ = {α1, α2, . . . , αr}.

From now on, we assume that a fixed choice of the set of positive roots Φ+ (and thus also of
the set of simple roots ∆) has been made for Φ. It turns out that for any two choices Φ+

1 , Φ+
2 for

the set of positive roots there exists a unique w ∈W with w(Φ+
1 ) = Φ+

2 . Thus it is inessential
which positive system we chose.

Example. As a set of positive roots for the root system of type An−1 we choose

Φ+ := {ei − ej : 1 ≤ i < j ≤ n}.

The corresponding system of simple roots is

∆ = {ei − ei+1 : i ∈ [n− 1]}.

We set αi := ei − ei+1 for any i ∈ [n− 1].

2.1.3 Dynkin diagrams and the classification

The Dynkin diagram of a root system Φ is a (multi)graph whose vertices are the simple roots of

Φ. Two distinct simple roots α, β ∈ ∆ are connected by dαβ := 4〈α,β〉2
〈α,α〉〈β,β〉 edges. Notice that by the

crystallographic property this number is a (nonnegative) integer, and by the Cauchy-Schwarz
inequality it is less than 4. If α and β are connected by a multiple edge, then they have different
lengths, and we orient the multiple edge towards the shorter root.
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Ar

Br

Cr

Dr

E6

E7

E8

F4

G2

Figure 2.1.2: The list of all connected Dynkin diagrams. The subscript indicates
the number of vertices, or equivalently the rank of the corresponding root system.

Theorem 2.1.1. A crystallographic root system is determined up to isomorphism by its Dynkin diagram.
The only connected Dynkin diagrams are those given in Figure 2.1.2.

We call those root systems that have a connected Dynkin diagram irreducible. Any root system
Φ can be written as a disjoint union of irreducible root systems Φ1, Φ2, . . . , Φl whose Dynkin
diagrams are the connected components of the Dynkin diagram of Φ in such a way that for
i 6= j every root in Φi is orthogonal to every root in Φj.

The classification of irreducible root systems by their Dynkin diagrams given in Theorem 2.1.1
is a powerful tool for proving results concerning root systems. To prove that all root systems
have some property, it is often enough to check that property just for irreducible root systems,
which one can do by checking it for each type in Figure 2.1.2. However, such case-checking
is less illuminating than a proof that does not use the classification, so we will prefer uniform
proofs whenever possible.

The Weyl group W of Φ is generated by the set of simple reflections S := {sα : α ∈ ∆}. We will
sometimes index the set of simple reflections as S = {s1, s2, . . . , sr} where si := sαi for i ∈ [r].
Denote the identity element of a group by e. Clearly every simple reflection is an involution,
that is s2

α = e for all sα ∈ S. Since for α, β ∈ ∆ the angle between the linear hyperplanes Hα and
Hβ is θαβ := cos−1

( |〈α,β〉|
|α||β|

)
= cos−1( 1

2

√
dαβ), the product sαsβ is a rotation by 2θαβ. It turns

out that mαβ := 2π
2θαβ

= π/θαβ is always an integer, so we have (sαsβ)
mαβ = e. See Table 1.

2.1.4 Weyl groups as Coxeter groups

In fact, every relation between the generators in S is a consequence of the basic relations s2
α = e

and (sαsβ)
mαβ = e for sα, sβ ∈ S. Equivalently, the pair (W, S) forms a Coxeter system with
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dαβ θαβ mαβ

0 π/2 2
1 π/3 3
2 π/4 4
3 π/6 6

Table 1: From the Dynkin diagram to the Coxeter matrix

Coxeter matrix (mαβ)α,β∈∆.

We may write any w ∈W as a word in the generators in S, that is we can write w = si1 si2 · · · sil
with sij ∈ S for all j ∈ [l]. A word of w of minimal length is called a reduced word for w. The
length l(w) of w is the length of any reduced word for w.

Example. For the root system of type An−1, the simple reflections si := sαi = sei−ei+1

where i ∈ [n− 1] act on V by exchanging adjacent coordinates. Together they generate
the Weyl group W = Sn. The simple reflections s1, s2, . . . , sn−1 satisfy the Coxeter
relations

1. s2
i = e for all i ∈ [n− 1]

2. (sisi+1)
3 = e for all i ∈ [n− 2] and

3. (sisj)
2 = e if |i− j| > 1.

Every other relation between the generators is a consequence of these.

If J ⊆ S, we call WJ := 〈sα : α ∈ J〉 the standard parabolic subgroup of W corresponding to J. Every
left coset wWJ of WJ in W has a unique representative w′ of minimum length. Furthermore, w′

is the only element u of wWJ such that u(J) ⊆ Φ+. A parabolic subgroup of W is any subgroup
that is conjugate to WJ for some J.

2.2 hyperplane arrangements

For k ∈ Z and α ∈ Φ, define the affine hyperplane

Hk
α := {x ∈ V : 〈x, α〉 = k}.

2.2.1 The Coxeter arrangement

The Coxeter arrangement is the central hyperplane arrangement in V given by all the linear
hyperplanes H0

α = Hα for α ∈ Φ+. The complement of this arrangement falls apart into
connected components which we call chambers. The Weyl group W acts simply transitively on
the chambers. Thus we define the dominant chamber by

C := {x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆}

and write any chamber as wC for a unique w ∈W. The length l(w) of w equals the number of
hyperplanes of the Coxeter arrangement that separate wC from C.

2.2.2 The affine Coxeter arrangement and the affine Weyl group

From now on we will assume that Φ is irreducible. The root order on Φ+ is the partial order
defined by α ≤ β if and only if β− α can be written as a sum of positive roots. The set of
positive roots Φ+ with this partial order is called the root poset of Φ. It has a unique maximal
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Hα1

Hα2

C

s1C

s1s2C

s1s2s1C

s2s1C

s2C

Hα1+α2

A2 B2

Hα2

C

Hα1

s1C

H2α1+α2

s2Cs2s1C

s2s1s2C

s1s2s1s2C

s1s2s1C s1s2C

Hα1+α2

Figure 2.2.1: The Coxeter arrangements of types A2 and B2.

element, the highest root α̃.

α1 α2 α3

α1 + α2 α2 + α3

α1 + α2 + α3

α1 α2 α3

α1 + α2 α2 + α3

α1 + α2 + α32α1 + α2

2α1 + α2 + α3

2α1 + 2α2 + α3

A3
B3

Figure 2.2.2: The Hasse diagrams of the root posets of types A3 and B3.

The affine Coxeter arrangement is the affine hyperplane arrangement in V given by all the affine
hyperplanes Hk

α for α ∈ Φ and k ∈ Z. The complement of this arrangement falls apart into
connected components which are called alcoves. They are all isometric simplices. We call an
alcove dominant if it is contained in the dominant chamber. Define sk

α as the reflection through
the affine hyperplane Hk

α. That is,

sk
α(x) := x− 2

〈x, α〉 − k
〈α, α〉 α.

We will also write sα for the linear reflection s0
α.

Let the affine Weyl group W̃ be the group of affine automorphisms of V generated by all the
reflections through hyperplanes in the affine Coxeter arrangement, that is

W̃ := 〈sk
α : α ∈ Φ and k ∈ Z〉.

The affine Weyl group W̃ acts simply transitively on the alcoves of the affine Coxeter arrange-
ment. Thus we define the fundamental alcove by

A◦ := {x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆ and 〈x, α̃〉 < 1}

and write any alcove of the affine Coxeter arrangement as w̃A◦ for a unique w̃ ∈ W̃.

If we define S̃ := S ∪ {s1
α̃}, then (W̃, S̃) is a Coxeter system. In particular, we may write

any w̃ ∈ W̃ as a word in the generators in S̃, called reduced if its length is minimal, and define
the length l(w̃) of w̃ as the length of any reduced word for it. If w̃ ∈W ⊆ W̃, then its length in
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A◦

H0
α1+α2 H0

α2

H0
α1

Figure 2.2.3: The affine Coxeter arrangement of type A2. The points in the coroot
lattice Q̌ are marked as blue dots.

terms of the generators in S̃ equals its length in terms of the generators in S, so we are free
to use the same notation for both lengths. The length l(w̃) of w̃ ∈ W̃ is also the number of
hyperplanes of the affine Coxeter arrangement separating w̃A◦ from A◦.

For a root α ∈ Φ, its coroot is defined as α∨ = 2 α
〈α,α〉 . The set Φ∨ = {α∨ : α ∈ Φ} is

itself an irreducible crystallographic root system, called the dual root system of Φ. Clearly
Φ∨∨ = Φ.

The root lattice Q of Φ is the lattice in V spanned by all the roots in Φ. The coroot lattice
Q̌ of Φ is the lattice in V spanned by all the coroots in Φ∨. It is not hard to see that W̃ acts on
the coroot lattice. To any µ ∈ Q̌, there corresponds the translation

tµ : V → V

x 7→ x + µ.

If we identify Q̌ with the corresponding group of translations acting on the affine space V then
we may write W̃ = W n Q̌ as a semidirect product. In particular, we may write any w̃ ∈ W̃ as
w̃ = wtµ for unique w ∈W and µ ∈ Q̌.

For an alcove w̃A◦ and a root α ∈ Φ there is a unique integer k such that k < 〈x, α〉 < k + 1 for
all x ∈ w̃A◦. We denote this integer by k(w̃, α). We call the tuple (k(w̃, α))α∈Φ+ the address of
the alcove w̃A◦.

Notice that we have k(w̃,−α) = −k(w̃, α)− 1 and k(ww̃, w(α)) = k(w̃, α) for all α ∈ Φ and
w ∈ W. Also note that if k(w̃, α) = k(w̃′, α) for all α ∈ Φ+, then w̃ = w̃′. The number of
hyperplanes orthogonal to a root α ∈ Φ+ that separate w̃A◦ from A◦ is exactly |k(w̃, α)|. Thus
we have l(w̃) = ∑α∈Φ+ |k(w̃, α)|.

2.2.3 Polyhedra

A half-space in V is subset of the form

H = {x ∈ V : λ(x) < l}
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for some linear functional λ in the dual space V∗ of V and a real number l ∈ R. A polyhedron
in V is any nonempty subset of V that is defined as the intersection of a finite number of
half-spaces. We will also consider the closure P of any polyhedron P a polyhedron.

Any hyperplane corresponding to an irredundant inequality defining a polyhedron P is
considered a wall of P. Its intersection with P is called a facet of P. A wall of P is called a floor
of P if it does not contain the origin and separates P from the origin. A wall of P that does not
contain the origin and does not separate P from the origin is called a ceiling of P.

A◦

H3
α1

H1
α2

H3
α1+α2

Figure 2.2.4: The yellow alcove has a single floor, namely H3
α1+α2

. Its ceilings are
H3

α1
and H1

α2
.

2.2.4 Affine roots

We may understand W̃ in terms of its action on the set of affine roots Φ̃ of Φ. To do this, let δ be
a formal variable and define Ṽ := V ⊕Rδ. Define the set of affine roots as

Φ̃ := {α + kδ : α ∈ Φ and k ∈ Z}.

If w̃ ∈ W̃, write it as w̃ = wtµ for unique w ∈W and µ ∈ Q̌ and define

w̃(α + kδ) = w(α) + (k− 〈µ, α〉)δ.

This defines an action of W̃ on Φ̃. It imitates the action of W̃ on the half-spaces of V defined by
the hyperplanes of the affine Coxeter arrangement. To see this, define the half-space

Hα+kδ := {x ∈ V : 〈x, α〉 > −k}.

Then for w̃ ∈ W̃ we have w̃(Hα+kδ) = Hβ+lδ if and only if w̃(α + kδ) = β + lδ. Define the set
of positive affine roots as

Φ̃+ := {α + kδ : α ∈ Φ+ and k ≥ 0} ∪ {α + kδ : α ∈ −Φ+ and k > 0},

the set of affine roots corresponding to half-spaces that contain A◦. So Φ̃ is the disjoint union
of Φ̃+ and −Φ̃+. Define the set of simple affine roots as

∆̃ := ∆ ∪ {−α̃ + δ},

the set of affine roots corresponding to half-spaces that contain A◦ and share one of its walls.
We will also write α0 := −α̃ + δ.
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For w̃ ∈ W̃, we say that α + kδ ∈ Φ̃+ is an inversion of w̃ if w̃(α + kδ) ∈ −Φ̃+. Define

Inv(w̃) := Φ̃+ ∩ w̃−1(−Φ̃+)

as the set of inversions of w̃.

Lemma 2.2.1. The positive affine root α + kδ ∈ Φ̃+ is an inversion of w̃ if and only if the hyperplane
H−k

α separates w̃−1 A◦ from A◦.

Proof. If α + kδ ∈ Φ̃+ ∈ Inv(w̃), then A◦ ⊆ Hα+kδ and A◦ * w̃(Hα+kδ). Thus w̃−1 A◦ * Hα+kδ

and therefore H−k
α separates w̃−1 A◦ from A◦.

Conversely, if α + kδ ∈ Φ̃+ and H−k
α separates w̃−1 A◦ from A◦, then A◦ ⊆ Hα+kδ and w̃−1 A◦ *

Hα+kδ. Therefore A◦ * w̃(Hα+kδ) and thus w̃(α + kδ) ∈ −Φ̃+. So α + kδ ∈ Inv(w̃).

Lemma 2.2.2. If α + kδ ∈ Φ̃+, k > 0 and w̃ ∈ W̃, then w̃−1(α + kδ) ∈ −∆̃ if and only if H−k
α is a

floor of w̃A◦.

Proof. For the forward implication, suppose α + kδ ∈ Φ̃+, k > 0, w̃ ∈ W̃ and w̃−1(α + kδ) ∈ −∆̃.
Then by Lemma 2.2.1 the hyperplane H−k

α separates w̃A◦ from A◦. But we also have that
w̃−1(Hα+kδ) shares a wall with A◦, so H−k

α is a wall of w̃A◦. Thus it is a floor of w̃A◦.

Conversely, if α+ kδ ∈ Φ̃+ and H−k
α is a floor of w̃A◦, then by Lemma 2.2.1, w̃−1(α+ kδ) ∈ −Φ̃+,

so A◦ * w̃−1(Hα+kδ). But since Hα+kδ shares a wall with w̃A◦, w̃−1(Hα+kδ) shares a wall with
A◦. So w̃−1(α + kδ) ∈ −∆.

2.2.5 The height of roots

For α ∈ Φ, we write it in terms of the basis of simple roots as α = ∑r
i=1 aiαi and define its height

ht(α) := ∑r
i=1 ai as the sum of the coefficients. Notice that ht(α) > 0 if and only if α ∈ Φ+ and

ht(α) = 1 if and only if α ∈ ∆. The highest root α̃ is the unique root in Φ of maximal height.
We define the Coxeter number of Φ as h := 1 + ht(α̃).

Example. The highest root of the root system of type An−1 is α̃ = α1 + α2 + . . .+ αn−1.
It has height n− 1. So the Coxeter number h of the root system of type An−1 equals
n.

For any integer t, write Φt for the set of roots of height t. Then in particular we have Φ1 = ∆
and Φh−1 = {α̃}.

Define the height of an affine root α + kδ as ht(α + kδ) = ht(α) + kh. So ht(α + kδ) > 0 if
and only if α + kδ ∈ Φ̃+ and ht(α + kδ) = 1 if and only if α + kδ ∈ ∆̃. For any integer t, write
Φ̃t for the set of affine roots of height t.
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T H E A N D E R S O N M A P

In this chapter, which is based on [Thi15], we generalise the Anderson map AGMV of Gorsky,
Mazin and Vazirani [GMV14] to all irreducible crystallographic root systems. This can be seen
as a step towards a uniform theory of rational Catalan combinatorics. We start by expounding
the theory of classical rational Catalan combinatorics associated with type An−1.

3.1 classical rational catalan combinatorics

3.1.1 Rational Catalan numbers and rational Dyck paths

For a positive integer n and another positive integer p relatively prime to n, the rational
(p, n)-Catalan number is defined as

Catp/n :=
1

n + p

(
n + p

n

)
.

These are generalisations of the classical Fuß-Catalan numbers: for a positive integer m, the
rational Catalan number Catmn+1/n equals the classical Fuß-Catalan number Cat

(m)
n . It was

proven by Bizley [Biz54] that Catp/n counts the number of rational p/n-Dyck paths. These are
lattice paths in Z2 consisting of North and East steps that go from (0, 0) to (p, n) and never go
below the diagonal y = n

p x of rational slope.

For a (p, n)-Dyck path P and i ∈ [n], let Pi be the x-coordinate of the i-th North step of
P. We may identify the path P with the (weakly) increasing tuple of nonnegative integers
(P1, P2, . . . , Pn). The condition that P lies above the diagonal y = n

p x translates to either

Pi ≤
p
n
(i− 1)

for all i ∈ [n], or equivalently

#{i : Pi < l} ≥ nl
p

(3.1.1)

for all l ∈ [p].

We call the full lattice squares (boxes) between a p/n-Dyck path P and the diagonal y = n
p x its

area squares. The number of them in the i-th row from the bottom is the area ai := b p
n (i− 1)c− Pi

of that row. We call the tuple (a1, a2, . . . , an) the area vector of P.

Figure 3.1.1: The rational 8/5-Dyck path P = (0, 0, 1, 3, 6) with its area squares
marked in gray. It has area vector (0, 1, 2, 1, 0).

Rational p/n-Dyck paths were used by Anderson [And02], who provided a bijection between

21
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them and a certain set of number partitions called (p, n)-cores. The Anderson map AGMV of
Gorsky, Mazin and Vazirani, which will be defined later, may be seen as an extension of that
bijection.

3.1.2 Rational parking functions

Equation (3.1.1) suggests the following generalisation of rational Dyck paths. A rational p/n-
parking function is any tuple ( f1, f2, . . . , fn) of n nonnegative integers such that

#{i : fi < l} ≥ nl
p

for all l ∈ [p]. Thus rational p/n-Dyck paths correspond to increasing rational p/n-parking
functions.

Example. The tuple f = (6, 0, 1, 0, 3) is a rational 8/5-parking function. Its increasing
rearrangement is the rational 8/5-Dyck path (0, 0, 1, 3, 6).

An important property of rational parking functions is the following folklore theorem. Let
PF p/n be the set of p/n-parking functions.

Theorem 3.1.1. PF p/n is a set of representatives for the cosets of the cyclic subgroup generated by
(1, 1, . . . , 1) in the abelian group Zn

p.

Proof. We represent elements of Zp as tuples f = ( f1, f2, . . . , fn) with fi ∈ {0, 1, . . . , p− 1} for
all i ∈ [n]. Define

Sum( f ) :=
n

∑
i=1

fi ∈N.

We claim that every coset H of the cyclic subgroup generated by (1, 1, . . . , 1) in Zn
p has a

unique representative with minimal Sum. To see this, we prove the stronger statement that all
representatives of H have different Sum. Suppose that f ∈ H, l ∈ [p] and

Sum ( f − l(1, 1, . . . , 1)) = Sum( f ).

We calculate that

Sum ( f − l(1, 1, . . . , 1)) = Sum( f )− nl + p · #{i ∈ [n] : fi − l < 0}, (3.1.2)

so −nl + p · #{i ∈ [n] : fi − l < 0} = 0. Thus p divides nl. Since p is relatively prime to n, this
implies that p divides l. Therefore f − l(1, 1, . . . , 1) = f .

To finish the proof, we claim that f ∈ H has minimal Sum if and only if f is a p/n-parking
function. To see this, first suppose that f ∈ H has minimal Sum. Then Sum ( f − l(1, 1, . . . , 1)) ≥
Sum( f ) for all l ∈ [p]. From Equation (3.1.2) we deduce that −nl + p · #{i ∈ [n] : fi − l < 0} ≥ 0
for all l ∈ [p], or equivalently #{i ∈ [n] : fi < l} ≥ nl

p for all l ∈ [p]. So f is a p/n-parking
function. Reversing the argument shows that if f is a p/n-parking function then it has minimal
Sum in the coset containing it.

Corollary 3.1.2 ([ALW14, Corollary 4]). |PF p/n| = pn−1.

The symmetric group Sn naturally acts on PF p/n by permuting coordinates. Every orbit of
this action contains exactly one increasing p/n-parking function. Thus the Sn-orbits on PF p/n
are naturally indexed by p/n-Dyck paths. In particular the number of Sn-orbits on PF p/n is
Catp/n.
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3.1.3 Vertically labelled Dyck paths

It is natural to introduce a combinatorial model for p/n-parking functions in terms of vertically
labelled p/n-Dyck paths. In fact, this is how rational parking functions were originally defined
in [ALW14].

An index i ∈ [n] is called a rise of a p/n-Dyck path P if the i-th North step of P is fol-
lowed by another North step. Equivalently, i is a rise of P if Pi = Pi+1. A vertically labelled
p/n-Dyck path is a pair (P, σ) of a p/n-Dyck path P and a permutation σ ∈ Sn such that
whenever i is a rise of P we have σ(i) < σ(i + 1). We think of σ as labeling the North steps of
P and say that the rise i is labelled (σ(i), σ(i + 1)).

The bijection from p/n-parking functions to vertically labelled p/n-Dyck paths works as
follows: For a p/n-parking function f = ( f1, f2, . . . , fn), let (P1, P2, . . . , Pn) be its increasing
rearrangement and let P be the corresponding p/n-Dyck path. So P encodes the values that f
takes, with multiplicities. In order to recover f , we also need to know their preimages under
f . Thus for all l ∈ {0, 1, . . . , p} we label the North steps of P with x-coordinate equal to l by
the preimages of l under f . If there are multiple North steps with the same x-coordinate we
label them increasingly from bottom to top. Let σ ∈ Sn be the permutation that maps i ∈ [n]
to the label of the i-th North step of P. Then (P, σ) is the vertically labelled p/n-Dyck path
corresponding to f .

The inverse bijection is simple: if (P, σ) is the vertically labelled p/n-Dyck path corresponding
to the p/n-parking function f then f = σ · (P1, P2, . . . , Pn). We will often use this bijection im-
plicitly and do not distinguish between rational p/n-parking functions and their combinatorial
interpretation as vertically labelled p/n-Dyck paths.

2
4

3
5

1

Figure 3.1.2: The vertically labelled 8/5-Dyck path (P, σ) with P = (0, 0, 1, 3, 6)
and σ = 24351. It corresponds to the 8/5-parking function (6, 0, 1, 0, 3). Its only
rise is 1, and it is labelled (2, 4).

In terms of vertically labelled Dyck paths, the natural Sn-action on PF p/n is realized by
defining for τ ∈ Sn

τ · (P, σ) = (P, (τσ)′),

where (P, (τσ)′) comes from labelling the North steps of P with τσ and then sorting the labels
in each column increasingly from bottom to top.
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3.2 the affine symmetric group

Let Φ be a root system of type An−1. We choose

Φ = {ei − ej : i, j ∈ [n], i 6= j},
Φ+ = {ei − ej : i, j ∈ [n], i < j},

∆ = {ei − ei+1 : i ∈ [n− 1]},

V = {(x1, x2, . . . , xn) ∈ Rn :
n

∑
i=1

xi = 0}, and

Q̌ = {(x1, x2, . . . , xn) ∈ Zn :
n

∑
i=1

xi = 0}.

The Weyl group W is the symmetric group Sn acting on V by permuting coordinates, the rank
of Φ is r = n− 1 and the Coxeter number is h = n.

The affine Weyl group W̃ also has a combinatorial model as S̃n, the set of affine permutations of
period n. These are the bijections σ̃ : Z→ Z with

σ̃(l + n) = σ̃(l) + n for all l ∈ Z and

n

∑
i=1

σ̃(i) =
(

n + 1
2

)
.

The affine symmetric group is generated by the affine simple transpositions s̃0, s̃1, . . . , s̃n−1 that
act on Z by

s̃j(l) = l + 1 for l ≡ j (mod n),

s̃j(l) = l − 1 for l ≡ j + 1 (mod n), and

s̃j(l) = l otherwise.

To identify the affine Weyl group W̃ with S̃n we index its generating set as S̃ = {s0, s1, . . . , sn−1},
where si = sei−ei+1 for i ∈ [n− 1] and s0 = s1

e1−en
. Here e1 − en = α̃ is the highest root of Φ. The

generators s0, s1, . . . , sn−1 of W̃ satisfy the same relations as the generators s̃0, s̃1, . . . , s̃n−1 of S̃n,
so sending si 7→ s̃i for i = 0, 1 . . . , n− 1 defines an isomorphism from W̃ to S̃n. We use this
identification extensively and do not distinguish between elements of the affine Weyl group
and the corresponding affine permutations.

Since w̃ ∈ S̃n is uniquely defined by its values on [n], we sometimes write it in window
notation as w̃ = [w̃(1), w̃(2), . . . , w̃(n)].

For w̃ ∈ S̃n, write w̃(i) = w(i) + nµi with w(i) ∈ [n] for all i ∈ [n]. Then w ∈ Sn,
µ := (µ1, µ2, . . . , µn) ∈ Q̌ and w̃ = wtµ ∈ W̃.

Example. Consider the affine permutation w̃ ∈ S̃4 with window [−3, 10, 4,−1]. We
can write (−3, 10, 4,−1) = (1, 2, 4, 3) + 4(−1, 2, 0,−1), so we have w = 1243 ∈ S4 and
µ = (−1, 2, 0,−1) ∈ Q̌. So w̃ = wtµ = s3t(−1,2,0,−1) ∈ W̃.

In order to avoid notational confusion, we use a “·” for the action of W̃ on V. So in particular
w̃(0) is the affine permutation w̃ evaluated at 0 ∈ Z, whereas w̃ · 0 is the affine Weyl group
element w̃ applied to 0 ∈ V.
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3.3 abaci

For any affine permutation w̃, we consider the set

∆w̃ := {l ∈ Z : wR(l) > 0} = w̃−1(Z>0).

We define its abacus diagram A(∆w̃) as follows: draw n runners, labelled 1, 2, . . . , n from left to
right, with runner i containing all the integers congruent to i modulo n arranged in increas-
ing order from top to bottom. We say that the k-th level of the abacus contains the integers
(k− 1)n + i for i ∈ [n] and arrange the runners in such a way that the integers of the same level
are on the same horizontal line.

-11 -10 -9 -8

-7 -6 -5 -4

-3 -2 -1 0

1 2 3 4

5 6 7 8

Figure 3.3.1: The balanced 4-flush abacus A(∆w̃) for w̃ = [−3, 10, 4,−1]. Note that
the values in the window of w̃−1 = [5,−6, 8, 3] are the lowest gaps (that is, the
gaps with the lowest level on each runner) of A(∆w̃). The levels of the runners of
A(∆w̃) are 1,−2, 0, 1. Thus w̃−1 · 0 = (1,−2, 0, 1).

We circle the elements of Z\∆w̃ and call them beads, whereas we call the elements of ∆w̃ gaps.
Notice that the fact that w̃(l + n) = w̃(l) + n > w̃(l) for all l ∈ Z implies that whenever l ∈ ∆w̃
then also l + n ∈ ∆w̃. We say that ∆w̃ is n-invariant. Thus the abacus A(∆w̃) is n-flush, that is
whenever l is a gap then all the l + kn for k ∈ Z>0 below it are also gaps. Or equivalently
whenever l is a bead then so are all the l − kn for k ∈ Z>0 above it.

For an n-flush abacus A define leveli(A) to be the highest level of a bead on runner i in A
for i ∈ [n]. Define the integer tuple

levels(A) = (level1(A), level2(A), . . . , leveln(A)).

The following theorem is well-known.

Theorem 3.3.1. For w̃ ∈ S̃n, we have levels(A(∆w̃)) = w̃−1 · 0.

Proof. Note that levels(A(∆e)) = 0 and

levels(A(∆w̃sj
)) = levels(A((w̃sj)

−1(Z>0)))

= levels(A(sjw̃−1(Z>0)))

= levels(A(sj(∆w̃)))

= sj · levels(A(∆w̃))

for w̃ ∈ S̃n and j = 0, 1, . . . , n− 1. Thus the result follows by induction on the length l(w̃) of
w̃.

In particular levels(A(∆w̃)) ∈ Q̌, so the sum of the levels of A(∆w̃) is zero. We call such an
abacus balanced.
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Let Mw̃ be the minimal element of ∆w̃ (that is, the smallest gap of A(∆w̃)) and define
∆̃w̃ = ∆w̃ −Mw̃. This is also an n-invariant set, so we form its n-flush abacus A(∆̃w̃). This is a
normalized abacus, that is its smallest gap is 0.

-7 -6 -5 -4

-3 -2 -1 0

1 2 3 4

5 6 7 8

9 10 11 12

Figure 3.3.2: The normalized 4-flush abacus A(∆̃w̃) for w̃ = [−3, 10, 4,−1]. Here
Mw̃ = −6.

Remark. It is easy to see that if ∆ is an n-invariant set with levels(A(∆)) = (x1, x2, . . . , xn), then
levels(A(∆ + 1)) = (xn + 1, x1, x2, . . . , xn−1). Thus we define the bijection

g : Zn → Zn

(x1, x2, . . . , xn) 7→ (xn + 1, x1, x2, . . . , xn−1)

and get that
levels(A(∆̃w̃)) = g−Mw̃ · levels(A(∆w̃)). (3.3.1)

In particular ∑n
i=1 leveli(A(∆̃w̃)) = −Mw̃.

3.4 p-stable affine permutations

For a positive integer p relatively prime to n, we define the set of p-stable affine permutations S̃p
n

as [GMV14, Definition 2.13]

S̃p
n := {w̃ ∈ S̃n : w̃(i + p) > w̃(i) for all i ∈ Z}.

If w̃ is p-stable, then ∆w̃ is p-invariant in addition to being n-invariant. So the n-flush abacus
A(∆w̃) is also p-flush, that is whenever l is a gap then so is l + kp for all k ∈ Z>0.

Example. The affine permutation w̃ = [−3, 10, 4,−1] is 9-stable. Thus its balanced
abacus A(∆w̃) is 9-flush in addition to being 4-flush.

3.5 the combinatorial anderson map

We are now ready to describe the Anderson map AGMV defined by Gorsky, Mazin and Vazirani
[GMV14, Section 3.1]. It is a bijection from the set of p-stable affine permutations S̃p

n to the set
of p/n-parking functions.

We use English notation, so for us a Young diagram is a finite set of square boxes that is
left-justified and top-justified. Take w̃ ∈ S̃p

n. As in Section 3.3 we consider the set

∆w̃ := {i ∈ Z : w̃(i) > 0}
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and let Mw̃ be its minimal element. Let ∆̃w̃ := ∆w̃ −Mw̃. In contrast to [GMV14], we shall use
∆̃w̃ in place of ∆w̃ and therefore also have a different labelling of Z2.

View the integer lattice Z2 as the set of square boxes. Define the rectangle

Rp,n := {(x, y) ∈ Z2 : 0 ≤ x < p, 0 ≤ y < n}

and label Z2 by the linear function

l(x, y) := −n− nx + py.

Define the Young diagram

Dw̃ := {(x, y) ∈ Rp,n : l(x, y) ∈ ∆̃w̃}

and let Pw̃ be the path that defines its lower boundary. It is a p/n-Dyck path. Label its i-th
North step by σ(i) := w̃(li + Mw̃), where li is the label of the rightmost box of Dw̃ in the i-th
row from the bottom (or the label of (−1, i− 1) if its i-th row is empty). Then we have that
σ ∈ Sn and (Pw̃, σ) is a vertically labelled p/n-Dyck path. We define AGMV := (Pw̃, σ).

-4 -8 -12 -16 -20 -24 -26 -30 -34

5 1 -3 -7 -11 -15 -19 -23 -27

14 10 6 2 -2 -6 -10 -14 -16

23 19 15 11 7 3 -1 -5 -9

2

4

3

1

Figure 3.5.1: The vertically labelled 9/4-Dyck path AGMV(w̃) for w̃ =
[−3, 10, 4,−1]. It has area vector (0, 2, 3, 2) and labelling σ = 2431. It corresponds
to the 9/4-parking function (4, 0, 1, 0). The positive beads of the normalized
abacus A(∆̃w̃) are shaded in gray.

Theorem 3.5.1 ([GMV14, Theorem 3.4]). The Anderson map AGMV is a bijection from S̃p
n to the set

of vertically labelled p/n-Dyck paths.

3.6 the uniform anderson map

In this section, we will generalise the Anderson map AGMV to a uniform Anderson map A that
is defined for all irreducible crystallographic root systems Φ. It is a bijection from the set W̃p of
p-stable affine Weyl group elements to the finite torus Q̌/pQ̌. We will proceed in several steps,
all of which have already appeared in the literature in some form.

3.6.1 p-stable affine Weyl group elements

Let Φ be any irreducible crystallographic root system and let W̃ be its affine Weyl group. We say
that w̃ ∈ W̃ is p-stable if it has no inversions of height p. That is, w̃ is p-stable if w̃(Φ̃p) ⊆ Φ̃+.
We denote the set of p-stable affine Weyl group elements by W̃p.

Define
pW̃ := {w̃−1 : w̃ ∈ W̃p}

as the set of inverses of p-stable affine Weyl group elements. We call these elements p-restricted.
Recall from Lemma 2.2.1 that an affine root α + kδ ∈ Φ̃+ is an inversion of w̃ ∈ W̃ if and only if
the corresponding hyperplane H−k

α separates w̃−1 A◦ from A◦. Thus w̃ ∈ pW̃ if and only if no
hyperplane corresponding to an affine root of height p separates w̃A◦ from A◦.
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Write p = ah + b, where a and b are nonnegative integers and 0 < b < h. Then we have

Φ̃p = {α + aδ : α ∈ Φb} ∪ {α + (a + 1)δ : α ∈ Φb−h}
= {α + aδ : α ∈ Φb} ∪ {−α + (a + 1)δ : α ∈ Φh−b}

Thus the hyperplanes corresponding to affine roots of height p are those of the form H−a
α with

α ∈ Φb and those of the form H−(a+1)
−α = Ha+1

α for α ∈ Φh−b. We define the Sommers region as
the region in V bounded by these hyperplanes:

S p
Φ := {x ∈ V : 〈x, α〉 > −a for all α ∈ Φb and 〈x, α〉 < a + 1 for all α ∈ Φh−b}.

We will later see that this region is in fact a simplex. For now we make the following observation.

A◦

H3
α1+α2

H−2
α2

H−2
α1

Figure 3.6.1: The 49 alcoves in S7
Φ for Φ of type A2.

Lemma 3.6.1. We have w̃ ∈ pW̃ if and only if w̃A◦ ⊆ S p
Φ.

Proof. We have w̃ ∈ pW̃ if and only if no hyperplane corresponding to an affine root of height
p separates w̃A◦ from A◦. But those hyperplanes are exactly the hyperplanes bounding the
Sommers region S p

Φ, and A◦ is inside S p
Φ.

3.6.2 From the Sommers region to the dilated fundamental alcove

In this subsection, we will see that the Sommers region S p
Φ is in fact a simplex. We will

even show the following stronger statement: there is a unique element w̃p ∈ W̃ such that
w̃p(S p

Φ) = pA◦. This will require some preparation. We follow and expand on ideas in [Fan05],
some of which are due to Lusztig.

The coweight lattice and ρ̌

Define {ω̌1, ω̌2, . . . , ω̌r} as the dual basis to the basis {α1, α2, . . . , αr} of simple roots. Then
ω̌1, ω̌2, . . . , ω̌r are called the fundamental coweights. They generate the coweight lattice

Λ̌ := {x ∈ V : 〈x, α〉 ∈ Z for all α ∈ Φ}.

The coroot lattice Q̌ is a sublattice of Λ̌. We define the index of connection as

f := [Λ̌ : Q̌].
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Define ρ̌ := 1
2 ∑α∈Φ+ α̌. Index the set of simple roots of Φ as ∆ = {α1, α2, . . . , αr}. It is well-

known that any simple reflection si sends α̌i to −α̌i and permutes the set of all other positive
coroots. Thus

sαi (ρ̌) =
1
2

−α̌i + ∑
α∈Φ+\{αi}

α̌


=

1
2

(
∑

α∈Φ+

α̌

)
− α̌i

= ρ̌− α̌i.

So we have 〈ρ̌, αi〉 = 1 for all αi ∈ ∆. Thus we can write ρ̌ = ∑r
i=1 ω̌i ∈ Λ̌. Furthermore we

have 〈ρ̌, α〉 = ht(α) for all α ∈ Φ. We will need the following lemma due to Kostant.

Lemma 3.6.2 ([LP12, Lemma 3.6]). Every alcove w̃A◦ contains exactly one point in 1
h Λ̌. For the

fundamental alcove A◦, this point is ρ̌
h .

Proof. We have ρ̌ = ∑n
i=1 ω̌i ∈ Λ̌, so ρ̌

h ∈ 1
h Λ̌. We also have that 〈 ρ̌

h , α〉 = ht(α)/h ∈ (0, 1) for all
α ∈ Φ+. Thus ρ̌

h lies in A◦—in fact, it is the only element in A◦ ∩ 1
h Λ̌.

Indeed, suppose that ν ∈ A◦ ∩ 1
h Λ̌. Then for all αi ∈ ∆ we have 〈ν, αi〉 = ai/h for some

ai ∈ Z+. But we also have 〈ν, α̃〉 = (∑n
i=1 aici)/h < 1, so ai = 1 for all i ∈ [n] and thus ν = ρ̌

h .

Since W̃ acts on 1
h Λ̌, there is exactly one element of 1

h Λ̌ in any alcove w̃A◦.

Theorem 3.6.3. For p relatively prime to h, there exists a unique element w̃p = tµw ∈ W̃ with

p
ρ̌

h
= w̃p

(
ρ̌

h

)
.

Proof. For all α ∈ Φ+, we have that〈
p

ρ̌

h
, α

〉
= p

ht(α)
h

/∈ Z,

since p is relatively prime to h and h does not divide ht(α). Thus p ρ̌
h lies on no hyperplane of

the affine Coxeter arrangement, so it is contained in some alcove w̃p A◦. Since p ρ̌
h ∈ 1

h Λ̌ we
have that p ρ̌

h = w̃p(
ρ̌
h ) by Lemma 3.6.2.

Theorem 3.6.4. The affine Weyl group element w̃p = tµw maps S p
Φ bijectively to pA◦.

Proof. We calculate that

ht(α)
h

=

〈
ρ̌

h
, α

〉
=

〈
w
(

ρ̌

h

)
, w(α)

〉
=

〈
p

ρ̌

h
− µ, w(α)

〉
= p

ht(w(α))

h
− 〈µ, w(α)〉 .

Thus ht(α) = pht(w(α))− h〈µ, w(α)〉. Again write p = ah + b with a, b ∈ Z≥0 and 0 < b < h.
So reducing modulo h we get ht(α) ≡ bht(w(α)) mod h. Thus ht(α) ≡ b mod h if and only if
ht(w(α)) ≡ 1 mod h. So

w(Φb ∪Φb−h) = Φ1 ∪Φ1−h = ∆ ∪ {−α̃}.

For α ∈ ∆, we have

ht(w−1(α))

h
= p

ht(α)
h
− 〈µ, α〉 = p

h
− 〈µ, α〉.

Now ht(w−1(α)) equals either b or b− h, so 〈µ, α〉 = a if w−1(α) ∈ Φ+ and 〈µ, α〉 = a + 1 if
w−1(α) ∈ −Φ+. Comparison with [Fan05, Section 2.3] (w = w′, µ = ν) gives the result.
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A◦A◦
w̃2

Figure 3.6.2: For the root system of type A2, the affine Weyl group element
w̃2 = s1

α1+α2
maps the Sommers region S2

Φ to the dilated fundamental alcove 2A◦.

In fact, the property of w̃p given in Theorem 3.6.4 defines it uniquely.

Theorem 3.6.5. w̃p is the unique w̃ ∈ W̃ with w̃(S p
Φ) = pA◦.

Proof. It remains to show that if w̃ ∈ W̃ and w̃(pA◦) = pA◦ then w̃ = e is the identity.

The fundamental alcove A◦ has a vertex at 0, and its other vertices are 1
ci

ω̌i for i ∈ [r].
Define L as the lattice generated by { 1

ci
ω̌i : i ∈ [r]}. Then

[L : Q̌] = [L : Λ̌][Λ̌ : Q̌] = c1c2 · · · cr f .

Now a case-by-case check using the classification of irreducible crystallographic root systems
reveals that every prime that divides either f or some ci also divides the Coxeter number h. So
since p is relatively prime to h it is also relatively prime to [L : Q̌] [Som97, Remark 3.6]. This
implies that the map

L/Q̌→ L/Q̌

x + Q̌ 7→ px + Q̌

is invertible. Since 0 is the only vertex of A◦ in the coroot lattice, 1
ci

ω̌i /∈ Q̌ for all i ∈ [r], so we

also have p 1
ci

ω̌i /∈ Q̌ for all i ∈ [r]. Thus 0 is the only vertex of pA◦ that is in Q̌.

If w̃ ∈ W̃ and w̃(pA◦) = pA◦, then w̃ · 0 ∈ Q̌ must be a vertex of pA◦. Thus w̃ · 0 = 0.
So w̃ ∈W. Since w̃(pA◦) = pA◦ we must have w̃C = C, therefore w̃ = e as required.

Corollary 3.6.6. |W̃p| = |pW̃| = pr.

Proof. By Lemma 3.6.1 |W̃p| = |pW̃| is the number of alcoves in the Sommers region S p
Φ. By

Theorem 3.6.4 this equals the number of alcoves in pA◦. But the volume of pA◦ is pr times that
of A◦, so it contains pr alcoves.

3.6.3 From the dilated fundamental alcove to the finite torus

We follow a remark in [Som97, Section 6]. Define the p-dilated affine Weyl group as

W̃p := W n pQ̌.

Let Ip := {w̃ ∈ W̃ : w̃A◦ ⊆ pA◦}. Since A◦ is a fundamental domain for the action of W̃ on
V, pA◦ is a fundamental domain for the action of W̃p on V. Therefore Ip is a set of right coset
representatives of W̃p in W̃.

Another set of right coset representatives of W̃p in W̃ is any set of (the translations corre-
sponding to) representatives of the finite torus Q̌/pQ̌. Thus we get a bijection from Ip to (the
translations corresponding to a set of representatives of) Q̌/pQ̌ by sending an element w̃ ∈ Ip
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to the translation that represents the same coset of W̃p in W̃. Explicitly, for w̃ = wtµ, this is
given by tµ = t−w̃−1·0. So the map

Ip → Q̌/pQ̌

w̃ 7→ −w̃−1 · 0 + pQ̌

is a bijection.

H0
α1+α2 H0

α2

H0
α1

Figure 3.6.3: The blue dots are a natural set of representatives for the 16 elements
of the finite torus Q̌/4Q̌ of the root system of type A2.

3.6.4 Putting it all together

We are now ready to define the uniform Anderson map A as

A : W̃p → Q̌/pQ̌

w̃ 7→ w̃w̃−1
p · 0 + pQ̌

Theorem 3.6.7. The Anderson map A is a bijection.

Proof. We start with w̃ ∈ W̃p. We take its inverse w̃−1 ∈ pW̃. By Lemma 3.6.1, we have
w̃−1 A◦ ⊆ S p

Φ. So by Theorem 3.6.4, we have w̃pw̃−1 A◦ ⊆ pA◦. That is w̃pw̃−1 ∈ Ip. So as in
Section 3.6.3 we map it to

−(w̃pw̃−1)−1 · 0 + pQ̌ = −w̃w̃−1
p · 0 + pQ̌ ∈ Q̌/pQ̌.

At the end we multiply by −1 to change sign. Each of the steps is bijective, so A is a
bijection.

3.6.5 The stabilizer of A(w̃)

At this point we prove a somewhat technical result about A that will be of use in Chapter 5.
The Weyl group W acts on the coroot lattice Q̌ and its dilation pQ̌, so also on the finite torus
Q̌/pQ̌. For µ + pQ̌ ∈ Q̌/pQ̌ we define its stabilizer as

Stab(µ + pQ̌) := {w ∈W : w(µ + pQ̌) = µ + pQ̌}.
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Theorem 3.6.8. For w̃ ∈ W̃p the stabilizer of A(w̃) ∈ Q̌/pQ̌ is generated by {sβ : β ∈ w̃(Φ̃p) ∩Φ}.
To prove this, we will need the following result due to Haiman.

Lemma 3.6.9 ( [Hai94, Lemma 7.4.1]). The set pA◦ ∩ Q̌ is a system of representatives for the orbits of
the W-action on Q̌/pQ̌. The stabilizer of an element of Q̌/pQ̌ represented by µ ∈ pA◦ ∩ Q̌ is generated
by the reflections through the linear hyperplanes parallel to the walls of pA◦ that contain µ.

Proof of Theorem 3.6.8. Suppose w̃ ∈ W̃p. Observe first that this implies w̃(Φ̃p) ⊆ Φ̃+, so
w̃(Φ̃p)∩Φ ⊆ Φ+. Write w̃w̃−1

p = ut−µ. We have w̃pw̃−1 A◦ ⊆ pA◦, so µ = w̃pw̃−1 · 0 ∈ pA◦ ∩ Q̌.
We wish to show that the stabilizer of

A(w̃) = w̃w̃−1
p · 0 + pQ̌ = −u(µ) + pQ̌

in Q̌/pQ̌ is generated by {sβ : β ∈ w̃(Φ̃p) ∩Φ}.

First observe that w̃p maps the walls of S p
Φ to the walls of pA◦. In terms of affine roots

this means that
w̃p(Φ̃p) = ∆ ∪ {−α̃ + pδ}.

Now calculate that for β ∈ Φ+ we have the following equivalences:

β ∈ w̃(Φ̃p)

⇔ w̃−1(β) ∈ Φ̃p

⇔ w̃pw̃−1(β) ∈ w̃p(Φ̃p) = ∆ ∪ {−α̃ + pδ}
⇔ β = w̃w̃−1

p (α) for some α ∈ ∆ or β = w̃w̃−1
p (−α̃ + pδ)

⇔ β = u(α) and 〈µ, α〉 = 0 for some α ∈ ∆ or β = u(−α̃) and 〈µ, α̃〉 = p.

Here we used w̃w̃−1
p = ut−µ and the definition of the action of W̃ on Φ̃. Combining this with

Lemma 3.6.9 we get

Stab(w̃w̃−1
p · 0 + pQ̌)

= Stab(−u(µ) + pQ̌)

= uStab(µ + pQ̌)u−1

= u〈sα : µ lies in a wall of pA◦ orthogonal to α〉u−1

= u〈su−1(β) : β ∈ w̃(Φ̃p) ∩Φ〉u−1

= 〈sβ : β ∈ w̃(Φ̃p) ∩Φ〉,

as required.

3.7 the combinatorial anderson map and the uniform anderson map

It remains to relate the uniform Anderson map A defined in Section 3.6 to the combinatorial
Anderson map AGMV defined in Section 3.5. So, for this section, let Φ be a root system of type
An−1.

First note that the set of p-stable affine Weyl group elements W̃p coincides with the set
of p-stable affine permutations S̃p

n [GMV14, Section 2.3]. It remains to relate the finite torus
Q̌/pQ̌ to the set PF p/n of rational p/n-parking functions.

3.7.1 Parking functions and the finite torus

We follow [Ath05, Section 5.1]. First recall that

Q̌ = {(x1, x2, . . . , xn) ∈ Zn :
n

∑
i=1

xi = 0}.
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The natural projection

mod p : Q̌→ {(x1, x2, . . . , xn) ∈ Zn
p :

n

∑
i=1

xi = 0}

has kernel pQ̌. Futhermore, since n and p are relatively prime, the natural projection

mod (1, 1, . . . , 1) : {(x1, x2, . . . , xn) ∈ Zn
p :

n

∑
i=1

xi = 0} → Zn
p/(1, 1, . . . , 1)

is a bijection to the set Zn
p/(1, 1, . . . , 1) of cosets of the cyclic subgroup of Zn

p generated by
(1, 1, . . . , 1). Thus if πQ̌ := mod (1, 1, . . . , 1) ◦mod p, then

πQ̌ : Q̌/pQ̌→ Zn
p/(1, 1, . . . , 1)

is a well-defined bijection.

Recall from Theorem 3.1.1 that the set of rational p/n-parking functions is a set of repre-
sentatives for Zn

p/(1, 1, . . . , 1), so the natural projection

πPF : PF p/n → Zn
p/(1, 1, . . . , 1)

is a bijection.

Note that W = Sn naturally acts on Q̌/pQ̌, PF p/n and Zn
p/(1, 1, . . . , 1) and that both πQ̌

and πPF are isomorphisms with respect to these actions. So we define χ := π−1
PF ◦ πQ̌ as the

natural Sn-isomorphism from Q̌/pQ̌ to PF p/n.

3.7.2 The Anderson maps are equivalent

The following theorem interprets the combinatorial Anderson map AGMV as the uniform
Anderson map A specialised to type An−1.

Q̌/pQ̌

W̃p = S̃p
n Zn

p/(1, 1, . . . , 1)

PF p/n

A

πPFAGMV

πQ̌

χ

Figure 3.7.1: Theorem 3.7.1 as a commutative diagram of bijections.

Theorem 3.7.1. Suppose Φ is of type An−1 and p is a positive integer relatively prime to n. Then

πQ̌ ◦ A = πPF ◦ AGMV .

Proof. Let w̃ ∈ W̃p = S̃p
n. Refer to Section 3.5 for the construction of AGMV(w̃). We employ the

same notation as in that section here.

We first consider the case where w̃ = w̃p, as defined in Theorem 3.6.3. Since

w̃p(Φ̃p) = ∆ ∪ {−α̃ + pδ} ⊆ Φ̃+
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we indeed have w̃p ∈ W̃p. From [GMV14, Lemma 2.16] we get that its inverse is

w̃−1
p = [p− c, 2p− c, . . . , np− c]

where c = (p−1)(n+1)
2 . Since ∆w̃p = w̃−1

p (Z>0) the set of lowest gaps of the runners of the
balanced abacus A(∆w̃p) is

{w̃−1
p (1), w̃−1

p (2) . . . w̃−1
p (n)} = {p− c, 2p− c, . . . , np− c}.

Thus the set of lowest gaps of the runners of the normalized abacus A(∆̃w̃p) is

{0, p, 2p, . . . , (n− 1)p}.

This is exactly the set of labels of (−1, i− 1) for i ∈ [n]. Thus all the labels in Rp,n are beads in
A(∆̃w̃p). Therefore Dw̃p is empty and AGMV(w̃p) = (Pw̃p , σ) = (0, 0, . . . , 0).

For x, y ∈ Zn write x ≡ y if the projections of x and y into Zn
p/(1, 1, . . . , 1) agree. Then

≡ is compatible both with addition and with the Sn-action on Zn. The set of lowest gaps of the
runners of the abacus A(∆̃w̃p + p) is {p, 2p, . . . , np}. Thus

levels(A(∆̃w̃p + p)) = levels(A(∆̃w̃p)) + (0, 0, . . . , 0, p) ≡ levels(A(∆̃w̃p)).

We also have

levels(A(∆̃w̃p + n)) = levels(A(∆̃w̃p)) + (1, 1, . . . , 1) ≡ levels(A(∆̃w̃p)).

In terms of the bijection g from Section 3.3, this means that

gp · levels(A(∆̃w̃p)) ≡ levels(A(∆̃w̃p))

and
gn · levels(A(∆̃w̃p)) ≡ levels(A(∆̃w̃p)).

Since p and n are coprime, this implies that

g · levels(A(∆̃w̃p)) ≡ levels(A(∆̃w̃p)). (3.7.1)

Now take any w̃ ∈ S̃p
n. Note that the labels of boxes in the i-th row of the Young diagram Dw̃

from the bottom (those with y-coordinate i− 1) are those congruent to p(i− 1) modulo n. Thus
we define the permutation τ ∈ Sn by

τ(i) ≡ p(i− 1) mod n

for all i ∈ [n]. The fact that p is relatively prime to n implies that this indeed gives a permutation
of n.

Let Pi be the number of boxes on the i-th row of Dw̃ from the bottom. This is the number of
gaps of A(∆̃w̃) on runner τ(i) that are in Rp,n. Equivalently, it is the number of gaps of A(∆̃w̃)

on runner τ(i) that are smaller than the smallest gap on runner τ(i) of A(∆̃w̃p). Thus

Pi = levelτ(i)(A(∆̃w̃p))− levelτ(i)(A(∆̃w̃)),

that is
(P1, P2, . . . , Pn) = τ−1 ·

[
levels(A(∆̃w̃p))− levels(A(∆̃w̃))

]
. (3.7.2)

Now we start looking at the labelling σ of the p/n-Dyck path Pw̃. We have for i ∈ [n]

σ(i) := w̃(li + Mw̃) ≡ w̃(τ(i) + Mw̃) mod n.
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-5 -10 -15 -20 -25 -30 -35 -40

3 -2 -7 -12 -17 -22 -27 -32

11 6 1 -4 -9 -14 -19 -24

19 14 9 4 -1 -6 -11 -16

27 22 17 12 7 2 -3 -8

2

4

3

5

1

Figure 3.7.2: The vertically labelled 8/5-Dyck pathAGMV(w̃) for w̃ = [0, 7,−2, 6, 4].
In this case we have τ = 53142 and Mw̃ = −3. The positive beads of the normal-
ized abacus A(∆̃w̃) are shaded in gray.

Define r ∈ Sn by r(i) ≡ i + 1 mod n. Write w̃ = wt−µ with w ∈ W = Sn and µ ∈ Q̌,
simultaneously viewing w as an affine permutation in S̃n also. Then

w(rMw̃(τ(i))) ≡ w(τ(i) + Mw̃) ≡ w̃(τ(i) + Mw̃) ≡ σ(i) mod n.

Since σ(i) and w(rMw̃(τ(i))) are congruent modulo n and both in [n], they are equal. Thus

σ = w ◦ rMw̃ ◦ τ. (3.7.3)

Now we calculate

AGMV(w̃) = (Pw̃, σ)

= σ · (P1, P2, . . . , Pn)

= (w ◦ rMw̃ ◦ τ) · τ−1 ·
[
levels(A(∆̃w̃p))− levels(A(∆̃w̃))

]
≡ (w ◦ rMw̃) ·

[
gMw̃p−Mw̃ · levels(A(∆̃w̃p))− levels(A(∆̃w̃))

]
= (w ◦ rMw̃) ·

[
g−Mw̃ · levels(A(∆w̃p))− g−Mw̃ · levels(A(∆w̃))

]
= (w ◦ rMw̃) ·

[
r−Mw̃ ·

[
levels(A(∆w̃p))− levels(A(∆w̃))

]]
= w · (w̃−1

p · 0− w̃−1 · 0)
= w · (w̃−1

p · 0− µ)

= wt−µw̃−1
p · 0

= w̃w̃−1
p · 0

≡ A(w̃).

Here we used Equation (3.7.3), Equation (3.7.2), Equation (3.7.1), Equation (3.3.1) and Theo-
rem 3.3.1, in that order.

3.8 rational coxeter-catalan numbers

We wish to extend the rational p/n-Catalan combinatorics uniformly to other root systems.
The rational p/n-Catalan number counts p/n-Dyck paths. These paths index the Sn-orbits
on PF p/n. Section 3.7.1 implies that the Sn-orbits on PF p/n correspond to W-orbits on the
finite torus Q̌/pQ̌ for the root system of type An−1. Thus we will look at the W-action on the
finite torus Q̌/pQ̌ for any irreducible crystallographic root system Φ and any positive integer
p relatively prime to the Coxeter number h of Φ. This was studied in [Som97]. To understand
the results therein, we need to intruduce some further concepts.
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3.8.1 The partition lattice

Let H be a set of hyperplanes in a finite dimensional vector space U. Let L = L(H) :=
{⋂H∈A H : A ⊆ H} be the set of all intersections of hyperplanes in H, including the ambient
space U. Partially order L by reverse inclusion, and define the Möbius function µ on pairs of
elements of L by

µ(X, X) = 1,

∑
X≤Z≤Y

µ(X, Z) = 0, for X < Y,

µ(X, Y) = 0, for X � Y.

Then the characteristic polynomial of L is the polynomial in t defined by

χ(L, t) := ∑
X∈L

µ(U, X)tdim(X).

We take U = V as the ambient space of a crystallographic root system Φ and H = {Hα : α ∈
Φ+} as the set of hyperplanes of the Coxeter arrangement. We call L = L(H) the partition
lattice of Φ.

The characteristic polynomial can be written as

χ(L, t) =
r

∏
i=1

(t− ei),

where e1 ≤ e2 ≤ . . . ≤ er are positive integers, called the exponents of L [OS80]. We may also
call them the exponents of Φ.

Example. The exponents of the root system of type An−1 are 1, 2, . . . , n− 1.

For any X ∈ L define

HX = {X ∩ H : H ∈ H and X * H},

a set of hyperplanes in the ambient space X. Let LX := L(HX) be the corresponding poset and
let χ(LX , t) be its characteristic polynomial. It factors as

χ(LX , t) =
d

∏
i=1

(t− ei(X)),

where d = dim(X) and the positive integers e1(X) ≤ e2(X) ≤ . . . ≤ ed(X) are the exponents of
LX [OS83, Theorem 1.4].

The following result by Barcelo and Ihrig [BI99, Theorem 3.1] relates the partition lattice
to the parabolic subgroups of W.

Theorem 3.8.1 ([Arm09, Theorem 5.1.9]). The map

X 7→ Iso(X) := {w ∈W | w · x = x for all x ∈ X}

is a poset isomorphism from L to the set of parabolic subgroups of W ordered by inclusion, with inverse

W ′ 7→ Fix(W ′) := {x ∈ V | w · x = x for all w ∈W ′}.



3.8 rational coxeter-catalan numbers 37

3.8.2 The number of orbits of the finite torus

The W-orbits on the finite torus Q̌/pQ̌ were counted by Haiman.

Theorem 3.8.2 ([Hai94, Theorem 7.4.4]). For a positive integer p relatively prime to h, the number of
W-orbits on the finite torus Q̌/pQ̌ is

Catp/Φ :=
1
|W|

r

∏
i=1

(p + ei).

We call these numbers Catp/Φ the rational Coxeter-Catalan numbers of Φ. They specialise to the
rational p/n-Catalan numbers Catp/n when Φ is of type An−1.

3.8.3 Types of orbits

Define a type T to be a conjugacy class of subgroups of W. The type of a subgroup W ′ ⊆W is
the conjugacy class containing it. We call a type T parabolic if it contains a standard parabolic
subgroup, or equivalently if it consists of parabolic subgroups. If W acts transitively on a set O,
then we define the type of O to be the type of the stabilizer of any x ∈ O. This is well-defined,
since the stabilizers of any two elements of O are conjugate.

Define a W-set as a set together with a W-action on it. An isomorphism between W-sets
is a bijection that commutes with the action of W on both sets. It is easy to see that two
transitive W-sets are isomorphic if and only if they have the same type. Thus two W-sets are
isomorphic if and only if they have the same number of orbits of type T for every T .

Theorem 3.8.3 ([Som97, Propositions 4.1 and 5.1]). If p is relatively prime to h, the stabilizer of any
element of Q̌/pQ̌ is a parabolic subgroup of W. For any parabolic type T and any W ′ ∈ T , the number
of W-orbits of Q̌/pQ̌ of type T is

Krewp/Φ(T ) :=
1

[N(W ′) : W ′]
χ(LX , p),

where X = Fix(W ′) and N(W ′) := {w ∈W : wW ′w−1 = W ′} is the normalizer of W ′ in W.

The number Krewp/Φ(T ) is well-defined, since it is readily seen to be independent of the choice
of representative W ′ ∈ T . We call the numbers Krewp/Φ(T ) the rational Kreweras numbers of Φ.
Note that Krewp/Φ(T ) is a polynomial in p.

Example. If W = Sn is the Weyl group of the root system Φ of type An−1, any
parabolic subgroup of W is conjugate to a unique Young subgroup

W ′ := Sλ1 × Sλ2 × · · · × Sλl ⊆ Sn

where λ = (λ1, λ2, . . . , λl) is a partition of n, that is a (weakly) decreasing sequence of
positive integers whose sum is n. For i ∈ [n] we define mi as {j ∈ [l] : λj = i}, the
number of parts of λ of size i. We set mλ := m1!m2! · · ·mn!. So [N(W ′) : W ′] = mλ.

From [OS83, Proposition 2.1] we see that, if X = Fix(W ′), then LX is of type Al−1, so
its exponents are 1, 2, . . . , l − 1 and

χ(LX , t) =
l−1

∏
i=1

(t− i).
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Thus for the type T of W ′ we have

Krewp/Φ(T ) =
1

[N(W ′) : W ′]
χ(LX , p)

=
1

mλ

l−1

∏
i=1

(p− i)

=
(p− 1)!

mλ(p− l)!
.

For the particular case where p = n + 1, we get

Krewn+1/Φ(T ) =
n!

mλ(n− l + 1)!
.

These are the classical Kreweras numbers found by Kreweras in his study of classical
noncrossing partitions [Kre72, Théorème 4]. This justifies our choice of terminology.

3.9 dominant p-stable affine weyl group elements

We say that w̃ ∈ W̃ is dominant if w̃A◦ is contained in the dominant chamber. In this section,
we will study the set W̃p

dom of dominant p-stable affine Weyl group elements. The following
lemma is well-known.

Lemma 3.9.1. w̃ ∈ W̃ is dominant if and only if for all w ∈W we have Inv(w̃) ⊆ Inv(ww̃).

Proof. Suppose w̃ ∈ W̃ is dominant. Then no hyperplane of the (linear) Coxeter arrangement
separates w̃A◦ from A◦. So by Lemma 2.2.1 Inv(w̃−1) ∩Φ+ = ∅. Equivalently

w̃(Φ̃+) ∩−Φ+ = ∅.

So if α + kδ ∈ Inv(w̃), then w̃(α + kδ) ∈ −Φ̃+\(−Φ+). Thus ww̃(α + kδ) ∈ −Φ̃+ and
α + kδ ∈ Inv(ww̃).

Conversely, suppose w̃ ∈ W̃ and Inv(w̃) ⊆ Inv(ww̃) for all w ∈W. Then for α + kδ ∈ Inv(w̃) we
have ww̃(α + kδ) ∈ −Φ̃+ for all w ∈W, so w̃(α + kδ) ∈ −Φ̃+\(−Φ+). Thus

w̃(Φ̃+) ∩−Φ+ = ∅,

or equivalently Inv(w̃−1) ∩Φ+ = ∅. So by Lemma 2.2.1 no hyperplane of the (linear) Coxeter
arrangement separates w̃A◦ from A◦ and thus w̃A◦ is dominant.

Example. If Φ is of type An−1, so that W̃ = S̃n, then the dominant affine Weyl group
elements w̃ are exactly those whose inverse is affine Grassmanian, that is those that
satisfy

w̃−1(1) < w̃−1(2) < · · · < w̃−1(n).

Lemma 3.9.2. If w̃ ∈ W̃p and w ∈W such that w̃A◦ ⊆ wC, then w−1w̃ ∈ W̃p
dom.

Proof. Clearly w−1w̃ is dominant. By Lemma 3.9.1 we have Inv(w−1w̃) ⊆ Inv(w̃), so

Inv(w−1w̃) ∩ Φ̃p = ∅,

thus w−1w̃ ∈ W̃p.

The following theorem is the generalisation of [Ath05, Theorem 4.2] to the rational Coxeter-
Catalan level.
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Theorem 3.9.3. The map

ρ : W̃p
dom → pA◦ ∩ Q̌

w̃ 7→ w̃pw̃−1 · 0

is a bijection.

Proof. We claim that the map w̃ 7→ w̃−1 · 0 is a bijection from W̃p
dom to S p

Φ ∩ Q̌. By Theorem 3.6.1

its image really is in S p
Φ ∩ Q̌. To see that it is surjective, note that if µ ∈ S p

Φ ∩ Q̌, then µ = w̃ · 0
for some w̃A◦ ⊆ S p

Φ, which by Lemma 3.6.1 means w̃−1 ∈ W̃p. Say w̃−1 A◦ ∈ wC, so that
w−1w̃−1 ∈ W̃p

dom by Lemma 3.9.2. Then µ = (w−1w̃−1)−1 · 0 as required. To see that it is
injective, note that if w̃−1

1 · 0 = w̃−1
2 · 0, then w̃1 = ww̃2 for some w ∈W. If w̃1, w̃2 ∈ W̃p

dom this
implies that w = e and thus w̃1 = w̃2.

To complete the proof, it suffices to note that w̃p is a bijection from S p
Φ ∩ Q̌ to pA◦ ∩ Q̌.

Corollary 3.9.4. |W̃p
dom| = Catp/Φ.

Proof. By Theorem 3.9.3, |W̃p
dom| = |pA◦ ∩ Q̌|. By Lemma 3.6.9, this is the number of W-orbits

on Q̌/pQ̌, which equals Catp/Φ by Theorem 3.8.2.
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4
T H E M - S H I A R R A N G E M E N T

In this chapter, which is based on [Thi15], we introduce the m-Shi arrangement of an irreducible
crystallographic root system Φ, a hyperplane arrangement in V whose study forms a major part
of nonnesting Fuß-Catalan combinatorics in general and of this thesis in particular. There is a
close link between this chapter and the previous one: the regions of the m-Shi arrangement can
be indexed by their minimal alcoves, which correspond to the (mh + 1)-stable affine Weyl group
elements, the Fuß-Catalan specialisation (p = mh + 1) of the set W̃p considered in Chapter 3.

4.1 the shi arrangement

The Shi arrangement is the affine hyperplane arrangement given by all the hyperplanes Hd
α

for α ∈ Φ+ and d = 0, 1. It was first introduced in [Shi87b] and arose from the study of
the Kazhdan-Lusztig cells of the affine Weyl group of type Ãn−1. The complement of these
hyperplanes, we call them Shi hyperplanes, falls apart into connected components which we call
the regions of the Shi arrangement, or Shi regions for short. We call a Shi region dominant if it is
contained in the dominant chamber.

H0
α1

H0
α2

H1
α2

H1
α2

H0
α1+α2

H1
α1+α2

Figure 4.1.1: The Shi arrangement of the root system of type A2. It has 16 regions.

An ideal in the root poset is a subset I ⊆ Φ+ such that whenever α ∈ I and β ≤ α, then β ∈ I.
Dually, we define an order filter as a subset J ⊆ Φ+ such that, whenever α ∈ J and α ≤ β, then
β ∈ J. For a dominant Shi region R define

φ(R) := {α ∈ Φ+ : 〈x, α〉 > 1 for all x ∈ R}.

It is easy to see that φ(R) is an order filter in the root poset of Φ. In fact, φ even defines a
bijection between the set of dominant Shi regions and the set of order filters in the root poset
[Shi97, Theorem 1.4].

4.2 the m-extended shi arrangement

For a positive integer m, the m-extended Shi arrangement, or simply m-Shi arrangement, is the
affine hyperplane arrangement given by all the hyperplanes Hk

α for α ∈ Φ+ and −m < k ≤ m.
We call them m-Shi hyperplanes. The complement of these hyperplanes falls apart into connected
components, which we call the regions of the m-Shi arrangement, or m-Shi regions for short.

41
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Hα1

∅
{α1 + α2} {α2, α1 + α2}

{α1, α2, α1 + α2}{α1, α1 + α2}

Hα2

Figure 4.1.2: The 5 dominant Shi regions of the root system of type A2 together
with their corresponding order filters in the root poset.

Notice that the 1-Shi arrangement is exactly the Shi arrangement introduced in Section 4.1.

Following [Ath05], we will encode dominant m-Shi regions by geometric chains of ideals or equiv-
alently geometric chains of order filters. Suppose I = (I1, I2, . . . , Im) is an ascending (multi)chain
of m ideals in the root poset of Φ, that is I1 ⊆ I2 ⊆ . . . ⊆ Im. Setting Ji := Φ+\Ii for i ∈ [m]
and J := (J1, J2, . . . , Jm) gives us the corresponding descending chain of order filters. That
is, we have J1 ⊇ J2 ⊇ . . . ⊇ Jm. The ascending chain of ideals I and the corresponding
descending chain of order filters J are both called geometric if the following conditions are
satisfied simultaneously.

1. (Ii + Ij) ∩Φ+ ⊆ Ii+j for all i, j ∈ {0, 1, . . . , m} with i + j ≤ m, and

2. (Ji + Jj) ∩Φ+ ⊆ Ji+j for all i, j ∈ {0, 1, . . . , m}.

Here we set I0 := ∅, J0 := Φ+ and Ji := Jm for i > m. We call I and J positive if ∆ ⊆ Im, or
equivalently ∆ ∩ Jm = ∅.

Example. For example, the chain of 2 order filters J = ({α1 + α2}, {α1 + α2}) in
the root system of type A2 is not geometric, since the corresponding chain of ideals
I = ({α1, α2}, {α1, α2}) has α1, α2 ∈ I1, but α1 + α2 /∈ I1+1 = I2.

If R is a dominant m-Shi region define θ(R) := (I1, I2, . . . , Im) and φ(R) := (J1, J2, . . . , Jm),
where

Ii := {α ∈ Φ+ | 〈x, α〉 < i for all x ∈ R} and

Ji := {α ∈ Φ+ | 〈x, α〉 > i for all x ∈ R}

for i ∈ {0, 1, . . . , m}. It is not difficult to verify that θ(R) is a geometric chain of ideals and that
φ(R) is the corresponding geometric chain of order filters.

In fact θ is a bijection from dominant m-Shi regions to geometric chains of ideals. Equiv-
alently φ is a bijection from dominant m-Shi regions to geometric chains of order filters [Ath05,
Theorem 3.6].



4.3 minimal alcoves of m-shi regions 43

4.3 minimal alcoves of m-shi regions

Any alcove of the affine Coxeter arrangement is contained in a unique m-Shi region. We will
soon see that for any m-Shi region R there is a unique alcove w̃R A◦ ⊆ R such that for all
w̃A◦ ⊆ R and all α ∈ Φ+ we have

|k(w̃R, α)| ≤ |k(w̃, α)|.

We call w̃R A◦ the minimal alcove of R. We say that an alcove w̃A◦ is an m-Shi alcove if it is the min-
imal alcove of the m-Shi region containing it. We define Alc = {w̃R A◦ : R is an m-Shi region}
to be the set of m-Shi alcoves.

A◦ H0
α1

H1
α1

H2
α1

H−1
α1

H2
α2

H1
α2

H0
α2

H−1
α2

H−1
α1+α2

H0
α1+α2

H1
α1+α2

H2
α1+α2

Figure 4.3.1: The 49 minimal alcoves of the 2-Shi arrangement of type A2.

4.3.1 The address of a dominant m-Shi alcove

We first concentrate on dominant m-Shi regions and their minimal alcoves. The following
lemma from [Shi87a, Theorem 5.2] gives necessary and sufficient conditions for a tuple (kα)α∈Φ+

to be the address of some alcove w̃A◦.

Lemma 4.3.1 ([Ath05, Lemma 2.3]). Suppose that for each α ∈ Φ+ we are given some integer kα.
Then there exists w̃ ∈ W̃ with k(w̃, α) = kα for all α ∈ Φ+ if and only if

kα + kβ ≤ kα+β ≤ kα + kβ + 1

for all α, β ∈ Φ+ with α + β ∈ Φ+.

For a geometric chain of order filters J = (J1, J2, . . . , Jm) and α ∈ Φ+, define

kα(J ) = max{k1 + k2 + . . . + kl : α = α1 + α2 + . . . + αl and αi ∈ Jki
for all i ∈ [l]}

where ki ∈ {0, 1, . . . , m} for all i ∈ [l].

It turns out that the integer tuple (kα(J ))α∈Φ+ satisfies the conditions of Lemma 4.3.1 [Ath05,
Corollary 3.4], so there is a unique w̃ ∈ W̃ with

k(w̃, α) = kα(J ) for all α ∈ Φ+.

The alcove w̃A◦ is exactly the minimal alcove w̃R A◦ of the dominant m-Shi region R := φ−1(J )
corresponding to J [Ath05, Proposition 3.7].
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4.3.2 Floors of dominant m-Shi regions and alcoves

The floors of a dominant m-Shi region R can be seen in the corresponding geometric chain of
order filters J := φ(R) as follows. If k is a positive integer, a root α ∈ Φ+ is called a rank k
indecomposable element of a geometric chain of order filters J = (J1, J2, . . . , Jm) if the following
hold:

1. kα(J ) = k,

2. α /∈ Ji + Jj for any i, j ∈ {0, 1, . . . , m} with i + j = k and

3. if α + β ∈ Jt and kα+β(J) = t ≤ m for some β ∈ Φ+, then β ∈ Jt−k.

The following theorem relates the indecomposable elements of J to the floors of R and w̃R A◦.

Theorem 4.3.2 ([Ath05, Theorem 3.11]). If R is a dominant m-Shi region, J = φ(R) is the
corresponding geometric chain of order filters and α ∈ Φ+, then the following are equivalent:

1. α is a rank k indecomposable element of J ,

2. Hk
α is a floor of R, and

3. Hk
α is a floor of w̃R A◦.

4.3.3 m-Shi regions and alcoves in other chambers

The following easy lemma, generalising [ARR15, Lemma 10.2], describes what the m-Shi
arrangement looks like in each chamber.

Lemma 4.3.3. For w ∈W, the m-Shi hyperplanes that intersect the chamber wC are exactly those of
the form Hk

w(α)
where α ∈ Φ+ and either 1 ≤ k < m or k = m and w(α) ∈ Φ+.

Proof. If an m-Shi hyperplane Hk
β with β ∈ Φ and 1 ≤ k ≤ m intersects wC, then there is some

x ∈ wC with 〈x, β〉 = k. So w−1(x) ∈ C and 〈w−1(x), w−1(β)〉 = k > 0, thus α := w−1(β) ∈ Φ+.
If k = m, then β = w(α) ∈ Φ+ since otherwise Hk

β is not an m-Shi hyperplane.

Conversely, if α ∈ Φ+ and either 1 ≤ k < m or k = m and w(α) ∈ Φ+, then Hk
w(α)

is an
m-Shi hyperplane. Take x ∈ C with 〈x, α〉 = k. Then w(x) ∈ wC and 〈w(x), w(α)〉 = k, so
Hk

w(α)
intersects wC.

We are now ready for our first main theorem about minimal alcoves of m-Shi regions, which
we will use frequently and without mention. It is already known for dominant regions [Ath05,
Proposition 3.7, Theorem 3.11].

Theorem 4.3.4. Every region R of the m-Shi arrangement contains a unique minimal alcove w̃R A◦.
That is, for any α ∈ Φ+ and w̃ ∈ W̃ such that w̃A◦ ⊆ R, we have |k(w̃R, α)| ≤ |k(w̃, α)|. The floors
of w̃R A◦ are exactly the floors of R.

Proof. The concept of the proof is as follows. Start with an m-Shi region R contained in the
chamber wC. Consider Rdom := w−1R ⊆ C. This is not in general an m-Shi region, but it
contains a unique m-Shi region Rmin that is closest to the origin. We take its minimal alcove
w̃min A◦ and find that ww̃min A◦ is the minimal alcove of R.

Suppose R is an m-Shi region contained in the chamber wC. Let Rdom := w−1R ⊆ C. Notice
that Rdom need not itself be an m-Shi region. By Lemma 4.3.3, the walls of R are of the form
Hk

w(α)
where α ∈ Φ+ and either 0 ≤ k < m or k = m and w(α) ∈ Φ+. Thus the walls of

Rdom = w−1R are of the form Hk
α with α ∈ Φ+ and either 0 ≤ k < m or k = m and w(α) ∈ Φ+.

In particular, they are m-Shi hyperplanes. The only m-Shi hyperplanes H that may intersect
Rdom are those such that w(H) is not an m-Shi hyperplane, that is those of the form Hm

α with
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w(α) ∈ −Φ+.

Now suppose R′ is a dominant m-Shi region and J ′ = φ(R′) is the corresponding geo-
metric chain of order filters. Then R′ ⊆ Rdom if and only if for every m-Shi hyperplane Hk

α,
whenever all of Rdom is on one side of Hk

α, then all of R′ is on the same side of it. Equivalently,
R′ ⊆ Rdom precisely when for all 1 ≤ k ≤ m and α ∈ Φ+ we have α ∈ J′k if 〈x, α〉 > k for all
x ∈ Rdom, and α ∈ I′k if 〈x, α〉 < k for all x ∈ Rdom.

Let J = (J1, J2, . . . , Jm) be the chain of order filters with α ∈ Jk if and only if 〈x, α〉 > k
for all x ∈ Rdom. To see that J is geometric, first note that if α ∈ Ji, β ∈ Jj and α + β ∈ Φ+, then
〈x, α + β〉 = 〈x, α〉+ 〈x, β〉 > i + j for all x ∈ Rdom, so α + β ∈ Ji+j. Let R′ be some m-Shi region
contained in Rdom and let J ′ = φ(R′) be the corresponding geometric chain of order filters.
Then R′ and Rdom are on the same side of every m-Shi hyperplane that does not intersect Rdom,
so in particular Jk = J′k for 1 ≤ k < m. Whenever α ∈ Jm, then 〈x, α〉 > m for all x ∈ Rdom, so
α ∈ J′m. Thus Jm ⊆ J′m. If i + j ≤ m, assume without loss of generality that i, j > 0, so that
i, j < m and

(Ii + Ij) ∩Φ+ = (I′i + I′j) ∩Φ+ ⊆ I′i+j ⊆ Ii+j,

since J ′ is geometric. This shows that J is geometric. Thus there is a dominant region
Rmin = φ−1(J ). We clearly have α ∈ Jk if 〈x, α〉 > k for all x ∈ Rdom, and whenever 〈x, α〉 < k
for all x ∈ Rdom, then α ∈ I′k ⊆ Ik. Thus Rmin ⊆ Rdom. Observe that kα(J ) ≤ kα(J ′) for all
α ∈ Φ+. Also note that 〈x, α〉 > kα(J ) for all x ∈ Rdom.

Let w̃min A◦ be the minimal alcove of Rmin [Ath05]. Thus we have k(w̃min, α) = kα(J ) for
all α ∈ Φ+. So if w̃A◦ is any alcove contained in Rdom, say w̃A◦ ⊆ R′ for some m-Shi region
R′ ⊆ Rdom, then if J ′ = φ(R′) we have k(w̃min, α) = kα(J ) ≤ kα(J ′) ≤ k(w̃, α) for all α ∈ Φ+.

So if we define w̃R := ww̃min, then w̃R A◦ ⊆ R and k(w̃R, α) = k(w̃min, w−1(α)) for all α ∈ Φ. If
w̃A◦ is any alcove contained in R, α ∈ Φ+ and w−1(α) ∈ Φ+, then

k(w̃, α) = k(w−1w̃, w−1(α)) ≥ k(w̃min, w−1(α)) = k(w̃R, α),

since w−1w̃A◦ ⊆ Rdom. Note that in this case k(w̃R, α) = k(w̃min, w−1(α)) ≥ 0, since w−1(α) ∈
Φ+ and w̃min A◦ is dominant. If instead w−1(α) ∈ −Φ+, then

k(w̃, α) = k(w−1w̃, w−1(α)) = −k(w−1w̃,−w−1(α))− 1

≤ −k(w̃min,−w−1(α))− 1 = k(w̃min, w−1(α)) = k(w̃R, α).

Note that in this case, k(w̃R, α) = −k(w̃min,−w−1(α)) − 1 < 0. So either way we have
|k(w̃R, α)| ≤ |k(w̃, α)|.

Suppose Hk
α is a floor of w̃R A◦. Then it is the only hyperplane separating sk

αw̃R A◦ from
w̃R A◦. Thus k(sk

αw̃R, β) = k(w̃R, β) for all β 6= ±α and |k(sk
αw̃R, α)| = |k(w̃R, α)| − 1. Since

w̃R A◦ is the minimal alcove of R this implies that sk
αw̃R A◦ is not contained in R. Thus Hk

α must
be an m-Shi hyperplane, and therefore a floor of R.

Suppose Hk
α is a floor of Rdom, where α ∈ Φ+. Then we claim that α is a rank k indecomposable

element of J = φ(Rmin). To see this, first note that 〈x, α〉 > k for all x ∈ Rdom, so α ∈ Jk. Also,
〈x, α〉 < k + 1 for some x ∈ Rdom, so kα(J ) = k. Suppose α = β + γ with β ∈ Ji and γ ∈ Jj

and i + j = k. Then 〈x, β〉 > i and 〈x, γ〉 > j imply that 〈x, α〉 > k for x ∈ Rdom, so Hk
α does

not support a facet of R, a contradiction. If α + β ∈ Jt and kα+β(J ) = t ≤ m for some β ∈ Φ+

then we have 〈x, α + β〉 > t for all x ∈ Rdom so we cannot have 〈x, β〉 < t− k for all x ∈ Rdom,
since together they would imply that 〈x, α〉 > k for all x ∈ Rdom, so Hk

α would not support
a facet of R. Since t− k < m, the hyperplane Ht−k

β does not intersect Rdom, so this implies
that 〈x, β〉 > t− k for all x ∈ Rdom, so β ∈ Jt−k. This verifies the claim. From the fact that α
is a rank k indecomposable element of J it follows that Hk

α is a floor of w̃min A◦ by Theorem 4.3.2.
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Now suppose that Hk
α is a floor of R. Then Hk

w−1(α)
is a floor of Rdom and thus a floor of

w̃min A◦. So Hk
α is a floor of w̃R A◦ = ww̃min A◦.

4.3.4 m-Shi alcoves and (mh + 1)-stable affine Weyl group elements

The following lemma characterises the m-Shi alcoves. It is a straightforward generalisation of
[Shi87b, Proposition 7.3].

Lemma 4.3.5. An alcove w̃A◦ is an m-Shi alcove if and only if all its floors are m-Shi hyperplanes.

Proof. The forward implication is immediate from Theorem 4.3.4.

For the backward implication, we prove the contrapositive: we show that every alcove that is
not an m-Shi alcove has a floor that is not an m-Shi hyperplane. So suppose w̃A◦ is an alcove
contained in an m-Shi region R, and w̃ 6= w̃R. Consider the set

K = {x ∈ V | k(w̃R, α) < 〈x, α〉 < k(w̃, α) + 1 for all α ∈ Φ with k(w̃R, α) ≥ 0

and k(w̃, α) < 〈x, α〉 < k(w̃R, α) + 1 for all α ∈ Φ with k(w̃R, α) < 0}.

Then any alcove w̃′A◦ has either w̃′A◦ ⊆ K or w̃′A◦ ∩ K = ∅. For α ∈ Φ, we have

k(w̃R, α) ≤ k(w̃′, α) ≤ k(w̃, α)

whenever w̃′A◦ ⊆ K and k(w̃R, α) ≥ 0. Similarly

k(w̃, α) ≤ k(w̃′, α) ≤ k(w̃R, α)

whenever w̃′A◦ ⊆ K and k(w̃R, α) < 0. Thus any hyperplane of the affine Coxeter arrangement
that separates two alcoves contained in K also separates w̃R A◦ and w̃A◦. Since no m-Shi
hyperplane separates w̃R A◦ and w̃A◦, no m-Shi hyperplane separates two alcoves contained
in K. Since K is convex, there exists a sequence (w̃1, w̃2, . . . , w̃l) with w̃1 = w̃, w̃l = w̃R, and
w̃i A◦ ⊆ K for all i ∈ [l], such that w̃i A◦ shares a facet with w̃i+1 A◦ for all i ∈ [l − 1]. So the
supporting hyperplane of the common facet of w̃1 A◦ = w̃A◦ and w̃2 A◦ is a floor of w̃A◦ which
is not an m-Shi hyperplane.

We can now relate the m-Shi alcoves to the Fuß-Catalan (p = mh + 1) case of the set of p-stable
affine Weyl group elements W̃p defined in Section 3.6.1.

Theorem 4.3.6. An alcove w̃A◦ is an m-Shi alcove if and only if w̃ ∈ W̃mh+1.

Proof. First note that
Φ̃mh+1 = Φ̃1 + mδ = ∆̃ + mδ.

Suppose w̃A◦ is an m-Shi alcove and take

α + kδ ∈ w̃(Φ̃mh+1) = w̃(∆̃ + mδ) = w̃(∆̃) + mδ.

So α + (k − m)δ ∈ w̃(∆̃) and thus w̃−1(−α + (m − k)δ) ∈ −∆̃. If k ≥ m then α + kδ ∈ Φ̃+.
Otherwise by Lemma 2.2.2 Hk−m

−α is a floor of w̃A◦ and thus by Lemma 4.3.5 an m-Shi hyper-
plane. So k ≥ 0 and k > 0 if α ∈ −Φ+. Thus α + kδ ∈ Φ̃+. So w̃(Φ̃mh+1) ⊆ Φ̃+ and therefore
w̃ ∈ W̃mh+1.

Conversely suppose w̃ ∈ W̃mh+1 and H−k
α is a floor of w̃A◦ where k > 0. Then by Lemma 2.2.2

we have w̃−1(α + kδ) ∈ −∆̃. Thus

−α + (m− k)δ ∈ w̃(Φ̃mh+1) ⊆ Φ̃+.

So k ≤ m and k < m if α ∈ Φ+. Thus H−k
α is an m-Shi hyperplane. So all floors of w̃A◦ are

m-Shi hyperplanes and thus by Lemma 4.3.5 w̃A◦ is an m-Shi alcove.
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4.4 enumerative consequences

From Theorem 4.3.6 and Corollary 3.6.6 we deduce the following theorem.

Theorem 4.4.1. The number of m-Shi alcoves equals (mh + 1)r.

We use Theorem 4.3.4 to recover the following result, originally proved by Yoshinaga using the
theory of free arrangements [Yos04, Theorem 1.2].

Theorem 4.4.2. The number of m-Shi regions equals (mh + 1)r.

From Theorem 4.3.6 and Corollary 3.9.4 we deduce the following theorem, due to Athanasiadis
[Ath04, Ath05].

Theorem 4.4.3. The number of dominant m-Shi alcoves (and therefore also the number of dominant
m-Shi regions) is the Fuß-Catalan number

Cat
(m)
Φ = Catmh+1/Φ =

1
|W|

r

∏
i=1

(mh + 1 + ei).
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5
T H E Z E TA M A P

In this chapter, which is based on [Thi15], we generalise the zeta map ζHL of Haglund and
Loehr [Hag08, Theorem 5.6] to all irreducible crystallographic root systems Φ, and also to the
Fuß-Catalan level of generality. We start by explaining the origin and significance of the zeta
map ζHL in the context of the Hilbert series of the space of diagonal harmonics.

5.1 the space of diagonal harmonics

Consider the polynomial ring R := Q[x1, x2, . . . , xn, y1, y2, . . . , yn] in two sets of variables
x1, x2, . . . , xn and y1, y2, . . . , yn. Let the symmetric group Sn act on it by permuting both sets of
variables simultaneously. Let I be the ideal generated by the polynomials of positive degree
that are invariant under this action. Then R/I is called the ring of diagonal coinvariants. As a
vector space, we may also realise it as a subspace of R. To do this, consider the inner product
on R defined by

〈 f , g〉 := ( f (∂x1 , ∂x2 , . . . , ∂xn , ∂y1 , ∂y2 , . . . , ∂yn)g(x1, x2, . . . , xn, y1, y2, . . . , yn))(0),

where ∂ denotes the partial derivative. Then the orthogonal complement DH := I⊥ of I in R is
called the space of diagonal harmonics [Hai94]. It is isomorphic to R/I as a bigraded vector space,
graded by degree in the x-variables as well as by degree in the y-variables.

5.1.1 The Hilbert series

For any i, j ∈ N, we let DHij be the homogeneous component of DH that has degree i in the
x-variables and degree j in the y-variables. Define the bivariate Hilbert series

DHn(q, t) := ∑
i,j≥0

dim(DHij)qitj.

We will explain two conjectural combinatorial interpretations of DHn(q, t). Both are due to
Haglund and Loehr [HL05].

Example. For n = 2, the space of diagonal harmonics is DH = Q{1, x1 − x2, y1 − y2}.
Its bigraded Hilbert series is DH2(q, t) = 1 + q + t.

5.2 vertically labelled dyck paths

The first combinatorial interpretation involves an object we have essentially already encountered
in Section 3.1.3: vertically labelled Dyck paths. A Dyck path of length n is a lattice path in Z2

consisting of North and East steps that goes from (0, 0) to (n, n) and never goes below the
diagonal x = y. Equivalently, it is a rational (n + 1, n)-Dyck path with its final step (always
an East step) removed. Thus we will not distinguish between Dyck paths and (n + 1, n)-Dyck
paths. We define a vertically labelled Dyck path as in Section 3.1.3. In particular, vertically
labelled Dyck paths correspond to rational (n + 1, n)-parking functions. These are also known
as classical parking functions. So we write PFn := PFn+1/n for the set of vertically labelled
Dyck paths of length n. From Corollary 3.1.2 we know that |PFn| = (n + 1)n−1.
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Figure 5.2.1: A vertically labelled Dyck path (P, σ) of length 6 with area vector
(0, 1, 1, 2, 2, 1). It has dinv’(P, σ) = 4 and area(P, σ) = 7.

5.2.1 The statistics

If P is a Dyck path corresponding to an increasing classical parking function (P1, P2, . . . , Pn)
and i ∈ [n], let ai := i− 1− Pi be the number of boxes between P and the diagonal in the i-th
row from the bottom. We call ai the area of row i and the vector (a1, a2, . . . , an) the area vector of
P. For a labelled Dyck path (P, σ) define

dinv’(P, σ) := #{i < j : ai = aj and σ(i) < σ(j)}+ {i < j : ai = aj + 1 and σ(i) > σ(j)}.

We define the area of (P, σ) as the number of boxes between P and the diagonal, that is
area(P, σ) := a1 + a2 + . . . + an. Note in particular that area(P, σ) does not depend on σ.

Conjecture 5.2.1 ([Hag08, Conjecture 5.2]). We have

DHn(q, t) = ∑
(P,σ)∈PFn

qdinv’(P,σ)tarea(P,σ).

5.3 diagonally labelled dyck paths

A second equivalent combinatorial interpretation of DHn(q, t) is in terms of diagonally labelled
Dyck paths. A pair (i, j) of positive integers is called a valley of a Dyck path D if the i-th East
step of D is immediately followed by its j-th North step. The pair (w, D) with w ∈ Sn is called
a diagonally labelled Dyck path if w(i) < w(j) whenever (i, j) is a valley of D. We say that the
valley (i, j) is labelled (w(i), w(j)). We think of w as labeling the boxes crossed by the diagonal
between (0, 0) and (n, n) from bottom to top. So the condition on w is that whenever an East
step of D is followed by a North step, the label below the East step is less than the label to the
right of the North step. We write Dn for the set of diagonally labelled Dyck paths on length n.

3
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1
2

4
5

•

•

Figure 5.3.1: A diagonally labelled Dyck path (w, D) of length 6. It has
area’(w, D) = 4 and bounce(w, D) = 7. The squares contributing to area’(w, D)
are shaded in gray. The valleys are marked by dots.
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5.3.1 The statistics

For a diagonally labelled Dyck path (w, D) we define area’(w, D) as the number of boxes below
D such that the label below the box is smaller than the label to the right of it.

For the second statistic, we need to define the bounce path of a Dyck path D. It is a sec-
ond Dyck path below D that is determined as follows. Start at (0, 0) and go North until you hit
the start of an East step. Then travel East until the diagonal. Then bounce off and go North
until you reach the start of another East step. Repeat until you hit (n, n). An integer i ∈ [n] is
called a bounce of D if (i, i) lies on the bounce path of D. The bounce of a Dyck path is defined
as

bounce(D) := ∑
i a bounce of D

n− i

The bounce of a diagonally labelled Dyck path (w, D) is bounce(w, D) = bounce(D). In
particular it does not depend on w.

5.4 the combinatorial zeta map

The zeta map ζHL of Haglund and Loehr is a bijection from PFn to Dn that sends dinv’ to
area’ and area to bounce. Thus ζHL shows that

∑
(P,σ)∈PFn

qdinv’(P,σ)tarea(P,σ) = ∑
(w,D)∈Dn

qarea’(w,D)tbounce(w,D).

It is defined as follows. The first ingredient is the zeta map ζH of Haglund [Hag08, Theo-
rem 3.15]. It is a bijection from the set of Dyck paths of length n to itself. Given a Dyck path P,
iterate the following procedure for i = 0, 1, . . . , n: go through the area vector of P from left to
right and draw a North step for every i you see and an East step for every i− 1. This gives a
Dyck path ζH(P).

The second ingredient is the diagonal reading word drw(P, σ) of the vertically labelled Dyck path
(P, σ). It is given by first reading the labels of rows of area 0 from bottom to top, then the labels
of rows of area 1 from bottom to top, and so on.

a = (0, 1, 2, 1, 1)

1
2
4

3
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0i = 0

0 1
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1 1
2i = 2

2i = 3
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2
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5

4

•

•

Figure 5.4.1: The zeta map ζHL: A vertically labelled Dyck path (P, σ) (left), the
construction of ζH(P) (middle), and the diagonally labelled Dyck path ζHL(P, σ)
(right).

We define ζHL(P, σ) := (drw(P, σ), ζH(P)). The following is an important property of ζHL. It
inspired the generalisation ζ of ζHL that will be defined later in this chapter.

Theorem 5.4.1 ([ALW14, Section 5.2]). For any vertically labelled Dyck path (P, σ) and any pair of
positive integers (b, c), the diagonally labelled Dyck path ζHL(P, σ) = (drw(P, σ), ζH(P)) has a valley
labelled (b, c) if and only if (P, σ) has a rise labelled (b, c).
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Proof. Let i ∈ [n] be an index. Let a = ai be the area of the i-th row of (P, σ) and let σ(i) be
its label. Suppose that σ(i) = drw(P, σ)(j) is the j-th label being read in the diagonal reading
word of (P, σ). That means that there are exactly j− 1 rows that have either smaller area than
row i, or have the same area a and are nearer the bottom. Thus in the construction of ζH(P),
the j-th North step is drawn when the area vector entry ai is read in iteration a, and the j-th
East step is drawn when the area vector entry ai is read in iteration a + 1.

Suppose that i is a rise of (P, σ), labelled (σ(i), σ(i + 1)). Then ai+1 = a + 1. So in par-
ticular, the label σ(i + 1) is read later in the diagonal reading word than the label σ(i). That
is, if σ(i) = drw(P, σ)(j) and σ(i + 1) = drw(P, σ)(k), then j < k. In the construction of ζH(P),
in the (a + 1)-st iteration the j-th East step is drawn when ai is read, and immediately after-
wards the k-th North step is drawn when ai+1 is read. Thus (j, k) is a valley of ζH(P). In
ζHL(P, σ) = (drw(P, σ), ζH(P)) it is labelled (drw(P, σ)(j), drw(P, σ)(k)) = (σ(i), σ(i + 1)).

Conversely suppose that (j, k) is a valley of ζHL(P, σ) labelled (b, c) = (drw(P, σ)(j), drw(P, σ)(k)).
That is, the j-th East step is immediately followed by the k-th North step. Since every iteration
except for the 0-th starts with an East step, both steps must have been drawn in the same
iteration, say iteration a + 1. Then there is some row i with area a and a row j > i with area
a + 1 such that no row between i and j has area either a or a + 1. This implies j = i + 1, so i
is a rise of (P, σ). As above, it follows that σ(i) = drw(P, σ)(j) and σ(i + 1) = drw(P, σ)(k), so
the rise i is labelled (σ(i), σ(i + 1)) = (b, c).
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Figure 5.4.2: The zeta map ζHL: The vertically labelled Dyck path (P, σ) on the
left is mapped to the diagonally labelled Dyck path (w, D) on the right.

A Dyck path is uniquely determined by its valleys. Thus Theorem 5.4.1 gives rise to an
alternative description of ζHL. We have ζHL(P, σ) = (drw(P, σ), D), where D is the unique
Dyck path such that (drw(P, σ), D) has a valley labelled (b, c) if and only if (P, σ) has a rise
labelled (b, c).

5.5 the uniform zeta map

We will describe a uniform generalisation ζ of the zeta map ζHL of Haglund and Loehr to
all irreducible crystallographic root systems, and also to the Fuß-Catalan level of generality.
Recall from Section 3.7.1 that PFn = PFn+1/n is naturally in bijection with the finite torus
Q̌/(n + 1)Q̌ of the root system of type An−1. The Fuß-Catalan generalisation is given by
Q̌/(mh + 1)Q̌ for m a positive integer. It remains to find an interpretation of Dn in terms of the
root system of type An−1, and also a Fuß-Catalan generalisation. The next section provides the
appropriate uniform generalisation of Dn to all irreducible crystallographic root systems and
also to the Fuß-Catalan level, though a demonstration of this fact will have to wait until later.

5.5.1 The nonnesting parking functions

The set of nonnesting parking functions ParkΦ of an irreducible crystallographic root system
Φ was introduced by Armstrong, Reiner and Rhoades [ARR15]. It was defined in order to
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combine two desirable properties: being naturally in bijection with the Shi regions of Φ and
carrying a natural W-action such that ParkΦ is isomorphic to the finite torus Q̌/(n + 1)Q̌
as a W-set. The latter property justifies the name “nonnesting parking functions”, since
ParkΦ ∼= Q̌/(n + 1)Q̌ ∼= PFn if Φ is of type An−1.

The set of m-nonnesting parking functions Park
(m)
Φ is the natural Fuß-Catalan generalisation

of ParkΦ. It was introduced by Rhoades [Rho14]. Given a geometric chain J of m order filters
in the root poset of Φ, define ind(J ) as the set of rank m indecomposable elements of J (see
Section 4.3.2) and let

WJ = 〈{sα : α ∈ ind(J )}〉.

The set Park(m)
Φ of m-nonnesting parking functions of Φ is the set of equivalence classes of pairs

(w,J ) with w ∈W and J a geometric chain of m order filters under the equivalence relation

(w1,J1) ∼ (w2,J2) if and only if J1 = J2 and w1WJ1 = w2WJ1 .

Park
(m)
Φ is endowed with a left action of W defined by

u · [w,J ] := [uw,J ]

for u ∈W.

All the rank m indecomposable elements of a geometric chain of order filters J = (J1, J2, . . . , Jm)
are minimal elements of Jm by Lemma 7.3.21. Thus in particular they are incomparable, that is
they form an antichain in the root poset. So there is some u ∈W with I := u(ind(J )) ⊆ ∆ by
[Som05, Theorem 6.4]. In particular, WJ is a parabolic subgroup of W and any left coset wWJ
of WJ in W has a unique representative w′ such that w′(ind(J )) ⊆ Φ+.

Lemma 5.5.1. For any dominant m-Shi region R corresponding to a geometric chain of order filters J
we have

ind(J ) = w̃R(Φ̃mh+1) ∩Φ.

Proof. For α ∈ Φ+, we have the following chain of equivalences.

α ∈ ind(J )

⇔ Hm
α is a floor of w̃R A◦

⇔ w̃−1
R (−α + mδ) ∈ −∆̃

⇔ w̃−1
R (−α) ∈ −∆̃−mδ = −Φ̃mh+1

⇔ α ∈ w̃R(Φ̃mh+1).

Here we used Theorem 4.3.2 and Lemma 2.2.2.

The following natural bijection relates the m-nonnesting parking functions to the minimal
alcoves of the m-Shi arrangement, or equivalently the (mh + 1)-stable affine Weyl group
elements.

Theorem 5.5.2. The map

Θ : Park(m)
Φ → W̃mh+1

[w,J ] 7→ w′w̃R

is a well-defined bijection. Here w′ is the unique representative of wWJ with w′(ind(J )) ⊆ Φ+ and
R := φ−1(J ) is the dominant m-Shi region corresponding to J .

1 The proof of this lemma does not depend on any results in this chapter, so there is no circularity.
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Proof. The map Θ is well-defined, since if [w1,J1] = [w2,J2] then J1 = J2 and w1WJ1 =
w2WJ1 , so w′1 = w′2. Therefore w′1w̃R1 = w′2w̃R2 .

To see that w′w̃R ∈ W̃mh+1, note that w′(w̃R(Φ̃mh+1)∩Φ) = w′(ind(J )) ⊆ Φ+ using Lemma 5.5.1.
Thus w′w̃R(Φ̃mh+1) ⊆ Φ̃+ and therefore w′wR ∈ W̃mh+1.

To see that Θ is injective, suppose that Θ([w1,J1]) = w′1w̃R1 = w′2w̃R2 = Θ([w2,J2]). Now
w′1w̃R1 A◦ ⊆ w′1C and w′2w̃R2 A◦ ⊆ w′2C, so w′1 = w′2. Thus w̃R1 A◦ = w̃R2 A◦ and therefore
J1 = J2. We also get that w1WR1 = w′1WR1 = w′2WR1 = w2WR1 , so [w1,J1] = [w2,J2].

To see that Θ is surjective, note that if w̃ ∈ W̃mh+1, say with w̃A◦ ⊆ wC, then by Lemma 3.9.2
we have w−1w̃R ∈ W̃mh+1

dom . Thus by Lemma 4.3.6 w−1w̃A◦ is the minimal alcove of a dominant
m-Shi region Rdom corresponding to some geometric chain of order filters J . Furthermore

w(ind(J )) = w(w̃Rdom(Φ̃mh+1) ∩Φ) = w̃(Φ̃mh+1) ∩Φ ⊆ Φ+

using Lemma 5.5.1 and that w̃ ∈ W̃mh+1. Thus Θ([w, Rdom]) = ww̃Rdom = w̃.

A similar bijection using ceilings instead of floors was given for the special case where m = 1
in [ARR15, Proposition 10.3]. Note that the proof furnishes a description of Θ−1: we have
Θ−1(w̃) = [w, Rdom] where w̃A◦ ∈ wC and Rdom is the m-Shi region containing w−1w̃A◦.

5.5.2 m-nonnesting parking functions and the finite torus

In [Rho14, Proposition 9.9] it is shown that there is a W-set isomorphism2 from Park
(m)
Φ to

Q̌/(mh + 1)Q̌. The following theorem makes this isomorphism explicit.

Theorem 5.5.3. The map

Γ : Park(m)
Φ → Q̌/(mh + 1)Q̌

[w,J ] 7→ ww̃Rw̃−1
mh+1 · 0 + (mh + 1)Q̌,

where R is the dominant m-Shi region corresponding to J , is a W-set isomorphism. In addition, we
have Γ = A ◦Θ.

Proof. We will first show that Γ = A ◦Θ. First note that by Theorem 3.6.8 and Lemma 5.5.1 we
have

Stab(w̃Rw̃−1
mh+1 · 0 + (mh + 1)Q̌)

= Stab(A(w̃))

= 〈{sβ : β ∈ w̃(Φ̃mh+1) ∩Φ}〉
= 〈{sβ : β ∈ ind(J )}〉
= WJ

Let w′ be the unique element of wWJ with w′(ind(J )) ⊆ Φ+. We calculate that

Γ([w,J ]) = ww̃Rw̃−1
mh+1 · 0 + (mh + 1)Q̌

= w′w̃Rw̃−1
mh+1 · 0 + (mh + 1)Q̌

= A(w′w̃R A◦)

= A(Θ([w,J ])),

2 Rhoades mistakenly writes the root lattice Q in place of the coroot lattice Q̌. However, his result still stands as written:
it turns out that Q/(mh + 1)Q and Q̌/(mh + 1)Q̌ are isomorphic as W-sets.
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using that w−1w′ ∈ WJ = Stab(w̃Rw̃−1
mh+1 · 0 + (mh + 1)Q̌). So Γ = A ◦ Θ is a well-defined

bijection. Since for u ∈W we have

Γ(u · [w,J ]) = Γ([uw,J ])

= uww̃Rw̃−1
mh+1 · 0 + (mh + 1)Q̌

= u · Γ([w,J ])

we see that Γ is a W-set isomorphism.

We define the zeta map as ζ := Γ−1 = Θ−1 ◦ A−1.

Theorem 5.5.4. The map ζ is a W-set isomorphism from Q̌/(mh + 1)Q̌ to Park
(m)
Φ .

5.5.3 The type of a geometric chain of m order filters

Recall from Section 3.8.3 the notion of the type of a transitive W-set. The type of a W-orbit
W[e,J ] of Park(m)

Φ is the type of the stabilizer WJ of [e,J ]. So we define the type of a geometric
chain of J order filters to be the type of WJ . We get the following theorem.

Theorem 5.5.5. If J is a geometric chain of m order filters, then WJ is a parabolic subgroup of W.
For any parabolic type T , the number of geometric chains of m order filters of type T is the rational
Kreweras number Krewmh+1/Φ(T ).

Proof. The orbits of Park(m)
Φ are indexed by the geometric chains of m order filters, and the type

of a W-orbit W[e,J ] is the type of J . Thus the number of geometric chain of m order filters of
type T is the number of W-orbits of Park(m)

Φ of type T , which equals the number of W-orbits
of Q̌/(mh + 1)Q̌ of type T by Theorem 5.5.3. But by Theorem 3.8.3 this equals the rational
Kreweras number Krewmh+1/Φ(T ) if T is a parabolic type, and 0 otherwise.

We may also call Krew
(m)
Φ (T ) := Krewmh+1/Φ(T ) a Fuß-Kreweras number. Note that since

Krewp/Φ(T ) is a polynomial in p, Krew(m)
Φ (T ) is polynomial in m.

5.5.4 The rank of a geometric chain of m order filters

The rank r(W ′) of a parabolic subgroup W ′ of W is the minimal number of reflections in W ′

needed to generate W ′. Equivalently, r(W ′) := |I| for any standard parabolic subgroup WI
conjugate to W ′. If X ∈ L and W ′ = Iso(X), then r(W ′) = r− dim(X). The rank r(T ) of a type
T is the rank of any W ′ ∈ T .

If J is geometric chain of m order filters, recall from Section 5.5.1 that there is some u ∈ W
with u(ind(J )) ⊆ ∆. So if I = u(ind(J )), then

r(WJ ) = r(WI) = |I| = | ind(J )|.

Thus we deduce the following corollary.

Corollary 5.5.6. For i a nonnegative integer, the number of geometric chain of m order filters with
| ind(J )| = i equals

Nar
(m)
Φ (i) := ∑

T parabolic type
r(T )=i

Krew
(m)
Φ (T ).

Proof. This follows from Theorem 5.5.5 by summing over all parabolic types T of rank i.

We call the numbers Nar
(m)
Φ (i) the Fuß-Narayana numbers of Φ. They are polynomial in m and

were first considered by Athanasiadis [Ath05].
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Example. When Φ is of type An−1, its i-th Fuß-Narayana number is [Ath05, Section
5.1]

Nar
(m)
Φ (i) =

1
n

(
n
i

)(
mn

n− i− 1

)
.

Remark Armstrong has defined the Fuß-Narayana numbers as Nar(m)(W, i), the number of
m-noncrossing partitions of rank i of the Weyl group W = W(Φ). These will be defined in
Chapter 7. For now we content ourselves with showing that his definition agrees with ours.

Theorem 5.5.7. We have Nar
(m)
Φ (i) = Nar(m)(W, i) for all m > 0, i ≥ 0 and Φ an irreducible

crystallographic root system with Weyl group W.

Proof. This is a case-by-case check. The numbers Nar(m)(W, i) have been tabulated by Arm-
strong as polynomials in m for all types in [Arm09, Figure 3.4]. The Fuß-Narayana numbers
Nar

(m)
Φ (i) have been calculated by Athanasiadis for the classical types [Ath05, Section 5]. For the

exceptional types, they can be calculated using the definition in Corollary 5.5.6 in terms of the
Fuß-Kreweras numbers, which in turn can be computed using the definition in Theorem 3.8.3
and the tables of characteristic polynomials in [OS83]. We find that they agree for every
type.

Together with Corollary 5.5.6, we deduce the following theorem.

Theorem 5.5.8 ([Arm09, Conjecture 5.1.22]). For any irreducible crystallographic root system Φ with
Weyl group W, the number Nar(m)(W, i) of m-noncrossing partitions of rank i of W equals the number
Nar

(m)
Φ (i) of geometric chains of m order filter J in the root poset of Φ with | ind(J )| = i.

It is an important open problem to find a uniform proof of this result.

5.6 the uniform zeta map and the combinatorial zeta map

Our aim for this section is to relate our zeta map ζ from Theorem 5.5.4 to the combinatorial
zeta map ζHL of Haglund and Loehr introduced in Section 5.4. So for this section, we specialise
to the case where Φ is the root system of type An−1 and m = 1. The content of this section may
be captured in the following commutative diagram of bijections:

ParkΦ W̃n+1 = S̃n+1
n Q̌/(h + 1)Q̌

Dn PFn

ε

Θ

ζHL

AGMV
δ

A

χ

ζ

The first thing we need to do is introduce the bijections ε and δ that relate ParkΦ and S̃n+1
n to

the set Dn of diagonally labelled Dyck paths of length n.

5.6.1 Nonnesting parking functions as diagonally labelled Dyck paths

It is well-known that one can encode the Shi regions of type An−1 as diagonally labelled Dyck
paths [Arm13, Theorem 3]. We take a slightly different approach, and instead view diagonally
labelled Dyck paths as encoding nonnesting parking functions.

Consider the part of the integer grid Z2 with 0 ≤ x, y ≤ n. We think of the boxes above
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the diagonal x = y as corresponding to the roots in Φ+. Say [i, j] is the box whose top right
corner is the lattice point (i, j). If i < j we view [i, j] as corresponding to the root ei − ej ∈ Φ+.
So we have α ≤ β in the root poset if and only if the box corresponding to α is weakly to the
right and weakly below the box corresponding to β.

e1 − e2

e1 − e3

e1 − e4

e1 − e5

e1 − e6

e2 − e3

e2 − e4

e2 − e5

e2 − e6

e3 − e4

e3 − e5

e3 − e6

e4 − e5

e4 − e6 e5 − e6

Figure 5.6.1: The Dyck path D(J) corresponding to the order filter J in the root
poset of type A5 whose minimal elements are e1 − e2 and e3 − e5.

Note that a geometric chain J of 1 order filter in the root poset is just a single order filter J.
The Dyck path D(J) corresponding to the order filter J is the Dyck path which satisfies

The box [i, j] is above D(J) if and only if ei − ej ∈ J.

Now ind(J) is exactly the set of minimal elements of J [Ath05]. Thus we have ei − ej ∈ ind(J)
if and only if (i, j) is a valley of D(J).

Take w ∈W. We have

w(ind(J)) ⊆ Φ+

⇔ w(ei − ej) ∈ Φ+ whenever (i, j) is a valley of D(J)

⇔ w(i) < w(j) whenever (i, j) is a valley of D(J)

⇔ (w, D(J)) is a diagonally labelled Dyck path.

2
4

1
5

3

•

•
•

Figure 5.6.2: The diagonally labelled Dyck path (w, D(J)) where w = 24153 and
ind(J) = {e1 − e2, e2 − e4, e3 − e5}. The valleys of D(J) are marked by dots.
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Lemma 5.6.1. The map

ε : ParkΦ → Dn

[w, J] 7→ (w′, D(J)),

where w′ ∈ wWJ is the unique representative with w′(ind(J)) ⊆ Φ+, is a bijection.

Proof. The map J 7→ D(J) is a bijection from order filters in the root poset of type An−1 to
Dyck paths of length n. The map ε is well-defined since [w1, J1] = [w2, J2] implies J1 = J2
and w′1 = w′2, so ε([w1, J1]) = ε([w2, J2]). We see that (w′, D(J)) ∈ Dn since w′(ind(J)) ⊆ Φ+.
We see that ε is injective since ε([w1, J1]) = ε([w2, J2]) implies D(J1) = D(J2), so that J1 = J2.
Furthermore w′1 = w′2, so that w1WJ1 = w2WJ2 and thus [w1, J1] = [w2, J2]. We see that ε is
surjective since for (w, D) ∈ Dn we have (w, D) = ε([w, J]) where D = D(J).

Since WJ is generated by the transpositions (ij) such that (i, j) is a valley of D(J) and the
condition w′(ind(J)) ⊆ Φ+ is equivalent to w′(i) < w′(j) whenever (i, j) is a valley of D(J)
we can get w′ from w with a simple sorting procedure: for all maximal chains of indices
i1 < i2 < . . . < il such that (ij, ij+1) is a valley of D(J) for all j ∈ [l − 1] sort the values of w on
positions i1, i2, . . . , il increasingly. The result is w′. From this we also get the Sn-action on Dn
that turns ε into an Sn-isomorphism: for u ∈ Sn define

u · (w, D) := ((uw)′, D)

where (uw)′ arises from uw through the sorting procedure desribed above. Note the analogy
between this action and the Sn-action on PFn in terms of vertically labelled Dyck paths that
was described in Section 3.1.3.

One may also view diagonally labelled Dyck paths as a combinatorial model for Shi alcoves, or
equivalently (n + 1)-stable affine permutations. The following lemma makes this explicit.

Lemma 5.6.2. The map

δ : S̃n+1
n → Dn

w̃ 7→ (w, D),

where w̃A◦ ∈ wC and D = D(J) = D(φ(Rdom)) is the Dyck path corresponding to the order filter
corresponding to the dominant Shi region Rdom containing w−1w̃A◦, is a bijection. Furthermore
δ = ε ◦Θ−1.

Proof. An immediate check from the definitions of ε and Θ.

5.6.2 The zeta maps are equivalent

The following theorem relates our zeta map ζ from Theorem 5.5.4 to the zeta map ζHL of
Haglund and Loehr. Recall that χ = π−1

PF ◦πQ̌ is the natural Sn-isomorphism from Q̌/(n + 1)Q̌
to PFn.

Theorem 5.6.3. If Φ is of type An−1 and m = 1, then

ζHL = ε ◦ ζ ◦ χ−1

= δ ◦ A−1
GMV .

Proof. Define ζ ′ := ε ◦ ζ ◦ χ−1. We also have

ζ ′ = ε ◦ ζ ◦ χ−1 = ε ◦Θ−1 ◦ A−1 ◦ χ−1 = δ ◦ A−1
GMV

using the definition of ζ, Lemma 5.6.2 and Theorem 3.7.1. We will show that ζ ′ satisfies the
following properties: If ζ ′(P, σ) = (w, D) then firstly w = drw(P, σ) and secondly (w, D) has a
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valley labelled (b, c) if and only if (P, σ) has a rise labelled (b, c) for all b and c. As noted as the
end of Section 5.4, these properties define ζHL uniquely, so we deduce that ζ ′ = ζHL.

First we need to check that if ζ ′(P, σ) = (δ ◦ A−1
GMV)(P, σ) = (w, D), then w = drw(P, σ).

Equivalently we need to verify that if w̃ ∈ W̃n+1 with w̃A◦ ⊆ wC and AGMV(w̃) = (PwR , σ)
then w = drw(PwR , σ).

-6 -12 -18 -24 -30 -36 -42

1 -5 -11 -17 -23 -29 -35

8 2 -4 -10 -16 -22 -28

15 9 3 -3 -9 -15 -21

22 16 10 4 -2 -8 -14

29 23 17 11 5 -1 -7

1

3

4

5

6

2

Figure 5.6.3: The vertically labelled 7/6-Dyck path AGMV(w̃) for the dominant 7-
stable affine permutation w̃ = [2, 7, 3, 4, 5, 0]. We have that w̃−1 = [−4, 1, 3, 4, 5, 12]
is affine Grassmanian. The positive beads of the normalized abacus A(∆̃w̃) are
shaded in gray.

First suppose that w = e is the identity. That is, w̃ ∈ W̃n+1
dom. So w̃−1 is affine Grassmanian, that

is w̃−1(1) < w̃−1(2) < . . . < w̃−1(n). The set of lowest gaps on the runners of the balanced
abacus A(∆w̃) is

{w̃−1(1), w̃−1(2), . . . , w̃−1(n)}.
Thus the set of lowest gaps of the normalized abacus A(∆̃w̃) is

{w̃−1(1)−Mw̃, w̃−1(2)−Mw̃, . . . , w̃−1(n)−Mw̃},

where Mw̃ is the minimal element of ∆w̃. This equals the set {l1, l2, . . . , ln} of labels of the boxes
to the left of the North steps of the Dyck path Pw̃.

Let (a1, a2, . . . , an) be the area vector of Pw̃. Then we have li = nai + i − 1. Thus li < lj if
and only if either ai < aj or ai = aj and i < j. Furthermore, the label of the i-th North step
of Pw̃ is σ(i) = w̃(li + Mw̃). So the j-th label being read in the diagonal reading word is
drw(Pw̃, σ)(j) = w̃(li + Mw̃), where li is the j-th smallest element of {l1, l2, . . . , ln}. But the j-th
smallest element of

{l1, l2, . . . , ln} = {w̃−1(1)−Mw̃, w̃−1(2)−Mw̃, . . . , w̃−1(n)−Mw̃}

is just w̃−1(j)−Mw̃, so drw(Pw̃, σ)(j) = w̃(w̃−1(j)−Mw̃ + Mw̃) = j. Thus drw(Pw̃, σ) = e, as
required.

In general if w̃A◦ ⊆ wC then w̃ = ww̃D, where w̃D ∈ W̃n+1
dom using Lemma 3.9.2. We have

∆w̃D = ∆w̃ and thus also Mw̃D = Mw̃ and ∆̃w̃D = ∆̃w̃. Therefore Pw̃ = Pw̃D and the tuple
(l1, l2, . . . , ln) is also the same for w̃ and w̃D. Thus the j-th label being read in the diagonal
reading word of AGMV(w̃) = (Pw̃, σ) is

drw(Pw̃, σ)(j) = w̃(w̃−1
D (j)−Mw̃ + Mw̃) = w(j).

So drw(Pw̃, σ) = w, as required.

The second property we need to check is that if ζ ′(P, σ) = (ε ◦ ζ ◦ χ−1)(P, σ) = (w, D) then
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(w, D) has a valley labelled (a, b) if and only if (P, σ) has a rise labelled (a, b). But this follows
from general considerations: since ζ ′ = ε ◦ ζ ◦ χ−1 is a composition of Sn-isomorphisms it is
itself an Sn-isomorphism. In particular, the Sn-stabilizers of (P, σ) and (w, D) must agree. But
(P, σ) has a rise labelled (a, b) if and only if b is the smallest integer with a < b ≤ n such that
the transposition (ab) fixes (P, σ), and similarly (w, D) has a valley labelled (a, b) if and only
if b is the smallest integer with a < b ≤ n such that the transposition (ab) fixes (w, D). Thus
(w, D) has a valley labelled (a, b) if and only if (P, σ) has a rise labelled (a, b). This concludes
the proof.

5.7 outlook

Given the uniform zeta map ζ generalising the type A combinatorial zeta map ζHL to all types,
it makes sense to consider finding combinatorial interpretations of ζ also for the other classical
types B, C and D. For type C this was accomplished in [ST15].
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In this chapter, which is based on [Thi14a], we prove a conjecture of Armstrong that states that
for any two integers k and l the number of dominant m-Shi regions that have exactly l floors
of the form Hk

α equals the number of dominant m-Shi regions that have exactly l ceilings of
the form Hk

α. To do this, we introduce a uniform bijection that provides even more refined
enumerative information.

6.1 the main result

If M is any set of hyperplanes of the m-Shi arrangement, let U(M) be the set of dominant
m-Shi regions R such that all hyperplanes in M are floors of R. Similarly, let L(M) be the set of
dominant m-Shi regions R′ such that all hyperplanes in M are ceilings of R′. Then we have the
following theorem.

Theorem 6.1.1. For any set M = {Hi1
α1 , Hi2

α2 , . . . , Hil
αl} of l hyperplanes with ij ∈ [m] and αj ∈ Φ+

for all j ∈ [l], there is an explicit bijection Θ from U(M) to L(M).

H0
α1

H0
α2

H0
α1

H0
α2

Figure 6.1.1: The bijection Θ for the 2-Shi arrangement of the root system of type
B2, for M = {H1

α2
} and for M = {H1

α1
, H2

α2
}. The dominant chamber is shaded in

grey.

See Figure 6.1.1 for an example. From this theorem, we obtain some enumerative corollaries.
Say that a hyperplane of the form Hk

α for α ∈ Φ+ has level k. Let f lk(l) be the number of
dominant m-Shi regions that have exactly l floors of level k, and let clk(l) be the number of
dominant regions that have exactly l ceilings of level k [Arm09, Definition 5.1.23]. We deduce
the following conjecture of Armstrong.

Corollary 6.1.2 ([Arm09, Conjecture 5.1.24]). We have f lk(l) = clk(l) for all 1 ≤ k ≤ m and l ≥ 0.

6.2 preliminaries

Recall from Section 4.3.1 that any dominant m-Shi region R has a unique minimal alcove
A = w̃R A◦ whose address can be obtained from the geometric chain of m order filters J = φ(R)
corresponding to R. A similar construction associates a unique maximal alcove to every bounded
dominant m-Shi region [AT06]. The ingredients of this are as follows.

For an alcove B and a positive root α ∈ Φ+, define

r(B, α) = k(B, α) + 1.

So we have r(B, α)− 1 < 〈x, α〉 < r(B, α) for all x ∈ B. Lemma 4.3.1 translates to

61
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Lemma 6.2.1 ([AT06, Lemma 2.3]). There is an alcove B with r(B, α) = rα for all α ∈ Φ+ if and
only if rα + rβ − 1 ≤ rα+β ≤ rα + rβ whenever α, β, α + β ∈ Φ+.

For a geometric chain of ideals I = (I1, I2, . . . , Im), and α ∈ Φ+, we define

rα(I) = min{r1 + r2 + . . . + rl | α = α1 + α2 + . . . + αl and αi ∈ Iri for all i ∈ [l]},

where we set rα(I) = ∞ if α cannot be written as a linear combination of elements in Im. So
rα(I) < ∞ for all α ∈ Φ+ if and only if I is positive.

The bijection θ−1 from Section 4.2 maps a positive geometric chain of ideals I to the bounded
dominant m-Shi region R containing the alcove B with r(B, α) = rα(I) for all α ∈ Φ+ [AT06,
Theorem 3.6]. This alcove B is called the maximal alcove of R. Its ceilings are exactly the ceilings
of R [AT06, Theorem 3.11].

We call α ∈ Φ+ a rank k indecomposable element [AT06, Definition 3.8] of a geometric chain
of ideals I = (I1, I2, . . . , Im) if α ∈ Ik and

1. rα(I) = k,

2. α /∈ Ii + Ij for i + j = k and

3. if rα+β(I) = t ≤ m for some β ∈ Φ+ then β ∈ It−k.

The following theorem relates indecomposable elements to ceilings.

Theorem 6.2.2. Let R be a dominant m-Shi region, I = θ(R) and α ∈ Φ+. Then R contains an alcove
B such that for all k ∈ [m] the following are equivalent:

1. Hk
α is a ceiling of R,

2. α is a rank k indecomposable element of I , and

3. Hk
α is a ceiling of B.

It is already known that Theorem 6.2.2 holds for bounded dominant m-Shi regions [AT06,
Theorem 3.11]. In that case, we may take the alcove B to be the maximal alcove of the bounded
m-Shi region R.

Our approach to proving Theorem 6.2.2 is to note that when a dominant m-Shi region R
is subdivided into (m + 1)-Shi regions by hyperplanes of the form Hm+1

α for α ∈ Φ+, at least
one of the resulting regions is bounded. We find a dominant (m + 1)-Shi region R which,
among the bounded (m + 1)-Shi regions that are contained in R, is the one furthest away from
the origin. We call the maximal alcove B of R the pseudomaximal alcove of R. It equals the
maximal alcove of R if R is bounded. The alcove B ⊆ R will be seen to satisfy the assertion of
Theorem 6.2.2. Instead of working directly with the dominant m- and (m + 1)-Shi regions, we
usually phrase our results in terms of the corresponding geometric chains of ideals. We require
the following lemmas:

Lemma 6.2.3 ([Ath05, Lemma 2.1 (ii)]). If α1, α2, . . . , αl ∈ Φ and α1 + α2 + . . . + αl = α ∈ Φ, then
α1 = α or there exists i with 2 ≤ i ≤ l such that α1 + αi ∈ Φ ∪ {0}.

Lemma 6.2.4 ([AT06, Lemma 3.2]). For α ∈ Φ+ and rα(I) = k ≤ m, we have that α ∈ Ik.

Lemma 6.2.5 ([AT06, Lemma 3.10]). Suppose α is an indecomposable element of I . Then

1. rα(I) = rβ(I) + rγ(I)− 1 if α = β + γ for β, γ ∈ Φ+ and

2. rα(I) + rβ(I) = rα+β(I) if β, α + β ∈ Φ+.
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Figure 6.2.1: The dominant 2-Shi regions of the root system of type B2 together
with their pseudomaximal alcove, shaded in grey.

Lemma 6.2.6. If α, β, γ ∈ Φ+, β + γ ∈ Φ+ and α ≤ β + γ, then α ≤ β or α ≤ γ or α = β′ + γ′

with β′, γ′ ∈ Φ+, β′ ≤ β and γ′ ≤ γ.

Proof. Let α = β + γ − ∑j∈J αj with αj ∈ ∆ for all j ∈ J. We proceed by induction on |J|.
If |J| = 0, we are done. If |J| = 1, we have that α = −αi + β + γ for some αi ∈ ∆. Thus
by Lemma 6.2.3, we have either α = −αi (a contradiction), or β′ = β − αi ∈ Φ ∪ {0} or
γ′ = γ− αi ∈ Φ ∪ {0}. Notice that if β′ 6= 0, then β′ ∈ Φ+, and similarly for γ′. So if β′ ∈ Φ+

we may write α = β′ + γ and otherwise we have γ′ ∈ Φ+ and thus α = β + γ′ as required.

If |J| > 1, we have α + ∑j∈J αj = β + γ, so by Lemma 6.2.3, either α = β + γ, so we are
done, or α + αj ∈ Φ ∪ {0} for some j ∈ J. In the latter case we even have α + αj ∈ Φ+. By
induction hypothesis, α + αj ≤ β or α + αj ≤ γ or α + αj = β′ + γ′ with β′, γ′ ∈ Φ+, β′ ≤ β
and γ′ ≤ γ. In the first two cases, we are done. In the latter case, we have α = −αj + β′ + γ′,
so we proceed as in the |J| = 1 case.

We are now ready to define the bounded dominant (m + 1)-Shi region R in terms of the corre-
sponding geometric chain of m + 1 ideals I . For a geometric chain of ideals I = (I1, I2, . . . , Im),
let Ii = Ii for all i ∈ [m] and let Im+1 =

⋃
i+j=m+1((Ii + Ij) ∩Φ+) ∪ Im ∪ ∆. By Lemma 6.2.6,

Im+1 is an ideal. Define I = (I1, . . . , Im+1).

Lemma 6.2.7. If I = (I1, I2, . . . , Im) is a geometric chain of m ideals in the root poset of Φ, then I is a
positive geometric chain of m + 1 ideals. The bounded dominant (m + 1)-Shi region R = θ−1(I) is
contained in the m-Shi-region R = θ−1(I).

Proof. By construction, I is an ascending chain of ideals. If i + j ≤ m, we have that

(Ii + I j) ∩Φ+ = (Ii + Ij) ∩Φ+ ⊆ Ii+j = Ii+j

as I is geometric. If i + j = m + 1 with i, j 6= 0 (otherwise the result is trivial) we have that

(Ii + I j) ∩Φ+ = (Ii + Ij) ∩Φ+ ⊆
⋃

i+j=m+1

((Ii + Ij) ∩Φ+) ⊆ Ii+j.

Let J = (J1, J2, . . . , Jm) be the geometric chain of order filters corresponding to the geometric
chain of ideals I . Define J similarly. We need to verify that (Ji + J j) ∩ Φ+ ⊆ Ji+j for all

i, j ∈ [m + 1].

Suppose first that i + j ≤ m. Then (Ji + J j) ∩ Φ+ = (Ji + Jj) ∩ Φ+ ⊆ Ji+j = Ji+j since J
is geometric.
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Suppose next that i + j = m + 1. Take any (m + 1)-Shi region R′ that is contained in R.
Let θ(R′) = I ′ = (I′1, I′2, . . . , I′m+1) be the geometric chain of ideals corresponding to R′ and let
J ′ = (J′1, J′2, . . . , J′m+1) be the corresponding geometric chain of order filters. Then R and R′ are
on the same side of each hyperplane of the m-Shi arrangement. Thus I′l = Il and J′l = Jl for
l ∈ [m]. Thus we have

Im+1 =
⋃

i+j=m+1

((Ii + Ij) ∩Φ+) ∪ Im ∪ ∆ =
⋃

i+j=m+1

((I′i + I′j) ∩Φ+) ∪ I′m ∪ ∆ ⊆ I′m+1 ∪ ∆

since I ′ is geometric. Since J ′ is geometric, we have

(Ji + J j) ∩Φ+ = (J′i + J′j) ∩Φ+ ⊆ J′i+j = J′m+1.

The sum of two positive roots is never a simple root, so we even have (Ji + J j) ∩Φ+ ⊆ J′m+1\∆.

But J′m+1\∆ ⊆ Jm+1, as Im+1 ⊆ I′m+1 ∪ ∆. Thus (Ji + J j) ∩Φ+ ⊆ Ji+j.

Lastly, in the case where i + j > m + 1, we have J j ⊆ Jm+1−i, so that

(Ji + J j) ∩Φ+ ⊆ (Ji + Jm+1−i) ∩Φ+ ⊆ Jm+1 = Ji+j.

Thus the chain of ideals I is geometric. It is also clearly positive, so R = θ−1(I) is bounded.
Since Ii = Ii for i ∈ [m], R and R are on the same side of each hyperplane of the m-Shi
arrangement, so R is contained in R.

For a geometric chain of m ideals I = (I1, I2, . . . , Im), define supp(I) = Im ∩ ∆. In particular,
supp(I) = ∆ if and only if I is positive. Let Nsupp(I) be the additive semigroup generated by
supp(I).

Lemma 6.2.8. If α ∈ Nsupp(I), then rα(I) = rα(I). In particular, if rα(I) ≤ m, then rα(I) =
rα(I).

Proof. First note that α ∈Nsupp(I) implies that rα(I) < ∞. So may write α = α1 + α2 + . . .+ αl
with αi ∈ Iri for i ∈ [l] and r1 + r2 + . . . + rl = rα(I). Since αi ∈ Iri = Iri

this implies that
rα(I) ≤ rα(I).

We may write α = α1 + α2 + . . . + αl with αi ∈ Iri
for i ∈ [l] and r1 + r2 + . . . + rl = rα(I).

We wish to show that rα(I) ≤ rα(I). Thus we seek to write α = α′1 + α′2 + . . . + α′l′ with
α′i ∈ Ir′i

for i ∈ [l′] and r′1 + r′2 + . . . + r′l = rα(I). If rp = m + 1 for some p ∈ [l], then
αp ∈ Im+1 =

⋃
i+j=m+1((Ii + Ij) ∩Φ+) ∪ Im ∪ ∆. If αp ∈ Im = Im, we get a contradiction with

the minimality of rα(I). If αp ∈ ∆, then since αp ∈Nsupp(I), we have that αp ∈ supp(I) ⊆ Im,
again a contradiction. So αp ∈

⋃
i+j=m+1((Ii + Ij) ∩ Φ+). Thus write αp = βp + β′p, where

βp ∈ Ii and β′p ∈ Ij for some i, j with i + j = m + 1. So in the sum α = α1 + α2 + . . . + αm
replace each αp with rp = m + 1 with βp + β′p to obtain (after renaming) α = α′1 + α′2 + . . . + α′l′
with α′i ∈ Ir′i

for i ∈ [l′] and r′1 + r′2 + . . . + r′l′ = rα(I), as required.

If rα(I) = k ≤ m, then α ∈ Ik ⊆ Im by Lemma 6.2.4, so α ∈ Nsupp(I) and thus rα(I) =
rα(I).

For R a dominant m-Shi region, define the pseudomaximal alcove of R to be the maximal alcove
of R. This term is justified by the following proposition.

Proposition 6.2.9. If R is a bounded dominant m-Shi region, its pseudomaximal alcove is equal to its
maximal alcove.

Proof. Let A and B be the maximal and pseudomaximal alcoves of R respectively. If I = θ(R),
then r(α, A) = rα(I) for all α ∈ Φ+. Since B is the maximal alcove of R, we have r(α, B) = rα(I)
for all α ∈ Φ+. Now I is positive since R is bounded, so supp(I) = ∆. Thus rα(I) = rα(I) for
all α ∈ Φ+ by Lemma 6.2.8. So r(α, A) = r(α, B) for all α ∈ Φ+ and therefore A = B.
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Lemma 6.2.10. Let R be an m-Shi region, let be B be its pseudomaximal alcove and let t ≤ m be a
positive integer. If 〈x0, α〉 > t for some x0 ∈ R, then 〈x, α〉 > t for all x ∈ B.

Proof. Let I = θ(R). Since r(B, α) = rα(I) for all α ∈ Φ+, it suffices to show that rα(I) > t. If
rα(I) > m this is immediate, so we may assume that rα(I) ≤ m. Thus we have rα(I) = rα(I)
by Lemma 6.2.8. Write α = α1 + α2 + . . . + αl , with αi ∈ Iri for all i ∈ [l] and r1 + r2 + . . . + rl =
rα(I). Then 〈x, αi〉 < ri for all i ∈ [l] and x ∈ R, so 〈x, α〉 < rα(I) for all x ∈ R. So if 〈x0, α〉 > t
for some x0 ∈ R, then rα(I) > 〈x0, α〉 > t, so rα(I) = rα(I) > t.

Lemma 6.2.11. If α is a rank k indecomposable element of I , then α is a rank k indecomposable element
of I .

Proof. Let α be a rank k indecomposable element of I . Then α ∈ Ik = Ik, and rα(I) = rα(I) = k
by Lemma 6.2.8. We have that α /∈ Ii + Ij = Ii + I j for i + j = k. If rα+β(I) = t ≤ m + 1,
then α + β ∈ It by Lemma 6.2.4. So if t ≤ m, we have rα+β(I) = rα+β(I) by Lemma 6.2.8.
If t = m + 1, then α + β ∈ Im or α + β ∈ ⋃i+j=m+1((Ii + Ij) ∩ Φ+), since α + β /∈ ∆. Either
way, α + β ∈ NIm so rα+β(I) = rα+β(I) by Lemma 6.2.8. Thus we have rα(I) + rβ(I) =
rα+β(I) = rα+β(I) = t using Lemma 6.2.5. So rβ(I) = t− rα(I) = t− k, so β ∈ It−k = It−k by
Lemma 6.2.4. Thus α is a rank k indecomposable element of I .

Lemma 6.2.12. If α ∈ Φ+ and Hk
α is a ceiling of a dominant m-Shi region R, then α is a rank k

indecomposable element of I = θ(R).

Proof. Since the origin and R are on the same side of Hk
α, we have that 〈x, α〉 < k for all

x ∈ R, so α ∈ Ik and thus rα(I) ≤ k. But if rα(I) = i < k, then α ∈ Ii by Lemma 6.2.4, so
〈x, α〉 < i ≤ k− 1 for all x ∈ R. So Hk

α is not a wall of R, a contradiction. Thus rα(I) = k.

If α = β + γ for β ∈ Ii and γ ∈ Ij with i + j = k, then the fact that 〈x, α〉 < k for all
x ∈ R is a consequence of 〈x, β〉 < i and 〈x, γ〉 < j for all x ∈ R, so Hk

α does not support a facet
of R. So α /∈ Ii + Ij for i + j = k.

If rα+β(I) = t ≤ m, then α + β ∈ It by Lemma 6.2.4, so 〈x, α + β〉 < t for all x in R. If
also 〈x, β〉 > t− k for all x ∈ R, then 〈x, α〉 < k for all x ∈ R is a consequence of these, so Hk

α

does not support a facet of R. So 〈x, β〉 < t− k for all x ∈ R, so β ∈ It−k.

Thus α is a rank k indecomposable element of I .

Proof of Theorem 6.2.2. We take B to be the pseudomaximal alcove of R, that is the maximal
alcove of R. We will show that (1)⇒ (2)⇒ (3)⇒ (1).

The statement that (1)⇒ (2) is Lemma 6.2.12.

For (2) ⇒ (3), suppose α is a rank k indecomposable element of I . Then by Lemma 6.2.11,
α is also a rank k indecomposable element of I . So by Lemma 6.2.5, we have rα(I) =
rβ(I)+ rγ(I)− 1 if α = β+γ for β, γ ∈ Φ+, and also rα(I)+ rβ(I) = rα+β(I) if β, α+ β ∈ Φ+.
Thus there exists an alcove B′ with r(B′, β) = rβ(I) for β 6= α and r(B′, α) = rα(I) + 1 by
Lemma 6.2.1. Since r(B, β) = rβ(I) for all β ∈ Φ+, this means that B′ and B are on the same

side of each hyperplane of the affine Coxeter arrangement, except for Hrα(I)
α = Hk

α. Thus Hk
α is

a wall of B. Since Hk
α does not separate B from the origin, it is a ceiling of B.

For (3) ⇒ (1), suppose Hk
α is a ceiling of B. Let B′ be the alcove which is the reflection

of B in the hyperplane Hk
α. Then 〈x, α〉 > k for all x ∈ B′, so by Lemma 6.2.10 the alcove B′ is

not contained in R. Thus Hk
α is a wall of R. It does not separate R from the origin, so it is a

ceiling of R. This completes the proof.
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6.3 proof of the main result

We are now in a position to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. For l = 0, the statement is immediate. Suppose that 0 < l ≤ r.

To define the bijection Θ, let R ∈ U(M) and let A be the minimal alcove of R. The reflections
si1

α1 , . . . , sil
αl in the hyperplanes Hi1

α1 , . . . , Hil
αl are reflections in facets of the alcove A = w̃R A◦,

so the set S′ := {si1
α1 , . . . , sil

αl} equals w̃R Jw̃−1
R for some J ⊂ S̃. Thus the reflection group W ′

generated by S′ is a proper parabolic subgroup of W̃. In particular, it is finite. With respect to
the finite reflection group W ′, the alcove A is contained in the dominant Weyl chamber, that is
the set

C′ = {x ∈ V | 〈x, αj〉 > ij for all j ∈ [l]}.
So if w′0 is the longest element of W ′ with respect to the generating set S′, the alcove A′ = w′0(A)
is contained in the Weyl chamber

w′0(C) = {x ∈ V | 〈x, αj〉 < ij for all j ∈ [l]}

of W ′, so it is on the other side of all the hyperplanes Hi1
α1 , . . . , Hil

αl . A′ is an alcove, so it is
contained in some m-Shi region R′. Set Θ(R) = R′.

H0
α1

H0
α2

Figure 6.3.1: The bijection Θ for the 2-Shi arrangement of the root system of type
B2 with M = {H1

α2
, H2

2α1+α2
}.

Claim 6.3.1. The m-Shi region R′ is dominant and all hyperplanes in M are ceilings of R′, that is
R′ ∈ L(M), so Θ is well-defined.

Proof of Claim. The origin is contained in the Weyl chamber w′0(C) of W ′. Thus no reflection
in W ′ fixes the origin. We can write A′ = w′0(A) as tn · · · t1(A) where ti ∈ W ′ is a reflection
in a facet of ti−1 · · · t1(A) for all i ∈ [r]. In fact, if w′0 = s′1 · · · s′n with s′i ∈ S′ for all i ∈ [n] is
a reduced expression for w′0 in W ′, we can take ti = s′1 · · · s′i−1s′is

′
i−1 · · · s′1. So ti · · · t1(A) and

ti−1 · · · t1(A) are on the same side of every hyperplane in the affine Coxeter arrangement of Φ
except for the reflecting hyperplane of ti. Since ti does not fix the origin, if ti−1 · · · t1(A) is domi-
nant, then so is ti · · · t1(A). Thus by induction on i, the alcove A′ is dominant, so R′ is dominant.

Consider the Coxeter arrangement of W ′, which is the hyperplane arrangement given by the
reflecting hyperplanes of all the reflections in W ′. The action of W ′ on V restricts to an action
on the set of these hyperplanes. Since Hi1

α1 , . . . , Hil
αl support facets of A, w′0(Hi1

α1), . . . , w′0(Hil
αl )

support facets of A′ = w′0(A). Now the set {w′0(Hi1
α1), . . . , w′0(Hil

αl )} is the set of walls of
w′0(C) in the Coxeter arrangement of W ′, so it equals the set M = {Hi1

α1 , . . . , Hil
αl}. Since all
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hyperplanes in M are floors of A, and A′ is on the other side of each of them, they are all
ceilings of A′. Thus they are ceilings of R′.

We show that Θ is a bijection by exhibiting its inverse Ψ, a map from L(M) to U(M). Suppose
R′ ∈ L(M). Let B be the alcove in R′ given by Theorem 6.2.2. Let R′′ be the region that contains
B′ = w′0(B). Similarly to the proof of Claim 6.3.1, we have that R′′ ∈ U(M). So let Ψ(R′) = R′′.

Claim 6.3.2. The maps Θ and Ψ are inverse to each other, so Θ is a bijection.

Proof of Claim. Suppose R ∈ U(M), R′ = Θ(R) and R′′ = Ψ(R′). Use the same notation as
above for the alcoves A, A′, B and B′. Suppose for contradiction that R′′ 6= R. Then there is
an m-Shi hyperplane H = Hk

α that separates R and R′′. So H separates A and B′. Now A and
B′ are in the dominant Weyl chamber of W ′, so they are on the same side of each reflecting
hyperplane of W ′. Thus H is not a reflecting hyperplane of W ′. Now we may write A′ as
tn · · · t1(A), where ti ∈W ′ is a reflection in a facet of ti−1 · · · t1(A) for all i ∈ [n]. So ti · · · t1(A)
and ti−1 · · · t1(A) are on the same side of every hyperplane in the affine Coxeter arrangement,
except for the reflecting hyperplane of ti, which cannot be H. Thus by induction on i, the alcove
A′ is on the same side of H as A. Similarly B is on the same side of H as B′. So A′ and B are
on different sides of H, a contradiction, as they are contained in the same region, namely R′.
Thus Ψ(Θ(R)) = R′′ = R, so Ψ ◦Θ = id. Similarly Θ ◦Ψ = id, so Θ and Ψ are inverse to each
other, so Θ is a bijection.

For any dominant alcove, at least one of its r + 1 facets must either be a floor or contain the
origin, and at least one must be a ceiling. So it has at most r ceilings and at most r floors. So
any dominant m-Shi region R has at most r ceilings and at most r floors. Thus if l > r, both
U(M) and L(M) are empty. This completes the proof.

6.4 corollaries

We deduce some enumerative corollaries of Theorem 6.1.1. For any set M of m-Shi hyperplanes,
let U=(M) be the set of dominant m-Shi regions R such that the floors of R are exactly the
hyperplanes in M, and let L=(M) be the set of dominant m-Shi regions R′ such that the ceilings
of R′ are exactly the hyperplanes in M.

Corollary 6.4.1. For any set M = {Hi1
α1 , Hi2

α2 , . . . , Hil
αl} of l hyperplanes with ij ∈ [m] and αj ∈ Φ+

for all j ∈ [l], we have that |U=(M)| = |L=(M)|.

Proof. This follows from Theorem 6.1.1 by an application of the Principle of Inclusion and
Exclusion.

Corollary 6.4.2. For any tuple (a1, a2, . . . , am) of nonnegative integers, the number of dominant regions
R that have exactly aj floors of level j for all j ∈ [m] is the same as the number of dominant regions R′

that have exactly aj ceilings of level j for all j ∈ [m].

Proof. Sum Corollary 6.4.1 over all sets M containing exactly aj hyperplanes of level j for all
j ∈ [m].

Proof of Corollary 6.1.2. Set ak = l and sum Corollary 6.4.2 over all choices of aj for all j 6= k.

6.5 outlook

Richard Stanley has asked whether Theorem 6.1.1 also holds for the set of m-Shi regions
contained in some non-dominant chamber wC. We suspect the answer to this question to be
yes, but we have no proof.
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7
C H A P O T O N T R I A N G L E S

In this chapter, which is based on [Thi14b], we introduce the Fuß-Catalan objects NN
(m)
Φ , NC(m)

Φ

and Assoc
(m)
Φ . With each of these we associate a Chapoton triangle, a polynomial in variables x

and y that encodes refined enumerative information about it. These are the H-triangle H(m)
Φ (x, y),

the M-triangle M(m)
Φ (x, y) and the F-triangle F(m)

Φ (x, y) respectively. They were introduced by
Chapoton at the Coxeter-Catalan level of generality [Cha04, Cha06], and later generalised by
Armstrong to the corresponding Fuß-Catalan objects [Arm09, Section 5.3].

We will prove the H = F correspondence which relates the H-triangle and the F-triangle
by an invertible transformation of variables. It was originally conjectured by Chapoton at
the Coxeter-Catalan level [Cha06, Conjecture 6.1] and later generalised by Armstrong to the
Fuß-Catalan level [Arm09, Conjecture 5.3.2]. We deduce a number of corollaries from it.

7.1 three fuss-catalan objects and their chapoton triangles

For any (not necessarily irreducible) crystallographic root system Φ of rank r and any positive
integer m we introduce the three Fuß-Catalan objects NN

(m)
Φ , NC(m)

Φ and Assoc
(m)
Φ together with

their Chapoton triangles H(m)
Φ (x, y), M(m)

Φ (x, y) and F(m)
Φ (x, y).

7.1.1 m-nonnesting partitions

An m-nonnesting partition of Φ is simply a geometric chain J of m order filters in the root poset
of Φ. We let NN(m)

Φ denote the set of m-nonnesting partitions of Φ.

We define the H-triangle [Arm09, Definition 5.3.1] as

H(m)
Φ (x, y) = ∑

J ∈NN(m)
Φ

x| ind(J )|y| ind(J )∩∆|.

Recall that ind(J ) denotes the set of rank m indecomposable elements of J , as defined in
Section 4.3.2.

7.1.2 m-noncrossing partitions

Consider the Weyl group W of the root system Φ. A standard Coxeter element in this group is a
product of all the simple reflections in some order. A Coxeter element is any element of W that
is conjugate to a standard Coxeter element. If Φ is irreducible, then the order of any Coxeter
element of W is the Coxeter number h of Φ.

Let T denote the set of reflections in W. For w ∈ W, define the absolute length lT(w) of w
as the minimal l such that w = t1t2 · · · tl for some t1, t2, . . . , tl ∈ T. Define the absolute order on
W by

u ≤T v if and only if lT(u) + lT(u−1v) = lT(v).

Fix a Coxeter element c ∈W. An m-delta sequence is a sequence δ = (δ0, δ1, . . . , δm) with δi ∈W
for all i ∈ {0, 1, . . . , m} such that c = δ0δ1 · · · δm and r = lT(c) = ∑m

i=0 lT(δi). Define a partial
order on k-delta sequences by

δ ≤ ε if and only if δi ≥T εi for all i ∈ {1, 2, . . . , m}.
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The set of m-delta sequences with this partial order is called the poset of m-divisible non-
crossing partitions NC

(m)
Φ [Arm09, Definition 3.3.1.]. It is a graded poset with rank function

rk(δ) = lT(δ0). We drop the choice of the Coxeter element c from the notation, since a different
choice of Coxeter element results in a different but isomorphic poset.

We define the M-triangle [Arm09, Definition 5.3.1] as

M(m)
Φ (x, y) = ∑

δ,ε∈NC(m)
Φ

µ(δ, ε)xrk(δ)yrk(ε),

where rk is the rank function of the graded poset NC(m)
Φ and µ is its Möbius function.

7.1.3 The m-cluster complex

Let Φ(m)
≥−1 be the set of m-coloured almost positive roots of Φ, containing one uncoloured copy of

each negative simple root and m copies of each positive root, each with a different colour from
the colour set {1, 2, . . . , m}. Then there exists a symmetric binary relation called compatibility
[FR05, Definition 3.1] on Φ(m)

≥−1. This has the following two important properties: firstly, all
uncoloured negative simple roots are pairwise compatible. Secondly, whenever α ∈ ∆ is
an uncoloured simple root and β(k) ∈ Φ+ is a positive root with colour k, then −α is com-
patible with β(k) if and only if α � β. Notice that the colour k of β(k) does not matter in this case.

Define a simplicial complex Assoc
(m)
Φ as the set of all subsets A ⊆ Φ(m)

≥−1 such that all m-
coloured almost positive roots in A are pairwise compatible. This is the m-cluster complex of Φ.
All of its facets have cardinality r.

We define the F-triangle [Arm09, Definition 5.3.1] as

F(m)
Φ (x, y) = ∑

A∈Assoc(m)
Φ

x|A∩Φ+ |y|A∩−∆|

Define f (m)
i,j (Φ) := [xiyj]F(m)

Φ (x, y) as the coefficient of xiyj in F(m)
Φ (x, y). Then f (m)

i,j (Φ) is

the number of faces of Assoc
(m)
Φ containing exactly i coloured positive roots and exactly j

uncoloured negative simple roots.

7.2 the h=f correspondence

Our main aim for this chapter is to prove the following theorem, known as the H = F
correspondence.

Theorem 7.2.1 ([Arm09, Conjecture 5.3.2]). If Φ is a crystallographic root system of rank r, then

H(m)
Φ (x, y) = (x− 1)rF(m)

Φ

(
1

x− 1
,

1 + (y− 1)x
x− 1

)
.

Our strategy is as follows. First we will show that the identity holds when specialised to
y = 1. Then we introduce a bijection that leads to a differential equation for the H-triangle.
The F-triangle is known to satisfy a similar differential equation, and putting all of these facts
together allows us to prove the H = F correspondence by induction on r.
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7.2.1 The h-vector of Assoc(m)
Φ

The h-vector
(

h(m)
0 (Φ), h(m)

1 (Φ), . . . , h(m)
r (Φ)

)
of Assoc(m)

Φ is defined by the relation

r

∑
i=0

h(m)
i (Φ)xr−i = ∑

i,j
f (m)
i,j (Φ)(x− 1)r−(i+j).

There is a uniform proof that h(m)
i (Φ) equals the number Nar(m)(W, r− i) of m-noncrossing

partitions of rank r− i for all i ∈ {0, 1, 2, . . . , r} [STW15, Corollary 5.43]. Thus Theorem 5.5.7
implies the following result relating the h-vector of Assoc(m)

Φ to the Fuß-Narayana numbers.

Theorem 7.2.2. For every irreducible crystallographic root system Φ of rank r and i ∈ {0, 1, . . . , r} we
have

h(m)
i (Φ) = Nar

(m)
Φ (r− i).

The following lemma is the specialisation of the H = F correspondence at y = 1.

Lemma 7.2.3. If Φ is a crystallographic root system of rank n, then

H(m)
Φ (x, 1) = (x− 1)rF(m)

Φ

(
1

x− 1
,

1
x− 1

)
.

Proof. Suppose first Φ is irreducible. Then we have

(x− 1)rF(m)
Φ

(
1

x− 1
,

1
x− 1

)
= ∑

i,j
fi,j(x− 1)r−(i+j) =

r

∑
i=0

h(m)
i (Φ)xr−i,

where
(

h(m)
0 (Φ), h(m)

1 (Φ), . . . , h(m)
r (Φ)

)
is the h-vector of Assoc(m)

Φ . So

[xi](x− 1)rF(m)
Φ

(
1

x− 1
,

1
x− 1

)
= h(m)

r−i (Φ) = Nar
(m)
Φ (i),

by Theorem 7.2.2. But
[xi]H(m)

Φ (x, 1) = Nar
(m)
Φ (i)

by Corollary 5.5.6, as required.

If Φ is reducible, say Φ = Φ1 ∪Φ2 with Φ1 ⊥ Φ2, then [Kra06a, Proposition F]

H(m)
Φ (x, y) = H(m)

Φ1
(x, y)H(m)

Φ2
(x, y) and F(m)

Φ (x, y) = F(m)
Φ1

(x, y)F(m)
Φ2

(x, y).

Thus the result follows from the irreducible case.

7.3 the bijection

Apart from its specialisation at y = 1 (Lemma 7.2.3), the other main ingredient in the proof of
the H = F correspondence is the following bijection. For I ⊂ ∆ define Φ(I) := Φ ∩RI. Then
Φ(I) is itself a crystallographic root system, and I is a set of simple roots for it.

Theorem 7.3.1. For every simple root α ∈ ∆, there exists a bijection

Dα : {J ∈ NN
(m)
Φ(∆) : α ∈ Jm} → NN

(m)
Φ(∆\{α}).

The rank k indecomposable elements of Dα(J ) are exactly the rank k indecomposable elements of J if
k < m. The rank m indecomposable elements of Dα(J ) are exactly the rank m indecomposable elements
of J except for α.

In order to prove this, we first need a basic lemma, implicit in [Ath05].
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Lemma 7.3.2. The rank k indecomposable elements of an m-generalised nonnesting partition J ∈
NN

(m)
Φ are minimal elements of Jk.

Proof. Let α ∈ Jk be an indecomposable element. Suppose for contradiction that α is not
minimal in Jk, say α > β ∈ Jk. Then α = β + ∑l

i=1 αi, where αi ∈ ∆ for all i ∈ [l]. So
∑l

i=1 αi ∈ Φ or β + ∑i 6=j αi ∈ Φ for some j ∈ [l], by [Ath05, Lemma 2.1 (i)]. In the first case,
α = β + ∑l

i=1 αi, with β ∈ Jk and ∑l
i=1 αi ∈ J0, so α is not indecomposable. In the second case,

α = β + ∑i 6=j αi + αj, with β + ∑i 6=j αi ∈ Jk and αj ∈ J0, so α is not indecomposable.

Proof of Theorem 7.3.1. Let J(α) be the order filter in the root poset generated by α, that is
J(α) = {β ∈ Φ+ : β ≥ α}. Define ∂α(Ji) = Ji\J(α) = Ji ∩Φ(∆\{α}), where Φ(∆\{α}) is the
root system with simple system ∆\{α}. Then let Dα(J ) = (∂α(J1), ∂α(J2), . . . , ∂α(Jm)).

A7
A2 × A4

α3

Dα3

Figure 7.3.1: The bijection Dα3 for the root system of type A7, applied to an order
filter J.

We claim that Dα(J ) is an m-nonnesting partition of Φ(∆\{α}) and thus Dα is well-defined.

In order to see this, first observe that every ∂α(Ji) is an order filter in the root poset of
Φ(∆\{α}), and the ∂α(Ji) form a (multi)chain under inclusion. For all i, j ∈ {0, 1, . . . , m}, we
have

(∂α(Ji) + ∂α(Jj)) ∩Φ+(∆\{α}) ⊆ (Ji + Jj) ∩Φ+(∆\{α}) ⊆ Ji+j ∩Φ+(∆\{α}) = ∂α(Ji+j).

For convenience, let us denote Φ(∆\{α})\∂α(Ji) by ∂α(Ii). Then ∂α(Ii) = Ii for all i ∈
{0, 1, . . . , m}, so (∂α(Ii) + ∂α(Ij)) ∩Φ+(∆\{α}) ⊆ ∂α(Ii+j) for all i, j with i + j ≤ m. So Dα(J )
is a geometric chain of order filters in the root poset of Φ(∆\{α}), and the claim follows.

Now define a map Uα from NN
(m)
Φ(∆\{α}) to {J ∈ NN

(m)
Φ(∆) : α ∈ Jm} by σα(Ji) = Ji ∪ J(α),

and Uα(J ) = (σα(J1), σα(J2), . . . , σα(Jm)).

We claim that Uα(J ) is an m-nonnesting partition of Φ(∆) and thus Uα is well-defined.

In order to see this, first observe that every σα(Ji) is an order filter in the root poset of
Φ(∆) and the σα(Ji) form a (mulit)chain under inclusion. For all i, j ∈ {0, 1, . . . , m},

(σα(Ji) + σα(Jj)) ∩Φ+(∆) = ((Ji ∪ J(α)) + (Jj ∪ J(α)) ∩Φ+(∆)

⊆ ((Ji + Jj) ∩Φ+(∆)) ∪ J(α) ⊆ Ji+j ∪ J(α) = σα(Ji+j).

For convenience, let us denote Φ(∆)\σα(Ji) by σα(Ii). Then σα(Ii) = Ii for all i ∈ {0, 1, . . . , m},
so

(σα(Ii) + σα(Ij)) ∩Φ+(∆) = (σα(Ii) + σα(Ij)) ∩Φ+(∆\{α}) ⊆ σα(Ii+j)

for all i, j with i + j ≤ m. So Uα(J ) is a geometric chain of order filters in the root poset of
Φ(∆), and the claim follows.
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Now Dα and Uα are inverse to each other, so Dα is a bijection, as required.

We claim that for β ∈ Φ+, β is a rank k indecomposable element of Dα(J ) if and only if
β is a rank k indecomposable element of J and β 6= α.

In order to see this, first notice that for β ∈ Φ(∆\{α}), kβ(Dα(J )) = kβ(J ). Now for
the “if” direction, suppose β 6= α is a rank k indecomposable element of J . The only element
in Jk\∂α(Jk) = J(α) that can be indecomposable of rank k in J is α, since all other elements
are not minimal in Jk, so not indecomposable by Lemma 7.3.2. So β ∈ ∂α(Jk). If β were not
indecomposable in Dα(J ), then either β = γ + δ for γ ∈ ∂α(Ji), δ ∈ ∂α(Jj), with i + j = k,
in contradiction to β being indecomposable in J , or there is a γ ∈ Φ(∆\{α})\∂α(Jt−k) with
β + γ ∈ ∂α(Jt) and kβ+γ(Dα(J )) = t, for some k ≤ t ≤ m, also in contradiction to β being
indecomposable in J . So β is rank k indecomposable in Dα(J ).

For the “only if” direction, suppose β is a rank k indecomposable element of Dα(J ), and
suppose for contradiction that β were not indecomposable in J . If β = γ + δ for γ ∈ Ji,
δ ∈ Jj, with i + j = k, then α � γ and α � δ, so γ ∈ ∂α(Ji) and δ ∈ ∂α(Jj), a contradiction to
β being indecomposable in Dα(J ). If β + γ ∈ Jt and kβ+γ(J ) = t for some k ≤ t ≤ m, and
γ ∈ Φ(∆\{α}), then γ ∈ ∂α(Jt−k) ⊆ Jt−k, as β is indecomposable in Dα(J ). If β + γ ∈ Jt for
some k ≤ t ≤ m and γ /∈ Φ(∆\{α}), then γ ∈ J(α), so γ ∈ Jm ⊆ Jt−k. So β is indecomposable
in J . This establishes the claim.

Thus Dα is a bijection having the desired properties.

7.4 proof of the h=f correspondence

To prove the H = F correspondence, we set up differential equations for the H-triangle and the
F-triangle. We use these together with Lemma 7.2.3 and induction on r to deduce the result.

Lemma 7.4.1 ([Kra06a, Proposition F (2)]). If Φ is a crystallographic root system, then

∂

∂y
F(m)

Φ(∆) = ∑
α∈∆

F(m)
Φ(∆\{α})(x, y).

Proof. As mentioned in [Kra06a], this can be proven in the same way as the m = 1 case, which
is due to Chapoton [Cha04, Proposition 3]. For completeness, as well as to highlight the analogy
to the proof of Lemma 7.4.2, we give the proof here.

We wish to show that
j f (m)

i,j (Φ) = ∑
α∈∆

f (m)
i,j−1(Φ(∆\{α}))

for all i, j, that is we seek a bijection

ϕ : {(A,−α) : A ∈ Assoc
(m)
Φ(∆) and − α ∈ A ∩ (−∆)} → qα∈∆Assoc

(m)
Φ(∆\{α}

such that ϕ(A,−α) contains the same number of coloured positive roots as A, but exactly one
less uncoloured negative simple root. For this it is sufficient to find for each α ∈ ∆ a bijection

ϕα : {A ∈ Assoc
(m)
Φ(∆) : −α ∈ A} → Assoc

(m)
Φ(∆\{α}

with the same property. By [FR05, Proposition 3.5], we may take

ϕα : A 7→ A\{−α}.

Lemma 7.4.2. If Φ is a crystallographic root system, then

∂

∂y
H(m)

Φ(∆)(x, y) = x ∑
α∈∆

H(m)
Φ(∆\{α})(x, y).
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Proof. Analogously to Lemma 7.4.1, we seek a bijection

D : {(J , α) : J ∈ NN
(m)
Φ(∆) and α ∈ ind(J ) ∩ ∆} → qα∈∆NN

(m)
Φ(∆\{α})

such that D(J , α) has exactly one less simple rank m indecomposable element and exactly
one less rank m indecomposable element than J . We note that any simple root α ∈ Jm ∩ ∆ is
automatically rank m indecomposable, so it is sufficient to find for each α ∈ ∆ a bijection

Dα : {J ∈ NN
(m)
Φ(∆) : −α ∈ Jm} → NN

(m)
Φ(∆\{α})

with the same property. Such a bijection is given in Theorem 7.3.1.

We are now in a position to prove the H = F correspondence.

Proof of Theorem 7.2.1. We proceed by induction on r. If r = 0, both sides are equal to 1, so the
result holds. If r > 0,

∂

∂y
H(m)

Φ(∆)(x, y) = x ∑
α∈S

H(m)
Φ(∆\{α})(x, y),

by Lemma 7.4.2. By induction hypothesis, this is further equal to

x ∑
α∈∆

(x− 1)r−1F(m)
Φ(∆\{α})

(
1

x− 1
,

1 + (y− 1)x
x− 1

)
,

which equals
∂

∂y
(x− 1)rF(m)

Φ(S)

(
1

x− 1
,

1 + (y− 1)x
x− 1

)
by Lemma 7.4.1. But

H(m)
Φ (x, 1) = (x− 1)rF(m)

Φ

(
1

x− 1
,

1
x− 1

)
by Lemma 7.2.3, so

H(m)
Φ (x, y) = (x− 1)rF(m)

Φ

(
1

x− 1
,

1 + (y− 1)x
x− 1

)
,

since the derivatives with respect to y as well as the specialisations at y = 1 of both sides
agree.

7.5 corollaries of the h=f correspondence

Specialising Theorem 7.2.1 to m = 1, we can now prove Chapoton’s original conjecture.

Corollary 7.5.1 ([Cha06, Conjecture 6.1]). If Φ is a crystallographic root system of rank r, then

H(1)
Φ (x, y) = (1− x)rF(1)

Φ

(
x

1− x
,

xy
1− x

)
.

Proof. We have

H(1)
Φ (x, y) = (x− 1)rF(1)

Φ

(
1

x− 1
,

1 + (y− 1)x
x− 1

)
. (7.5.1)

But we also have [Cha04, Proposition 5]

F(1)
Φ (x, y) = (−1)rF(1)

Φ (−1− x,−1− y). (7.5.2)

Substituting (7.5.2) into (7.5.1), we obtain

H(1)
Φ (x, y) = (1− x)rF(1)

Φ

(
x

1− x
,

xy
1− x

)
.
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Using the M = F (ex-)conjecture, we can also relate the H-triangle to the M-triangle.

Corollary 7.5.2 ([Arm09, Conjecture 5.3.2]). If Φ is a crystallographic root system of rank r, then

H(m)
Φ (x, y) = (1 + (y− 1)x)r M(m)

Φ

(
y

y− 1
,

(y− 1)x
1 + (y− 1)x

)
.

Proof. We have

H(m)
Φ (x, y) = (x− 1)rF(m)

Φ

(
1

x− 1
,

1 + (y− 1)x
x− 1

)
. (7.5.3)

But we also have [Kra06a, Conjecture FM] [Tza08, Theorem 1.2]

F(m)
Φ (x, y) = yr M(m)

Φ

(
1 + y
y− x

,
y− x

y

)
. (7.5.4)

Substituting (7.5.4) into (7.5.3), we obtain

H(m)
Φ (x, y) = (1 + (y− 1)x)r M(m)

Φ

(
y

y− 1
,

(y− 1)x
1 + (y− 1)x

)
.

The coefficients of F(m)
Φ (x, y) are known to be polynomials in m [Kra06a], so the coefficients

of H(m)
Φ (x, y) are also polynomials in m. Thus it makes sense to consider H(m)

Φ (x, y) even if
m is not a positive integer. We can use Corollary 7.5.2 to transfer a remarkable instance of
combinatorial reciprocity observed by Krattenthaler [Kra06b, Theorem 8] for the M-triangle to
the H-triangle.

Corollary 7.5.3. If Φ is a crystallographic root system of rank r, then

H(m)
Φ (x, y) = (−1)r H(−m)

Φ

(
1− x,

−xy
1− x

)
.

Proof. We have

H(m)
Φ (x, y) = (1 + (y− 1)x)r M(m)

Φ

(
y

y− 1
,

(y− 1)x
1 + (y− 1)x

)
. (7.5.5)

But we also have [Kra06b, Theorem 8] [Tza08, Theorem 1.2]

M(m)
Φ (x, y) = yr M(−m)

Φ

(
xy,

1
y

)
. (7.5.6)

Substituting (7.5.6) into (7.5.5), we obtain

H(m)
Φ (x, y) = ((y− 1)x)r M(−m)

Φ

(
xy

1 + (y− 1)x
,

1 + (y− 1)x
(y− 1)x

)
. (7.5.7)

Inverting (7.5.5), we get

M(m)
Φ (x, y) = (1− y)r H(m)

Φ

(
y(x− 1)

1− y
,

x
x− 1

)
. (7.5.8)

Substituting (7.5.8) into (7.5.7), we obtain

H(m)
Φ (x, y) = (−1)r H(−m)

Φ

(
1− x,

−xy
1− x

)
.

For m = 1, we can transfer a duality for the F-triangle to the H-triangle.
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Corollary 7.5.4.

H(1)
Φ (x, y) = xr H(1)

Φ

(
1
x

, 1 + (y− 1)x
)

.

Proof. Inverting Theorem 7.2.1, we get

F(1)
Φ (x, y) = xr H(1)

Φ

(
x + 1

x
,

y + 1
x + 1

)
. (7.5.9)

Thus

H(1)
Φ (x, y) = (1− x)rF(1)

Φ

(
x

1− x
,

xy
1− x

)
= xr H(1)

Φ

(
1
x

, 1 + (y− 1)x
)

,

using Corollary 7.5.1 and (7.5.9).

7.6 outlook

Chapoton has recently introduced an F-triangle and an H-triangle for quadrangulations and
serpent nests respectively [Cha15]. He conjectures that the same H = F correspondence holds
between these also [Cha15, Conjecture 4.5]. This very intriguing conjecture remains open.
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