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These are the notes for the lecture course with the same title which I gave in
the Summer-Semester 2003. It contains all the material I treated and offers also
some additional informations. I inserted lots of links to the www but, of course,
can not guarantee, that they will persist. I also included links to the original
documentation of Pov-Ray. They are denoted like [pov:1.1.1] . In some chapters
links are collected at the beginning, in others they are spread throughout the
text. I prepended them sometimes with ¥%’s in order to indicate their subjective
relevance for this lecture course.

I would be very happy to receive any feedback for these notes and I will try to
take it into account in the next version.

Remains to wish you all an inspiring reading,

Andreas Kriegl

Andreas Kriegl, Univ.Wien, July 23, 2003
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Chapter 1

Color

Links

%% % William Shoaff: Color, Illumination Models, and Shading
www.cs.fit.edu/. .. /index.html
www.cs.fit.edu/. .. /illuminate.pdf
keywords: lecture on light, illumination, shading

% % Heckbert-15462: light_2.pdf
almond.srv.cs.cmu.edu/. .. /light_2.pdf
keywords: slides on light, color, illumination

% Heckbert-15462: illum.pdf
almond.srv.cs.cmu.edu/. .. /illum.pdf
keywords: slides on light, color, reflection, shadows, texture

% Wikipedia: Color - Wikipedia
Colour.html
keywords: rainbow, color vision, primary colors, links!

% :Graphics
graphics.html
keywords: pictures!, cietoppm!, rainbow-prism, links

% % % Hyper Physics: CIE Color System
cie-1.html
keywords: CIE, Color regions, links; CIE diagrams
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Adobe: The CIE Color Models - Technical Guides

hyperphysics.phy-astr.gsu.edu/. .. /cie.html
keywords: CIE models, Observer, links!

Adobe: CIEXYZ - Color Models - Technical Guides

www.adobe.com/. .. /ciexyz.html
keywords: CIE xyz-model

Adobe: CIELUV - Color Models - Technical Guides
www.adobe.com/. .. /cieluv.html
keywords: CIE LUV model, color distances

Gordon W. Braudaway, Hon-Sum P. Wong: Color science
colorsci.html
keywords: CIE 1931, Grassmann’s law!

Hector Xiang: efg’s Chromaticity Diagrams Lab Report

Chromaticity.htm

keywords: CIE 1931, color matching functions, chromaticity diagrams and
coordinates

R.Nave, Hyper Physics: The 1976 Revision of the CIE Color System
hyperphysics.phy-astr.gsu.edu/. .. /cie1976.html
keywords: CIE 1976

Color and Vision Research Labs: CVRL Color & Vision database
CVRL Color & Vision database_files/index.html
keywords: links to data files, CIE

Color and Vision Research Labs: CVRL Color & Vision database
CVRL Color & Vision database.html
keywords: CIE in xyz-coordinates

:sbrgb2.txt
cvrl.ioo.ucl.ac.uk/. .. /sbrgb2.txt
keywords: data

:ssmb_1.txt
cvrl.ioo.ucl.ac.uk/. .. /ssmb_1.txt
keywords: data

:ciexyz31_1.txt
cvrl.ioo.ucl.ac.uk/. .. /ciexyz31_1.txt
keywords: data, CIE xyz-functions; table

Andreas Kriegl, Univ.Wien, July 23, 2003



*

*

*k

*

* K

* K

*

*

:ciexyz31.txt
cvrl.ioo.ucl.ac.uk/. .. /ciexyz31.txt
keywords: data, CIE xyz-functions; table

Wikipedia: Blackbody - Wikipedia
www.wikipedia.org/. .. /Black_body
keywords: Blackbody, Planck’s Law, links; Planck’s Law of Radiation

:Radiation Laws
csepl0.phys.utk.edu/. .. /radiation.html
keywords: Plank’s radiation law, jawa, links

:Color Indices and Surface Temperature
csepl0.phys.utk.edu/. .. /cindex.html
keywords: color temperature, links, astronomy

Adobe: Light and Color - Basic Color Theory for the Desktop - Technical
Guides

www.adobe.com/. .. /light.html

keywords: illuminants, color temperature, power distribution of light sour-
ces

Cybaea: Color Temperature and Color Correction in Photography
cybaea.com/. .. /color-correction.html
keywords: color temperature, photography, filters

M.Abramowitz, T.J.Fellers, M.W.Davidson: Molecular Expressions Micro-
scopy Primer: Light and Color - Color Temperature

micro.magnet.fsu.edu/. .. /colortemperatureintro.html

keywords: color temperature, java, links, photography, filters

Steve: Color Temperature and Visual Color Perception
colortemp.html
keywords: color temperature, astronomy

:plabpc.csustan.edu.html
plabpc.csustan.edu/. .. /index.html
keywords: color temperature, astronomy

All Griffin: SoundVisionBehindNumbers
SoundVisionBehindNumbers isf article.pdf
keywords: color temperature, CIE

Andreas Kriegl, Univ.Wien, July 23, 2003



1.1. ACHROMATIC LIGHT 4

%% Tom Flynn: The Color of ”White”; Beyond Belief (Skeptical Briefs Septem-
ber 1994)
www.csicop.org/. ../ t+beyond+belief
keywords: color temperature, visual processing

% Mike Rollins: The Color Temperature of Light
ColorTemp.htm
keywords: color temperature, monitors

%% Alex Byne, David Hilbet: Glossary of Color Science
tigger.uic.edu/. .. /Glossary.html
keywords: glossary on color

Color is treated in many subjects: physics, physiology, psychology, art, graphic
design and astronomy, The colors we see depend at least on the light source, the
objects we view, their surroundings, the human visual system. To make things a
little simpler in the beginning we start with achromatic light.

1.1 Achromatic Light

This is colorless light described by the notions black—gray—white. Its main quality
is INTENSITY or LUMINANCE, which is the quantity of light in the physics sense
of energy. In contrast BRIGHTNESS is the perceived intensity in the psychological
sense.

1.1.1 Gamma Correction

What is the relationship between intensity and brightness? Let us scale brightness
and intensity in such a way that 1.0 is assigned to the maximal value. For a
monitor it is clear what is meant by maximal value; on the other hand there is
a minimal intensity we denote I;. Note that I, > 0, i.e. absolute black is not
possible, since the phosphors in the CRT (Cathode Ray Tube) reflect light. The
proportion 1/ is called the DYNAMICAL RANGE of the monitor and is for CRTs
usually typically 50 and 200.

Since on the computer we can only code a finite number of levels inbetween I
and 1, we have to decide for which intensity levels they should stand for. Linear
spacing like

10,10+A,10+2A,...,10+7’LA =1.0

Andreas Kriegl, Univ.Wien, July 23, 2003



1.1. ACHROMATIC LIGHT 3

for some increment A > 0 is not a good idea, since the eye is sensitive to ratios
of intensity levels rather than absolute values of intensity. Thus we should space
intensity levels logarithmically, i.e.

]0,7’]0,7‘2]0,...,7“”]0: 1.0

for some factor r > 1. For a dynamical range of say 100 = 1/, and n = 256
steps (as they can be coded by one byte in the range 0...FF) we obtain the factor
r = {/1/Iy =~ 1.01815 corresponding to a 1.8% intensity increase for each step.
The approximate intensity increase the human eye can detect is about 1.0%, i.e.
r =1.01. So we need n > log,(1/Iy) ~ 463 many steps to display a continuous scale
from Iy to 1.0 on a display with a dynamical range of 1/l = 100. Consequently,
coding gray values using one byte(=8 bits) per pixel is not enough to ensure a
continuous gray scale. In practice for B&W printing slight blurring due to ink
bleeding and random noise reduces the number of distinguishable intensities to
approximately 64.

Display media Dynamic range Intensity levels

1/Lg | n=log; ¢,(1/Lo)
CRT 50-200 393-532
Photographic prints 100 463
Photographic slides 1000 694

128 steps

True color

True color & 256 colors

Andreas Kriegl, Univ.Wien, July 23, 2003



1.1. ACHROMATIC LIGHT 6

128 & 64 colors

32 & 16 colors

8 & 4 colors

How can these logarithmically spaced intensity levels be displayed? According to
the formulas above the i-th level should have intensity

Ii = T‘i Io.

The intensity I of a CRT is proportional to N?, where N is the number of electrons
and 7y is some constant depending on the phosphors used in the CRT and is usually

Andreas Kriegl, Univ.Wien, July 23, 2003



1.1. ACHROMATIC LIGHT 7

in the range 2.2 <~ < 2.5. Since the number of electrons emitted is approximately
proportional to the applied control-grid voltage V' we have

I = K V7 for some constant K.

So suppose the intensity we want to display is I. The corresponding index 7 has
to be chosen such that I;/I is as close to 1 as possible, i.e. i = round(log,(I/I))).
The corresponding V' is thus V; = {/I;/K. If this conversion is not hardcoded
into the display, the software has to take account on this. This is called GAMMA-
CORRECTION. Without gamma-correction quantization errors (produced by ap-
proximating true intensity levels by discrete displayable ones) are more conspicuous
near black than near white.

1.1.2 Halftone Approximation

If we cannot display all the required intensity levels (e.g. on a printer) we need a
trick using the spatial integration that our eyes performs: In normal light the eye
can only detect about one arc minute (1/60 degree). This is called VISUAL ACUITY.
Thus instead of gray dots a small black disk with radius varying according to the
blackness 1—1 is printed. Usually, for newspaper 60-80 and for magazines 150-200
different radiuses are used. This process is called HALFTONING.

Andreas Kriegl, Univ.Wien, July 23, 2003



1.1. ACHROMATIC LIGHT 8

Halftoning

For computers this is implemented as CLUSTERED-DOT ORDERED DITHERING, e.g.
the following patterns are used for each pixel of intensity 0...9:

. o

0 1 2 3 4
@ [0 00 o6 o0
@ o0 o0 o0e o000

Clustered-dot ordered dithering

Andreas Kriegl, Univ.Wien, July 23, 2003



1.1. ACHROMATIC LIGHT 9
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Clustered-dot ordered dithering

This can be described by a dither matrix

6
1
)

N O 0o
-3 W

saying that in order to display intensity I one should turn on all those pixels whose
value in this matrix is less than I. It is chosen in such a way, that visual artifacts
are avoided:

e Growth sequence to minimize contour effects, i.e. the pattern are subsets of
each other (hence the name ordered). They start in the center and expand
towards the boundary.

e Keep the one’s adjacent to each other (hence the name clustered dot), but
this is not necessary for monitors.

For high-quality reproduction we need an 8 x 8 (64 gray levels) or even a 10 x 10
matrix and thus quite a hight resolution.

Andreas Kriegl, Univ.Wien, July 23, 2003



1.1. ACHROMATIC LIGHT 10

If such a high resolution is not available one can use ERROR DIFFUSION: There we
use fewer intensity levels than desired, but we distribute the errors I — I; to the
neighboring pixels with the following weights:

o—~7/16

N

3/16 5/16 1/16

8 colors with Floyd-Steinberg error diffusion

A similar trick can be used for enlarging a picture by taking interpolation values to
neighboring pixels as intermediate values. E.g. for doubling the size of the picture
one inserts new rows and columns and takes as new values

1
Ly o5 = Iij L1905 = 5 (Lij + Liv1)
2

1 1
Ligjgr = §(I2z‘,j +Dyijr1)  Iyipr0541 = Z(Ii,j + Lijjoa + Livrj + Liv1 1)

This way one avoids that small square-size pixels can be seen. Disadvantage is
that some blurring occurs.

Andreas Kriegl, Univ.Wien, July 23, 2003



1.2.  CHROMATIC LIGHT 11

Enlarged versus enlarged with diffusion

1.2 Chromatic Light

How to describe color? — We have several possibilities:

1. Make a table of colors, e.g. Munsell color-order system.

TE e AR

PANTONE®  PAN
- -

ONE®  PANIONE®  PANTONE®  PANTONE®  PANTONE® .. P—

. L e e e

A commercial color table

2. Assign names to colors, e.g. Light-Goldenrot-Yellow, Medium-Spring-Green,
etc.

3. Produce colors by some process: Artists speak about the following variations
of pure pigments:

e TINTS (means adding white),

Andreas Kriegl, Univ.Wien, July 23, 2003



1.2.  CHROMATIC LIGHT 12

e SHADES (means adding black),

e and TONES (means adding a combination of both).

White Tints Pure Color
Grays

Shades
Black

The artists description of colors

Consequently colored light has following quantities associated:

e HUE (corresponding to pure pigment)
e SATURATION (i.e. distance from gray of equal intensity)

e LIGHTNESS (i.e. perceived intensity of a reflecting object)
or BRIGHTNESS (i.e. perceived intensity of light emitting object).

1.2.1 Psychophysics

Colorimetry:

Light is ELECTROMAGNETIC ENERGY in the 400 nm to 700 nm wavelength, where
one nm (nanometer) is 1/10 °mm. Pure or MONOCHROMATIC LIGHT is perceived
as one color in the range violet—indigo—blue—green—yellow—orange-red of the rain-
bow.

The amount of energy present at each wavelength is represented by the SPECTRAL-
ENERGY-DISTRIBUTION of the light. For example, the spectral-energy-distribu-
tions of sunlight (what we call white light) is:

Andreas Kriegl, Univ.Wien, July 23, 2003



1.2.  CHROMATIC LIGHT 13

120 T T T L T
‘llluminantd65.txt’ using 1.2 ———

100 | / e

S |
| \ A |
ol | \\/w

I

0 1 1 1 1 1
300 400 500 600 700 800 900

Energy distribution of day light
Many different distributions produce the same color impression (and are called

METAMERS). Thus one can quantify light by:

e DOMINANT WAVELENGTH (color we see), which corresponds to hue,

e EXCITATION PURITY (proportion of pure light of dominant wavelength to
white light), which corresponds to saturation, and

e LUMINANCE which corresponds to intensity.

Note however, that the dominant wavelength is not necessarily that with largest
spectral component.

How is color determined by the human eye? The retina seems to have 3 kind of
color sensors (called CONES) with approximative peak sensitivity at red, green and
blue. This is the TRI-STIMULUS THEORY of color perception.

Andreas Kriegl, Univ.Wien, July 23, 2003



1.2.  CHROMATIC LIGHT 14

The cones and rods in the human retina
From:www.cs.fit.edu/. .. /index.html

The spectral response function R, G and B of this cones to monochromatic light
is following:

02 ' j ! T . T T . T T
‘ linss2_10e_1.txt' using 1:(0.19*$2) ———
" using 1:(0.20*$3) -------

0.18 " using 1:(0.018*$4) -------- 4

0.16 |
0.14

0.12

0.08 -
0.06 -
0.04

0.02

350 400 450 500 550 600 650 700 750 800 850
Spectral responses of the cones to monochromatic light at given wavelength

Response to blue light is less strong. Note that the sensitivity peaks of R and G
are in the yellow range.

LUMINOUS-EFFICIENCY function (the eye’s response to light of constant luminance
at given wavelength) corresponds to the sum of the curves above (compare this
with the energy distribution of sunlight):

Andreas Kriegl, Univ.Wien, July 23, 2003



1.2.  CHROMATIC LIGHT 15

1
' ' ' 7N ' ' 'vIl‘924e_1.txtY' using 1:2‘ E—

09 - / ]

08 1

0.6 “w‘“‘ \ 4

05 | “““ \ b

03 / \ g

02} \ ]
/ \
/ \
0 L i ~ 1 1 1 1 1 T 1 1 J

350 400 450 500 550 600 650 700 750 800 850
Luminous efficiency function

So the idea is, that every by the human eye distinguishable color can be produced
by a additive mixture of red, green and blue. And this is the principle of color
CRTs. The amount of R-G-B needed to match in the observers eye a monochro-
matic color of constant luminance has been experimentally determined as:

'Sbrgi)z.txt' using 1;2 I
/ \ ’sbrgb2.txt using 1:4 -------
25 “/ \ |

15 F / \ i
\

J /
05 / \ i

.05 ! ! ! ! ! ! !
350 400 450 500 550 600 650 700 750

Color mixing functions

Note, that negative values of red are necessary in the range from 450nm to 525nm
(which means that this amount of red has to be added to the given color in order
that this new color can be matched by the described values of G and B). A

Andreas Kriegl, Univ.Wien, July 23, 2003



1.2.  CHROMATIC LIGHT 16

consequence is, that certain colors CAN NOT be produced on a CRT by R-G-B-
mixes.

The human eye can distinguish hundreds of thousands of colors when shown side
by side, see:
&
16—
14—
12}-
10~
B -

AA (nm)

6
4
2

| | | . Ly a2
400 500 600 700

Wavelength, A (nm)
Just-noticeable color differences as a function of the wave-length

This sensitivity to color differences is dependent on the wave length. Approxi-
mately 128 fully saturated hues can be distinguished. The eye is less sensitive
to hue-changes in less saturated light. Its sensitivity to changes in saturation is
greater at the extreme end of spectrum (where there are approximately 23 steps).
In contrast, at 575nm only 16 saturations steps can be distinguished.

1.2.2 The CIE Chromaticity Diagram

The negative values in the representation of color by R-G-B-values is unpleasant.
Thus the Commission Internationale de ’Eclairage (CIE) defined in 1931 another
base in terms of (virtual) primaries X, (the luminous-efficiency function) Y and
Z, which allows to match all visible colors as linear combinations with positive
coefficients only (the so called CHROMATICITY VALUES XY, 7), i.e. any visible
color C can be expressed as C = XX +YY + ZZ, see

Andreas Kriegl, Univ.Wien, July 23, 2003
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18 T = T . : . _ — .
S ‘ciexyz31_1.txt' using 1:2 ——
‘ciexyz31_1.txt' using 1:3 -------

16 L ciexyz31_1.txt’ using 1:4 -------- i

14 - : : e

12 .

0.8 -
0.6 -
04 -

0.2

oy ! T

350 400 450 500 550 600 650 700 750 800 850

CIE 1931 primaries

Normalization to X +Y + Z = 1 gives new coordinates z, y (and z =1 — x — y),
which are independent on luminous energy X +Y + 2. The visible chromatic values
in this coordinate system form a horseshoe shaped region, with the spectrally pure
colors on the curved boundary. Warning: brown is orange-red at very low lumi-
nance (hence is not shown in this diagram). Standard white light (approximative
sunlight) is located at point C' near x =y = z = 1/3.

DY RGNS On
AE Crromasoty Dagram

3 03 04
X

CIE 1931 Chromaticity Diagram
From:cie-1.html
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1.2.  CHROMATIC LIGHT 18

0l

YL

: ¥ Y Y3 (¥
Horseshoe of visible colors
From:www.adobe.com/. .. /ciexyz.html

The DOMINANT WAVELENGTH of some color is given by the intersection of the ray
from C to the color with the curved boundary formed by the pure colors.

Some colors (purples and magentas) are non-spectral, i.e. have no dominant wave-
length (since the intersection of the rays hit the boundary in the flat part). But
they have have a COMPLEMENTARY DOMINANT WAVELENGTH, lying on the op-
posite side.

COLOR COMPLEMENTARY to some color are opposite to C' on the line through C.
E.g. we have the following complementary pairs: red-cyan, green-magenta, and
blue—yellow.

EXCITATION PURITY is a ratio of the distances from the color and the dominant
wavelength to C.

Andreas Kriegl, Univ.Wien, July 23, 2003



1.2.  CHROMATIC LIGHT 19

700

| L

? > X
01 02 03 04 05 06 07

Fig. 13.25 Colors on the chromaticity diagram. The dominant wavelength of color A is
that of color B. Colors D and E are complementary colors. The dominant wavelength of
color Fis defined as the complement of the dominant wavelength of color A.

Dominant wavelength and complementary colors

The CIE chromaticity diagram can also be used to visualize the COLOR GAMUTS
(i.e. the ranges of producible colors) for various output devices:

CIE Chromaticity
Diagram This figure includes
530 all the colors perceivable

by the normal human
550 eye.

580

St Purplas

Color gamut
From:cie-1.html
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¥ System: EBU  (PAL/SECAM) ¥ System: NTSC
Primary illuminants (X, Primary illuminants (X, Y)
0.9 Red: 0.6400, 0.3300 0.9 Red: 0.6700, 0.3300
Green: 0.2900, 0.6000 Green: 0.2100, 0.7100
Blue: 0.1500, 0.0600 Blue: 0.1400, 0.0800
0.8 s White point (X, Y): 0.3127, 0.3291 0.8 White point (X, Y): 0.3101, 0.3162
B 50 ) y
‘ 545 ‘
0.7 0.7
0.8 0.6
O.é O.’5
0.4F 0.4F
0.3 po 0.3 pac
0.2 0.2
0.1 0.1
0.1 0.2 0.3 0.4 05 0.6 Q.7 0.8 0.9 x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x
Y System: HDTV

Primary illuminants (X, Y

Red: 0.6700, 0.3300
Green: 0.2100, 0.7100
Blue: 0.1500, 0.0600

White point (X, Y): 0.3127, 0.3291

0.2

Color gamuts for PAL, NTSC and HDTV and their chromaticity values

g3 O

0.5

g6 OF o8 09 X

The chromaticity values for standard NTSC RGB phosphor are:

R G B

X

y

0.67 0.21 0.14
0.33 0.71 0.08

The color-printer gamut is rather small in comparison to the color-monitor gamut.
Thus we can print much fewer colors that we can display on the screen.

A disadvantage of the CIE 1931 standard is that equal distances in the X — Y
coordinates are not perceived as being equal. This was corrected by 1976 CIE

LUV standard.
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Y System: EBU (PAL/SECAM) L System: EBU (PAL/SECAM)
Primary illuminants (X, Y Primary illuminants (X, Y
0.9 Red: 0.6400, 0.3300 0.9 Red: 0.6400, 0.3300
5 Green: 0.2900, 0.6000 Green: 0.2900, 0.6000
1 Blue: 0.1500, 0.0600 Blue: 0.1500, 0.0600
0.8 s White point (X, Y): 0.3127, 0.3291 0.8 White point (X, Y): 0.3127, 0.3291
540

545

0.7

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1 02 U O OF 06 UF O &% » 0.1 g2 0% OF 0 06 OF o8 U o

Chromaticity diagrams of 1931 and of 1976

V ; CIE 1960 Chromaticity Diagram Qd 53;0 640 550 s CIE 1976 Chromaticity Diagram

AR

.

810
B0 eay -

1931 2-degree Observer

ofg's Computer Lad
4% wvav.alg2 comilab ||
20 4 L

1931 2-degree-Cbserver

ofg's Compuler Lad
e afg2 comvisd |

Chromaticity diagrams of 1960 and 1976
From:Chromaticity.htm
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0.9

0.8

0.7

0.6

05

0.4

03 4

0.2 4

01 4

0.6

0.5

04

0.2

0.1

1.3

0.3 A

08 t X 62 63 e 65

Equally perceived color distances and chromaticity diagram of 1960
From:www.adobe.com/. .. /cieluv.html

]

03 04 0.5 0.6 0.7 ¢ X (H] [ o is

u

0.1 0.2

Equally perceived color distances and chromaticity diagram of 1976
From:www.adobe.com/. .. /cieluv.html

Color Temperature

radiation.html

In physics PLANCK’S LAW describes the electromagnetic radiation emitted from a
so called BLACK BODY RADIATOR at a given temperature. A blackbody radiator is
assumed to have very weak interaction with the surrounding environment and to be
in a state of equilibrium. Stars are sufficiently good approximations of blackbody
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1.3. COLOR TEMPERATURE 23

radiators.
2hc? 1
ENT)= — —
( ) A5 e)ﬁfT -1

h :=6.625 x 10" erg-sec ...Planck constant
k:=1.38 x 107'% erg/K ... Boltzmann constant
C := 3 x 10"%cm/sec. .. speed of light
E .. emitted energy by unit surface area into a fixed direction
A...wavelength, T ...temperature in Kelvin.

30 Hisckhndy A

Fafalbas

[ &

20
L
>
&
£
: 1.25 Spica T
= 10 "{: B (23,000 K)
=
E 0TSk
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Surface temperatures of some stars, see plabpc.csustan.edu.html
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Classification Surface Color Familiar
Temperature Examples
O 30,000°K | electric blue
B 20,000°K blue Rigel
A 10,000°K white Vega, Sirius
F 7,000°K | yellow-white | Canopus
G 6,000°K yellow Sun, Alpha Centauri
K 4,000°K orange Arcturus, Aldebaran
M 3,000°K red Betelgeuse, Barnard’s Star
¥
0.9

470
450
.
0.1

02 0.3 04 05 06 07 08 09 x
Positions of colors from black body radiator at different temperature

Note that many colors (like green and violet) are not lying on this curve, thus
have no associated color temperature. Color temperature plays also an important
role in photography. Lower temperature means redder; higher temperature means
bluer. Household incandescent lighting has a relatively low color temperature-
about 3,000° K. Open flames-candles, campfires-are still lower. By contrast, direct
sunlight has a color temperature of about 5,400° K. Photographic film can not
compensate for the color of ambient light like our visual system does. Usual
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daylight film reproduces color most accurately at 5,400° K. If it is used inside
(without flashlight) the taken pictures will look orange.

1.4 Color models for computer graphics

A COLOR MODEL is a specification of a color coordinate system and the subset
of visible colors in this coordinate system. Conversion formulas between the color
models have to be given.

1.4.1 The RGB Color Model

The red-green-blue model is formed by a color cube {(R,G,B) : 0 < R,G,B < 1}.

Green Cyan

White

Yellow

BI
Black e

Red Magenta

The RGB-cube

Conversion from (R, G, B) to (X,Y, Z) is given via the chromaticities (X, Y;, Z,),
(X,,Y,, Z,y) and (X, Ys, Zp) of the CRTs phosphors by matrix multiplication via:

X Xr X, X)\ (R
Y|=|vr v, | |G
Z Zr Z, Z,)] \B

Let C, = X, +Y,+Z,.. Then X, = 2,-C,, Y, =vy,-C, and Z, = z, - C, =
(1_-Tr_yr)'cr-

This can be calculated from X = %Y, Y=Y 7= 1‘;—_5"1’.
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1.4.2 The CMY Color Model

This stands for cyan-magenta-yellow and is used for hardcopy devices. In contrast
to color on the monitor, the color in printing acts subtractive and not additive.
A printed color that looks red absorbs the other two components G and B and
reflects R. Thus its (internal) color is G+B=CYAN. Similarly R+B=MAGENTA
and R+G=YELLOW. Thus the C-M-Y coordinates are just the complements of
the R-G-B coordinates:

C 1 R
Ml=11]-1G
Y 1 B

If we want to print a red looking color (i.e. with R-G-B coordinates (1,0,0)) we
have to use C-M-Y values of (0,1,1). Note that M absorbs G, similarly Y absorbs
B and hence M + Y absorbs all but R.

Black ((R,G, B) = (0,0,0)) corresponds to (C, M,Y) = (1,1,1) which should in
principle absorb R, G and B. But in practice this will appear as some dark gray.
So in order to be able to produce better contrast printers often use black as 4%
color. This is the CMYK-model. Its coordinates are obtained from that of the
CMY-model by K := max(C,M,Y),C:=C—-K, M:=M—-K andY =Y — K.

1.4.3 The YIQ Color Model

This is used for color TV. Here Y is the luminance (the only component necessary
for B&W-TV). The conversion from RGB to YIQ is given by

Y 0.30 0.59 0.11 R
I1=1060 028 —-032)-|G
Q 0.21 —-0.52 0.31 B

for standard NTSC RGB phosphor with chromaticity values
R G B

x | 0.67 0.21 0.14
y | 033 0.71 0.08

The advantage of this model is that more bandwidth can be assigned to the Y-
component (luminance) to which the human eye is more sensible than to color
information. So for NTSC TV there are 4 MHz assigned to Y, 1.5 MHz to I and
0.6 MHz to Q.
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1.4.4 The HSV color model

All color models treated so far are hardware oriented. The Hue-Saturation-Value
model is oriented towards the user/artist. The allowed coordinates fill a six sided
pyramid the 3 top faces of the color cube as base. Note that at the same height
colors of different perceived brightness are positioned. Value is given by the height,
saturation is coded in the distance from the axes and hue by the position on the
boundary.

Magenta

The HSV-model versus the RGB-model

Note that conversion from RGB to HSV is given by affine coordinate changes on
each of the 3 four-sided sub-pyramids corresponding each to 1/3 of the color cube.

1.4.5 The HLS Color Model

Here the RGB-cube is deformed in such a way that a six sided double pyramid
results with the same base as in the HSV-model, but with two tips at black and
at white.
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White
Yellow
Black
The HLS-model
1.4.6 Interactive Specification of Color
Color selectors for GUIs can be represented in various ways, e.g.:
== Select Color - KColorChooser -« Color Selection ]@lgj
| pr——— - GMP | watercator | 6Tk | Tiangte |
LightGaldenrodyell ow = _-
LightGray AH :—r_‘é
LightGreen
LrgntGrey 8 :—[—5
T O i
oA l:r—l_A
& m G: m [ Mame: aguamarine B :’—r_‘-\
vss § e[az § HTML: [#7FFFD4 Hex Tripiet [#000000

kcolor

| Revertto OId Color |
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w44 Color Selection DI «/-H Color Selection |l

| | Gime | watercolor GTK |1nange | G | watercator | a7k Tenge

e T [100
Sahration T 000
vawe T [oo0
Red T oo
Green T [000
Bue T [ooo

Close | Reverto Ol Color | Close | Revertto 01 Color |

GTK gimp-triangle

1.4.7 Interpolating in Color Space

If we interpolate between two colors C; and C5 then the result depends on the
color model. Only where the conversion formulas are linear it does not matter
which of the two models we use.

1.4.8 Using Color in Computer Graphics
There could be given many advices concerning the use of color in graphics design.
E.g. using color for text web-pages should not be done to extensively. Since here

we are mainly concerned with photo realistic images, this is not so much a topic
here.
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Rastering

Literature

e Aliasing, Drawing Lines and Circles:
[FvDFHO0, 3.2], [PK87, 3], hugo elias: line drawing, hugo elias: scan converting

e Anti-aliasing:
[FYyDFHO90, 3.17]

e Clipping:
[FvDFHO90, 3.11], [PK87, 5], ucdavis: clipping

2.1 Scan Converting Points

Cf. [PK87, 3.2].

On the screen we only have pixels with integer coordinates (in some range) only.
So in order to display points with real coordinates, we have to round or truncate
them. This is called rastering (dt: Rasterkonvertierung).

2.2 Scan Converting Lines

Cf. [FvDFH90, 3.2], [PK87, 3.3], and almond.srv.cs.cmu.edu/. .. /scanconv_2.pdf.

A line from point (zo, yo) to point (z1,y;) is mathematically given in explicit form
by

Y1 — Yo
T1 — Zo

y = kx + d, where the slope is k := and d := yo — k xp.

30
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When we draw the line on the screen, we have to pick points with integer co-
ordinates as close as possible to the line. If the slope satisfies —1 < k < 1,
then we should pick in any column with given integer value xz one point as close
as possible to the corresponding point on the line. Its y-coordinate is given by
g = ROUND(k z + d). If the slope satisfies |k| > 1 we may exchange x and y, in
order to reduce the problem to the particular case. This method by brute force is
inefficient because of the multiplication and the function ROUND.

2.2.1 Basic Incremental Algorithm

Cf. [FvDFH90, 3.2.1].

A better way to do this is recursively: The points on the line y = kxz 4 d for
T; = Ty + 1 are given inductively by

Yiy1 == Y + k.

o o o o
Basic incremental algorithm for scan converting lines

This way we get rid of the multiplication, but we still have to apply ROUND.
Note however, that successive addition of a real number can lead to a cumulative
error buildup. Here, this can usually be ignored.

2.2.2 Midpoint Line Algorithm

Cf. [FvDFHY0, 3.2.2]
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The midpoint line algorithm is due to Bresenham [Bre65] and was modified by
Pitteway [Pit67] and Van Aken [VA84]. It works as follows: Let the slope of
the line be 0 < k£ < 1. Suppose one approximate point P = (z,7) is already
determined. We have only two choices for the next point, namely F := (z + 1, 7)
and NE := (z+1,y+1) and we should choose the one which is closer to k(z+1)+d.
To determine the appropriate choice we proceed as follows:

e calculate the middle point M = (z + 1,7 + 3).

e If the intersection point () of the line with the vertical line connecting F and
NE is below M, take E as next pixel.

e Otherwise take NE as next pixel.

Oth 1st Qnd

Midpoint line algorithm
In oder to check this condition we consider the implicit equation
flx,y)=ax+by+c:=(y1 —yo)x — (1 — o) y + (1 Yo — ¥1 To)

where we may assume that a > 0. Note that f(z,y) = 0 if and only if (z,y) lies
on the line. And f(z,y) > 0 if and only if (z,y) lies below the line. So in the first
step we have to test

f(x-f—l,ﬂ-l—%) =a(z+1)+b <g+%>+c

1 b
=(ax+by+c)+ (a+b§) :f(x,:zj)+a+§.
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In case we choose E we have to test for the next (2"¢) column

1 1
f(x—|—2,y—|—§> =f<:v+1,37+§) +a.

In case we choose NE we have to test

1 1
f(x+2,g+1+§> =f(x+1,gj+§>+a+b.

Thus the test for the next column can be easily obtained from that for the previous
one by adding a or a + b accordingly.
Lines with other slopes can be obtained by mirroring.

Some issues concerning this algorithm have to be taken into account, cf. [FvDFH90,
3.2.3]:

e Endpoint order: This procedure is not independent from which side of the
line we are starting from (in case the line hits some middle point). It is not a
good idea to sort the endpoints first in case of line-styles like dashing, since
a polygon should be drawn in succession.

E.g., the following line from (0, 0) to (4, 3):

O O O O

from left

O O
O o O
from right

O O O

Dependency on order of endpoints

e Starting at the clipping edge:

Do not clip (see (2.5) below) and then scan-convert if line hits the left bound-
ary of the clipping rectangle.
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Clipping at left boundary

In case of a horizontal boundary we may miss some points at the beginning.
In oder to avoid this we should start at the intersection point with the line
Y = Ymin — % below the horizontal lower boundary ¥ = Ymin

O

Clipping at the lower boundary

e Varying Intensity:

The number of pixel per length depends on the slope. It will be 1 for hori-
zontal lines and 1/+/2 for slope 1.

Andreas Kriegl, Univ.Wien, July 23, 2003



2.3. SCAN CONVERTING CIRCLES 35

Dependency of intensity on slope of line

So one could modify the intensity of pixels drawn. Another (and even better
method) is anti-aliasing as discussed below.

2.3 Scan Converting Circles

Cf. [FvDFH90, 3.3] and [PK87, 3.4]
A circle (through 0) with radius R is given by the explicit equation y = +v/R? — 22
or implicitly by 0 = F(x,y) := 2?4+ y*— R?. The straight forward method of draw-

ing a circle by approximating the values ++/R? — 72 is ineffective (since it involves:
squaring, taking roots and ROUND) and it gives an asymmetric distribution.

Straight forward scan converting a circle
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We can make use of the 8-fold symmetry, so we only have to draw 1/8 of the circle
say from S to SE.

8-fold symmetry of the circle

2.3.1 Midpoint Circle Algorithm

Cf. [FvDFH90, 3.3.2].

®erP OE

Midpoint circle algorithm

The midpoint circle algorithm of Bresenham [Bre77] and [BGP83] is analogously
to that of straight lines and goes as follows:

1 1\? 5
F(x+1,y+§> = (z+1)"+ (y+§> — R =F(z,9)+ 20+ 9+
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and in the next step:

1 1
E: F<x+2,gj+§) F<x+1,y+§> +2z+3

3 1
NE: F <x+2,g+§> =F (:L'-i—l,ﬂ-f— 5) +2x+2y+5
One can speed up things be calculating the linear increments recursively.

2.4 Scan Converting Ellipses

Cf. [FvDFHY0, 3.4] [PK87, 3.5]

Ellipses no longer have an 8-fold symmetry. So we have to determine the point
where the slope is 1. Differentiating the implicit equation 0 = F(z,y) = b?z% +
a’y? — a®b? gives

0= Fp(z,y) + Fy(z,9)y = 20"z + 2a° y v/,

so we have y' = 1 when a? y+b% z = 0 and inserting this into the implicit equation

: 272,.2 4,2 412 _ : _ a?
gives a“b“r” + b* x* — a*b =0,1e 2 =%5"5.

2.5 Clipping Lines

Cf. [FvDFH90, 3.12] and [PK87, 5.3].

Often clipping beforehand is not advisable, in particular, if the primitive extends
beyond the clipping region only a little. In this case one should determine all the
approximation points, but draw only those inside the clipping region.

2.5.1 Brute Force

cf. [FYDFH90, 3.12.2]

To clip a point (x,y) against a rectangle [ZTmin, Tmax] X [Umin, Ymax] Means to draw
the point exactly if the following condition is satisfied:

(xmin S x S xmax) and (ymin S Yy S ymax)-

Clipping a line against a rectangle can lead to one of the following cases:
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e Both endpoints lie inside. Hence the whole segment is inside and is to be

drawn completely.

e Exactly one endpoint lies inside. Hence the line hits boundary exactly once
and we have to determine the corresponding intersection point and clip the

line there.

e Both endpoints lie outside. Then it is not clear whether the line hits the
rectangle or not. So we intersect this line with each of the 4 sides (i.e.
the infinite lines) and check whether some intersection points lies on the

boundary of the rectangle. This is best done in parametric form

x =z + t(x1 — x0)

But this is still an inefficient method.

2.5.2 Cohen-Sutherland Line-Clipping Algorithm

Cf. [FvDFH90, 3.12.3].

Y = 1o +t(y1 — Yo).

First we test whether both endpoints are inside (and hence draw the line segment)
or whether both are left of x = z,;,, right of x = T.x, below ¥ = Yy, or above
Y = Ymax (then we ignore line segment). Otherwise we split the line segment
into two pieces at a clipping edge (and thus reject one part). Now we proceed

iteratively.

A rather simple accept-reject test is the following:

Divide the plane into 9 regions and assign a 4 bit code to each:

1000 ...above top edge ¥ > Ymax

0100 ...below bottom edge ¥ < Ymin

0010 ...right of right edge x > Ty

0001 ...left of left edge z < iy

mathcalculate the corresponding bit-codes for both endpoints.

1001|1000

1010

0001|0000

0010

0101{0100

0110

Codes for the 9 regions associated to clipping rectangle
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If both codes are zero then the line segment is completely inside the rectangle. If
the bitwise-and of these codes is not zero then the line does not hit since both
endpoints lie on the wrong side of at least one boundary line (corresponding to a
bit equal to 1). Otherwise take a line which is met by the segment (for this find
one non-zero bit), divide the given line at the intersection point in two parts and
reject the one lying in the outside halfplane.

1001

1000

1010
0000

0010

0000

/ 0000

Example of €dH¥-Sutherland line-clipping algorithm

0000

2.6 Anti-aliasing

Cf. [FvDFH90, 3.17] and [PK87, 3.10].

Aliasing lines with slope k£ # 0 leads to ugly looking jagged edges also called
staircasing. We could improve the appearance by increasing the resolution, but
this is rather memory- and time-consuming.

o

nti-aliasing at various resolutions

2.6.1 Unweighted Area Sampling

cf. [FvDFH90, 3.17.2]

Here we consider instead of the mathematically infinitely thin line a line with some
thickness, i.e. a small rectangle. We color each pixel according to the area of the
corresponding unit square which is covered by this rectangle.
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Antialiasing by unweighted area sampling

2.6.2 Weighted Area Sampling

Cf. [FvDFH90, 3.17.3].

An even better method is to color each pixel according to area of the corresponding
square which is covered by the rectangle but weighted according to distance from
the center of the pixel.

A particular wighting function is used by the

2.6.3 Gupta-Sproull Anti-aliasing Algorithm

of. [FvDFH90, 3.17.4]

This algorithm weights the intersecting area, by considering a cone with radius 1
(hence a line with slope 1 intersects 3 vertical pixels) and take the volume of the
part of this cone lying above the rectangle representing the line. To speed things
up, we need not calculate these volumina during runtime but can use a fixed pre-
calculated table of intensities depending on the various distances to the center. We
can use the scan-conversion algorithm to determine the approximation points, but
set the intensity levels of then and the two vertically neighboring pixels according
to their distance.

Andreas Kriegl, Univ.Wien, July 23, 2003



2.6.

ANTI-ALIASING

41

Weighting function of plain- and of Gupta-Sproull antialiasing
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Chapter 3

File-formats

Literature

e tweedy & reddy: graphics file format page
www.dcs.ed.ac.uk/. .. /index-hi.html

Some graphic formats (alphabetically sorted):

BMP ... MS-Windows Bitmap

EPSF ...Encapsulated Postscript

GIF ...Graphics Interchange Format

IFF ...Interchange File Format

JP(E)G ...Joint Photographic Experts Group
PNG ...Portable Network Graphics
PNM=PBM+ ...enhanced portable bitmap

PBM ... Monochrome bitmap
PGM ... Grayscale bitmap
PPM ...Full color images
PNM ... Anymap

TGA ...Targa File Format
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TIFF ...Tag Image File Format
XPM ...X Pixmap Format

Now in more detail some selected formats:

3.1 RAW-data

For black&white pictures we need the following Information: width, height, and
one bit per pixel: So a 800 x 600 picture is 800 x 600/8 = 60000B = 60K B, A
1024 x 768 picture is 1024 x 768/8 = 98304 ~ 100K B. A 2272 x 1704 picture (3.8
Mio Pixel) is 483936 ~ 500K B.

If we use a color palette of fixed colors (e.g. gray levels) out of 256 (1Byte), then
we need one byte per pixel.

If we code the colors as RGB-values with 5bits (32 levels) per color, then we need
2 bytes (minus 1bit) per pixel.

If we code the colors as RGB-values with 8bits per color, then we need 3 bytes per
pixel.

If we code the colors as RGB-values with 12bits per color (4096 levels), then we
need 36bit=4.5bytes per pixel.

If we code the colors as RGB-values with 16bits per color (65536 levels), then we
need 48bit=6bytes per pixel.

width height pixel  bits/pixel colors  size in bytes
w h w*h d 2°d w*h*d /8
640 480 307200 1 2 38400
640 480 307200 8 256 307200
640 480 307200 16 65536 614400
640 480 307200 24 16777216 921600
640 480 307200 36 6.8719e+10 1382400
640 480 307200 48 2.8147e+14 1843200
800 600 480000 1 2 60000
800 600 480000 8 256 480000
800 600 480000 16 65536 960000
800 600 480000 24 16777216 1440000
800 600 480000 36 6.8719e+10 2160000
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800 600 480000 48 2.8147e+14 2880000
1024 768 786432 1 2 98304
1024 768 786432 256 786432
1024 768 786432 16 65536 1572864
1024 768 786432 24 16777216 2359296
1024 768 786432 36 6.8719e+10 3538944
1024 768 786432 48 2.8147e+14 4718592
2272 1704 3871488 1 2 483936
2272 1704 3871488 256 3871488
2272 1704 3871488 16 65536 7742976
2272 1704 3871488 24 16777216 11614464
2272 1704 3871488 36 6.8719e+10 17421696
2272 1704 3871488 48 2.8147e+14 23228928

3.2 PNM. Portable Anymap File Format

This is a very simple format, which is easily and quickly read and written. It
comes in three flavors PBM, PGM and PPM and each of this has a plain and a

raw version.

3.2.1 PBM. Portable Bit-Map Format

See the man-page.

Plain version:

e Identifier "P1”

e ASCII representation of Width

e ASCII representation of Height

e Height many lines of Width many pixels as ASCII characters separated by

space.

Raw version:

e Identifier ”P4”
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ASCII representation of Width

ASCII representation of Height

Height many lines of Width many pixels (8 pixel packed in one byte, padded
at end of line) from left to right and top to bottom (high bit first)

This uses 2byte=16bit/pixel.

3.2.2 PGM. Portable Grey-Map Format

See the man-page.

Plain version:

o Identifier "P2”

e ASCII representation of Width

e ASCII representation of Height

e ASCII representation of Maxvalue (<65536 = 2'°)

e Height many lines of Width many pixels as ASCII words 0..Maxvalue sepa-
rated by space

Raw version:

Identifier ”P5”

ASCII representation of Width

ASCII representation of Height

ASCII representation of Maxvalue (<65536 = 219)

Height many lines of Width many pixels as one or two bytes from left to
right and top to bottom
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3.2.3 PPM. Portable Pix-Map Format

See the man-page.

Plain version:

e Identifier "P3”

e ASCII representation of Width

e ASCII representation of Height

e ASCII representation of Maxvalue (<65536 = 2'6) per color component

e Height many lines of Width many pixels as 3 ASCII words 0..Maxvalue
(R/G/B) separated by space

Raw version:
e Identifier ”P6”

e ASCII representation of Width

e ASCII representation of Height

ASCII representation of Maxvalue (< 5536 = 2'°)

Height many lines of Width many pixels as 3 bytes or double-bytes (R/G/B)
from left to right and top to bottom. The colors are coded non-linear with
a gamma of 2.2.

3.3 Compression

Ct.

e www.ztt.fh-worms.de/. .. /index.htm| Lecture Notes (in German).
e www.cs.sfu.ca/. .. /index.html Nice short description and Java applets.
e www.fags.org/. .. /index.html Compression FAQ.

e almond.srv.cs.cmu.edu/. .. /compression.pdf Paul Heckbert’s Computer Graphic
Lecture Notes.

In order to use less disk space and bandwidth during transmission we have to
compress the image using some packing algorithm.
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3.3.1 Run-length encoding

Run-Length-Encoding is a simple and fast procedure for coding symbols which
appear often in succession. For example a line/vector graphic (with few lines) will
contain mainly pixel in the background color. Each repeating symbol is coded
once together with the repetition count.

We consider two flavors of this coding:
7-Bit-Run-Length-Encoding:

If the symbols are (mainly) in the range 00h—7Fh (like it is the case with ASCII-
text) we code repeating symbols by first writing the count (< 80h) with highest
bit set to 1 followed by the symbol. For symbols with highest bit 1 (like umlauts
or other accented symbols) we have to precede them by 81A, since this is not a
useful count indicator:

[0]symbol] or [1]|count][0]symbol] or [1|0000001][symbol]
Standard-Run-Length-Encoding:

In the standard run-length-encoding one codes multiple appearing bytes by three
bytes: the original byte, 90h, and the count. Since the count has to be < 80h
longer chains of the same symbol have to be coded by multiple of such triples.
For the symbol 90h another coding has to be used, since 90h in the output means
‘count follows’. So 90h will be coded as 90 00h, since this is does not represent a
reasonable count.

Some coding procedures apply first run-length-encoding before the proper com-
pression algorithm is applied.

Pseudo-code for the general run-length-algorithm looks as follows:

Loop: count = 0
REPEAT
get next symbol
count = count + 1
UNTIL (symbol unequal to next one)
output symbol
IF count > 1
output count
GOTO Loop

3.3.2 Huffman

Cf.
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o www.ztt.fh-worms.de/. .. /node9.html
e DC-Sec3.html
e www.cs.sfu.ca/. .. /Huffman.html

e www.cs.sfu.ca/. .. /AdaptiveHuff.html

Basic Huffman encoding goes as follows:

Count the number of times each symbol appears.

Now built a binary tree by assigning each symbol to a node and repeating
connecting nodes in the following way until all nodes are connected:

— Find two nodes with lowest counts.

— Create a parent node for them with the sum of their counts as count
and connect the two children to the parent node.

Now every symbol is encoded by starting at the root of the tree and append-
ing 0 or 1 depending whether you have to go right or left to reach the node
of the symbol.

Note that since all the symbols are at the leafs (the ends of the branches) of
the tree, there is never a chance that one code will be the prefix of another
one. This property ensures that decoding can be done by collecting bits from
the coded string until the corresponding sequence reaches a leaf and output
the associated symbol.

There are a few shortcomings to the basic Huffman compression. First of all,
one has to send the Huffman tree at the beginning of the compressed file, or the
decompressor will not be able to decode it.

Furthermore, Huffman compression looks at the statistics of the whole file, so that
if a part of the code uses some character more frequently, no adjustment is made.
Even worse, sometimes (like for live information) the whole input stream is not
available when compression should start.

Because of these reasons adaptive Huffman encoding has been invented, but we
will not treat this topic.
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3.3.3 LZW. Lempel Ziv Welch

Cf.

o www.ztt.fh-worms.de/. .. /nodel7.html
e www.cs.sfu.ca/.../LZW.html

e www.dogma.net/. .. /lzw.htm

From www.cs.sfu.ca/. .. /LZW.html:

LZW compression has its roots in the work of Jacob Ziv and Abraham Lempel. In
1977, they published a paper on "sliding-window” compression, and followed it
with another paper in 1978 on " dictionary” based compression. These algorithms
were named LZ77 and LZ78, respectively. Then in 1984, Terry Welch made a
modification to LZ78 which became very popular and was dubbed LZW (guess
why). The LZW algorithm is what we are going to talk about here.

The Concept:

Many files, especially text files, have certain strings that repeat very often, for
example "the” in english text. With the spaces, the string takes 5 bytes, or
40 bits to encode. But what if we were to add the whole string to the list of
characters after the last one, at 256. Then every time we came across "the”, we
could send the code 256 instead of 32,116,104,101,32. This would take 9 bits
instead of 40 (since 256 does not fit into 8 bits).

This is exactly the approach that LZW compression takes. It starts with a
"dictionary” of all the single character with indexes 0..255. It then starts to
expand the dictionary as information gets sent through. Pretty soon, redundant
strings will be coded as a single bit, and compression has occured.

The Algorithm:

Ok, so how is this done? Here is the basic algorithm:

STRING = get input character
WHILE there are still input characters DO
CHARACTER = get input character
IF STRING+CHARACTER is in the string table then
STRING = STRING+character
ELSE
output the code for STRING
add STRING+CHARACTER to the string table
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STRING = CHARACTER
END of IF
END of WHILE
output the code for STRING

So what happens here? The program reads one character at a time. If the code
is in the dictionary, then it adds the character to the current work string, and
waits for the next one. This occurs on the first character as well. If the work
string is not in the dictionary, (such as when the second character comes across),
it adds the work string to the dictionary and outputs the work string without the
new character. It then sets the work string to the new character.

How about decompression?

Note that when a new entry is added to the dictionary, then its root is given by
the code that is being sent and the suffix character is the first chacter for the
code which is send next.

So in order to decompress we have to build up the dictionary by adding a new
entry every time a code is received. The entries root is just the translation of the
code being received and its suffix character is the first character of the translation
of the next code which gets received.

Read OLD_CODE
output OLD_CODE
WHILE there are still input characters DO
Read NEW_CODE
STRING = get translation of NEW_CODE
output STRING
CHARACTER = first character in STRING
add OLD_CODE + CHARACTER to the translation table
OLD_CODE = NEW_CODE
END of WHILE

There is one problem, namely if the next code being sent is identically to the one
just being added to the dictionary. So this happends if "root” was already found,
"root” +'suffix’ appears first and 'suffix’ + what follows equals " root” +'suffix’.
So the input looks like:

suffix + string + suffix + string

root root

In this case the decoder doesn’t know yet the translation of this code but since
the its first character has to be equal to the first character of the current code,
in can use this one instead.
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CHARACTER = read first code
output CHARACTER
OLD_CODE = CHARACTER
WHILE there are still input characters DO
NEW_CODE = read next code
IF NEW_CODE is not in the translation table THEN
STRING = get translation of OLD_CODE

STRING = STRING + CHARACTER
ELSE

STRING = get translation of NEW_CODE
END of IF

output STRING
CHARACTER = first character in STRING
add OLD_CODE + CHARACTER to the translation table
OLD_CODE = NEW_CODE
END of WHILE

The nice thing is that the decompressor builds its own dictionary on its side, that
matches exactly the compressor’s, so that only the codes need to be sent.

For an explanation concerning the gif variant see:
www.dcs.ed.ac.uk/. .. /GIF-comp.txt

3.4 GIF. Graphics Interchange Format

Ct.

e www.dcs.ed.ac.uk/. .. /GIF87a.txt
e www.dcs.ed.ac.uk/. .. /GIF89a.txt

e www.dcs.ed.ac.uk/. .. /GIF-comp.txt
This format is organized by a block structure.

e Header-block:

— 'GIF’ ... 3 byte identifier
— version ... 3 bytes (e.g. '87a’, '89a’)
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e Logical Screen Descriptor:

— Logical Screen Width ... 2 bytes
— Logical Screen Height ... 2 bytes

— Flags ... 1 byte consisting of

* Global Color Table Flag ... 1 bit
x Color Resolution ... 3 bits

* Color Table Sort Flag .. 1 bit

x Size of Color Table ... 3 bits

— Background Color Index ... 1 byte
— Pixel Aspect Ratio ... 1 byte
e Global Color Table (if Global Color Table Flag is 1): Colors are coded by

a selectable color-table of 256 entries. 3 x 2(Size of Color Table) hutag of R /G /B
information.

e Image Descriptor:

— 0x2C ... 1 byte Image Separator

— Image Left Pos ... 2 bytes

— Image Top Pos .... 2 bytes

— Image Width ...... 2 bytes

— Image Height ..... 2 bytes

— Flags ............ 1 byte consisting of Local Color Table Flag, Interlace

Flag, Sort Flag, Reserved, Size Local Color Table
e Table Based Image Data (packed with LZW):

— LZW minimum code ... 1 byte

— Subblocks of at most 255 bytes each, these are LZW compressed with
variable length output codes starting at codesize+1 (minimum 3 bits)
and ending at 12 bits (Maximal code is thus 4095=0xFFF)

Uses LZ78 (patented by Unisys), see below.

Bits are packed from right to left. Then output is cut into subblocks of
length < 255.

— Terminated by a zero length subblock

e Graphic Control Extension (Identifier: 0x21 0xF9)
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Comment Extension (Identifier: 0x21 0xFE)

Plain Text Extension (Identifier: 0x21 0x01)

Application Extension (Identifier: 0x21 0xFF)

Trailer: 0x3B ... 1 byte

This format is best used for small images (e.g. icons), images with sharp edges,
and images with few colors.

For details on LZ78 used by GIF see www.dcs.ed.ac.uk/. .. /GIF-comp.txt

3.5 PNG. Portable Network Graphics

Cf.

e www.libpng.org.html

e png-1.2-pdg.html

This is pronounced “ping”. Colors can be coded up to 6%8=48 bits. It uses (non-
patented) LZ77 compression.

From png-1.2-pdg.html:

o GIF features retained in PNG include:

— Indexed-color images of up to 256 colors.

— Streamability: files can be read and written serially, thus allowing the
file format to be used as a communications protocol for on-the-fly
generation and display of images.

— Progressive display: a suitably prepared image file can be displayed
as it is received over a communications link, yielding a low-resolution
image very quickly followed by gradual improvement of detail.

— Transparency: portions of the image can be marked as transparent,
creating the effect of a non-rectangular image.

— Ancillary information: textual comments and other data can be stored
within the image file.

— Complete hardware and platform independence.
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Effective, 100% lossless compression.

e Important new features of PNG, not available in GIF, include:

Truecolor images of up to 48 bits per pixel.
Grayscale images of up to 16 bits per pixel.
Full alpha channel (general transparency masks).

Image gamma information, which supports automatic display of images
with correct brightness/contrast regardless of the machines used to
originate and display the image.

Reliable, straightforward detection of file corruption.
Faster initial presentation in progressive display mode.

e PNG is designed to be:

Simple and portable: developers should be able to implement PNG
easily.

Legally unencumbered: to the best knowledge of the PNG authors, no
algorithms under legal challenge are used. (Some considerable effort
has been spent to verify this.)

Well compressed: both indexed-color and truecolor images are com-
pressed as effectively as in any other widely used lossless format, and
in most cases more effectively.

Interchangeable: any standard-conforming PNG decoder must read all
conforming PNG files.

Flexible: the format allows for future extensions and private add-ons,
without compromising interchangeability of basic PNG.

Robust: the design supports full file integrity checking as well as simple,
quick detection of common transmission errors.

File Structure:

e Signature

(decimal) | 137 |80 | 78 | 71|13 | 10 26 | 10
(hexadecimal) 89 | 50 | 4e | 47 | 0d | 0a la | Oa

(ASCII C notation) | \211 | P | N | G| \r | \n |\032 | \n
e Chunk layout

length ...4 bytes

chunk type .. .4 bytes (chars)

data ...length bytes

CRC (Cyclic Redundancy Check) ... 4 bytes

Andreas Kriegl, Univ.Wien, July 23, 2003



3.5. PNG. PORTABLE NETWORK GRAPHICS

e |IHDR Image Header
— Width: 4 bytes
— Height: 4 bytes
— Bit depth: 1 byte
— Color type: 1 byte
— Compression method: 1 byte
Filter method: 1 byte
— Interlace method: 1 byte
e PLTE Palette
— Red: 1 byte (0 = black, 255 = red)
— Green: 1 byte (0 = black, 255 = green)
— Blue: 1 byte (0 = black, 255 = blue)
e |IDAT Image data
e |[END Image trailer

Optional Chunks:

e tRNS Transparency

e gAMA Image gamma

e cHRM Primary chromaticities
e sRGB Standard RGB color space
e iCCP Embedded ICC profile

o tEXt Textual data

e zTXt Compressed textual data
e i TXt International textual data
e bKGD Background color

e pHYs Physical pixel dimensions
e sBIT Significant bits

e sPLT Suggested palette

e hIST Palette histogram

o tIME Image last-modification time

About the motivation for introducing this new format:
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3.6

Ct.

From png-1.2-pdg.html:
We considered numerous existing formats before deciding to develop PNG. None
could meet the requirements that we felt were important for PNG.

GIF is no longer suitable as a universal standard because of legal entanglements.
Although just replacing GIF's compression method would avoid that problem, GIF
does not support truecolor images, alpha channels, or gamma correction. The
spec has more subtle problems too. Only a small subset of the GIF89 spec is
actually portable across a variety of implementations, but there is no codification
of the most portable part of the spec.

TIFF (the Tagged Image File Format) is far too complex to meet our goals
of simplicity and interchangeability. Defining a TIFF subset would meet that
objection, but would frustrate users making the reasonable assumption that a file
saved as TIFF from their existing software would load into a program supporting
our flavor of TIFF. Furthermore, TIFF is not designed for stream processing, has
no provision for progressive display, and does not currently provide any good,
legally unencumbered, lossless compression method.

IFF has also been suggested, but is not suitable in detail: available image repre-
sentations are too machine-specific or not adequately compressed. The overall
chunk structure of IFF is a useful concept that PNG has liberally borrowed from,
but we did not attempt to be bit-for-bit compatible with IFF chunk structure.
Again this is due to detailed issues, notably the fact that IFF FORMs are not
designed to be serially writable.

Lossless JPEG is not suitable because it does not provide for the storage of
indexed-color images. Furthermore, its lossless truecolor compression is often
inferior to that of PNG.

From png-1.2-pdg.html:
Deflate /Inflate Compression

PNG compression method 0 (the only compression method presently defined for
PNG) specifies deflate/ inflate compression with a sliding window of at most
32768 bytes. Deflate compression is an LZ77 derivative used in zip, gzip, pkzip,
and related programs. Extensive research has been done supporting its patent-
free status. Portable C implementations are freely available. Deflate-compressed
datastreams within PNG are stored in the "zIib" format, ...

JPEG
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www.ece.purdue.edu/. . . /index.html
Ray Wolfgang’s short JPEG tutorial.

www.fags.org/. .. /index.html
www.fags.org/. .. /index.html

JPEG-FAQ part 1 & 2.

www.fags.org/. .. /section-17.html

Compression-FAQ: What is JPEG?

www.fags.org/. .. /section-6.html
Compression-FAQ: Introduction to JPEG.

www.ztt.fh-worms.de/. .. /node38.html
Joachim Schwarz und Guido Sérmann: International Standard ISO/IEC
10918 (JPEG)

www.fags.org/. .. /section-6.html [75] Introduction to JPEG

ftp:/... /wallace Gregory K. Wallace: The JPEG Still Picture Compression
Standard

Abbreviation stands for “Joint Photographic Experts Group”, pronounced as “Jay-

peg

Features:

High compression rates.
Colors are coded by 3*8=24 bits.
Bad at sharp edges, vector-graphics, areas of constant color.

For a comparison with GIF see
www.siriusweb.com.html.

For one with TIFF, GIF and PNG see
www.cywarp.com/FAQ_TimeCapsules.htm

Unpacking-Packing degrades the image! With special software it is possible
to rotate by 90 degrees and to mirror a JPEG image lossless.

From www.fags.org/. .. /section-6.html:

The official specification of JPEG is not currently available on-line, and is not
likely ever to be available for free because of ISO and ITU copyright restric-
tions. You can order it from your national standards agency as ISO standards
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IS 10918-1, 10918-2, 10918-3, or as ITU-T standards T.81, T.83, T.84. See
ftp://ftp.uu.net/graphics/jpeg/jpeg.documents.gz for more info.

Encoding in short, see
www.ztt.fh-worms.de/. .. /node44.htm|
and www.ece.purdue.edu/. .. /index.html:

cut discrete . runlength- Huffman-
—1 8x8 |—{ cosine [ quantize [— . L,
blocks transform encode encode

Jpeg encoding

e Split image in NxN blocks (A(%, j))o<i,j<n. where N = 8.

e Apply discrete Cosine Transform to each block, i.e. determine for 0 < r, s <
N=28

B = 0, 55 ) o (T2 o (220

with Cy = /% and C; = /2 for i > 0.

e Quantize the matrices B by dividing component-wise with a fixed 8 x 8
matrix having larger coefficients near bottom-right corner. See
www.ztt.fh-worms.de/. .. /node37.html

e Binary Encode (zigzag runlength encoding combined with Huffman encod-
ing) the resulting matrices. See
www.ztt.fh-worms.de/. .. /node49.html
www.ece.purdue.edu/. .. /jpgecmprl.html

In more details this means:

3.6.1 YUV

From www.fags.org/. .. /section-6.html:

1. Transform the image into a suitable color space. This is a no-op for grayscale,
but for color images you generally want to transform RGB into a luminance/
chrominance color space (YCbCr, YUV, etc). The luminance component is
grayscale and the other two axes are color information. The reason for doing
this is that you can afford to lose a lot more information in the chrominance
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components than you can in the luminance component: the human eye is not
as sensitive to high-frequency chroma info as it is to high-frequency luminance.
(See any TV system for precedents.) You don’t have to change the color space
if you don’t want to, since the remainder of the algorithm works on each color
component independently, and doesn’t care just what the data is. However, com-
pression will be less since you will have to code all the components at luminance
quality. Note that colorspace transformation is slightly lossy due to roundoff
error, but the amount of error is much smaller than what we typically introduce
later on.

2. (Optional) Downsample each component by averaging together groups of
pixels. The luminance component is left at full resolution, while the chroma
components are often reduced 2:1 horizontally and either 2:1 or 1:1 (no change)
vertically. In JPEG-speak these alternatives are usually called 2h2v and 2h1lv
sampling, but you may also see the terms "411" and "422" sampling. This step
immediately reduces the data volume by one-half or one-third. In numerical terms
it is highly lossy, but for most images it has almost no impact on perceived quality,
because of the eye’s poorer resolution for chroma info. Note that downsampling
is not applicable to grayscale data; this is one reason color images are more
compressible than grayscale.

3.6.2 DCT. Discrete Cosine Transformation

The Discrete Cosine Transformation is a variant of the Fourier-Transform (Fourier-
Series). The basic idea behind these transformations is that any (periodic) function
can be decomposed in sine and cosine functions with frequencies being multiples
of the given periodicity. Consider the symmetric N X N-matrix

(1 -1 0 ... ... 0\
-1 2 -1 "-. :
A, = 0 -1
-1 0
: -1 2 -1
\0 cee ... 0 =1 1
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Its Eigenvectors are vy : j — cos((j + 3)%2) for 0 < k < N with Eigenvalues
A 1= 2(1 — cos(’%)) for 1 < k < N — 1, since for 6 := % we have

cos(%&) - cos(gﬁ) =2(1- cos(&)) cos(%@)
- cos((j - %)0) + 2(:05((]' + %)0) — cos((j + 2) )
cos((N — %)0) - cos((N - = )

2(1 — cosf) cos((j + %)0),

2(1 — cos( ) cos((N - %)9)

using

cos(a) + cos(b) = 2cos(a ;_ b) cos(a ; b).

Since A, is symmetric, and the sequence of Eigenvalues is strictly monotone in-
creasing, we conclude that the Eigenvectors v, are orthogonal, thus any vector
a € RY can be reconstructed from the projections (a, v;) via

=

<a'7 Uk>vk
[|ve |

=
I

0

The norms are ||vg||*> = N and ||v||* = § for k # 0, since

l[og]|2 = Zcos((j + %)0)2 = % Z (1 + cos((2j + 1)0))

Jj<N

N 1 N-1 N 1 2N—-1 N-1
=5 + 5%(2 ei0(2j+1)> =5 + 5%( Z eifi Z ez’&?j)
Jj=0 j=0 j=0
N 1 ei02N -1 ez'6?2N -1 N
= — — - — . e 0
2+2§R< e —1 e"”—l) y T

using 2 cos(a)? = 1 + cos(2a) and € = cos(a) + isin(a). So

_ <CL,’l)k> _ %Zj<Naj furk:O
o] \/;Z]<Na] COS((]+ 5) ”) firk >0
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defines an 1ISOMETRY RY — RV, i.e. is length-preserving with respect to the
euclidean norm, since

Jall? = (Z fretidy )

-3 (feda)
-2 ()

The 2-dimensional DCT is now defined by applying the 1-dimensional DCT to
rows and columns, i.e.

F(a)ys == C, C, Zza”cos( 2’;1) >cos(%w>

Thus with respect to the co-norm we get for the 2-dimensional DCT:

|F(@)rs| < llallz <[> llallz = VN?[lallo < N %128 = 1024.

ij<N
Note that here we used a shift for the original data 0 < a;; < 256 to —128 <
a;; — 128 < 128.

See also www.ztt.fh-worms.de/. .. /node34.html

3.6.3 Quantization

www.ztt.fh-worms.de/. .. /node37.htm|

From www.ztt.fh-worms.de/. .. /node37.html :
Quantisierung

Sowohl beim JPEG, als auch beim MPEG - Kompressionsalgorithmus, folgt auf
die DCT der Vorgang der Quantisierung um den Wertebereich der durch die
DCT ermittelten Koeffizienten zu verringern. Die eingesetzten Quantisierung-
stechniken unterscheiden sich zwar bei der JPEG und MPEG Komprimierung,
sind jedoch in ihrem Wesen gleich. Da es hier nur um das Prinzipielle Verstandnis
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geht, wird an dieser Stelle nur die einfachste Methode, sozusagen der kleinste
gemeinsame Nenner beschrieben.

Bei der Quantisierung werden alle, durch die DCT ermittelten, Frequenzwerte
durch verschiedene oder gleiche Werte einer zweidimensionalen Quantisierungsta-
belle geteilt. Eine solche Quantisierungstabelle konnte z.B. wie folgt aussehen:

8§ 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
\27 29 35 38 46 56 69 83/

Betrachtet man diese Matrix, so fallt auf, daB die hohen Frequenzen durch hohere
Werte dividiert werden, als die niedrigeren Frequenzen. Dies liegt daran, daB man
davon ausgeht, daB die hohen Frequenzen ein Rauschen reprasentieren und die
niedrigen Frequenzen eine Struktur in einem Bild beschreiben. Da das men-
schliche Wahrnehmungsvermogen strukturorientiert ist, kann die Quantisierung
in den Bereichen der hohen Frequenzen groBere Quantisierungsstufen ansetzen
als in den sensibleren Bereichen der niedrigeren Frequenzen, wo sonst sehr schnell
“Blockeffekte” wahrgenommen werden wiurden.

Probleme entstehen bei diesem Verfahren, falls ein Bild tatsachlich einen hohen
Informationsanteil in dem hohen Frequenzbereich enthalt, wie z.B. oft in syn-
thetischen Bildern vorkommt, oder wenn sehr kleine Schrift im Bild ist. Hier
muB die Quantisierungsmatrix entsprechend angepaBt werden, um einen zu ho-
hen Informations - und Inhaltsverlust des Bildes zu vermeiden.

Der Nutzen, der aus der Anwendung dieses Verfahrens gezogen wird, besteht
darin, daB der Wertebereich der Koeffizienten der DCT - Transformation ver-
ringert wird. D.h. also, daB aus einer 100 beispielsweise eine 10 wird, und da
diese Werte Uber eine variable Langen - Kodierung abgelegt werden, werden auf
diese Art einige Bits oder gar Bytes gespart.

3.6.4 Encoding

From www.ece.purdue.edu/. .. /jpgcmprl.html :
After quantization, it is not unusual for more than half of the DCT coefficients
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to be equal to zero. JPEG incorporates run-length coding to take advantage
of this. For each non-zero DCT coefficient, JPEG records the number of zeros
that preceded the number, the number of bits needed to represent the number's
amplitude, and the amplitude itself. To consolidate the runs of zeros, JPEG
processes DCT coefficients in the zigzag pattern shown in figure two:

Encoding

The number of previous zeros and the bits needed for the current number’'s am-
plitude form a pair. Each pair has its own code word, assigned through a variable
length code ( for example Huffman, Shannon-Fano or Arithmetic coding). JPEG
outputs the code word of the pair, and then the codeword for the coefficient’s
amplitude (also from a variable length code). After each block, JPEG writes
a unique end-of-block sequence to the output stream, and moves to the next
block. When finished with all blocks, JPEG writes the end-of-file marker.

From www.ztt.fh-worms.de/. .. /node48.html :
DC Kodierung und Zig-Zag Scanning

Nach der Quantisierung wird der DC-Wert im Gegensatz zu den 63 AC-Werten
getrennt behandelt. Die DC-Werte werden stets abhangig vom zuletzt kodierten
Block der selben Bildkomponente kodiert. Dabei gilt:

DIFF = DC; — DC;_4

Der Wert in DIFF wird als DC-Wert kodiert. Wenn kein Vorgangerblock existiert,
zum Beispiel beim Beginn der Kodierung, so wird der DC-Wert kodiert.

Die AC-Werte werden unabhangig von anderen Werten kodiert. Danach werden
alle kodierten Werte mit Hilfe des Zig-Zag Scanning eingelesen.
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DC AC,

AC,

Z.A%

Zig-zag scanning

Zig-Zag Scanning

Das Zig-Zag Scanning ist ein Verfahren, um die Werte einer 8x8 Felder groBen
Matrix in ein eindimensionales 64 Felder groBes Array zu ubertragen. Es ist eben-
falls moglich, ein eindimensionales Array in ein zweidimensionales umzuwandeln.

www.ztt.fh-worms.de/. .. /node49.htm|

From www.ztt.fh-worms.de/. .. /node49.html :
Entropie Kodierung

Die Entropie Kodierung ist der letzte Komprimierungsschritt. Hier werden die
quantisierten DCT-Werte aufgrund ihrer statistischen Haufigkeit kodiert. Der
JPEG Standard umfaBt zwei mogliche Komprimierungsmethoden:

e Huffman-Kodierung

e Arithmetische Kodierung
Bei der Huffman-Kodierung wird gefordert, daB die Anwendung eine oder mehrere
Huffmantabellen spezifiziert. Diese Huffmantabellen werden dann zur Kodierung

als auch zur Dekodierung verwendet. Das bedeutet, daB neben den Quan-
tisierungstabellen auch die Huffmantabellen mit tbertragen werden missen.
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From www.ztt.fh-worms.de/. .. /nodeb3.html :
Entropie Zwischenkodierung

Mit Hilfe der Entropie Zwischenkodierung werden die AC-Werte so kodiert, daB
sie spater leicht mit Hilfe des Huffman-Verfahrens komprimiert werden konnen.
Jeder von Null verschiedene AC-Wert wird mit der Lauflange der vorangehenden
AC-Nullwerte dargestellt. Dabei wird im Zig-Zag Verfahren abgetastet. Die
AC-Werte sehen dann folgendermaBen aus:

AC-Wert= [Lauflange|GroBe][Amplitude]

Das Symbol-1 stellt zwei Informationen dar: die LAUFLANGE und die GROSSE.
Symbol-2 reprasentiert eine einzige Information: die AMPLITUDE, also der Wert
eines von Null verschiedenen AC-Koeffizienten. Die LAUFLANGE ist die Anzahl
von Nullwerten bei Zig-Zag Abtastung, die vor dem von Null verschiedenen AC-
Wert stehen. GROSSE ist die Anzahl an Bits die gebraucht wird, um AMPLI-
TUDE binar zu kodieren.

LAUFLANGE reprasentiert Nullfolgen der Linge 0 bis 15. Da LAUFLANGE
aber groBer als 15 werden kann wird Symbol-1 mit dem Wert (15,0) als 16
interpretiert. Es kann maximal 3 mal der Ausdruck (15,0) erscheinen. Folgt
darauf kein von Null verschiedener AC-Wert mehr, wird das Block-Endezeichen
(EOB) Symbol-1 mit dem Wert (0,0) gesetzt. Es markiert das Ende der Data
Unit.

Die Darstellungsweise der DC-Werte ist einfacher.
DC-Wert= [GroBe][Amplitude]

Symbol-1 reprasentiert hier nur die Anzahl der Bits die gebraucht werden, um
Symbol-2, also die AMPLITUDE des DC-Wertes zu kodieren.

From www.ztt.fh-worms.de/. .. /node54.html :
Variable Langenkodierung

Fir die AC- und DC-Koeffizienten wird nun das Symbol-1 mit einem variablen
Langen-Code (VLC) kodiert. dieser Code stammt aus der Huffmantabelle, die
vom Anwender festgelegt wurde. Jedes Symbol-2 wird dagegen mit einem vari-
ablen Langen-Integer-Code (VLI) kodiert, der in der unten stehenden Tabelle
dargestellt ist.
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SIZE AMPLITUDE CODE

1 -1,1 0,1

2 -3,-2,2,3 00,01,10,11

3 -71.-44.7 000,..,011,100,..,111

4 -15..-8,8..15 0000,..,0111,1000,..,1111

5 -31..-16,16..31 00000,..,01111,10000,..,11111

6 -63..-32,32..63 000000,..,011111,100000,..,111111

7 -127..-64,64..127 0000000,..,0111111,1000000,..,1111111

8 -255..-128,128..255 00000000,..,01111111,10000000,..,11111111

9 -511..-256,256..511 000000000,..,011111111,100000000,..,111111111
10 | -1023..-512,512..1023 | 0000000000,..,0111111111,1000000000,..,1111111111

VLC und VLI sind beide variable Langencodes, VLI ist aber kein Huffman Code.
Ein wichtiger Unterschied zwischen den beiden Codes ist, daB die Lange des
Huffman Codes (VLC) bis zur Dekodierung nicht bekannt ist. Die Lange des
VLI Codes ist dagegen im vorherigen VLC Code gespeichert.

3.6.5 Example

For an example see: www.ztt.fh-worms.de/. .. /node55.html

3.7 Comparison

See www.cywarp.com/FAQ_TimeCapsules.htm treating the following questions:

e What are suitable file formats to use?

Should you compress images?
What is the TIF file format?
e What is PNG file format?

e What is JPG file format?
e What is GIF file format?
Which format should be used for which purpose:
e PNM For temporary fast storage.
e GIF For images with few colors, for the WEB.

e PNG For ray-tracing photo realistic pictures and storing as master file.

JPEG For photos to be published on the WEB if highest quality is not
highest priority but size and transmission time is.
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Chapter 4

Euclidean and Projective
Geometry

Literature

e 2D-Transformations:
[FvDFHO90, 5.1ff] and [PK87, 4]

e 3D-Transformations:
[FvDFHO0, 5.6ff] and [PK87, 6]

Links

e www.inrialpes.fr/. .. /isprs96.html
An Introduction to Projective Geometry (for computer vision).html
Projective Geometry for Image Analysis: Comprehensive Introduction to
projective versus affine space.

e www.martinb.com/. .. /index.htm
keywords: Rotation, Euler Angles, NASA Standard Aerospace

e www.martinb.com/. .. /index.htm
keywords: Rotation using Quaternions

e www.martinb.com/. .. /index.htm
keywords: Conversion of Rotations
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graphics.cs.ucdavis.edu/. .. /Coordinate-Systems.html
keywords: Handedness

www.martinb.com/. .. /index.htm
keywords: Handedness (Nice picture)

graphics.cs.ucdavis.edu/. .. /Affine-Barycentric-and-Convex.html
graphics.cs.ucdavis.edu/. .. /Affine-Barycentric-and-Convex.pdf
keywords: Coordinate System, Barycentric Coordinates

graphics.cs.ucdavis.edu/. .. /Frames.html
graphics.cs.ucdavis.edu/. .. /Frames.pdf
keywords: Frames as Coordinate System of affine space

moving.htm
keywords: Transformations: Translation, Scaling, Rotation

[pov:6.3 POV-Ray Coordinate System]

[pov:6.3.1 Transformations]

[pov:3.1.1 Understanding POV-Ray’s Coordinate System:]
[pov: Types of Projection]

Pov-Ray tutorial
www.f-lohmueller.de/. .. /povtuto0.htm

Elementary Transformations
www.f-lohmueller.de/. .. /basicsle.htm#start

almond.srv.cs.cmu.edu/. .. /transform_2.pdf
keywords: Slides on Transformations

almond.srv.cs.cmu.edu/. .. /04-transform.pdf
keywords: 6-Slides on Transformations
almond.srv.cs.cmu.edu/. .. /04-transform.pdf
keywords: 2-Slides on Transformations
almond.srv.cs.cmu.edu/. .. /04-transform.pdf
keywords: 1-Color-Slide on Transformations

almond.srv.cs.cmu.edu/. .. /05-viewing.pdf
keywords: 6-Slides on Viewing-Projections
almond.srv.cs.cmu.edu/. .. /05-viewing.pdf
keywords: 2-Slides on Viewing-Projections
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almond.srv.cs.cmu.edu/. .. /05-viewing.pdf
keywords: 1-Color-Slide on Viewing-Projections

e graphics.cs.ucdavis.edu/. .. /Camera-Transform.pdf
keywords: Camera Projection

4.1 Affine space

The objects we want to display are situated in the space surrounding us. We will
neglect that this space is curved by gravitation according to Einsteins general rela-
tivity theory (or 26 dimensional according to some quantum theoretic approaches)
and for sake of simplicity we may assume that this is an affine 3-dimensional space.
So after choosing some reference frame, i.e. a zero-point and three independent vec-
tors we may identify this space with the standard 3-dimensional vector space R3.
Its points are uniquely given by 3 real coordinates (a, b, ¢) denoted by (a, b, c) in
Pov-Ray. In Pov-Ray one may use as shortcut for a vector with equal coordi-
nates the real number given by this coordinate, e.g. 0 = (0,0,0). The standard
basis with respect to the given frame is denoted

z:=(1,0,0), y = (0,1,0), z:=1(0,0,1)

in Pov-Ray, and are interpreted as pointing right, up and forward. This is a
let-handed system, i.e. take your left hand, let the thumb point in direction x and
the index finger point in direction y, then the middle finger points in direction z.
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Pov-Ray's left-handed coordinate system

Note that the second basic vector y and not z is pointing up. The idea behind
this choice ist that usually we will project onto some vertical plane, so the first
two coordinates should be associated to this plane.

On R?® we have the usual vector operations:
A-{ay, b, e1) = (A-ap, A by, A-er) addition
<CL1, bl, Cl> + ((1,2, bg, 62> = (a1 + as, b1 + bQ, (&1 + CQ) addition

v+w

\"

Scalar multiplication and vector addition
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We will also make use of the inner product {(v|w) (denoted vdot(v, w) in Pov-Ray)
of two vector v and w, measuring essentially the angle /(v, w) between the two
vectors via q
t
cos(Z(v,w)) = vdot(v, w)

B V/vdot (v, v)/vdot(w, w)
vlength(v) := ||v]| := v/vdot(v, v).

Thus vdot(v, w) is the length of v multiplied with the length of the normal projec-
tion of w onto v. Using the length we may normalize any vector v # 0 to obtain
a vector of length 1 pointing in the same direction as v:

and the length

1

vnormalize(v) := Vength(v) v.

Furthermore we have the cross-product (denoted vcross(v, w) in Pov-Ray) of two
vectors, which gives a vector normal to v and w of length the area of the parallelo-
gram generated by v and w and such that v, w, vcross(v, w) is positively oriented.
So we have an euclidean space.

4.2 Transformations

We want to transform the objects (and thus the points) in our space around.

4.2.1 Translations
The translation T, in direction of a vector w is given in coordinates by
Ty:v—v4+w

In Pov-Ray this operation is described as translate w. Note that this can be
also considered as changing the reference frame, by replacing 0 by —w.
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y
v
w
v+w
0 - X
w
Translation
4.2.2 Scaling
We can scale the vectors v with a constant factor w, i.e. v — w-v. In case w = —1

we have a point reflection. We can even scale with a vector w by multiplying the
corresponding coordinates by that of w, i.e. v — (w; vy, we va, w3 V3).

Syntax in Pov-Ray: scale w

In case all coordinates of w are 1 except one which is -1 this is a reflection on the
plane given by the set of points where the corresponding coordinate is 0. So for
w = (—1,1,1) we get a reflection on the y-z-plane.

4.2.3 Reflections/Mirroring

Now we want to describe the reflection S,, on a plane orthogonal to some (unit)
vector w. Since any vector v can be written as

v = (vlw)w + (v = (v|w)w),

where v — (v|w)w is orthogonal to w (use (v — (viw)w, w) = (v|w)(1 — ||w|]?) = 0),
we get

Su(v) = Su (<U|w>w) + S, (v - (v|w)w)

= —(wlw)w + (v — (lwyw) = v -2 (ofw)w.
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v — (v|w)w

Reflection

In coordinates:

(v1, 2, v3) = (Ul - 2(2 Vk wk) Wy, Vg — 2(2 Vk wk) Wy, V3 — 2(2 Vg wk) w3)
k k k

1-2w? —2wiwy, —2w;, ws o
= | 2wow; 1-2w2 —2wows| - | v
—2wsw; —2wzwy 1— 2w? U3

= (id-2w-w'")-v=v— 2w (wv)

These reflections are length preserving:
(id —2w-wh - (id 2w - w') = (id 2w - w') - (id —2w - w’)
=id—2w-w'—2w-w+4w-w'-w-w =id,
or, because of Pythagoras,
lv =2 wlw)yw|* = [lv = (wlw)w|]® + || + (v, w)w|]*
= [lv = (lw)w + (@lw)w|* = ||v]|*

Note here, that a linear mapping given by multiplication with the matrix A is
length preserving, iff

v'w = (v|w) = (Av|Aw) = (Av)' - Aw = v A" Aw
for all v and w, i.e. iff A®- A =id.

The composition of the two 2-dimensional reflections (a, b) — (—a, b) and {(a, b) —
{(a, —b) amounts to mirroring v — —v at the center O. The composition of two
general reflections is a rotation:

(Swy © Swy ) (V) = Suy (V) = (Swy (v) [ w2)wo
= v — (v|wy)w; — (v — (v|w; yw;|wa)ws
= v — (v|wy)wy — (V|wa)wy + (v]w) (W |wa)ws

This is a rotation around w; X wy by twice the angle between w; und ws.
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Vi=S, (V")

<=

Rotation as two-fold reflection

4.2.4 Rotations and Euclidean Motions

A general reflection at the plane w' can be described by first rotating w into some
vector v, then reflect at v and now rotate back v to w. In fact, let u := v + w.
Then this first rotation is given by S, oS, = R =5, 0.5, and we have

Sy, 0 R=2S5,0(5,08,) = (S,)?08, =8, =25,0(S,)>=RoS,.

How can rotations be described by matrices? Let us first consider 2-dimensional
space. The rotation by 90° maps any vector v to a normal vector v of the same
length. There are only two possibilities for (a,b)* namely +(—b,a), and the one
with + is rotation in the positive direction, i.e. counterclockwise. The matrix
corresponding to this rotation is given by

0 —1
Repp = .

Now what about a rotation around 0 by an arbitrary angle ¢? By elementary
geometric calculations we see, that the image of = is cospx + sinpy, and the
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image of y which is z turned 90° counterclockwise is the vector —sin ¢ x + cos ¢ y.
Thus in coordinates this linear mapping is given by the unitarian matrix

cosp —sing

sing  cosp
Note that this can also be paraphrased by “the reference frame is rotated in the
opposite direction by ¢”. In three dimensions a rotation by ¢ around the z-axes

does not change the z-coordinate and rotates the (x,y)-coordinates as before and
thus is given by the unitarian matrix

cosp —sing 0
sing cosp O
0 0 1
In Pov-Ray: rotate ¢*z.

Similarly rotations around the z- and around the y-axes are given by

1 0 0 cosp 0 —singp
0 cosp —sinp | and 0 1 0
0 singp cosy sing 0 cosyp

In Pov-Ray: rotate ¢*x and rotate @x*y.

Note that the composition of two rotations by angles ¢ and 1 around the same
center is the rotation by angle ¢ + 1. Expressing this via the corresponding
matrices gives the addition laws for sin and for cos.

All these rotation matrices M (as well as arbitrary compositions of such) satisfy
det(M) =1 and M*- M =id, thus are special orthogonal matrices.

A general rotation around the axis spanned by the unit vector w by the angle ¢
is given by considering the orthogonal frame given by w, v X w, v — (v|w)w. The
length of these vectors are 1, sin(Z(v,w))||v||, sin(Z(v,w))||v||. The vector v is
given in this frame as

v=(vlw)-w+1-(v—{www)+0-vxw,
so the rotation is

v = (v|w) - w+ cos(p) - (v — (v|jw)w) +sin(p) - v x w
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VvV X WV*<V‘WW

Orthogonal decomposition of a vector v
Note that
w X (vXxu)=(uxv)xw= {uw)v— (vw)u
and hence v X (v xu) = {ulvyv— (vjv)u = (ulv)v — u.
See www.martinb.com/. .. /index.htm.
Let f be an arbitrary length preserving mapping (a so called EUCLIDEAN MoO-
TION), i.e. ||f(v1) — f(v2)|| = |lv1 — ve|| for all v1,v,. Up to the translation by
f(O) (i.e. replacing f by v — f(v) — f(0)) it preserves also the origin O and hence
|| f(v)]| = ||v|| for all v. Furthermore by the polarization equality
2(v|w) = |lv|I* + [lw]l* — [l — wlf*
we get
2(f () f(w)) = ILf @)II* + ILf (w)II* = I (v) = f ()|

= [loll* + llwll* = llv — w]|* = 2{v|w),

i.e. f preserves the inner product and hence maps the standard orthogonal basis
e; =, e; = y and e3 = z to some other orthonormal basis f; := f(e1), fo := f(e2)
and f; := f(es). For a general vector v we have v = ), vy e, with vy, = (vle) =

(f(v)|f(ex)) = (f(v)|fx) and hence

F) = (FO) i) fr = kafk,
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i.e. f islinear and, moreover, for the matrix [f] associated to f we have [f]*-[f] = id,
i.e. f is given by an orthogonal matrix: In fact the jk™ entry in the matrix [f]’-[f]
is given by

(LA [Nk = [ 0 flik = ((f" 0 fejler) = (fejl fex)

. _J1 forj =k,
= (ejlex) = ,
0 otherwise.

Let now conversely an orthogonal 3 x 3-matrix A be given. Then 1 = det(id) =
det(A? - A) = det(A?) - det(A) = det(A)?, i.e. det(A) € {—1,+1}. Let us assume
first that det(A4) = 1.

Let F' := Fix(A) := {z € E : Az = z} be the set of its fixed points, i.e. the
eigenspace for the eigenvalue 1. This is a linear subspace.

We show next, that dim(F) > 0. Let p()\) := det(A — A) be the characteristic
polynomial of A. We have

p(A) = det(A — A) =det((A — A)) = det(\ — A") =det(A — A1)

= det(—A\ (% - A) A7) = det(—)) - det (% - A) ~det A™!

thus we get for A = 1 that 2p(1) = 0. Hence 1 is an eigenvalue.
In case its dimension is 3, we have A = id.

In case its dimension is 2, we find a unit vector w such that F' = w'. Since F is
invariant under A and A is orthogonal the same is true for F'*. Since w € F'* and
A is an isometry we have A(w) = —w and hence A is the reflection at the plane
F =w*. In fact, z — (z|v)v € F for all z € E, since

(z = {z[v)v|v) = (z]v) — (2|v) - {v]v) = 0.
Thus
Az = A((x — (z|v)v) + (x|v)v) =z — (z|v)v + (z|v)(—v)

=z — 2(z|v)v.

Remains to consider the case, where dim(F") = 1. Then there exists a unit vector
w which spans F. The orthogonal plane wt = F* is also A invariant, so A|p1 is
orthogonal on this plane and hence a reflection on a line in this plane or a rotation
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in this plane. Thus A is a reflection at the plane spanned by w and the reflection
line of A|p. or a rotation with axis w.

Therefore any orthogonal mapping on R?® is the composite of (at most three)
reflections. It is a rotation around some axes v # 0 by some angle ¢ iff it is a
composite of two reflections.

In Pov-Ray: v —vaxis_rotate(v, w, ¢).

Finally the euclidean motions are exactly of the form v — R - v + w, where R is a
rotation which is followed by the translation v — v + w.

We show next that any rotation (i.e. special orthogonal matrix) can be obtained
by composing 3 of the special rotations discussed above by the so called EULER
ANGLES. Consider an airplane or an hang-glider: We have the basis given by
the axes of airplane: the direction from the left to the right wing, the vertical
direction, and the direction from back to front.

e First we turn the head in the required direction via a rotation R; around y
by angle 1) called heading.

e Next we raise/lower the head by a rotation Ry around the new x by an angle
6 called attitude.

e Finally we tilt the airplane by a rotation R3 around the new z by the angle
¢ called bank.

How do the corresponding matrices look like?

e Clearly
cos(yp) 0 —sin(2)
[Ba]:==] 0 1 0
sin(yp) 0  cos(v)

e In the new basis B' = (z/,y, 2') we have

1 0 0
[Rolgr = [ 0 cos(f) —sin(f)
0 sin(d) cos(f)
In linear algebra (see [Kri02, 10.28] and [Kri02, 10.20a]) one shows that for

the matrix-representation with respect to the original basis B = (z,y, z) we
have

[R1] := [Ri]ss = [Rilpp = [id]p 5
[R5 = [id]|s 5 [Ra]|n » [id]|s,s
= [Ry] [Ra]prmr [Ra] ™"
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The composition Ry o Ry has thus the following form

[Ry 0 Ry] = [Ro] [Ri] = [Ra] [Re] 5
cos() 0 —sin(v)) 1 0 0

= 0 1 0 <10 cos(d) —sin(h)
sin(yp) 0  cos(v) 0 sin(f) cos(f)
e Similarly
cos(p) —sin(p) 0
[Bslgrpr = | sin(p)  cos(p) 0
0 0 1

and hence

[Rg O RQ ] Rl] = [Rg] [RQ o Rl]
= [Ry 0 Ry| [Rs]pr g [R2 © R1]_1 [Ry 0 Ry
= [R1]s,5 [R2]p 3 [R3]s B

cos(¢) 0 —sin(e) 1 0 0 cos(yp) —sin(p) O
= 0 1 0 1 0 cos(@) —sin(@) | - | sin(p) cos(yp)
sin(¢)) 0  cos(y) 0 sin(6) cos(9) 0 0

(
(COS(tp) cos()) + sin(6) sin(p) sin(yy)  — cos(v) sin(yp) + cos(yp) sin(8) sin(yy)  cos(P) sin(d))))

= O

cos() sin(p) cos(8) cos(y) —sin(4)
cos(v) sin(@) sin(yp) + cos(yp) sin(yp)  cos(p) cos(v) sin(8) — sin(yp) sin(y) cos(8) cos(v)

R1 R2
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R3 R, Ry, R3

Another decomposition into 3 rotations is given via the following Euler-angles:
Let R be arotation and f; := R(e;) be the images of the standard-basis. We would
like to express R as composition of 3 rotations around some coordinate-axes. It
suffices to describe the images of these rotations on the first 2 vectors e; and es,
since e3 = e; X ey is the uniquely determined unit vector normal to e; and ey such
that (eq, es, e3) is left oriented.

In order to rotate e; to fi we have to keep an axis k € {e;}*N{fi}+ = ({eq, e3}) N
({fo, f3}) fixed. In order to rotate afterwards ey to fo without destroying the
assignment e; — f1, we could first rotate ey to k around e; and at the end rotate
k to fy around fi.

er = e = fi = fi

es = k — k — fo
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el el

f2 f2

Fixed axes k R,

el el

R» Rs

Let ¢1, p9, o3 be the so-called Euler-angles of R, given by
o1 := Lesk; o= Leif1; 3 := Lkfs.

Thus the matrix-representation of the corresponding rotations R;, R, and Rj3 are
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given by:
(1 0 0
[Ri]eier = | 0 cosgy —singy
0 sing; cos;
(cos gy 0 —sinpy
[RQ]el,k = 0 1 0
\sin w2 0 cosps )
(10 0
[Ri]lpe= |0 cosps —sings
0 sings cosps
Hence

[R3 oRyo0 Rl]el,eQ,es =

1 0 0 cosps 0 —sinps 1 0 0
=10 cosp; —sing |- 0 1 0 |10 cosps —singps
0 sin¢p; cos sings 0 cos s 0 sinps cos 3

4.2.5 Angle-Preserving Mappings

The euclidean motions we have just described as v — R-v+w, where R is a rotation
or reflection and w is a translation vector, are length and angle preserving. Now
we try to identify those mappings which are only angle preserving.

Lemma (Linear conformal mappings).
Let f: R™ — R™ be linear. Then the following statements are equivalent:

1. f respects angles, i.e. is CONFORMAL;
2. 3> 0: (f(2), f(y)) = Ma,y) for all z,y € R";

3. Au > 0: pf is an isometry.

Proof. (2 < 3) is obvious with A p? = 1.
(1 <= 2) let « be the angle between x and y and o the one between f(z) und f(y).

then @) Aaly)
@I T~ ValevAll
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Thus a = o/, and f respects angles.
(1 = 2) We define A(v) > 0 implicitly by (f(v)|f(v)) =: A(v){v|v).

Let v, w be orthonormal vectors, then (v +w) L (v — w). Since f is conform, we
have:

0= (flv+w)lf(v—w))=(f)f(v)) = (fw)]f(w)) = Alv) = AMw).

Thus A constant on the orthonormal basis (ej,...,e,;) von R*. We put A\ :=
Aler) = ... = A(e,). For an arbitrary vector v € R” we have:

U= gviei
= Alv) Z(Ui)Z = A(v) <Z v'e;] Zviei> =

(5 (50

= Zvivjwz )\Z(Ui)Q
S A=A WeR

The lemma now follows from:

2(v|w) = (v + wlv + w) — (v|v) — (w|w)
2(f ()| f(w)) = (f(v) + f(w)|f(v) + f(w)) = (f ()| (0)) — (f(w)|f(w))
= Mv+ w|v + w) — A(v|v) — Mw|w)
= 2\(v|w). O

4.2.6 General Transformations

Beside euclidean motions, conformal linear mappings we have discussed also scal-
ing, where we shrink or stretch the coordinates according to some factors. Scaling
can be described by diagonal matrices with the proportionality factors as eigen-
values.

Another kind of mapping of interest is shearing:

o O =
S = O

a
b
1
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This is volume preserving, since its determinant is 1.

We would like to have a common formula for all these transformations. For this
we embed R?® into R* via {(a,b,c) — (a,b,c,1). Then a translation by the vector

v = (v1, v9,v3) can be written as

a-+ v

b+ vy

c+ v3
1

— 0 o 9

o O o =

o = O O

0
1
0
0

N a
Vg b
U3 c

1 1

Any of the other transformations given by 3 x 3-matrices can be extended to

4 x 4-matrices via

a1,1 Q12
Q2,1 Q22
az1 0432
0 0
So all compositions are of the same form
11 G12 Q13
2,1 Q22 023
a1 az2 0Aass
0 0 0
This is written in Pov-Ray as:
matrix all, a21, a31,
al2, a22, a32,
al3, a23, a33,
ald, a24, a34

a3 0
azs 0
a3 0

0 1

14 =701

(2,4 = V2

as,4 = V3

1

Note that this is transposed relative to the mathematical version.

An advantage of this description is to be able to describe perspective (no-linear)

projections in the same way, see (4.3.2).

4.3 Projections

e Projections (orthogonal, projective) cf. [FvDFH90, 6] [PK87, 7]

e Projections (orthogonal, projective)

cf. [FvDFH90, 6] Perspective Projection, Parallel Projection,
[PK87, 7] Perspective and Parallel Projection.
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We have to make 2D-images of a 3D-world. For this we need some projection
R® — R2.

4.3.1 Orthographic Projection

This is the simplest type of projection. It’s most simplest case is ‘forgetting the
z-coordinate’:

<U15 V2, U3> = <U1: U2>
More general we could project parallel to some (unit) vector w onto the plane
F = w' orthogonal to w. This projection is thus given by v — v — (v|w)w. In
order to express this in coordinates we need some basis of F' which is usually called
‘up’ and ‘right’.
An example for a camera statement in Pov-Ray is

#declare w = <1,2,3>
camera {
orthographic
lock_at w
up <0,3,0>
right <-4,0,0>
}
See [pov:180.html#target_713]

Let’s start with a few general remarks about projections.

Lemma.
Let P € L(H) IDEMPOTENT, i.e. P2 = P, with other words P is a PROJECTION.
Then:

1. 1 — P is also idempotent.
2. Bild P = Kern(1 — P) and Kern P = Bild(1 — P).
3. H=Bild P & Kern P.

Proof. 1 We get (1-P)?=1-2P+P*=1-2P+P=1-P.

2 We have h € BildP & h = Pk fir ein k € H & Ph = P’k = Pk = h &
h € Kern(1 — P). Furthermore, Kern P = Bild(1 — P), since 1 — P is idempotent.

3 We have Bild P N Kern P = {0}, since h € Bild P implies that Ph = h and
on the other hand Ph = 0 for h € Kern P. Each h € H can be written as
h = Ph+ (1 — P)h, with Ph € Bild P and (1 — P)h € Bild(1 — P) =Kern P. O
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Lemma.
For an idempotent P € L(H) the following statements are equivalent:

4. P is an orthogonal projection, i.e. Kern P = (Bild P)*;
5. Kern P | Bild P;
6. |P|| <1, i.e. P is a contraction;

7. P*= P, i.e. P is Hermite’sch;

Proof. (4 = 5) is trivial.

(5 = 6) Because of Bild P > Ph 1L h — Ph € Kern P we have ||h||> = ||Ph|?> +
|h — Ph||* and thus ||Phl|| < ||h]|-

(4 <= 6) We have h — Ph = (1 — P)h € Bild(1 — P) = Kern P. For h L Kern P we
get 0 = (h — Ph,h) = ||h||> — (Ph, h), and hence [|h||* = (Ph, h) < ||[Ph|||[h]| <
||h||?. Furthermore ||Ph|| = ||h|| = v/(Ph, h) and ||h—Ph||*> = ||h||>—2R({Ph, h))+
| Ph||?> = 0 for those h. Le. (Kern P)* C Kern(1 — P) = Bild P.

Conversely, let h € Bild P. Then h = hy + h; with hy € Kern P and h; €
(Kern P)* C Bild P. Thus hy = h — hy € Bild P N Kern P = {0}, i.e. hy = 0 and
h = h; € (Kern P)t. By orthogonalization we get the desired equation.

(4 = 7) Since v = Pv+ (1 — P)v and w = Pw + (1 — P)w with Pv, Pw € Bild P
and (1 — P)v, (1 — P)w € Kern P = (Bild P)* we have

(v, P*w) = (Pv,w) = (Pv, Pw+ (1 — P)w) = (Pv, Pw)+ 0
= (Pv+ (1 — P)v, Pw) = (v, Pw)

hence P = P*.
4 <= 7) since Kern P = Kern P* = (Bild P)* . O
( ) ( )

One can even project on some plane orthogonal to w but with rays parallel to
some other vector w'.

4.3.2 Perspective Projection
This is a more realistic projection as approximately used by cameras. Again we

project to some plane, but this time with rays starting from some ‘location’ (on
the side of the plane opposite to the objects). The simplest situation is, when
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the location is at the origin, and the plane we project to is given by z = 1. The
projection is then given by
V1 V2
<’U1, Vg, U3> — <’U3’ ’1)3’ 1>
Unfortunately this is not longer a linear mapping (because of the 1/v3 term). In
order to describe this again by a matrix we consider homogeneous coordinates,
i.e. we extend the coordinates of points in R® by appending a forth coordinate 1.
And on the other hand we associate to each vector in R* (with non-vanishing last
coordinate) that point in R®, which we get by dividing the first 3 coordinates by the
forth. More generally we identify two vectors (v, v’ # 0) in R?* if they are collinear,
i.e. there exists a number A € R such that v = Av. Up to this identification we
can write this projection as

v

U1 v3 (%1 1 0 0 0 V1
(%) s z—z ~ (%) _ 01 0O (%)
v3 1 Vs 0010w
1 0 0 0 00O 1

Similar formulas hold for arbitrary projection planes (and location).

The projection onto the plane z = d is given by:

d 000
0 d 00
0 0 dO0
0010
or, equivalently, by
10 0 O
01 0 O
00 1 O
0 0 1/d 0O

If we translate 0 and the plane to (0,0, —d) the projection becomes

dvi,  duvy dvi;  duvg
d d —
v v *Z}_)<Ug+d’1)3+d’ >H<U3+d,’03+d’0>

_ U1 Vo 0
N ’U3/d+1”03/d+1’
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For d — oo this is the orthographic projection from above.

Let the projection plane be given in normal form by F := {v : (v|n) = d}, where
n is a unit normal vector to the plane and d is the signed distance to 0, i.e. is
positive if n points from 0 to the plane and negative otherwise. The corresponding
perspective projection is given by v +— v/, where v' = Av € F, i.e. A(v|n) = d,

thus
, d
Vi i= ———.

{v|n)

In homogeneous coordinates this can be described by the matrix

d 0 0 0
0 d 0 0
0 0 d 0
ny no ng 0

Since we have not infinite large images but some finite rectangle we have to clip
the image, and hence we may clip the objects to some prism or pyramid.

A UP

image plane look_at
_-_‘_-H‘:\\ +0.5 _-_

location

Pov-Ray's camera definition
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The syntax in Pov-Ray for the general camera definition is as follows:

CAMERA:
camera{ [CAMERA_ITEMS...] }

CAMERA_ITEM:
CAMERA_TYPE | CAMERA_VECTOR | CAMERA_MODIFIER |
CAMERA_IDENTIFIER

CAMERA_TYPE:
perspective | orthographic | fisheye | ultra_wide_angle |
omnimax | panoramic | cylinder CylinderType | spherical

CAMERA_VECTOR:
location <Location> | right <Right> | up <Up> |
direction <Direction> | sky <Sky>

CAMERA_MODIFIER:
angle HORIZONTAL [VERTICAL] | look_at <Look_At> |
blur_samples Num_of_Samples | aperture Size |
focal_point <Point> | confidence Blur_Confidence |
variance Blur_Variance | NORMAL | TRANSFORMATION

Camera default values:

DEFAULT CAMERA:
camera {
perspective
location <0,0,0>
direction <0,0,1>
right 1.33*x

up y
sky <0,1,0>

CAMERA TYPE: perspective

angle : 767.380 ( direction_length=0.5%
right_length/tan(angle/2) )

confidence : 0.9 (90%)

direction : <0,0,1>
focal_point: <0,0,0>
location : <0,0,0>
look_at ./

right : 1.33%x
sky : <0,1,0>
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up Ly
variance : 1/128

From [pov:180.html#target_713]

Note also the following:

(e}

Placing the Camera

1.1 Location and Look_At
2 The Sky Vector

3 Angles

.4 The Direction Vector

5

1.

5.

6

D O OO

Up and Right Vectors
5.1 Aspect Ratio
2 Handedness
Transforming the Camera
Types of Projection
Focal Blur
Camera Ray Perturbation
Camera Identifiers

D DD DO D DD DO

DO OO O O

4.3.3 Further Projections in Pov-Ray

There are several types of projections available in Pov-Ray, see the documentation
[pov:182.html#target_730] for more details:

e Perspective projection

Perspective projection
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e Orthographic projection

Orthographic projection

e Fisheye projection: A spherical projection. This time we project radially
onto a sphere and then by some projection the sphere to the plan. Uses
Polar-coordinates.

Fisheye projection

e Ultra wide angle projection: Here we project onto a cylinder and then we
flatten the cylinder
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Ultrawideangle projection

e Omnimax projection: Is similar to a 180°-fisheye projection but with aspect
ratio unequal to 1.

Omnimax projection

e Panoramic projection: Cylindrical equirectangular projection
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Panoramic projection

e Cylindrical projection: Project onto a vertical or horizontal cylinder with
respect to a center or the cylinders axes.

Cylindrical projection

e Spherical projection: Project onto a sphere and uses rectangular coordinates.

Spherical projection

Using the optional parameters focal_point, aperture and blur_samples one
can change the by default infinite field of depth to some realistic range.
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Finite field of depth

camera {
location <0.0, 1.0, -10.0>
look_at <0.0, 1.0, 0.0>
focal_point < 1, 1, -6> // pink sphere in focus
aperture 0.4 // a nice compromise
blur_samples 20 // more samples, higher quality image
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Chapter 5

Objects

In this chapter we are going to describe the objects we want to depict.

Links

e Objects:

e dtrg: POV-Ray Manual: 5. Scene language description reference
5.2.0-3.html

e Florian Fischer: Primitives in Pov-Ray 3 (Einfache Objekte)
objectpv.htm

e objects/blob

e :POV-Ray: Documentation: 3.6.1 Blob Object
POV-Ray: Documentation: 3.6.1 Blob Object.html

e Rune Johansen: blob tutorial
blobs.asp.html

o Jeff Lee: Understanding Blobs in POV-Ray
blobs.html

Objects/isosurface:

e St. Benge: Geometric Creations - Isosurface Tutorial - Beginning
iso_tutoriall.html

95
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St. Benge: Geometric Creations - Isosurface Tutorial - Part Two
iso_tutorial2.html

St. Benge: Geomectric Creations - Isosurface Tutorial - Part 3
iso_tutorial3.html

Smellenbergh: Isosurface manual: Overview
isotutrs/iso_ind.html

Splines:

Paul Heckbert: addendum.pdf
almond.srv.cs.cmu.edu/. .. /addendum.pdf

Kenneth I. Joy: Online geometric modeling notes
graphics.cs.ucdavis.edu/. .. /index.html

Kenneth I. Joy: Bezier-Curves.pdf
graphics.cs.ucdavis.edu/. .. /Bezier-Curves.pdf
keywords: Historics on Bezier curves

Kenneth I. Joy: Arbitrary-Bezier-Curves.pdf

graphics.cs.ucdavis.edu/. .. /Arbitrary-Bezier-Curves.pdf

keywords: short description of Bezierer splines (using Bernstein polynomi-
als)

Kenneth I. Joy: Bezier-Control-Polygons-for-a-Cubic-Curve.pdf
graphics.cs.ucdavis.edu/. . . /Bezier-Control-Polygons-for-a-Cubic-Curve.pdf
keywords: pieceing together Bezier curves

Kenneth I. Joy: B-Spline-Curve-Definition.pdf
graphics.cs.ucdavis.edu/. .. /B-Spline-Curve-Definition.pdf

Kenneth I. Joy: Cubic-Refinement-Eigenvalues.pdf
graphics.cs.ucdavis.edu/. .. /Cubic-Refinement-Eigenvalues.pdf

Kenneth I. Joy: Cubic-Subdivision-Curve-Direct-mathcalculation.pdf
graphics.cs.ucdavis.edu/. .. /Cubic-Subdivision-Curve-Direct-mathcalculation.pdf

Kenneth I. Joy: Cubic-Uniform-B-Spline-Curve-Splitting.pdf
graphics.cs.ucdavis.edu/. .. /Cubic-Uniform-B-Spline-Curve-Splitting.pdf

Kenneth I. Joy: Deboor-Cox-mathcalculation.pdf
graphics.cs.ucdavis.edu/. .. /Deboor-Cox-mathcalculation.pdf
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Kenneth I. Joy: Divide-and-Conquer-Bezier-Curve.pdf
graphics.cs.ucdavis.edu/. .. /Divide-and-Conquer-Bezier-Curve.pdf

Kenneth I. Joy: Catmull-Clark.pdf
graphics.cs.ucdavis.edu/. .. /Catmull-Clark.pdf

Kenneth I. Joy: Chaikins-Algorithm.pdf
graphics.cs.ucdavis.edu/. .. /Chaikins-Algorithm.pdf

Kenneth I. Joy: Control-Points.pdf
graphics.cs.ucdavis.edu/. .. /Control-Points.pdf

Kenneth I. Joy: Cubic-Bezier-Curves.pdf
graphics.cs.ucdavis.edu/. .. /Cubic-Bezier-Curves.pdf

Kenneth I. Joy: Cubic-B-Spline-Curve-Refinement.pdf
graphics.cs.ucdavis.edu/. .. /Cubic-B-Spline-Curve-Refinement.pdf

Kenneth I. Joy: The-Support-of-a-Blending-Function.pdf
graphics.cs.ucdavis.edu/. .. /The-Support-of-a-Blending-Function.pdf

Kenneth I. Joy: Uniform-B-Splines-as-a-Convolution.pdf
graphics.cs.ucdavis.edu/. .. /Uniform-B-Splines-as-a-Convolution.pdf

Kenneth I. Joy: Uniform-Normalized-Blending-Functions.pdf
graphics.cs.ucdavis.edu/. .. /Uniform-Normalized-Blending-Functions.pdf

Kenneth I. Joy: Uniform-Two-Scale-Proof.pdf
graphics.cs.ucdavis.edu/. .. /Uniform-Two-Scale-Proof.pdf

Kenneth I. Joy: Uniform-Two-Scale-Relation.pdf
graphics.cs.ucdavis.edu/. .. /Uniform-Two-Scale-Relation.pdf

Kenneth I. Joy: Vertex-and-Edge-Points.pdf
graphics.cs.ucdavis.edu/. .. /Vertex-and-Edge-Points.pdf

Surfaces:

Kenneth I. Joy: Bezier-Patches.pdf
graphics.cs.ucdavis.edu/. .. /Bezier-Patches.pdf

Kenneth 1. Joy: Arbitrary-Bezier-Patch.pdf
graphics.cs.ucdavis.edu/. .. /Arbitrary-Bezier-Patch.pdf
keywords: Bezier patch for surface
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Kenneth I. Joy: Bezier-Curves-on-Bezier-Patches.pdf
graphics.cs.ucdavis.edu/. .. /Bezier-Curves-on-Bezier-Patches.pdf
keywords: Bézier patches as families of Bézier curves

Kenneth 1. Joy: Bezier-Patch-Subdivision.pdf
graphics.cs.ucdavis.edu/. .. /Bezier-Patch-Subdivision.pdf

Kenneth I. Joy: Cubic-B-Spline-Surface-Refinement.pdf
graphics.cs.ucdavis.edu/. .. /Cubic-B-Spline-Surface-Refinement.pdf

Kenneth I. Joy: Loop-Surfaces.pdf
graphics.cs.ucdavis.edu/. .. /Loop-Surfaces.pdf

Kenneth I. Joy: Matrix-Cubic-Bezier-Curve.pdf
graphics.cs.ucdavis.edu/. .. /Matrix-Cubic-Bezier-Curve.pdf

Kenneth I. Joy: Matrix-Cubic-Bezier-Patch.pdf
graphics.cs.ucdavis.edu/. .. /Matrix-Cubic-Bezier-Patch.pdf

Kenneth I. Joy: Quadratic-Bezier-Curves.pdf
graphics.cs.ucdavis.edu/. .. /Quadratic-Bezier-Curves.pdf

Kenneth I. Joy: Quadratic-B-Spline-Curve-Refinement.pdf
graphics.cs.ucdavis.edu/. .. /Quadratic-B-Spline-Curve-Refinement.pdf

Kenneth I. Joy: Quadratic-B-Spline-Surface-Refinement.pdf
graphics.cs.ucdavis.edu/. .. /Quadratic-B-Spline-Surface-Refinement.pdf

Kenneth I. Joy: Refinement.pdf
graphics.cs.ucdavis.edu/. .. /Refinement.pdf

Kenneth I. Joy: Reparameterizing-Bezier-Curves.pdf
graphics.cs.ucdavis.edu/. .. /Reparameterizing-Bezier-Curves.pdf

Kenneth I. Joy: Subdivision-Curves.pdf
graphics.cs.ucdavis.edu/. .. /Subdivision-Curves.pdf

Kenneth I. Joy: Subdivision-Surfaces.pdf
graphics.cs.ucdavis.edu/. .. /Subdivision-Surfaces.pdf

Tutorials:

dtrg:
www-sfb288.math.tu-berlin.de/. .. /index.html
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Ken Joy: Geometric Modeling — On-Line Notes
graphics.cs.ucdavis.edu/. .. /index.html

Friedrich A. Lohmueller: POV-Ray descriptions, tutorials and samples for
the POV-Ray raytracing program for beginners and advanced users
www.f-lohmueller.de/. .. /pov__eng.htm

Friedrich A. Lohmueller: POV-Ray Tutorial - Einfiihrung, deutsche Beschrei-
bungen, Anleitungen und Beispiele zum Raytracer POVRAY zu 3D-Grafik
mittels Raytracing

www.f-lohmueller.de/. .. /pov__ger.htm

Robet B. Chaffe: POV-Ray SDL Quick Reference
quickref.html
keywords: povray quick reference

Michiel van de Panne: computer graphics lecture topics
www.cs.ucla.edu/. .. /lectureTopics.html

Geometry/Splines:

Frank Pfenning: 10-splines.pdf
almond.srv.cs.cmu.edu/. .. /10-splines.pdf

Frank Pfenning: 10-splines.pdf (color)
almond.srv.cs.cmu.edu/. .. /10-splines.pdf

Geometry/Surfaces:

Heckbert-15462: curves_implicit_2.pdf
almond.srv.cs.cmu.edu/. .. /curves_implicit_2.pdf

Geometry/Parametrizations:

Frank Pfenning: 09-curves.pdf
almond.srv.cs.cmu.edu/. .. /09-curves.pdf

Frank Pfenning: 09-curves.pdf (color)
almond.srv.cs.cmu.edu/. .. /09-curves.pdf

Heckbert-15462: curves_param_2.pdf
almond.srv.cs.cmu.edu/. .. /curves_param_2.pdf

Heckbert-15462: geomod.pdf
almond.srv.cs.cmu.edu/. .. /geomod.pdf
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o www.f-lohmueller.de/. .. /povshpele.htm

o www.f-lohmueller.de/. .. /povshpe2e.htm
Pov-Ray-Documentation:

e [pov:3.2] Basic Shapes

e [pov:3.3] CSG Objects

e [pov:3.4] Spline Based Shapes

e [pov:3.5] Polygon Based Shapes

e [pov:3.6] Other Shapes

e [pov:6.5] Objects

e [pov:10.1.8] Objects

We will lead our way through the huge zoo of objects starting from the most
special ones and reach the most general mathematic descriptions at the end. The
objects available in Pov-Ray are of different types: finite solid objects, finite
patch objects, infinite objects, iso- and parametric surfaces, and objects obtained
by CSG (constructive solid geometry). See [pov:395.html#target 1783] for a short
overview of the syntax.

5.1 Solid Finite Objects

In this group are the finite (i.e. bounded) solid objects.

5.1.1 Sphere

The syntax of the SPHERE object is:

SPHERE:
sphere { CENTER, RADIUS [SPHERE_MODIFIERS] }

SPHERE_MODIFIERS:
[UV_MAPPING] & [OBJECT_MODIFIERS]
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Spheres

See also:

e [pov:6.5.1.9] Sphere
e [pov:3.1.4] Sphere Object

o www.f-lohmueller.de/. .. /spherele.htm

The object described is a sphere (or more correctly a ball, and not just the sur-
face) with the 3d-vector CENTER(= (ci,cs,c3)) as center and with the scalar
RADIUS(= r) as radius:

w1, 29, 23) : (21 — c1)? + (T2 — 2)* + (w3 — ¢3)* < r?).

Each object may contain transformations as part of the OBJECT_MODIFIERS,
so a general sphere may be described by the default sphere with CENTER=0 and
RADIUS=1 as follows:

sphere { ¢, r } = sphere { 0, 1 scale r translate c }

5.1.2 Box

The syntax of the BOX object is:

BOX:
box { CORNER1, CORNER2 [BOX_MODIFIERS] }

BOX_MODIFIERS:
[UV_MAPPING] & [OBJECT_MODIFIERS]
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Boxes

See also:

e [pov:6.5.1.2] Box
e [pov:3.2.1] Box Object
o www.f-lohmueller.de/. .. /boxle.htm

e blobs.asp.html

The object described is a cube with sides (of possibly different length) parallel to
the axes and two opposite vertices CORNER1(=c) and CORNER2(=d):

{{z1, 29, x3) 1 1 € C1d1, T2 € Cody, T3 € c3d3},

where c;d; is the segment {(1 —t)c; +td; : 0 <t < 1} from ¢; to d;.
Again
box { c1, ¢c2 } = box { 0, 1 scale c2-cl1 translate ci1 }

In order to depict a box with sides being not parallel to the axes we have to apply
some rotation to a box as above:

box { cl, c2 rotate v }

5.1.3 Superellipsoid

A shape between sphere and box is the SUPERELLIPSOID. The syntax of the
superquadric ellipsoid object is:
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SUPERELLIPSOID:
superellipsoid { < K1, K2 > [OBJECT_MODIFIERS] }

See also:

e [pov:6.5.1.11] Superquadric Ellipsoid

e [pov:3.6.5] Superquadric Ellipsoid Object

This object is given via two parameters K1=e > 0 and K2=n > 0 by

. 2/m 2/e 2/e\€/m 2/n
Uo.2) 2 |1 )l 2 - = (e + )7 + 2P == 13,
where the p-norm of a 2d-vector (z,y) is given by
z,y)|, ==
7 max{jal, [y} forp=oo

Hence we get a cube for e = n = 0 and a sphere for e =n = 1.

Superellipsoids with e =n =1 and with e =n =1/2

Superellipsoids with e = n = 2 and withe =n =4
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Superellipsoids with e = 2,n = 1/2 and with e = 1/2,n =2

5.1.4 Cylinder

The syntax of the CYLINDER object is:

CYLINDER:
cylinder { BASE_CENTER, CAP_CENTER, RADIUS [open]
[OBJECT_MODIFIERS] }

See also:

e [pov:6.5.1.4] Cylinder
e [pov:3.2.3] Cylinder Object

o www.f-lohmueller.de/. .. /cylindrle.htm

This describes a circular cylinder orthogonal to the axes from BASE_CENTER
(=V0) to the CAP_CENTER (=V1) with radius RADIUS (=R), e.g.

cylinder{0,y, R} = {(X,Y,Z): X*+ Z* < R}, 0<Y < 1}
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Cylinders

The optional keyword open makes the cylinder hollow and removes the base and
cap disk.

Open Cylinders

The general cylinder can be obtained from ‘cylinder { 0, y, 1 }’ by scaling, rotation
and translation.

5.1.5 Cone

The syntax of the CONE object is:

CONE:
cone { BASE_CENTER, BASE_RADIUS, CAP_CENTER, CAP_RADIUS [open]
[OBJECT_MODIFIERS] }

See also:
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e [pov:6.5.1.3] Cone
e [pov:3.2.2] Cone Object

o www.f-lohmueller.de/. .. /conele.htm

This describes a circular cone orthogonal to the axes from BASE_CENTER (=V0)
with radius BASE_RADIUS (=R0) to the CAP_.CENTER (=V1) with radius
CAP_RADIUS (=R1), e.g.

cone{0, R0,y,R1} = {(X,Y, Z) : X* + 7> < (R0O+ Z (R1 — R0))*>, 0 <Y < 1}

Cones

A cylinder is the special case of the cone where the two radii are equal.

5.1.6 Prism

The syntax of the PRISM object is:

PRISM:
prism { [PRISM_SPLINE_TYPE] [PRISM_SWEEP_TYPE]
HEIGHTO, HEIGHT1, NUM_POINTS, POINT_LIST [open] [PRISM_MODIFIERS] }

PRISM_SPLINE_TYPE:
linear_spline | quadratic_spline | cubic_spline | bezier_spline

PRISM_SWEEP_TYPE:
linear_sweep | conic_sweep
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PRISM_MODIFIERS:
[sturm [BOOL]] | [OBJECT_MODIFIERS]

See also:
® [pov:6.5.1.8] Prism
e [pov:3.4.3] Prism Object

o www.f-lohmueller.de/. .. /prismle.htm

This describes a pyramid whose base is given by NUM_POINTS many 2d-points
listed in POINT_LIST and it extends in y-direction from height HEIGHTO to
HEIGHT1.

Prismas

The type PRISM_SPLINE_TYPE determines how the points are connected by
splines (see (5.1.7)) and the keyword conic_sweep instead of linear_sweep for
the PRISM_SWEEP_TYPE makes a pyramid with base at ¥ = 1 and vertex at 0.

4

Pyramids
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5.1.7 Interpolation and Splines

We need curves passing through a finite number of given points. In algebra we
learn that there is exactly one polynomial p of degree at most n passing through
n + 1 points

P() = <t0,$0>,. . .,Pn = <tn,.’l3n>
with pairwise different ¢, ¢1,...,%,. A simple formula for obtaining this polynomial
p is the LAGRANGE INTERPOLATION FORMULA:

t—t,
th—t;

p(z) = Z:Ek Ly (t) where Lg(t) := H
k=0 i#k
This is easily checked, since Ly (t;) = 0 for k # j and Ly(tx) = 1.

For a large number of points this becomes quite lengthy to calculate and for ¢
between the given ¢; the values can be quite far away from the z;. So the idea is
to interpolate a fixed small number of successive points and piece them together.

The simplest way would be to use linear interpolation of successive points and we
would thus obtain a polygon.

But we could also take 3 (, 4 or more ) successive points and take the quadratic (,
cubic, ...) polynomial connecting these and piece them together.

The disadvantage of this method will be that at the points, where we paste the
pieces together the curve may take sharp turns, i.e. the left-sided and right-sided
derivatives may be different.

To avoid this problem Bezier curves have been invented. In order to discuss them
we need the BERNSTEIN POLYNOMIALS:

Bl(t) :== (Z) (1 =)k,
e.g.
By(t)=(1—-1),  Bi(t)=t

Bi(t)=(1-1?  Bit)=2t(1-1), Bj(t)=1%
Bit)=(1-1t3  BXt)=3t(1—-t)?  Bit)=3t°(1—1t), Bit)=1¢

A recursive definition is
Bi(t) == (1 —t)By ™ +tBI ().
We have:
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e BRt)>0forall0<t<1.
o Yo Br(t) = 1.

o Br(t) = (D)) ()
o tF =30, (/) B

e From the last two equations we deduce that (B} )o<k<n is a basis of the vector
space of all polynomials of degree < n.

o (BY)'(t) =n(Bi_{(t) — By (1))

o A formula for a linear combination B(t) = Y ¢_c;Bj(t) of the Bernstein
polynomials of degree 2 is given by

1 0 0 Co
B(t)=(1,t,t)- -2 2 0 co
1 -2 1 Co
Now the BEZIER CURVE of degree n given by n+ 1 many points P, ..., P, is given

by
P(t)=>)_ P;B(t)

This can be obtained recursively by

PY(t) == P,

2

Pi(t) := (1 - )PIL(t) + tPI (1)

1

P(t) == P}(t)

A geometric interpretation of this can be found in
graphics.cs.ucdavis.edu/. .. /Subdivision-Curves.pdf

The main properties of the Bezier curve P are the following:

e P is polynomial (of degree at most n) and hence C*.
e P(0)=F) and P(1) = P,.
e The tangent to P at 0 is the line Py P;.

e The tangent to P at 1 is the line P,_1P,.
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e The curve P lies in convex hull of { Py, Py,..., P,}, note, however, that the
points P, ..., P,_; will not ly on P. They are only points which control the
shape of the curve P.

5.1.8 Lathe

The syntax of a LATHE object is:

LATHE:
lathe { [LATHE_SPLINE_TYPE] NUM_POINTS, POINT_LIST
[LATHE_MODIFIERS] }

LATHE_SPLINE_TYPE:
linear_spline | quadratic_spline | cubic_spline | bezier_spline

LATHE_MODIFIERS:
[sturm [BOOL]] | [UV_MAPPING] | [OBJECT_MODIFIERS]

See also:

e [pov:6.5.1.7] Lathe

e [pov:3.4.1] Lathe Object; See also for intro to splines

This describes an object obtained by rotating the area between the y-axes and the
spline given by the NUM_POINTS many 2d-points in POINT_LIST around the
y-axes.

Lathe objects with linear and with Bezier splines
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For the spline type 1inear_spline we need NUM_POINTS> 2, and for the spline
type quadratic_spline we need n =NUM_POINTS> 3, where from Py to Py
we use the quadratic spline constructed for Py 1, Py, Pyr1. Thus the curve will
start only at P; and end at P,, and P, is just a control point.

For cubic_splines we need n =NUM_POINTS> 4, where from Py to Py, we
use the cubic spline constructed for Py_q, Py, Pxy1, Prio. Thus the curve will start
only at P; and end at P,_;, and both P, and P, are just control points.

Finally for bezier_spline we need 4n =NUM_POINTS, where we use the cu-
bic Bezier curve through the points Py, Pipt1, Pint2, Pints from Py, to Py,i3 =
Pyny1y. Thus only the points Py, P3 = Py,..., Py, will ly on the curve, the
others are just control points.

5.1.9 Sor

Another version of a surface of revolution is the SOR object. Its syntax is:

SOR.:
sor { NUM_POINTS, POINT_LIST [open] [SOR_MODIFIERS] }

SOR_MODIFIERS:
[sturm [BOOL]] & [UV_MAPPING] & [OBJECT_MODIFIERS]

See also:

e [pov:6.5.1.12] Surface of Revolution
e [pov:3.4.2] Surface of Revolution Object

o www.f-lohmueller.de/. .. /sorle.htm

This object is obtained by rotating the area between y-axes and the cubic poly-
nomial from Py to Py through the points Py, Py, Pr+1 and Py.o around the
y-axes. The point Py and P, are thus only control points.

See also:
e [pov:3.4.2] Surface of Revolution Object

Advantage of sor over lathe is that the intersection test for sor needs to solve a
cubic polynomial whereas that for lathe needs to solve a polynomial of degree 6,
which means quite a lot more work.
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5.1.10 Torus

The syntax of the TORUS object is:

TORUS:
torus { MAJOR_RADIUS, MINOR_RADIUS [TORUS_MODIFIERS] }

TORUS_MODIFIERS:
[sturm [BOOL]] & [OBJECT_MODIFIERS]

See also:
e [pov:6.5.1.14] Torus
e [pov:3.2.5] Torus Object

o www.f-lohmueller.de/. .. /torusle.htm

This is the particular case of a surface of revolution, where a disk of radius MI-
NOR_RADIUS(= r) and center at the z-axes in distance MAJOR_RADIUS(= R)
from 0 is rotated around the y-axes.

Tori

In parametric form this surface is given by latitude § € [—m, 7| and longitude
@ € [0,27] as

(0, p) — ((R+rcosB)cosp, (R+ rcosf)sin o, rsin f)

or implicitly by

(Va2 + 22 - R)?* +y* =12

Andreas Kriegl, Univ.Wien, July 23, 2003



5.1.  SOLID FINITE OBJECTS 113

5.1.11 Blob

The mathematical objects discussed so far are not well suited for modeling natural
forms like a human hand for example. Although the digits are roughly speaking
cylinder connecting the joints which are approximately spheres, the transition
between the spheres and the cylinders should be smooth. This can be modeled by
the BLOB object. The syntax of a blob object is:

BLOB:
blob { [threshold FLOAT] BLOB_ITEM ... BLOB_ITEM
[BLOB_MODIFIERS] }

BLOB_ITEM:
sphere { CENTER, RADIUS, [strength] STRENGTH
[COMPONENT_MODIFIERS] } |
cylinder { BASE_CENTER, CAP_CENTER, RADIUS,
STRENGTH [COMPONENT_MODIFIERS] }

COMPONENT_MODIFIERS:
[TEXTURE] & [PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...]

BLOB_MODIFIERS:
[hierarchy [BOOL]] & [sturm [BOOL]] & [OBJECT_MODIFIERS]

See also:

e [pov:6.5.1.1] Blob
e [pov:3.6.1] Blob Object

e Rune Johansen: runevision :: rune’s blob tutorialrune—vision :: rune’s blob
tutorial
blobs.asp.html

o Jeff Lee: Understanding Blobs in POV-Ray
blobs.html

A point in space belongs to this object if the sum of its densities

dist 2\’
density = strength x (1 — (w) )
radius
with respect to all the BLOB_ITEM's is at least the thresh hold THRESH_HOLD.
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Blobs

5.1.12 Sphere-Sweep
Another object that can be used to model smooth transitions between different
spheres is the SPHERE SWEEP object. Its syntax is:

SPHERE_SWEEP:
sphere_sweep { SWEEP_SPLINE_TYPE NUM_SPHERES, SPHERE_ITEM, ... ,
SPHERE_ITEM [tolerance F_DEPTH_TOLERANCE] [OBJECT_MODIFIERS] }

SWEEP_SPLINE_TYPE:
linear_spline | b_spline | cubic_spline

SPHERE_ITEM:
CENTER, RADIUS

See also:

® [pov:6.5.1.10] Spheresweep

e [pov:3.4.4] Sphere Sweep Object

This describes a union of spheres whose centers are formed by the spline through
the centers of the SPHERE ITEM’s and the radii are given by the values given by
the spline through the radii of the SPHERE ITEM’s.
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Sphere-sweep objects

5.1.13 Height-Field

The syntax of a HEIGHT FIELD object is:

HEIGHT _FIELD:
height_field { HF_IMAGE [HF_MODIFIERS] }

HF_IMAGE:
FUNCTION_IMAGE | [HF_TYPE] FILE_NAME

HF_TYPE:
gif | tga | pot | png | pgm | ppm | jpeg | tiff | sys

HF_MODIFIERS:
[hierarchy [BOOL]] & [smooth [BOOL]] & [water_level FLOAT]
& [OBJECT_MODIFIERS]

See also:
e [pov:6.5.1.5] Height Field
e [pov:3.6.2] Height Field Object

o www.f-lohmueller.de/. .. /povheighle.htm

This is given by the set of points (X,Y,Z) with 0 < X < 1land 0 < Z < 1,
where Y is at most the value of the (interpolate) pixel in the given image of
dimension WIDTH « HEIGHT at the scaled point in column X « WIDTH and row
Y « HEIGHT.
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5.1.14 Julia-Fractal

There is also the JULIA FRACTAL object, whose syntax is:

JULTA_FRACTAL:
julia_fractal { 4D_VECTOR [JF_ITEMS] [OBJECT_MODIFIERS] }

JF_ITEMS:
[ALGEBRA_ITEM] & [max_iteration INT] & [precision FLOAT]
& [slice V4_NORMAL, F_DISTANCE]

ALGEBRA_ITEM:
quaternion [QUATER_FUNCTION] | hypercomplex [HYPER_FUNCTION]

QUATER_FUNCTION:
sqr | cube

HYPER_FUNCTION:
sqr | cube | exp | reciprocal | sin | asin | sinh | asinh
| cos | acos | cosh | acosh | tan | atan | tanh | atanh
| In | pwr (FLOAT,FLOAT)

See [pov:6.5.1.6] Julia Fractal if you need this.

5.1.15 Text

Another more useful object is the TEXT object, with syntax:

TEXT:
text { ttf FILE_NAME STRING THICKNESS, OFFSET
[OBJECT_MODIFIERS] }

See also:

® [pov:6.5.1.13] Text

o [pov:3.4.6] Text Object
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This allows to insert a line STRING of text as 3-dimensional letters in the font
given by FILE_ NAME and with depth THICKNESS.

5.2 Finite Patch Objects

These are objects described by the following 2-dimensional (=totally thin) fine
shapes:

FINITE_PATCH_OBJECT:
BICUBIC_PATCH | DISC | MESH | MESH2 | POLYGON
| TRIANGLE | SMOOTH_TRIANGLE

See also:

e [pov:6.5.2] Finite Patch Primitives

5.2.1 Triangle

The most basic one among these is the TRIANGLE object, with syntax:

TRIANGLE:
triangle { CORNER1, CORNER2, CORNER3 [OBJECT_MODIFIERS] }

See also:
e [pov:6.5.2.6] Triangle and Smooth Triangle

This describes a triangle with the three 3d-vectors CORNERI (= Cy), CORNER2
(= Cy), and CORNERS3 (= () as vertices, i.e.

3 3
D tiCiit, BT >0 ) =1},
=1 i=1
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5.2.2 Smooth Triangle

There exists a variant, the SMOOTH TRIANGLE object, were the virtual surface
normal (see (6.3)) at the vertices are also given. Its syntax is:

SMOOTH_TRIANGLE:

smooth_triangle {

CORNER1, NORMAL1, CORNER2, NORMAL2, CORNER3, NORMAL3
[OBJECT_MODIFIERS] }

See also:

e [pov:6.5.2.6] Triangle and Smooth Triangle

5.2.3 Polygon

More general is the POLYGON object, with syntax:

POLYGON:
polygon { NUM_POINTS, POINT, ..., POINT [OBJECT_MODIFIERS] }

See also:
e [pov:6.5.2.5] Polygon

e [pov:3.5.3] Polygon Object

One has to make sure, that the POINTS all ly in one plane. This is easiest by
taking on coordinate constant (say 0) and rotate the polygon afterwards to the
required position.

5.2.4 Mesh

To build more complex objects formed by lots of triangles one can use the MESH
object, with syntax:

MESH:
mesh { MESH_TRIANGLE ... MESH_TRIANGLE [MESH_MODIFIERS] }

MESH_TRIANGLE:
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triangle { CORNER1, CORNER2, CORNER3 [MESH_UV_VECTORS]
[MESH_TEXTURE] 7} |
smooth_triangle {
CORNER1, NORMAL1, CORNER2, NORMAL2, VCORNER3, VNORMAL3
[MESH_UV_VECTORS] [MESH_TEXTURE] }

MESH_UV_VECTORS:
uv_vectors PARAM1, PARAM2, PARAM3

MESH_TEXTURE:
texture { TEXTURE_IDENTIFIER } |
texture_list { TEXTURE_IDENTIFIER ... TEXTURE_IDENTIFIER }

MESH_MODIFIERS:
[inside_vector V_DIRECTION] & [hierarchy [BOOL]] & [UV_MAPPING]
& [OBJECT_MODIFIERS]

See also:

e [pov:6.5.2.3] Mesh

o [pov:3.5.1] Mesh Object

5.2.5 Mesh2

A more efficient way of listing a list of triangles, by specifying all vertices and
only the indices of the vertices of all triangles, is given by the MESH2 object, with
syntax:

MESH2:
mesh2 { MESH2_VECTORS [TEXTURE_LIST] MESH2_INDICES
[MESH2_MODIFIERS] }

MESH2_VECTORS:
VERTEX_VECTORS [NORMAL_VECTORS] [UV_VECTORS]

VERTEX_VECTORS:
vertex_vectors { NUM_VERTICES, VECTOR [, VECTOR]... }

NORMAL_VECTORS:
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normal_vectors { NUM_NORMALS, VECTOR [, VECTOR]... }

UVECTORS:
uv_vectors { NUM_UVECTORS, 2D_VECTOR [, 2D_VECTOR]... }

TEXTURE_LIST:
texture_list { NUM_TEXTURES, TEXTURE [, TEXTURE]... }

MESH2_INDICES:
FACE_INDICES [NORMAL_INDICES] [UINDICES]

FACE_INDICES:

face_indices { NUM_FACES, FACE_INDICES_ITEM

[, FACE_INDICES_ITEM]... }

FACE_INDICES_ITEM:

VECTOR [, TEXTURE_INDEX [, TEXTURE_INDEX, TEXTURE_INDEX ]]
NORMAL_INDICES:

normal_indices { NUM_FACES, VECTOR [, VECTOR]... }
UINDICES:

uv_indices { NUM_FACES, VECTOR [, VECTOR]... }
MESH2_MODIFIERS:

[inside_vector DIRECTION] & [UMAPPING] & [OBJECT_MODIFIERSI]

See also:

e [pov:6.5.2.4] Mesh2

e [pov:3.5.2] Mesh2 Object

5.2.6 Bicubic Patch

A 2-dimensional variant of cubic splines is the BICUBIC PATCH object with syntax:

BICUBIC_PATCH:
bicubic_patch { PATCH_ITEMS [PATCH_UV_VECTORS] CONTROL_POINTS
[BICUBIC_PATCH_MODIFIERS] }

PATCH_ITEMS:
type PATCH_TYPE & [u_steps INT] & [v_steps INT]
& [flatness FLOAT]
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PATCH_TYPE:
011

PATCH_UV_VECTORS:
uv_vectors V2_CORNER1, V2_CORNER2, V2_CORNER3, V2_CORNER4

CONTROL_POINTS:
16 VECTORs, optionally separated by commas.

BICUBIC_PATCH_MODIFIERS:
[UV_MAPPING] & [OBJECT_MODIFIERS]

See also:

e [pov:6.5.2.1] Bicubic Patch

e [pov:3.4.5] Bicubic Patch Object

5.2.7 Disk

The syntax of the DISK object is:

DISC:
disc { CENTER, NORMAL, RADIUS[, HOLE_RADIUS] [OBJECT_MODIFIERS] }

See also:
e [pov:6.5.2.2] Disc

which describes a disc with center CENTER normal to the 3d-vector NORMAL
and with radius RADIUS (and a hole with radius HOLE_RADIUS)

5.3 Infinite Shapes

These objects are potentially infinite(=unbounded) solid shapes.

INFINITE_SOLID_OBJECT:
PLANE | POLY | CUBIC | QUARTIC | QUADRIC
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See also:

e [pov:6.5.3] Infinite Solid Primitives

5.3.1 Plane

The syntax of the PLANE object is:

PLANE:
plane { NORMAL, DISTANCE [0OBJECT_MODIFIERS] }

See also:

e [pov:6.5.3.1] Plane
e [pov:3.2.4] Plane Object

o www.f-lohmueller.de/. .. /planele.htm

This describes the plane (or better half-space) with surface normal NORMAL=
(a1, az, a3) and (signed) distance DISTANCE(= d) from 0 given by

{(X,Y,Z):al-X+a2-Y+a3-Z§d}.

5.3.2 Quadric

The syntax of the QUADRIC object is:

QUADRIC:
quadric { COEFF1, COEFF2, COEFF3, COEFF4 [0BJECT_MODIFIERS] }

See also:
e [pov:6.5.3.3] Quadric
It describes a quadric (surface given by a quadratic polynomial in the variables X,

Y and Z) with coefficients COEFF1(= (ax, ay, az)) of the homogeneous quadratic
part, coefficients COEFF2(= (bz, by, bx)) of the inhomogeneous quadratic part,
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coefficients COEFF3(= (cx, ¢y, cz)) of the homogeneous linear part and constant
coefficient COEFF4(= d) given by

{UX,Y,Z) cax X2 +ay Y2 +az Z2+ by XY +by XZ +bx Y Z+
+exX+eyY+ez Z+d<0}

Note the unusual order of COEFF2! As particular cases we get ellipsoids, para-
boloids, hyperboloids, and the degenerated cases of cylinders, double cones, etc.

Hyperboloids

5.3.3 Cubic

The corresponding object of degree 3 is the CUBIC object, with syntax

CUBIC:
cubic { < CUBIC_COEFFICIENTS > [POLY_MODIFIERS] }

CUBIC_COEFFICIENTS:
20 FLOATs separated by commas.

See also:
e [pov:6.5.3.2] Poly, Cubic and Quartic

For the order of the coefficients see POLY below.
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5.3.4 Quartic

The corresponding object of degree 4 is the QUARTIC object, with syntax

QUARTIC:
quartic { < QUARTIC_COEFFICIENTS > [POLY_MODIFIERS] }

QUARTIC_COEFFICIENTS:
35 FLOATs separated by commas.

See also:
e [pov:6.5.3.2] Poly, Cubic and Quartic

For the order of the coefficients see POLY below. An example of such a quartic
is the equation for the torus (obtained by isolating in the formula for the torus
above the term 2Rv/X? + Z? on one side and taking the square of both sides):

YXP+ZHRP = (X2 + 22+ Y? — 1?2

5.3.5 Poly

The general object of this type of degree 2 <ORDERX 15 is the POLY object with
syntax:

POLY:
poly { ORDER, < POLY_COEFFICIENTS > [POLY_MODIFIERS] }

POLY_COEFFICIENTS:
A quantity n of FLOATs separated by commas,
where n is ((ORDER+1)*(ORDER+2)* (ORDER+3))/6.

POLY_MODIFIERS:
[sturm [BOOL]] & [OBJECT_MODIFIERS]

See also:

e [pov:6.5.3.2] Poly, Cubic and Quartic

e [pov:3.6.4] Poly Object
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It describes the object given by

i

) |
{(X, v,2): Y x4y v i Zik g < 0}

i=0 j=0 k=0

where the coefficients are given in exactly this order. Note that this is not the
usual ordering by degree of homogeneity. But the inverse lexicographical ordering
of the sequence of exponents of X, Y and Z. Thus for degree 3 the 20 monomials
are ordered as

x3yoz0

xX2ytz x?2y°zt Xx?%y0z°

xX\y2z0 x'yizb x'y'z® x'yzr x'y'zt x'y°z°

X370 x%27t Xx%y?Z7° X%z XOvizt XOvizZ®
Xv0z73 Xx%%z? XOyOzt XOy0z°

The number of coefficients of a polynomial of degree at most ORDER (= d) in the
three variables X, Y and Z has as many coefficients, as there are triples (i, j, k)
with ¢ + 7 + k£ < d with 4,7,k > 0. Such triple can be equally described by three
numbers 0 < k£ < j < ¢ < d as in the sum above. Such 3 numbers can be viewed
as 3 separators at 3 different positions among d + 3 many items, where £ is the
number of non-separators to the left of the first one, j is that of non-separators to
the left of the second and i is that of non-separators to the left of the third one.
By combinatorics the number of such choices is

(n;—?)) _ (n+3)(n—61-2)(n+1)'

5.4 Isosurface and Parametric Surface

5.4.1 Isosurface

A general method of describing an object is by an equation as implicitly given
surface, called ISOSURFACE in Pov-Ray. Its syntax is
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ISOSURFACE:
isosurface { FLOAT_USER_FUNCTION [ISOSURFACE_ITEMS]
[OBJECT_MODIFIERS] }

ISOSURFACE_ITEMS:
[contained_by { CONTAINER }] & [threshold FLOAT]
& [accuracy FLOAT] & [max_gradient FLOAT
[evaluate MIN_ESTIMATE, MAX_ESTIMATE,
ATTENUATION]] & [open] & [INTERSECTION_LIMIT]

CONTAINER:
sphere { CENTER, RADIUS } |
box { CORNER1, CORNER2 }

INTERSECTION_LIMIT:
max_trace INT | all_intersections

See also:

e [pov:6.5.4] Isosurface Object

o [pov:3.6.3] Isosurface Object

e objects/isosurface

e St. Benge: Geometric Creations - Isosurface Tutorial - Part 3
iso_tutorial3.html :

e St. Benge: Geometric Creations - Isosurface Tutorial - Beginning
iso_tutoriall.html :

e St. Benge: Geometric Creations - Isosurface Tutorial - Part Two
iso_tutorial2.html :

e :http://3dgallery.dhs.org/tutorials/iso_tutor.html :

e Smellenbergh: Isosurface manual: Overview
isotutrs/iso_ind.html :

e :POV-Ray: Documentation: 6.5.4 Isosurface Object :

It is given as

{(X,Y, Z) :FLOAT_USER_FUNCTION(X, Y, Z) = THRESHOLD
for all (X,Y, Z) € CONTAINER.}
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The FLOAT_USER_FUNCTION is a user defined function f which returns some
float value for any point (X,Y,Z7) in 3d-space. Note that mathematically we
can guarantee (by the implicit function theorem) that the corresponding surface
f"Y(THRESHOLD) is non-singular only in points P, where f is C'' and the deriva-
tive f'(P) is non-vanishing.

With the optional CONTAINER one can restrict the object to a box or sphere.
The other optional parameters control the numeric process used in solving the
implicit equation.

5.4.2 Parametric

Another method to describe a surface is by a parametrization. The syntax of the
corresponding PARAMETRIC object is

PARAMETRIC:
parametric { USER_FUNCTION_X, USER_FUNCTION_Y, USER_FUNCTION_Z
CORNER1, CORNER2 [PARAMETRIC_ITEMS] [OBJECT_MODIFIERS] }

PARAMETRIC_ITEMS:
[contained_by { CONTAINER } ] & [max_gradient FLOAT]
& [accuracy FLOAT] & [precompute I_DEPTH, x, y, z]

CONTAINER:
sphere { V_CENTER, F_RADIUS } | box { V_CORNER1, V_CORNER2 }

See also:
e [pov:6.5.5] Parametric Object

This describes the object given by the image of the function

(U'a U) = <fX(u’U)afY(uﬂv)a fz(u,?))>,

where fx, fy , fz are the USER_FUNCTION’s and (u, v) varies in the 2-dimensio-
nal box given by two opposite corners CORNER1 and CORNER2.
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5.5 Constructive Solid Geometry

We can describe complex shapes by set-theoretic operations from already described
objects. The objects obtained that way are one of:

CSG_OBJECT:
UNION | INTERSECTION | DIFFERENCE | MERGE

See also:
e [pov:6.5.6] Constructive Solid Geometry
e [pov:3.3] CSG Objects
e [pov:3.3.1] What is CSG?

o www.f-lohmueller.de/. .. /povcsgle.htm

5.5.1 Union

The syntax of a UNION is:

UNION:
union { UNION_OBJECT ... UNION_OBJECT [UNION_MODIFIERS] }

UNION_OBJECT:
OBJECT | LIGHT

UNION_MODIFIERS:
[split_union BOOL] & [OBJECT_MODIFIERS]

See also:

® [pov:6.5.6.2] Union

e [pov:3.3.2] CSG Union
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Unions of spheres

5.5.2 Merge

There is a variant of union namely MERGE, with syntax:

MERGE:
merge { SOLID_OBJECT SOLID_OBJECT... [OBJECT_MODIFIERS] }

See also:
e [pov:6.5.6.5] Merge
e [pov:3.3.5] CSG Merge
o www.f-lohmueller.de/. .. /povcsg2e.htm

The difference between merge and union is that in a merge the internal parts of
surfaces are removed.

Merged spheres
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5.5.3 Intersection

The syntax of an INTERSECTION is:

INTERSECTION:
intersection { SOLID_OBJECT ... SOLID_OBJECT
[INTERSECTION_MODIFIERS] }

SOLID_OBJECT:
FINITE_SOLID_OBJECT | INFINITE_SOLID_OBJECT | ISOSURFACE
| CSG_OBJECT

INTERSECTION_MODIFIERS:
[cutaway_textures] & [OBJECT_MODIFIERS]

See also:

e [pov:6.5.6.3] Intersection

e [pov:3.3.3] CSG Intersection

Intersections of spheres

5.5.4 Difference

The syntax of a DIFFERENCE is:

DIFFERENCE:
difference { SOLID_OBJECT ... SOLID_0BJECT
[DIFFERENCE_MODIFIERS] }

Andreas Kriegl, Univ.Wien, July 23, 2003



5.6.

LIGHTS 131

DIFFERENCE_MODIFIERS:
[cutaway_textures] & [OBJECT_MODIFIERS]

See also:

[pov:6.5.6.4] Difference

[pov:3.3.4] CSG Difference

Differences of spheres

5.6

Lights

Light cf. [FyDFH90, 13]
Rendering Techniques cf. [FvDFH90, 14]

[lumination and Shading cf. [FvDFH90, 16]

Ambient light, diffuse Reflection, Light-source attenuation, Atmospheric At-
tenuation, Specular Reflection, texture maps, bump maps, shadows, trans-
parency, refraction

Hugo Elias: A Physical Model Of Light
hugo.elias/. .. /x_physic.htm
Reflection, refraction, color, light sources:

Hugo Elias: Radiosity
hugo.elias/. .. /radiosity.htm
Radiosity, direct and global illumination:
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e Hugo Elias: Motion Blur
hugo.elias/. .. /x_motion.htm

e Hugo Elias: The Phong Approximation
hugo.elias/. .. /x_polyph.htm
Phong shading:

e Hugo Elias: Fast Phong Shading
hugo.elias/. .. /x_polyp2.htm

e Hugo Elias: Bump Mapping
hugo.elias/. .. /x_polybm.htms

e Hugo Elias: Simple Shadow Casting
hugo.elias/. .. /x_shadow.htm

e Frank Pfenning: 08-shading.pdf
almond.srv.cs.cmu.edu/. .. /08-shading.pdf
almond.srv.cs.cmu.edu/. .. /08-shading.pdf
Gouraud/Phong-shading, light sources, normals in OpenGL:

e Frank Pfenning: 16-ray.pdf
almond.srv.cs.cmu.edu/. .. /16-ray.pdf
almond.srv.cs.cmu.edu/. .. /16-ray.pdf
forward/backward raytracing, shadow, reflection, ray-intersections, trans-
mitted light, translucency:

e Heckbert-15462: raycasting 2.pdf
almond.srv.cs.cmu.edu/. .. /raycasting 2.pdf
forward /backward raytracing, shadow, ray-intersections, radiosity:

e Heckbert-15462: raytracing.pdf
almond.srv.cs.cmu.edu/. .. /raytracing_2.pdf
almond.srv.cs.cmu.edu/. .. /raytracing.pdf

raytracing, refraction, aliasing, supersampling, motion-blur, soft shadows,
depth of field:

e Heckbert-15462: visibility 2.pdf
almond.srv.cs.cmu.edu/. . . /visibility_2.pdf
Visibility-methods, Gouraud-, Phong-, facet-shading:

e Frank Pfenning: 17-spatial.pdf
almond.srv.cs.cmu.edu/. .. /17-spatial.pdf
almond.srv.cs.cmu.edu/. .. /17-spatial.pdf
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almond.srv.cs.cmu.edu/. .. /spatial 2.pdf
bounding volumes, grids, octrees, trees:

e Frank Pfenning: 18-radiosity.pdf
almond.srv.cs.cmu.edu/. .. /18-radiosity.pdf
almond.srv.cs.cmu.edu/. .. /18-radiosity.pdf
radiosity:

e Frank Pfenning: 19-global.pdf
almond.srv.cs.cmu.edu/. .. /19-global.pdf
almond.srv.cs.cmu.edu/. .. /19-global.pdf
radiosity:

e Heckbert-15462: shading_2.pdf
almond.srv.cs.cmu.edu/. .. /shading_2.pdf :

e Heckbert-15462: rendering.pdf
almond.srv.cs.cmu.edu/. .. /rendering.pdf
almond.srv.cs.cmu.edu/. .. /rendering.pdf
scan conversion:

e Frank Pfenning: 07-lighting.pdf
almond.srv.cs.cmu.edu/. .. /07-lighting.pdf
almond.srv.cs.cmu.edu/. .. /07-lighting.pdf
light sources, ambient light, phong illumination, (diffuse) reflection:

e Paul Heckbert: rad.pdf
almond.srv.cs.cmu.edu/. .. /rad.pdf
almond.srv.cs.cmu.edu/. .. /rad.pdf
global illumination and radiosity:

e [pov:3.7] The Light Source
[pov:3.7.1] The Pointlight Source
[pov:3.7.2] The Spotlight Source
[pov:3.7.3] The Cylindrical Light Source
[pov:3.7.4] The Area Light Source
[pov:3.7.5] The Ambient Light Source
[pov:3.7.6] Light Source Specials

[pov:6.5.7] Light Sources
[pov:6.5.8] Light Groups

[pov:10.1.7] Lights
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In order to be able to see the objects discussed in the previous chapter we need
some light. This is achieved in Pov-Ray by the LIGHT_SOURCE statement with
syntax:

LIGHT_SOURCE:
light_source { V_LOCATION, COLOR [LIGHT_SOURCE_ITEMS] }

LIGHT_SOURCE_ITEMS:
[LIGHT_TYPE] & [AREA_LIGHT_ITEMS] & [LIGHT_MODIFIERS]

LIGHT_TYPE:
spotlight [SPOTLIGHT_ITEMS] |
cylinder [SPOTLIGHT_ITEMS]

SPOTLIGHT_ITEMS:
[radius FLOAT] & [falloff FLOAT] &
[tightness FLOAT] & [point_at VECTOR]

AREA_LIGHT_ITEMS:
area_light AXIS1, AXIS2, SIZE1l, SIZE2 [AREA_LIGHT_MODIFIERS]

AREA_LIGHT_MODIFIERS:
[adaptive INT] & [jitter] & [circular] & [orient]

LIGHT_MODIFIERS:
[LIGHT_PHOTONS] &
[looks_like { OBJECT }] &
[TRANSFORMATION...] &
[fade_distance FLOAT] & [fade_power FLOAT] &
[media_attenuation [BOOL]] &
[media_interaction [BOOL]] &
[shadowless] &
[projected_through { OBJECT_IDENTIFIER }] &
[parallel [point_at VECTOR]]

LIGHT_PHOTONS:
photons { LIGHT_PHOTON_ITEMS }

LIGHT_PHOTON_ITEMS:
[refraction BOOL] & [reflection BOOL] & [area_light]
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Light source default values:

LIGHT_TYPE : pointlight
falloff : 70
media_interaction : on
media_attenuation : off

point_at : <0,0,0>
radius : 70
tightness : 10

5.6.1 Point Lights

This is the most basic light source. It sends light of a given color C from a point
S in space uniformly in all directions:

light_source { S, rgb C }

The color can be specified by the keyword rgb and a 3d-vector C' = (R, G, B) with
red(= R), green(= @) and blue(= B) component.

5.6.2 Spotlights

If we add the keyword spoTLIGHT, then the light is restricted to a cone with tip
at S and the line from S to P as axes. The half opening angle of the cone is given
by the float R1 and the full prescribed intensity of the light is attained in the cone
with the float RO as half opening angle.

light_source { S, rgb C
spotlight point_at P radius RO falloff R1 [ tightness T ] }

By setting the optional parameter tightness T to a value greater than 0 one can
soften the light distribution exponentially.

5.6.3 Cylindrical Lights

If we add instead of spotlight the keyword cYLINDER, then the light is restricted
to a cylinder. Note however, that the lightrays are still emitted from the point P
and are thus not parallel.

light_source { S, rgb C
cylinder point_at P radius RO falloff R1 [ tightness T ] }
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5.6.4 Parallel Lights

We may add the keyword PARALLEL to any light source together with point_at P
to make the light rays parallel to the ray from S to P.

light_source { S, rgb C ... parallel point_at P }

5.6.5 Area Lights

The light sources discussed so far have the unrealistic feature that they cast hard
shadows. Since in reality the light sources are not singular points but have some
size (like the sun or a light bulb) the cast a penumbra. To model this we would
have to integrate the light over that part of the light source which can be seen from
a given point in space. This would be far to slow, thus the following approximate
method of AREA LIGHTs can be used.

light_source { S, rgb C
area_light V1, V2, N1, N2 [jitter] [circular] [orient] }

This positions a N1 x N2-grid of point lights along the rectangle with corner S
and directional vectors V1 and V2 of its sides.

By using the optional keyword jitter these pointlights are randomly displaced a
little to make the shadows even softer during calculation of each single pixel.

By using the optional keyword circular the rectangle is deformed to an ellipse.

Finally, the optional keyword orient takes care that the rectangle is oriented
normal to each light ray it emits. This option should only be used together with
circular and quadratic area lights.

5.6.6 Light Fading

In reality light diminishes with distance, since the number of photons passing
through spheres of varying radii centered at the light source is constant, but the
surface of the spheres is proportional to the radius squared. So light intensity is
inverse proportional to the square of the distance from the source.

By default povray does not take this into account, but by adding the keywords
FADE_DISTANCE DO and FADE_POWER E one can modify this behavior. The formula
for the light intensity reaching an object with distance D from the source with
intensity [ is given by
2
.-
1+ (D/D0)E
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Note that £ = 2 corresponds best to the real situation, but here the term ‘1+’ has
been inserted in order to avoid oo for D = 0. The parameter DO is the distance,
where this formula gives the prescribed intensity I. And for smaller distances the
intensity can be as large as 21.
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Chapter 6

Textures & Patterns

Links

e [pov:3.8] Simple Texture Options
e [pov:3.9] Advanced Texture Options
e [pov:6.7] Textures

e [pov:10.1.10] Texture

So far we have objects and there is light, but we will still see nothing, since the
objects are by default black, and hence absorb all light. We want to change this now
and will give some structure to the surface (and the interior) of our objects. This is
done by the following statement, which can be added as an OBJECT_MODIFIER
to any object:

texture {
PIGMENT_STMT
NORMAL_STMT
FINISH_STMT
TRANSFORMATIONS

6.1 Pigment

Let us first discuss the PIGMENT_STMT. In its simplest form it just specifies a
color C

138
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pigment { color C }

Beside rgb <R,G,B> for C we can also use rgbf <R,G,B,F> rgbt <R,G,B,T> and
rgbft <R,G,B,F,T>.

The value F' in the first variant is the filter parameter 0 < F' < 1. It specifies the
amount of light of color (R, G, B) which may transmit through the object. E.g.

rgbf <1,0,0,0.25>

means that 25% of the red component of light passes through the object and
nothing of the green and blue components. Thus the object acts as red filter.
Note however, that the amount of filtering does not depend on the thickness of
the material, see media (7.2) for how this can be made more realistic.

The value T in the second variant is the transmit parameter 0 < 7T < 1. It specifies
the amount of light the can pass unfiltered through the object. The remainder part
1 — T is used for the color (R, G, B) of the object, e.g.

rgbt <1,0,0,0.25>

means that 25% of the light will pass unfiltered though the object and 75% of red
will be added to this light.

Of course, usual objects will not have a homogeneous color but some patterns,
which we have to treat next.

6.1.1 Color List Patterns

These simplest patterns consist of a partitioning of space to which fixed selected
colors are applied.

The first statement of this form is
pigment { checker color C1 color C2 }

This will colorize the object by a chessboard pattern of squares in the alternating
colors C1 and C2. In fact all patterns in Pov-Ray are 3-dimensional, so this
pattern colorizes that part of the space which is occupied by the object by unit
cubes with alternating colors.

A modification of this theme is:
pigment { brick color C1 color C2 brick_size V mortar M }

which fills the space with bricks of dimension V in color C1 separated by gaps of
dimension M in color C2. Each further higher layer of bricks is offset 1/2 in the
X-direction

Another one is
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pigment { hexagon color C1 color C2 color C3 }

which fills space by hexagonal infinite long upright columns of alternating colors.

6.1.2 Color Mapped Patterns

Instead of aprupt changes in colors as in the color list patterns we now want to
produce colors which change gradually. For this we need a function returning float
values for each point in space and some way to calculate colors out of these values.

This later step is achieved by color maps, which give a table of pairs of return values
between 0 and 1 and corresponding colors. The return values of the function
modulo 1 are then used to interpolate between these colors. The syntax of a
color_map is:

color_map {
[T1 color Ci]
[T2 color C2]
[Tn color Cn]
}
Note that here the square brackets ‘[" and ‘|’ belong to the syntax and are not
indicators for optional parameters. The number n of colors may be between 1
and 256. The T-values should satisfy 0 < 77 < Ty, < --- < T, < 1. 1If the
function returns one of these values modulo 1 for some point in space, then the
corresponding color is used. If the value 7' modulo 1 lies between 7; and 7}, then

the two colors C; and Cj;; are interpolated correspondingly. If the value modulo
1 is smaller than T (resp. large than T,) then color C; (resp. Cy,) is used.

Now we turn to the function assigning float values to all points in space. There
are many predefined functions, like:

gradient V ...returns the length of the projection onto the vector V. Thus
gradient y returns the height of the point for example.

marble V ...is similar to gradient but after reaching 1 it zig-zags the values.

boxed ...returns 1 — min{l, max{|X|,|Y|,|Z|}, which is 1 at 0 and vanishes
outside the centered cube with side 2.

cylindrical ...returns 1 — min{l, X2+ Z2}, which is 1 on the Y-axes and
vanishes outside the cylinder with radius 1.

onion ...returns /X2 + Y2 4 Z2 which is 1 on the unitsphere and 0 at 0.
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wood ...return /X2 + Z?2 until it reaches 1 and then it zig-zags. So this gives
the rings of trees. If we want to make a board of wood, we should carefully
align this texture to the box and tilt it slightly.

bozo ...produces a smooth random noise (= bumps and spots)
cells ...returns for points in each unit cube a constant random value

crackle ...returns 0 for points that have equal distance to the two nearest
randomly selected points. This can be used for natural stone wall.

If these predefined functions are not sufficient the user may supply his own function
as follows:

function { USER_FUNCTION }

with a user defined function USER_FUNCTION (in the simplest case this is just
some expression in z, y and z), see [pov:6.1.6 User-Defined Functions]

So this type of pigment statement will look like:
pigment { function { ... } color_map { ... } }

When all else fails one may use

6.1.3 Image Maps

pigment {
image_map { [TYPE] FILENAME [MODIFIER] }
}

Where TYPE is any of gif, tga, iff, ppm, pgm, png, jpeg, tiff and sys, FILENAME is
the name of a corresponding graphic file.

The colors of the graphic file fill the unitsquare in the z-y-plane and all parallel
planes repeatedly except once is used as MODIFIER. This way of mapping the
image to the points in space may be changed by using map_type T instead of TYPE,
where T' can be

0 planar
1 spherical

2 cylindrical
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5 toroidal

Another MODIFIER is transmit all T and filter all F which makes the image
partially transparent by the amount 7" or acting as a filter by the amount F'. For
graphic files using a palette also transmit IDX T and filter IDX F can be used
to make only pixels with color index IDX transparent.

6.2 Finish

Now we come to the FINISH_. STMT:
finish { ... }

The appearance of the object does not only depend on its color pattern but also
on the reflection properties of its surface. So light contributes in many ways to the
appearance.

6.2.1 Ambient Light

Even if there is no light falling directly from some light source onto the object
it will still be seen, since light is partially reflected or scattered by neighboring
objects or even the air. This would by far be too time consuming to calculate
directly by a raytracer so one simulates this ambient light by the following clause
in the finish statement:

ambient T

Which says that the fraction 7 of the ambient light (by default of rgb color 1)
will contribute to the color of the object. This light depends neither on the position
of the object, nor the viewing angle, nor has ambient light a fixed position in space
but it fills the whole space uniformly.

So the intensity it contributes to a point on the surface of an object with ambient
value T is given by
I, :=T % C,,

where C, is the color of the ambient light.

6.2.2 Diffuse Reflected Light

Light reaching the object from some light source will be (partially) reflected,
mainly in the direction opposite to the incoming ray with respect to the surface
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normal but also in all other directions in particular if the surface is rather soft like
velvet.

In order to account for this later type of reflection the following clause is used in
the finish statement:

diffuse T

Which says that the fraction 7" of the light coming (directly) from light sources will
contribute to the color of the object. Note that the intensity of the light coming
from the light source will also depend on the angle ¢ of the incoming ray with
respect to the surface normal. In fact, if the amount of light reaching the surface
is I, per square unit normal to the incoming ray, then the area of the surface hit
by this light is 1/ cos(yp) and hence the intensity it contributes is

Iy =T x I, % cos(yp).

6.2.3 Brilliance

Values of brilliance higher than the default 1.0 makes the light fall off less at
medium to small angles thus making the object to appear more metallic and of
higher surface shininess.

6.2.4 Highlights

These are bright spots which appear when light coming directly from a light source
reflects off a smooth surface. This can be simulated by

finish { ... phong P phong_size S [metallic] ... }

where 0 < P < 1 specifies the amount by which the light is saturated by the surface
color (1 means complete saturation). The phong size S is inverse proportional to
the size of the highlight.

The formula for the corresponding light intensity is

I

1
b= g I cos(0)",

for some exponent n.
An alternative method (which is better on low viewing angles) is

finish { ... specular P roughness R [metallic] ... }
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where 0 < P < 1 specifies the amount by which the light is saturated by the
surface color. (1 is complete saturation). The roughness R is proportional to the
size of the highlight.

The optional keyword metallic gives the object a more metallic appearance.

6.2.5 Specular Reflection

The part of the light directly coming from light sources but also indirectly via
other objects and which is mirrored by the surface is controlled by the following
part of in the finish statement:

reflection { color C [, color C1] [exponent E]
[falloff F] [metallic M] [fresnel B] [conserve_energyl
}

where the part C' of the incoming light is reflected, falloff changes the behavior
in such a way that darker objects are reflected less (which corresponds better to
reality), usage of color C1 (e.g. for water) makes the reflection depending on
the incoming=outgoing angle (i.e. C' is used for normal hitting light, C1 for light
parallel to the surface) and the interpolation inbetween is controlled by exponent E
(for linear (E' = 1), quadratic (F = 2), ...). The option conserve_energy adjusts
the amount of light transmitted and filtered by the amount reflected. Using the
phrase metallic means that the reflected light is multiplied by the surface color.

6.2.6 Refraction

When light passes through an object (having non-zero transmit or filter parameter)
of different density then the surrounding air the light is bended. This is called
refraction. By default transparent objects in Pov-Ray do not refract light. But
this can be turned on by

finish { ... refraction 1 ior K ... }

where K is the i(ndex)o(f)r(refraction). Water has an ior of 1.33, glass of approx-
imately 1.5 and diamond of 2.4 (see "ior.inc”).

6.3 Normal

Next we come to the NORMAL_STMT. Note that light given by diffuse, high-
lights, reflection and refraction depends on the normal to the surface of the
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object. For some objects (like planes) the surface normal is explicitly given, for
other it is obvious (like boxes (except at the edges), spheres, tori, etc. ). It is not
for all objects an easy problem to calculate the surface normal. For an implicitly
given (iso)surface M = f~1(0) via a C!-function f, the normal to M in a point
x € M is described by the gradient

0

a—.fﬂl f(l‘17$27$3)7

(xla Za, -T3)a

—Ez-f(xl,xz,x3)>

gra‘d f(xla Z2, $3) = < or
3

Oz,

provided this does not vanish: In fact, the gradient of f is related to the derivative
by

3
0 )
(grad f($1,$2,$3)|(v1;7)2;713)> = E (A —Ba{ ($1,$2,$3) =f (331,552,353) . (01,112,1)3)
i=1 ?

That a vector v = (v1, ve,v3) stands normal to the surface M at the point P :=
(x1, 22, x3) means that for any differentiable curve ¢ in M with ¢(0) = P we have
(v|d(0)) = 0. That ¢ lies in M = f~1(0) means that f o ¢ is constant and hence

0= (foc)(0) = f(c(0)) - €(0) = (grad f(c(0))|c'(0)),

by the chain-rule.

Furthermore, natural objects usually don’t have mathematically perfect surfaces
but irregularities like bumps, cracks or some graininess, and it would be very time-
consuming to model them. Cheaper is to modify only the (virtual) normal to the
object. This can be done in various ways inside the texture statement by the
normal statement:

NORMAL:
normal { [NORMAL_IDENTIFIER] [NORMAL_TYPE] [NORMAL_MODIFIER...] }

NORMAL_TYPE:
PATTERN_TYPE [Amount] |
bump_map { BITMAP_TYPE "bitmap.ext" [BUMP_MAP_MODS...]}

NORMAL_MODIFIER:

PATTERN_MODIFIER |
NORMAL_LIST |

slope_map { SLOPE_MAP_BODY } |
normal_map { NORMAL_MAP_BODY 1} |
bump_size Amount |

no_bump_scale Bool | accuracy Float
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There are four basic NORMAL_TYPEs. They are:

e block pattern normals,
e continuous pattern normals,
e specialized normals,

e bump maps.

The pattern type is optionally followed by one or more normal modifiers. Different
modifiers may be used with the various NORMAL_TYPEs. In addition to general
pattern modifiers such as transformations, turbulence, and warp modifiers, normals
may also have a NORMAL_LIST, slope_map, normal map, and bump_size which
are specific to normals. Normal modifiers of any kind apply only to the normal
and not to other parts of the texture.

6.3.1 Slope Map

From [pov:6.7.2.1] :

Each of the various pattern types available is in fact a mathematical function
that takes any x, y, z location and turns it into a number between 0.0 and 1.0
inclusive. That number is used to specify where the various high and low spots
are. The slope_map lets you further shape the contours.

This is like in a color_map: We have some function and a table called slope_map:

normal {
FUNCTION
slope_map {
[ T1, <H1,K1> ]
[ T2, <H2,K2> ]

[ TI;I;.<HN,KN> ]
}
X

where T'1, T2,...,Tn are the special return values of the function and the H’s and
K’s are the corresponding heights and slopes. The slopes inbetween are interpo-
lated by cubic splines.
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6.3.2 Normal Map

We can even blend various types of normals using a FUNCTION and a normal_map.

6.3.3 Bump Map

From [pov:6.7.2.3] :

Instead of placing the color of the image on the shape like an image_map a
bump_map perturbs the surface normal based on the color of the image at that
point. The result looks like the image has been embossed into the surface. By
default, a bump map uses the brightness of the actual color of the pixel.

BUMP_MAP:
normal
{
bump_map
{
BITMAP_TYPE "bitmap.ext"
[BUMP_MAP_MODS. . .]
}

[NORMAL_MODFIERS. . .]

BITMAP_TYPE:
gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys

BUMP_MAP_MOD:
map_type Type | once | interpolate Type | use_color |
use_colour | bump_size Value

6.3.4 Patterned Textures

From [pov:6.7.5] :

Patterned textures are complex textures made up of multiple textures. The
component textures may be plain textures or may be made up of patterned
textures. A plain texture has just one pigment, normal and finish statement.
Even a pigment with a pigment map is still one pigment and thus considered a
plain texture as are normals with normal map statements.

Patterned textures use either a texture_map statement to specify a blend or
pattern of textures or they use block textures such as checker with a texture
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list or a bitmap similar to an image map called a material map specified with a
material_map statement.

An example using a texture map is:

texture {
gradient x // this is the PATTERN_TYPE
texture_map {
[0.3 pigment{Red} finish{phong 1}]
[0.3 T_Wood11] // this is a texture identifier
[0.6 T_Woodii]
[0.9 pigment{DMFWood4} finish{Shiny}]
}
}

Material Map

Instead of placing a solid color of the image on the shape like an image map, an
entire texture is specified based on the index or color of the image at that point.
You must specify a list of textures to be used like a texture palette rather than
the usual color palette.

MATERIAL_MAP:

texture
{
material_map
{
BITMAP_TYPE "bitmap.ext"
[BITMAP_MODS...] TEXTURE... [TRANSFORMATIONS...]
b

}
BITMAP_TYPE:

gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys
BITMAP_MOD:

map_type Type | once | interpolate Type

Layered Texture:

A layered texture consists of several textures that are partially transparent and
are laid one on top of the other to create a more complex texture. The different
texture layers show through the transparent portions to create the appearance
of one texture that is a combination of several textures.
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You create layered textures by listing two or more textures one right after the
other. The last texture listed will be the top layer, the first one listed will be
the bottom layer. All textures in a layered texture other than the bottom layer
should have some transparency. For example:

object {
My_Object
texture {T1} // the bottom layer
texture {T2} // a semi-transparent layer
texture {T3} // the top semi-transparent layer
}

In this example T2 shows only where T3 is transparent and T1 shows only where
T2 and T3 are transparent.

6.3.5 UV-Mappings

From [pov:6.7.7] :

All textures in POV-Ray are defined in 3 dimensions. Even planar image mapping
is done this way. However, it is sometimes more desirable to have the texture
defined for the surface of the object. This is especially true for bicubic_patch
objects and mesh objects, that can be stretched and compressed. When the
object is stretched or compressed, it would be nice for the texture to be glued
to the object’s surface and follow the object’s deformations.

When uv_mapping is used, then that object’s texture will be mapped to it using
surface coordinates (u and v) instead of spatial coordinates (x, y, and z). This
is done by taking a slice of the object’s regular 3D texture from the XY plane
(Z=0) and wrapping it around the surface of the object, following the object’s
surface coordinates.

Note: some textures should be rotated to fit the slice in the XY plane.

Syntax:

texture {

pigment { uv_mapping PIGMENT_BODY }
normal { uv_mapping NORMAL_BODY }
texture { uv_mapping TEXTURE_BODY }
}

Surface mapping is currently defined for the following objects:
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bicubic_patch UV coordinates are based on the patch’s parametric coordinates.
They stretch with the control points. The default range is (0..1) and can
be changed.

mesh, mesh2 UV coordinates are defined for each vertex and interpolated be-
tween.

lathe, sor modified spherical mapping... the u coordinate (0..1) wraps around
the y axis, while the v coordinate is linked to the object’s control points
(also ranging 0..1). Surface of Revolution also has special disc mapping on
the end caps if the object is not 'open’.

sphere boring spherical mapping.

box the image is wrapped around the box.

With the keyword uv_vectors, the UV coordinates of the corners can be con-
trolled for bicubic patches and standard triangle mesh.

For bicubic patches the UV coordinates can be specified for each of the four
corners of the patch. This goes right before the control points. The syntax is:

uv_vectors <cornerl>,<corner2>,<corner3>, <corner4>

with default

uv_vectors <0,0>,<1,0>,<1,1>,<0,1>

Similarly for mesh it looks like
mesh {
triangle { ... }

uv_vectors <0.0>,<1,0>,<1,1>

texture { pigment { uv_mapping image map ... } }

}

Interior Texture

From [pov:6.7.9] :
Syntax:
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object {
texture { TEXTURE_ITEMS... }
interior_texture { TEXTURE_ITEMS...}
}
All surfaces have an exterior and interior surface. The interior_texture simply
allows to specify a separate texture for the interior surface of the object. For
objects with no well defined inside/outside (bicubic_patch, triangle, ...) the
interior_texture is applied to the backside of the surface. Interior surface textures
use exactly the same syntax and should work in exactly the same way as regular
surface textures, except that they use the keyword interior_texture instead
of texture.
Note: Do not confuse interior_texture {} with interior {}: the first one specifies
surface properties, the second one specifies volume properties.
6.4 Pattern Modifier

There are various ways to modify a pattern, we will treat only the most important

ones.

6.4.1 Transforming Patterns

From [pov:6.7.12.1] :

The most common pattern modifiers are the transformation modifiers translate,
rotate, scale, transform, and matrix, see chapter (4). These modifiers may be
placed inside pigment, normal, texture, and density statements to change the
position, size and orientation of the patterns.

6.4.6 Warps

Warps replace points on the object by some points nearby specified in various

ways.

From [pov:6.7.12.6] :
Currently there are seven types of warps but the syntax was designed to allow
future expansion.

The syntax for using a warp statement is:
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WARP:
warp {
repeat <Direction> [REPEAT_ITEMS...] |
black_hole <Location>, Radius [BLACK_HOLE_ITEMS...] |
turbulence <Amount> [TURB_ITEMS...]
cylindrical [ orientation VECTOR | dist_exp FLOAT ]
spherical [ orientation VECTOR | dist_exp FLOAT ]
toroidal [ orientation VECTOR | dist_exp FLOAT |
major_radius FLOAT ]
planar [ VECTOR , FLOAT ]
}

REPEAT_ITEMS:
offset <Amount> |
flip <Axis>

BLACK_HOLE_ITEMS:
strength Strength | falloff Amount | inverse |
repeat <Repeat> | turbulence <Amount>

TURB_ITEMS:
octaves Count | omega Amount | lambda Amount

6.4.7 Black Hole Warp

From [pov:6.7.12.6.1] :

BLACK_HOLE_WARP:
warp
{
black_hole <Location>, Radius
[BLACK_HOLE_ITEMS...]
}
BLACK_HOLE_ITEMS:
strength Strength | falloff Amount | inverse | type Type |
repeat <Repeat> | turbulence <Amount>

The minimal requirement is the black_hole keyword followed by a vector
(Location) followed by a comma and a float Radius. Black holes effect all points
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within the spherical region around the location and within the radius. This is op-
tionally followed by any number of other keywords which control how the texture
is warped.

The amount of displacement of the point is given by the formula
strength * gt

where d is the distance of the point from the complement of the ball around
(Location) with radius 1, so d = 0 outside this ball and d = 1 on its center.

The keyword inverse reverses the direction of the displacement.

The phrase repeat V makes black holes at the lattice points specified by the
components of V.

6.4.8 Repeat Warp

From [pov:6.7.12.6.2] :

The repeat warp causes a section of the pattern to be repeated over and over.
It takes a slice out of the pattern and makes multiple copies of it side-by-side.
The warp has many uses but was originally designed to make it easy to model
wood veneer textures. Veneer is made by taking very thin slices from a log and
placing them side-by-side on some other backing material. You see side-by-side
nearly identical ring patterns but each will be a slice perhaps 1/32th of an inch
deeper.

The syntax for a repeat warp is

REPEAT_WARP:
warp { repeat <Direction> [REPEAT_ITEMS...] }

REPEAT_ITEMS:
offset <Amount> | flip <Axis>

The repeat vector specifies the direction in which the pattern repeats and the
width of the repeated area. This vector must lie entirely along an axis. In other
words, two of its three components must be 0. For example

pigment {

wood

warp { repeat 2*x }
}
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which means that from x=0 to x=2 you get whatever the pattern usually is.
But from x=2 to x=4 you get the same thing exactly shifted two units over
in the x-direction. To evaluate it you simply take the x-coordinate modulo 2.
Unfortunately you get exact duplicates which isn't very realistic. The optional
offset vector tells how much to translate the pattern each time it repeats. For
example

pigment {
wood
warp {repeat x*2 offset zx0.05}
}

means that we slice the first copy from x=0 to x=2 at z=0 but at x=2 to x=4
we offset to z=0.05. In the 4 to 6 interval we slice at z=0.10. At the n-th
copy we slice at 0.05 n z. Thus each copy is slightly different. There are no
restrictions on the offset vector.

Finally the flip vector causes the pattern to be flipped or mirrored every other
copy of the pattern. The first copy of the pattern in the positive direction from
the axis is not flipped. The next farther is, the next is not, etc. The flip vector
is a three component x, y, z vector but each component is treated as a boolean
value that tells if you should or should not flip along a given axis. For example

pigment {
wood
warp {repeat 2*x flip <1,1,0>}

means that every other copy of the pattern will be mirrored about the x- and y-
axis but not the z-axis. A non-zero value means flip and zero means do not flip
about that axis. The magnitude of the values in the flip vector doesn’t matter.

6.4.9 Turbulence Warp

From [pov:6.7.12.6.4] :

Inside the warp statement, the keyword turbulence followed by a float or vector
may be used to stir up any pigment, normal or density. A number of optional
parameters may be used with turbulence to control how it is computed. The
syntax is:
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TURBULENCE_ITEM:
turbulence <Amount> | octaves Count |
omega Amount | lambda Amount

Typical turbulence values range from the default 0.0, which is no turbulence, to
1.0 or more, which is very turbulent. If a vector is specified different amounts of
turbulence are applied in the x, y and z-direction.

Turbulence uses a random noise function called DNoise. This is similar to the
noise used in the bozo pattern except that instead of giving a single value it gives
a direction. You can think of it as the direction that the wind is blowing at that
spot. Points close together generate almost the same value but points far apart
are randomly different.

Turbulence uses DNoise to push a point around in several steps called octaves.
We locate the point we want to evaluate, then push it around a bit using tur-
bulence to get to a different point then look up the color or pattern of the new
point.

It says in effect "Don’t give me the color at this spot... take a few random steps
in different directions and give me that color”. Each step is typically half as long
as the one before.

From [pov:6.7.12.6.4.1] :
Octaves

The octaves keyword may be followed by an integer value to control the number
of steps of turbulence that are computed. Legal values range from 1 to (10. The
default value of 6 is a fairly high value; you won't see much change by setting it to
a higher value because the extra steps are too small. Float values are truncated
to integer. Smaller numbers of octaves give a gentler, wavy turbulence and
computes faster. Higher octaves create more jagged or fuzzy turbulence and
takes longer to compute. Lambda

The 1lambda parameter controls how statistically different the random move of an
octave is compared to its previous octave. The default value is 2.0 which is quite
random. Values close to lambda 1.0 will straighten out the randomness of the
path in the diagram above. The zig-zag steps in the calculation are in nearly the
same direction. Higher values can look more swirly under some circumstances.

Omega

The omega value controls how large each successive octave step is compared
to the previous value. Each successive octave of turbulence is multiplied by the
omega value. The default omega 0.5 means that each octave is 1/2 the size of
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the previous one. Higher omega values mean that 2nd, 3rd, 4th and up octaves
contribute more turbulence giving a sharper, crinkly look while smaller omegas
give a fuzzy kind of turbulence that gets blurry in places.
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Chapter 7

Media & Atmosphere

7.1

Interior

7.1.1 Empty and Solid Objects

From [pov:6.6.2] :

It is very important that you know the basic concept behind empty and solid
objects in POV-Ray to fully understand how features like interior and translucency
are used. Objects in POV-Ray can either be solid, empty or filled with (small)
particles.

A solid object is made from the material specified by its pigment and finish
statements (and to some degree its normal statement). By default all objects
are assumed to be solid. If you assign a stone texture to a sphere you'll get a ball
made completely of stone. It's like you had cut this ball from a block of stone.
A glass ball is a massive sphere made of glass. You should be aware that solid
objects are conceptual things. If you clip away parts of the sphere you'll clearly
see that the interior is empty and it just has a very thin surface.

This is not contrary to the concept of a solid object used in POV-Ray. It is
assumed that all space inside the sphere is covered by the sphere’s interior. Light
passing through the object is affected by attenuation and refraction properties.
However there is no room for any other particles like those used by fog or interior
media.

Empty objects are created by adding the hollow keyword (see "Hollow") to the
object statement. An empty (or hollow) object is assumed to be made of a very
thin surface which is of the material specified by the pigment, finish and normal
statements. The object’s interior is empty, it normally contains air molecules.
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An empty object can be filled with particles by adding fog or atmospheric media
to the scene or by adding an interior media to the object. It is very important
to understand that in order to fill an object with any kind of particles it first has
to be made hollow.

7.1.2 The Interior Statement

From [pov:6.6] :

INTERIOR:
interior { [INTERIOR_IDENTIFIER] [INTERIOR_ITEMS...] }
INTERIOR_ITEM:
ior Value | caustics Value | dispersion Value |
dispersion_samples Samples | fade_distance Distance |
fade_power Power | fade_color <Color>
MEDIA. ..

Interior default values:

ior : 1.0
caustics : 0.0
dispersion : 1.0
dispersion_samples : 7
fade_distance : 0.0
fade_power : 0.0
fade_color . <0,0,0>

7.1.3 Refraction

From [pov:6.6.4] :

When light passes through a surface either into or out of a dense medium the
path of the ray of light is bent. Such bending is called refraction. The amount of
bending or refracting of light depends upon the density of the material. Air, wa-
ter, crystal and diamonds all have different densities and thus refract differently.
The index of refraction or ior value is used by scientists to describe the relative
density of substances. The ior keyword is used in POV-Ray in the interior to
turn on refraction and to specify the ior value.
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7.1.4 Dispersion

From [pov:6.6.5] :

For all materials with a ior different from 1.0 the refractive index isn't constant
throughout the spectrum. It changes as a function of wavelength. Generally the
refractive index decreases as the wavelength increases. Therefore light passing
through a material will be separated according to wavelength. This is known as
chromatic dispersion.

By default POV-Ray does not calculate dispersion as light travels through a
transparent object. In order to get a more realistic effect the dispersion and
dispersion_samples keywords can be added to the interior block. They will
simulate dispersion by creating a prismatic color effect in the object.

The dispersion value is the ratio of refractive indices for violet to red. It con-
trols the strength of dispersion (how much the colors are spread out) used. A
DISPERSION_VALUE of 1 will give no dispersion, good values are 1.01 to 1.1.

7.1.5 Attenuation

From [pov:6.6.6] :

Light attenuation is used to model the decrease in light intensity as the light trav-
els through a transparent object. The keywords fade_power, fade_distance
and fade_color are specified in the interior statement.

The fade_distance value determines the distance the light has to travel to
reach half intensity while the fade_power value determines how fast the light
will fall off. fade_color colorizes the attenuation. For realistic effects a
fade power of 1 to 2 should be used. Default values for fade_power and
fade_distance is 0.0 which turns this feature off. Default for fade_color
is (0,0,0), if fade_color is (1,1,1) there is no attenuation. The actual colors
give colored attenuation. (1,0,0) looks red, not cyan as in media.

The attenuation is calculated by a formula similar to that used for light source

attenuation. .

( d )fade_power
fade_distance

attenuation =

If you set fade_power in the interior of an object at 1000 or above, a realistic
exponential attenuation function will be used:

attenuation = exp(— depth / fade_dist)
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7.1.6 Object-Media

From [pov:6.6.8] :

The interior statement may contain one or more media statements. Media is
used to simulate suspended particles such as smoke, haze, or dust. Or visible
gasses such as steam or fire and explosions. When used with an object interior,
the effect is constrained by the object’s shape. The calculations begin when the
ray enters an object and ends when it leaves the object. Any interior media
patterns are totally independent of the texture.

7.2 Media

From [pov:6.8] :
The media statement is used to specify particulate matter suspended in a medium
such air or water. It can be used to specify smoke, haze, fog, gas, fire, dust etc.

MEDIA:
media { [MEDIA_IDENTIFIER] [MEDIA_ITEMS...] }
MEDIA_ITEMS:
method Number | intervals Number | samples Min, Max |
confidence Value | variance Value | ratio Value |
absorption COLOR | emission COLOR | aa_threshold Value |
aa_level Value |
scattering {
Type, COLOR [ eccentricity Value ] [ extinction Value ]
o
density {
[DENSITY_IDENTIFIER] [PATTERN_TYPE]
[DENSITY_MODIFIER...]
o
TRANSFORMATIONS
DENSITY_MODIFIER:
PATTERN_MODIFIER | DENSITY_LIST | COLOR_LIST
| color_map { COLOR_MAP_BODY }
| colour_map { COLOR_MAP_BODY }
| density_map { DENSITY_MAP_BODY }

Media default values:
aa_level 4
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aa_threshold : 0.1

absorption : <0,0,0>
confidence : 0.9

emission : <0,0,0>
intervals : 10

method 3

ratio : 0.9

samples : Min 1, Max 1
variance : 1/128

SCATTERING COLOR : <0,0,0>
eccentricity : 0.0
extinction : 1.0

7.2.1 Media Types

From [pov:6.8.1] :

There are three types of particle interaction in media: absorbing, emitting, and
scattering. All three activities may occur in a single media. Each of these three
specifications requires a color. Only the red, green, and blue components of the
color are used.

7.2.2 Density

From [pov:6.8.3] :

Particles of media are normally distributed in constant density throughout the
media. However the density statement allows you to vary the density across
space using any of POV-Ray's pattern functions such as those used in textures.
If no density statement is given then the density remains a constant value of
1.0 throughout the media. More than one density may be specified per media
statement. The syntax for density is:

DENSITY:
density
{
[DENSITY_IDENTIFIER]
[DENSITY_TYPE]
[DENSITY_MODIFIER...]
}
DENSITY_TYPE:
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PATTERN_TYPE | COLOR
DENSITY_MODIFIER:
PATTERN_MODIFIER | DENSITY_LIST
| color_map { COLOR_MAP_BODY }
| colour_map { COLOR_MAP_BODY }
| density_map { DENSITY_MAP_BODY }
The density statement may begin with an optional density identifier. All subse-
quent values modify the defaults or the values in the identifier. The next item
is a pattern type. This is any one of POV-Ray'’s pattern functions such as bozo,
wood, gradient, waves, etc. Of particular usefulness are the spherical, planar,
cylindrical, and boxed patterns which were previously available only for use with
our discontinued halo feature. All patterns return a value from 0.0 to 1.0. This
value is interpreted as the density of the media at that particular point. See
"Patterns” for details on particular pattern types. Although a solid COLOR pat-
tern is legal, in general it is used only when the density statement is inside a
density_map.
7.3 Atmospheric Effects

From [pov:6.9] :
Atmospheric effects such as fog, dust, haze, or visible gas may be simulated by
a media statement specified in the scene but not attached to any object.

7.3.1 Background

From [pov:6.9.2] :
A background color can be specified if desired. Any ray that doesn’t hit an object
will be colored with this color.

7.3.2 Sky Sphere

From [pov:6.9.4] :
The sky sphere is used create a realistic sky background without the need of an
additional sphere to simulate the sky. Its syntax is:

SKY_SPHERE:
sky_sphere { [SKY_SPHERE_IDENTIFIER] [SKY_SPHERE_ITEMS...] }
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SKY_SPHERE_ITEM:
PIGMENT | TRANSFORMATION

The sky sphere can contain several pigment layers with the last pigment being
at the top, i.e. it is evaluated last, and the first pigment being at the bottom,
i.e. it is evaluated first. If the upper layers contain filtering and/or transmitting
components lower layers will shine through. If not lower layers will be invisible.

The sky sphere is calculated by using the direction vector as the parameter for
evaluating the pigment patterns. This leads to results independent from the view
point which pretty good models a real sky where the distance to the sky is much
larger than the distances between visible objects.

If you want to add a nice color blend to your background you can easily do this
by using the following example.

sky_sphere {
pigment {
gradient y
color_map {
[ 0.5 color CornflowerBlue ]
[ 1.0 color MidnightBlue ]
}
scale 2
translate -1
}
}

This gives a soft blend from CornflowerBlue at the horizon to MidnightBlue at
the zenith. The scale and translate operations are used to map the direction
vector values, which lie in the range from (-1, -1, -1) to (1, 1, 1), onto the range
from (0, 0, 0) to (1, 1, 1). Thus a repetition of the color blend is avoided for
parts of the sky below the horizon.

7.3.3 Rainbow

From [pov:6.9.5] :

RAINBOW:
rainbow { [RAINBOW_IDENTIFIER] [RAINBOW_ITEMS...] }
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RAINBOW_ITEM:
direction <Dir> | angle Angle | width Width |
distance Distance | COLOR_MAP | jitter Jitter | up <Up> |
arc_angle Arc_Angle | falloff_angle Falloff_Angle

Rainbow default values:

arc_angle : 180.0
falloff_angle : 180.0
jitter : 0.0
up

7.4 Photons

From [pov:6.10] :

The basic goal of this implementation of the photon map is to render true
reflective and refractive caustics. The photon map was first introduced by Henrik
Wann Jensen.

Photon mapping is a technique which uses a backwards ray-tracing pre-processing
step to render refractive and reflective caustics realistically. This means that
mirrors can reflect light rays and lenses can focus light.

Photon mapping works by shooting packets of light (photons) from light sources
into the scene. The photons are directed towards specific objects. When a photon
hits an object after passing through (or bouncing off of) the target object, the
ray intersection is stored in memory. This data is later used to estimate the
amount of light contributed by reflective and refractive caustics.
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Another example using photons

7.4.1 Using Photon Mapping in Your Scene

From [pov:6.10.2] :

When designing a scene with photons, it helps to think of the scene objects in
two categories. Objects in the first category will show photon caustics when hit
by photons. Objects in the second category cause photon caustics by reflecting
or refracting photons. Some objects may be in both categories, and some objects
may be in neither category.

Category 1 - Objects that show photon caustics
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By default, all objects are in the first category. Whenever a photon hits an
object, the photon is stored and will later be used to render caustics on that
object. This means that, by default, caustics from photons can appear on any
surface. To speed up rendering, you can take objects out of this category. You do
this with the line: photons { collect off }. If you use this syntax, caustics
from photons will not appear on the object. This will save both memory and
computational time during rendering.

Category 2 - Objects that cause photon caustics

By default, there are no objects in the second category. If you want your object
to cause caustics, you need to do two things. First, make your object into a
"target.” You do this with the target keyword. This enables light sources to
shoot photons at your object. Second, you need to specify if your object reflects
photons, refracts photons, or both. This is done with the reflection on and
refraction on keywords. To allow an object to reflect and refract photons,
you would use the following lines of code inside the object:

photons{
target
reflection on
refraction on

3

Generally speaking, you don’'t want an object to be in both categories. Most
objects that cause photon caustics do not themselves have much color or bright-
ness. Usually they simply refract or reflect their surroundings. For this reason,
it is usually a waste of time to display photon caustics on such surfaces. Even
if computed, the effects from the caustics would be so dim that they would go
unnoticed.

Sometimes, you may also wish to add photons{collect off} to other clear or
reflective objects, even if they are not photon targets. Again, this is done to
prevent unnecessary computation of caustic lighting.

Finally, you may wish to enable photon reflection and refraction for a surface,
even if it is not a target. This allows indirect photons (photons that have already
hit a target and been reflected or refracted) to continue their journey after hitting
this object.

7.4.2 Photon Global Settings

From [pov:6.10.2.1] :
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global_photon_block:

photons {

spacing <photon_spacing> | count <photons_to_shoot>

[gather <min_gather>, <max_gather>]
[media <max_steps> [,<factor>]]
[jitter <jitter_amount>]
[max_trace_level <photon_trace_level>]
[adc_bailout <photon_adc_bailout>]

[save_file "filename" | load_file "filename"]

[autostop <autostop_fraction>]

[expand_thresholds <percent_increase>, <expand_min>]

[radius <gather_radius>,<multiplier>,

<gather_radius_media>,<multiplier>]

All photons default values:

Global
expand_min
gather
jitter
media

Object
collect
refraction
reflection
split_union
target

Light_source:
area_light
refraction
reflection

: 40
: 20, 100
: 0.4

: on
: off
: off
: on

1.0

: off
. off
. off

The number of photons generated can be set using either the spacing or count

keywords:

e If spacing is used, it specifies approximately the average distance between
photons on surfaces. If you cut the spacing in half, you will get four times
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as many surface photons, and eight times as many media photons.

e |f count is used, POV-Ray will shoot the approximately number of photons
specified. The actual number of photons that result from this will almost
always be at least slightly different from the number specified. Still, if you
double the photons_to_shoot value, then twice as many photons will be
shot. If you cut the value in half, then half the number of photons will be

shot.
e — |t may be less, because Pov-Ray shoots photons at a target object’s
bounding box, which means that some photons will miss the target
object.

— On the other hand, may be more, because each time one object hits an
object that has both reflection and refraction, two photons are created
(one for reflection and one for refraction).

— POV will attempt to compensate for these two factors, but it can only
estimate how many photons will actually be generated. Sometimes this
estimation is rather poor, but the feature is still usable.

The keyword gather allows you to specify how many photons are gathered at
each point during the regular rendering step. The first number (default 20) is
the minimum number to gather, while the second number (default 100) is the
maximum number to gather. These are good values and you should only use
different ones if you know what you're doing.

The keyword media turns on media photons. The parameter max_steps specifies
the maximum number of photons to deposit over an interval. The optional
parameter factor specifies the difference in media spacing compared to surface
spacing. You can increase factor and decrease max_steps if too many photons
are being deposited in media.

The keyword jitter specifies the amount of jitter used in the sampling of light
rays in the pre-processing step. The default value is good and usually does not
need to be changed.

The keywords max_trace_level and adc_bailout allow you to specify these
attributes for the photon-tracing step. If you do not specify these, the values for
the primary ray-tracing step will be used.

The keywords save_file and load_file allow you to save and load photon
maps. If you load a photon map, no photons will be shot. The photon map file
contains all surface (caustic) and media photons.

The keyword radius is used for gathering photons. The larger the radius, the
longer it takes to gather photons. But if you use too small of a radius, you might
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not get enough photons to get a good estimate. Therefore, choosing a good
radius is important. Normally POV-Ray looks through the photon map and uses
some ad-hoc statistical analysis to determine a reasonable radius. Sometimes it
does a good job, sometimes it does not. The radius keyword lets you override
or adjust POV-Ray's guess.

The keywords autostop and expand_thresholds will be explained later.

From [pov:6.10.2.2] :
Shooting Photons at an Object

object_photon_block:
photons {
[target [<spacing_multiplier>]]
[refraction on|off]
[reflection on]|off]
[collect on]off]
[pass_through]

To shoot photons at an object, you need to tell Pov-Ray that the object receives
photons. To do this, create a photons { } block within the object. For example:

object {
MyObject
photons {
target
refraction on
reflection on
collect off
}
}

In this example, the object both reflects and refracts photons. Either of these
options could be turned off (by specifying reflection off, for example). By using
this, you can have an object with a reflective finish which does not reflect photons
for speed and memory reasons.

The keyword target makes this object a target.
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The density of the photons can be adjusted by specifying the spacing_multiplier.
If, for example, you specify a spacing_multiplier of 0.5, then the spacing for
photons hitting this object will be 1/2 of the distance of the spacing for other
objects.

Note: This means four times as many surface photons, and eight times as many
media photons.

The keyword collect off causes the object to ignore photons. Photons are
neither deposited nor gathered on that object.

The keyword pass_through causes photons to pass through the object unaf-
fected on their way to a target object. Once a photon hits the target object,
it will ignore the pass_through flag. This is basically a photon version of the
no_shadow keyword, with the exception that media within the object will still
be affected by the photons (unless that media specifies collect off). If you
use the no_shadow keyword, the object will be tagged as pass_through au-
tomatically. You can then turn off pass_through if necessary by simply using
photons { pass_through off }.

Note: Photons will not be shot at an object unless you specify the target
keyword. Simply turning refraction on will not suffice.

When shooting photons at a CSG-union, it may sometimes be of advantage to
use split_union off inside the union. POV-Ray will be forced to shoot at the
whole object, instead of splitting it up and shooting photons at its compound
parts.

From [pov:6.10.2.3] :
Photons and Light Sources

light_photon_block:

photons {
[refraction on | off]
[reflection on | off]
[area_light]

}

Example:
light_source {
MyLight

photons {
refraction on
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reflection on
}
}
Sometimes, you want photons to be shot from one light source and not another.
In that case, you can turn photons on for an object, but specify
photons { reflection off refraction off }
in the light source’s definition. You can also turn off only reflection or only
refraction for any light source.
See also:

7.5

[pov:6.10.3] Photons FAQ
[pov:6.10.4] Photon Tips
[pov:6.10.5] Advanced Techniques

Radiosity

From [pov:4.1.1] :

7.5.1 Introduction

Radiosity is a lighting technique to simulate the diffuse exchange of radiation
between the objects of a scene. With a raytracer like POV-Ray, normally only the
direct influence of light sources on the objects can be calculated, all shadowed
parts look totally flat. Radiosity can help to overcome this limitation. More
details on the technical aspects can be found in the reference section.

To enable radiosity, you have to add a radiosity block to the global_settings in
your POV-Ray scene file. Radiosity is more accurate than simplistic ambient
light but it takes much longer to compute, so it can be usefull to switch off
radiosity during scene development. You can use a declared constant or an
INI-file constant and an #if statement to do this:

#declare RAD = off;

global_settings {
#if (RAD)

radiosity {
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#end

Most important for radiosity are the ambient and diffuse finish components of
the objects. Their effect differs quite much from a conventionally lit scene.

e ambient: specifies the amount of light emitted by the object. This is the
basis for radiosity without conventional lighting but also in scenes with light
sources this can be important. Since most materials do not actually emit
light, the default value of 0.1 is too high in most cases. You can also change
ambient_light to influence this.

e diffuse: influences the amount of diffuse reflection of incoming light. In a
radiosity scene this does not only mean the direct appearance of the surface
but also how much other objects are illuminated by indirect light from this
surface.

From [pov:6.11.11] :

Important notice: The radiosity features in POV-Ray are somewhat experimental.
There is a high probability that the design and implementation of these features
will be changed in future versions. We cannot guarantee that scenes using
these features in this version will render identically in future releases or that full
backwards compatibility of language syntax can be maintained.

Radiosity is an extra calculation that more realistically computes the diffuse
interreflection of light. This diffuse interreflection can be seen if you place a
white chair in a room full of blue carpet, blue walls and blue curtains. The chair
will pick up a blue tint from light reflecting off of other parts of the room. Also
notice that the shadowed areas of your surroundings are not totally dark even if
no light source shines directly on the surface. Diffuse light reflecting off of other
objects fills in the shadows. Typically ray-tracing uses a trick called ambient light
to simulate such effects but it is not very accurate.

Radiosity calculations are only made when a radiosity block is used inside the
global_settings block.

The following sections describes how radiosity works, how to control it with
various global settings and tips on trading quality vs. speed.
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7.5.2 How Radiosity Works

The problem of ray-tracing is to figure out what the light level is at each point
that you can see in a scene. Traditionally, in ray tracing, this is broken into the
sum of these components:

Diffuse the effect that makes the side of things facing the light brighter;
Specular the effect that makes shiny things have dings or sparkles on them;
Reflection the effect that mirrors give; and

Ambient the general all-over light level that any scene has, which keeps things
in shadow from being pure black.

POV-Ray's radiosity system, based on a method by Greg Ward, provides a way
to replace the last term - the constant ambient light value - with a light level
which is based on what surfaces are nearby and how bright in turn they are.

The first thing you might notice about this definition is that it is circular: the
brightness and color of everything is dependent on everything else and vice versa.
This is true in real life but in the world of ray-tracing, we can make an approxi-
mation. The approximation that is used is: the objects you are looking at have
their ambient values calculated for you by checking the other objects nearby.
When those objects are checked during this process, however, their diffuse term
is used. The brightness of radiosity in POV-Ray is based on two things:

1. the amount of light " gathered”
2. the 'diffuse’ property of the surface finish

An object can have both radiosity and an ambient term. However, it is sug-
gested that if you use radiosity in a scene, you either set ambient_light to 0 in
global _settings, or use ambient 0 in each object’s finish. This lighting model is
much more realistic, and POV-Ray will not try to adjust the overall brightness
of the radiosity to match the ambient level specified by the user.

How does POV-Ray calculate the ambient term for each point? By sending out
more rays, in many different directions, and averaging the results. A typical point
might use 200 or more rays to calculate its ambient light level correctly.

Now this sounds like it would make the ray-tracer 200 times slower. This is
true, except that the software takes advantage of the fact that ambient light
levels change quite slowly (remember, shadows are calculated separately, so sharp
shadow edges are not a problem). Therefore, these extra rays are sent out only
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once in a while (about 1 time in 50), then these calculated values are saved and
reused for nearby pixels in the image when possible.

This process of saving and reusing values is what causes the need for a variety
of tuning parameters, so you can get the scene to look just the way you want.

7.5.3 Adjusting Radiosity

As described earlier, radiosity is turned on by using the radiosity { } block in
global_setting. Radiosity has many parameters that are specified as follows:

global_settings { radiosity { [RADIOSITY_ITEMS...] } }

RADIOSITY_ITEMS:
adc_bailout Float | always_sample Bool | brightness Float |
count Integer | error_bound Float | gray_threshold Float |
load_file Filename | low_error_factor Float |
max_sample Float |
media Bool | minimum_reuse Float | nearest_count Integer |
normal Bool | pretrace_end Float | pretrace_start Float |
recursion_limit Integer | save_file Filename

7.5.4 Radiosity with conventional lighting

No radiosity With radiosity Difference between them

From [pov:4.1.2] :
You can see that radiosity much affects the shadowed parts when applied com-
bined with conventional lighting.

Changing brightness changes the intensity of radiosity effects. brightness 0 would
be the same as without radiosity. brightness 1 should work correctly in most
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cases, if effects are too strong you can reduce this. Larger values lead to quite
strange results in most cases

Changing the recursion_limit value leads to the following results, second line are
difference to default (recursion_limit 3): recursion_limit 1

You can see that higher values than the default of 3 do not lead to much better
results in such a quite simple scene. In most cases values of 1 or 2 are sufficient.

The error_bound value mainly affects the structures of the shadows. Values larger
than the default of 1.8 do not have much effects, they make the shadows even
flatter. Extremely low values can lead to very good results, but the rendering
time can become very long. For the following samples recursion_limit 1 is used.
error_bound 0.01

Somewhat related to error_bound is low_error_factor. It reduces error_bound
during the last pretrace step. Changing this can be useful to eliminate artefacts.
low_error_factor 0.01

The next samples use recursion_limit 1 and error_bound 0.2. These 3 pictures
illustrate the effect of count. It is a general quality and accuracy parameter
leading to higher quality and slower rendering at higher values. count 2

Another parameter that affects quality is nearest_count. You can use values
from 1 to 20, default is 5: nearest_count 1

Again higher values lead to less artefacts and smoother appearance but slower
rendering.

minimum_reuse influences whether previous radiosity samples are reused during
calculation. It also affects quality and smoothness. minimum_reuse 0.2

Another important value is pretrace_end. It specifies how many pretrace steps are
calculated and thereby strongly influences the speed. Usually lower values lead
to better quality, but it's important to keep this in good relation to error_bound.
pretrace_end 0.2

Strongly related to pretrace_end is always_sample. Normally even in the final
trace additional radiosity samples are taken. You can avoid this by adding al-
ways_sample off. That's especially useful if you load previously calculated radios-
ity data with load_file. always_sample on

The effect of max_sample is similar to brightness. It does not reduce the radiosity
effect in general but weakens samples with brightness above the specified value.
max_sample 0.5

You can strongly affect things with the objects’ finishes. In fact that is the most
important thing about radiosity. Normal objects should have ambient finish 0
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which is not default in POV-Ray and therefore needs to be specified. Objects
with ambient j 0 actually emit light.

Finally you can vary the sky in outdoor radiosity scenes. In all these examples
it is implemented with a sphere object. finish { ambient 1 diffuse 0 } was used
until now. The following pictures show some variations:

7.5.5 Radiosity without conventional lighting

From [pov:4.1.3] :

You can also leave out all light sources and have pure radiosity lighting. The
situation then is similar to a cloudy day outside, when the light comes from no
specific direction but from the whole sky.

v

Radiosity without light sources

See also
[pov:4.1.4] Normals and Radiosity
[pov:4.1.5] Performance considerations
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area light, 135

Bernstein polynomials, 107
Bezier curve, 107

bicubic patch, 119

black body radiator, 21
blob, 111

box, 100

Brightness, 11

brightness, 4

chromaticity values, 15

clustered-dot ordered dithering, 7

color gamuts, 18
color model, 24
complementary color, 17

complementary dominant wavelength,

17
cone, 104
cones, 12
conformal, 80
CRT, 4
cubic, 122
cyan, 25
cylinder, 102, 134

difference, 129

disk, 120

dominant wavelength, 12, 17
dynamical range, 4

electromagnetic energy, 11
error diffusion, 9
Euclidean Motion, 75
Euler angles, 76
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Euler-angles, 78
excitation purity, 12, 17

fade_power E, 135
fade_distance DO, 135

gamma-correction, 6

halftoning, 6
height field, 114
Hue, 11

idempotent, 83
intensity, 4
intersection, 129
isometry, 59
isosurface, 125

julia fractal, 115

Lagrange interpolation formula, 106
lathe, 108

light _source, 132

Lightness, 11

luminance, 4, 12
Luminous-efficiency, 13

magenta, 25

merge, 128

mesh, 117

mesh2, 118

metamers, 12
monochromatic light, 11

parallel, 135
parametric, 126
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Planck’s Law, 21
plane, 121

poly, 123
polygon, 117
prism, 105
projection, 83

quadric, 121
quartic, 123

Saturation, 11

shades, 11

smooth triangle, 117

sor, 110
spectral-energy-distribution, 11
sphere, 99

sphere sweep, 113

spotlight, 134

superellipsoid, 101

text, 115

tints, 10

tones, 11

torus, 110
tri-stimulus theory, 12
triangle, 116

union, 127
visual acuity, 6

yellow, 25
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