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Abstract

We show that the left-monotone martingale coupling is optimal for any given per-
formance function satisfying the martingale version of the Spence-Mirrlees condition,
without assuming additional structural conditions on the marginals. We also give a
new interpretation of the left monotone coupling in terms of Skorokhod embedding
which allows us to give a short proof of uniqueness.

1 Introduction

The roots of optimal transport as a mathematical field go back to Monge [19] and Kan-
torovich [16] who established its modern formulation. More recently it experienced a steep
development prompted by Brenier’s theorem [5] and the milestone PhD-thesis of McCann
[18]. The field is now famous for its striking applications in areas ranging from mathematical
physics and PDE-theory to geometric and functional inequalities. We refer to [25, 26, 1] for
recent accounts of the theory.

Very recently there has also been interest in optimal transport problems where the trans-
port plan must satisfy additional martingale constraints. Such problems arise naturally in
robust finance, but are also of independent mathematical interest, for example – mirroring
classical optimal transport – they have important consequences for the study of martin-
gale inequalities (see e.g. [4, 11, 22]). Early papers to investigate such problems include
[14, 2, 9, 8, 6], and this topic is commonly referred to as martingale optimal transport. In
mathematical finance, transport techniques complement the Skorokhod embedding approach
(see [21, 13] for an overview) to model-independent/robust finance.

In view of the central role taken by Brenier’s theorem in optimal transport, it is an intrigu-
ing question to obtain an analogous result also in the martingale setup. In this direction,
[3, 12] have proposed a martingale version of Brenier’s montone transport mapping.
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Under certain structural properties of the underlying probability distributions, it was es-
tablished in [12] that the monotone martingale transport plan solves the given variational
problem for all coupling functions satisfying the Spence-Mirrlees condition. In the present
paper we show that this is in fact true for general continuous distributions µ, ν.

A basic fundamental result is that the monotone martingale transport plan is unique.
However the original derivation ([3]) is intricate and relies on subtle properties of potential
functions and a delicate approximation procedure. We provide a short conceptual proof
of this result. This is based on a new connection with the classical Skorokhod embedding
problem which may be of independent interest.

2 Martingale optimal transport

On the canonical space Ω := R×R, we denote by (X, Y ) the canonical process, i.e. X(x, y) =
x and Y (x, y) = y for all (x, y) ∈ Ω. We also denote by PR and PΩ the collection of all
probability measures on R and Ω, respectively. For fixed µ, ν ∈ PR, our interest is on the
following subsets of PΩ:

P(µ, ν) :=
{
P ∈ P : X ∼P µ, Y ∼P ν

}
, (2.1)

M(µ, ν) :=
{
P ∈ P(µ, ν) : EP[Y |X] = X, µ− a.s.

}
. (2.2)

The set P(µ, ν) is non-empty as it contains the product measure µ⊗ ν. By a classical result
of Strassen [24], we also know that M(µ, ν) is non-empty if and only if µ � ν in convex
order, i.e.

µ(g) ≤ ν(g) for all convex function g. (2.3)

Let c : Ω −→ R be a measurable coupling function with c ≤ a ⊕ b for some a ∈ L1(µ)
and b ∈ L1(ν). Here a ⊕ b(x, y) := a(x) + b(y) for all (x, y) ∈ Ω. Then EP[c(X, Y )] is a
well-defined scalar in R∪ {−∞}. The martingale optimal transport problem, as introduced
in [2] in the present discrete-time case and [10], is defined by:

P(c) := P := sup
P∈M(µ,ν)

EP[c(X, Y )]. (2.4)

This problem is motivated by the problem of model-free superhedging in financial mathe-
matics:

D := D(c) := inf
(ϕ,ψ)∈D

{
µ(ϕ) + ν(ψ)

}
, (2.5)

where, denoting h⊗(x, y) := h(x)(y − x) for all (x, y) ∈ Ω,

D :=
{

(ϕ, ψ) : ϕ+∈ L1(µ), ψ+∈ L1(ν), and ϕ⊕ ψ + h⊗ ≥ c, for some h ∈ L0(R)
}
. (2.6)

The following result was established in [2].

Theorem 2.1. Let µ � ν ∈ PR, and assume c ∈ USC(Ω) with c ≤ a⊕b for some a ∈ L1(µ),
b ∈ L1(ν). Then P = D, and P = EP∗ [c(X, Y )] for some P∗ ∈M(µ, ν).
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We also recall the variational result of [3] which provides a characterization of the optimal
martingale measure P∗.

Theorem 2.2. Let µ � ν ∈ PR, and assume c ≤ a ⊕ b for some a ∈ L1(µ), b ∈ L1(ν).
Then, if P∗ ∈M(µ, ν) is a solution of P, there exists a support (i.e. a Borel set Γ ⊂ Ω with
P∗[(X, Y ) ∈ Γ] = 1) such that for all P0 ∈ P(µ0, ν0) , µ0, ν0 ∈ PR with finite support, and
Supp(P0) ⊂ Γ, we have:

EP0[
c(X, Y )

]
≥ EP[c(X, Y )

]
for all P ∈ P(µ0, ν0) with EP[Y |X] = EP0

[Y |X].

The fact that the absence of a duality gap (as in Theorem 2.1) implies a variational
result similar to the one given in Theorem 2.2 is well known in the transport literature, see
e.g. Villani’s book [25, p88]. Zaev [27] extended this to the setup of transport problems with
additional linear constraints, as a particular case he obtains a version of Theorem 2.2 with
a simple proof under the assumption that the duality P = D holds. For the convenience of
the reader we report the argument from Zaev [27].

Proof. Pick sequences of admissible dual functions φn, ψn, hn, n ≥ 1 such that µ(φn) +
ν(ψn)→ P and fix P∗ ∈M(µ, ν) such that EP[c(X, Y )] = P. Since φn ⊕ ψn + h⊗n ≥ c and

EP∗ [φn(X) + ψn(Y ) + hn(X)(Y −X)] = µ(φn) + ν(ψn)→ P = EP∗ [c(X, Y )]

it follows that φn ⊕ ψn + h⊗n tends to c in ‖.‖L1(P∗). Passing to a subsequence which we
denote again by n we find that this convergence holds pointwise on a set Γ with P∗(Γ) = 1.

Assume that P0 ∈ P(µ0, ν0) , µ0, ν0 ∈ PR with finite support, and Supp(P0) ⊂ Γ, and
that P ∈ P(µ0, ν0) satisfies EP[Y |X] = EP0

[Y |X]. Note that then EP[h(X)(Y − X)] =
EP0

[h(X)(Y −X)] holds for an arbitrary function h. We thus obtain

EP0

[c(X, Y )] = lim
n

EP0

[φn(X) + ψn(Y ) + hn(X)(Y −X)]

= lim
n

EP[φn(X) + ψn(Y ) + hn(X)(Y −X)] ≥ EP[c(X, Y )],

hence Γ is as required. tu

3 Monotone transport plans

The following definition stems from [3].

Definition 3.1. We say that P ∈M(µ, ν) is left-monotone (resp. right-monotone) if there
exists a support (i.e. a Borel set Γ ⊂ R × R with P[(X, Y ) ∈ Γ] = 1) such that for all
(x, y0), (x, y1), (x′, y′) ∈ Γ with x < x′ (resp. x > x′), it must hold that y′ 6∈ (y0, y1).

The relevance of this notion is mainly due to the following extremality result which states
that monotone martingale coupling measures are optimal for a class of martingale transport
problems.

Definition 3.2. We says that a function c : R × R −→ R satisfies the martingale Spence-
Mirrlees condition if c is absolutely continuous with respect to x, and cx(x, .) is strictly convex
on R for Leb-a.e. x ∈ R.
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The martingale Spence-Mirrless condition was introduced in [12, Remark 3.15], cf. also
[15, Definition 4.5].

Theorem 3.3. Assume that the performance function c : R×R −→ R satisfies the martin-
gale Spence-Mirrlees condition. Then, any solution P∗ of the martingale transport problem
P is left-monotone.

In particular, for all µ � ν ∈ PR, there exists a left-monotone transference plan.

Proof. The last existence result is a consequence of the existence of a maximizer P∗ of
the problem P(c) for some performance function c satisfying the conditions of Theorem 2.1.

Let P∗ be a solution of the martingale transport problem P, and suppose to the con-
trary that P∗ is not left-monotone. Let Γ be an arbitrary support of P∗. By definition of
the notion of left-monotonicity, we may find scalars x < x′ and y0 < y′ < y1 such that
(x, y0), (x, y1), (x′, y′) ∈ Γ. We then introduce:

P0 :=
1

2

[
λδ(x,y0) + (1− λ)δ(x,y1)

]
+

1

2
δ(x′,y′),

P :=
1

2
δ(x,y′) +

1

2

[
λδ(x′,y0) + (1− λ)δ(x′,y1)

]
,

where λ ∈ (0, 1) is defined by

λy0 + (1− λ)y1 = y′.

Clearly, Supp(P0) = {(x, y0), (x, y1), (x′, y′)} ⊂ Γ. Moreover,
∫
P0(dx, .) =

∫
P(dx, .) =

µ0(dx) := 1
2
(δx + δx′)(dx). Similarly,

∫
P0(., dy) =

∫
P(., dy) = ν0(dy) := 1

2
(λδy0 + δy′ + (1−

λ)δy1)(dy). This shows that P,P0 ∈ P(µ0, ν0). Moreover, direct calculation provides that

EP0

[Y |X = x] = EP[Y |X = x′] = λy0 + (1− λ)y1 and EP0

[Y |X = x′] = EP[Y |X = x] = y′.

which in view of the definition of λ, shows that EP0
[Y |X] = EP[Y |X]. We may then apply

the variational Theorem 2.2, and conclude that EP0
[c(X, Y )] ≥ EP[c(X, Y )], i.e.

g(x) := λc(x, y0) + (1− λ)c(x, y1)− c(x, y′) ≥ g(x′).

We now show that this inequality is in contradiction with the martingale Spence-Mirrlees
condition. Indeed, by the absolutee continuity of c in x, we have

g(x′)− g(x) =

∫ x′

x

[
λcx(ξ, y0) + (1− λ)cx(ξ, y1)− cx(ξ, y′)

]
dξ > 0

where the strict inequality follows from the strict convexity of the density cx in y ∈ R for
all Leb-a.e x ∈ R. tu

For an atomless measure µ, the following easy consequence, reported from [3], shows that
left (and right) monotone martingale transport plans have a very simple structure. Namely
that the support is concentrated on two graphs.
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Proposition 3.4. Let µ � ν in convex order, and assume µ has no atoms. Let P ∈M(µ, ν)
be a left-monotone transference plan. Then there exist functions Tu, Td : R −→ R with
Td(x) ≤ x ≤ Tu(x), {Td(x) = x} = {Td(x) = x}, and such that

P(dx, dy) = µ(dx)
[
q(x)δTu(x) +(1−q(x))δTd(x)

]
(dy) with q(x) :=

x− Td(x)

Tu(x)− Td(x)
1{Td(x)<Tu(x)}.

Moreover, the pair (Td, Tu) is unique µ− a.e. and satisfies:

1. Tu is non decreasing.

2. If x < y then Td(y) /∈ (Td(x), Tu(x)).

Given the structure of left monotone transport plans for an atomless probability measure
µ, we call such a martingale transport measure a left monotone transport map.

Proposition 3.4 should be compared to the situation in standard optimal transport problem,
where the Fréchet-Hoefding coupling defines a transport plan concentrated on a graph which
solves simultaneously the Monge and the Kantorovitch problem. Clearly, one can not expect
that martingale transport maps be concentrated on one single graph, as this would imply
that the martingale is deterministic, and therefore constant which can happen only in the
degenerate case µ = ν.

4 Uniqueness of the left-monotone transference map

It was established in [3] that for fixed marginals µ, ν there exists a unique left-monotone
transference map in M(µ, ν). As the original argument is rather lengthy and maybe not
entirely transparent, it seems worthwhile to revisit this basic (but important) result.

In the rest of this paper, we assume that µ has no atoms and we fix P and the corresponding
T P := (Td, Tu) as in Proposition 3.4. Our aim is to prove that P is the unique left-monotone
transference plan in M(µ, ν).

To this end, we use that a left-monotone martingale transport plan gives rise to a partic-
ular solution of the Skorokhod embedding problem: for measures µ, ν in convex order the
Skorokhod problem is to construct a stopping time τ such for a Brownian motion started
in B0 ∼ µ, the distribution of Bτ equals ν. We refer to [21, 13] for recent surveys on the
Skorokhod embedding problem.

Typically one is interested to find a minimal solution of the Skorokhod problem, i.e. a
stopping time which in addition to Bτ ∼ ν satisfies that for all σ ≤ τ with Bσ ∼ ν one has
τ = σ. This notion was introduced by Monroe [20] in the case µ = δ0, and further extended
to the case of a general starting law by Cox [7].

We first observe that the pair of maps T P = (Td, Tu) introduced in Proposition 3.4 suggests
to introduce the stopping time

τP := inf
{
t > 0 : Bt 6∈

[
Td(B0), Tu(B0)

]}
. (4.1)

Proposition 4.1. Let B be a Brownian motion started from B0 ∼ µ. Then (B0, BτP) ∼ P,
and τP is a minimal stopping time.
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Proof. The fact that (B0, BτP) ∼ P is clear by construction. Next, since τP is a hitting
time, we now show that it is a minimal embedding of ν starting from µ. Minimality of hitting
times with starting measure δ0 was observed by Monroe [20] (just after his Definition 1), we
report the full argument here in order to emphasize that this result extends trivially to an
arbitrary starting measure µ.

For a stopping time σ ≤ τR, we have {BτR /∈ A} ⊂ {Bσ /∈ A}. Then, if σ also embeds ν,
it follows that {Bτ /∈ A} = {Bσ /∈ A}, and equivalently {Bτ ∈ A} = {Bσ ∈ A}. Since τR
is the first entrance time in R, this implies that, on the event set {σ < τ}, we have Bτ ∈ A
while Bσ /∈ A. Then {Bτ ∈ A} = {Bσ ∈ A} implies that τ = σ a.s. tu

In the context of the Skorokhod embedding problem a barrier is a measurable subset of
R×R such that for any point (x, y) contained in the barrier, the whole line [x,∞)× {y} is
a subset of the barrier.

We use the mappings Tu, Td to define the barrier

R := Ru ∪Rd with Ri :=
⋃
x∈S

[Ti(x)− x,∞)× {Tu(x)}, i ∈ {d, u}. (4.2)

trajectories

Td(x)

x

Tu(x)
Tu(x)− x

Td(x)− x

Bt −B0

Bt

RB0 ∼ µ

Bτ ∼ ν

Brownian

Figure 1: The left-monotone coupling as a barrier-type embedding: The left part depicts the

construction of the barrier R. The right hand side shows how the set R gives rise to a barrier-type

stopping time in this particular phase-diagram.

We next introduce another stopping time defined as the first hitting time of this barrier:

τR := inf{t : (Bt −B0, Bt) ∈ R}. (4.3)

It is clear that τR ≤ τP. The following crucial result shows that equality in fact holds.

Lemma 4.2. The stopping times τR and τP are equal. In particular τR is a minimal stopping
time and (B0, BτR) ∼ P.
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Proof. We only focus on the non-trivial inequality the reverse inequality τR ≥ τP. To see
this, we shall verify that the Brownian path started in x hits R either in (Tu(x)− x, Tu(x))
or in (Td(x) − x, Td(x)). Indeed, assume that a Brownian path hits a different line of the
barrier BτR ∈ [Td(y)− y,∞)× {Td(y)} or BτR ∈ [Tu(y)− y,∞)× {Tu(y)}, for some y 6= x.
From our construction (see Figure 1), we observe that, necessarily y > x, and
• in the case BτR ∈ [Td(y)−y,∞)×{Td(y)}, we have Td(x) < Td(y) < Tu(x), contradicting

Property 2 of Proposition 3.4.
• in the case BτR ∈ [Tu(y)−y,∞)×{Tu(y)}, we have Tu(y) < Tu(x), contradicting Property

1 of Proposition 3.4.
Hence, τR = τP, and the minimality property follows from Proposition 4.1. tu

We have thus obtained an interpretation of the left-monotone transport plan in terms of a
barrier-type solution to the Skorokhod problem. This interpretation is useful for our purpose
since it allows us to use a short argument of Loynes [17] (which in turn builds on Root [23])
to show that there is only one left-monotone transference plan.

Lemma 4.3 (cf. Loynes [17]). Let P1, P2 be left-monotone martingale transport plans in
M(µ, ν), with corresponding maps T iu, T

i
d satisfying the conditions of Proposition 3.4, and

denote by Ri, i = 1, 2 the corresponding barriers defined as in (4.3). Then τR1 = τR2, a.s.

Proof. For a set A ⊂ R, we abbreviate Ri(A) := Ri ∩ (R× A), i = 1, 2. Denote

K :=
{
x : m1(x) < m2(x)

}
where mi(x) := inf{m : (m,x) ∈ Ri}, i = 1, 2.

Fix a trajectory (Bt)t = (Bt(ω))t such that BτR2
∈ K. Then (Bt − B0, Bt)t hits R2(K)

before it enters R2(KC). But then (Bt − B0, Bt)t also hits R1(K) before it enters R1(KC).
Hence

BτR2
∈ K =⇒ BτR1

∈ K.

As both stopping times embed the same measure, this implication is an equivalence almost
surely, and we may set ΩK := {BτR1

∈ K} = {BτR2
∈ K}. On ΩK we have τR1 ≤ τR2 while

τR1 ≥ τR2 on ΩC
K . Then, for all Borel subset A ⊂ R:

P
[
BτR1

∧τR2
∈ A

]
= P

[
BτR1

∈ A|BτR1
∈ ΩK

]
+ P

[
BτR2

∈ A|BτR1
∈ Ωc

K

]
= P

[
BτR1

∈ A|BτR1
∈ ΩK

]
+ P

[
BτR2

∈ A|BτR2
∈ Ωc

K

]
= P

[
BτR1

∈ A
]
,

since BτRi
∼ ν. Hence τR1 ∧ τR2 embeds ν. Similarly, we see that τR1 ∨ τR2 also embeds ν.

Since τR1 and τR2 are both minimal embeddings, we deduce that τR1 ∧ τR2 = τR1 ∨ τR2 and
thus τR1 = τR2 . tu

As Tu, Td can be µ-a.s. recovered from the stopping time τR it follows that Tu, Td are
uniquely determined and we obtain

Theorem 4.4. There exists precisely one left-monotone martingale coupling for two given
measures µ, ν in convex order.

We conclude the paper with an additional property of our Skorohod embedding interpre-
tation of the monotone martingale transport plan.
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Proposition 4.5. The process B∧τR is a uniformly integrable martingale.

Proof. By Proposition 4.1 and Lemma 4.2, τR = τP is a minimal embedding of ν with
starting measure µ. Since E

[
BτP
]

= E[B0], we know from Lemma 12 and Theorem 17 in
Cox [7] that minimality is equivalent to the uniform integrability of the process B∧τP .

For the convenience of the reader, we also provide a direct justification of the uniform
integrability in our setting. Observe that B∧τP ∈

[
Td(B0), Tu(B0)

]
, a.s. Then, conditional

on B0, the process B∧τP is a bounded martingale. By the Jensen inequality, this provides

E
[
φ(Bt∧τP)|B0

]
≤ E

[
φ(BτP)|B0

]
, a.s. for all convex function φ.

In particular, it follows that for any constant c > 0:

E
[
|Bt∧τP|1|Bt∧τP |≥c

]
≤ E

[(
2|Bt∧τP| − c

)+]
=≤ E

[(
2|BτP| − c

)+]
,

which provides the uniform integrability of the process B∧τP . tu
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