
UTILITY MAXIMIZATION, RISK AVERSION, AND

STOCHASTIC DOMINANCE
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Abstract. Consider an investor trading dynamically to maximize ex-
pected utility from terminal wealth. Our aim is to study the dependence
between her risk aversion and the distribution of the optimal terminal
payoff. Economic intuition suggests that high risk aversion leads to a
rather concentrated distribution, whereas lower risk aversion results in
a higher average payoff at the expense of a more widespread distribu-
tion. Dybvig and Wang [J. Econ. Theory, 2011, to appear] find that
this idea can indeed be turned into a rigorous mathematical statement
in one-period models. More specifically, they show that lower risk aver-
sion leads to a payoff which is larger in terms of second order stochastic
dominance.

In the present study, we extend their results to (weakly) complete
continuous-time models. We also complement an ad-hoc counterexam-
ple of Dybvig and Wang, by showing that these results are “fragile”,
in the sense that they fail in essentially any model, if the latter is per-
turbed on a set of arbitrarily small probability. On the other hand, we
establish that they hold for power investors in models with (condition-
ally) independent increments.

JEL classification codes: G11, C61.

1. Introduction

A classical problem in mathematical finance and financial economics is to
maximize expected utility from terminal wealth. This means that – given a
time horizon T and a utility function U describing the investor’s preferences
– one tries to choose a trading strategy such that the terminal value X̂T of the
corresponding wealth process maximizes E [U(XT )] over all wealth processes

of competing strategies. Existence and uniqueness of the maximizer X̂ are
assured in very general models and under essentially minimal assumptions
(cf., e.g., [10] and the references therein). However, much less is known about

the qualitative properties of X̂ and, in particular, about their dependence on
the investor’s attitude towards risk measured, e.g., in terms of her absolute
risk aversion −U ′′/U ′.
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Since comparative statics for the composition of the investor’s portfolio
are impossible to obtain in any generality, Dybvig and Wang ([4], hence-
forth DW) have recently proposed to compare the distributions of the opti-
mal payoffs instead. They show that – in one-period models – the payoffs
of investors with ordered absolute risk aversion can be ranked in terms of
stochastic dominance relationships. More specifically, suppose investor L is
less risk averse than the more risk inverse investor M , and the correspond-
ing optimal payoffs X̂M

T , X̂L
T have finite first moments. Then [4, Theorems

3 and 7] assert that X̂L
T dominates X̂M

T in the monotone convex order,

X̂M
T ≤MC X̂

L
T ,(1.1)

that is, E[c(X̂M
T )] ≤ E[c(X̂L

T )] for every monotone increasing convex function
c : R+ → R. Moreover, if either of the utility functions has nonincreasing
absolute risk aversion, then DW also obtain the sharper assertion that

E[X̂M
T ] ≤ E[X̂L

T ] and(1.2)

(X̂M
T − E[X̂M

T ]) ≤C (X̂L
T − E[X̂L

T ]),(1.3)

where ≤C denotes the convex order, i.e., (1.3) asserts that, for every convex

function c, E[c(X̂M
T −E[X̂M

T ])] ≤ E[c(X̂L
T −E[X̂L

T ])]. Both ≤C and ≤MC are
second order stochastic dominance relations.

By Strassen’s characterization of the convex order, cf. [17], (1.3) is tanta-

mount to the existence of a random variable ε with E[ε|X̂M
T ] = 0 such that,

in distribution,

X̂L
T = X̂M

T + (E[X̂L
T ]− E[X̂M

T ]) + ε.(1.4)

In plain English, this means that the less risk averse investor is willing
to accept the extra noise ε in exchange for the additional risk premium
E[X̂L

T ]− E[X̂M
T ] ≥ 0.

In addition, DW also construct some counterexamples showing that the
above results generally do not hold in incomplete markets.

The purpose of the present study is threefold. Firstly, we prove an ana-
logue of the main result of DW – which is stated in the discrete one-period
setting common in much of economics – in the continuous-time framework
prevalent in mathematical finance, under the assumption that the market
is (weakly) complete. Whereas it would also be possible to extend the ap-
proach of DW, we believe that our presentation is both more compact and
more transparent.

Next, in Section 3, we shed more light on the fragility of this structural
result in incomplete markets. Whether the counterexamples of DW use
somewhat ad-hoc models and utility functions, we show that – even for
investors with power utilities – the result does not hold in any finite state
model, if the latter is perturbed by adding just a single extra branch with
arbitrarily small probability.

Finally, in Section 4, we take a look at additional structural assumptions
which ensure the validity of DW’s result also in incomplete markets. More
specifically, we show that it holds for power utility investors if the increments
of the return processes are independent or, more generally, independent
conditional on some stochastic factor process. We emphasize that even
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though the utility maximization problem can be solved fairly explicitly in
this setup, the stochastic dominance relationship apparently cannot be read
off the formulas. Instead, we prove the result by induction in a discrete
approximation of the model and then pass to the limit. An extension of this
result to more general preferences and/or market models appears to be a
challenging topic for future research.

2. (Weakly) Complete Markets

Fix a filtered probability space (Ω,F , (Ft)t∈[0,T ],P). We consider a market
of one riskless and d risky assets and work in discounted terms. That is, the
riskless asset is supposed to be normalized to 1, whereas the (discounted)
price process of the risky asset is assumed to be modeled by an Rd-valued
semimartingale S.

2.1. Utilities defined on the positive halfline. The investor’s prefer-
ences are described by a utility function. Here we first consider the case
where the latter is defined on the positive halfline. That is, it is assumed
to be a strictly increasing, strictly concave, twice differentiable mapping
U : R+ → R ∪ {∞} satisfying the Inada conditions limx→∞ U

′(x) = 0 and
limx→0 U

′(x) = ∞. Given a utility function U , the quotient −U ′′(x)/U ′(x)
is called the absolute risk aversion of U at x ∈ (0,∞), cf. [13, 1]. An in-
vestor with utility function UM is called more risk averse than an agent
with utility function UL, written UM � UL, if the absolute risk aversion
of UM dominates the absolute risk aversion of UL pointwise. In the sequel
we frequently use that UM � UL if and only if U ′L(x)/U ′M (x) is monotone
increasing for all x ∈ (0,∞).

For the remainder of this section, we suppose that the market is complete,
i.e., that the set of equivalent (local) martingale measures is a singleton Q,1

and consider the problem of maximizing expected utility, supXT
E [U(XT )].

Here, XT runs though the terminal values of all wealth processes X that can
be generated by self-financing trading starting from an initial endowment
x > 0, and satisfy the admissibility condition X ≥ 0. Throughout, we
suppose that the supremum is finite, as, e.g., for utility functions that are
bounded from above. Then, it is well-known (cf., e.g., [10, Theorem 2.0])

that there is a unique optimal wealth process X̂ related to the martingale
measure Q via the first-order condition

(2.1) U ′(X̂T ) = y
dQ
dP

.

Here, the Lagrange multiplier y is a constant given by the marginal indirect
utility of the initial capital x (cf., e.g., [10] for more details).

For a more risk averse investor with utility function UM and a less risk
averse investor with utility function UL, we are now able to state our first
main result, the counterpart of [4, Theorem 3] in continuous time: Lower
risk aversion leads to a terminal payoff that is larger in the monotone convex
order (1.1).

1In fact, an inspection of the proofs shows that it is sufficient to assume that the dual
minimizer of [10] is the same for both agents. If this holds for all agents, this property
has been called weak completeness of the financial market, see [11, 16].
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Theorem 2.1. Let X̂M
T , X̂L

T be integrable and suppose that UM � UL.
Then

X̂M
T ≤MC X̂

L
T .

If the absolute risk aversion of at least one agent is nonincreasing2 we
also obtain the stronger convex order result (1.3).

Theorem 2.2. Let X̂M
T , X̂L

T be integrable and suppose that UM � UL. If,
in addition, either UM or UL has nonincreasing absolute risk aversion, then

(X̂M
T − E[X̂M

T ]) ≤C (X̂L
T − E[X̂L

T ]).

To simplify what has to be proved we use the following well-known char-
acterization of the (monotone) convex order, which is a straightforward con-
sequence of the monotone convergence theorem.

Lemma 2.3. Let X,Y be random variables with finite first moments.

(i) We have X ≤MC Y if and only if E [(X −K)+] ≤ E [(Y −K)+] for
all K ∈ R.

(ii) We have X ≤C Y if and only if X ≤MC Y and E [X] = E [Y ].

Proof of Theorem 2.1. To simplify notation, first notice that we may assume
yM = yL = 1. Indeed this is achieved by rescaling UM and UL by the factor
yM and yL, respectively, which has no affect on the utility maximization
problem and the risk aversion of the utility functions. Setting D := dQ/dP,
F := (U ′M )−1, and G := (U ′L)−1, the first-order condition (2.1) can be
rewritten as

X̂M
T = F (D), X̂L

T = G(D)(2.2)

and UM � UL implies that F (x)/G(x) is decreasing in x.
Next, notice that there exists q ∈ R such that, almost surely,

q ≤ X̂M ≤ X̂L or q ≥ X̂M ≥ X̂L.(2.3)

To see this consider ρ := D(Q). Since the value processes are Q-martingales
by [10, Theorem 2.0] and have the same initial value x, it follows that∫

F dρ =
∫
F (D) dQ =

∫
X̂M dQ =

∫
X̂L dQ =

∫
G(D) dQ =

∫
Gdρ.

As F and G are continuous this implies that there exists p > 0 such that
F (p) = G(p) =: q. Since F/G is decreasing, we obtain for all x ∈ R that
either q ≤ F (x) ≤ G(x) or q ≥ F (x) ≥ G(x), which yields (2.3).

As U ′M and U ′L are decreasing, we deduce from (2.3) and U ′M (X̂M ) = D =

U ′L(X̂L) that (D − p)(X̂L − X̂M ) ≤ 0. The identity

0 = EQ
[
X̂L − X̂M

]
= pE

[
X̂L − X̂M

]
+ E

[
(D − p)(X̂L − X̂M )

]
now yields the intermediate result E[X̂M ] ≤ E[X̂L].

It remains to establish that E[(X̂M −K)+] ≤ E[(X̂L −K)+] for K ∈ R.
If K ≥ q this is a trivial consequence of (2.3).

If K ≤ q, then (2.3) implies E[(X̂M − K)−] < E[(X̂L − K)−]. Adding

the inequality E[X̂M − K] ≤ E[X̂L − K] we obtain the desired relation

E[(X̂M −K)+] ≤ E[(X̂L −K)+] also in this case. �

2E.g., this holds for investors with power utility functions x1−p/(1−p), i.e, with constant
relative risk aversion 0 < p 6= 1.
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The proof of Theorem 2.2 follows a similar scheme.

Proof of Theorem 2.2. By Lemma 2.3 it suffices to show X̂M ≤MC X̂L − l
where l := E[X̂L − X̂M ]. Note that l > 0 by the proof of Theorem 2.1.

Since either UM or UL has non increasing risk aversion, U ′L(x+ l)/U ′M (x)
is increasing in x. As above we may assume yM = yL = 1. Setting F :=
(U ′M )−1, G̃ := (UL)−1 + l and ρ̃ := D(P) we have

∫
F dρ̃ =

∫
G̃ dρ̃. Arguing

as before, we obtain the existence of a point q̃ such that, a.s.,

q̃ ≤ X̂M ≤ X̂L − l or q̃ ≥ X̂M ≥ X̂L − l

in analogy to (2.3).
As in the last step of the above proof of Theorem 2.1, this implies that

E[(X̂M −K)+] ≤ E[((X̂L − l)−K)+] for all K ∈ R. �

Remark 2.4. The converse of Theorem 2.1 also holds true: If two agents
choose – in every complete market – payoffs X̂M

T , X̂L
T satisfying

(2.4) X̂M
T ≤MC X̂

L
T

then their corresponding utility functions satisfy UM � UL. This is a direct
consequence of [4, Theorem 4], which establishes the above statement under
the weaker assumption that (2.4) holds for all complete one-period market
models.

2.2. Utilities defined on the entire real line. We now turn to investors
with utility functions defined on the whole real line. Whereas the final results
are analogous, the necessary definitions are technically more involved.

In this setting, we assume that the asset price process S is locally bounded.
A utility function then is a strictly increasing, strictly concave, twice differ-
entiable mapping U : R → R ∪ {∞} satisfying both the Inada conditions
limx→∞ U

′(x) = 0 and limx→−∞ U
′(x) =∞ and the condition of reasonable

asymptotic elasticity:

lim sup
x→∞

xU ′(x)

U(x)
< 1 and lim inf

x→−∞

xU ′(x)

U(x)
> 1.

Following [15], the wealth process X of a self-financing trading strat-
egy starting from an initial endowment x ∈ R is called admissible, if its
utility U(XT ) is integrable, and it is a supermartingale under all abso-
lutely continuous local martingale measures Q with “finite V -expectation”,
E [V (dQ/dP)] < ∞, for the conjugate function V (y) = supx∈R(U(x) − xy),
y > 0, of U . Throughout, we suppose that the market admits an equivalent
local martingale measure (i.e., satisfies NFLVR) and that for each y > 0,

the dual problem infQ E [V (ydQ/dP)] is finite with a dual minimizer Q̂(y) in
the set of equivalent local martingale measures. Sufficient conditions for the
validity of the latter assumption can be found in [2]; in particular it holds
if the market is complete or if the utility function under consideration is
exponential, U(x) = −e−γx with γ > 0, and an equivalent local martingale
measure Q with finite entropy E [dQ/dP log(dQ/dP)] <∞ exists.

Subject to these assumptions, [15, Theorem 1] ensures that there is a

unique wealth process X̂ that maximizes utility from terminal wealth. More-
over, for a suitable Lagrange multiplier y, the latter is once again related to
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the corresponding dual minimizer Q̂(y) via the first-order condition

y
dQ̂(y)

dP
= U ′(X̂T ).

This was the key property for our proof of Theorems 2.1 and 2.2. Indeed,
an inspection of the proofs shows that we never used that the domains of
the utility functions are given by the positive halfline. Hence, we obtain the
following analogous results:

Theorem 2.5. Consider two agents with utility functions UM , UL defined
on the whole real line and suppose the corresponding optimal terminal payoffs
X̂M
T , X̂L

T are integrable. Then if UM � UL and the dual minimizers for both
agents coincide, we have

X̂M
T ≤MC X̂

L
T .

If, in addition, either UM or UL has nonincreasing absolute risk aversion,
then

(X̂M
T − E[X̂M

T ]) ≤C (X̂L
T − E[X̂L

T ]).

Since the so-called minimal entropy martingale measure is the dual min-
imizer for all exponential utility maximizers – irrespective of risk aversion
and initial endowment – it follows that the above result is always applicable
in this case. That is, no extra assumptions other than the integrability of
the agents optimal payoffs need to be imposed on the financial market.

Corollary 2.6. Consider two agents with exponential utilities −e−γMx resp.
−e−γLx. Then if γM > γL, the assumptions of both parts of Theorem 2.5
are always satisfied, provided that the agents optimal payoffs are integrable.

Proof. First notice that exponential utilities have constant and therefore
nonincreasing absolute risk aversion. Next note that the notion of admissi-
bility is both independent of the initial endowment and scale invariant for
U(x) = −e−γx. Hence the optimal strategy is evidently independent of the
initial endowment and inversely proportional to the absolute risk aversion
γ. Since the Lagrange multiplier y is given by the marginal indirect utility
(cf., e.g., [15, Theorem 1]), it then follows from the first-order condition that
the dual minimizer is the same for all absolute risk aversions γ. �

3. Structural Counterexample in Incomplete Markets

In this section we show that – even in finite probability spaces and for
investors with power utility functions – Theorems 2.1 and 2.2 are “fragile”,
in that they do not hold in any market model if the latter is perturbed by
adding a single extra state with arbitrary small probability.

3.1. Basic Idea. Our starting point is the simple observation that the
monotone convex order between random variables X, Y can be destroyed
by minimal perturbations of the distributions of X, Y , see Figure 1.

To enforce that X̂M
T 6≤MC X̂

L
T it is sufficient3 to find some number K∗ ∈ R

such that E[(X̂M
T −K∗)+] > E[(X̂M

T −K∗)+]. That is, in order to construct

3Indeed, if X̂M
T 6≤MC X̂L

T this is always witnessed by a hockeystick function, cf. Lemma
2.3.
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X

Y

(a) montone convex order

X

Y

(b) no monotone convex order

Figure 1. Both illustriations show the distributions of ran-
dom variables X and Y . (a): X ≤MC Y ; (b): X �MC Y

a model for which the montone convex order (1.1) fails, we want to assure
that the more risk averse agent M attains with a higher probability than L
large values above a certain threshold K∗. In particular, in finite probabil-
ity spaces maxω X̂

M
T (ω) > maxω X̂

L
T (ω) already assures that the montone

convex order fails; this follows by considering the call with K∗ = maxω X̂
L
T .

3.2. Concrete Counterexample. We now present an explicit example for
one riskless and one risky asset, showing that lower risk aversion does in gen-
eral not lead to a larger portfolio in the monotone convex order. Moreover,
our example exemplifies that this can happen even if the less risk averse
investor always invest a larger fraction of her wealth in the risky asset. The
latter is the decisive property used by DW for the proof of their results in
incomplete one-period models.

We start with a complete two-period market model for which the mono-
tone convex order (1.1) holds true by Theorem 2.1 above. We then alter this
model by inserting a new branch after the first period which makes the model
incomplete. The new branch occurs with an arbitrarily small probability ε
so that the optimal strategies in the new model are almost identical to the
original strategies. However, this new branch is constructed in such a way
that the more risk averse agent M attains with positive probability a payoff
that is larger than any possible payoff of L, which implies X̂M

T �CM X̂L
T .

For simplicity we consider a complete binomial model for which the stock
does not change in the second period but stays constant.

S1 = 2 S2 = 2

S0 = 1

S1 = 0.5 S2 = 0.5

0.6

0.4

1

1

The preferences of agents M and L are given by power utilities with relative
risk aversions pM = 0.9 and pL = 0.3, respectively.4 By direct computation,
we find that the agents optimally invest fractions π̂M0 ≈ 0.887 resp. π̂L0 ≈

4Indeed any other choice of pi > 0 can be made to work as well.
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1.853 of their wealth in the risky asset at time t = 0. In particular, since L
invests a larger fraction of wealth than M , agent L has less money than M
when the price of the risky asset decreases.

The branch that we want to insert into S after the first period takes
advantage of this disparity of wealth between M and L. It is given by S∗,

S∗1 = 0.5K

S∗0 = 0.5

S∗1 = 0.25

1− α

α

where we fix α to be a small probability, say α = 0.05 and K a large stock
value, for instance K = 20. Since this market offers both agents a very high
probability of big fortune, M and L invest almost as much as admissibility
allows and choose π̂M∗ ≈ 1.9492, respectively π̂L∗ ≈ 1.9999 as their optimal
fraction of wealth invested in S∗.

We now “perturbate” S and define a new process S′ by including S∗ into
S after the first step, i.e., we fix a small probability ε = 0.01 and define S′

by

S′1 = 2 S′2 = 2

S′0 = 1 S′2 = 0.5K

S′1 = 0.5

S′2 = 0.25

S′1 = 0.5 S′2 = 0.5

≈ 0.6

≈
0.4

ε

1

1

1− α

α

By the dynamic programing principle, the optimal trading strategies π̂′1
chosen at t = 1 for the new model S′ are given by π̂M∗, resp. π̂L∗ above.5

Since ε is small, the optimal trading strategies π̂′0 chosen at t = 0 are close
to π̂M0 , resp. π̂L0 above, and can be numerically computed to be given by

π̂M
′

1 ≈ 0.8595, resp. π̂L
′

1 ≈ 1.6622.
We thus see that L invests in the second step a larger fraction of wealth

in the stock than M . But since M ’s wealth after the first period is larger
when S′1 = 0.5, M invests more money in S′ than L. In particular we find

that the optimal terminal payoffs X̂M
2 , X̂L

2 satisfy 21.6897 ≈ max X̂M
2 (ω) >

maxω X̂
L(ω) ≈ 6.5873, where the maxima are attained at the event S′2 =

0.5K. Hence, X̂M
2 �MC X̂

L
2 .

5In a general two period model the trading strategy chosen at t = 1 would depend on
the current state of the first period. Since S′2 only changes in the branch given by S∗ we
can neglect this dependence.
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3.3. Counterexample in an n-period model. In the previous section
we have seen in a concrete example that small changes of the model can
cause the failure ofthe convex order relationship (1.1). Indeed this applies
in a much wider setting; here we want to illustrate this in the case of an
(arbitrage free) n-period model (Si)

n
i=0 (where n ≥ 2), defined on a finite

probability space.
Consider, once again, agents M,L equipped with power utility functions

with parameters pL = 0.3 resp. pM = 0.9. Assume for simplicity that
the stock price does not stay constant during any period. In this case the
investors face a strictly concave optimization problem, hence, the optimal
strategies (π̂Mi )ni=1, resp. (π̂Li )ni=1 are uniquely determined. Denote by X̂M

resp. X̂L the resulting optimal wealth processes.
We make the further assumption that the respective optimal wealth pro-

cesses are not equal, more precisely that X̂M
n−1 is not equal to X̂L

n−1.
Fix an arbitrary small number η > 0. Then it is possible to replace the

process S by a new process S′ which agrees with S during the first n − 1
stages and differs from S only in the last stage and with probability less
than η, but for which (1.1) fails.

Using the assumption that X̂M
n−1 6= X̂L

n−1 we find that there exist a, b, c ∈
R, a > b such that the event A = {X̂M

n−1 = a, X̂L
n−1 = b, Sn−1 = c} has

positive probability.
We now introduce a coin flip θ, independent of the stock price model and

so that the outcome is {θ = head} with probabilty ε < η and {θ = tail}
with probability 1 − ε. If the coin shows tail then the stock price process
remains unchanged, i.e. S′ = S. But in the event A∩ {θ = head}, the stock
price process in the last period is, as above, replaced by S∗ given through

S∗n = cK

S∗n−1 = c

S∗n = c
2

1− α

α

where K > 1. An elementary analysis of the above example reveals that
for α sufficiently close to 1 both agents will invest almost as much in the
stock as admissibility allows. As a > b we can arrange the constant K large
enough so that the maximal payoff of agent M supersedes that of agent L
as well as the maximum of X̂L

n .
There remains one issue to be dealt with: due to the change in the model

we are now facing new optimal strategies and value processes. To cope with
this problem we observe that the orginal problem was only changed on the
portion A∩{θ = head} of our space which has probability at most ε and that
the possible gains on this set are bounded by some constant independent of ε.
Consequently the perturbation of the original model vanishes as ε→ 0. As
the original maximization problems had unique solutions, the new optimal
strategies resemble the original ones as closely as we want (with the notable
exception of the event A ∩ {θ = head}, in period n− 1).
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Summing up, upon choosing ε > 0 sufficiently small we obtain for the new
optimal terminal wealth maxω X̂

M
n (ω) > maxω X̂

L
n (ω) and in particular that

(1.1) fails.
We conclude this section by pointing out that our argument is still valid

if the stock is allowed to stay constant. Indeed, in this case the uniqueness
of the optimal trading strategies is only violated in periods for which the
stock does not change, but this does not affect the above reasoning.

4. Models with (Conditionally) Independent Returns

In this last section, we consider some particular incomplete markets in
continuous time, where the results of DW do hold.

More specifically, we focus on power utility investors in models of one
riskless and one risky asset with independent or, more generally, condition-
ally independent returns. Its price process is first assumed to be modeled as
the stochastic exponential S = E(R) of a Lévy process R, i.e, dSt/St = dRt.
By its very definition, the Lévy process R has independent (and in fact also
stationary) increments. Here, it can be interpreted as the returns process
that generates the price process S of the risky asset in a multiplicative way.

Concerning preferences, we focus on investors with power utilities, i.e.,
U(x) = x1−p/(1 − p), where 0 < p 6= 1 denotes the investor’s constant
relative risk aversion. In this case, trading strategies are most conveniently
parametrized in terms of the fractions πt of wealth invested in the risky
asset at time t ∈ [0, T ] (cf., e.g., [12] for a careful exposition of this matter).
The wealth process corresponding to the risky fraction process (πt)t∈[0,T ] is

then given by dXt/Xt = πtdRt, i.e., Xt = xE(
∫ ·
0 πsdRs)t.

In this setting, it has been proved – by [14] in discrete time and, in
increasing degree of generality, by [5, 3, 7, 12] in continuous time – that
the optimal policy is to invest a constant fraction π̂ in the risky asset. The
latter is known implicitly as the maximizer of some deterministic function,
see [12]. In addition, it is possible to obtain some comparative statics for
the optimal risky fractions here. More specifically, for two power utility
functions UM � UL,6 the optimal risky fractions π̂M , π̂L satisfy |π̂M | ≤ |π̂L|
and are non-negative (non-positive) if E [Rt] is non-negative (non-positive)
for some (or equivalently all) t, cf. [18, Proposition 4.4].

The main result of this section is stated in the following theorem.

Theorem 4.1. Suppose R is square-integrable and neither a.s. increasing
nor a.s. decreasing, and S = E(R) is strictly positive. Then for power utility

functions UM � UL the optimal payoffs X̂M , X̂Lsatisfy

X̂M
T − E[X̂M

T ] ≤C X̂L
T − E[X̂M

T ].

Since the optimal fractions are at least known implicitly as the maximiz-
ers of a scalar function and, in particular, satisfy |π̂M | ≤ |π̂L|, one might
think that this result can be obtained by a direct comparison of the corre-
sponding wealth processes X̂M

T = E(π̂MR)T and X̂L
T = E(π̂LR)T . However,

6I.e., the relative risk aversion pM of M is larger than its counterpart pL for L.
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the dependence of these random variables on the risky fractions is quite in-
volved as can be seen by looking at the explicit formula for the stochastic
exponential [6, Theorem I.4.61].

In a discrete-time setting, Theorem 4.1 can be established by induction
using the results of Kihlstrom, Romer, and Williams [9] and the scaling
properties of the power utilities. However, the corresponding result in con-
tinuous time cannot generally be obtained by passing to the limit since the
continous-time optimizer can lead to bancruptcy if applied in discrete time,
if it involves shortselling or leveraging the risky asset.

In order to prove Theorem 4.1, we therefore follow a different route. We
first prove by induction the intermediate Proposition 4.2, which shows that
the stochastic order holds true for discrete-time Euler approximations of
X̂M = E (π̂MR) and X̂L = E (π̂LR). Theorem 4.1 is then established by
showing that the stochastic dominance is preserved in the limit.

Proposition 4.2. Let (Ri)i denote a sequence of i.i.d. random variables
and let π̂L, π̂M ∈ R satisfying sgn(π̂L) = sgn(π̂M ) and |π̂L| ≥ |π̂M |. Then

N∏
i=1

(1 + π̂M (Ri − E[R1])) ≤C
N∏
i=1

(1 + π̂L(Ri − E[R1])) ∀N ∈ N.

Proof. By induction on N . For N = 0 the assertion is trivial.
For the induction step N − 1 → N we apply Lemma A.2 (using the

independence of the Ri and the induction hypothesis) to obtain(
N−1∏
i=1

(1 + π̂M (Ri − E[R1]))

)
(1 + π̂M (RN − E[R1]))

≤C

(
N−1∏
i=1

(1 + π̂L(Ri − E[R1]))

)
(1 + π̂M (RN − E[R1])).

As Lemma A.1 implies (1 + π̂M (RN − E[R1])) ≤C (1 + π̂L(RN − E[R1])),
applying Lemma A.2 once again proves the result. �

Now we are in the position to prove Theorem 4.1:

Proof of Theorem 4.1. Since the optimal fraction for power utility is inde-
pendent of the initial capital x, we set w.l.o.g. x = 1. By [18, Proposition
4.4], |π̂M | ≤ |π̂L| and π̂M , π̂L are non-negative (non-positive) if b := E [R1]
is non-negative (non-positive). Thus, Proposition 4.2 implies

(4.1)

N∏
i=1

(
1 + π̂M

(
∆N
i R−

bT

N

))
≤C

N∏
i=1

(
1 + π̂L

(
∆N
i R−

bT

N

))
,

where ∆N
i R := R iT

N
− R (i−1)T

N

and E
[
∆N
i R
]

= bT/N . The left- and right-

hand side of (4.1) are Euler approximations on an equidistant grid with
mesh width T/N of the SDEs

dX̄i
t = π̂iX̄

i
t dR̄t i = M,L,

where R̄t = Rt − bt. Since R is square-integrable, [18, Theorem A.2] shows
that the Euler approximations converge in L1 to the respective stochastic
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exponentials. As stochastic dominance is preserved under L1-convergence
we find

E(π̂M R̄)T ≤C E(π̂LR̄)T .

Using E(π̂iR̄)T = E (π̂iR)T exp(−π̂ibT ) and exp((π̂L − π̂M )bT ) ≥ 1, Lemma
A.1 further implies

E (π̂MR)T ≤C E (π̂LR)T − (exp(π̂LbT )− exp(π̂MbT )) .

By E[E (π̂iR)T ] = exp(π̂ibT ) the claim is proved. �

4.1. Extension to Models with Conditionally Independent Incre-
ments. One can also extend Theorem 4.1 to somewhat more general models
of the risky asset S.

Indeed, the proof of Theorem 4.1 and corresponding auxiliary results only
use the independence of the increments of the Lévy process, but not their
identical distribution. Hence, one can prove the convex order result of Theo-
rem 4.1 along the same lines for processes St = E(R)t, where R has indepen-
dent (but not necessarily identically distributed) increments. In this market
model, the optimal policy for power utility is to invest a time-dependent
but deterministic fraction π̂t in the risky asset; the corresponding optimal
wealth processes is then given by E(

∫ ·
0 π̂sdRs).

This in turn allows to extend Theorem 4.1 also to models with condition-
ally independent increments (cf. [6, Chapter II.6] for more details). Loosely
speaking, this means that the return processR of the risky asset S is assumed
to have independent increments with respect to an augmented filtration Gt,
that is, conditional on some stochastic factor processes. If these extra state
variables are independent of the process driving the returns of the risky as-
set, Kallsen and Muhle-Karbe [8] show that the optimal policy is the same,
both relative to the original and to the augmented filtration. With respect
to the latter, one is dealing with a process with independent returns, such
that Theorem 4.1 holds true. Statement (1.1) for the original filtration then
follows immediately from the law of iterated expectations.

Appendix A. Auxiliary Results on the Convex Order

In this appendix, we state and prove two elementary results on the convex
order, that are needed for the proof of Proposition 4.2.

Lemma A.1. Let X be a random variable and a ≥ 1 a real number. Then

X ≤C aX − (a− 1)E[X].

Proof. By Lemma 2.3, we have to prove

E
[
(X −K)+

]
≤ E

[
(aX − (a− 1)E [X]−K)+

]
for all K ∈ R. By centering, it is easily seen that it sufficies to show the
result for random variables X with E[X] = 0.
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Let K < 0. Since E[X] = 0 and
∫K
−∞ xP

X(dx) ≤ 0 imply
∫∞
K xPX(dx) ≥

0, we find

E[(X −K)+] ≤
∫ ∞
K

(x−K) PX(dx) + (a− 1)

∫ ∞
K

x PX(dx),

≤
∫ ∞
K/a

(ax−K) PX(dx) = E
[
(aX −K)+

]
.

Next assume K ≥ 0. As
∫K
K/a(ax−K) PX(dx) ≥ 0, we conclude

E
[
(X −K)+

]
≤
∫ ∞
K

(ax−K) PX(dx)

≤
∫ ∞

K
a

(ax−K) PX(dx) = E
[
(aX −K)+

]
.

�

Lemma A.2. Let X ≤C Y and let Z be independent of X and Y . Then

XZ ≤C Y Z.

Proof. Let c : R→ R be convex. Then the result easily follows from PZX =
PZ ⊗ PX , PZY = PZ ⊗ PY , and since the function c̃(x) := c(zx) is again
convex for all fixed z ∈ R. �
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