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A SIMPLE PROOF OF THE BICHTELER–DELLACHERIE

THEOREM

MATHIAS BEIGLBÖCK AND PIETRO SIORPAES

Abstract. We give a short and rather elementary proof of the celebrated
Bichteler–Dellacherie Theorem, which states that a process S is a good inte-
grator if and only if it is the sum of a local martingale and a finite-variation
process. As a corollary, we obtain a characterization of semimartingales along
the lines of classical Riemann integrability.

1. Introduction

In this paper we provide a short proof of the Bichteler–Dellacherie theorem,
which basically asserts that one can integrate with respect to a process S iff S is a
semimartingale, i.e., the sum of a local martingale and a finite-variation process.

The Doob-Meyer decomposition theorem leads to the following reformulation: a
bounded process allows for a good integration theory iff it is (locally) the difference
of two submartingales. This is analogous to the deterministic case, where one can
integrate with respect to a function f iff f can be written as a difference of two
increasing functions. We find that this analogy is sound, as the simple proof in
the deterministic set-up can be reinterpreted to establish the Bichteler–Dellacherie
theorem in full generality.

As a corollary, we obtain that semimartingales can be characterized by Riemann-
sums in the following way: a càdlàg adapted process (St)t∈[0,1] is a semimartingale
iff for every bounded adapted continuous process H the sequence of Riemann-sums

2n−1
∑

i=0

H i
2n
(S i+1

2n
− S i

2n
)(1)

converges in probability. This observation is perhaps new and emphasizes the
viewpoint that semimartingales are the stochastic equivalent of processes of finite
variation.

2. Definitions, assumptions and main statement

Throughout this article we consider a finite time horizon T , which wlog we take
to be equal to 1, and a filtered probability space (Ω,F ,F, P ). We assume that
the filtration F = (Ft)t∈[0,1] satisfies the usual conditions of right continuity and
saturatedness. A simple integrand is a stochastic process H = (Ht)t∈(0,1] of the
form

(2) H =
∑k

i=1 H
i
1(τi,τi+1],

where k is a finite number, 0 ≤ τ1 ≤ . . . ≤ τk+1 ≤ 1 are stopping times, and Hi are
bounded Fτi-measurable random variables. The vector space of simple integrands
will be denoted by S, and will be endowed with the sup norm

‖H‖∞ := ‖ supt∈[0,1] |Ht| ‖L∞(P).(3)
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2 MATHIAS BEIGLBÖCK AND PIETRO SIORPAES

Given an adapted (real-valued) process S = (St)t∈[0,1] and a simple integrand H
as in (2), it is natural to define the (Itô) integral IS(H) of H ∈ S with respect to
S as the random variable

(4) IS(H) :=
∑k

i=1 H
i(Sτi+1

− Sτi).

This defines the integral as a linear operator IS from the normed space S to the
topological vector space L0(P) (the space of all random variables, with the metriz-
able topology of convergence in probability). A process S is then called a good

integrator if IS : S → L0(P) is continuous, i.e. if Hn ∈ S, ‖Hn‖∞ → 0 implies that
IS(H

n) goes to 0 in probability as n → ∞.
It is easy to show that (locally) square integrable martingales and processes of

finite variation are good integrators. It is also true that any (local) martingale is a
good integrator, although this requires a little more work; we refer to [Edw90] for
an elementary proof of this result which does not make use of the structure of local
martingales in continuous time.

The converse result is of key importance to stochastic analysis, as it characterizes
the processes S for which one can build a powerful integration theory. This is the
object of the following well known theorem, commonly known as the Bichteler-
Dellacherie Theorem.

Theorem BD. [Bic79, Bic81, Del80] Let (St)0≤t≤1 be a càdlàg adapted process.

If IS : S → L0(P) is continuous then S can be written as a sum of a càdlàg local

martingale and a càdlàg adapted process of finite variation.

Theorem BD evolved in the Strasbourg school of P.A. Meyer and was originally
published in [Del80] and, independently, [Bic79]. Mokobodski deserves particular
credit (see for instance the discussion in [DM88]); however since the result is usually
baptized after Bichteler and Dellacherie, we stick to this name.

Standard accounts of the result employ functional analytic machinery and change
of measure techniques, see [DM88, Pro05]. A relatively direct proof is given in
[BSV11a], where the desired semimartingale decomposition is obtained from discrete-
time Doob decompositions. However, the limiting procedure involves some rather
delicate estimates. Another proof, based on an orthogonal decomposition, is given
by Lowther in [Low11].

We emphasize that the definition of good integrators requires that the integrands
are adapted. Simply dropping this assumption would amount to considering all
simple processes that are adapted to the constant filtration Gt := F1, 0 ≤ t ≤ 1.
Since (Gt)-local martingales are constant, Theorem BD implies that every (Gt)-good
integrator has paths of finite variation. So, if one chooses to consider integrands
which are not necessarily adapted (predictable) one is left with an unreasonably
small class of integrators.

Since submartingales provide a filtration-dependent stochastic equivalent of in-
creasing functions, we believe that the following reformulation of Theorem BD is
quite intuitive.

Theorem 2.1. Let S = (St)0≤t≤1 be a bounded càdlàg adapted process. If S is a

good integrator then it is locally the difference of two càdlàg submartingales

We recall that a process defined on [0, 1] satisfies a property locally if, for each
ε > 0, there exist a [0, 1] ∪ {∞}-valued stopping time ̺ such that S̺ satisfies that
property and P(̺ = ∞) ≥ 1− ε.

Our main contribution consists in a simple proof of Theorem 2.1. Its equivalence
with Theorem BD easily follows from the Doob–Meyer decomposition theorem, of
which in recent years simple and elementary proofs have been obtained: we refer
the reader to [Bas96, Jak05] resp. [BSV11b].
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The paper is organized as follows. After recalling Rao’s Theorem in the next
section, we provide the proof of Theorem 2.1 in Section 4. The fact that The-
orem 2.1 implies Theorem BD is shown in detail in Section 5. In Section 6 we
include Stricker’s simple proof of Rao’s Theorem. Finally, in Section 7 we discuss
certain ramifications of the Theorem BD (including the characterization (1)) and,
en passant, give an elementary derivation of some closure properties of the space
of semimartingales.

We conclude this section with some definitions that will be used throughout the
paper. As it is customary, we will denote by X+ (X−) the positive (negative)
part of a random variable X , and by Dn the n-th dyadic partition of [0, 1], i.e.
Dn = {0, 1/2n, 2/2n, . . . , 1}. We will not be picky about the difference between
functions and their equivalence classes. Given a simple integrand H , H ·S denotes
the process given by (H ·S)t := ISt(H). Recall that a family F ⊆ L0(P) is bounded
if for every ε > 0 there exists a constant C such that P(|X | ≥ C) ≤ ε for every
X ∈ F . By the usual proof, a linear operator from a normed space to L0(P) is
continuous iff it is bounded, i.e., it maps bounded sets into bounded sets. We will
use this fact without further mention. We will say that a process (St)t is right
continuous in probability if Stn converges in probability to St whenever tn → t,
tn > t.

3. Quasimartingales

To prove that a given function f = f(t) can be written as a difference of two in-
creasing functions, one would typically show that f has finite variation. This has an
analogue in the stochastic world; to state it, we recall the notion of quasimartingale.

Let S = (St)0≤t≤1 be an adapted process such that St ∈ L1 for all t ∈ [0, 1].
Given a partition π = {0 = t0 < t1 < . . . < tn = 1} of [0, 1], the mean variation of
S along π is defined as

MV(S, π) = E
∑

ti∈π

∣

∣E[Sti − Sti+1
|Fti ]

∣

∣.

Note that the mean variation along π is an increasing function of π, i.e. we have
MV(S, π) ≤ MV(S, π′), whenever π′ is a partition refining π: this follows from the
conditional Jensen inequality |E(X |G)| ≤ E(|X | |G).

By definition, S is a quasimartingale1 if it is adapted, St ∈ L1, t ∈ [0, 1] and the
mean variation

MV(S) := supπ MV(S, π)

of S is finite. We will use that if S is bounded and càdlàg then trivially MV(S) =
limn MV(S,Dn).

The stochastic analogue of the fact that a function has bounded variation if
and only if it can be written as a difference of two increasing functions is then
provided by the following characterization of quasimartingales, usually known as
Rao’s theorem ([Rao69]; see also [Pro05, Chapter 3, Theorem 17], [RW00, Chapter
6, Theorem 41.3]).

Theorem 3.1. A càdlàg process S is a quasimartingale if and only it has a de-

composition S = Y − Z as the difference of two càdlàg submartingales Y and Z.

Following [Str77], we provide a simple proof of Theorem 3.1 in Section 6.
In dealing with the mean variation of stopped processes the following lemma is

useful.

1 The study of quasimartingales goes back to Fisk [Fis65], Orey [Ore67] and Rao [Rao69].
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Lemma 3.2. Let S be a bounded process. Given a partition π and a stopping time

̺ define ̺+ := inf{t ∈ π : t ≥ ̺}. Then

MV(S̺+, π) = E
∑

ti∈π 1{ti<̺}

∣

∣E[Sti+1
− Sti |Fti ]

∣

∣(5)

and |MV(S̺+, π)−MV(S̺, π)| ≤ 2‖S‖∞.

Proof. To obtain (5), observe that for each ti ∈ π

E[S̺+
ti+1

− S̺+
ti

|Fti ] = E[(Sti+1
− Sti)1{ti<̺}|Fti ] = 1{ti<̺}E[(Sti+1

− Sti)|Fti ].

Given processes S′, S′′ the conditional Jensen inequality implies

|MV(S′, π)−MV(S′′, π)| ≤ E
∑

ti∈π |(S
′
ti+1

− S′
ti
)− (S′′

ti+1
− S′′

ti
)|.

Applying this to S′ = S̺, S′′ = S̺+ concludes the proof, as the only (possibly)
non-zero term in the above sum is the one for which ̺ ∈ [ti, ti+1). �

4. The technical core

The aim of this section is to establish Theorem 2.1. To motivate our approach,
assume that a continuous function f : [0, 1] → R gives rise to a Riemann-Stieltjes
integral

h 7→
∫

h(t) df(t)

which is continuous on the space of piecewise constant functions h : [0, 1] → R,
endowed with the sup norm. Then f has finite total variation; indeed the sequence
of piecewise constant functions

hn :=
∑

ti∈Dn
1(ti,ti+1] sign

(

f(ti+1)− f(ti)
)

is bounded uniformly and
∫ 1

0
hn df =

∑

ti∈Dn
|f(ti+1)− f(ti)|

converges to the total variation of f . The subsequent proof is merely a translation of
this standard argument to the stochastic setting, where the integrands are assumed
to be adapted.

Lemma 4.1. Let S = (St)0≤t≤1 be a càdlàg bounded adapted good integrator.

Then for every ε > 0 there exist a constant C and a sequence of [0, 1]∪{∞}-valued
stopping times (̺n)n such that P(̺n = ∞) ≥ 1− ε and MV(S̺n , Dn) ≤ C.

Proof. Since S is a good integrator, given ε > 0 there exists C > 0 so that for all
simple processes H with ‖H‖∞ ≤ 1 we have P((H · S)1 ≥ C − 2‖S‖∞) ≤ ε. For
each n we define the simple process Hn and the stopping time ̺n as

Hn :=
∑

ti∈Dn
1(ti,ti+1] sign

(

E[Sti+1
− Sti |Fti ]

)

,

̺n := inf{t ∈ Dn : (Hn · S)t ≥ C − 2‖S‖∞}.

Notice that, on the set {̺n < ∞},

(Hn1(0,̺n]) · S = (Hn · S)̺n satisfies (Hn · S)̺n

1 ≥ C − 2‖S‖∞,

and thus P(̺n = ∞) ≥ 1 − ε. Moreover, since the jumps of S are bounded by
2‖S‖∞ , C ≥ (Hn · S)̺n

1 holds, so we find, with the help of lemma 3.2 ,

C ≥ E(Hn · S)̺n

1 = E

∑

ti∈Dn

1{ti<̺n} sign
(

E[Sti+1
− Sti |Fti ]

)

(Sti+1
− Sti) =

= E

∑

ti∈Dn

1{ti<̺n}

∣

∣

∣
E[(Sti+1

− Sti)|Fti ]
∣

∣

∣
= MV(S̺n , Dn). �
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Given that MV(S̺n , Dk) ≤ C for every k ≤ n, it is desirable to define an
“accumulation stopping time” ̺ of the stopping times (̺n)n, so that MV(S̺, Dk) ≤
C will hold for every k, proving that S̺ is a quasimartingale. A similar technique
is also used in [BSV11a, Proposition 3.6].

Lemma 4.2. Assume that (̺n)n is a sequence of [0, 1]∪{∞}-valued stopping times

such that P(̺n = ∞) ≥ 1 − ε, n ≥ 1 for some ε > 0. Then there exists a stopping

time ̺ and for each n ≥ 1 convex weights µn
n, . . . , µ

n
Nn

such that2 P(̺ = ∞) ≥ 1−3ε
and for all n ≥ 1

1[0,̺] ≤ 2
∑Nn

k=n µ
n
k1[0,̺k].(6)

Proof of Lemma 4.2. Recall the following classical result by Mazur: if (fn)n is a
bounded sequence in a Hilbert space then there exists vectors gn ∈ conv(fn, fn+1, . . .),
n ≥ 1 such that (gn)n converges in Norm.3 We apply this to the random variables

Xn = 1{̺n=∞} ∈ L2(P), n ≥ 1 to obtain for each n convex weigths µn
n, . . . , µ

n
Nn

such that

Yn := µn
nXn + . . .+ µNn

n XNn

converges to some random variable X in L2(P). Relabeling sequences if necessary,
we assume that the convergence holds also almost surely.

From X ≤ 1 and E[X ] ≥ 1 − ε we deduce that P(X < 2/3) < 3ε. Since
P(limm Ym ≥ 2/3) > 1− 3ε, by Egoroff’s theorem we deduce that there exists a set
A with P(A) ≥ 1 − 3ε such that Yn ≥ 1/2 on the set A, for all n greater or equal
than some n0 ∈ N, which we can assume to be equal to 1.

We now define the desired stopping time ̺ by

̺ = infn≥1 inf{t : µ
n
n1[0,̺n](t) + . . .+ µNn

n 1[0,̺Nn ](t) < 1/2}.

Then clearly (6) holds, and from A ⊆ {̺ = ∞} we obtain P(̺ = ∞) ≥ 1− 3ε. �

We are now in the position to complete the proof of Theorem 2.1

Proof of Theorem 2.1. Given ε > 0, pick C, (̺n)n and ̺ according to Lemma 4.1
resp. Lemma 4.2. Fixing n ≥ 1 we obtain from (6) that

E

∑

ti∈Dn

1{ti<̺}

∣

∣

∣
E[Sti+1

− Sti‖Fti ]
∣

∣

∣
≤ 2E

∑

ti∈Dn

Nn
∑

k=n

µn
k1{ti<̺k}

∣

∣

∣
E[Sti+1

− Sti |Fti ]
∣

∣

∣
.(7)

By Lemma 3.2, MV(S̺, Dn) differs from the left side of (7) by at most 2‖S‖∞.
Applying Lemma 3.2 once more, the right side of (7) is bounded by

2
∑Nn

k=n µ
n
k (MV(S̺k , Dn) + 2‖S‖∞) ≤ 2C + 4‖S‖∞.

Combining these facts and letting n → ∞ we conclude MV(S̺) ≤ 2C + 6‖S‖∞.
By Rao’s theorem 3.1 this yields Theorem 2.1. �

2We note that the constant 2 in (6) can be replaced by 1 + δ, for δ > 0 in which case one is
only guaranteed to find ̺ satisfying P(̺ = ∞) ≥ 1− ηε for η > (1− (1 + δ)−1)−1. But we do not
need this.

3This can be seen as a consequence of weak compactness combined with the fact that weak
and strong closure coincide for convex sets. Alternatively one may simply pick the elements gn to
have (asymptotically) minimal norm in conv(fn, fn+1, . . .), n ≥ 1.
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5. Every good integrator is a Semimartingale

In this section we show in detail how Theorem BD follows from Theorem 2.1.
All arguments are however quite standard.

Lemma 5.1. Let a process S be locally a semimartingale. Then S is a semimartin-

gale.

Proof. By definition, S is locally a semi martingale then there exists a sequence
(̺n)n of stopping times such that P(̺n < ∞) ≤ 2−n and for each n a MartingaleMn

and a process An of finite variation such that S̺n = Mn+An. Set σk := infn≥k ̺n.
Then

S = Sσ1 + (Sσ2 − Sσ1) + (Sσ3 − Sσ2) + . . .

= [Mσ1

1 + (Mσ2

2 −Mσ1

1 ) + . . .] + [Aσ1

1 + (Aσ2

2 −Aσ1

1 ) + . . .],

showing that S is the sum of a local martingale and a process of finite total variation.
�

Recall that a process X is of class D if the family {Xσ : σ stopping time} is
uniformly integrable.

Lemma 5.2. Let S = (St)0≤t≤1 be a càdlàg submartingale. Then S is locally of

class D.

Proof. Define the stopping time

Tn := inf{t ∈ [0, 1] : |St| ≥ n},

then if σ is an arbitrary stopping time we have that |STn
σ | ≤ n+ |S1∧Tn

|. By the op-
tional sampling theorem4 S1∧Tn

is integrable, showing that {STn
σ : σ stopping time}

is uniformly integrable. �

Proof of Theorem BD. We note that S can be written as the sum two adapted
processes, one of finite variation and one locally bounded: indeed, since S is càdlàg,
∆St := St−St− and Jt :=

∑

0<s≤t ∆St1{|∆St|≥1} are well defined (the sum defining

Jt(ω) is finite for each t, ω). Since J has finite variation and is adapted, and S − J
has bounded jumps, S = J +(S−J) is a decomposition as required. Notice that J
is a càdlàg good integrator (since it has finite variation), and so such is S−J . Thus,
we may assume without loss of generality that there exists a localizing sequence
(̺n)n such that each S̺n , n ≥ 1 is bounded. By Theorem 2.1 it follows that S̺n is
locally the difference of two càdlàg submartingales. By Lemma 5.2 and the Doob-
Meyer decomposition theorem S̺n is locally a semimartingale, and thus applying
twice Lemma 5.1 we obtain that S is a semimartingale. �

6. Proof of Rao’s Theorem

Below we provide the classical proof of Rao’s Theorem 3.1. We record the fol-
lowing consequence of the proof, since it will be useful in the next section.

Remark 6.1. If a quasimartingale is right continuous in probability, then it has a

càdlàg modification.

Proof of Theorem 3.1. We will prove here the statement with submartingales re-
placed by supermartingales, which is obviously the same. Trivally the difference of
two supermartingales is a quasimartingale, so let us prove the converse.

4For a proof see [KS91, Theorem 3.22] or [RW00, Theorem II.77.1].
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For any n, we define positive supermartingales ±Y n on the dyadic times s ∈
D :=

⋃

k Dk by

±Y n
s := E

[

∑

ti∈Dn∩[s,1]

E[Sti − Sti+1
|Fti ]

±
∣

∣

∣
Fs

]

,

so that +Y n
s − −Y n

s equals Ss − E[S1|Fs] for n big enough that s ∈ Dn.
Since

E[X |G]+ ≤ E[X+|G] implies that 0 ≤ ±Y n
s ≤ ±Y n+1

s ,

the monotone convergence theorem and E[±Y n
s ] ≤ MV(S,D) yield that, for any

s ∈ D, (±Y n
s )n converges almost surely and in L1. Thus, the processes indexed by

the dyadic times
±Ŷs := E[S±

1 |Fs] + limn
±Y n

s

are positive supermartingales such that almost surely +Ŷs − −Ŷs = Ss for any
s ∈ D. By Doob’s regularity theorem (for a proof see [KS91, Prop 1.3.14] or [RY99,
Chapter II, Prop 2.4]), and since the filtration is right continuous, the positive
processes defined by

±Yt := lims↓t,s∈D
±Ŷs

whenever the limit exists, and defined to be 0 otherwise, are supermartingales
which are càdlàg a.s. From the right continuity in probability of S it follows that,
for every s ∈ [0, 1], +Ys −

−Ys = Ss holds a.s.; is particular +Y − −Y is an a.s.
càdlàg modification of S. Moreover, if S has also right continuous paths, it is
indistinguishable from +Y − −Y . Since the filtration is saturated, one can modify
±Y on a null set, making them càdlàg and such that S = +Y − −Y . �

We remark that the above proof of Theorem 3.1 shows that the two submartin-
gales Y, Z of Theorem 2.1 can be chosen to be negative.

7. Ramifications of the Bichteler-Dellacherie theorem

In this section we prove that Riemann integrators are good integrators, and
somewhat strengthen Theorem BD.

It is well known that, in the definition of good integrators, the space S can be
replaced by the subset of elementary integrands, which consists of all processes H
of the form

H =
∑k

i=1 H
i
1(ti,ti+1],(8)

where ti are deterministic times such that 0 ≤ t1 < . . . < tk+1 = 1, and each Hi

is bounded Fti -measurable. In Remark 7.1 we prove this fact in a slightly stronger
form, which will be useful in what follows.

Let EDn
be the space of all processes H of the form

H =
∑2n−1

i=0 Hi
1( i

2n
, i+1

2n
],(9)

where, for each i = 1, ..., 2n − 1, Hi is bounded and F i−1

2n
-measurable (not only

F i
2n
-measurable), and H0 = 0; then, define ED :=

⋃

n≥1 EDn
.

Lemma 7.1. Let S be an adapted process which is right continuous in probability.

Then IS : S → L0(P) is a continuous operator if and only if its restriction to ED
is continuous.

Proof. We have to show that if IS is a bounded operator on ED, then it is also a
bounded operator on S. Given ε > 0, pick C > 0 such that P(|IS(K)| > C) < ε
for every process K ∈ ED satisfying ‖K‖∞ ≤ 1. Let H be a simple integrand as in
(2) and satisfying ‖H‖∞ ≤ 1, and define the stopping times

σn
i := 1 ∧ (i+ 2)/2n on {i/2n < τi ≤ (i+ 1)/2n}.
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Then the process

Kn :=
∑k

i=1 H
i
1(σn

i ,σn
i+1

]

is actually in EDn
: this follows from the fact that the stopping times (σn

i )i have
values in Dn and satisfy τi + 1/2n ≤ σn

i , while Hi is Fτi-measurable. Moreover
IS(K

n) converges to IS(H) in probability (since S is right continuous) and so,
taking n big enough, it follows that

P(|IS(H)| > C) ≤ P(|IS(H)− IS(K
n)| > C) + P(|IS(K

n)| > C) < 2ε.

Since the choice of C was independent of H ∈ S, this proves that IS is bounded on
S. �

As a corollary of Theorem BD, we obtain that semimartingales can be character-
ized by Riemann-sums. Indeed, if S is a semimartingale, the stochastic dominated
convergence theorem implies that, for every left-continuous adapted process H , the
random variables

∑

τi∈πn

Hτi(Sτi+1
− Sτi)

converge in probability (to IS(H)) as n → ∞, for any sequence (πn)n of random
partitions whose mesh is going to 0. Conversely, we find that this property char-
acterizes semimartingales. Indeed, define a càdlàg adapted process (St)0≤t≤1 to
be a Riemann integrator if for every bounded adapted continuous process H the
sequence of random variables

∑2n−1
i=0 H i

2n
(S i+1

2n
− S i

2n
)

converges in probability as n → ∞. Then, the following holds:

Corollary 7.2. Every Riemann integrator is a semimartingale.

To prove Corollary 7.2 we need some additional definitions. Consider the Banach
space L∞(Ω;C0([0, 1])) of all bounded continuous processes (Ht)t∈[0,1], endowed
with the sup norm (3). Let X be the subspace constituted by the processes which
are adapted; this is a closed subspace, and hence a Banach space with the induced
norm. Finally, define the linear continuous operator In

S : X → L0(P) by

In
S (H) := IS(H

Dn), where HDn :=

2n−1
∑

i=0

H i
2n
1( i

2n
, i+1

2n
].

By definition, S is a Riemann integrator if, for every H ∈ X , In
S (H) converges in

probability as n → ∞. The Banach-Steinhaus theorem5 [Rud91, Theorem 2.6] then
yields the following:

Lemma 7.3. If S is a Riemann good integrator, then for every ε > 0 there is

some C > 0 such that P(In
S (H) ≥ C) ≤ ε for all n ≥ 1 and all continuous adapted

processes H such that ‖H‖∞ ≤ 1.

It is now fairly straightforward to establish that every Riemann integrator is a
good integrator.

Proof of Theorem 7.2. Let H ∈ EDn
be as in (9) and satisfy ‖H‖∞ ≤ 1. Define

a process K by declaring it equal to Hi at time t = i/2n, for 0 ≤ i ≤ 2n − 1,
and equal to zero at time 1, and extending it to t ∈ [0, 1] by affine interpolation.
Then K is a continuous adapted process such that ‖K‖∞ ≤ 1 and IS(H) = In

S (K).
Thus, by Lemma 7.3, IS is bounded on ED. Lemma 7.1 then shows that S is a
good integrator, and so Theorem BD implies that S is a semimartingale. �

5Which is also commonly called “the uniform boundedness principle”.
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If we want to define the stochastic integral with respect to a process S in a
way that the stochastic dominated convergence theorem holds, we must require
the process S to be right continuous in probability.6 The following well known7

theorem shows that is minimal continuity assumption is actually strong enough for
the purpose.

Theorem 7.4. If a good integrator is right continuous in probability, then it has a

càdlàg modification.

Conveniently enough, the proof of Theorem 2.1 yields this result automatically

if the good integrator is bounded (this follows from Remark 6.1). With just a little
more work we can remove the assumption of boundedness, by proving first the
invariance of good integrators under convex transformations, which is interesting
in itself.

Lemma 7.5. Assume that S is a good integrator and let f : R → R be a convex

map whose left derivative f ′ is bounded. Then f(S) is a good integrator.

Proof. Given a partition π of [0, 1], define the processes

Gπ :=
∑

ti∈π f
′(Sti)1(ti,ti+1], Aπ := f(S)− f(S0)−Gπ · S .

ThenGπ is a simple integrand and, for t ∈ π, the representation of Aπ
t as a telescopic

sum

Aπ
t =

∑

tj<t,tj∈π f(Stj+1
)− f(Stj )− f ′(Stj )(Stj+1

− Stj ),

shows that (At)t∈π is increasing. Thus, given a simple integrand H of the form (2)
with ti ∈ π for every i, we obtain the estimate

|(H · f(S))1| = |(H ·Aπ)1 + (H · (Gπ · S))1| ≤ ‖H‖∞|Aπ
1 |+ |((HGπ) · S)1|.

Since S is a good integrator, Aπ
1 as well as ((HGπ) ·S)1 are bounded in probability,

uniformly over all partitions π and all simple integrands H satisfying ‖H‖∞ ≤ 1,
which concludes the proof of the lemma. �

Proof of Theorem 7.4. By the previous lemma, tan−1(S) is a good integrator, as
tan−1 is the difference of two convex functions with bounded derivatives. The
arguments in Section 4 remain valid if the assumption of càdlàg paths is relaxed to
right continuity in probability, thus proving that tan−1(S) has locally finite mean
variation. Remark 6.1 then yields that (locally and thus globally) there exists a
càdlàg modification of tan−1(S); so S has a càdlàg modification. �

Remark 7.6. Lemma 7.5 and its proof admit a trivial generalization to the multi-
dimensional case: one just needs to replace the left derivative of f with a Borel-
measurable selection of the sub-differential of f .

Moreover it clearly sufficient for f to be defined (and have bounded “derivative”)
on an open convex set on which S takes its values; in particular applying Lemma
7.5 to the functions f(x) = |x| and f(x) = x2 and pre-localizing S (to make it
bounded) it follows that the space of good integrators is a lattice and an algebra.

6 Indeed, since 1(t,t+ 1
n
] converges to zero, IS(1(t,t+ 1

n
]) = S

t+ 1
n

− St must converge to zero

in probability.
7See, for instance, [DM88, Chapter 8, Paragraph 81] or [Bic81, Theorem 2.3.4]
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