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Abstract. It is well-known that duality in the Monge-Kantorovich
transport problem holds true provided that the cost function c : X×Y →
[0,∞] is lower semi-continuous or finitely valued, but it may fail other-
wise. We present a suitable notion of rectification cr of the cost c, so
that the Monge-Kantorovich duality holds true replacing c by cr. In
particular, passing from c to cr only changes the value of the primal
Monge-Kantorovich problem. Finally, the rectified function cr is lower
semi-continuous as soon as X and Y are endowed with proper topologies,
thus emphasizing the role of lower semi-continuity in the duality-theory
of optimal transport.

1. Introduction

1.1. Description of the main question. We consider the Monge-Kan-
torovich transport problem for Borel probability measures µ, ν on Polish
spaces X,Y . Standard references for the theory of optimal transportation
are [Vil03, Vil09].

The set Π(µ, ν) consists of all transport plans, that is, Borel probability
measures on X × Y which have X-marginal µ and Y -marginal ν. The
transport cost associated to a cost function c : X × Y → [0,∞] and a
transport plan π is given by

(1) 〈c, π〉 =
∫∫

X×Y
c(x, y) dπ(x, y).

The (primal) Monge-Kantorovich problem is then to determine the value

(2) Pc := inf{〈c, π〉 : π ∈ Π(µ, ν)} .
and to identify a primal optimizer π̂ ∈ Π(µ, ν).

A natural condition which guarantees the existence of a primal optimizer
is that the cost function c is lower semi-continuous. (See for instance [Vil09,
Theorem 4.1].)

To formulate the dual problem, we let

ϕ⊕ ψ (x, y) := ϕ(x) + ψ(y)

for functions ϕ,ψ on X (resp. Y ). The dual Monge-Kantorovich problem
then consists in determining

(3) Dc := sup
{∫

ϕdµ+
∫
ψ dν : ϕ ∈ L1

µ(Y ), ψ ∈ L1
ν(Y ), ϕ⊕ ψ ≤ c

}
.
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Given two functions ϕ,ψ which are integrable with respect to µ and ν respec-
tively, and which satisfy ϕ⊕ ψ ≤ c, and given a transport plan π ∈ Π(µ, ν)
we clearly have∫∫

c dπ ≥
∫∫

ϕ⊕ ψ dπ =
∫
ϕdµ+

∫
ψ dν ,

hence it follows that Pc ≥ Dc. The question if there actually is equality,
i.e. whether Monge-Kantorovich duality Pc = Dc holds true, has been in-
tensively studied in the years by many authors, see for instance [Kan42,
KR58, Dud76, Dud02, dA82, GR81, Fer81, Szu82, Mik06, MT06], and see
also the bibliographical notes in [Vil09, p86, 87]. In particular, it is known
that Pc = Dc provided that the cost function c is lower semi-continuous
(cf. [Kel84, Theorem 2.6] or [Vil09, Theorems 5.10] for a modern source), or
merely measurable but bounded ([Kel84, Corollary 2.16]) or at least µ⊗ ν-
a.s. finitely valued ([BS09, Theorem 1]). However, the duality does not hold
in complete generality as simple examples show.

Example 1.1. Let X = Y = [0, 1] and let µ = ν be the Lebesgue measure.
Define c on X×Y to be 0 below the diagonal, 1 on the diagonal and ∞ else,
i.e.,

c(x, y) =

 0, for 0 ≤ y < x ≤ 1 ,
1, for 0 ≤ x = y ≤ 1 ,
∞, for 0 ≤ x < y ≤ 1 .

The only finite transport plan is concentrated on the diagonal, hence Pc = 1.
On the other hand, if ϕ : X → [−∞,∞), ψ : Y → [−∞,∞) satisfy ϕ⊕ψ ≤ c,
one readily verifies that ϕ(x) +ψ(x) > 0 can hold true for at most countably
many x ∈ [0, 1]. Hence Dc = 0 so that there is a duality gap.

Let us discuss the example above a little bit. Strictly speaking, one should
simply say that it presents a situation where the duality does not hold true.
But on the other hand, one would like to say that in fact the duality should
hold true, and it fails only because the cost function c takes the “wrong”
value on the diagonal, while the “correct” cost function should be

(4) cr(x, y) =
{

0 for 0 ≤ y ≤ x ≤ 1,
∞ for 0 ≤ x < y ≤ 1.

In fact, in some sense, around the points in the diagonal there are “many”
points where c = 0, hence it makes no sense to have c = 1 in the diagonal.
Notice that with the cost function cr duality holds, and in particular

(5) Pcr = Dcr = Dc .

Basically, we are saying that in the above example the correct value of both
the primal and the dual problem “should be” the same, namely 0, and it
is not so only because the cost function c has been defined in a slightly
meaningless way. In particular, the fact that Dcr = Dc is saying that the
dual problem is less sensitive to the “mistakes” in the definition of c, while
the primal problem is more sensitive and indeed Pc > Pcr .

The aim of the present paper is to show that the situation is always the
one described by means of the above simple example. More precisely, we
will show that for any transport problem it is possible to define a meaningful
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rectified cost function cr ≤ c, and (5) always holds true. Roughly speaking,
this means that duality in the Monge-Kantorovich problem always holds
true, as soon as one considers the “correct” definitions of the cost functions
c. Moreover, an “incorrect” definition may only affect the value of the primal
problem, and can be corrected by passing to a suitable rectified cost function
cr.

Let us now describe another important feature of our rectification pro-
cedure. Consider a simple variant of Example 1.1, where the value +∞ in
the definition of c is replaced by some number 1 < M ∈ R. In this case
the cost is finite, then according to the classical results we know that the
duality holds. However, the transport problem has now another drawback,
namely that there are no optimal transport plans. In fact, the infimum of
the costs of the transport plans is now 0, but every transport plan has a
strictly positive cost. In particular, every optimizing sequence of transport
plans converges to the plan concentrated on the diagonal, which has cost 1.
Clearly, also this bad behaviour disappears if one passes to the rectified cost
function cr, which has value 0 in the diagonal and coincides with c outside.

We will show that also this pleasant feature of the rectification process
holds in general, that is, the transport problem with the rectified cost cr
always admits optimal transport plans. We can say something even stronger,
namely, that for any sequence of plans πn weakly converging to π, the liminf
inequality for the costs holds, that is,

(6) πn ⇀ π =⇒ 〈cr, π〉 ≤ lim inf
n→∞

〈cr, πn〉 .

Before concluding this introductory description, it is important to under-
line here two things. First of all, one is easily lead to guess that the correct
rectification cr is simply the lower semi-continuous envelope of c. In fact, cr
coincides with the l.s.c. envelope of c in the two examples that we presented
above, and moreover for a l.s.c. function the property (6) is clearly always
true. However, it is also easy to realize that the l.s.c. of c does not work as
we want. To see this, it is enough to consider the following example.

Example 1.2. Let X = Y = [0, 1], let µ = ν be the Lebesgue measure, and
define

c(x, y) =
{

0 if (x, y) ∈ Q×Q ,
1 otherwise .

In this case, the value of the cost function is almost surely 1, so the problem
is perfectly equivalent to the trivial problem with c ≡ 1, hence the duality
already holds, the minimum is already attained, and there is no need to
change anything. But on the other hand, the lower semi-continuous envelope
of c is costantly 0.

Looking at the example above, one easily understands what is wrong with
the l.s.c. envelope. Roughly speaking, one needs to have cr(x, y) < c(x, y) if
there are “many” points around (x, y) with a low value of the cost function,
while the lower semi-continuous envelope goes down even if there are only
“few”, but infinitely close, such points. We will make a better discussion
later, with Example 3.2.
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The second thing that we want to underline is, whether or not the rectifi-
cation cr of c depends on the measures µ and ν. On one hand, it seems quite
reasonable, and it would be of course much better, if it is not the case and cr
depends only on c. But on the other hand, it is also easy to realize that this
is not possible in general. In fact, if for instance µ and ν are concentrated
on two points x̄ ∈ X and ȳ ∈ Y , then the value of c out of (x̄, ȳ) does not
play any role and it cannot affect the definition of cr. More precisely, we
can observe that the fact whether there are “many” of “few” points around
(x, y) ∈ X × Y of course depends on the measures µ and ν. In fact, we
will show (see Remark 3.1) that the rectification cr of c only depends on the
class of negligible sets with respect to µ and ν, which is the best one could
hope in view of the above considerations.

1.2. Formal statement of our result. In this section, we can give the
formal definition of the rectification cr of c and the correct statement of our
main result. First of all, we need to introduce the following notion.

Definition 1.3. A set A ⊆ X × Y is called L-negligible if there exist two
sets M ⊆ X and N ⊆ Y with µ(M) = ν(N) = 0 such that

A ⊆ (M × Y ) ∪ (X ×N) .

Accordingly, if a property holds on the complement of an L-negligible set,
than we sey that it holds L-almost surely.

It is trivial but fundamental to observe that the transport problem is not
affected if the cost function is changed on an L-negligible set.

We can now give our definition of the rectified cost function.

Definition 1.4. Let c : X × Y → [0,∞] be measurable. A function cr :
X × Y → [0,+∞] is said to be the rectification of c if the following holds:

(i) for all Borel functions ϕ,ψ : [0, 1] → [−∞,∞) satisfying ϕ ⊕ ψ ≤ c
we have ϕ⊕ ψ ≤ cr L-almost surely;

(ii) cr is minimal subject to (i), i.e. if d is another function satisfying
(i) then L-almost surely cr ≤ d.

It is clear from (ii) that every cost function has at most one rectification,
while the existence is not obvious. We can now state our result.

Theorem 1. Take two Polish spaces X and Y , two probability measures
µ and ν on X and Y respectively, and a Borel measurable cost function
c : X × Y → [0,∞]. Then the following holds.

(A) There exists a (L-almost surely) unique rectification cr of c. More-
over

(A1) one has L-almost surely cr ≤ c;
(A2) if c is lower semi-continuous, then L-almost surely cr = c;
(A3) for the transport problem associated to cr duality holds, in par-

ticular
Pcr = Dcr = Dc .

(B) The transport problem associated to cr admits a solution (i.e., an
optimal transport plan). Moreover
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(B1) for any transport plan π and for any sequence of transport plans
πn ⇀ π one has∫∫

X×Y
cr dπ ≤ lim inf

n→∞

∫∫
X×Y

cr dπn ;

(B2) for any transport plan π there is a suitable sequence of measures
πn ⇀ π so that∫∫

X×Y
cr dπ = lim

n→∞

∫∫
X×Y

c dπn .

(C) There exist Polish topologies τX , τY on X resp. Y which refine the
original topologies, lead to the same Borel sets and are so that cr is
lower semi-continuous w.r.t. τX ⊗ τY .

Remark 1.5. We underline that another way of “solving” the situations
where the duality does not hold has been given in [BLS09]. For ε > 0, define
the 1− ε partial transportation problem (considered for instance in [Fig10,
CM10]) by

P εc := inf
{∫∫

c dπ : PXπ ≤ µ, PY ≤ ν, ‖π‖ ≥ 1− ε
}
.

Then [BLS09, Theorem 1.2] asserts that

Dc = P relaxed
c := lim

ε↓0
P εc .

2. Proof of the main result

In this section, we prove our theorem. We start with one of the main
ingredients of the proof, namely, to show the existence of a rectification cr
corresponding to the cost function c. In fact, we can show something more
precise.

Lemma 2.1. There exists a unique rectification cr : X × Y → [0,∞] of
c. Moreover, there exist two sequences of measurable and bounded functions
ϕn : X → R and ψn : Y → R such that ϕn ⊕ ψn ≤ c for all n, and

cr = sup
n≥1

ϕn ⊕ ψn .

In the proof of this result, we will use the following characterization of
L-negligible sets.

Lemma 2.2. A Borel set A ⊆ X × Y is L-negligible if and only π(A) = 0
for every transport plan π ∈ Π(µ, ν).

Proof. If A is L-negligible, then clearly π(A) = 0 for every transport plan
π ∈ Π(µ, ν). The other direction is more difficult and was first established by
Kellerer as a consequence of the Duality Theorem for bounded cost functions
[Kel84, Proposition 3.5]. See also [BLS09, Appendix A] for a more direct
proof. �

Proof of Lemma 2.1. As already noticed, the uniqueness of a rectification
is trivial by property (ii) of Definition 1.4, hence we have only to show the
existence. For simplicity, we will divide the proof of the lemma in some
steps.
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Step I. Reduction to the case of a bounded cost function c.
We start the proof by reducing to the case of a bounded function c. First of
all, for any function τ and any n ∈ N let us set

τ (n) := max
(

min(τ, n),−n
)
.

It is now immediate to notice that, for any two functions ϕ : X → [−∞,∞)
and ψ : Y → [−∞,∞), the sequence

n 7→ ϕ(n) ⊕ ψ(n)

is increasing where ϕ⊕ψ is positive, and it is pointwise converging to ϕ⊕ψ.
Hence, a function d : X×Y → [0,∞] satisfies L-almost surely the inequality
ϕ⊕ψ ≤ d if and only if ϕ(n)⊕ψ(n) ≤ d for all n ∈ N. As a consequence, if a
function d satisfies property (i) of Definition 1.4 for all the pairs of functions
which are bounded, then it already satisfies (i) in full generality. We are
then ready to show the claim of this step. Indeed, let us assume that the
lemma has been already established for all bounded cost functions, and pick
a generic cost function c. By assumption, for any n we know that c(n) admits
a rectification c

(n)
r = supj∈N ϕn,j ⊕ ψn,j . We claim then that

cr := sup
n,j

ϕn,j ⊕ ψn,j = sup
n
c(n)
r

is a rectification of c. Concerning property (i), for all Borel functions ϕ, ψ
we have
ϕ⊕ ψ ≤ c =⇒ ϕ(n) ⊕ ψ(n) ≤ c ∀n =⇒ ϕ(n) ⊕ ψ(n) ≤ c(2n) ∀n

=⇒ ϕ(n) ⊕ ψ(n) ≤ c(2n)
r ≤ cr ∀n =⇒ ϕ⊕ ψ ≤ cr .

On the other hand, concerning property (ii), let d : X × Y → [0,+∞]
satisfy (i), and let n ∈ N. Since we assume the validity of the lemma for
c(n), which is bounded, from the fact that

ϕ⊕ ψ ≤ c(n) =⇒ ϕ⊕ ψ ≤ c =⇒ ϕ⊕ ψ ≤ d ,

we immediately deduce that c(n)
r ≤ d. Hence, clearly cr = supn c

(n)
r ≤ d.

Step II. The bounded case: definition of cr and property (ii).
In view of Step I, let us now concentrate on the case of a bounded cost
function c, say c : X × Y → [0,M ]. Consider the set

V :=
{

(f, g) : f : X → [0, 1], g : Y → [0, 1],
∫
f dµ =

∫
g dν

}
,

and pick a family {(fn, gn)}n∈N ⊆ V which is dense in V in the sense that for
all (f, g) ∈ V and ε > 0 there are fn, gn satisfying ‖f −fn‖1 +‖g−gn‖1 ≤ ε.
Here, and in the following, by the sake of shortness for each h ∈ L1

µ(X)
(resp. k ∈ L1

ν(Y )), we write ‖h‖1 (resp. ‖k‖1) to denote ‖h‖L1
µ(X) (resp.

‖k‖L1
ν(Y )). For each n ∈ N, let us now take a pair of functions (ϕn, ψn)

which are optimal for the dual problem, hence such that ϕn ⊕ ψn ≤ c and

(7)
∫
ϕn d(fnµ)+

∫
ψn d(gnν) = inf

{∫∫
c dγ : PXγ = fnν, PY γ = gnµ

}
.

This is possible thanks to the known duality results for bounded cost func-
tions ([Kel84, Theorem 2.21]).
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For technical reasons it will be convenient to take also the pair of functions
ϕ0 ≡ 0, ψ0 ≡ 0 into account.

Let us now define cr := supn≥0 ϕn ⊕ ψn. The proof will be obtained by
checking that cr is a rectification of c. Let us start with the minimality
property (ii), which is straightforward. Indeed, let d be a function which
satisfies (i). For any n ≥ 0, then, by construction we have ϕn ⊕ ψn ≤ c,
and by (i) this implies ϕn ⊕ ψn ≤ d. Passing to the supremum, we obtain
cr = supn ϕn ⊕ ψn ≤ d, then the required minimality property (ii).
Step III. The bounded case: proof of (i).
In view of the preceding steps, we still only have to check that the function
cr defined above verifies (i). Striving for a contradiction, we assume that
there exist functions ϕ : X → R, ψ : Y → R, ϕ ⊕ ψ ≤ c such that the set
{ϕ⊕ ψ > cr} is not L-negligible.

Pick, by Lemma 2.2, a transport plan π0 ∈ Π(µ, ν) so that π0({ϕ ⊕ ψ >
cr}) > 0. As

{ϕ⊕ψ > cr} =
⋃

a,b,δ∈Q,δ>0

{
(x, y) : ϕ(x) > a,ψ(y) > b, a+ b > cr(x, y) + δ

}
,

there exist a, b ∈ R, δ > 0 and a Borel set Γ ⊆ X × Y so that

π0(Γ) > 0
a < ϕ on A := PXΓ,
b < ψ on B := PY Γ,
cr < a+ b− δ on Γ.

Let now

γ0 := π0� Γ , f :=
d(PXγ0)
dµ

, g :=
d(PY γ0)
dν

,

where the first definition means that for any Borel set ∆ one has

γ0(∆) = π0

(
Γ ∩∆) .

Since (f, g) ∈ V , we can pick n ≥ 1 so that fn, gn satisfy

(8) ‖f − fn‖1 + ‖g − gn‖1 <
δ‖γ0‖
2M

.

Take now a plan γ ∈ Π(fnµ, gnν), and notice that

γ
(
A× Y

)
= fnµ(A) ≥ fµ(A)− ‖f − fn‖1 = γ0

(
A× Y

)
− ‖f − fn‖1

= ‖γ0‖ − ‖f − fn‖1 ,

so that

γ
(
A×B

)
= γ

(
A× Y

)
− γ
(
A× (Y \B)

)
≥ γ

(
A× Y

)
− γ
(
X × (Y \B)

)
≥ ‖γ0‖ − ‖f − fn‖1 − gnν(Y \B)

≥ ‖γ0‖ − ‖f − fn‖1 −
(
gν(Y \B) + ‖g − gn‖1

)
= ‖γ0‖ − ‖f − fn‖1 − ‖g − gn‖1 .
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As a consequence, recalling that c ≥ ϕ⊕ψ > a+b on A×B, we can estimate

inf
γ∈Π(fnµ,gnν)

∫∫
X×Y

c dγ ≥ inf
γ∈Π(fnµ,gnν)

∫∫
A×B

c dγ

≥ (a+ b)
(
‖γ0‖ − ‖f − fn‖1 − ‖g − gn‖1

)
.

(9)

On the other hand, set

α :=
d(fnµ)
d(fµ)

∧ 1 , β :=
d(gnν)
d(gν)

∧ 1 , γ̃0 =
(
α ∧ β)γ0 ≤ γ0 ,

and notice that

‖γ0‖ − ‖γ̃0‖ =
∫∫

1−
(
α ∧ β

)
dγ0 ≤

∫∫
1− αdγ0 +

∫∫
1− β dγ0

≤ ‖f − fn‖1 + ‖g − gn‖1 .
We can then call

f̃ :=
d(PX γ̃0)
dµ

, g̃ :=
d(PY γ̃0)
dν

, fr := fn − f̃ ≥ 0 , gr := gn − g̃ ≥ 0 ,

observe that

(10) ‖frµ‖ = ‖grν‖ ≤ ‖f − fn‖1 + ‖g − gn‖1 ,
thus getting to evaluate∫

ϕn d(fnµ) +
∫
ψn d(gnν)

=
∫
ϕn d(f̃µ) +

∫
ψn d(g̃ν) +

∫
ϕn d(frµ) +

∫
ψn d(grν)

=
∫∫

ϕn ⊕ ψn dγ̃0 +
∫∫

ϕn ⊕ ψn d
(

(frµ)⊗ (grν)
‖frµ‖

)
≤
∫∫

cr dγ̃0 +M‖frµ‖ ≤
∫∫

cr dγ0 +M‖frµ‖

≤
(
a+ b− δ

)
‖γ0‖+M

(
‖f − fn‖1 + ‖g − gn‖1

)
,

where we have used (10) and the fact that cr ≥ 0, which immediately comes
from the definition of ϕ0 and ψ0. Finally, inserting the last inequality and (9)
into (7), and recalling that by construction a + b ≤ sup c ≤ M , we readily
obtain

‖f − fn‖1 + ‖g − gn‖1 ≥
δ‖γ0‖
2M

,

which together with (8) provides the searched contradiction. �

We can now come to the proof of Theorem 1.

Proof of Theorem 1. Let us start from Property (C). Our argument will
be based on [Kec95, Theorem 13.1]: if Z is a Polish space and B1, B2, . . .
are Borel sets in Z, then there exists a Polish topology τ on Z so that τ
refines the original topology, τ generates the same Borel sets as the original
topology and all sets Bn, n ∈ N are open in τ .

A useful application is that a Borel function can be viewed as continuous
function on a modified space. More precisely, if f : Z → R is Borel, then
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we can apply the above-mentioned result to the sets Bn := f−1(Un), n ∈ N,
being {Un}n∈N a neighborhood basis of R, to obtain a Polish topology τ on
Z which refines the original topological and in which all sets Bn are open.
Consequently, f is a continuous function on the space (Z, τ).

By Lemma 2.1, there exist two sequences of measurable functions ϕn :
X → R and ψn : Y → R such that supn≥1 ϕn ⊕ ψn = cr. Using the just
explained argument, we can find topologies τX and τY on X resp. Y so
that, for every n ∈ N, ϕn and ψn are continuous functions on (X, τX) resp.
(Y, τY ). As a consequence, the functions ϕn ⊕ ψn, n ∈ N are continuous on
(X × Y, τX ⊗ τY ) and hence cr = supn≥1 ϕn ⊕ ψn is l.s.c. with respect to
τX ⊗ τY , so that Property (C) follows.

Let us now consider Property (A). The existence and uniqueness of a
rectification have been already established with Lemma 2.1. Concerning
Property (A1), it is clear from the definition of the rectification.

We pass then to consider Property (A2). Pick families of open sets
{Un}n∈N and {Vm}m∈N which form bases of the topologies of X resp. Y .
For n,m ∈ N, set

en,m := inf
(x,y)∈Un×Vm

c(x, y) ≤ +∞

and define ϕn,m,j : X → R and ψn,m,j : Y → R so that

ϕn,m,j ⊕ ψn,m,j = en,m ∧ j on Un × Vm
ϕn,m,j ⊕ ψn,m,j ≤ 0 otherwise.

Since by construction ϕn,m,j ⊕ ψn,m,j ≤ c, by definition we have ϕn,m,j ⊕
ψn,m,j ≤ cr, and hence also

cr ≥ sup
n,m,j

ϕn,m,j ⊕ ψn,m,j .

Finally, if c is l.s.c. then the latter supremum coincides with c itself, so
L-a.s. one has cr ≥ c, which together with Property (A1) concludes the
searched equality.

Finally, we consider Property (A3). First of all, we can observe that c
and cr have the same dual problem, that is, Dc = Dcr . To do so, take two
functions ϕ, ψ, integrable with respect to µ and ν respectively, and such that
ϕ⊕ψ ≤ c. By definition, there exist sets M ⊆ X,N ⊆ Y, µ(M) = ν(N) = 0
so that (ϕ ⊕ ψ)(x, y) ≤ cr(x, y) for all x ∈ X \M,y ∈ Y \ N , hence for
ϕ̃ := ϕ− IM , ψ̃ := ψ− IN we have ϕ̃⊕ ψ̃ ≤ cr and

∫
ϕdµ =

∫
ϕ̃ dµ,

∫
ψ dν =∫

ψ̃ dν. This shows Dcr ≥ Dc. The other inequality is identical. Indeed, if
ϕ, ψ are integrable and ϕ⊕ψ ≤ cr, by Property (A1) there are again two sets
M ⊆ X,N ⊆ Y, µ(M) = ν(N) = 0 so that (ϕ⊕ ψ)(x, y) ≤ cr(x, y) ≤ c(x, y)
for all x ∈ X \M,y ∈ Y \N , so exactly as before we get Dc ≥ Dcr , and in
particular we have Dc = Dcr .

Moreover, having already established Property (C), the equality Dcr =
Pcr comes directly from the standard duality theorem for l.s.c. cost functions
(notice that a change of the topology which does not change the Borel sets
does not effect neither the primal nor the dual problem).

We are then finally left with Property (B). First of all, the existence of
an optimal transport plan with respect to cr is obvious by Property (C).
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Indeed, it is well-known that a transport problem with a l.s.c. cost admits
an optimal transport plan, and the optimality of a plan is again not effected,
of course, by a change of the topology.

Let us now consider Property (B1). To show its validity, we first recall
the very well-known fact that, whenever d is a l.s.c. function and γn is a
sequence of measures weakly converging to γ, one has∫

d dγ ≤ lim inf
n→∞

∫
d dγn .

Let us now take a transport plan π and a sequence {πn} such that πn ⇀
π. Thanks to Lemma 2.3 below (and to the discussion of the following
Remark 2.4), we obtain that the weak convergence πn ⇀ π holds also with
respect to the new topology τX⊗τY . But then, since cr is l.s.c. with respect
to this topology, we immediately get the searched liminf inequality.

Finally, we are left with Property (B2). Keeping in mind Property (B1),
it is sufficient to show that for every π ∈ Π(µ, ν) there exists a sequence
πn ⇀ π so that

(11) lim sup
n→∞

∫∫
c dπn ≤

∫∫
cr dπ .

We present the proof for the case X = Y = [0, 1] and µ = ν = λ, because
the argument becomes much simpler to read, but at the end it will be clear
that the proof of the general case is equivalent, and just more notationally
uncomfortable.

If
∫∫

cr dπ = ∞ there is nothing to prove, so assume that
∫∫

cr dπ < ∞.
Fix n ∈ N and l,m ∈ {1, . . . , 2n}. Set

Dn
l,m :=

(
l−1
2n ,

l
2n

]
×
(
m−1
2n , m2n

]
.

Denote by µnl,m, ν
n
l,m the marginals of π � Dn

l,m. For µnl,m-, resp. νnl,m-
integrable functions ϕ :

(
l−1
2n ,

l
2n

]
→ R, ψ :

(
m−1
2n , m2n

]
→ R satisfying

ϕ⊕ ψ ≤ c we have∫
ϕdµnl,m +

∫
ψ dνnl,m ≤

∫∫
Dnl,m

cr dπ <∞ .

Hence the optimal dual value corresponding to the cost function c and the
spaces

((
l−1
2n ,

l
2n

]
, µnl,m

)
,
((

m−1
2n , m2n

]
, νnl,m

)
is finite. By Remark 1.5 (resp.

[BLS09, Theorem 1.2]), there exist µnl,m-, resp. νnl,m-integrable functions
ϕnl,m :

(
l−1
2n ,

l
2n

]
→ R, ψnl,m :

(
m−1
2n , m2n

]
→ R and a measure πnl,m on Dn

l,m

so that

PXπ
n
l,m ≤ µnl,m , PY π

n
l,m ≤ νnl,m , ‖πnl,m‖ ≥ ‖µnl,m‖ − 1

n4n ,(12)

ϕnl,m ⊕ ψnl,m ≤ c ,(13) ∫
ϕnl,m dµ

n
l,m +

∫
ψnl,m dν

n
l,m ≥

∫∫
c dπnl,m − 1

n4n .(14)

Define a measure πn on X × Y by the requiring that πn � Dn
l,m = πnl,m for

all l,m ∈ {1, . . . , 2n}. It follows from (12) that

lim
k→∞

πk(Dn
l,m) = π(Dn

l,m)
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for all l,m, n ∈ N, l,m ≤ 2n. Consequently, (πk)k≥1 converges weakly to π.
From (13) and (14) we deduce∫∫

c dπn − 1
n =

∑
l,m≤2n

(∫∫
c dπnl,m − 1

n4n

)
≤

∑
l,m≤2n

∫
ϕnl,m dµ

n
l,m +

∫
ψnl,m dν

n
l,m

=
∑

l,m≤2n

∫∫
Dnl,m

ϕnl,m ⊕ ψnl,m dπ

≤
∑

l,m≤2n

∫∫
Dnl,m

cr dπ =
∫∫

cr dπ .

Letting n tend to ∞ in the last inequality, we obtain (11). �

In the above proof, we needed to use the following technical topological
result.

Lemma 2.3. Let X, Y be Polish spaces, let µ, ν be Borel probability mea-
sures on X, Y respectively, and take a measure π and measures πn, n ∈ N,
on X × Y such that

PXπ ≤ µ , PXπn ≤ µ , PY π ≤ ν , PY πn ≤ ν .(15)

Then, πn weakly converges to π if and only if πn(A × B) → π(A × B) for
all Borel sets A ⊆ X, B ⊆ Y .

Remark 2.4. It is important to underline a consequence of the above result,
namely, that the weak convergence of transport plans only depends on the
Borel structure of X and Y , instead of the topological one. In other words,
replacing the topologies on X and Y with other topologies generating the
same Borel structures, the weak convergence of the sequences of plans is left
unchanged.

Proof of Lemma 2.3. Suppose first that πn ⇀ π, take two Borel sets A ⊆ X
and B ⊆ Y , and fix ε > 0. It is then possible to select two open sets Ã ⊇ A
and B̃ ⊇ B, as well as two compact sets Â ⊆ A and B̂ ⊆ B, in such a way
that

µ
(
Ã \ Â

)
< ε , ν

(
B̃ \ B̂

)
< ε .

By the standard semi-continuity properties of the weak convergence, and
recalling (15), one then has

lim inf
n→∞

πn
(
Ã× B̃

)
≥ π

(
Ã× B̃

)
≥ π

(
A×B

)
≥ π

(
Â× B̂

)
≥ lim sup

n→∞
πn
(
Â× B̂

)
≥ lim sup

n→∞
πn
(
Ã× B̃

)
− 2ε ,

which clearly implies πn
(
A×B

)
−→ π

(
A×B

)
.

On the other side, assuming the convergence of πn
(
A× B

)
to π

(
A× B

)
for all Borel sets A ⊆ X, B ⊆ Y , we have to prove that πn ⇀ π. Notice that
the sequence {πn} is relatively sequentially weakly compact, by (15) and
by Prokhorov Theorem (this is standard, see for instance [Vil09, p55-57]).
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Hence, one can find a measure π̃ and extract a (not relabelled) subsequence
such that πn ⇀ π̃. Of course, we are done once we check that π̃ = π. But
in fact, by assumption and by the first half of the proof we know that

π̃
(
A×B

)
←−−−−−
n→∞

πn
(
A×B

)
−−−−−→
n→∞

π
(
A×B

)
for all Borel sets A ⊆ X, B ⊆ Y . Hence, π and π̃ agree on all the Borel
rectangles A×B, and since Borel rectangles are a basis for the Borel sets of
X × Y , we deduce that π̃ = π. �

3. Remarks and Examples

In this last section, we collect some examples and remarks about the
rectification. First of all, we show that the rectification of a cost function
c is not independent of µ and ν, but in fact it depends only on which are
the negligible sets with respect to µ and ν. As already discussed in the
introduction, this is the strongest possible result in this sense.

Remark 3.1. Given a cost function c : X × Y → [0,+∞], the rectification
cr of c is not independent of µ and ν. However, it only depends on the
class of the µ- (resp. ν-) negligible sets in X (resp. Y ). This is immediate
from Definitions 1.4 and 1.3, since everything depends on which sets are
L-negligible, and in turn this only depends on the µ- and ν-negligible sets.

A second observation is needed, concerning the lower semi-continuity
properties of cr. In fact, we have already seen, with Example 1.2 in the
introduction, that cr is not the l.s.c. envelope of c. However, that example
may leave the impression that cr can still be defined as the l.s.c. envelope
of c, made after a modification of c on an L-negligible set. This is indeed
true in Example 1.2, as well as in many other situations. We can show with
the example below that this is not in general the case.

Example 3.2. Let (X,µ) = (Y, ν) = ([0, 1], λ). Let (qn)n≥1 be an enumer-
ation of the rationals in [0, 1]. Pick α so that

Γ := [0, 1] \
⋃
n≥1

(qn − α/2n, qn + α/2n)

has Lebesgue-measure 1/2. Set ϕ = IΓ, ψ ≡ 0 and c ≡ ϕ ⊕ ψ. Then Pc =
Dc = 1/2, and cr = c. Nevertheless, any lower semi-continuous function
g : X × Y → [0,∞] which is L-almost surely smaller than c necessarily
satisfies g ≤ 0 L-almost surely.

We can now discuss a little bit the situation concerning the boundedness
of the cost function c. In fact, as we already mentioned in the introduction,
if c is bounded then the duality Pc = Dc already holds true, so one could
think that cr = c whenever c is bounded. We already know that this is not
true, thanks to the variant of the Example 1.1 where +∞ is replaced by
M > 1. But as we discussed, in that situation c had the drawback that no
optimal transport plans existed, while there are always optimal transport
plans for cr. It is then interesting to see an example where c is bounded
and there are optimal transport plans for c, but still cr does not coincide
L-almost surely with c.
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Example 3.3. Let us again consider the setting where X = Y = [0, 1] and
µ = ν is the Lebesgue measure, and consider the cost function given by

c(x, y) :=
{

0 if x− y ∈ Q ,
1 otherwise .

Then, it is very easy to see that Pc = Dc = 0, and the identity is an
optimal transport plan. However, it is also simple to observe that, whenever
ϕ⊕ ψ ≤ c, then in fact ϕ⊕ ψ ≤ 0, and this readily yields that cr ≡ 0, so cr
does not coincide with c L-almost surely.

The above examples show in particular that Property (A) of Theorem 1
is not enough to characterize the rectification cr. We can show, with another
example, that also Property (B) does not characterize the rectification (this
means that, if a function c̃r verifies Property (B), then not necessarily c̃r
coincides with cr).

Example 3.4. Let us consider another variant of Example 1.1, with the
cost function c given by

c(x, y) =

 2, for 0 ≤ y < x ≤ 1 ,
1, for 0 ≤ x = y ≤ 1 ,
∞, for 0 ≤ x < y ≤ 1 .

We know that cr = c, since c is l.s.c. . However, let us define c̃r replacing
2 by 0 under the diagonal (or, more in general, define c̃r to be 1 on the
diagonal, +∞ above it, and any other measurable function below it). Then,
since all the transport plans have an infinite cost except for the identity,
which has cost 1, it is immediate to observe that the function c̃r verifies
Property (B), though it is false that c̃r = cr L-a.s. .

We conclude by introducing the following stronger variant (B’) of Prop-
erty (B), and showing that in fact (B’) uniquely characterizes the rectifica-
tion.

(B’) for any measure π on X × Y , PXπ ≤ µ, PY π ≤ ν and any sequence
πn ⇀ π, PXπn ≤ µ, PY πn ≤ ν one has∫

X×Y
cr dπ ≤ lim inf

n→∞

∫
X×Y

cr dπn ≤ lim inf
n→∞

∫
X×Y

c dπn ,

and moreover for any such measure π there is a suitable sequence
πn ⇀ π such that the above inequalities are equalities.

The only difference between Properties (B) and (B’) is that in the first
case one only considers transport plans π, hence PXπ = µ, PY π = ν, while in
the latter one considers the more general case when PXπ ≤ µ and PY π ≤ ν.
This could seem a slight difference, but on the contrary it makes Prop-
erty (B’) strong enough to characterize the rectification, as the next remark
underlines.

Remark 3.5. It is pretty simple to realize, from the proof of Property (B)
in Theorem 1, that also the stronger Property (B’) holds true. On the other
hand, given any function c̃r which satisfies the Property (B’), we claim that
c̃r coincides with cr L-almost surely.
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To see this, take any measure π on X × Y satisfying PXπ ≤ µ, PY π ≤ ν,
and observe that Property (B’) implies that∫∫

cr dπ =
∫∫

c̃r dπ .

It follows that π({cr < c̃r}) = π({cr > c̃r}) = 0 for any such measure π, so
in particular for any π ∈ Π(µ, ν). Our claim then is immediately obtained
thanks to Lemma 2.2.

In particular, it is easy to notice that the function c̃r of Example 3.4
verifies Property (B) but not Property (B’).
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