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Abstract. The Skorokhod embedding problem is to represent a given probability as the
distribution of Brownian motion at a chosen stopping time. Over the last 50 years this has
become one of the important classical problems in probability theory and a number of au-
thors have constructed solutions with particular optimality properties. These constructions
employ a variety of techniques ranging from excursion theory to potential and PDE theory
and have been used in many different branches of pure and applied probability.

We develop a new approach to Skorokhod embedding based on ideas and concepts
from optimal mass transport. In analogy to the celebrated article of Gangbo and McCann
on the geometry of optimal transport, we establish a geometric characterization of Sko-
rokhod embeddings with desired optimality properties. This leads to a systematic method
to construct optimal embeddings. It allows us, for the first time, to derive all known optimal
Skorokhod embeddings as special cases of one unified construction and leads to a variety
of new embeddings. While previous constructions typically used particular properties of
Brownian motion, our approach applies to all sufficiently regular Markov processes.
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1. Introduction

Let B be a Brownian motion started in 0 and consider a probability µ on the real line
which is centered and has second moment. The Skorokhod embedding problem is to con-
struct a stopping time τ embedding µ into Brownian motion in the sense that

Bτ is distributed according to µ, E[τ] < ∞. (SEP)

Here, the second condition is imposed to exclude certain undesirable solutions. It is not
hard to see that E[τ] =

∫
x2 µ(dx) for any solution of (SEP). As already demonstrated

by Skorokhod [53, 54] in the early 1960’s, it is always possible to construct solutions to
the problem. Indeed, the survey article of Obłój classifies 21 distinct solutions to (SEP),
although this list (from 2004) misses many more recent contributions. A common inspi-
ration for many of these papers is to construct solutions to (SEP) that exhibit additional
desirable properties or a distinct internal structure. These have found applications in dif-
ferent fields and various extensions of the original problem have been considered. We refer
to the survey of Obłój [39] (and the 120+ references therein) for a comprehensive account
of the field.

Our aim is to develop a new approach to (SEP) based on ideas from optimal trans-
port. Many of the previous developments are thus obtained as applications of one unifying
principle (Theorem 1.2) and several difficult problems are rendered tractable.

1.1. A motivating example — Root’s construction. To illustrate our approach we intro-
duce a solution that will serve as inspiration in the rest of the paper: Root’s construction
[46] which is one of the earliest solutions to (SEP). It is prototypical for many further
solutions to (SEP) in that it has a simple geometric description and possesses a certain
optimality property in the class of all solutions.
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Figure 1. Root’s solution of (SEP).

Root established that there exists a barrier R (which is essentially unique) such that the
Skorokhod embedding problem is solved by the stopping time

τRoot = inf{t ≥ 0 : (t, Bt) ∈ R}. (1.1)

A barrier is a Borel setR ⊆ R+×R such that (s, x) ∈ R and s < t implies (t, x) ∈ R. The Root
construction is distinguished by the following optimality property: among all solutions to
(SEP) for a fixed terminal distribution µ, it minimizes E[τ2]. For us, the optimality property
will be the starting point from which we deduce a geometric characterization of τRoot. To
this end, we now formalize the corresponding optimization problem.

1.2. Optimal Skorokhod Embedding Problem. We consider the set of stopped paths

S = {( f , s) : f : [0, s]→ R is continuous, f (0) = 0}. (1.2)

Throughout the paper we consider a functional

γ : S → R.
The optimal Skorokhod embedding problem is to construct a stopping time optimizing

Pγ(µ) = inf
{
E
[
γ
(
(Bt)t≤τ, τ

)]
: τ solves (SEP)

}
. (OptSEP)

We will usually assume that (OptSEP) is well-posed in the sense that E
[
γ
(
(Bt)t≤τ, τ

)]
exists

with values in (−∞,∞] for all τ which solve (SEP) and is finite for one such τ.
The Root stopping time solves (OptSEP) in the case where γ( f , s) = s2. Other exam-

ples where the solution is known include functionals depending on the running maximum
γ(( f , s)) := f̄ (s) := maxt≤s f (t) or functionals of the local time at 0.

The solutions to (SEP) have their origins in many different branches of probability the-
ory, and in many cases, the original derivation of the embedding occurred separately from
the proof of the corresponding optimality properties. Moreover, the optimality of a given
construction is often not entirely obvious; for example, the optimality property of the Root
embedding was first conjectured by Kiefer [30] and subsequently established by Rost [48].

In contrast to existing work, our starting point will be the optimization problem (OptSEP)
and we seek a systematic method to construct the minimizer for a given functional γ. To
develop a general theory for this optimization problem we interpret stopping times in terms
of a transport plan from the Wiener space (C(R+),W) to the target measure µ, i.e. we want
to think of a stopping time τ as transporting the mass of a trajectory (Bt(ω))t∈R+

to the point
Bτ(ω)(ω) ∈ R. Note that this is not a coupling between W and µ in the usual sense and
one cannot directly apply optimal transport theory. Instead we develop an analogous the-
ory, which in particular needs to account for the adaptedness properties of stopping times.
To this end, it is necessary to combine ideas and results from optimal transportation with
concepts and techniques from stochastic analysis.

As in optimal transport, it is crucial to consider (OptSEP) in a suitably relaxed form, i.e.
in (OptSEP) we will optimize over randomized stopping times (see Theorem 4.16 below).
These can be viewed as usual stopping times on a possibly enlarged probability space but
in our context it is more natural to interpret them as “Kantorovich-type” stopping times,
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i.e. stopping times which terminate a given path not at a single deterministic time instance
but according to a distribution.

This relaxation will allow us to transfer many of the convenient properties of classi-
cal transport theory to our probabilistic setup. Exactly as in classical transport theory,
(OptSEP) can be viewed as a linear optimization problem. The set of couplings in mass
transport is compact and similarly the set of all randomized stopping times solving (SEP)
is compact in a natural sense. As a particular consequence we will establish:

Theorem 1.1. Let γ : S → R be lower semi-continuous and bounded from below. Then
(OptSEP) admits a minimizer τ̂. More precisely, there exists a Brownian motion B on some
stochastic basis Ω = (Ω,F , (Ft)t≥0,P) and a stopping time τ̂ of B which attains (OptSEP).

Here we can talk about the continuity properties of γ since S possesses a natural Polish
topology (cf. (4.1)).

In terms of linear optimization, Theorem 1.1 is a primal problem. In Section 5 we will
introduce the corresponding dual problem and establish that there is no duality gap.

1.3. Geometric Characterization of Optimizers — Montonicity Principle. A funda-
mental idea in optimal transport is that the optimality of a transport plan is reflected by the
geometry of its support set. Often this is key to understanding the transport problem. On
the level of support sets, the relevant notion is c-cyclical monotonicity which we recall in
(3.4) below. Its relevance for the theory of optimal transport has been fully recognized by
Gangbo and McCann [21], based on earlier work of Knott and Smith [32] and Rüschendorf
[49, 50] among others.

Inspired by these results, we establish a monotonicity principle which links the optimal-
ity of a stopping time τ with “geometric” properties of τ. Combined with Theorem 1.1,
this principle will turn out to be surprisingly powerful. For the first time, all the known
solutions to (SEP) with optimality properties can be established through one unifying prin-
ciple. Moreover, the monotonicity principle allows us to treat the optimization problem
(OptSEP) in a systematic manner, generating further embeddings as a by-product.

Importantly, this transport-based approach readily admits a number of strong gener-
alizations and extensions. With only minor changes our existence result, Theorem 1.1,
and the monotonicity principle, Theorem 1.2, extend to general starting distributions and
Brownian motion in Rd and more generally to sufficiently regular Markov processes; see
Sections 6 and 8. This is notable since previous constructions usually exploit rather specific
properties of Brownian motion.

Theorem 1.2 (Monotonicity Principle). Let γ : S → R be Borel measurable1, B be a Brow-
nian motion on some stochastic basis (Ω,F , (Ft)t≥0,P) and τ an optimizer of (OptSEP).
Then, there exists a γ-monotone Borel set Γ ⊆ S such that P-a.s.

((Bt)t≤τ, τ) ∈ Γ . (1.3)

If (1.3) holds, we will loosely say that Γ supports τ. The significance of Theorem 1.2 is
that it links the optimality of the stopping time τ with a particular property of the set Γ, i.e.
γ-monotonicity. In applications, the latter turns out to be much more tangible.

The precise definition of γ-monotonicity is intricate and we present it in its simplest
and most strict form in this introductory section. (See Definition 6.4 / Section 7.1 for
a more general version that leads to a stronger assertion in Theorem 1.2.) To link the
optimality of a stopping time with properties of the set Γ we consider the minimization
problem (OptSEP) on a pathwise level. Consider two paths ( f , s), (g, t) ∈ S which end at
the same level, i.e. f (s) = g(t). We want to determine which of the two paths should be
“stopped” and which one should be allowed to “go” on further, bearing in mind that we try
to minimize the functional in (OptSEP). Specifically we will call

(
( f , s), (g, t)

)
a stop-go

pair if it is advantageous to stop ( f , s) and to go on after (g, t) in the following strong sense:

1We emphasize that we do not require continuity assumptions on γ here. This will be important when we
apply our results.
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Definition 1.3. We say that
(
( f , s), (g, t)

) ∈ S × S is a stop-go pair iff f (s) = g(t) and

γ(( f ⊕ h, s + u)) + γ((g, t)) > γ(( f , s)) + γ((g ⊕ h, t + u)) (1.4)

holds2 for all (h, u) ∈ S with u > 0. The set of stop-go pairs will be denoted by SG.

In the case where γ( f , s) = s2, (1.4) becomes (s + u)2 + t2 > s2 + (t + u)2 which is
true iff s > t. Hence, in the case of the Root embedding, a stop-go pair

(
( f , s), (g, t)

)
is

characterized by f (s) = g(t), s > t (cf. the right side of Figure 2). The set Γ ⊆ S contains
all the possible “stopped” paths: that is, a path (g, t) is in Γ if there is some possibility that
the optimal stopping rule decides to stop at time t having observed the path (g(r))r∈[0,t].
Corresponding to the set of stopped paths is the set of paths which we may observe, and at
which we may not yet have stopped: these are the still “going” paths. Since all paths must
eventually be stopped, we deduce that a path may be going if there is a longer, stopped
path which contains the going path as a sub-path. Specifically, if ( f̃ , s̃) ∈ Γ is a stopped
path, then the sub-paths ( f , s) = (( f̃ (r))r∈[0,s], s) are going for all s < s̃. We write Γ< for the
set of going paths corresponding to the stopped paths Γ, so:

Γ< :=
{
( f , s) : ∃( f̃ , s̃) ∈ Γ, s < s̃ and f ≡ f̃ on [0, s]

}
. (1.5)

We can now formally introduce γ-monotonicity.

Definition 1.4. A set Γ ⊆ S is called γ-monotone iff Γ< × Γ contains no stop-go pairs, i.e.

SG ∩ (
Γ< × Γ

)
= ∅. (1.6)

By the monotonicity principle, an optimal stopping time is supported by a set Γ such
that Γ< × Γ contains no stop-go pair

(
( f , s), (g, t)

)
. Intuitively, such a pair gives rise to a

possible modification, improving the given stopping rule: as f (s) = g(t), we can imagine
stopping the path ( f , s) at time s, and allowing (g, t) to go on by transferring all paths
which extend ( f , s), the “remaining lifetime”, onto (g, t), which is now “going”. By (1.4)
this guarantees an improved value of γ in total, contradicting the optimality of γ. Observe
that the condition f (s) = g(t) is necessary to guarantee that a modified stopping rule still
embeds the measure µ. A pictorial representation of this process in the case of the Root
embedding is given in Figure 2.
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Figure 2. How to improve a stopping rule if Γ< × Γ contains a stop-go pair.

In Section 2 below we give a short teaser on how particular embeddings are obtained
as a consequence of Theorem 1.2: there we establish the Root and the Rost solutions
of (SEP), as well as a continuum of new embeddings which “interpolate” between them.
It will become clear that the essence of the proof is already contained in Figure 2. In
addition, we are also able to establish many other solutions to the embedding problem, and
we proceed to do this in Section 7. For readers who are more interested in the probabilistic
consequences of our results, we provide a probabilistic interpretation of our main results in
more classical terminology in Section 7.1; this section may be read directly after Section 2.

The monotonicity principle, Theorem 1.2, is the most complex part of this paper, and
requires substantial preparation in order to combine the relevant concepts from stochastic

2Here f ⊕ h denotes the concatenation of the two paths f and h. More precisely, f ⊕ h(t) = f (t) for t ∈ [0, s]
and f ⊕ h(t) = f (s) + h(t − s) for t ∈ [s, s + u].
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analysis and optimal transport. The preparation and proof of this result will therefore
comprise the majority of the paper.

The “classical” optimal transport version of Theorem 1.2 can be established through
fairly direct arguments, at least in a reasonably regular setting, cf. [3, Thms. 3.2, 3.3] and
[57, p. 88f]. However, these approaches do not extend easily to our setup: stopping times
are of course not couplings in the usual sense and there is no reason for particular combi-
natorial manipulations to carry over in a direct fashion. Another substantial difference is
that the procedure of transferring paths described below Definition 1.4 necessarily refers
to a continuum of paths while the classical notion of cyclical monotonicity is concerned
with rearrangements along finite cycles. The argument given subsequently is more in the
spirit of [6, 8] and requires a fusion of ideas from optimal transport and stochastic analysis.
To achieve this, we will need to revisit a number of classical notions from the theory of
stochastic processes within a novel framework.

1.4. New Horizons. The methods and results presented in this paper are limited to the
case of the classical Skorokhod embedding problem for Markov processes with continuous
paths. However we believe that our methods are sufficiently general that a number of
interesting and important extensions, which previously would have been intractable, may
now be within reach:

(1) Markov processes: The results presented in this paper should extend to a more
general class of Markov processes with càdlàg paths. The main technical issues
this would present lie in the generalization of the results in Section 4, where the
specific structure of the space of continuous paths is exploited.

(2) Multiple path-swapping: In our monotonicity principle, Theorem 1.2, we con-
sider the impact of swapping mass from a single unstopped path onto a single
stopped path, and argue that if this improves the objective γ on average, then we
cannot observe such behaviour under an optimizer. In classical optimal transport,
it is known that single swapping is not sufficient to guarantee optimality; rather,
one needs to consider the impact of allowing a finite “cycle” of swaps to occur,
and moreover, that this is both a necessary and sufficient condition for optimality.
It is natural to conjecture that a similar result occurs in the present setup.

(3) Multiple marginals: A natural generalization of the Skorokhod embedding prob-
lem is to consider the case where a sequence of measures, µ1, µ2, . . . , µn are given,
and the aim is to find a sequence of stopping times τ1 ≤ τ2 ≤ · · · ≤ τn such
that Bτk ∼ µk, and such that the chosen sequence of stopping times minimizes
E[γ((Bt)t≤τn , τ1, . . . , τn)] for a suitable functional γ. In this setup, it is natural to
ask whether there exists a suitable monotonicity principle, corresponding to The-
orem 1.2.

(4) Constrained embedding problems: In this paper, we consider classical embed-
ding problems, where the optimization is carried out over the class of solutions
to (SEP). However, in many natural applications, one needs to further consider
the class of constrained embedding problems: for example, where one minimizes
some functional over the class of embeddings which also satisfy a restriction on
the probability of stopping after a given time. It would be natural to derive gen-
eralizations of our duality results, and a corresponding monotonicity principle for
such problems.

1.5. Background. Since the first solution to (SEP) by Skorokhod [54] the embedding
problem has received frequent attention in the literature, with new solutions appearing
regularly, and exploiting a number of different mathematical tools. Many of these solutions
also prove to be, by design or accident, solutions of (OptSEP) for a particular choice of γ,
e.g. [46, 48, 4, 28, 56, 41]. The survey [39] is a comprehensive account of all the solutions
to (SEP) up to 2004, and references many articles which use or develop solutions to the
Skorokhod embedding problem. More recently, novel twists on the classical Skorokhod
embedding problem have been investigated by: Last et. al. [33], who consider the closely
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related problem of finding unbiased shifts of Brownian motion (and where there are also
natural connections to optimal transport); Hirsch et. al. [24], who have used solutions to the
Skorokhod embedding problem to construct Peacocks; and Gassiat et. al. [22], who have
exploited particular properties of Root’s solution to construct efficient numerical schemes
for SDEs.

The Skorokhod embedding problem has also recently received substantial attention
from the mathematical finance community. This goes back to an idea of Hobson [25]:
through the Dambis-Dubins-Schwarz Theorem, the optimization problems (OptSEP) are
related to the pricing of financial derivatives, and in particular to the problem of model-risk.
We refer the reader to the survey article [26] for further details.

Recently there has been much interest in optimal transport problems where the trans-
port plan must satisfy additional martingale constraints. Such problems arise naturally in
the financial context, but are also of independent mathematical interest, for example —
mirroring classical optimal transport — they have important consequences for the study
of martingale inequalities (see e.g. [9, 23, 40]). The first papers to study such problems
include [27, 7, 20, 16], and this field is commonly referred to as martingale optimal trans-
port. The Skorokhod embedding problem has been considered in this context by Galichon
et. al. in [20]; through a stochastic control problem they recover the Azéma-Yor solution
of the Skorokhod embedding problem. Notably, their approach is very different from the
one pursued in the present paper: the approach of this paper is instead to use an analogue
of c-cyclical monotonicity from classical optimal transport in the martingale context.

1.6. Organization of the Article. In Section 2 we establish the Root and the Rost em-
bedding as well as a family of new embeddings. In Section 3 we recall some required
definitions and results from optimal transport. In Section 4 we consider randomized stop-
ping times on the Wiener space and establish some basic properties. In Section 5 we
develop a dual problem to (OptSEP) and prove our duality using classical duality results
from optimal transport. In Section 6 we will finally establish Theorem 1.2 by combining
the duality theory with Choquet’s capacity theorem. In Section 7 we use our results to
establish the known solutions to (OptSEP) as well as further embeddings. For readers who
are mainly interested in these applications, we also summarize the necessary results from
earlier sections here. In Section 8 we describe extensions to Feller processes under certain
assumptions, which we are able to verify for a large class of processes.

2. Particular embeddings

In this section we explain how Theorem 1.2 can be used to derive particular solutions
to the Skorokhod embedding problem, (SEP), using the optimization problem (OptSEP).
For much of the paper, we will consider (SEP) for measures µ where

∫
x2 µ(dx) < ∞.

This constraint can be weakened to require only the first moment to be finite, subject to
the restriction that the stopping time is minimal: that is, if τ is a stopping time such that
Bτ ∼ µ, then for any other stopping time τ′,

Bτ′ ∼ µ and τ′ ≤ τ implies τ′ = τ a.s. (2.1)

In the case where µ has a second moment, minimality and E[τ] < ∞ are equivalent. The
extension of our results to the more general case will be discussed in Section 8.

2.1. The Root embedding. We recall the definition of the Root embedding, τRoot, from
(1.1), and we wish to recover Root’s result ([46]) from an optimization problem. Let
γ( f , t) = h(t), where h : R+ → R is a strictly convex function such that

inf{E[h(τ)] : τ solves (SEP)} (2.2)

is well posed and pick a minimizer τ̂ of (2.2) by Theorem 1.1. Then we have:

Theorem 2.1. There exists a barrier R such that τ̂ = inf{t ≥ 0 : (t, Bt) ∈ R}. In particular
the Skorokhod embedding problem has a solution of barrier type (1.1).
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Proof. Pick, by Theorem 1.2, a γ-monotone set Γ ⊆ S (see Definition 1.4) such that
P(((Bt)t≤τ̂, τ̂) ∈ Γ) = 1. By convexity of h, the set of stop-go pairs is given by (cf. the
comment below Definition 1.3 and Figure 2)

SG = {(( f , s), (g, t)) ∈ S : f (s) = g(t), t < s}.
As Γ is γ-monotone, (Γ< × Γ) ∩ SG = ∅. Define a closed and an open barrier by

Rcl := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, t ≤ s},
Rop := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, t < s},

and denote the respective hitting times by τcl and τop. We claim that τcl ≤ τ̂ ≤ τop a.s.
Note that τcl ≤ τ̂ holds by definition of τcl. To show the other inequality pick ω satis-

fying
(
(Bt(ω))t≤τ̂(ω), τ̂(ω)

) ∈ Γ and assume for contradiction that τop(ω) < τ̂(ω). Then there
exists s < τ̂(ω) such that (s, Bs(ω)) ∈ Rop. By definition of the open barrier, this means that
there is some (g, t) ∈ Γ such that t < s and g(t) = Bs(ω). But ( f , s) := ((Bu(ω))u≤s, s) ∈ Γ<,
hence

(
( f , s), (g, t)

) ∈ SG∩ (Γ< × Γ) which is the desired contradiction. We finally observe
that τcl = τop by the Strong Markov property, and the fact that one-dimensional Brownian
motion immediately returns to its starting point. �

A consequence of this proof is that (on a given stochastic basis) there exists exactly
one solution3 of the Skorokhod embedding problem which minimizes (2.2). Assume that
minimizers τ1 and τ2 are given. Then we can use an independent coin-flip to define a new
minimizer τ̄ which is with probability 1/2 equal to τ1 and with probability 1/2 equal to τ2.
By Theorem 2.2, τ̄ is of barrier-type and hence τ1 = τ2.

Remark 2.2. The following argument, due to Loynes [34], can be used to argue that barriers
are unique in the sense that if two barriers solve (SEP), then their hitting times must be
equal. Suppose that R and S are both closed barriers which embed µ. Note that we can
take the closed barriers without altering the stopping properties. Consider the barrier R∪S:
let A ⊆ ΩR := {x : (t, x) ∈ S =⇒ (t, x) ∈ R}. Then P(BτR∪S ∈ A) ≤ P(BτR ∈ A) = µ(A).
Similarly, for A′ ⊆ ΩS := {x : (t, x) ∈ R =⇒ (t, x) ∈ S}, P(BτR∪S ∈ A′) ≤ P(BτS ∈ A′) =

µ(A′). Since µ(ΩR ∪ΩS) = 1, τR∪S embeds µ.
It is known (see Monroe [36]) that, when µ has a second moment, the second condition

in (SEP), E[τ] < ∞ is equivalent to minimality of the stopping time (recall (2.1)). It
immediately follows from the argument above that if the barriers R and S solve (SEP),
then τR = τS a.s.

With minor modifications the argument of Loynes also applies to the Rost solution
discussed below as well as to a number of further classical embeddings presented in Section
7 below.

In Section 7.3 we will prove generalizations of Theorem 2.1 which admit similar con-
clusions in Rd and for general initial distributions.

We also note that the above proof of Theorem 2.1 is based on a heuristic derivation of
the optimality properties of the Root embedding given by Hobson in [26]. Indeed Hobson’s
approach was the starting point of the present paper.

2.2. The Rost embedding. A set R ⊆ R+ × R is an inverse barrier if (s, x) ∈ R and s > t
implies that (t, x) ∈ R. It has been shown by Rost [48] that under the condition µ({0}) = 0
there exists an inverse barrier such that the corresponding hitting time (in the sense of
(1.1)) solves the Skorokhod problem. It is not hard to see that without this condition some
additional randomization is required. We derive this using an argument almost identical to
the one above.

Let γ( f , t) = h(t), where h : R+ → R+ is a strictly concave function such that the
minimization of E[h(τ)] over all solutions to (SEP) is well posed. Pick, by Theorem 1.1, a
minimizer τ̂. Then we have:

3This was first established in [48], together with the optimality property of Root’s solution.
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(a) The Rost construction
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(b) The Cave construction

Figure 3. The barriers corresponding to the Rost and Cave embeddings

Theorem 2.3. Suppose µ({0}) = 0. Then there exists an inverse barrier R such that τ̂ =

inf{t ≥ 0 : (t, Bt) ∈ R}. In particular the Skorokhod embedding problem can be solved by
the hitting time of an inverse barrier.

Proof. Pick, by Theorem 1.2, a γ-monotone set Γ ⊆ S such that P(((Bt)t≤τ̂, τ̂) ∈ Γ) = 1.
Note that due to the concavity of h the set of stop-go pairs is given by

SG = {(( f , s), (g, t)) ∈ S : f (s) = g(t), s < t}.
As Γ is γ-monotone, (Γ< × Γ) ∩ SG = ∅. Define open and closed inverse barriers by

Rop := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, s < t},
Rcl := {(s, x) : ∃(g, t) ∈ Γ, g(t) = x, s ≤ t},

and denote the respective hitting times by τop and τcl. We claim that τcl ≤ τ̂ ≤ τop a.s.
Note that τcl ≤ τ̂ holds by definition of τcl. To show the other inequality pick ω sat-

isfying
(
(Bt(ω))t≤τ̂(ω), τ̂(ω)

) ∈ Γ and assume for contradiction that τop(ω) < τ̂(ω). Then
there exists s < τ̂(ω) such that (s, Bs(ω)) ∈ Rop. By definition of the open inverse bar-
rier, this means that there is some (g, t) ∈ Γ such that s < t and g(t) = Bs(ω). But
( f , s) := ((Bu(ω))u≤s, s) ∈ Γ<, hence

(
( f , s), (g, t)

)
∈ SG ∩ (Γ< × Γ) which is the desired

contradiction.
Next we show that τ̂ = τop a.s. Observe that we may assume that Γ contains no paths

( f , s) such that f (s) = 0, since µ({0}) = 0 (if the original Γ contains points of this form,
then we may replace Γ with Γ̃ which omits such paths without altering either the full
support property, or the γ-monotone property). Then there exists an increasing function
b(t) = inf{x > 0 : (t, x) ∈ Rcl} and a decreasing function c(t) = sup{x < 0 : (t, x) ∈ Rcl}
such that τcl = inf{t > 0 : Bt < (c(t), b(t))}, and τop = inf{t > 0 : Bt < [c(t), b(t)]}. In the
case where limt→0 b(t) > 0 > limt→0 c(t), then it is straightforward to show τcl = τop a.s.,
and the result follows.

Suppose that this is not the case. Since τ̂ embeds µ, and µ({0}) = 0, then τ̂ > 0 a.s.
In particular, τ̂ ≤ ε can be made to have arbitrarily small probability, and in particular,
for ε′ > 0 sufficiently small, the laws of Bε on {τ̂ > ε, Bε ∈ [c(ε) + ε′, b(ε) − ε′]} and
{τop > ε, Bε ∈ [c(ε) + ε′, b(ε) − ε′]} can be made arbitrarily close in total variation norm,
and with mass arbitrarily close to 1. By the same argument as above, on the intersection of
these sets inf{t > 0 : Bt < [c(t), b(t)]} = inf{t > 0 : Bt < (c(t), b(t))}, and from a modified
version of the argument that τcl ≤ τ̂ ≤ τop we conclude that τ̂ = τop when both τ̂ and τop
are greater than ε. Since ε is arbitrary, and τ̂ > 0, then τ̂ = τop a.s. �

In Section 7.3 we will give a generalization of this result, which includes a more detailed
argument for the final part of this proof. Note that it is also possible to show τop = τcl: see
the proof of Equation (2.9) in [13].

As in the case of the Root embedding we obtain that the maximizer of E[h(τ)] is unique.
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2.3. The cave embedding. In this section we give an example of a new embedding that
can be derived from Theorem 1.2. It can be seen as a unification of the Root and Rost
embeddings. A set R ⊆ R+ × R is a cave barrier if there exists t0 ∈ R+, an inverse barrier
R0 ⊆ [0, t0] × R and a barrier R1 ⊆ [t0,∞) × R such that R = R0 ∪ R1. We will show that
there exists a cave barrier such that the corresponding hitting time (in the sense of (1.1))
solves the Skorokhod problem. We derive this using an argument similar to the one above:

Fix t0 ∈ R and pick a continuous function ϕ : R+ → [0, 1] such that
• ϕ(0) = 0, limt→∞ ϕ(t) = 0, ϕ(t0) = 1
• ϕ is strictly concave on [0, t0]
• ϕ is strictly convex on [t0,∞).

It follows that ϕ is strictly increasing on [0, t0] and strictly decreasing on [t0,∞). Let
γ(( f , s)) = ϕ(s). Since ϕ is bounded, the problem to minimize E[ϕ(τ)] over all solutions to
(SEP) is well posed. Pick, by Theorem 1.1, a minimizer τ̂. Then we have:

Theorem 2.4 (Cave embedding). Suppose µ({0}) = 0. Then there exists a cave barrier R
such that τ̂ = inf{t ≥ 0 : (t, Bt) ∈ R}. In particular the Skorokhod embedding problem can
be solved by a hitting time of a cave barrier.

Proof. Pick, by Theorem 1.2, a γ-monotone set Γ ⊆ S such that P(((Bt)t≤τ̂, τ̂) ∈ Γ) = 1.
The set of stop-go pairs is given by

SG = {(( f , s), (g, t)) ∈ S × S : f (s) = g(t); s < t ≤ t0 or t0 ≤ t < s}.
Indeed, for s < t ≤ t0 and any (h, r) ∈ S we have

γ(( f ⊕ h, s + r)) + γ((g, t)) > γ(( f , s)) + γ((g ⊕ h, t + r))
⇔ ϕ(s + r) − ϕ(s) > ϕ(t + r) − ϕ(t)

which holds iff t 7→ ϕ(t + r) − ϕ(t) is strictly decreasing on [0, t0] for all r > 0. If t + r, t ∈
[0, t0] this follows from concavity of ϕ. In the case that t ≤ t0, t + r > t0 this follows since
ϕ′ is strictly positive on [0, t0) and strictly negative on (t0,∞). The case t0 ≤ t < s can be
established similarly.

Then, we define an open cave barrier by

R0
op := {(t, x) : ∃( f , s) ∈ Γ, t < s ≤ t0}, R1

op := {(t, x) : ∃( f , s) ∈ Γ, t0 ≤ s < t}
and Rop = R0

op ∪ R1
op (resp. a closed cave barrier where we allow t ≤ s and s ≤ t in R0

cl and
R1
cl resp.). We denote the corresponding hitting time by τRop = τR0

op
∧ τR1

op
(resp. τRcl ).

By the same argument as for the Root and Rost embedding it then follows that τRcl ≤
τ̂ ≤ τRop a.s. and also that τ̂ = τRop a.s., proving the claim. �

2.4. Remarks. The arguments given here only use the properties of one-dimensional
Brownian motion to show that our candidate stopping times τop and τ̂ are the same. In
Section 7.3 we will show that these arguments can be adapted to prove the existence of
Rost and Root embeddings in a more general setting. In fact, in Sections 7 and 8 we will
show that the above approach generalizes to a multi-dimensional setup and (sufficiently
regular) Markov processes. In the case of the Root embedding it does not matter for the
argument whether the starting distribution is a Dirac in 0 as in our setup or rather a more
general distribution λ. For the Rost embedding a general starting distribution is slightly
more difficult. In the case where λ and µ have common mass, then it may be the case that
projR(Rcl ∩ (A × R+)) = {0} for some set A — that is, all paths which stop at x ∈ A do so
at time zero. In this case it is possible that τ̂ < τop when the process starts in A, and in gen-
eral, some proportion of the paths starting on A must be stopped instantly. As a result, in
the case of general starting measures, independent randomization is necessary. In the Rost
case, it is also straightforward to compute the independent randomization which preserves
the embedding property.

Other recent approaches to the Root and Rost embeddings can be found in [14, 38, 13,
14]. These papers largely exploit PDE techniques, and as a result, are able to produce
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more explicit descriptions of the barriers, but the methods tend to be highly specific to the
problem under consideration.

3. The classical Transport Problem

We will shortly review here some notions of transport theory which are used below or
which will serve as motivation for analogous concepts in our probabilistic setup.

In abstract terms the transport problem (cf. [57, 58]) can be stated as follows: For
probabilities λ, µ on Polish spaces X,Y the set Cpl(λ, µ) of transport plans consists of all
couplings between λ and µ. These are all measures on X × Y with X-marginal λ and Y-
marginal µ. Associated to a cost function c : X × Y → [0,∞] and π ∈ Cpl(λ, µ) are the
transport costs

∫
X×Y c(x, y) dπ(x, y). The Monge-Kantorovich problem is to determine the

value
inf

{ ∫
c dπ : π ∈ Cpl(λ, µ)

}
(3.1)

and to identify an optimal transport plan π̂ ∈ Cpl(λ, µ), i.e. a minimizer of (3.1). Going
back to Kantorovich, this is related to the following dual problem. Consider the set Φ(λ, µ)
of pairs (ϕ, ψ) of integrable functions ϕ : X → [−∞,∞) and ψ : Y → [−∞,∞) which
satisfy ϕ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y . The dual counterpart of the Monge-
Kantorovich problem is then to maximize

J(ϕ, ψ) =
∫

X ϕ dλ +
∫

Y ψ dµ (3.2)

over (ϕ, ψ) ∈ Φ(λ, µ). In the literature duality has been established under various condi-
tions, see for instance [58, Section 5] for a short overview.

Theorem 3.1 (Monge-Kantorovich Duality, [29, Theorem 2.2]). Let (X, λ), (Y, µ) be Polish
probability spaces and c : X × Y → [0,∞] be lower semi-continuous. Then

inf
{ ∫

c dπ : π ∈ Cpl(λ, µ)
}

= sup
{
J(ϕ, ψ) : (ϕ, ψ) ∈ Φ(λ, µ)

}
. (3.3)

Moreover the duality relation pertains if the optimization in the dual problem is restricted
to continuous and bounded functions ϕ, ψ.

A basic and important goal is to characterize minimizers through a tractable property of
their support sets: a Borel set Γ ⊆ X × Y is c-cyclically monotone iff

c(x1, y2) − c(x1, y1) + . . . + c(xn−1, yn) − c(xn−1, yn−1) + c(xn, y1) − c(xn, yn) ≥ 0 (3.4)

whenever (x1, y1), (x2, y2), . . . , (xn, yn) ∈ Γ. A transport plan π is c-cyclically monotone if
it assigns full measure to some cyclically monotone set Γ.

Concerning the origins of c-cyclical monotonicity in convex analysis and the study of
the relation to optimality we mention [44, 31, 51, 21]. Intuitively speaking, c-cyclically
monotone transport plans resist improvement by means of cyclical rerouting and optimal
transport plans are expected to have this property. Indeed we have:

Theorem 3.2. Let c : X × Y → R+ be a lower semi-continuous cost function. Then a
transport plan is optimal if and only if it is c-cyclically monotone.

Even in the case where c is the squared Euclidean distance this is a non trivial result,
posed as an open question by Villani in [57, Problem 2.25]. Following contributions of
Ambrosio and Pratelli [3], this problem was resolved by Pratelli [42] and Schachermayer
and Teichmann [52] who established the clear-cut characterization stated in Theorem 3.2.
Lower semi-continuity of the cost function can also be relaxed, as shown in [6] and [8].

We will need the following straightforward corollary of Theorem 3.1.

Corollary 3.3. Let c̃ : X × Y × [0, t0] → R be lower semi-continuous and bounded from
below. Then

inf
{ ∫

c̃ dπ : π ∈ P(X × Y × [0, t0]), projX(π) = λ, projY (π) = µ} (3.5)

= sup
{
J(ϕ, ψ) : (ϕ, ψ) ∈ L∞(λ) × L∞(µ), ϕ(x) + ψ(y) ≤ c̃(x, y, t)

}
. (3.6)
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Again, the duality relation pertains if the optimization in the dual problem is restricted to
continuous and bounded functions ϕ, ψ.

4. Preliminaries on stopping times and filtrations

4.1. Spaces and Filtrations. In this section we mainly discuss the formal aspects of fil-
trations, measure theory, etc., and how classical notions relate to properties of functions on
the space S introduced above.

We consider the space Ω = C(R+) of continuous paths with the topology of uniform
convergence on compact sets. The elements of Ω will be denoted by ω. We denote the
canonical process on Ω by (Bt)t≥0, i.e. Bt(ω) = ωt. As explained above we consider the set
S of all continuous functions defined on some initial segment [0, s] of R+; we will denote
the elements of S by ( f , s) and (g, t). The set S admits a natural partial ordering; we say
that (g, t) extends ( f , s) if t ≥ s and the restriction g�[0,s] of g to the interval [0, s] equals
f . In this case we write ( f , s) ≺ (g, t). We consider S with the topology determined by the
following metric: let ( f , s), (g, t) ∈ S and suppose s ≤ t. We then say that ( f , s) and (g, t)
are ε-close if

dS (( f , s), (g, t)) := max
(
t − s, sup0≤u≤s | f (u) − g(u)|, sups≤u≤t |g(u) − g(s)|

)
< ε. (4.1)

Equipped with this topology, S is a Polish space.
For our arguments it will be important to be precise about the relationship between the

sets C(R+) × R+ and S . We therefore discuss the underlying filtrations in some detail.
We consider three different filtrations on the Wiener space C(R+), the canonical or nat-

ural filtration F 0 = (F 0
t )t∈R+

, the right-continuous filtration F + = (F +
t )t∈R+

, and the aug-
mented filtration F a = (F a

t )t∈R+
obtained from (F 0

t )t∈R+
by including allW-null sets in F 0

0 .
As Brownian motion is a continuous Feller process, F a is automatically right-continuous,
all F a-stopping times are predictable and all right-continuous F a-martingales are contin-
uous. In particular, the F a-optional and the F a-predictable σ-algebras coincide (see e.g.
[43, Corollary IV 5.7]). By [15, Thm. IV. 97, Rem. IV. 98] we also have that the F 0-
predictable,-optional and - progressive σ-algebras coincide because Ω = C(R+) is the set
of continuous paths. Moreover, we will use the following result.

Theorem 4.1 ([15, Theorem IV. 78]). Let Ga be the usual augmentation of the filtration
G. If τ is a predictable time w.r.t. Ga, then there exists a predictable time τ′ w.r.t. G such
that τ = τ′ a.s. It follows that for every Ga-predictable process (Xt)t∈R+

there is an G-
predictable process (X′t )t∈R+

which is indistinguishable from (Xt)t∈R+
.

Of course, every F a-martingale has a continuous version. Not so commonly used but
entirely straightforward is the following: if M is an F 0-martingale then there is a version
M′ of M which is an F 0-martingale and almost all paths of M′ are continuous.

The message of Proposition 4.4 below is that a process (Xt)t∈R+
is F 0-predictable iff

(Xt)t∈R+
is F 0-optional iff Xt(ω) can be calculated from the restriction ω�[0,t]. We introduce

the mapping

r : C(R+) × R+ → S , r(ω, t) = (ω�[0,t], t). (4.2)

Note that the topology on S introduced in (4.1) coincides with the final topology induced
by the mapping r; in particular r is a continuous open mapping. The mapping r is not a
closed mapping: it is easy to see that there exist closed sets in C(R+)×R+ with a non-closed
image under r. However this does not happen for closed optional sets, see Proposition 4.4.

Remark 4.2. In the following we will say that H : S → R is continuous / right-continuous
/ etc. if the corresponding property holds for the process H ◦ r. Similarly we say that
H1,H2 : S → R are indistinguishable if this holds for the processes H1 ◦ r,H2 ◦ r w.r.t.
Wiener measure.
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Definition 4.3. We say that a process X is S - continuous if there exists a continuous func-
tion h : S → R such that

Xt(ω) = h((ω�[0,t], t))
for all t ≥ 0,W-a.s.

It is trivially true that an S - continuous process is F 0-adapted, and continuous (W-
a.s.). The converse is not generally true — consider the case where Xt is the local time
of the Brownian motion at a level x. This is a continuous, F 0-adapted process, however
the corresponding function h is not a continuous mapping from S to R. (Indeed, any path
which has strictly positive local time can be approximated uniformly by paths with both
zero and infinite local time).

Proposition 4.4. F 0-optional sets and functions on C(R+) × R+ correspond to Borel-
measurable sets and functions on S . More precisely we have:

(1) A set D ⊆ C(R+)×R+ is F 0-optional iff there is a Borel set A ⊆ S with D = r−1(A).
(2) A process X = (Xt)t∈R+

is F 0-optional iff there is a Borel measurable H : S → R
such that X = H ◦ r.

An F 0-optional set A ⊆ C(R+) × R+ is closed in C(R+) × R+ iff the corresponding set r(A)
is closed in S . An F 0-optional process X = H ◦ r is S - continuous iff H : S → R is
continuous.

Remark 4.5. For H : S → Rwe will slightly abuse notation and write H(ω, t) for H◦r(ω, t).

For the proof of Proposition 4.4 we need another result from [15]. Write at : Ω→ Ω for
the stopping operation, i.e. at(ω) is the path which agrees with ω until t and stays constant
afterwards.

Theorem 4.6 (cf. [15, Theorem IV. 97]). Let Z = (Zt)t∈R+
be a measurable process on

Ω = C(R+). Then Z is F 0-optional iff Zt = Zt ◦ at for all t ∈ R+.

Proof of Proposition 4.4. We will only prove the second assertion; the first one being an
obvious consequence.

Set Ω′ = Ω×R+ and a′(ω, t) = (at(ω), t). Then Zt = Zt ◦at for all t ∈ R+ is equivalent to
asserting that Z = Z ◦ a′. Let S ′ be the set of all (ω, t) ∈ Ω′ for which a′(ω, t) = (ω, t) (i.e.
ω remains constant from t on). Note that r is a homeomorphism from S ′ to S and denote
its inverse by r−1.

Assume now that Z is an optional process. Then Z = Z ◦ a′. Since r = r ◦ a′ we have
Z = Z ◦ r−1 ◦ r ◦ a′ = (Z ◦ r−1) ◦ r. Hence we may take H = Z ◦ r−1 in Proposition 4.4.

Conversely, if Z = H ◦ r, then we have Z ◦ a′ = H ◦ r ◦ a′ = H ◦ r = Z. Hence Z is
optional.

The last assertion of the proposition follows from the identification of S with S ′. �

Definition 4.7. We call a set D ⊆ S right complete if (g, t) ∈ D and (g, t) ≺ ( f , s) implies
( f , s) ∈ D. We say D ⊆ S is left complete if (g, t) ∈ D and (g, t) � ( f , s) implies ( f , s) ∈ D.

Subsequently we will be interested in the stochastic intervals ~0, τ� for stopping times
τ. In particular, recall that ~0, τ� = {(ω, t) : t ∈ [0, τ(ω)]} ⊆ C(R+) × R+. The following
lemma connects characterizations of stopping times, sets in S , and stochastic intervals.

Lemma 4.8. (1) Suppose τ is an F 0-stopping time. Then the set D = r(~τ,∞~) ⊆ S
satisfies
(a) D is Borel and right complete;
(b) if ( f , s) ∈ D, the set {t : ( f�[0,t], t) ∈ D} has a smallest element.

Moreover, given such a set D, there exists an F 0-stopping time τ determined by
~τ,∞~= r−1(D).

(2) Suppose τ is an F +-stopping time. Then the set D = r(�τ,∞~) ⊆ S satisfies
(a) D is Borel and right complete;
(b) if ( f , s) ∈ D, the set {t : ( f�[0,t], t) ∈ D} has no smallest element.
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Moreover, given such a set D, there exists an F +-stopping time τ determined by
�τ,∞~= r−1(D).

Proof. (1) First observe that if we set τ(ω) = inf{t ≥ 0 : (ω�[0,t], t) ∈ D}, it follows
that τ is the required F 0-stopping time. On the other hand, if τ is a F 0-stopping
time, then D is Borel (by Proposition 4.4), since ~τ,∞~ is an optional set, and the
other properties are straightforward.

(2) Observe that if τ is a F +-stopping time, then τn = τ+ 1/n is a sequence of strictly
decreasing F 0-stopping times, and �τ,∞~= ⋃

n∈N~τn,∞~. The conclusions follow
from (1). �

By Proposition 4.4 we then have:

Corollary 4.9. The map r leaves stochastic intervals of F +-stopping times invariant, i.e.
for every F +-stopping time κ it holds that r−1(r(~0, κ�)) = ~0, κ�. If κ is an F 0-stopping
time then also r−1(r(~0, κ~)) = ~0, κ~.

Recalling Definition 4.3, we call a martingale (Xt)t∈R+
an S - continuous martingale if it

can be written as Xt(ω) = h((ω�[0,t], t)) for some h : S → R, which is continuous.

Definition 4.10. Let X : C(R+) → R be a measurable function which is bounded or
positive. Then we define E[X|F 0

t ] to be the unique F 0
t -measurable function satisfying

E[X|F 0
t ](ω) =

∫
X((ω�[0,t]) ⊕ ω′) dW(ω′).

Proposition 4.11. Let X ∈ Cb(C(R+)). Then Xt(ω) := E[X|F 0
t ](ω) defines an S - continu-

ous martingale. We denote this martingale by XM .

Proof. Note that ( fn, sn) → ( f , s) in S implies fn ⊕ ω → f ⊕ ω in C(R+) for every ω ∈
C(R+), ω(0) = 0, where f ⊕ ω denotes concatenation of paths as usual. Hence, putting
Xg(ω) := X(g ⊕ ω) the convergence ( fn, sn) → ( f , s) implies the pointwise convergence
X fn (ω)→ X f (ω) for all ω ∈ C(R+) by continuity of X. Moreover, for ( f , s) ∈ S∫

X f (ω)W(dω) =: XM( f , s)

is a function of ( f , s). Since X is bounded, this allows to deduce using the dominated
convergence theorem that

XM( fn, sn)→ XM( f , s).
This means that XM is continuous on S , hence, S - continuous. �

Proposition 4.12. Suppose X is a bounded lower semi-continuous function on S . Then
there exists a continuous martingale ψ such that XM

τ = ψτ almost surely for every F +-
stopping time τ.

Proof. Since X is lower semi-continuous, we can approximate from below by (bounded)
continuous functions. In particular, let ϕn ↑ X, and then the corresponding martingales
ϕM,n are S - continuous. In addition, we know that there exists a version of the martingale
(E[X|F 0

t ])t∈R+
denoted by (ψt)t∈R+

whose paths are almost surely continuous. It follows
that ϕM,n

τ ↑ ψτ almost surely, and the claimed result holds. �

4.2. Approximation by particular stopping times.

Lemma 4.13. Let τ be an F +-stopping time. For any ε > 0 there is an F +-stopping time
ρ such that

(1) ρ ≤ τ
(2) W(τ − ρ ≥ ε) ≤ ε
(3) ~0, ρ� is closed in C(R+) × R+ and S .

Recall from Lemma 4.8 that for an F +-stopping time, the stochastic interval ~0, ρ� can
be identified with the Borel subset r(~0, ρ�) of S and from Proposition 4.4 that ~0, ρ� is
closed in C(R+) × R iff r(~0, ρ�) is closed in S . It is also straightforward to see that the
interval ~0, ρ� is closed iff the function ρ : C(R+)→ R+ is upper semi-continuous.
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Proof. Fix ε > 0. Assume first that

τ(ω) =

t ω ∈ A
∞ otherwise

,

for some F 0
t -measurable set A. If t = 0 we are done, so we assume t > 0. By Proposition

4.4, there is a Borel set A0 ⊆ C([0, t]) such that A = A0 ⊕ C((t,∞)). In this proof we
will use that F 0

t -measurable events can be identified with measurable subsets of C([0, t]).
In particular, we will loosely write W(D) instead of W�C([0,t])(D) for some measurable
D ⊆ C([0, t]). By outer regularity ofW there is an open set O ⊆ C[0, t],O ⊇ A0 such that
W(O \ A0) ≤ ε. Set

ρ(ω) =

t ω ∈ O
∞ otherwise

.

Hence, ρ is an F +-stopping time and ~0, ρ� is closed. By construction we have ρ ≤ τ and

W({|τ − ρ| > ε}) =W({τ = ∞, ρ < ∞}) =W(O \ A0) ≤ ε.
This proves the Lemma if τ is an F 0-stopping time which only takes the values t and∞.

Given an arbitrary F +-stopping time τ, there exists a sequence of F 0-stopping times
τn, taking only the values tn and ∞, such that τ = infn τn. Pick stopping times ρn ≤ τn

such that W(ρn + ε ≤ τn) < ε2−n. Then ρ := infn ρn is still upper semicontinuous and
ρ ≤ τ,W(ρ + ε ≤ τ) < ε as required. �

Remark 4.14. To prove the previous lemma for a general starting distribution λ we need
to make an additional approximation step at the start of the proof, when t = 0, that is for
stopping times of the form

τ(ω) =

0 ω0 ∈ A
∞ else

.

In this case, take an open set O ⊇ A with λ(O \ A) ≤ ε. The rest of the argument stays the
same.

Corollary 4.15. Let τ be an F +-stopping time. Then there is a sequence of F +-stopping
times τn such that

(1) τn ↑ τW-a.s.
(2) W({τ = ∞} ∩ {τn < ∞})→ 0.
(3) For each n the stochastic interval ~0, τn� is closed in C(R+) × R+ and S .

Proof. For each n apply the previous lemma with εn = 2−n. �

If τ is an F a-stopping time then the result still applies with a minor modification: we
have to allow for an exceptional null set N.

4.3. Randomized stopping times. Working on the path space C(R+), a stopping time τ
is a mapping which assigns to each path ω the time τ(ω) at which the path is stopped.
If the stopping time depends on external randomization, then we may consider a path
ω which is not stopped at a single point τ(ω), but rather that there is a sub-probability
measure ξω on R which represents the probability that the path ω is stopped at a given
time, conditional on observing the path ω. The aim of this section is to make this idea
precise, and to establish connections with related properties in the literature. Specifically,
the notion of a randomized stopping time has been established previously in [5, 35], and is
closely connected to the class of pseudo-stopping times, which we will also exploit.

We consider the space

M := {ξ ∈ P≤1(C(R+) × R+) : ξ(dω, dt) = ξω(dt)W(dω), ξω ∈ P≤1(R+) forW-a.e. ω},
where (ξω)ω∈Ω is a disintegration of ξ in the first coordinate ω ∈ Ω. We equip M with the
weak topology induced by the continuous bounded functions on C(R+) × R+.
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Recall that our principle interest is in the probability space (Ω,F ,P), where Ω = C(R+)
and P = W. Sometimes we will also consider the associated, right-continuous and com-
plete filtration (F a

t )t≥0. In what follows, we will also use a natural extension of the fil-
tered probability space denoted (Ω̄, F̄ , (F̄t)t≥0, P̄), where we take Ω̄ = Ω × [0, 1], F̄ =

F ⊗ B([0, 1]), P̄(A1 × A2) = P(A1)L(A2), and set F̄t = F a
t ⊗ σ([0, 1]). Here, L de-

notes Lebesgue measure. We will write B̄ = (B̄t)0≤t for the canonical process on Ω̄, i.e.
B̄t(ω, u) = ωt.

We have the following result characterizing the class of randomized stopping times.

Theorem 4.16. Let ξ ∈ M. Then the following are equivalent:
(1) There is a Borel function H : S → [0, 1] such that H is right-continuous, decreas-

ing and

ξω([0, s]) := 1 − H(ω�[0,s]) (4.3)

defines a disintegration of ξ w.r.t. toW.
(2) For every disintegration (ξω)ω∈Ω of ξ, for all t ∈ R+ and every Borel set A ⊆ [0, t]

the random variable
Xt(ω) = ξω(A)

is F a
t -measurable.

(3) There is a disintegration (ξω)ω∈Ω of ξ such that for all t ∈ R+ and all f ∈ Cb(R+)
such that the support of f lies in [0, t] the random variable

Xt(ω) = ξω( f )

is F 0
t -measurable.

(4) On the probability space (Ω̄, F̄ , (F̄t)t≥0, P̄), the random time

ρ(ω, u) = inf{t ≥ 0 : ξω([0, t]) ≥ u} (4.4)

defines an F̄ -stopping time.

Definition 4.17. A measure ξ ∈ M satisfying the conditions of Theorem 4.16 is called a
randomized stopping time. We denote the set of randomized stopping times by RST.

Proof of Theorem 4.16. We start by establishing the equivalence of (1) and (4). It is straigh-
forward to deduce (4) from (1). To show the other direction we can apply Theorem 4.1 to
get an F̄ 0-stopping time ρ′ with P[ρ = ρ′] = 1 where F̄ 0

t = F 0
t ⊗ σ([0, 1]). Then, we set

1 − H(ω�[0,t]) :=
∫ 1

0
1[0,t](ρ′(ω, u)) du

which is càdlàg and F 0-optional. (1) follows by an application of Proposition 4.4.
Next, we show the equivalence of (1) and (2). We first establish that (1) implies (2). Let

ξω and ξ′ω be disintegrations of ξ. From (1) it follows that there is some function H such
that ξω([0, s]) = 1 − H(ω�[0,s]), and t 7→ 1 − H(ω�[0,t]) is an increasing, càdlàg function
for fixed ω. It follows that ξω(A) =

∫
A d(1 − H(ω�[0,s])) is F 0

t -measurable, and hence,
since ξ′ω(A) = ξω(A) W-a.s., ξ′ω(A) is F a

t -measurable. To show that (2) implies (1) it is
straightforward to show that (2) implies (4). Then the conclusion follows from the first
part of the proof. Similar arguments establish the equivalence of (1) and (3). �

Remark 4.18. (1) The function H in (4.3) is unique up to indistinguishability (cf. Re-
mark 4.2). We will designate this function Hξ in the following. This function has a
natural interpretation. Hξ( f , s) is the probability that a particle is still alive at time
s given that it has followed the path f . We call Hξ the survival function associated
to ξ.

(2) We will say ξ is a non-randomized stopping time iff there is a disintegration
(ξω)ω∈Ω of ξ such that ξω is a Dirac-measure (of mass 1) for every ω. Clearly
this means that ξω = δτ(ω) a.s. for some (non-randomized) stopping time τ. ξ is a
non-randomized stopping time iff there is a version of Hξ which only attains the
values 0 and 1.
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Corollary 4.19. The set RST is closed.

Proof. We consider condition (2) resp. (3) in Theorem 4.16; the goal is to express measur-
ability of Xt(ω) := ξω( f ), supp f ⊆ [0, t] in a different fashion. Note that a bounded Borel
function h is F 0

t -measurable iff for all bounded Borel functions g

E[hg] = E[hE[g|F 0
t ]],

of course this does not rely on our particular setup. By a functional monotone class argu-
ment, for F 0

t -measurability of Xt it is sufficient to check that

E[Xt(g − E[g|F 0
t ])] = 0 (4.5)

for all g ∈ Cb(C(R+)). In terms of ξ, (4.5) amounts to

0 = E[Xt(g − E[g|F 0
t ])] =

∫
W(dω)

∫
ξω(ds) f (s)(g − E[g|F 0

t ])(ω)

=
∫

f (s)(g − E[g|F 0
t ])(ω) ξ(dω, ds)

which is a closed condition by Proposition 4.11. �

Definition 4.20. A randomized stopping time is finite iff ξ(C(R+) × R+) = 1. The set of all
finite randomized stopping times will be denoted by RST1.

Recall from (1.5) that Γ< = {( f , s) : ∃(g, t) ∈ Γ, s < t, ( f , s) = (g�[0,s], s)} for Γ ⊆ S . We
denote the push forward of a measure α by a function F by F(α).

Lemma 4.21. Let ξ ∈ RST1. Then there exists a Borel set Γ ⊆ S with r(ξ)(Γ) = 1 and
Γ< ∩ Γ = ∅ iff ξ = δτ for some F a-stopping time τ.

Proof. Let τ be an F a-stopping time. By Theorem 4.1, there exists an F 0-stopping time
τ′ with τ = τ′ W-a.s. Then Γ = {r(ω, τ′(ω)), ω ∈ Ω} satisfies Γ< ∩ Γ = ∅ and ξ = δτ is
concentrated on Γ. Here Γ is an analytic set and hence universally measurable. We may
thus replace Γ with a Borel subset of full ξ-measure to obtain the desired conclusion.

Pick ξ ∈ RST1 and a set Γ on which ξ is concentrated. Γ<∩Γ = ∅ implies that for any ω
the set {t : r(ω, t) ∈ Γ} is at most single-valued. Put D := {(g, t) : ∃ ( f , s) ∈ Γ, ( f , s) ≺ (g, t)}.
By Lemma 4.8 this defines an F 0-stopping time on a subset of full measure (recall that ξ
is only concentrated on Γ) proving the result. �

Given ξ ∈ M and s ∈ R+ we define the measure ξ ∧ s ∈ M to be the random time which
is the minimum of ξ and s; formally this means that for ω ∈ Ω and A ⊆ R+

(ξ ∧ s)ω(A) := ξω(A ∩ [0, s)) + δs(A)(1 − ξω([0, s))).

Assume that (Ms)s∈R+
is a process on Ω. Then the stopped process (Mξ

s )s∈R+
is defined

to be the probability measure on R such that for all bounded and measurable functions f∫
R

f (x) Mξ
s (dx) :=

∫
f (Mt(ω)) (ξ ∧ s)(dω, dt) = Eξ∧s[ f (Mt)].

Otherwise said Mξ
s is the image measure of ξ ∧ s under the map M : C(R+) × R+ →

R, (ω, t) 7→ Mt(ω). We write lims→∞ Mξ
s = Mξ if it exists.

4.4. Pseudo-randomized stopping times and dual optional projections. We wish to
characterize the subset of M corresponding to RST. A natural candidate for such a condi-
tion would be via the optional stopping theorem:

Definition 4.22. Let PRST be the set of all pseudo-randomized stopping times, that is, the
set of ξ ∈ M satisfying ∫

X(ω)W(dω) =

∫
XM

s (ω) (ξ ∧ t)(dω, ds), (4.6)

for all t ≥ 0 and all X ∈ Bb(C(R+)), the class of bounded Borel functions on C(R+).
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Unfortunately RST is a proper subset of PRST; it is not hard to see this from [37]. By
a functional monotone class argument it is sufficient to check (4.6) for all X ∈ Cb(C(R+)),
in particular we have:

Proposition 4.23. The set PRST is closed.

Fortunately, the difference between RST and PRST is not seen by optional processes:
given a pseudo-randomized stopping time ξ there always exists a randomized stopping time
ξ̄ such that for every optional bounded or positive process X we have

∫
X dξ =

∫
X dξ̄.

Lemma 4.24. Let ξ ∈ PRST. Set At(ω) := ξω([0, t]). Define ξo through ξo
ω([0, t]) := Ao

t (ω),
where Ao denotes the dual optional projection of A. Then ξo ∈ RST.

Proof. We prove this for a finite time ξ. By Theorem 4.16, we have to show that Ao
t is

F a
t -measurable for every t, Ao is increasing nonnegative and bounded by 1. The only

property that does not follow directly from the definition of dual optional projection is the
boundedness by 1. As ξ ∈ PRST we have using X ≡ 1

E[Ao
∞] = 1.

Hence, it is sufficient to show that Ao
∞ ≤ 1. To this end, assume that D := {Ao

∞(ω) > 1} has
positive mass. Then we have using (4.6) and X = 1D

W(D) = E[X] = E[XM
0 ] = Eξ[XM] = E

∫ ∞
0 XM

s dAs = E
∫ ∞

0 XM
s dAo

s = EXAo
∞ >W(D),

implying thatW(D) = 0. Hence, ξo ∈ RST. �

Clearly every pseudo-randomized stopping time ξ ∈ PRST can be represented as a
positive random variable on Ω̄ in a similar manner to (4.4) by taking ρ(ω, u) = inf{t ≥ 0 :
ξω([0, t]) ≥ u}. The message of the above result is that, for any such ξ, and any optional
bounded or positive process X on Ω, there exists a stopping time ρo on the extended space
(Ω̄, F̄ , F̄t, P̄) such that Ē

[
X̄ρ∧t

]
= Eξ∧t

[
Xs

]
= Eξo∧t

[
Xs

]
= Ē

[
X̄ρo∧t

]
for any t ≥ 0, where

X̄(ω, u) = X(ω). Of course, we will eventually be interested in the subset of stopping times
corresponding moreover to (SEP) — that is, we are specifically interested in the subset
of PRST which both embed µ, and which satisfy a further natural criterion corresponding
to the second condition in (SEP). However, by taking the optional processes Xt = f (Bt)
for bounded f , we immediately see that B̄ρ ∼ B̄ρo , considering Xt = t we obtain Eξ[T ] =

Eξo [T ] = Ē[ρo], where T denotes the projection

T : C(R+) × R+ → R+. (4.7)

We observe also that to show that the process Bξt is uniformly integrable, we need to show
limR→∞ supt

∫
|x|>R |x| B

ξ
t (dx) = 0. However, with the above definitions, we have Bξt (dx) =

Bξ
o

t (dx), and so Bξ is uniformly integrable if and only if Bξ
o

is also.
From now on we make the assumption that the measure µ which we want to embed has

mean 0 and finite second moment4

V :=
∫

x2 µ(dx) < ∞. (4.8)

Then by the above arguments, and as a direct consequence of the same result for the stop-
ping time ρo, we have:

Lemma 4.25. Let ξ ∈ PRST. Assume that Bξ = µ, i.e. B̄ρ ∼ µ, where ρ is the random time
on B̄ corresponding to ξ. Then the following are equivalent:

(1) Ē[ρ] < ∞,
(2) Ē[ρ] = V,
(3) (B̄ρ∧t) is uniformly integrable.

Definition 4.26. We denote by PRST(µ) the set of all pseudo-randomized stopping times
satisfying the conditions in Lemma 4.25. Similarly, we define RST(µ) = PRST(µ) ∩ RST.

4This assumption is only made for ease of exposition. We refer to Section 8 and in particular Proposition 8.3
for the general case.
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An immediate consequence is:

Corollary 4.27. Let Xt be an optional process. Then for every ξ ∈ PRST(µ), there exists
ξo ∈ RST(µ) with Eξ[Xt] = Eξo [Xt].

The main reason why we consider randomized stopping times and their pseudo-rando-
mized counterparts is that they have the following property:

Theorem 4.28. The set PRST(µ) is compact.

Proof. By Prohorov’s theorem we have to show that PRST(µ) is tight and that PRST(µ) is
closed.

Tightness. Fix ε > 0 and take R such that V/R ≤ ε/2. Then, for any ξ ∈ PRST(µ) we
have ξ(T > R) ≤ ε/2. As C(R+) is Polish there is a compact set K̃ ⊆ C(R+) such that
W({K̃) ≤ ε/2. Set K := K̃ × [0,R]. Then K is compact and we have for any ξ ∈ PRST(µ)

ξ({K) ≤W({K̃) + ξ(T > R) ≤ ε.
Hence, PRST(µ) is tight.

Closedness. Take a sequence (ξn)n∈N in PRST(µ) converging to some ξ. Putting h :
C(R+) × R+ → R, (ω, t) 7→ ω(t) we have to show that h(ξ) = µ and that Eξ[T ] < ∞. Note
that h is a continuous map. Take any g ∈ Cb(R). Then g ◦ h ∈ Cb(C(R+) × R+). Thus, we
have that ∫

g dµ = lim
n

∫
C(R+)×R+

g ◦ h dξn =

∫
C(R+)×R+

g ◦ h dξ =

∫
g dh(ξ).

Hence, we have h(ξ) = µ. Moreover, the set {(ω, t) : t ≤ L} is closed. Hence, by the
Portmanteau theorem, for any L ≥ 0

lim sup ξn(t ≤ L) ≤ ξ(t ≤ L).

This readily implies that Eξ[T ] ≤ lim inf Eξn [T ] = V < ∞. �

Since RST is a closed set we also have:

Corollary 4.29. The set RST(µ) of randomized stopping times which embed µ is compact.

Our use of randomization to achieve compactness of a set of stopping times has simi-
larities to the work of Baxter and Chacon [5]. However their setup is different, and their
intended applications are not connected to Skorokhod embedding.

4.5. Joinings / Tagged Stopping Times. We now add another dimension: assume that
(Y, ν) is some Polish probability space. The set of all tagged pseudo-randomized stopping
times or rather joinings JOIN(W, ν) = JOIN(ν) is given by{
π ∈ P≤1(C(R+) × R+ × Y), projC(R+)×R+

(π�C(R+)×R+×B) ∈ PRST, B ∈ B(Y), projY (π) ≤ ν
}
.

We shall also write JOIN1(W, ν)/JOIN1(ν) for the subset of π ∈ JOIN(ν) having mass 1.

Remark 4.30. Write pred for the σ-algebra of F 0-predictable sets in C(R+) × R+.
We call a set A ⊆ C(R+) × R+ × Y predictable if it is an element of pred ⊗ B(Y). We

will say that a function defined on C(R+) × R+ × Y is predictable if it is measurable w.r.t.
pred ⊗ B(Y).

5. The Optimization Problem and Duality

5.1. The Primal Problem. As defined in (OptSEP) in the introduction, our primal prob-
lem is to minimize the value corresponding to a functional γ : S → R, where the minimiza-
tion is taken over stopping times of Brownian motion defined on some probability space.
Using the concepts presented in the previous section, we obtain an equivalent problem if
we take B to be the canonical process on Wiener space C(R+) = Ω and minimize over all
randomized stopping times, i.e. we have

Pγ = inf
{∫

γ(ω, t) ξ(dω, dt) : ξ ∈ RST(µ)
}
. (5.1)
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We make the important comment that the optimization problem is not altered if the set
RST(µ) is replaced by PRST(µ) (cf. Corollary 4.27).

In the following we will mainly work with the technically convenient formulation given
in (5.1). It immediately allows us to establish the existence of optimal stopping times:

Proposition 5.1. Assume that γ : S → R is S - lower semi-continuous and bounded from
below in the sense5 that for some constants a, b, c ∈ R+

−(a + bs + c max
r≤s

B2
r

)
≤ γ((Br)r≤s, s) (5.2)

holds on C(R+). Then the functional

ξ 7→
∫

C(R+)×R+

γ(ω, t) ξ(dω, dt) (5.3)

is lower semi-continuous and in particular (5.1) admits a minimizer.

Since every randomized stopping time can be represented as a usual stopping time on
an enlarged probability space, Theorem 1.1 is a particular consequence of this result.

Proof of Proposition 5.1. It is straightforward to see that the functional (5.3) is lower semi-
continuous if γ : S → R is S - lower semi-continuous and bounded from below by a
constant. (This is spelled out in detail for instance in [58, Chapter 4] in the context of
classical optimal transport.)

For the general case we recall the pathwise version of Doob’s inequality (see [1])

max
r≤s

B2
r ≤

∫ s

0
4 max

t≤r
|Bt | dBr︸                ︷︷                ︸

=:Ms

+4B2
s . (5.4)

We emphasize that we can understand the integral defining M in a pathwise fashion, this is
possible since r 7→ maxt≤r |Bt | is increasing; we refer to [1] for details. In fact it is straight-
forward to show that M is an S - continuous martingale satisfying |Mt | < 2 maxr≤t B2

r . It
follows that γ̃( f , s) := γ( f , s) + bs + c(M( f , s) + 4 f (s)2) is bounded from below and hence
ξ 7→

∫
γ̃ dξ is lower semi-continuous. As the value of

∫
bs + c(Ms(ω) + 4B2

s(ω)) dξ(ω, s)
is the same for any ξ ∈ RST(µ) the functional (5.3) is lower semi-continuous as well. �

5.2. The dual problem.

Theorem 5.2. Let γ : S → R be S - lower semi-continuous and bounded from below in the
sense of (5.2). Put

Dγ = sup
{∫

ψ(y) dµ(y) : ψ ∈ C(R),∃ϕ, ϕ is an S - continuous martingale, ϕ0 = 0
ϕt(ω) + ψ(ω(t)) ≤ γ(ω, t), (ω, t) ∈ Ω × R+

}
where ϕ, ψ satisfy |ϕt | ≤ a + bt + cB2

t , |ψ(y)| ≤ a + by2 for some a, b, c > 0. Then we have
the duality relation

Pγ = Dγ. (5.5)

Theorem 5.2 has close analogues in the mathematical finance literature. In particular,
using Hobson’s time change argument ([25, 26]), Theorem 5.2 is comparable to the work
of Dolinsky and Soner [18, 17]. Similar duality results in a discrete time framework are
established by Bouchard and Nutz [9] among others.

Using the same argument as above, we see that it suffices to establish Theorem 5.2
in the case where γ is bounded from below. As usual, one part of the duality relation is
straightforward to verify:

Lemma 5.3. With the above notations and assumptions we have Dγ ≤ Pγ.

5Other conditions which guarantee uniform integrability of the negative part of γ w.r.t. solutions of (SEP)
would suffice as well.
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Proof. Take (ϕ, ψ) satisfying the dual constraint and ξ ∈ RST(µ). Then we have∫
ψ(y) µ(dy) =

∫
ψ(ω(t)) ξ(dω, dt) +

∫
ϕM

t (ω) ξ(dω, dt) ≤
∫
γ(ω, t) ξ(dω, dt). �

5.3. Transport formulation. The strategy for the proof of Theorem 5.2 is to translate the
embedding problem for µ into a (modified) transport problem between the Wiener measure
W and the target distribution µ. To this end we equip the space C(R+) × R+ × R with the
cost function

c(ω, t, y) :=

γ(ω, t) if ω(t) = y
∞ otherwise

. (5.6)

The candidates for the corresponding primal and dual problem will be elements of the sets

JOIN1,V (W, µ) := {π ∈ JOIN1(W, µ) : Eπ[T ] ≤ V},

DCV
c :=

{
(ϕ, ψ) :

ϕ is an S - continuous bounded martingale, ψ ∈ Cb(R), ∃α ≥ 0,
ϕt(ω) + ψ(y) − α(t − V) ≤ c(ω, t, y), for all ω ∈ C(R+), y ∈ R, t ∈ R+

}
,

where T denotes the projection onto R+,V =
∫

x2 µ(dx) and we used Y = R in the defini-
tion of JOIN1(W, µ) (see Section 4.5). We then consider the optimization problems

PV
c := inf

π∈JOIN1,V (W,µ)

∫
c(ω, t, y) π(dω, dt, dy), (5.7)

DV
c := sup

(ϕ,ψ)∈DCV (c)
ϕ0 + µ(ψ). (5.8)

For the remainder of this section we will use the caligraphic letters P and D for (primal
and dual, respectively) optimization problems on the space C(R+) × R+ × R.

Proposition 5.4. With the above definitions and assumptionsDV
c ≤ Dγ and Pγ ≤ PV

c .

Proof. Consider p(ω, t, y) := (ω, t). If π ∈ JOIN1,V (W, µ) satisfies
∫

c dπ < ∞ it is concen-
trated on {(ω, t, y) : ω(t) = y}. Then, we have ξ := p(π) ∈ PRST(µ) and

∫
c dπ =

∫
γ dξ.

Hence, Pγ ≤ PV
c .

It remains to show that DV
c ≤ Dγ. A bounded pair (ϕ, ψ) belongs to DCV

c iff there is
α ≥ 0 such that for all ω ∈ Ω, y ∈ R, t ∈ R+

ϕt(ω) + ψ(y) − α(t − V) ≤ c(ω, t, y)

which holds iff for all ω ∈ Ω, t ∈ R+

ϕt(ω) + ψ(ω(t)) − α(t − V) ≤ γ(ω, t).

We rewrite this as[
ϕt(ω) + α(ω(t)2 − t)

]
+

[
ψ(ω(t)) − αω(t)2 + αV

] ≤ γ(ω, t). (5.9)

The alternative representation in (5.9) is useful to us since ω(t)2 − t is an S - continuous
martingale starting in 0. Setting

ϕ̄t(ω) = ϕt(ω) + α(ω(t)2 − t) and ψ̄(y) = ψ(y) − αy2 + αV,

we have ϕ̄t(ω) + ψ̄(ω(t)) ≤ γ(ω, t). This means that (ϕ̄ − ϕ̄0, ψ̄ + ϕ̄0) satisfy the constraint
in the dual problem in (5.5). Recalling that V was defined by V =

∫
y2 µ(dy) we have∫

ψ̄(y) µ(dy) =
∫
ψ(y) µ(dy). Therefore, we can conclude that

DV
c ≤ Dγ. �

To establish Theorem 5.2 we need to prove that PV
c = DV

c . Before we derive this in
Proposition 5.8 below, we require a further, auxiliary duality result.
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5.4. A Non-Adapted (NA) Duality Result. We consider the candidate sets

TMV (W, µ) := {π ∈ P(C(R+) × R+ × R) : projC(R+)(π) =W, projR(π) = µ,Eπ[T ] ≤ V},

DCNA,V
c :=

{
(ϕ, ψ) ∈ Cb(Ω) ×Cb(R) : ∃α ≥ 0,

ϕ(ω) + ψ(y) − α(t − V) ≤ c(ω, t, y)
for all ω ∈ Ω, y ∈ R, t ≥ 0

}
.

Note that the set TMV is compact as a consequence of Prohorov’s theorem. Corresponding
to the above candidate sets we consider optimization problems

PNA,V
c := inf

π∈TMV (W,µ)

∫
c dπ, (5.10)

DNA,V
c := sup

(ϕ,ψ)∈DCNA,V
c

W(ϕ) + µ(ψ). (5.11)

Proposition 5.5. Let c : C(R+)×R+×R→ R∪{∞} be lower semi-continuous and bounded
from below. Then

DNA,V
c = PNA,V

c . (5.12)

As before it is obvious that DNA,V
c ≤ PNA,V

c (cf. Lemma 5.3). To simplify the proof of
the reverse inequality we note the following

Lemma 5.6. If (5.12) is valid for a sequence of continuous bounded functions cn, n ≥ 1
such that cn ↑ c then (5.12) applies also to c.

Proof. We have to prove thatDNA,V
c ≥ PNA,V

c . For each k let πk ∈ TMV (W, µ) be such that

PNA,V
ck ≥

∫
ck dπk − 1/k.

By compactness of TMV (W, µ) there is a subsequence, still denoted by k, such that (πk)k∈N
converges weakly to some π ∈ TMV (W, µ). Then by monotone convergence using the
monotonicity of the sequence (ck)k∈N we have

PNA,V
c ≤

∫
c dπ = limm→∞

∫
cm dπ = limm→∞

(
limk→∞

∫
cm dπk

)
≤ limm→∞

(
limk→∞

∫
ck dπk

)
= limk→∞ PNA,V

ck .

Since, ck ≤ c implies PNA,V
ck ≤ PNA,V

c andDNA,V
c ≥ DNA,V

ck this allows us to deduce that

DNA,V
c ≥ DNA,V

ck
= PNA,V

ck
↑ PNA,V

c . �

In the proof of Proposition 5.5 we will use the min-max theorem in the following form.

Theorem 5.7 (see e.g. [55, Thm. 45.8] or [2, Thm. 2.4.1]). Let K, L be convex subsets of
vector spaces H1 resp. H2, where H1 is locally convex and let F : K × L→ R be given. If

(1) K is compact,
(2) F(·, y) is continuous and convex on K for every y ∈ L,
(3) F(x, ·) is concave on L for every x ∈ K

then
sup
y∈L

inf
x∈K

F(x, y) = inf
x∈K

sup
y∈L

F(x, y).

Proof of Proposition 5.5. We may assume that c is bounded from below by zero. Hence,
by Lemma 5.6, it is sufficient to establish (5.12) for bounded continuous functions whose
support satisfies

supp c ⊆ C(R+) × [0, t0] × R (5.13)

for some t0 ∈ R+. Set

TMV
t0 (W, µ) := {π ∈ TMV (W, µ) : supp π ⊆ C(R+) × [0, t0] × R},

DCNA,V,t0
c :=

{
(ϕ, ψ) ∈ Cb(Ω) ×Cb(R) : ∃α ≥ 0,

ϕ(ω) + ψ(y) − α(t − V) ≤ c(ω, t, y)
for all ω ∈ Ω, y ∈ R, t ≤ t0

}
.
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Assume now that c satisfies (5.13). We then have

inf
π∈TMV (W,µ)

∫
c dπ = inf

π∈TMV,t0 (W,µ)

∫
c dπ, (5.14)

sup
(ϕ,ψ)∈DCNA,V

c

W(ϕ) + µ(ψ) = sup
(ϕ,ψ)∈DC

NA,V,t0
c

W(ϕ) + µ(ψ). (5.15)

In the following candidate sets we dispose of the moment condition on T and its dual
counterpart:

TMt0 (W, µ) := {π : projC(R+)(π) =W, projR(π) = µ, supp π ⊆ C(R+) × [0, t0] × R},
DCNA,t0

c := {(ϕ, ψ) ∈ Cb(Ω) ×Cb(R) : ϕ(ω) + ψ(y) ≤ c(ω, t, y) for t ≤ t0, y ∈ R, ω ∈ Ω}.
By the Monge-Kantorovich duality theorem in the form of Corollary 3.3 we have

sup
(ϕ,ψ)∈DC

NA,t0
c̃

W(ϕ) + µ(ψ) = inf
π∈TMt0 (W,µ)

∫
c̃ dπ (5.16)

for c̃ lower semi-continuous and bounded from below. Using the min-max theorem (The-
orem 5.7) with the function

F(π, α) =
∫

c + α(T − V) dπ

for π ∈ TMt0 (W, µ) and α ≥ 0 we thus obtain

inf
π∈TMV,t0 (W,µ)

∫
c dπ = inf

π∈TMt0 (W,µ)

∫
c dπ + sup

α≥0
α

∫
T − V dπ

= sup
α≥0

inf
π∈TMt0 (W,µ)

∫
c + α(T − V) dπ (5.17)

= sup
α≥0

sup
(ϕ,ψ)∈DC

NA,t0
c+α(T−V)

W(ϕ) + µ(ψ) (5.18)

= sup
(ϕ,ψ)∈DC

NA,V,t0
c

W(ϕ) + µ(ψ),

where we have applied (5.16) to the function c̃ = c + α(T − V) to establish the equality
between (5.17) and (5.18). This concludes the proof. �

5.5. Introducing Adaptedness. Using the defining property of PRST, we are able to
test the “adaptedness” of a probability π on P(C(R+) × R+ × R) by integrating against
martingales. For a continuous and bounded function f : C(R+) → R+ we consider the
S - continuous martingale f M as in Proposition 4.11. Then π ∈ TMV (W, µ) satisfies π ∈
JOIN1,V (W, µ) = JOIN1(W, µ) ∩ TMV (W, µ) if and only if for all continuous bounded
functions f : C(R+)→ R, g : R→ R∫

f g dπ =
∫

f Mg dπ. (5.19)

This is a direct consequence of the definition of PRST and JOIN, see Definition 4.22 and
Section 4.5.

Proposition 5.8. Let c : C(R+)×R+×R→ R∪{∞} be lower semi-continuous, predictable
(cf. Remark 4.30) and bounded from below. Then

DV
c = PV

c .

Proof. Using the same approximation procedure as in Lemma 5.6, we may assume that c
is continuous and bounded. For the S - continuous martingale induced by a continuous and
bounded function f we recall the notation f M = ( f M

t )t∈R+
introduced in Proposition 4.11.

We want to use the min-max theorem, Theorem 5.7, with the function

F(π, h) =
∫

c + h̄ dπ

where π ∈ TMV (W, µ) and

h̄(ω, t, y) =

n∑
i=1

( fi(ω) − f M
i (ω, t))gi(y), (5.20)
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for h(ω, y) =
∑n

i=1 fi(ω)gi(y), n ∈ N, fi ∈ Cb(C(R+)), gi ∈ Cb(R+).
The set TMV (W, µ) is convex and compact by Prohorov’s theorem and the set of all h̄ of

the form (5.20) is convex as well. Hence we obtain

PV
c = inf

π∈JOIN1,V (W,µ)

∫
c dπ

= inf
π∈TMV (W,µ)

sup
h

∫
c + h̄ dπ

Thm. 5.7
= sup

h
inf

π∈TMV (W,µ)

∫
c + h̄ dπ

= sup
h

sup
(ϕ,ψ)∈DCV

NA(c+h̄)
W(ϕ) + µ(ψ),

where the last equality holds by Proposition 5.5.
Write ch = c + h̄. For (ϕ, ψ) ∈ DCV

NA(ch) there is some α ≥ 0 such that

ϕ(ω) + ψ(y) − α(t − V) ≤ ch(ω, t, y).

Taking conditional expectations w.r.t. F 0
t in the sense of Definition 4.10 we obtain

ϕM
t (ω) + ψ(y) − α(t − V) ≤ c(ω, t, y)

for all ω ∈ Ω, t ∈ R+, y ∈ R since c is predictable. This implies that (ϕM , ψ) ∈ DCV
c . Since

ϕM
0 =W(ϕ) we find

PV
c = sup

h
sup

(ϕ,ψ)∈DCV
NA(c+h̄)

(W(ϕ) + µ(ψ)) ≤ DV
c . (5.21)

As usual, the other inequality is straightforward. �

Proof of Theorem 5.2. It is straight forward to see that c is lower semi-continuous since γ
was assumed to be lower semi-continuous.

By Lemma 5.3 and Propositions 5.4 and 5.8 we have DV
c ≤ Dγ ≤ Pγ ≤ PV

c and
DV

c = PV
c . Hence we have Dγ = Pγ as required. �

5.6. General starting distribution. In this section we consider Ω̃ = C̃(R+), the set of all
continuous functions on R+, and

S̃ = {( f , s) : f : [0, s]→ R is continuous}.
Let λ be a probability measure on R prior to µ in convex order — i.e.,

∫
f (x) λ(dx) ≤∫

f (x) µ(dx) for any convex function f (x). In particular λ is centered and Vλ =
∫

x2 λ(dx) ≤
V < ∞. Then there exist solutions to the Skorokhod embedding problem with general start-
ing distribution and finite first moment. Denote byWx the law of Brownian motion starting
in x and put Wλ(dω) = Wx(dω)λ(dx) for ω ∈ Ω̃, the law of Brownian motion starting at
a random point according to the distribution λ. Given a functional γ : S̃ → R we are
interested in the minimization problem

Pγ(λ, µ) = inf
{∫
γ(ω, t)ξ(dω, dt), ξ ∈ RST(λ, µ)

}
, (5.22)

where RST(λ, µ) is the set of all randomized stopping times ξ on (Ω̃,Wλ) embedding µ
and satisfying Eξ[T ] = V − Vλ; in particular projΩ̃(ξ) = Wλ and h(ξ) = µ for the map
h : Ω̃ × R+ → R, (ω, t) 7→ ω(t). We then have the following result:

Theorem 5.9. Let γ : S̃ → R be S̃ - lower semi-continuous and bounded from below in the
sense of (5.2). Put

Dγ(λ, µ) = sup
{∫

ψ(y) dµ(y) : ψ ∈ C(R),
∃ϕ, ϕ is a S̃ - continuous martingale,
EWλ

[ϕ0] = 0, ϕt(ω) + ψ(ω(t)) ≤ γ(ω, t)

}
where ϕ, ψ satisfy |ϕt | ≤ a + bt + cB2

t , |ψ(y)| ≤ a + by2 for some a, b, c > 0. Then we have
the duality relation

Pγ(λ, µ) = Dγ(λ, µ). (5.23)
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The proof goes along the same lines as the proof of Theorem 5.2. The inequality
Dγ(λ, µ) ≤ Pγ(λ, µ) is straightforward. For the other direction we can use the same ar-
gument as before. However, we have to replace W by Wλ and V by Ṽ := V − Vλ. Up to
equation (5.9) everything can be copied line to line. Then we have to use the decomposition

ϕt(ω) + ψ(ω(t)) − α(t − V + Vλ)

= [ϕt(ω) + α(ω(t)2 − t − Vλ)] + [ψ(ω(t)) − α(ω(t)2 − V)]

and note that EWλ
[ω(t)2] = t + Vλ. The proof then concludes as before.

6. The monotonicity principle

In this section, we will establish Theorem 1.2. In fact we will show a stronger result that
will imply Theorem 1.2. Moreover, in Theorem 6.8 and Section 6.3 we will prove further
refinements of Theorem 1.2 that allow us to find sets Γ ⊆ S with additional properties, for
example recovering path properties of Brownian motion. We remark that the arguments
used in this section are valid for arbitrary starting distributions.

The notion of stop-go pairs introduced in Definition 1.4 requires that all possible ex-
tensions (h, u) are considered. However, we want to consider a relaxed notion which is
sensitive to the stopping measure ν. To this end we introduce the conditional randomized
stopping time given ( f , s).

Definition 6.1. Let ξ ∈ RST be given and fix a survival function Hξ satisfying part (1) of
Theorem 4.16. The conditional randomized stopping time of ξ, given ( f , s) ∈ S , denoted
by ξ( f ,s), is defined to be

ξ
( f ,s)
ω ([0, t]) :=

1
Hξ( f , s)

(
Hξ( f , s) − Hξ( f ⊕ ω�[0,t], s + t)

)
, (6.1)

if Hξ( f , s) > 0 and 1 otherwise.

This is the normalized stopping measure given that we followed the path f up to time
s. In other words this is the normalized stopping measure of the “bush” which follows the
“stub” ( f , s). Note that we can equivalently write

ξ
( f ,s)
ω ([0, t]) =

1
Hξ( f , s)

(
ξ f⊕ω([0, t + s]) − ξ f⊕ω([0, s])

)
.

Recall from (1.5) that for Γ ⊆ S the set Γ< consists of all paths which have a proper
extension that lies in Γ and that T denotes the projection from C(R+) × R+ onto R+.

Lemma 6.2. Let ξ ∈ RST1 be given and fix a survival function Hξ satisfying part (1) of
Theorem 4.16. Then, there is Γ ⊆ S such that r(ξ)(Γ) = 1 and for all ( f , s) ∈ Γ< we have
ξ( f ,s) ∈ RST1. In addition, if Eξ[T ] < ∞ then there is Γ ⊆ S such that Eξ( f ,s) [T ] < ∞ for all
( f , s) ∈ Γ<.

We postpone the proof to a later point of this section and continue the discussion.

Definition 6.3. Let ξ ∈ RST be given and fix a survival function Hξ satisfying part (1) of
Theorem 4.16. The set of stop-go pairs relative to ξ is defined by

SGξ =

{(
( f , s), (g, t)

)
: f (s) = g(t), (6.2)∫

γ( f ⊕ ω�[0,r], s + r) dξ( f ,s)(ω, r) + γ(g, t) > γ( f , s) +

∫
γ(g ⊕ ω�[0,r], t + r) dξ( f ,s)(ω, r)

}
.

The interpretation of SGξ is that in average it is better to stop at ( f , s), chop off the
“bush” and transfer it onto the “stub” (g, t).

Definition 6.4. Let ξ ∈ RST1. Then a set Γ ⊆ S is called γ-monotone iff

SGξ ∩ (Γ< × Γ) = ∅.
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Observe that a set is γ-monotone with respect to a particular stopping time. It will
always be clear which stopping time is referred to from the context.

The following theorem implies Theorem 1.2 stated in the introduction.

Theorem 6.5. Assume that γ : S → R is Borel-measurable, the optimization problem
(5.1) is well-posed and that ν ∈ RST(µ) is an optimizer. Then there exists a γ-monotone
Borel set Γ ⊆ S which supports ν in the sense that r(ν)(Γ) = 1.

The proof of this theorem relies on the following two results. The first result formalizes
the heuristic idea that an optimizer cannot be improved on a large set of paths but at most
on a small set of exceptional paths. The second result allows us to entirely exclude such an
exceptional set of paths.

Recall the definition of JOIN(W, ν) from Section 4.5. We interpret the space (C(R+) ×
R+) × (C(R+) × R+) as a product X × Y so that we can make sense of the projections
projX and projY. Note also that (Y, ν) = (C(R+) × R+, ν) is a Polish probability space. An
element π ∈ JOIN(W, ν) is a measure on X × Y, and we will commonly want to consider
the pushforward measure on X′ × Y′, given functions f : X → X′, and g : Y → Y′. We
denote this measure by ( f ⊗ g)(π). Typically f will be the map r : C(R+) ×R+ → S , and g
will be r or the identity.

Proposition 6.6. Let ν be a randomized stopping time which minimizes (5.1) for a Borel
measurable function γ : S → R. Assume that π ∈ JOIN(W, ν) satisfies

HprojX(π)( f , s) > 0 =⇒ Hν( f , s) > 0 for ( f , s) ∈ S . (6.3)

Then we have (r ⊗ r)(π)(SGν) = 0.

The interpretation of (6.3) is that if a particle has a strictly positive chance to be alive
under projX(π) then the probability that this particle is still alive under ν is positive as well.

Let τ be a non-randomized, bounded stopping time such that ~0, τ� is closed6. Then

Mτ := {ξ ∈ M : ξ(�τ,∞�) = 0} (6.4)

is compact as a consequence of Prohorov’s theorem. We also let RSTτ = RST ∩ Mτ and
PRSTτ = PRST ∩Mτ. The joinings before τ are the elements of the set

JOIN(τ, ν) =
{
π ∈ JOIN(W, ν) : projC(R+)×R+

(π) ∈ PRSTτ
}
. (6.5)

For a non-randomized stopping time τwe write τ̄ for the random measure given through
τ̄(dω, dt) = W(dω)δτ(ω)(dt). We also recall from Definition 4.7 that a subset of S is
left/right complete iff it is closed under forming restrictions/extensions of its paths.

Proposition 6.7. Assume that τ is a (non-randomized) bounded F +-stopping time such
that ~0, τ� is closed.

Let (Y, σ) be a Polish probability space. Consider a set B ⊆ S ×Y. If (r⊗ Id)(π)(B) = 0
for all π ∈ JOIN(τ, ν), then there exist a right complete set D ⊆ S and a set N ⊆ Y such
that B ⊆ (D × Y) ∪ (S × N) and r(τ̄)(D) = σ(N) = 0.

Proof of Theorem 6.5. Define a (non-randomized) stopping time τν by

τν(ω) := inf{t : Hν ◦ r(ω, t) = 0}.
Using Lemma 4.13 and Corollary 4.15, by choosing a suitable foretelling sequence of the
stopping times inf{t : Hν(r(ω, t)) ≤ 1/n}, we can pick a sequence τn, n ≥ 1 of F +-stopping
times such that

(1) τn ↑ τν.
(2) τn ≤ n.
(3) ~0, τn� is closed.
(4) τn < inf{t : Hν(r(ω, t)) ≤ 1/n} on {ω : Hν(r(ω, 0)) > 1/n}.

6We emphasize that this means that ~0, τ� is closed as a subset of C(R+) × R+.
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Fix n. Then every joining π ∈ JOIN(τn, ν) satisfies the assumptions of Proposition 6.6
and hence (r ⊗ r)(π)(SGν) = 0 for every π ∈ JOIN(τn, ν). We specify (Y, σ) = (S , r(ν))
in Proposition 6.7 and apply it to the stopping times (τn)n∈N to find left complete sets
Ln := S \ Dn and sets Γn := S \ Nn such that

SGν ∩ (Ln × Γn) = ∅
and r(τ̄n)(Ln) = 1, r(ν)(Γn) = 1. Setting Γ̃ :=

⋂
n Γn we have SGν ∩ (Ln × Γ̃) = ∅ for all n.

With L :=
⋃

n Ln we have

SGν ∩ (L × Γ̃) = ∅. (6.6)

Put
L+ := {(g, t) : (g�[0,s], s) ∈ L for all s < t}.

Note that L+ is universally measurable: its complement S \ L+ is given by

{(g, t) : ∃s < t, (g�[0,s], s) < L} (6.7)

= projS
{(

(g, t), s
) ∈ S × [0, t) : (g�[0,s], s) < L

}
(6.8)

and is hence analytic.
Because L is left complete we have L ⊆ L+ and also (L+)< ⊆ L. Clearly r(τ̄n)(L) =

r(τ̄n)(L+) = 1 for all n. Moreover, the set {t : r(ω, t) ∈ L+} is either empty or closed.
Hence, the convergence τn ↗ τν almost surely implies that r(τ̄ν)(L+) = 1 and therefore
r(ν)(L+) = 1. Hence, setting Γ̄ := L+ ∩ Γ̃ we have r(ν)(Γ̄) = 1, Γ̄< ⊆ (L+)< ⊆ L and by
(6.6) we can conclude

SGν ∩ (Γ̄< × Γ̄) = ∅.
Of course this pertains if we replace Γ̄ by a Borel subset of full measure. �

With a slightly easier proof we get the following important sibling of Theorem 6.5.

Theorem 6.8. Let ξ ∈ RST1 and fix a survival function Hξ satisfying part (1) of Theorem
4.16. Assume that U ⊆ S is such that r(π)(U) = 0 for all π ∈ RST satisfying

r(π)({( f , s) ∈ S : Hξ( f , s) = 0}) = 0. (6.9)

Then, there is a set Γ ⊆ S such that r(ξ)(Γ) = 1 and U ∩ Γ< = ∅.
Proof. The argument goes along the lines of the previous proof, considering the Polish
space Y = {y} equipped with the probability measure σ = δy. �

Proof of Lemma 6.2. We want to apply the previous theorem. Consider

U1 =
{
( f , s) ∈ S : Hξ( f , s) > 0,

∫
dξ( f ,s)(ω, t) < 1

}
,

U2 =
{
( f , s) ∈ S : Hξ( f , s) > 0,

∫
t dξ( f ,s)(ω, t) = ∞

}
.

We have to show that π(U1∪U2) = 0 for all π ∈ RST satisfying (6.9). Fix such a π. We first
show that π(U1) = 0, by contradiction. Assume that π(U1) > 0. Let ρ be the representation
of π given in Theorem 4.16 (4) and α the representation of ξ. Then there exists a set A ∈ F̄ρ
with P̄(A) > 0 such that

AS := {r(ω, ρ(ω, u)) : (ω, u) ∈ A} ⊆ U1.

Define Mt := Ē[1A|F̄t]. Then, (Mρ+s)s≥0 is an F̄ρ+s martingale as A ∈ F̄ρ. Set κ := ρ ∨ α.
Applying optional stopping twice and using the fact that κ is almost surely finite, we get
ĒMκ = ĒMρ. However,

Ē(Mκ − Mρ) =
∫

AS
Hξ( f , s)

(∫
dξ( f ,s)(ω, t) − 1

)
dπ(( f , s)) < 0,

by the choice of A and κ and Assumption (6.9). This is a contradiction.
Next, we assume that Eξ[T ] < ∞ and that there is π ∈ RST satisfying (6.9) such that

π(U2) > 0. Then, we can compute using the definition of U2

∞ > Eξ[T ] ≥
∫

U2

Hξ( f , s)
∫

t dξ( f ,s)(ω, t) dπ( f , s) = ∞,
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which is a contradiction. �

6.1. Proof of Proposition 6.6.

Proof of Proposition 6.6. Note that if ν′ ∈ RST(µ′) and ν′′ ∈ RST(µ′′), then (ν′ + ν′′)/2 ∈
RST((µ′ + µ′′)/2). The probabilistic interpretation of this is that the random stopping time
(ν′ + ν′′)/2 corresponds to flipping a coin at time t = 0 and subsequently either applying
the randomized stopping rule ν′ or ν′′.

Working towards a contradiction we assume that there is π ∈ JOIN(W, ν) such that
(r⊗ r)(π)(SGν) > 0. By looking at (r⊗ r)(π̄) := (r⊗ r)(π)�SGν we can assume that (r⊗ r)(π)
is concentrated on SGν. As SGν corresponds to a predictable subset of X ×Y = (C(R+) ×
R+)×Y (recall Proposition 4.4 and Remark 4.30) we can assume that projX(π) ∈ RST. As
Hν( f , s) = 0 implies ν( f ,s)(A) =W(projΩ(A ∩ {Ω × {s}})) for any Borel set A ⊆ C(R+) ×R+

(cf. Definition 6.1), i.e. there is instant stopping, there is no stop-go pair (( f , s), (g, t)) with
Hν( f , s) = 0. Hence, r(projX(π))({( f , s) : Hν( f , s) = 0}) = 0.

Set ν0 = ν1 := ν. We then use π to define two modifications νπ0 and νπ1 of ν such that the
following hold true:

(1) The terminal distributions µ0, µ1 corresponding to νπ0 and νπ1 satisfy (µ0+µ1)/2 = µ.
(2) νπ0 stops paths earlier than ν0 = ν while νπ1 stops later than ν1 = ν.
(3) The cost of νπ0 plus the cost of νπ1 is less than twice the cost of ν, i.e.∫

γ(ω�[0,t], t) dνπ0(ω, t) +
∫
γ(ω�[0,t], t) dνπ1(ω, t) < 2

∫
γ(ω�[0,t], t) dν(ω, t).

More formally, (2) asserts that for every s ≥ 0,

(νπ0)ω[0, s] ≥ νω[0, s], a.s. (6.10)

and (νπ1)ω[0, s] ≤ νω[0, s], a.s., (6.11)

where νω∈Ω, (νπ0)ω∈Ω, (νπ1)ω∈Ω are disintegrations of ν0, ν
π
0, ν

π
1 respectively w.r.t.W.

If we are able to construct such a pair νπ0, ν
π
1, then (νπ0 + νπ1)/2 is a randomized stopping

time in RST(µ) which is strictly better than ν and therefore yields the desired contradiction.
To define νπ0, we first consider ρ0 = projX(π) which is a randomized stopping time.

As in Remark 4.18 we can view ρ0 as a right-continuous decreasing survival function
Hρ0 : S → [0, 1] which starts at 1. It is possible that Hρ0 does not decrease to 0 since we
allow particles to survive until∞.

We now define the randomized stopping time νπ0 as the product

Hνπ0 ( f , s) := Hρ0 ( f , s) · Hν( f , s).

The probabilistic interpretation of this definition is that a particle is stopped by νπ0 if it is
stopped by ρ0 or stopped by ν, where these events are taken to be conditionally independent
given the particle followed the path f until time s. Comparing ν0 and νπ0 the latter will
stop some particles earlier than the first one. We note that this in particular implies that
Eνπ0 [T ] ≤ Eν[T ] < ∞, where T is the projection from C(R+) × R+ onto R+ as defined in
(4.7). Also clearly, νπ0 ∈ RST, i.e. νπ0 inherits adaptivity from ρ0 and ν. Equivalently we
can define νπ0 by setting for A ⊆ C(R+) × R+

νπ0(A) =

∫
A

Hν(ω, t) dρ0(ω, t) +

∫
A

Hρ0 (ω, t) dν(ω, t).

Let us now turn to the definition of νπ1. For A ⊆ C(R+) × R+ we define

ρ1(A) =

∫
X×A

Hν(ω, s) dπ((ω, s), (η, t)).

Fix anF 0-measurable disintegration (νω)ω∈C(R+) of ν by (1) of Theorem 4.16. Given ( f , s) ∈
S and (ω, t) ∈ C(R+) × R+ we define a measure on R with support in [t,∞) by setting for
I ⊆ [t,∞)

ν( f ,s),(ω,t)(I) := ν f⊕θt(ω)(I − t + s) = Hν( f , s) ν( f ,s)
θt(ω)(I − t + s), (6.12)
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where θt(ω) = (ωs+t − ωt)s≥0. Note that this is a slight generalization of a conditional ran-
domized stopping time, see (6.1). Here we additionally allow a shift of the time parameter
and do not normalize (hence the additional factor Hν( f , s)). This is necessary as in the next
step – for defining νπ1 – we need to trim bushes; i.e. we need to cut some paths at time s
and plant them on a stub at time t. Additionally, we can only move the mass that is present
which accounts for the Hν( f , s) appearing in (6.12) and the definition of ρ1. Moreover,
note that for a set I ⊆ (t, t + u) given ( f , s) the map

(ω, t) 7→ ν( f ,s),(ω,t)(I)

is σ(ωl, t ≤ l ≤ t + u)-measurable.
We define the probability measure νπ1 on C(R+) × R+ by

νπ1(A) = ν1(A) − ρ1(A) +

∫
X×A

ν(ω�[0,s],s),(η,t)(Aη) dπ
(
(ω, s), (η, t)

)
,

where Aη = {t ∈ R+ : (η, t) ∈ A}. The interpretation of this definition is the following. The
support of the randomized stopping time ν can be thought as a tree. The joining π defines
a plan how to trim the tree, i.e. cut a bush at position ( f , s) and plant it on top of (η�[0,t], t).
Hence, we take the tree, ν, prepare the position where something will be newly planted,
subtract ρ1 which takes away some mass, and plant as much as possible on these stubs to
end up with a tree of mass one again. Due to the measurability properties of (ω, t) 7→ ν

( f ,s)
(ω,t)

we obtain that νπ1 ∈ RST. Moreover, as projY(π) ≤ ν by the definition of JOIN(W, ν) we
get Eνπ1 [T ] ≤ 2Eν[T ] < ∞.

Summing up we have constructed νπ0, νπ1 ∈ RST such that Eνπ0 [T ],Eνπ1 [T ] < ∞. It
remains to show that νπ = 1/2(νπ0 + νπ1) ∈ RST(µ) and that

∫
γ dνπ <

∫
γ dν. To this end

let us consider the constributions of νπ0 and νπ1 separately. For A ⊆ Ω × R+ we have

νπ0(A) − ν(A) =

∫
A

Hν(ω, t) dρ0(ω, t) −
∫

A
(ρ0)ω([0, t]) dν(ω, t).

Furthermore, ∫
A
(ρ0)ω([0, t]) dν(ω, t)

=

∫
A

∫
Y

∫ t

0
dπ((ω, u), (η, s)) dνω(t) dW(ω)

=

∫
Ω

∫
Y

∫
R+

∫ ∞

u
1A(ω, t) dνω(t) dπ((ω, u), (η, s)) dW(ω)

=

∫
Ω

∫
Y

∫
R+

Hν(ω, u)ν(ω�[0,u],u)
θu(ω) (Aω) dπ((ω, u), (η, s)) dW(ω).

This yields∫
γ d(νπ0 − ν) (6.13)

=

∫
dπ((ω, s), (η, t)) Hν(ω, s)

[
γ(ω�[0,s], s) −

∫
γ(ω�[0,s] ⊕ ω̃�[0,u], s + u) dν(ω�[0,s],s)(ω̃, u)

]
.

For νπ1 we can compute∫
γ d(νπ1 − ν) (6.14)

=

∫
dπ((ω, s), (η, t)) Hν(ω, s)

[∫
γ(η�[0,t] ⊕ ω̃�[0,u], t + u) dν(ω�[0,s],s) (ω̃, u) − γ(η�[0,t], t)

]
.



OPTIMAL TRANSPORT AND SKOROKHOD EMBEDDING 29

We thus obtain

2
∫

γ d(νπ − ν)

=

∫
dπ

(
(ω, s), (η, t)

) (
Hν(ω, s)

[
−

∫
γ(ω�[0,s] ⊕ ω̃�[0,r], s + r) dν(ω�[0,s],s)(ω̃, r) − γ(η�[0,t], t)+

γ(ω�[0,s], s) +

∫
γ(η�[0,t] ⊕ ω̃�[0,r], t + r) dν(ω�[0,s],s)(ω̃, r)

])
,

which is strictly negative by the definition of stop-go pairs relative to ν and Assumption
(6.3). Moreover, the last identity holds for arbitrary bounded F : C(R+) × R+ → R instead
of γ. In particular, taking F(ω, t) = G(ω(t)) for G : R→ R bounded we get

2
∫

G d(νπ − ν)

=

∫
dπ

(
(ω, s), (η, t)

) (
Hν(ω, s)

[
−

∫
G(ω�[0,s] ⊕ ω̃�[0,r](s + r)) dν(ω�[0,s],s)(ω̃, r) −G(η(t))+

G(ω(s)) +

∫
G(η�[0,t] ⊕ ω̃�[0,r](t + r)) dν(ω�[0,s],s)(ω̃, r)

])
= 0,

because (( f , s), (g, t)) ∈ SGν implies that f (s) = g(t) and (r⊗ r)(π) is concentrated on SGν.
This proves νπ ∈ RST(µ). Hence, we obtain the desired contradiction. �

6.2. Proof of Proposition 6.7.
Important Convention. For the remainder of this section we fix a (finite) non-randomized
stopping time τ such that ~0, τ� is closed and satisfies τ ≤ t0 for some t0 ∈ R+.

6.2.1. An auxiliary Optimization Problem. We fix a Polish probability space (Y, σ). Let
c : C(R+) × R+ × Y → R+ be a predictable upper semi-continuous function. We are
interested in the maximization problem

P≤1 = P≤1
c (W, τ, σ) = sup

π∈JOIN(τ,σ)

∫
C(R+)×R+×Y

c dπ (6.15)

and its relation to the dual problem

D≤1 = D≤1
c (W, τ, σ) = inf

(ϕ,ψ)∈DC

(
W(ϕM

τ ) + σ(ψ)
)
, (6.16)

DC = {(ϕ, ψ) ∈ Cb(Ω) ×Cb(Y) : ϕ, ψ ≥ 0, c(ω, t, y) ≤ ϕM
t (ω) + ψ(y), t ≤ τ, y ∈ Y, ω ∈ Ω},

where ϕM is an S - continuous martingale (cf. Proposition 4.11). To indicate the dependence
of DC on the cost function c we sometimes write DC(c). Note that for integrable ϕ we
always haveW(ϕ) =W(ϕM

τ ) by optional stopping.
Observe that due to predictability of c the maximization problem is not altered if we

replace PRSTτ by RSTτ in the definition of JOIN(τ, σ), cf. (6.5).
As above (Lemma 5.3), the inequality D≤1 ≥ P≤1 is trivial. We now consider the other

inequality.

Proposition 6.9. Let c : C(R+)×R+×Y → R+ be predictable (in the sense of Remark 4.30),
upper semi-continuous and bounded from above. Assume that τ is a bounded stopping time
such that ~0, τ� is closed. Then

P≤1 = sup
π∈JOIN(τ,σ)

∫
C(R+)×R+×Y

c dπ = inf
(ϕ,ψ)∈DC

(W(ϕ) + σ(ψ)) = D≤1.

We first establish a variant which applies to not necessarily predictable c. Then, we will
use the defining property of PRST, Equation (4.6), to derive the predictable version.
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Proposition 6.10. Let c : C(R+)×R+×Y → R+ be (upper semi-) continuous and bounded
from above. Then

P≤1,NA := sup
π∈TM(τ,σ)

∫
C(R+)×R+×Y

c dπ = inf
(ϕ,ψ)∈D̃C

(W(ϕ) + σ(ψ)) =: D≤1,NA,

where D̃C = {(ϕ, ψ) ∈ Cb(Ω) × Cb(Y) : ϕ, ψ ≥ 0, c(ω, t, y) ≤ ϕ(ω) + ψ(y) for all y ∈ Y, t ≤
τ, ω ∈ Ω}.

Here the set of all tagged random measures is given by

TM(τ, σ) :=
{
π ∈ P≤1(C(R+) × R+ × Y) : projC(R+)×R+

(π) ∈ Mτ, projY(π) ≤ σ
}
.

Proof of Proposition 6.10. We reduce the theorem to the usual transport duality result. Put
c̄(ω, y) = supt≤τ(ω) c(ω, t, y). As ~0, τ� is closed and bounded c̄ is continuous.

The dual constraint set can be written as

D̃C = {(ϕ, ψ) ∈ Cb(Ω) ×Cb(Y) : ϕ, ψ ≥ 0, c̄(ω, y) ≤ ϕ(ω) + ψ(y) for all y ∈ Y, ω ∈ Ω}.
From the classical duality theorem of optimal transport (3.1) we know that

inf
(ϕ,ψ)∈D̃C

W(ϕ) + σ(ψ) = sup
q∈Cpl(W,σ)

∫
Ω×Y

c̄(ω, y) q(dω, dy) =: P̌.

It remains to show that P̌ = P≤1,NA. From the definition of c̄ and TM(τ, σ) it is clear that
we always have P≤1,NA ≤ P̌. To prove the other inequality fix ε > 0 and take q ∈ Cpl(W, σ).
For any (ω, y) there is t(ω, y) ≤ τ(ω) such that c(ω, t(ω, y), y) + ε ≥ c̄(ω, y) and we may
assume that t depends measurably on (ω, y). Putting π(dω, ds, dy) := q(dω, dy)δt(ω,y)(ds) ∈
TM we get ∫

C(R+)×R+×Y
c(ω, s, y) π(dω, ds, dy) + ε ≥

∫
Ω×Y

c̄(ω, y) q(dω, dy).

This implies that P≤1,NA + ε ≥ P̌. Letting ε go to zero we obtain the claim. �

Proof of Proposition 6.9. As c is bounded from above we have P≤1 < ∞. Arguing as in
Lemma 5.6, we may assume that the cost function c is continuous.

We will now proceed as in the proof of Proposition 5.8, i.e. we consider again the
functions h, h̄ as in (5.20) and we shall apply Theorem 5.7 to the function

F(π, h) =
∫

c + h̄ dπ

for π ∈ TM(τ, σ). The set TM(τ, σ) is convex and compact by Prohorov’s theorem and the
set of h under consideration is convex as well. The function F is continuous and affine in
π and h. This allows us to deduce

P≤1 = sup
π∈JOIN(τ,σ)

∫
c dπ

= sup
π∈TM(τ,σ)

inf
h

∫
c + h̄ dπ

Thm. 5.7
= inf

h
sup

π∈TM(τ,σ)

∫
c + h̄ dπ

= inf
h

inf
(ϕ,ψ)∈D̃C(c+h̄)

[
W(ϕ) + σ(ψ)

]
,

where the last equality holds by Proposition 6.10. Write

ch(ω, t, y) = c(ω, t, y) +

n∑
i=1

( fi(ω) − f M
i,t (ω))g(y).

For (ϕ, ψ) ∈ D̃C(ch) we have

ch(ω, t, y) ≤ ϕ(ω) + ψ(y).
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Taking conditional expectations w.r.t. F 0
t in the sense of Definition 4.10 and using pre-

dictability of c we get

c(ω, t, y) ≤ ϕM
t (ω) + ψ(y),

i.e. (ϕ, ψ) ∈ DC(c), hence D̃C(ch) ⊆ DC(c). BecauseW(ϕM
t ) =W(ϕ) this implies that

P≤1 = inf
h

inf
(ϕ,ψ)∈D̃C(c+h̄)

[
W(ϕ) + σ(ψ)

]
≥ inf

(ϕ,ψ)∈DC(c)

[
W(ϕ) + σ(ψ)

]
= D≤1.

Trivially D≤1 ≥ P≤1, hence we conclude D≤1 = P≤1. �

6.2.2. A Choquet argument. Denote by LSCb(X) the set of bounded lower semi-continuous
functions on X. The following lemma is a simple consequence of Proposition 6.9.

Lemma 6.11. Let c : C(R+)×R+×Y → [0, 1] be predictable (in the sense of Remark 4.30)
and upper semi-continuous. Assume that τ is a bounded stopping time such that ~0, τ� is
closed. Then

P≤1 = sup
π∈JOIN(τ,σ)

∫
C(R+)×R+×Y

c dπ = inf
(ϕ,ψ)∈DC′

(W(ϕ) + σ(ψ)) = D′,

where DC′ is given by{
(ϕ, ψ) ∈ LSC(Ω) × LSC(Y) : 0 ≤ ϕ, ψ ≤ 1, c(ω, t, y) ≤ ϕM

t (ω) + ψ(y), t ≤ τ, y ∈ Y, ω ∈ Ω
}
.

Proof. By Proposition 6.9, pick two continuous, bounded and non-negative functions ϕ, ψ ∈
DC. Then ψ̄ := ψ ∧ 1 is still continuous and as ϕ ≥ 0 we also have (ϕ, ψ̄) ∈ DC.
Put ρ = inf{t ≥ 0 : ϕM

t > 1}. Due to continuity of ϕM the set D := {ϕM > 1} is
open. Hence also {ρ < ∞} = projΩ D is open as projections are open mappings. The
map ω 7→ ϕM

ρ(ω)(ω) =: ϕ̄(ω) ≤ 1 is lower semi-continuous. Clearly, (ϕ̄, ψ̄) ∈ DC′ with
W(ϕ̄) + σ(ψ̄) ≤W(ϕ) + σ(ψ). �

As the indicator function of a closed set is upper semi-continuous Lemma 6.11 implies

Corollary 6.12. Let K ⊆ S ×Y be closed. Assume that τ is a bounded stopping time such
that ~0, τ� is closed. Then

sup
π∈JOIN(τ,σ)

∫
S×Y

1K ◦ (r ⊗ Id) dπ = inf
(ϕ,ψ)∈DC′′

[
W(ϕ) + σ(ψ)

]
,

where DC′′ consists of all pairs (ϕ, ψ) ∈ LSC(Ω) × LSC(Y) satisfying

0 ≤ ϕ, ψ ≤ 1,1K(( f , s), y) ≤ ϕM( f , s) + ψ(y), ( f , s) ∈ r(~0, τ�), y ∈ Y.
Through an application of Choquet’s theorem we will extend this to

Lemma 6.13. Let K ⊆ S × Y be a Borel set. Assume that τ is a bounded stopping time
such that ~0, τ� is closed. Then

P≤1 = sup
π∈JOIN(τ,σ)

∫
S×Y

1K ◦ (r ⊗ Id) dπ = inf
(ϕ,ψ)∈DC′′

(W(ϕ) + σ(ψ)) = D′′. (6.17)

Proof. To indicate the dependence on the set K we write D′′(K) and for notational conve-
nience we drop the two primes and simply write D(K). The left hand side in (6.17) is clearly
a capacity on S × Y. To establish the claim, it is therefore sufficient to show that D(K) is
also a capacity on S × Y, because the indicator of a closed set is upper semi-continuous
and the result then follows from Corollary 6.12 and Choquet’s theorem.

Hence, we need to show the three defining properties of a capacity, namely monotonic-
ity, continuity from below and continuity from above for compact sets. The monotonicity
is clear. Let us turn to the continuity from below.
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Take an increasing sequence A1 ⊆ A2 ⊆ . . . ⊆ S×Y of Borel sets and put A =
⋃

n An. For
all n there are lower semi-continuous functions7 ϕn : C(R+) → [0, 1] and ψn : Y → [0, 1]
such that 1An (( f , s), y) ≤ ϕM

n ( f , s) + ψn(y) for all ( f , s) ∈ S , y ∈ Y and

σ(ψn) +W(ϕn) ≤ D(An) + 1/n.

Using a Mazur/Komlos-type lemma we can assume that some appropriate convex combi-
nations of ψn and ϕn converge a.s. to functions ψ and ϕ. Let us be a little bit more precise
here. There exist convex coefficients αn

n, . . . , α
n
kn
, n ≥ 1, kn < ∞, and full measure subsets

Ω1 ⊆ Ω, Y1 ⊆ Y such that with ϕ̃n :=
∑kn

i=n α
n
i ϕi, ψ̃n :=

∑kn
i=n α

n
i ψi we have that for all

ω ∈ Ω1 and all y ∈ Y1

lim
n→∞ ϕ̃n(ω) =: ϕ(ω) and lim

n→∞ ψ̃n(y) =: ψ(y) (6.18)

exist. Extend these functions to Ω and Y, resp., through

lim sup
n→∞

ϕ̃n(ω) =: ϕ(ω) and lim sup
n→∞

ψ̃n(y) =: ψ(y). (6.19)

Due to the boundedness of ϕ̃n the same equalities hold with ϕM and ϕ̃M
n in place of ϕ and

ϕ̃n. Given m ≤ n we have for ( f , s) ∈ r(~0, τ�), y ∈ Y
1Am (( f , s), y) ≤ ϕ̃M

n ( f , s) + ψ̃n(y),

hence 1Am (( f , s), y) ≤ ϕM( f , s) + ψ(y) and thus also

1A(( f , s), y) ≤ ϕM( f , s) + ψ(y).

Given ε > 0, we can find lower semi-continuous functions ϕε ≥ ϕ and ψε ≥ ψ such that
W(ϕε)− ε/2 <W(ϕ) = limW(ϕ̃n) and σ(ψε)− ε/2 < σ(ψ) = limσ(ψ̃n). Therefore we can
conclude

D(A) ≤ lim sup
n

D(An) + 1/n + ε.

To show continuity from above for compact sets, take a sequence K1 ⊇ K2 ⊇ . . . of compact
sets in S × Y and put K =

⋂
n Kn. Fix ε > 0. Then there is (ϕ, ψ) ∈ DC′′ such that∫
ψ dσ +

∫
ϕ dW ≤ D(K) + ε.

As (ϕ, ψ) ∈ DC′′ it holds that K ⊆ {ϕM +ψ ≥ 1}. At the additional cost of ε we can find two
lower semi-continuous functions ϕε := (ϕ+ ε)∧ 1 ≥ ϕ and ψε := (ψ+ ε)∧ 1 ≥ ψ such that
W(ϕε) + σ(ψε) ≤W(ϕ) + σ(ψ) + 2ε and K ⊆ {(ϕε)M + ψε > 1}. By lower semi-continuity,
{(ϕε)M + ψε > 1} is open. Hence, there is an N such that for all n ≥ N we must have
1Kn ≤ (ϕε)M + ψε. This implies that

D(Kn) ≤ D(K) + 2ε,

proving the claim. �

Recall that for a stopping time ρ we denote by ρ̄(dω, dt) the measure on C(R+) × R+

given by δρ(ω)(dt)W(dω).

Lemma 6.14. Let K ⊆ r(~0, τ�) × Y and assume that supπ∈JOIN(τ,σ)(r ⊗ Id)(π)(K) < 1/2.
Then

1/2 sup
π∈JOIN(τ,σ)

(r ⊗ Id)(π)(K) ≤ inf
(D,A)∈Cov(K)

(
r(τ̄)(D) + σ(A)

)
≤ 2 sup

π∈JOIN(τ,σ)
(r ⊗ Id)(π)(K),

where

Cov(K) = {D ⊆ S open and right complete, A ⊆ Y : K ⊆ (D × Y) ∪ (S × A)}.

7We emphasize that a lower-semi-continuous function ϕ gives rise to an S - lower semi-continuous martingale.
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Proof. We will apply the previous lemma. Clearly, P≤1(1K) = supπ∈JOIN(τ,σ)(r ⊗ Id)(π)(K).
We have to show that

D(K) ≈ inf
(D,A)∈Cov(K)

(
r(τ̄)(D) + σ(A)

)
.

To this end take (ϕ, ψ) ∈ DC′′. As the cost function is {0, 1}-valued, the dual constraint

1K(( f , s), y) ≤ ϕM( f , s) + ψ(y)

implies that

K ⊆ ({( f , s) : ϕM( f , s) ≥ 1/2} × Y) ∪ (S × {y : ψ(y) ≥ 1/2}).
Hence, on the cost of a factor 2 we can replace ψ by the indicator of a set A ⊆ Y: first,
given ψ we can safely replace it by ψ̃ = ψ ∧ 1 because ψ̃ has smaller expectation and
at least as good covering properties as ψ. Then just take A = {ψ̃ ≥ 1/2}. Obviously,
1/2σ(A) ≤ σ(ψ̃) ≤ σ(A).

Let us turn our attention to the set E = {( f , s) : ϕM( f , s) ≥ 1/2}. Using our assumption
on π, we may assume that ϕM(0, 0) < 1/2, and choose 1/2 − ϕM(0, 0) > ε > 0. Define the
right complete and open set

D =
⋃

s

{
(g, t) : t > s, ϕM(g�[0,s]) > 1/2 − ε

}
.

Due to lower semi-continuity we have E ⊆ D. Therefore, (D, A) ∈ Cov(K).
By Lemma 4.8, D defines an F +-stopping time κ such that r−1(D) = �κ,∞~. Hence,

r(τ̄)(D) = τ̄(�κ,∞~) =W(κ < τ).

By Proposition 4.12, there is a continuous martingale ζ which almost surely equals ϕM at
all stopping times. This allows us to deduce that

E[ϕM
0 ] = E[ϕM

κ ] = E[ζκ] ≥ (1/2 − ε)W(κ < τ).

As ε > 0 is arbitrary, this implies

inf
(D,A)∈Cov(K)

(
r(τ̄)(D) + σ(A)

)
≤ 2 sup

π∈JOIN(τ,σ)
(r ⊗ Id)(π)(K).

To show the other inequality, fix ε > 0 and identify D with an F +-stopping time κ as above
and take an open set O ⊇ {κ < τ} satisfyingW(O) ≤ 2W(κ < τ) + ε = 2r(τ̄)(D) + ε. Define
a martingale ϕ̄M by putting

ϕ̄(ω) = 1O(ω).
As O is open, ϕ̄ is lower semi-continuous (and ϕ̄M is an S - lower semi-continuous martin-
gale) and we have Eϕ̄ ≤ 2r(τ̄)(D)+ε. Take an open set Â ⊇ A satisfying σ(Â) ≤ 2σ(A)+ε.
Then, (ϕ̄,1Â) ∈ DC′′ and

1/2 sup
π∈JOIN(τ,σ)

(r ⊗ Id)(π)(K) ≤ inf
(D,A)∈Cov(K)

(
r(τ̄)(D) + σ(A)

)
+ ε.

Since ε > 0 was arbitrary, we can conclude. �

6.2.3. On Proposition 6.7 — Conclusion of the proof. Recall that we assume that the stop-
ping time τ is smaller than or equal to some number t0.

Proof of Proposition 6.7. By Lemma 6.14, for each ε > 0 there exist a right complete set
D ⊆ S and a set N ⊆ Y such that B ⊆ (D × Y) ∪ (S × N) and r(τ̄)(D) + σ(N) ≤ 2ε.

Fix η > 0 and pick for each k some right complete set Dk ⊆ S and a set Nk ⊆ Y such
that B ⊆ (Dk × Y) ∪ (S × Nk) and r(τ̄)(Dk) + σ(Nk) ≤ η2−k. Then setting D̃ =

⋂
k Dk,

which is still right complete, we get

B ⊆ ⋂
k

(
(Dk × Y) ∪

(
S ×

(⋃
j N j

)))
⊆

(
D̃ × Y

)
∪

(
S ×

(⋃
j N j

))
.

This shows that D,N can be chosen so that r(τ̄)(D) = 0 and σ(N) < ε, for any ε > 0.
Similarly, taking a sequence of such right complete sets D′k and sets N′k such that r(τ̄)(D′k) =

0 and σ(N′k) < η2−k, we see that

B ⊆ ⋃
k

(
D′k × Y

)
∪

(
S ×

(⋂
l N′l

))
.



34 MATHIAS BEIGLBÖCK, ALEXANDER M. G. COX, AND MARTIN HUESMANN

The desired conclusion follows upon setting D =
⋃

k D′k and N =
⋂

k N′k. �

6.3. A secondary minimization result. In certain cases, in order to resolve possible non-
uniqueness of a minimizer, it will be useful to identify particular solutions as the solution
not only to a primary optimization result, but also as the unique optimizer within this
class of a second minimization problem. To this end, we begin by making the following
definition: suppose γ : S → R is a Borel-measurable function, we write Opt(γ, µ) for the
set of optimizers of Pγ(µ). Observe that, when Pγ(µ) is finite and the map π 7→

∫
γ dπ

is lower semi-continuous the set Opt(γ, µ) is a closed subset of RST(µ), and hence also
compact.

Theorem 6.15. Let γ, γ̃ be Borel measurable functions on S . Suppose that Opt(γ, µ) , ∅
and that ν ∈ Opt(γ, µ) is an optimizer of

Pγ̃|γ(µ) = inf
ν̃∈Opt(γ,µ)

∫
γ̃ dν̃. (6.20)

Then there exists a Borel set Γ ⊆ S such that r(ν)(Γ) = 1 and

SG2
ν ∩ (

Γ< × Γ
)

= ∅, (6.21)

where

SG2
ν = SGν ∪

{(
( f , s), (g, t)

)
: f (s) = g(t), (6.22)∫

γ( f ⊕ ω�[0,r], s + r) dν( f ,s)(ω, r) + γ(g, t) = γ( f , s) +
∫
γ(g ⊕ ω�[0,r], t + r) dν( f ,s)(ω, r),∫

γ̃( f ⊕ ω�[0,r], s + r) dν( f ,s)(ω, r) + γ̃(g, t) > γ̃( f , s) +
∫
γ̃(g ⊕ ω�[0,r], t + r) dν( f ,s)(ω, r)

}
.

We will show that (r ⊗ r)(π)(SG2
ν) = 0 for all π ∈ JOIN(τn, ν) where τn is defined as in

the proof of Theorem 6.5. Then the very same proof as for Theorem 6.5 applies also in the
present situation. Hence, the result follows immediately from the following straighforward
variant of Proposition 6.6.

Proposition 6.16. Let ν be a randomized stopping time which minimizes (6.20). Assume
that π ∈ JOIN(τ, ν) (where τ can be arbitrary) satisfies

HprojX(π)( f , s) > 0 =⇒ Hν( f , s) > 0 for ( f , s) ∈ S .

Then we have (r ⊗ r)(π)(SG2
ν) = 0.

Proof. As ν ∈ Opt(γ, µ) we only have to show that (r ⊗ r)(π)(SG2
ν \ SGν) = 0 by Propo-

sition 6.6. However, by the very same construction as in the proof of Proposition 6.6 we
can again argue by contradiction proving the claim. Indeed, we only have to evaluate the
integrals of γ and γ̃ as in (6.13) and (6.14), sum them up, use the assumptions and derive a
contradiction. �

7. Embeddings in abundance

In this section, we will show that all existing solutions to (OptSEP) can be established
by Theorem 6.5. Moreover, we will give further examples to demonstrate how new embed-
dings as well as higher dimensional versions of classical embeddings can be constructed
using the monotonicity principle.

7.1. A probabilistic interpretation. In this section we briefly recall some of the key re-
sults which have been obtained so far and provide an interpretation in probabilistic terms.
To move closer to classical probabilistic notions, we modify slightly our previous nota-
tion and consider again a Brownian motion B on some generic probability space. For a
function γ : S → R which is Borel, γ((Bs)s≤t, t) = γt corresponds to a stochastic process,
optional w.r.t. to the natural filtration generated by B (cf. Proposition 4.4). The value of
our optimization problem

Pγ = inf{E[γτ] : τ solves (SEP)} (7.1)
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does not depend on the particular choice of the underlying probability space, provided that
(Ω,F , (Ft)t≥0,P) is sufficiently rich that it supports a Brownian motion (Bt)t≥0 starting at 0,
and an independent, uniformly distributed random variable Y , which is F0-measurable. We
write F n for the natural filtration of B. We will from now on assume that we are working
in this setting.

Our first result (Theorem 1.1 / Proposition 5.1) says that, for a process (γt)t≥0 which is
suitably continuous and bounded from below, the infimum in (7.1) is attained by a stopping
time τ̂. Moreover, our duality result (Theorem 5.2) says that we have:

inf {E[γτ] : τ solves (SEP)} = sup
ψ,(Ms)s≥0

∫
ψ(x) dµ(x) + M0

where the supremum is taken over continuous functions ψ and F n-martingales Mt (satis-
fying a certain integrability condition) such that γt ≥ ψ(Bt) + Mt.

Our main contribution is the monotonicity principle which describes a given optimizer
τ̂ of Pγ in “geometric terms”. The version we state here is weaker than what we have
actually proved above (cf. Theorem 6.5) but easier to formulate and still sufficient for our
intended applications.

To define the set of stop-go pairs, we need one further notion. (See also Figure 4). Set

γ⊕( f ,s)(h) := γ( f ⊕ h). (7.2)

Then ( f , g) constitutes a stop-go pair, written ( f , g) ∈ SG, iff f (s) = g(t) and for every
stopping time σ satisfying 0 < E[σ] < ∞

E
[(
γ⊕( f ,s))

σ

]
+ γ(g, t) > γ( f , s) + E

[(
γ⊕(g,t))

σ

]
. (7.3)

t + σ
s t

gf

s + σ
s t

gf

Figure 4. The left hand side of (7.3) corresponds to averaging the func-
tion γ over the stopped paths on the left picture; the right hand side to
averaging the function γ over the stopped paths on the right picture.

We then find a support of τ̂, i.e. a set Γ ⊆ S with P[((Bt)t≤τ̂, τ̂) ∈ Γ] = 1, such that

SG ∩ (
Γ< × Γ

)
= ∅. (7.4)

Denote the set of all minimizers of Pγ by Optγ and take another Borel function γ̃ : S → R.
Assume that τ̂ is also a minimizer of the secondary optimization problem

Pγ̃|γ = inf{E [
γ̃τ

]
: τ ∈ Optγ}.

The set of secondary stop-go pairs SG2 consists of all ( f , g) ∈ S × S such that for every
stopping time σ with 0 < E[σ] < ∞ we have

E
[(
γ⊕( f ,s))

σ

]
+ γ(g, t) ≥ γ( f , s) + E

[(
γ⊕(g,t))

σ

]
and the equality

E
[(
γ⊕( f ,s))

σ

]
+ γ(g, t) = γ( f , s) + E

[(
γ⊕(g,t))

σ

]
(7.5)

implies the inequality

E
[(
γ̃⊕( f ,s))

σ

]
+ γ̃(g, t) > γ̃( f , s) + E

[(
γ̃⊕(g,t))

σ

]
. (7.6)
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Then, we also may assume that

SG2 ∩
(
Γ< × Γ

)
= ∅. (7.7)

Note that SG2 ⊇ SG. We say that Γ is γ-monotone if (7.7) is satisfied. We then obtain:

Theorem 7.1 (Monotonicity Principle II). Let γ : S → R be Borel measurable, B be
a Brownian motion on some stochastic basis (Ω,F , (Ft)t≥0,P) and τ̂ an optimizer of the
primary as well as secondary optimization problem. Then there exists a γ-monotone Borel
set Γ ⊆ S such that P-a.s.

((Bt)t≤τ̂, τ̂) ∈ Γ . (7.8)

τAY

Bt

Bt

(a) The Azéma-Yor construction.

τJ

|B|∗t

Bt

(b) The Jacka construction

τV+

Lt

Bt

(c) The Vallois construction

Figure 5. Representations of the Azéma-Yor, Vallois and Jacka constructions.

7.2. Recovering classical embeddings. In this section we derive a number of classical
embeddings as well as establish new embeddings. Figure 5 shows graphical representations
of some of these constructions. We highlight the common features of all these pictures:
when plotted in an appropriate phase space, the stopping time is the hitting time of a barrier-
type set. Identifying the appropriate phase space, and determining the exact structure of
the barrier will be the key step in deriving the solutions to (SEP) in this section.

Theorem 7.2 (The Azéma-Yor embedding, cf. [4]). There exists a stopping time τAY which
maximizes

E
[

sup
t≤τ

Bt

]
over all solutions to (SEP) and which is of the form τAY = inf

{
t > 0 : Bt ≤ ψ( sups≤t Bs

)}
a.s., for some increasing function ψ.

For subsequent use, it will be helpful to write, for ( f , s) ∈ S , f̄ = supr≤s f (r),
¯
f =

infr≤s f (r) and | f |∗ = supr≤s | f (r)|.
Proof. Fix a bounded and strictly increasing continuous function ϕ : R+ → R and consider
the S - continuous functions γ(( f , s)) = − f̄ and γ̃(( f , s)) = ϕ( f̄ )( f (s))2. By the assumptions
on ϕ and the second moment condition on µ, there exists a minimizer τAY of Pγ and Pγ̃|γ.
Pick, by Theorem 7.1, a γ-monotone set Γ ⊆ S supporting τAY . We claim that

SG2 ⊇ {(( f , s), (g, t)) ∈ S × S : g(t) = f (s), ḡ < f̄ }. (7.9)

This is represented graphically in Figure 6.
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Bt

Bt

f (s)

ḡ

f ⊕ h

g f

Bt

Bt

f (s)

f̄

g ⊕ h

g f

Figure 6. The stop-go pairs for the Azéma-Yor embedding: on the left,
the blue path (g, t) is stopped, and the green path, ( f , s), is allowed to
continue; a possible continuation, h, being shown in red. On the right
hand side we see the effect of allowing g to go and stopping f . In par-
ticular, the maximum of g is increased, but the maximum of f stays the
same.

Indeed, pick (( f , s), (g, t)) ∈ S × S with f (s) = g(t) and ḡ < f̄ and a stopping time σ
with positive and finite expectation. Then (7.3) amounts to

E
[
f̄ ∨ ( f (s) + B̄σ)

]
+ ḡ ≤ f̄ + E

[
ḡ ∨ (g(t) + B̄σ)

]
with a strict inequality unless ḡ ≥ g(t) + B̄σ a.s. However in that case (7.5) is trivially
satisfied and (7.6) amounts to

E
[
ϕ( f̄ )( f (s) + Bσ)2

]
+ ϕ(ḡ)g(t)2 > ϕ( f̄ ) f (s)2 + E

[
ϕ(ḡ)(g(t) + Bσ)2

]
which holds since g(t) = f (s). Summing up, (( f , s), (g, t)) ∈ SG ⊆ SG2 in the former case
and (( f , s), (g, t)) ∈ SG2 in the latter case, proving (7.9).

In complete analogy with the Root embedding presented above we define

Rcl = {(m, x) : ∃(g, t) ∈ Γ, ḡ ≤ m, g(t) = x} ,
Rop = {(m, x) : ∃(g, t) ∈ Γ, ḡ < m, g(t) = x} ,

and write τcl, τop for the first times the process (B̄t(ω), Bt(ω)) hits the sets Rcl and Rop
respectively. Then we claim τcl ≤ τAY ≤ τop a.s. Note that τcl ≤ τAY holds by definition
of τcl. To show the other inequality pick ω satisfying ((Bs(ω))s≤τAY (ω), τAY (ω)) ∈ Γ and
assume for contradiction that τop(ω) < τAY (ω). Then there exists s ∈ [

τop(ω), τAY (ω)
)

such that f := (Br(ω))r≤s satisfies ( f̄ , f (s)) ∈ Rop. Since s < τAY (ω) we have f ∈ Γ<.
By definition of Rop, there exists (g, t) ∈ Γ such that f (s) = g(t) and ḡ < f̄ , yielding a
contradiction.

Finally, we define
ψ0(m) = sup{x : ∃(m, x) ∈ Rcl}.

It follows from the definition of Rcl that ψ0(m) is increasing, and we define the right-
continuous function ψ+(m) = ψ0(m+), and the left-continuous function ψ−(m) = ψ0(m−).
It follows from the definitions of τop and τcl that:

τ+ := inf{t ≥ 0 : Bt ≤ ψ+(B̄t)} ≤ τcl ≤ τop ≤ inf{t ≥ 0 : Bt < ψ−(B̄t)} =: τ−.

It is then easily checked that τ− = τ+ a.s., and the result follows on taking ψ = ψ+. �

Theorem 7.3 (The Jacka Embedding, cf. [28]). Let ϕ : R+ → R be a bounded, strictly
increasing right-continuous function. There exists a stopping time τJ which maximizes

E
[
ϕ
(

sup
t≤τ
|Bt |

)]
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over all solutions to (SEP), and which is of the form

τJ = inf
{
t > 0 : Bt ≥ γ−

(
sup
s≤t
|Bs|

)
or Bt ≤ γ+

(
sup
s≤t
|Bs|

)}
a.s., for some functions γ+, γ−, where γ− is decreasing, and γ+(y) ≥ γ−(y) for all y > y0,
γ−(y) = −γ+(y) = ∞ for y < y0, some y0 ≥ 0.

Proof. The proof runs along similar lines to the proof of Theorem 7.2, once we identify

SG2 ⊇ {(( f , s), (g, t)) ∈ S × S : f (s) = g(t), | f |∗ > |g|∗}
define

Rcl = {(m, x) : ∃(g, t) ∈ Γ, |g|∗ ≤ m, g(t) = x}
Rop = {(m, x) : ∃(g, t) ∈ Γ, |g|∗ < m, g(t) = x} ,

and then take

γ−(m) = inf{x : ∃(m, x) ∈ Rcl}
γ+(m) = sup{x : ∃(m, x) ∈ Rcl}. �

Remark 7.4. We observe that both the results hold for one-dimensional Brownian motion
with an arbitrary starting distribution λ satisfying the usual convex ordering condition.

Theorem 7.5 (The Perkins Embedding, cf. [41]). Suppose µ({0}) = 0. Let ϕ : R2
+ → R

be a bounded function which is strictly increasing and left-continuous in both arguments.
There exists a stopping time τP which minimizes

E
[
ϕ
(

sup
t≤τ

Bt,− inf
t≤τ Bt

)]
over the set RST(µ) and which is of the form τP = inf

{
t > 0 : Bt <

(
γ+(B̄t), γ−(

¯
Bt)

)}
, for

some decreasing functions γ+ and γ− which are left- and right-continuous respectively.

Proof. Fix a bounded and strictly increasing continuous function ϕ̃ : R2
+ → R and consider

the S - continuous functions γ(( f , s)) = ϕ( f̄ ,−
¯
f ) and γ̃(( f , s)) = −( f (s))2ϕ̃( f̄ ,−

¯
f ). By the

assumptions on ϕ and ϕ̃, there exists a minimizer τP of Pγ and Pγ̃|γ. Pick, by Theorem 7.1
a γ-monotone set Γ ⊆ S supporting τP.

By a similar argument to that given in the proof of Theorem 7.2 we can show

SG2 ⊇ {(( f , s), (g, t)) ∈ S × S : f (s) = g(t), ( f̄ ,−
¯
f ) < (ḡ,−

¯
g)},

where ( f̄ ,−
¯
f ) < (ḡ,−

¯
g) is to be understood in the partial oder of R2. Observe from the fact

that µ({0}) = 0 that Γ only contains points such that
¯
g < 0 < ḡ. Next, we show that Γ

contains no points of the type: {(g, t) :
¯
g < g(t) < ḡ}; since if there were such a point (g, t)

with g(t) = x say, then we must also have passed through x on the way to set the most recent
extremum (i.e. either between setting the current minimum and the current maximum, or
vice versa). Then there exists ( f , s) ∈ Γ< such that f (s) = x and ϕ( f̄ ,−

¯
f ) < ϕ(ḡ,−

¯
g); hence

(( f , s), (g, t)) ∈ SG2.
Now consider the sets:

Rcl =
{
(m, x) : ∃(g, t) ∈ Γ, g(t) = x =

¯
g, ḡ ≥ m

}
∪

{
(x, i) : ∃(g, t) ∈ Γ, g(t) = x = ḡ,

¯
g ≤ i

}
= R̄cl ∪ R̄cl

Rop =
{
(m, x) : ∃(g, t) ∈ Γ, g(t) = x =

¯
g, ḡ > m

}
∪

{
(x, i) : ∃(g, t) ∈ Γ, g(t) = x = ḡ,

¯
g < i

}
= R̄op ∪ R̄op,

and their respective hitting times, τcl, τop. It is immediate that τcl ≤ τP a.s., and an essen-
tially identical argument to that used in the proof of Theorem 7.2 gives τP ≤ τop a.s.

We now set

γ+(m) = sup{x < 0 : (m, x) ∈ R̄cl}
γ−(i) = inf{x > 0 : (x, i) ∈ R̄cl}.
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Then the functions are both clearly decreasing and left- and right-continuous respectively,
by definition of the respective sets R̄cl, R̄cl. Moreover, it is immediate that

τcl = inf
{
t > 0 : Bt <

(
γ+(B̄t), γ−(

¯
Bt)

)}
,

and we deduce that τcl = τop a.s. by standard properties of Brownian motion. The conclu-
sion follows. �

Theorem 7.6 (Maximizing the range). Let ϕ : R2
+ → R be a bounded function which is

strictly increasing and right-continuous in both variables. There exists a stopping time τxr

which maximizes
E
[
ϕ
(

sup
t≤τ

Bt,− inf
t≤τ Bt

)]
over the set RST(µ), and which is of the form

τxr = inf
{
t > 0 : Bt ∈

(
γ−(−

¯
Bt, B̄t), γ+(−

¯
Bt, B̄t)

)}
a.s.,

for some right-continuous functions γ−(i,m) decreasing in both coordinates and γ+(i,m)
increasing in both coordinates.

Proof. Our primary objective function will be to minimize γ(( f , s)) = −ϕ( f̄ ,−
¯
f ); observe

that this is a lower-semi-continuous function on S . We again introduce a secondary mini-
mization problem: specifically, we consider the functional γ̃(( f , s)) = ( f (s))2ϕ̃( f̄ ,−

¯
f ) for

some bounded continuous and strictly increasing function ϕ̃ : R2
+ → R. As above, by the

assumptions on ϕ and ϕ̃ there exist a minimizer of Pγ and Pγ̃|γ denoted by τxr. Pick, by
Theorem 7.1 a γ-monotone set Γ ⊆ S supporting τxr.

By a similar argument to that given in the proof of Theorem 7.2 we can show

SG2 ⊇ {(( f , s), (g, t)) ∈ S × S : f (s) = g(t), ( f̄ ,−
¯
f ) > (ḡ,−

¯
g)},

where again ( f̄ ,−
¯
f ) > (ḡ,−

¯
g) is to be understood in the partial order of R2. We put

I(
¯
b, b̄) := conv({g(t) : (g, t) ∈ Γ,

¯
g =

¯
b, ḡ = b̄}), where conv denotes the convex hull.

Moreover, we set γ−(−
¯
b, b̄) = min{x : x ∈ I(

¯
b, b̄)} and γ+(−

¯
b, b̄) = max{x : x ∈ I(

¯
b, b̄)}. If

γ−(−
¯
b, b̄) =

¯
b we set γ−(−

¯
d, d̄) =

¯
d for all

¯
d ≤

¯
b and d̄ ≥ b̄ and anologously for γ+.

We claim that γ+ is increasing in b̄ and −
¯
b and γ− is decreasing in b̄ and in −

¯
b, i.e.

I(
¯
b, b̄) ⊆ I(

¯
d, d̄) if

¯
d ≤

¯
b and b̄ ≤ d̄. Assume the contrary, then with the notation as before

there is x ∈ I(
¯
b, b̄) \ I(

¯
d, d̄). W.l.o.g. we can assume that x = γ−(−

¯
b, b̄) >

¯
b. Then there

is ( f , s) ∈ Γ<, (g, t) ∈ Γ with
¯
g =

¯
b, ḡ = b̄, g(t) = γ−(−

¯
b, b̄) = f (s) and

¯
f =

¯
d, f̄ = d̄, in

particular ϕ( f̄ ,−
¯
f ) > ϕ(ḡ,−

¯
g) so that ( f , g) ∈ SG2.

Set

Rcl = {(
¯
b, b̄, b) : b ∈ I(

¯
b, b̄)}

Rop = {(
¯
b, b̄, b) : ∃

¯
d ≥

¯
b, d̄ ≤ b̄ one inequality being strict, s.t. b ∈ I(

¯
d, d̄)}

with respective hitting times τcl and τop. In a similar manner to the Azéma-Yor embedding
we can deduce that τcl ≤ τrx ≤ τop a.s. and also that τcl = τop a.s. The conclusion follows
upon noting that

τcl = inf
{
t > 0 : Bt ∈

(
γ−(−

¯
Bt, B̄t), γ+(−

¯
Bt, B̄t)

)}
. �

Remark 7.7. Considering the last argument we see that looking for minimizers of the range
the picture turns inside out. The stopping region will be of the form (−∞, a) ∪ (b,∞) and
we can directly deduce that we only stop in a minimum or a maximum, i.e. the three
dimensional picture reduces to a two dimensional picture and we are back in the Perkins
case. This symmetry is similar to the symmetry in the Root and Rost embedding.

Remark 7.8. We observe that, in the case of Theorem 7.6, the characterization provided
would not appear to be sufficient to identify the functions γ+, γ− given the measure µ. This
is in contrast to the constructions of Azéma-Yor, Perkins and Jacka, where knowledge
of the form of the embedding is sufficient to identify the corresponding stopping rule.
Consider the Azéma-Yor embedding: from Theorem 7.2 it is clear that if we stop with
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maximum above s, then we must hit s before stopping, and there exists y = ψ(s) such
that we stop at or above y if our maximum is above s. Moreover, we only stop above y if
our maximum is at least s. We conclude that, conditional on hitting s before stopping, we
must embed µ restricted to [y,∞) (with some more care needed if there are atoms of µ).
However there is a unique y such that this distribution has mean s, and this y must then be
ψ(s).

On a more abstract level, uniqueness of barrier type embeddings in a two dimensional
phase space can be seen as a consequence of Loynes’ argument [34]. More precisely, let At

be some continuous process and suppose that τ1 and τ2 denote the times when (At, Bt) hits
a closed barrier-type set R1 resp. R2. If E[τ1],E[τ2] < ∞ and both stopping times embed
the same measure, the argument presented in Remark 2.2 shows that τ1 = τ2.

7.2.1. The Vallois-embedding and optimizing functionals of local time. In this section we
shall determine the stopping rule which solves

inf{E[h(Lτ)] : τ solves (SEP)}, (7.10)

where L denotes the local time of Brownian motion in 0 and h is a convex or concave
function.

A large part of the argument is virtually identical to the argument which we used in
the previous section. The most involved part will in fact be to show that the problem
(7.10) admits a maximizer. As mentioned below Definition 4.3, L is not S - continuous.
Nevertheless we will prove the following result.

Lemma 7.9. Let ξn, n ≥ 1, ξ ∈ RST(µ) and assume that ξn → ξ weakly. Then Lξn → Lξ
weakly. In fact, if ρn, ρ are the representations of ξn, ξ on Ω̄, then L̄ρn → L̄ρ in L1(Ω̄,P⊗L).

We first give a simple result on the connection between convergence of stopping times
in RST(µ) and their representations.

Proposition 7.10. Let ξn, ξ, ρn and ρ be as in Lemma 7.9. Then ξn → ξ weakly iff ρn → ρ
in probability.

Proof. Let X ∈ Cb(C(R+) × R+). Recall that∫
Xt(ω) dξ(ω, t) =

∫
W(dω)

∫
ξω(dt)Xt(ω) =

∫
W(dω)

∫
X(ω, t) dAξ

t (ω) =

=
∫
W(dω)

∫
L(dx)Xρ(x,ω)(ω) = ĒXρ,

and hence ∫
Xt(ω) d(ξ − ξn)(ω, t) =

∫
W(dω)

∫
L(dx)

[
Xρ(x,ω)(ω) − Xρn(x,ω)(ω)

]
.

Considering processes which depend only on the time t but not ω, i.e. Xt(ω) = Xt, we
obtain that ξn → ξ weakly implies that ρn → ρ in probability. Conversely, if ρn → ρ
in probability under P̄, then also ρn → ρ almost surely along some subsequence of every
subsequence. By dominated convergence, ξn → ξ weakly. �

Proof of Lemma 7.9. As a consequence of Proposition 7.10 we have that ρn ∧ ρ→ ρ, ρn ∨
ρ → ρ. Note also that for every minimal embedding ξ′ ∈ RST(µ′), Eξ′L =

∫
|x| dµ′(x).

Write µn for the law embedded by ρn ∧ ρ. Then µn → µ weakly, and L̄ρn∧ρ ≤ L̄ρ, so (using
Lemma 4.25) ĒL̄ρn∧ρ =

∫
|x| dµn →

∫
|x| dµ and hence ĒL̄ρn∧ρ → ĒL̄ρ. This implies that

L̄ρn∧ρ → L̄ρ in L1(Ω̄,P ⊗ L). Since L̄ρn∨ρ + L̄ρn∧ρ = L̄ρ + L̄ρn we also find that ĒL̄ρn∨ρ =

Ē
[
L̄ρn + (L̄ρ − L̄ρn )+

]
= ĒL̄ρ + Ē

[
(L̄ρ − L̄ρn )+

]
→ ĒL̄ρ, where we used that ξn, ξ ∈ RST(µ).

Thus L̄ρn∨ρ → L̄ρ in L1(Ω̄,P ⊗ L). Combining these results, we see that L̄ρn → L̄ρ in
L1(Ω̄,P ⊗ L). �

Corollary 7.11. Let h : [0,∞) → R be a bounded, strictly concave or convex function.
Then there exists an optimizer for (7.10). Moreover, the set Opt(γ, µ) is closed.
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Proof. If ξn ∈ RST(µ) is a sequence of stopping times such that V∗ = limE[h(Lξn )] =

inf{E[h(Lτ)] : τ ∈ RST(µ)}, by Lemma 7.9 (possibly passing to a subsequence) ξ = limn ξn

satisfies E[h(Lξ)] = V∗. Hence, Opt(γ, µ) is non-empty and closed. �

With these tools, we are now able to show:

Theorem 7.12. Let h : [0,∞)→ R be a bounded, strictly concave function.
(1) There exists a stopping time τV− which maximizes

E [h (Lτ)]

over the set RST(µ), and which is of the form

τV− = inf {t > 0 : Bt < (ϕ− (Lt) , ϕ+ (Lt))} a.s.,

for some decreasing, non-negative function ϕ+ and increasing, non-positive func-
tion ϕ−.

(2) There exists a stopping time τV+ which minimizes

E [h (Lτ)]

over the set RST(µ), and which is of the form

τV+ = inf {t > 0 : Bt < (ϕ− (Lt) , ϕ+ (Lt))} ∧ Z a.s.,

for some increasing, non-negative function ϕ+, decreasing, non-positive function
ϕ−, and an F0-measurable random variable Z ∈ {0,∞} with P(Z = 0) = µ({0}).

Proof. We consider the second case, the first case being slightly simpler. We will apply
Theorem 7.1 to the optimizations corresponding to γ((ω, t)) = h(Lt(ω)) and γ̃((ω, t)) =

e−Lt(ω)B2
t (ω).

By Corollary 7.11, the set Opt(γ, µ) is non-empty and closed and we can apply Theo-
rem 7.1. Pick a minimizer τV+ and a γ-monotone set Γ ⊆ S supporting τV+.

From Theorem 4.1 and Proposition 4.4 it follows that there is a function L : S → R+

such that Lt = L((Bs)s≤t, t) P-a.s. By a similar argument to the previous cases we can show
that

SG2 ⊇ {(( f , s), (g, t)) ∈ S × S : f (s) = g(t), L( f , s) < L(g, t)}.
Define the sets

Rop = {(l, x) : ∃(g, t) ∈ Γ, g(t) = x, L((g, t)) > l} ,
Rcl = {(l, x) : ∃(g, t) ∈ Γ, g(t) = x, L((g, t)) ≥ l} .

It follows immediately that τcl ≤ τV+. We observe that (l, 0) < Rop for any l ≥ 0, and
τV+ ≤ τop, and it follows that τV+

(Ω × {0}) = µ({0}). We consider τV+ on {τV+ ≥ η}, for
η > 0. Write τηop = inf{t ≥ η : (Lt, Bt) ∈ Rop} and τ

η
cl = inf{t ≥ η : (Lt, Bt) ∈ Rcl}.

Then on this set τηcl ≤ τV+ ≤ τηop. Moreover, define ϕ+(l) = inf{x > 0 : (l, x) ∈ Rop} and
ϕ−(l) = sup{x < 0 : (l, x) ∈ Rop}. Observe that, since τV+ ≤ τop, if P(τV+ > η) > 0, then
|ϕ+(η)−ϕ−(η)| > 0. In addition, ϕ+(l) is clearly right-continuous and increasing, so it must
have at most countably many discontinuities, and similarly for ϕ−(l). We can write

inf {t ≥ η : Bt < (ϕ− (Lt) , ϕ+ (Lt))} ≤ τηcl ≤ τηop ≤ inf
{
t ≥ η : Bt <

[
ϕ− (Lt+) , ϕ+ (Lt+)

]}
and observe that (by standard properties of Brownian motion) the stopping times on the
left and right are almost surely equal (since there are at most countably many discon-
tinuities, and ϕ+(l) and ϕ−(l) are bounded away from zero on [η,∞)). It follows that
τV+ = inf {t ≥ η : Bt < (ϕ− (Lt) , ϕ+ (Lt))} on {τV+ ≥ η}, and since η > 0 was arbitrary,
we get the desired behaviour. �

Remark 7.13. The arguments above extend from local time at 0 to a general continuous
additive functional A. Writing Lx for local time in x, A can be represented in the form At :=∫ t

0 Lx
s dmA(x). Let f be a convex function such that f ′′ = mA in the sense of distributions.

If
∫

f dµ < ∞, then Proposition 7.10 still holds with A in place of L; the above proof is
easily adapted to the more general situation.
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In this manner, we deduce the existence of optimal solutions to (SEP) for functionals
depending on A. By analogy with Theorem 7.12 this can be used to generate (inverse-
/cave-) barrier-type embeddings of various kinds. Other generalizations and variants may
be considered in a similar manner. We leave specific examples as an exercise for the reader.

Remark 7.14. In Cox and Obłój [12], embeddings are constructed which maximize certain
double-exit probabilities: for example, to maximize the probability that both B̄τ ≥ b̄ and

¯
Bτ ≤ ¯

b, for given levels b̄ and
¯
b. In this case, the embedding is no longer naturally viewed

as a barrier-type construction; instead, it is natural to characterize the embedding in terms
of where the paths with different crossing behaviour for the barriers finish (for example,
the paths which only hit the upper level may end up above a certain value, or between
two other values). However, it is possible, again using a suitable secondary maximization
problem, to show that there exists an optimizer demonstrating the behaviour characterizing
the Cox-Obłój embeddings. (Specifically, if we write Hb(( f , s)) = inf{t ≤ s : f (t) = b},
¯
H = H

¯
b ∧ Hb̄ and H̄ = H

¯
b ∨ Hb̄ then the secondary maximization problem γ̃(( f , s)) =

(( f (s) −
¯
H(( f , s)))2

1
¯
H≤s/2 − (( f (s) − H̄(( f , s)))2

1H̄≤s is sufficient to rederive the form of
these embeddings.)

7.3. Root and Rost Embeddings in Higher Dimensions. In this section we consider the
Root and Rost constructions of Sections 2.1 and 2.2 in the case of d-dimensional Brown-
ian motion with general initial distribution, for d ≥ 2. In Rd, since the Brownian motion is
transient, it is no longer straightforward to assert the existence of an embedding. In gen-
eral, [47] gives necessary and sufficient conditions for the existence of an embedding, and
without the additional condition that E[τ] < ∞. In the Brownian case, Rost’s conditions
for d ≥ 3 can be written as follows. There exists a stopping time τ such that B0 ∼ λ and
Bτ ∼ µ if and only if for all y ∈ Rd∫

u(x, y) λ(dx) ≤
∫

u(x, y) µ(dx), where u(x, y) = |x − y|2−d. (7.11)

However, it is not clear that such a stopping time will satisfy the condition

E[τ] = 1/d
(∫
|x|2 (µ − λ)(dx)

)
. (7.12)

As a result, it is not straightforward to give simple criteria for the existence of a solution in
RST(µ).

In the case d = 2 it follows from Falkner’s results [19] that the Skorokhod problem
admits a solution (i.e. RST(µ) , ∅) if (7.11) is satisfied for u(x, y) = − ln |x − y| and then
(7.12) applies.

In either case, assuming that we do have a solution satisfying (7.12), then we are able
to state the following:

Theorem 7.15. Suppose RST(µ) is non-empty. If h is a strictly convex function and τ̂ ∈
RST(µ) maximizes E[h(τ)] over τ ∈ RST(µ) then there exists a barrier R such that τ̂ =

inf{t > 0 : (Bt, t) ∈ R} on {τ̂ > 0} a.s.

The proof of this result is much the same as that of Theorem 2.1, except we no longer
show that τcl = τop. In higher dimensions with general initial laws, it is easy to construct
examples where there are common atoms of λ and µ, but where the size of the atom in λ
is strictly larger than the atom of µ. By the transience of the process, it is clear that the
optimal (indeed, only) behaviour is to stop mass starting at such a point immediately with
a probability strictly between 0 and 1, however the stopping times τcl and τop will always
stop either all the mass, or none of this mass respectively. For this reason, we do not say
anything about the behaviour of τ̂ when τ̂ = 0. Trivially, the above result tells us that the
solution of the optimal embedding problem is given by a barrier if there exists a set D such
that λ(D) = 1 = µ({D).

Proof of Theorem 7.15. The first part of the proof proceeds similarly to the proof of Theo-
rem 2.1. In particular, the set of stop-go pairs is given by

SG ⊇ {(( f , s), (g, t)) ∈ S × S : f (s) = g(t), s > t}
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and we define the sets Rcl,Rop and the stopping times τcl, τop as above. We then fix δ > 0,
and consider the set {τ̂ ≥ δ}. Given η ≥ 0, we define B−ηt = Bt+η, for t ≥ −η and set

τ
η,δ
cl = inf{t ≥ δ : (t, B−ηt ) ∈ Rcl}.

Then τη,δcl ≥ δ, and for any ε > 0, we can choose η > 0 sufficiently small that

dTV

(
B−ηδ , Bδ

)
< ε

and hence from the Strong Markov property of Brownian motion, it follows that

dTV

(
B−η
τ
η,δ
cl

, Bτ0,δ
cl

)
< ε.

In particular, the law of B−η
τ
η,δ
cl

converges weakly to the law of Bτ0,δ
cl

as η→ 0. Thus

τ
η,δ
cl = inf{t ≥ η + δ : (t − η, Bt) ∈ Rcl},

so τη,δcl ≥ τ0,δ
R , and moreover, τη,δcl → τ0,δ

op a.s. as η → 0. Hence, B−η
τ
η,δ
cl

→ Bτ0,δ
op

in probability,

as η→ 0, so we have weak convergence of the law of B−η
τ
η,δ
cl

to the law of Bτ0,δ
op

, and hence

Bτ0,δ
op
∼ Bτ0,δ

cl
.

We now observe that, by an essentially identical argument to that in the proof of Theo-
rem 2.1, we must have τ0,δ

cl ≤ τ̂ ≤ τ0,δ
op on {τ̂ ≥ δ}. However, in the argument above, we

know that τ0,δ
cl ≤ τ̂ ≤ τ0,δ

op , and τη,δcl →D τ0,δ
cl and τη,δcl →D τ0,δ

op as η → 0 (where D denotes
convergence in distribution). It follows that τ0,δ

cl =D τ0,δ
op and hence τ0,δ

cl = τ0,δ
op a.s. In par-

ticular, Bτ0,δ
cl

= Bτ0,δ
op

= Bτ̂ on {τ̂ ≥ δ}. Letting δ → 0 we observe that τ0,δ
op → τop, and hence

the required result holds on taking R = Rop. �

We now consider the generalization of the Rost embedding. We recall that (λ∧µ)(A) :=
infB⊆A (λ(B) + µ(A \ B)) defines a measure.

Theorem 7.16. Suppose λ, µ are measures in Rd and τ̂ ∈ RST(µ) maximizes E[h(τ)] over
all stopping times in RST(µ), for a convex function h : R+ → R, with E[h(τ)] < ∞. Then
P(τ̂ = 0, B0 ∈ A) = (λ∧ µ)(A), for A ∈ B(R), and on {τ̂ > 0}, τ̂ is the first hitting time of an
inverse barrier.

Proof. We follow the proof of Theorem 2.3 to recover the set of stop-go pairs given by

SG ⊇ {(( f , s), (g, t)) ∈ S × S : f (s) = g(t), s < t}
and the sets Rop and Rcl, and their corresponding hitting times τop, τcl. For 0 ≤ η ≤ δ, we
define in addition the stopping times

τ
η,δ
cl = inf{t ≥ δ : (t, Bηt ) ∈ Rcl},
τ
η,δ
op = inf{t ≥ δ : (t, Bηt ) ∈ Rop},

where Bηt = Bt−η, for t ≥ η.
It follows from an identical argument to that in the proof of Theorem 2.3 that τ0,δ

cl ≤ τ̂ ≤
τ0,δ
op on {τ̂ ≥ δ}. However, by similar arguments to those used above, we deduce that τ0,δ

op

and τ0,δ
cl have the same law on {τ̂ ≥ δ}, and hence that τ̂ = τ0,δ

op on this set, and then by
taking δ→ 0, we get τ̂ = τop on {τ̂ > 0}.

To see the final claim, we note that trivially P(τ̂ = 0, B0 ∈ A) ≤ (λ ∧ µ)(A). If there is
strict inequality, then there exist some paths which start at x ∈ A, and paths which stop at x
at strictly positive time, constituting a stop-go pair and therefore violating the monotonicity
principle. �

Remark 7.17. We observe that the arguments of Remark 2.2 can be applied again in this
context. However, one needs to be a little more careful, since it is necessary to take the
fine closure of the barriers with respect to the fine topology for the processes (t, Bt). With
this modification in place, the argument of Loynes can be easily adapted to show that the
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(finely closed versions) of the barriers in Theorems 7.15 and 7.16 are unique in the sense
of Remark 2.2.

8. Embedding Feller processes

In this section we discuss which changes are needed to establish the duality result,
Theorem 5.2, as well as the monotonicity principle, Theorem 6.5, for continuous Feller
processes. In fact, most of our arguments are abstract and do not use any specific structure
of the Wiener measure. The relation between the spaces S and X = C(R+) × R+ as well
as the approximation of stopping times rely on abstract theory of stochastic processes and
topological properties of S and X. The proof of Theorem 6.5 uses duality theory of opti-
mal transport and Choquet’s theorem. Proposition 4.11 together with Lemma 4.8 is very
valuable to identify certain hitting times as stopping times. To prove the duality statement
we use again duality theory of optimal transport and — crucially — the compactness of
RST(µ)/PRST(µ).

This last point, the compactness of RST(µ) and the characterization of minimal stopping
times in terms of the expection Eξ[T ] = V < ∞ is in fact the only point where we use
specific properties of Brownian motion (apart from Section 7).

So we assume now that we are given a continuous Feller process Z = (Zt)t≥0. As usual
we assume Z to be the canonical process on the space of continuous functions. We write
(Px)x∈R for the law of the Feller process started in x and P for the law of the process started
with law λ.

We define the set RST (PRST, resp.) as before with P replacing W. Let µ ∈ P(R).
We say that ξ ∈ RST is a minimal embedding of µ if the corresponding stopping time ρ
(cf. (4.4)) on the enlarged probability space (Ω̄, P̄) constitutes a minimal embedding, i.e. ρ
embeds µ in Z and for any ρ′ with ρ′ ≤ ρ and also embedding µ it holds that ρ′ = ρ.

Definition 8.1. For µ ∈ P(R) we define RST(µ) to be the set of all minimal randomized
stopping times embedding the measure µ.

As above we will also consider the set PRST(µ).

Assumption 8.2. From now on we assume that RST(µ) is non-empty, compact, and either:
(1) That there exists an increasing, F 0-optional process ζ : X → R with ζs → ∞
P-a.s. as s→ ∞ such that the following hold true:
• For a finite ξ ∈ RST with Zξ ∼ µ we have Eξ[ζt] < ∞ if and only if ξ is

minimal.
• There is a corresponding S - continuous martingale Xt = h(Zt) − ζt such that

Xt∧ξ is uniformly integrable for all ξ ∈ RST(µ).
or

(2) That ξ ∈ RST and Bξ ∼ µ implies ξ is minimal (i.e. all embeddings are minimal).

Below we will verify that this assumption is satisfied in a number of natural exam-
ples. Note that compactness of RST(µ) is equivalent to the existence of an increasing and
diverging function G : R+ → R such that

sup
ξ∈RST(µ)

Eξ[G(T )] =: VG < ∞.

We first show that (1) of Assumption 8.2 is also relevant in the usual Brownian setup,
where it allows us to dispose of the second moment condition.

Proposition 8.3. Let Z be Brownian motion and assume that λ and µ have first moments
and are in convex order. Then Assumption 8.2 (1) holds.

Proof. By the de la Vallée-Poussin theorem (see e.g. [15, Thm. II 22]) there exists a pos-
itive, smooth and symmetric function F : R → R+ with strictly positive, bounded second
derivative and limx→∞ F(x)/x = ∞ such that V :=

∫
F(x) µ(dx) < ∞. We set

ζt(ω) = 1/2
∫ t

0 F′′(ωs) ds
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and note that by Ito’s formula and our conditions on F,

Xt = F(Zt) − 1/2
∫ t

0 F′′(Zs) ds = F(Zt) − ζt

is an S - continuous martingale.
Note also that in the present Brownian case, it is known that the minimality of a finite

stopping time ξ is equivalent to (Zt∧ξ)t≥0 being a uniformly integrable martingale. This
follows (in the case of a general starting law) from Lemma 12 and Theorem 17 of [10].

Assume now that Zξ ∼ µ and that (Zt∧ξ)t≥0 is uniformly integrable. Then for each t, Zt∧ξ
is bounded by µ in the convex order and in particular Eξ∧t[F(Zs)] ≤ V . We obtain

Eξζs = lim
t→∞Et∧ξ[ζs] = lim

t→∞Et∧ξ[F(Zs)] − E[F(Z0)] ≤ V − E[F(Z0)] < ∞.
Next assume that Eξ[ζs] < ∞. Then supt≥0 Et∧ξ[F(Zs)] < ∞, hence (Zt∧ξ)t≥0 is uniformly
integrable.

To see that limt→∞ ζt = ∞, note that P
( ∫ ∞

0 1[−1,1](Zt) dt = ∞
)

= 1 and that F′′ is
bounded away from 0 on [−1, 1].

Finally it remains to show that X is uniformly integrable. To see this we apply again
the de la Vallée-Poussin theorem to obtain an increasing, super-linear, convex function
g : R+ → R+ such that

∫
g ◦ F dµ < ∞. Since g ◦ F is convex we find that supt Et∧ξ[g ◦

F(Zs)] < ∞. Thus (F(Zξ∧t))t≥0 is uniformly integrable and this carries over to X. �

Definition 8.4. Let X : C(R+)→ R be a measurable function which is bounded or positive.
Then we define E[X|F 0

t ] to be the unique F 0
t -measurable function satisfying

E
[
X|F 0

t
]
(ω) =

∫
X((ω�[0,t]) ⊗ ω′) dPω(t)(ω′).

Then the natural analogue of Proposition 4.11 holds by the Feller property of X:

Proposition 8.5. Let X ∈ Cb(C(R+)). Then Xt(ω) := E[X|F 0
t ](ω) defines an S - continuous

martingale. We denote this martingale by XM .

Proof. By the Feller property, we have for any continuous and bounded function X and
any sequence xn → x that also

∫
X dPxn →

∫
X dPx. Together with the argument used in

the derivation of Proposition 4.11 this yields the desired result. �

This allows us to prove the following duality result which we state in the case λ = δ0
for ease of exposition. The case of a general starting law follows as in Section 5.6.

Theorem 8.6. Let γ : S → R be S - lower semi-continuous and bounded from be-
low.Suppose that Assumption 8.2 holds. Put

Pγ(P, µ) := inf
ξ∈PRST(µ)

∫
γ dξ = inf

ξ∈RST(µ)

∫
γ dξ.

Let DC(γ) be the set of all pairs (ψ, ϕ) such that γ(ω, t) ≥ ϕ(ω, t) + ψ(ω(t)), where ψ ∈
C(R) and ϕ is a P-semimartingale with decomposition ϕ = Mϕ + Aϕ where Mϕ is an
S - continuous and bounded P-martingale starting at zero and Aϕ is a decreasing process
satisfying infξ∈RST(µ)

∫
Aϕ dξ ≥ 0. Put

Dγ(P, µ) := sup
(ψ,ϕ)∈DC(γ)

∫
ψ dµ.

Then, it holds that Pγ(P, µ) = Dγ(P, µ). Moreover, in case (1) of Assumption 8.2, the pro-
cess Aϕ may be assumed to be zero at the expense of assuming that Mϕ

t∧ξ is only uniformly
integrable for all ξ ∈ RST(µ).

Proof. Consider first case (2) of Assumption 8.2. Let G(t) be an increasing, diverging
function such that supξ∈PRST(µ) Eξ[G(T )] =: VG < ∞, and note that the set

TMV (P, µ) := {π ∈ P(C(R+) × R+ × R) : projC(R+)(π) = P, projR(π) = µ,Eπ[G(T )] ≤ VG}
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is compact. This allows us to establish the non-adapted duality result. Putting, with c as in
(5.6),

DCV (c) :=
{

(ψ, ϕ) :
ϕ is an S - continuous bounded P-martingale, ψ ∈ Cb(R), ∃α ≥ 0,
ϕt(ω) + ψ(y) − α(G(t) − VG) ≤ c(ω, t, y), for ω ∈ Ω, y ∈ R, t ∈ R+

}
we can derive the corresponding version of Proposition 5.8. Finally, we have to note that
−α(G(t) − VG) is a decreasing process as claimed to deduce that

DV
c (P, µ) ≤ Dγ(P, µ)

proving the claim.
To show case (1) of Assumption 8.2, we argue along the lines above, noting that we can

replace the condition Eπ[G(T )] ≤ VG by E[ζπ] ≤ V , so

TMV (P, µ) := {π ∈ P(C(R+) × R+ × R) : projC(R+)(π) = P, projR(π) = µ,E[ζπ] ≤ V}.
Observe that this set is compact: Suppose ε > 0. Since ζt → ∞, P-a.s., we deduce
the existence of a K > 0 such that P(ζK < 2V/ε) < ε/2. Hence E[ζπ] ≤ V implies
π(T ≥ K) < ε, and TMV (P, µ) is indeed compact.

Finally, observe that we can use the S - continuous martingale h(ω(t)) − ζt to replace
ω(t)2 − t in (5.9) to deduce that

DV
c (P, µ) ≤ Dγ(P, µ). �

Apart from the abstract theory the ingredients to prove Theorem 6.5 are Proposition 6.6
and Proposition 6.7. The latter builds on Proposition 4.11 to identify certain hitting times
as F +-stopping times. We just proved the analogue of Proposition 4.11 (Proposition 8.5)
and in fact Propositions 6.6, 6.7 carry over to the present setup. We thus obtain:

Theorem 8.7. Assume that γ : S → R is Borel-measurable, the optimization problem
(5.1) is well-posed and that ν ∈ RST(µ) is an optimizer. Then there exists a γ- monotone
Borel set Γ ⊆ S which supports ν in the sense that r(ν)(Γ) = 1.

8.1. Examples: One-dimensional Diffusions. Let Zt be a regular (time-homogenous)
one-dimensional diffusion on an interval I ⊆ R, with inaccessible or absorbing endpoints
(see [45] for the relevant definitions and terminology) and Z0 ∼ λ, some λ ∈ P(I). In
particular, Zt is a Feller process ([45, Proposition V.50.1]). Then (on a possibly enlarged
probability space) there exists a scale function s(x) and a continuous, strictly increasing
time change At such that Bt = s(ZAt ) is a Brownian motion up to the exit of s(I◦). Recalling
the discussion in [11, Section 5], with the obvious extension of our notation, it is clear that
there exists a stopping time ξ ∈ RST(µ; Z) if and only if there exists a stopping time
ξ′ ∈ RST(s(µ); B) such that ξ′(~0, τs(I)�) = 1, where τs(I) = inf{t ≥ 0 : Bt < s(I◦)}. Write
A−1

t to be the inverse of At, so A−1
At

= t. We now consider three cases:
• Suppose s(I◦) = (a, b) for a, b ∈ R. Then it follows from [10, Theorems 17 and

22] that RST(µ; Z) is non-empty if and only if s(λ) precedes s(µ) in convex order,
and in fact, any ξ ∈ RST(Z) with Zξ ∼ µ is minimal (so ξ ∈ RST(µ,Z)).

• Suppose s(I◦) = (a,∞) for a ∈ R, and s(λ), s(µ) are integrable measures. Write
mλ =

∫
s(y) λ(dy), and mµ =

∫
s(y) µ(dy). Then it follows from Theorems 17 and

22 and the discussion at the top of p. 245 of [10] that RST(µ; Z) is non-empty if
and only if −

∫
|s(y) − x| µ(dy) ≤ −

∫
|s(y) − x| λ(dy) + (mλ − mµ) for all x ≥ a,

or equivalently, that
∫

(s(y) − x)+ µ(dy) ≤
∫

(s(y) − x)+ λ(dy) for all x ≥ a. Again,
any ξ ∈ RST(Z) with Zξ ∼ µ is minimal. By symmetry, similar results for the case
where s(I◦) = (−∞, b) for b ∈ R can be given.

• Suppose s(I◦) = (−∞,∞), and
∫

(s(y))2 λ(dy),
∫

(s(y))2 µ(dy) < ∞. Then we are
in the classical case, and a stopping time ξ ∈ RST(Z) is minimal if and only
if Zξ ∼ µ, and E[A−1

ξ ] < ∞. In particular, compactness of RST(µ; Z) follows
directly from compactness of RST(s(µ); B). Further, if the scale function s is
suitably differentiable, one can show that Xt = s(Zt)2 − A−1

t is an S - continuous
martingale, and under the condition that

∫
(s(y))2 λ(dy),

∫
(s(y))2 µ(dy) < ∞, we
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deduce that Xt∧ξ is uniformly integrable for all ξ ∈ RST(µ; Z). In particular, (1) of
Assumption 8.2 is satisfied.

More generally, when only the integrals
∫

s(y) λ(dy) and/or
∫

s(y) µ(dy) are
finite, we are in the situation of Proposition 8.3 and Assumption 8.2 (1) is satisfied.

Remark 8.8. Observe that none of the constructions described in Section 7.2 rely on fine
properties of Brownian motion — the main properties used are the continuity of paths, the
Strong Markov property, and the regularity and diffusive nature of paths (that the process
started at x immediately returns to x, and immediately enters the sets (x,∞) and (−∞, x).
It follows that all the given constructions extend to the case of regular one-dimensional
diffusions described above.

8.1.1. Brownian motion with drift. Let Zt = Bt + at for some a < 0 with Z0 ∼ λ, and
I = (−∞,∞). Then a possible choice of the scale function is s(x) = exp(−2ax), and
s(I◦) = (0,∞). Let λ, µ ∈ P(R) be such that s(λ), s(µ) are integrable, and suppose∫

(exp(−2ay) − x)+ µ(dy) ≤
∫

(exp(−2ay) − x)+ λ(dy),

for all x ≥ 0. By the arguments above, there exists an embedding and all stopping times
embedding µ are minimal. Then the set RST(µ; Z) is compact as can be seen by the fol-
lowing estimate inserted in the proof of Theorem 4.28. Fix ε > 0 and take K > 0 such that
µ((−∞,−K)) ≤ ε/4. Then there is R > 0 such that

Pλ(∃ R′ ≥ R : ZR′ ≥ −K) ≤ ε/4.
Then ξ ∈ RST(µ) implies that ξ(T > R) ≤ ε/2.
8.1.2. Geometric Brownian motion. Let Z be a geometric Brownian motion and µ be con-
centrated on the positive reals (0,∞). Then the compactness of RST(µ; Z) follows from
the compactness in the case of Brownian motion with drift as exp : R → (0,∞) is a
homeomorphism. Similarly, conditions for the existence and minimality of ξ ∈ RST(µ; Z)
follow directly from the case of Brownian motion with drift, or more generally, from the
observation that Z is a regular diffusion.

8.1.3. Three-dimensional Bessel process. Let Z = ‖B‖ for a three-dimensional Brownian
motion (Bt)t≥0 (or d-dimensional with d ≥ 3) with Z0 ∼ λ. Let µ ∈ P((0,∞)) be such that
there exists at least one embedding. Then any embedding is minimal and RST(µ; Z) is
compact. This can be seen by similar argument to the case of Brownian motion with drift,
since Bt is transient in dimension three and higher. Indeed, fix ε > 0 and take K > 0 such
that µ((K,∞)) ≤ ε/4. By the transience of Bt there is R > 0 such that

P(∃ R′ ≥ R : ZR′ ≤ K) ≤ ε/4,
which implies that ξ(T > R) ≤ ε/2 implying the compactness of RST(µ; Z) by a straight-
forward modification of Theorem 4.28.

8.1.4. Ornstein-Uhlenbeck processes. Let Z be an Ornstein-Uhlenbeck process, given for
example as the solution to the SDE dZt = −Zt dt + dWt. Then Zt is a regular diffusion
on I = (−∞,∞) with scale function given (up to constants) by s′(x) = exp(x2). Then
s(I◦) = (−∞,∞). Suppose λ, µ are measures on R with s(λ), s(µ) square integrable, and
in convex order. Then RST(µ; Z) is compact and ξ ∈ RST(µ; Z) if and only if Zξ ∼ µ and
E[A−1

ξ ] < ∞.

8.1.5. The Hoeffding-Frechet coupling as a very particular Root solution. Let Z be the
deterministic process given by dZt = dt started in Z0 ∼ λ. Z is not a regular diffusion,
however Assumption 8.2 (2) is easily checked. Let µ be another probability and assume
for simplicity that max supp λ ≤ min supp µ. Then the Root solution minimizes E[τ2].
But note also that since τ = Zτ − Z0, this minimization problem corresponds precisely to
finding the joint distribution (Z0,Zτ) which minimizes E[(Zτ−Z0)2]: the classical transport
problem in the most simple setup. Specifically, the Root solution for the particular case of
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the process Z corresponds precisely to the monotone (Hoeffding-Frechet) coupling. In the
same fashion the Rost solution corresponds to the co-monotone coupling between λ and µ.
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[6] M. Beiglböck, M. Goldstern, G. Maresch, and W. Schachermayer. Optimal and better transport plans. J.
Funct. Anal., 256(6):1907–1927, 2009.
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