Peter W. Michor¹⁾

1. Let X and Y be compact smooth manifolds; let Q(X,Y) denote the space of all smooth surjective submersions from X to Y; let Diff(X) denote the C_c^{∞} -Lie group of diffeomorphisms. Then Q(X,Y) is open in $C^{\infty}(X,Y)$ (see Michor [2], 5.6), so all spaces are tame smooth spaces in the sense of Hamilton [1]. We have a canonical tame smooth right action R: $Q(X,Y) \times \text{Diff}(X) \rightarrow Q(X,Y)$, $R(q,f) = q \circ f$.

<u>Theorem:</u> Each Diff(X)-<u>orbit in</u> Q(X,Y) is open.

2. Let (E,p,X,F) and (E',p',X,F') be compact smooth fibre bundles over the base X with typical fibres F, F' respectively, and with general structure groups Diff(F), Diff(F'). Let $\mathbb{C}^{\infty}\{E,E'\} = \bigcup_{X \in X} \mathbb{C}^{\infty}(E_{X},E_{X}')$ be the fibre bundle over X with typical fibre $\mathbb{C}^{\infty}(F,F')$ and transition functions $\mathbb{C}^{\infty}(q_{\alpha\beta}^{-1},q_{\alpha\beta}')$, where $(q_{\alpha\beta})$ and $(q_{\alpha\beta}')$ are transition functions for E and E' with respect to a common trivialisation. Likewise we consider the bundles $Emb\{E,E'\}$ and Diff $\{E\}$ over X with typical fibres Emb(F,F') and Diff(F) respectively. It is easy to see that for the spaces of smooth sections of these bundles we have $\Gamma(\mathbb{C}^{\infty}\{E,E'\}) = \{f \in \mathbb{C}^{\infty}(E,E'): p' \circ f = p\}$, $\Gamma(Emb\{E,E'\}) = \{e \in Emb(E,E'): p' \circ e = p\}$, $\Gamma(Diff\{E\}) = \{g \in Diff(E): p \circ g = p\}$. (By Emb(X,Y) we mean the space of all embeddings of X into Y.) So the spaces of sections are tame smooth submanifolds of $\mathbb{C}^{\infty}(E,E')$, Emb(E,E') and Diff(E), respectively, and $\Gamma(Diff\{E\})$ is a tame smooth Fréchet Lie group. A first result in this setting is:

<u>Theorem</u>: Any orbit of the left action L: $\Gamma(Diff\{E\}) \times \Gamma(E) \rightarrow \Gamma(E)$ is open.

Proof: For a section $s \in \Gamma(E)$ consider the mapping $L^{S}: \Gamma(\text{Diff}\{E\}) \rightarrow \Gamma(E)$, $L^{S}(g) = g.s.$ We have $T_{g}(\text{Diff}\{E\}) = T_{g}\{h \in \text{Diff}(E): poh = p\} = \{s \in \Gamma(g^*TE): Tp.s = O_{\chi}\} = \Gamma(g^*VE)$, where $VE \rightarrow E$ is the vertical subbundle of $TE \rightarrow E$. Likewise we have $T_{g}\Gamma(E) = \Gamma(s^*VE)$ (see Michor [2],10.9 ff). $T_{Id}(L^{S}): T_{Id}\Gamma(\text{Diff}\{E\}) = \Gamma(VE) \rightarrow T_{g}\Gamma(E) = \Gamma(s^*VE)$ is given by $T_{Id}(L^{S}).\sigma = \sigma \circ s = s^*(\sigma)$. Note that $s^*VE = VE|s(X)$, and any section of VE|s(X) can easily be extended to the whole of E by a partition of unity operation. This gives a tame linear right inverse. By Hamilton's theorem (loc.cit.) L^{S} is locally open. ged.

¹⁾ Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien.

With the notation of section 2 consider the following diagram:

 $\Gamma(\operatorname{Emb}\{E,E'\}) = \{f \in \operatorname{Emb}(E,E'): p' \circ f = p\} \xrightarrow{i} \operatorname{Emb}(E,E') \qquad \qquad \downarrow u \\ \Gamma(\operatorname{Emb}\{E,E'\})/\Gamma(\operatorname{Diff}\{E\}) \xrightarrow{} \cdots \xrightarrow{} \widetilde{I} \xrightarrow{} \operatorname{Emb}(E,E')/\operatorname{Diff}(E) = U(E,E')$

Let us explain the diagram first: (Emb(E,E'), u, Emb(E,E')/Diff(E) = U(E,E')) is a tame smooth principal bundle with structure group Diff(E) (see Michor, §13). π is the projection onto the orbit space with quotient topology. i is the embedding as a tame smooth splitting submanifold mentioned in section 2. It is clear that u o i factors over π to a mapping \tilde{i} . Obviously the diagram above is a pushout in the category of sets and \tilde{i} is injective.

<u>Theorem:</u> <u>is open</u>.

 $\begin{array}{l} \underline{Proof}: \mbox{ Consider } f \in \mbox{Emb}(E,E') \mbox{ with } p' \circ f = p. \mbox{ Let } g \in \mbox{Emb}(E,E') \mbox{ be near } f. \mbox{ Then } p' \circ g \mbox{ is } near \mbox{ p' } \circ f = p \mbox{ is in the open subset } Q(E,X), \mbox{ so } p' \circ g \mbox{ is } a \mbox{ surjective } submersion \mbox{ near } p' \circ f = p \mbox{ in } Q(E,X). \mbox{ By Theorem 1 there is a diffeomorphism } h \circ \mbox{Diff}(E) \mbox{ near } Id_E \mbox{ such that } p' \circ g \circ h = p' \circ f = p, \mbox{ so } g \circ h \in \Gamma(\mbox{ Emb}\{E,E'\}). \mbox{ Since } u \mbox{ is } open, \mbox{ we can conclude that } i \mbox{ is open.} \end{array}$

<u>Corollary</u> (<u>G. Kainz</u>): ($\Gamma(\text{Emb}\{\text{E},\text{E'}\}), \pi$, $\Gamma(\text{Emb}\{\text{E},\text{E'}\})/\Gamma(\text{Diff}\{\text{E}\}))$ is a tame smooth principal bundle with structure group $\Gamma(\text{Diff}\{\text{E}\})$.

This has been proved by G. Kainz before directly along the lines of Binz-Fischer as used in Michor [2] §13.

3. Let X be a compact manifold, let $\mathfrak{M}(X)$ be the space of positive smooth measures (densities) on X with total mass one. $\mathfrak{M}(X)$ is an open convex set in a linear subspace of codimension one in a tame Fréchet space. The following result has been proved by Hamilton ([1], III, 2.5.3, p. 203):

<u>Theorem</u>: Diff(X) acts transitively on $\mathfrak{M}(X)$. For each $\mu \in \mathfrak{M}(X)$ the subgroup Diff_µ(X) of μ -preserving diffeomorphisms is a closed smooth tame Lie subgroup, and Diff(X) is a smooth tame principal bundle over $\mathfrak{M}(X)$ with fibre Diff_µ(X) under the projection Pf = f_{*} μ . So Diff(X)/Diff_µ(X) = $\mathfrak{M}(X)$.

4. With the notation of section 3 we have:

Theorem: There is a smooth tame diffeomorphism $Diff(X) = Diff_{11}(X) \times \mathfrak{M}(X)$ for each μ .

It seems that one can get a rather elementary direct proof of this theorem by adapting the proof of J. Moser [4]. He gives a global section of the bundle $Diff(X) \rightarrow \mathfrak{M}(X)$, which probably can be arranged to be smooth and tame.

We need several steps for the proof.

5. $\mathfrak{M}(X)$ is open and convex in the affine space of all smooth measures with total mass one, which is modelled on a nuclear Fréchet space. So by Michor[2], 8.6, $\mathfrak{M}(X)$ admits smooth partitions of unity subordinated to any open cover. So we may construct a principal connection on the principal bundle (Diff(X), P, $\mathfrak{M}(X)$, Diff_µ(X)). Since the structure group acts smoothly on X we may consider the associated bundle over $\mathfrak{M}(X)$ with typical fibre X and we may induce the principal connection onto the associated bundle E := Diff(X) × Diff₁₁(X)^X (see Michor [3], §5). 6. Lemma: Any connection on the associated bundle E → M(X) admits a unique global parallel transport: Pt^E(c,t): E_{c(0)} → E_{c(t)} for each smooth curve c in M(X) is given by the condition, that (d/dt)(Pt(c,t)y) is horizontal. Pt is smooth in all appearing variables and we have Pt(c,0) = Id, Pt(c,f(t)) = Pt(c₀ f,t)₀ Pt(c,f(0)) for each smooth f: R + R.

<u>Sketch of proof</u>: In a local trivialisation the differential equation for the parallel transport looks like the "flow"-equation for a time dependent vector field on the typical fibre X, the vector field being the value of the so called "Christoffel form" $\Gamma^{\alpha} \in \Omega^{1}(U_{\alpha}, \chi(X))$ along the curve c (see Michor [3]). Since X is compact, there is a global solution in each local chart, and these solutions fit together by uniqueness.

7. Let Q: Diff(X) × X → E := Diff(X) × Diff_µ(X) X be the quotient mapping, then for any f in Diff(X) the map Q(f,.): X → E $_{f_{*}\mu}$ is a diffeomorphism - this can be seen as in the finite dimensional case. Now we consider the smooth positive measure Q(f,.)_{*}µ on $E_{f_{*}\mu}$. By the definition of the action of Diff_µ(X) on Diff(X) × X this measure does in fact depend only on $f_{*}\mu$ and not on the choice of f. So for each $v \in \mathcal{M}(X)$ we have a unique measure M_v on E_v , positive and of mass one. In a trivialisation induced from the trivialisation of the principal bundle M_v is just the const measure μ on each fibre X, so $v \to M_v$ is smooth, a kind of measure field on the bundle E.

Lemma: A connection on E is induced from a principal connection on $\text{Diff}(X) \rightarrow \mathfrak{M}(X)$ if and only if its parallel transport respects the smooth measure field M, that is $Pt(c,t)_*M_{c(0)} = M_{c(t)}$ for all c and t.

The proof is looking at local expressions and using the criterion for lifting of connections from associated bundles to principal bundles (Michor [3], 5.4, 5.5).

8. For f c Diff(X) consider the mapping A(f_*\mu): X \to E_{f_*\mu}, given by A(f_*\mu) = = Q(f,.) o f⁻¹. It is easily seen that this mapping depends only on f_*, not on the choice of f. In fact, A defines a global section of the principal Diff_µ(X)-bundle Diff{ $\mathfrak{M}(X) \times X$, E} over $\mathfrak{M}(X)$, in the notation of section 2. The latter bundle can be viewed as a sort of "frame bundle" for E.

Now consider a principal connection on Diff(X) + $\mathcal{M}(X)$, its induced connection on E and the global parallel transport Pt^{E} on E for the induced connection. For a smooth curve c: $R \rightarrow \mathcal{M}(X)$ consider $Pt^{P}(c,t) := A(c(t))^{-1} \circ Pt^{E}(c,t) \circ A(c(0))$ in Diff(X). Then $Pt^{P}(c,t)_{*}$ defines a global parallel transport on the principal bundle (Diff(X), P, $\mathcal{M}(X)$, Diff_µ(X)), which is Diff_µ(X) - equivariant and satisfies the transport equation for the given principal connection. This can be seen by looking at the local trialisations. Furthermore Pt^{P} is uniquely given by these requirements, since a parallel transport can easily be pushed down onto the associated bundle E, and there it is unique.

9. Now it is easy to prove theorem 5: we use parallel transport along convex lines connecting each measure in $\mathfrak{M}(X)$ with μ to get a smooth tame global trivialisation of Diff $(X) \rightarrow \mathfrak{M}(X)$.

References:

[1] Hamilton, R.S., The inverse function theorem of Nash and Moser, Bull. (New series) Amer. Math. Soc. 7 (1982), 65-222.

[2] Michor, P.W., Manifolds of differentiable mappings, Shiva Mathematics Series 3, Shiva Publishing, Orpington, Kent, 1980.

[3] Michor, P.W., Connections, curvature and G-structures on fibre bundles. Preprint.

[4] Moser, J., On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965), 286-294.