Proceedings of the conference on categorial topology, Manubern 1975, Springer ceture Notes 540 (1970), 435-438

A note on the inverse mapping theorem of F. Berquier

P. Michor

We show that the notion of strict differentiability of $\lfloor 1 \rfloor$, § IV is rather restrictive. In fact, we give a complete characterization of strictly differentiable mappings and use it to give a short proof of the main theorem of [1]. Notation is from [1], we only remark, that X is a finite dimensional C^O manifold and C(R,X) is the space of continuous realvalued functions on X with the Whitney C^O topology.

<u>Theorem 1</u>: Let ${}^{\Phi}$: $C(R,X) \rightarrow C(R,X)$ be strictly differentiable at ${}^{\Phi}_{O} \in C(R,X)$. Then there exists an open neighbourhood V_{O} of ${}^{\Phi}_{O}$ in C(R,X) and a continuous function f: $\Omega \rightarrow R$, where Ω is a suitable open neighbourhood of the graph of ${}^{\Phi}_{O}$ in X×R such that ${}^{\Phi}(\Phi)(x) = f(x,\Phi(x)), x \in X$ for all $\Phi \in V_{O}$ and furthermore the map f(x,.) is differentiable at $\Phi(x)$ for all $x \in X$ and $(D^{\Phi}(\Phi_{O})h)(x) = df(x,.)(\Phi_{O}(x)).h(x), x \in X$ for all $h \in C(R,X)$. If ${}^{\Phi}$ is furthermore differentiable in V_{O} (cf. [1], § III) then f(x,.) is differentiable in $\Omega \cap {x} \times R$ and df(x,.) is continuous on each point of $\Phi_{O}(X)$.

<u>Remark</u>: The theorem says, that each strictly differentiable mapping $\Phi: C(R,X) \rightarrow C(R,X)$ looks locally like pushing forward sections of the trivial vector bundle X×R by a suitably differentiable fibre bundle homomorphism. Of course each such map is strictly differentiable, so we have obtained a complete characterization.

<u>Proof</u>: First we remark that the topology on C(R,X) can be described in the followig way: C(R,X) is a topological ring and sets of the form $V_e = \{ g \in C(R,X) : |g(x)| \le s(x) , x \in X \}$ are a base of open neighbourhoods of O , where $\varepsilon \colon X \to R$ is strictly positive and continuous.

Now by definition IV-1 of [1] we may write in a neighbourhood of φ_0 $\Phi(g+h) - \Phi(g) = D\Phi(\phi_0)h + R(g,h)$ where R satisfies the following condition: For each V_{ϵ} there are V_{δ} , V_{λ} such that $R(g,hk) \in h.V_{\epsilon}$ for all $g \in \varphi_0 + V_{\delta}$, $h \in V_{\lambda}$ and $k \in C(R,X)$ with $|k(x)| \leq 1, x \in X$. Let $V_{\epsilon} = V_{1}$, k = 1, then there are V_{δ} , V_{λ} such that $R(g,h) \in hV_{1}$ for all $g \in \varphi_0 + V_\delta$, $h \in V_\lambda$. Let $V_0 = \varphi_0 + (V_\delta \cap V_{\lambda/2})$. We claim that if φ_1 , $\varphi_2 \in V_0$ and $x \in X$ such that $\varphi_1(x) = \varphi_2(x)$ then $\Phi(\varphi_1)(\mathbf{x}) = \Phi(\varphi_2)(\mathbf{x})$. This follows from the equation $\Phi(\phi_1) - \Phi(\phi_2) = D\Phi(\phi_0)(\phi_1 - \phi_2) + R(\phi_2, \phi_1 - \phi_2) , \text{ since}$ $[D\Phi(\phi_{0})(\phi_{1} - \phi_{2})](x) = (\phi_{1} - \phi_{2})(x) \cdot [D\Phi(\phi_{0})(1)](x) = 0 \text{ and}$ $R(\phi_2,\phi_1 - \phi_2) \in (\phi_1 - \phi_2).V_1$, so $R(\phi_2,\phi_1 - \phi_2)(x) = 0$. If $\varphi \in C(R,X)$ denote the graph of φ by $X_{\varphi} = \{ (x,\varphi(x)) : x \in X \}.$ Let $\Omega = \bigcup \{ X_{\varphi} : \varphi \in V_{\varphi} \}$. By the form of V_{φ} it is clear that Ω is an open neighbourhood of $X_{\varphi_{o}}$. For $\varphi \in V_{o}$ define $f_{\varphi} \colon X_{\varphi} \to R$ by $f'_{\mathfrak{m}}(x, \varphi(x)) = \Phi(\varphi)(x)$. By the claim above we see that we have $f_{\phi} \mid X_{\phi} \cap X_{\Psi} = f_{\Psi} \mid X_{\phi} \cap X_{\Psi}$ if ϕ and Ψ are in V_{ϕ} , so we have got a mapping f: $\Omega \to R$, and $\Phi(\varphi)(x) = f(x,\varphi(x))$ for all $\varphi \in V_{\Omega}$ and $x \in X$. We show that f is continuous. If $(x_n, t_n) \rightarrow (x, t)$ in $\Omega \subseteq X \times \mathbb{R}$ we may choose a sequence $\varphi_n \rightarrow \varphi$ in C(R,X) such that $(x_n,\varphi_n(x_n)) = (x_n,t_n)$, $\varphi(x) = t$ (remembering that a sequence converges in the Whitney C^O topology iff it coincides with its limit off a compact set K of X after a while and converges uniformly on K). But then $\Phi(\varphi_n) \rightarrow \Phi(\varphi)$ uniformly, and $x_n \rightarrow x$, so $\Phi(\phi_n)(x_n) = f(x_n, t_n) \rightarrow \Phi(\phi)(x) = f(x, t)$. Now we show that f is differentiable at each point of X_{m} if Φ is differentiable at φ (strict differentiability implies differentiability, see [1]). We have $\Phi(\varphi + h) - \Phi(\varphi) = D\Phi(\varphi)h + r_{\varphi}(h)$, where r_{φ} is a "small" mapping ([1], § III), i.e. for each V_{ϵ} there is V_{δ} such

that $r_{\phi}(h) \in h.V_{\varepsilon}$ for all $h \in V_{\delta}$. Evaluating this equation at x we get $f(x,\phi(x) + h(x)) - f(x,\phi(x)) = [D\Phi(\phi)(1)](x).h(x) + r_{\phi}(h)(x)$. It is clear that the map $h(x) \rightarrow r_{\phi}(h)(x)$ is o(h(x)) by the "smallness" of r_{ϕ} , so f(x,.) is differentiable at $\phi(x)$ and $[D\Phi(\phi)h](x) = df(x,.)(\phi(x)).h(x)$.

It remains to show that df(x,.) is continuous at each point of X_{φ} . This follows easily from Proposition IV-2 of [1] with the method we just applied to show that f is continuous. qed.

<u>Theorem 2</u>: Let $\Phi: C(R,X) \to C(R,X)$ be differentiable in a neighbourhood of $\Phi_0 \in C(R,X)$ and strictly differentiable at Φ_0 and suppose that $D\Phi(\Phi_0)$ is surjective. Then there exists a neighbourhood V_0 of Φ_0 and a neighbourhood W_0 of $\Phi(\Phi_0)$ in C(R,X) such that $\Phi: V_0 \to W_0$ is a homeomorphism onto. Furthermore the map $\Phi^{-1}: W_0 \to V_0$ is differentiable on W_0 , strictly differentiable at $\Phi(\Phi_0)$ and for each $\Phi \in V_0$ we have $D(\Phi^{-1})(\Phi(\Phi)) = (D\Phi(\Phi))^{-1}$.

<u>Proof</u>: By theorem 1 we have that $\Phi(\varphi)(x) = f(x,\varphi(x))$ and $D\Phi(\varphi)(1)(x) = df(x,.)(\varphi(x))$. Since $D\Phi(\varphi_0)$ is surjective we conclude that $df(x,.)(\varphi_0(x)) \neq 0$ for all $x \in X$, and since df(x,.) is continuous at $\varphi_0(x)$ it is $\neq 0$ on a neighbourhood of $\varphi_0(x)$ in R. Writing $f_x = f(x,.)$ we see that f_x^{-1} exists and is differentiable on some neighbourhood of $\Phi(\varphi_0)(x)$ in R by the ordinary inverse function theorem. So the map $(x,t) \rightarrow (x,f(x,t))$ is locally invetible at each point of the graph X_{φ_0} of φ_0 ; one may construct a neighbourhood Ω of X_{φ_0} in X×R such that this map is invertible there (considering neighbourhoods $U_x \times V_{\varphi_0}(x)$ of $(x,\varphi_0(x))$ where Id × f is invertible and taking $\Omega = \bigcup_X U_x \times V_{\varphi_0}(x)$). Then $\Phi^{-1}(\Psi)(x) = f_x^{-1}(\Psi(x))$; all other claims of the theorem are easily checked up. qed. <u>Remark</u>: Theorem 2 is a little more general than the result in[[1]. The method of proof is adapted from [2], 4.1 and 4.2 where we treated an anlogous smooth result.

References

 F. BERQUIER: Un theoreme d'inversion locale, to appear in the Proceedings of the Conference on Categorical Topology, Mannheim 1975.

[2] P.MICHOR: Manifolds of smooth maps, to appear.

P. Michor Mathematisches Institut der Universität Strudlhofgasse 4 A-1090 Wien, Austria.