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Some words on smooth convenient calculus

Traditional differential calculus works well for finite dimensional
vector spaces and for Banach spaces.
Beyond Banach spaces, the main difficulty is that composition of
linear mappings stops to be jointly continuous at the level of
Banach spaces, for any compatible topology.
For more general locally convex spaces we sketch here the
convenient approach as explained in [Frölicher-Kriegl 1988] and
[Kriegl-Michor 1997].



The c∞-topology

Let E be a locally convex vector space. A curve c : R→ E is
called smooth or C∞ if all derivatives exist and are continuous. Let
C∞(R,E ) be the space of smooth functions. It can be shown that
the set C∞(R,E ) does not depend on the locally convex topology
of E , only on its associated bornology (system of bounded sets).
The final topologies with respect to the following sets of mappings
into E coincide:

1. C∞(R,E ).

2. The set of all Lipschitz curves (so that

{ c(t)−c(s)
t−s : t 6= s, |t|, |s| ≤ C} is bounded in E , for each C ).

3. The set of injections EB → E where B runs through all
bounded absolutely convex subsets in E , and where EB is the
linear span of B equipped with the Minkowski functional
‖x‖B := inf{λ > 0 : x ∈ λB}.

4. The set of all Mackey-convergent sequences xn → x (there
exists a sequence 0 < λn ↗∞ with λn(xn − x) bounded).



The c∞-topology. II

This topology is called the c∞-topology on E and we write c∞E
for the resulting topological space.
In general (on the space D of test functions for example) it is finer
than the given locally convex topology, it is not a vector space
topology, since scalar multiplication is no longer jointly continuous.
The finest among all locally convex topologies on E which are
coarser than c∞E is the bornologification of the given locally
convex topology. If E is a Fréchet space, then c∞E = E .



Convenient vector spaces

A locally convex vector space E is said to be a convenient vector
space if one of the following holds (called c∞-completeness):

1. For any c ∈ C∞(R,E ) the (Riemann-) integral
∫ 1

0 c(t)dt
exists in E .

2. Any Lipschitz curve in E is locally Riemann integrable.

3. A curve c : R→ E is C∞ if and only if λ ◦ c is C∞ for all
λ ∈ E ∗, where E ∗ is the dual of all cont. lin. funct. on E .

I Equiv., for all λ ∈ E ′, the dual of all bounded lin. functionals.
I Equiv., for all λ ∈ V, where V is a subset of E ′ which

recognizes bounded subsets in E .

We call this scalarwise C∞.

4. Any Mackey-Cauchy-sequence (i. e. tnm(xn − xm)→ 0 for
some tnm →∞ in R) converges in E . This is visibly a mild
completeness requirement.



Convenient vector spaces. II

5. If B is bounded closed absolutely convex, then EB is a Banach
space.

6. If f : R→ E is scalarwise Lipk , then f is Lipk , for k > 1.

7. If f : R→ E is scalarwise C∞ then f is differentiable at 0.

Here a mapping f : R→ E is called Lipk if all derivatives up to
order k exist and are Lipschitz, locally on R. That f is scalarwise
C∞ means λ ◦ f is C∞ for all continuous (equiv., bounded) linear
functionals on E .



Smooth mappings

Let E , and F be convenient vector spaces, and let U ⊂ E be
c∞-open. A mapping f : U → F is called smooth or C∞, if
f ◦ c ∈ C∞(R,F ) for all c ∈ C∞(R,U).
If E is a Fréchet space, then this notion coincides with all other
reasonable notions of C∞-mappings. Beyond Fréchet mappings, as
a rule, there are more smooth mappings in the convenient setting
than in other settings, e.g., C∞c .



Main properties of smooth calculus

1. For maps on Fréchet spaces this coincides with all other
reasonable definitions. On R2 this is non-trivial [Boman,1967].

2. Multilinear mappings are smooth iff they are bounded.

3. If E ⊇ U
f−−→ F is smooth then the derivative

df : U × E → F is smooth, and also df : U → L(E ,F ) is
smooth where L(E ,F ) denotes the space of all bounded linear
mappings with the topology of uniform convergence on
bounded subsets.

4. The chain rule holds.

5. The space C∞(U,F ) is again a convenient vector space where
the structure is given by the obvious injection

C∞(U,F )
C∞(c,`)−−−−−−→

∏
c∈C∞(R,U),`∈F∗

C∞(R,R), f 7→ (` ◦ f ◦ c)c,`,

where C∞(R,R) carries the topology of compact convergence
in each derivative separately.



Main properties of smooth calculus, II

6. The exponential law holds: For c∞-open V ⊂ F ,

C∞(U,C∞(V ,G )) ∼= C∞(U × V ,G )

is a linear diffeomorphism of convenient vector spaces.
Note that this is the main assumption of variational calculus.
Here it is a theorem.

7. A linear mapping f : E → C∞(V ,G ) is smooth (by (2)
equivalent to bounded) if and only if

E
f−−→ C∞(V ,G )

evv−−−→ G is smooth for each v ∈ V .

(Smooth uniform boundedness theorem,
see [KM97], theorem 5.26).



Main properties of smooth calculus, III

8. The following canonical mappings are smooth.

ev : C∞(E ,F )× E → F , ev(f , x) = f (x)

ins : E → C∞(F ,E × F ), ins(x)(y) = (x , y)

( )∧ : C∞(E ,C∞(F ,G ))→ C∞(E × F ,G )

( )∨ : C∞(E × F ,G )→ C∞(E ,C∞(F ,G ))

comp : C∞(F ,G )× C∞(E ,F )→ C∞(E ,G )

C∞( , ) : C∞(F ,F1)× C∞(E1,E )→
→ C∞(C∞(E ,F ),C∞(E1,F1))

(f , g) 7→ (h 7→ f ◦ h ◦ g)∏
:
∏

C∞(Ei ,Fi )→ C∞(
∏

Ei ,
∏

Fi )



This ends our review of the standard results of convenient calculus.
Convenient calculus (having properties 6 and 7) exists also for:

I Real analytic mappings [Kriegl,M,1990]

I Holomorphic mappings [Kriegl,Nel,1985] (notion of
[Fantappié, 1930-33])

I Many classes of Denjoy Carleman ultradifferentible functions,
both of Beurling type and of Roumieu-type
[Kriegl,M,Rainer, 2009, 2011, 2013]



Manifolds of mappings

Let M be a compact (for simplicity’s sake) fin. dim. manifold and
N a manifold. We use an auxiliary Riemann metric ḡ on N. Then

0N_�
��

zero section

{{
N� _
��

diagonal

%%
TN V N? _

open
oo (πN ,expḡ )

∼=
// V N×N � �

open
// N × N

C∞(M,N), the space of smooth mappings M → N, has the
following manifold structure. Chart, centered at f ∈ C∞(M,N), is:

C∞(M,N) ⊃ Uf = {g : (f , g)(M) ⊂ V N×N} uf−−−→ Ũf ⊂ Γ(f ∗TN)

uf (g) = (πN , expḡ )−1 ◦ (f , g), uf (g)(x) = (expḡf (x))−1(g(x))

(uf )−1(s) = expḡf ◦s, (uf )−1(s)(x) = expḡf (x)(s(x))



Manifolds of mappings II

Lemma: C∞(R, Γ(M; f ∗TN)) = Γ(R×M; pr2
∗ f ∗TN)

By Cartesian Closedness after considering charts.
Lemma: Chart changes are smooth (C∞)
Ũf1 3 s 7→ (πN , expḡ ) ◦ s 7→ (πN , expḡ )−1 ◦ (f2, expḡ

f1
◦s)

since they map smooth curves to smooth curves.
Lemma: C∞(R,C∞(M,N)) ∼= C∞(R×M,N).
By the first lemma.
Lemma: Composition C∞(P,M)× C∞(M,N)→ C∞(P,N),
(f , g) 7→ g ◦ f , is smooth, since it maps smooth curves to smooth
curves
Corollary (of the chart structure):

TC∞(M,N) = C∞(M,TN)
C∞(M,πN)−−−−−−−−→ C∞(M,N).



Regular Lie groups

We consider a smooth Lie group G with Lie algebra g = TeG
modelled on convenient vector spaces. The notion of a regular Lie
group is originally due to Omori et al. for Fréchet Lie groups, was
weakened and made more transparent by Milnor, and then carried
over to convenient Lie groups; see [KM97], 38.4.
A Lie group G is called regular if the following holds:

I For each smooth curve X ∈ C∞(R, g) there exists a curve
g ∈ C∞(R,G ) whose right logarithmic derivative is X , i.e.,{

g(0) = e

∂tg(t) = Te(µg(t))X (t) = X (t).g(t)

The curve g is uniquely determined by its initial value g(0), if
it exists.

I Put evolrG (X ) = g(1) where g is the unique solution required
above. Then evolrG : C∞(R, g)→ G is required to be C∞

also. We have EvolXt := g(t) = evolG (tX ).



Diffeomorphism group of compact M

Theorem: For each compact manifold M, the diffeomorphism
group is a regular Lie group.
Proof: Diff(M)

open−−−−→ C∞(M,M). Composition is smooth by

restriction. Inversion is smooth: If t 7→ f (t, ) is a smooth curve
in Diff(M), then f (t, )−1 satisfies the implicit equation
f (t, f (t, )−1(x)) = x , so by the finite dimensional implicit
function theorem, (t, x) 7→ f (t, )−1(x) is smooth. So inversion
maps smooth curves to smooth curves, and is smooth.
Let X (t, x) be a time dependent vector field on M (in
C∞(R,X(M))). Then Fl∂t×Xs (t, x) = (t + s,EvolX (t, x)) satisfies
the ODE ∂t Evol(t, x) = X (t,Evol(t, x)). If
X (s, t, x) ∈ C∞(R2,X(M)) is a smooth curve of smooth curves in
X(M), then obviously the solution of the ODE depends smoothly
also on the further variable s, thus evol maps smooth curves of
time dependant vector fields to smooth curves of diffeomorphism.
QED.



The principal bundle of embeddings

For finite dimensional manifolds M, N with M compact,
Emb(M,N), the space of embeddings of M into N, is open in
C∞(M,N), so it is a smooth manifold. Diff(M) acts freely and
smoothly from the right on Emb(M,N).
Theorem: Emb(M,N)→ Emb(M,N)/Diff(M) is a principal fiber
bundle with structure group Diff(M).
Proof: Auxiliary Riem. metric ḡ on N. Given f ∈ Emb(M,N),
view f (M) as submanifold of N. TN|f (M) = Nor(f (M))⊕ Tf (M).

Nor(f (M)) :
expḡ

−−−−→∼= Wf (M)

pf (M)−−−−→ f (M) tubular nbhd of f (M).

If g : M → N is C 1-near to f , then
ϕ(g) := f −1 ◦ pf (M) ◦ g ∈ Diff(M) and
g ◦ ϕ(g)−1 ∈ Γ(f ∗Wf (M)) ⊂ Γ(f ∗Nor(f (M))).
This is the required local splitting. QED



The orbifold bundle of immersions

Imm(M,N), the space of immersions M → N, is open in
C∞(M,N), and is thus a smooth manifold. The regular Lie group
Diff(M) acts smoothly from the right, but no longer freely.
Theorem: [Cervera,Mascaro,M,1991] For an immersion
f : M → N, the isotropy group
Diff(M)f = {ϕ ∈ Diff(M) : f ◦ φ = f } is always a finite group,

acting freely on M; so M
p−−→ M/Diff(M)f is a convering of

manifold and f factors to f = f̄ ◦ p.
Thus Imm(M,N)→ Imm(M,N)/Diff (M) is a projection onto an
honest infinite dimensional orbifold.



A Zoo of diffeomorphism groups on Rn

Theorem. The following groups of diffeomorphisms on Rn are
regular Lie groups:

I DiffB(Rn), the group of all diffeomorphisms which differ from
the identity by a function which is bounded together with all
derivatives separately.

I DiffH∞(Rn), the group of all diffeomorphisms which differ
from the identity by a function in the intersection H∞ of all
Sobolev spaces Hk for k ∈ N≥0.

I DiffS(Rn), the group of all diffeomorphisms which fall rapidly
to the identity.

I Diffc(Rn) of all diffeomorphisms which differ from the identity
only on a compact subset. (well known since 1980)

[M,Mumford,2013], partly [B.Walter,2012]; for Denjoy-Carleman ultradifferentiable diffeomorphisms [Kriegl, M,
Rainer 2014].
In particular, DiffH∞ (Rn) is essential if one wants to prove that the geodesic equation of a right Riemannian
invariant metric is well-posed with the use of Sobolov space techniques.



The diagram

Diff(M)
r-acts //

r-acts

%%
Diff(M,µ)

����

Imm(M,N)

needs ḡxx Diff(M) &&

DiffA(N)

r-acts

��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(M)

Diff(M) %% %%

Bi (M,N)

needs ḡxx
Vol1+(M) Met(M)

Diff(M) MetA(N)

M compact ,N possibly non-compact manifold

Met(N) = Γ(S2
+T∗N) space of all Riemann metrics on N

ḡ one Riemann metric on N

Diff(M) Lie group of all diffeos on compact mf M

DiffA(N), A ∈ {H∞,S, c} Lie group of diffeos of decay A to IdN

Imm(M,N) mf of all immersions M → N

Bi (M,N) = Imm/Diff(M) shape space

Vol1+(M) ⊂ Γ(vol(M)) space of positive smooth probability densities



About Met(M)

Let Met(M) = Γ(S2
+T ∗M) be the space of all smooth Riemannian

metrics on a compact manifold M, and let
MetHk (ĝ) = ΓHk (ĝ)(S2

+T ∗M) the space of all Sobolev Hk(ĝ)
sections of the metric bundle, where ĝ is a smooth background
Riemann metric on M.

Diff(M)
r-acts //

r-acts

%%
Diff(M,µ)

����

Imm(M,N)

needs ḡxx Diff(M) &&

DiffA(N)

r-acts

��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(M)

Diff(M) %% %%

Bi (M,N)

needs ḡxx
Vol1+(M) Met(M)

Diff(M) Met(N)



Weak Riemann metrics on Met(M)

All of them are Diff(M)-invariant; natural, tautological.

Gg (h, k) =

∫
M

g 0
2 (h, k) vol(g) =

∫
Tr(g−1hg−1k) vol(g), L2-metr.

or = Φ(Vol(g))

∫
M

g 0
2 (h, k) vol(g) conformal

or =

∫
M

Φ(Scalg ).g 0
2 (h, k) vol(g) curvature modified

or =

∫
M

g 0
2 ((1 + ∆g )ph, k) vol(g) Sobolev order p

or =

∫
M

(
g 0

2 (h, k) + g 0
3 (∇gh,∇gk) + · · ·+ g 0

p ((∇g )ph, (∇g )pk)
)

vol(g)

where Φ : R>0 → R>0, Vol =
∫
M vol(g) is total volume of (M, g),

Scal is scalar curvature, and g 0
2 is the induced metric on(0

2

)
-tensors.



∆gh := (∇g )∗,g∇gh = −Trg
−1

((∇g )2h) is the Bochner-Laplacian.
It can act on all tensor fields h, and it respects the degree of the
tensor field it is acting on.
We consider ∆g as an unbounded self-adjoint positive semidefinite
operator on the Hilbert space H0 with compact resolvent. The
domain of definition of ∆g is the space

H2 = H2,g := {h ∈ H0 : (1 + ∆g )h ∈ H0} = {h ∈ H0 : ∆gh ∈ H0}

which is again a Hilbert space with inner product∫
M

g 0
2 ((1 + ∆g )h, k) vol(g).

Again H2 does not depend on the choice of g , but the inner
products for different g induce different but equivalent norms on
H2. Similarly we have

H2k = H2k,g : = {h ∈ H0 : (1 + ∆g )kh ∈ H0}
= {h ∈ H0 : ∆gh, (∆g )2, . . . (∆g )k ∈ H0}



The L2-metric on the space of all Riemann metrics

[Ebin 1970]. Geodesics and curvature [Freed Groisser 1989].
[Gil-Medrano Michor 1991] for non-compact M. [Clarke 2009]
showed that geodesic distance for the L2-metric is positive, and he
determined the metric completion of Met(M).
The geodesic equation is completely decoupled from space, it is an
ODE:

gtt = gtg
−1gt + 1

4 Tr(g−1gtg
−1gt) g − 1

2 Tr(g−1gt) gt



A = g−1a for a ∈ TgMet(M)

exp0(A) = 2
n log

(
(1 + 1

4 Tr(A))2 + n
16 Tr(A2

0)
)

Id

+
4√

n Tr(A2
0)

arctan

(√
n Tr(A2

0)

4 + Tr(A)

)
A0.



Back to the the general metric on Met(M).

We describe all these metrics uniformly as

GP
g (h, k) =

∫
M

g 0
2 (Pgh, k) vol(g)

=

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where
Pg : Γ(S2T ∗M)→ Γ(S2T ∗M)

is a positive, symmetric, bijective pseudo-differential operator of
order 2p, p ≥ 0, depending smoothly on the metric g , and also
Diff(M)-equivariantly:

ϕ∗ ◦ Pg = Pϕ∗g ◦ ϕ∗



The geodesic equation in this notation:

gtt = P−1
[
(D(g ,.)Pgt)

∗(gt) +
1

4
.g .Tr(g−1.Pgt .g

−1.gt)

+
1

2
gt .g

−1.Pgt +
1

2
Pgt .g

−1.gt − (D(g ,gt)P)gt

− 1

2
Tr(g−1.gt).Pgt

]
We can rewrite this equation to get it in a slightly more compact

form:

(Pgt)t = (D(g ,gt)P)gt + Pgtt

= (D(g ,.)Pgt)
∗(gt) +

1

4
.g .Tr(g−1.Pgt .g

−1.gt)

+
1

2
gt .g

−1.Pgt +
1

2
Pgt .g

−1.gt −
1

2
Tr(g−1.gt).Pgt



Well posedness of geodesic equation.

Assumptions Let Pg (h), P−1
g (k) and (D(g ,.)Ph)∗(m) be linear

pseudo-differential operators of order 2p in m, h and of order −2p in k
for some p ≥ 0.
As mappings in the foot point g ∈ Met(M), we assume that they are
non-linear, smooth, even smooth in g ∈ Metk(M) for k > dim(M)2, and
that they are a composition of operators of the following type:
(a) Non-linear differential operators of order l ≤ 2p, i.e.,

A(g)(x) = A
(
x , g(x), (∇̂g)(x), . . . , (∇̂lg)(x)

)
,

(b) Linear pseudo-differential operators of order ≤ 2p,

such that the total (top) order of the composition is ≤ 2p.

Since h 7→ Pgh induces a weak inner product, it is a symmetric and

injective pseudodifferential operator. We assume that it is elliptic and

selfadjoint. Then it is Fredholm and has vanishing index. Thus it is

invertible and g 7→ P−1
g is smooth

Hk(S2
+T ∗M)→ L(Hk(S2T ∗M),Hk+2p(S2T ∗M)) by the implicit

function theorem on Banach spaces.



Theorem. [Bauer, Harms, M. 2011] Let the assumptions above hold.

Then for k > dim(M)
2 , the initial value problem for the geodesic equation

has unique local solutions in the Sobolev manifold Metk+2p(M) of

Hk+2p-metrics. The solutions depend C∞ on t and on the initial

conditions g(0, . ) ∈ Metk+2p(M) and gt(0, . ) ∈ Hk+2p(S2T ∗M). The

domain of existence (in t) is uniform in k and thus this also holds in

Met(M).

Moreover, in each Sobolev completion Metk+2p(M), the Riemannian

exponential mapping expP exists and is smooth on a neighborhood of the

zero section in the tangent bundle, and (π, expP) is a diffeomorphism

from a (smaller) neighborhood of the zero section to a neighborhood of

the diagonal in Metk+2p(M)×Metk+2p(M). All these neighborhoods are

uniform in k > dim(M)
2 and can be chosen Hk0+2p-open, where

k0 >
dim(M)

2 . Thus all properties of the exponential mapping continue to

hold in Met(M).



Conserved Quantities on Met(M).

Right action of Diff(M) on Met(M) given by

(g , φ) 7→ φ∗g .

Fundamental vector field (infinitesimal action):

ζX (g) = LXg = −2 Sym∇(g(X )).

If metric GP is invariant, we have the following conserved
quantities

const = GP(gt , ζX (g))

= −2

∫
M

g 0
1

(
∇∗ Sym Pgt , g(X )

)
vol(g)

= −2

∫
M

g
(
g−1∇∗Pgt ,X

)
vol(g)

Since this holds for all vector fields X ,

(∇∗Pgt) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) is const. in t.



On Rn: The pullback of the Ebin metric to DiffS(Rn)

We consider here the right action
r : MetA(Rn)× DiffA(Rn)→ MetA(Rn) which is given by
r(g , ϕ) = ϕ∗g , together with its partial mappings
r(g , ϕ) = rϕ(g) = rg (ϕ) = Pullg (ϕ).

Theorem.If n ≥ 2, the image of Pullḡ , i.e., the DiffA(Rn)-orbit
through ḡ , is the set Metflat

A (Rn) of all flat metrics in MetA(Rn).

The pullback of the Ebin metric to the diffeomorphism group is a
right invariant metric G given by

GId(X ,Y ) = 4

∫
Rn

Tr
(
(Sym dX ).(Sym dY )

)
dx =

∫
Rn

〈
X ,PY

〉
dx

Using the inertia operator P we can write the metric as∫
Rn

〈
X ,PY

〉
dx , with

P = −2(grad div +∆) .



The pullback of the general metric to DiffS(Rn)

We consider now a weak Riemannian metric on MetA(Rn) in its
general form

GP
g (h, k) =

∫
M

g 0
2 (Pgh, k) vol(g) =

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where Pg : Γ(S2T ∗M)→ Γ(S2T ∗M) is as described above. If the
operator P is equivariant for the action of DiffA(Rn) on
MetA(Rn), then the induced pullback metric (Pullḡ )∗GP on
DiffA(Rn) is right invariant:

GId(X ,Y ) = −4

∫
Rn

∂j(Pḡ Sym dX )ij .Y
idx (1)

Thus we we get the following formula for the corresponding inertia
operator (P̃X )i =

∑
j ∂j(Pḡ Sym dX )ij . Note that the pullback

metric (Pullḡ )∗GP on DiffA(Rn) is always of one order higher then
the metric GP on MetA(Rn).



The Sobolev metric of order p.

The Sobolev metric GP

GP
g (h, k) =

∫
Rn

Tr(g−1.((1 + ∆)ph).g−1.k) vol(g) .

The pullback of the Sobolev metric GP to the diffeomorphism
group is a right invariant metric G given by

G(X ,Y ) = −2

∫
Rn

〈
(grad div +∆)(1−∆)pX ,Y

〉
dx .

Thus the inertia operator is given by

P̃ = −2(1−∆)p(∆ + grad div) = −2(1−∆)p(∆ + grad div) .

It is a linear isomorphism Hs(Rn)n → Hs−2p−2(Rn)n for every s.



Theorem

Module properties of Sobolev spaces.
Let (Mm, ĝ) be a connected smooth Riemannian manifold of
bounded geometry, and let E1,E2 be natural vector bundles of
order 1 over M. Then the tensor product of smooth sections
extends to a bounded bilinear mapping

ΓHk1 (ĝ)(E1)× ΓHk2 (ĝ)(E2)→ ΓHk (ĝ)(E1 ⊗ E2)

in the following cases:

I If k = 0 then k1, k2 > 0 and k1 + k2 ≥ m
2 , or k1 ≥ 0 and

k2 >
m
2 , or k1 >

m
2 and k2 ≥ 0.

I If k > 0 then k1, k2 > k and k1 + k2 ≥ k + m
2 , or k1, k2 ≥ k

and k1 + k2 > k + m
2 .



Lemma

Let (Mm, ĝ) be a compact smooth Riemannian manifold, and let
E1,E2 be natural vector bundles of order 1 over M. Let U ⊂ E1 be
an open neighborhood of the image of a smooth section, and let
F : U → E2 be a fiber smooth mapping whose restriction to each
fiber is real analytic. Let k > dim(M)

2 .
Then ΓHk (ĝ)(U) := {s ∈ ΓHk (ĝ)(E1) : s(M) ⊂ U} is open in
ΓHk (ĝ)(E1) and the mapping

F∗ : ΓHk (ĝ)(U)→ ΓHk (ĝ)(E2), s 7→ F ◦ s,

is real analytic.



Riemannian metric of Sobolev order on M

For k > dim(M)
2 , the subset

MetHk (ĝ)(M) = ΓHk (ĝ)(S2
+T ∗M) ⊂ ΓHk (ĝ)(S2T ∗M) of Riemannian

metrics of Sobolev order k is open in the space of all Hk -sections,
since these are continuous.
In each chart, the first derivative of g ∈ MetHk (ĝ)(M) is of class

Hk−1 only, and thus no longer continuous. Nevertheless, the
Levi-Civita covariant derivative ∇g for the metric g exists and is
Hk−1. This can be seen in several ways.



(1) Using the Levi-Civita covariant derivative ∇ĝ for a smooth
background Riemannian metrig ĝ , we express the Levi-Civita
connection of g ∈ MetHk (ĝ)(M) as

∇g
X = ∇ĝ

X + Ag (X , )

for a suitable
Ag ∈ ΓHk−1(ĝ)(T ∗M⊗T ∗M⊗TM) = ΓHk−1(ĝ)(T ∗M⊗L(TM,TM).

This tensor field A has to satisfy the following conditions (for
smooth vector fields X , Y , Z ):

(∇ĝ
X
g)(Y , Z) = g(A(X , Y ), Z) + g(Y , A(X , Z)) ⇐⇒ ∇g

X
g = 0,

A(X , Y ) = A(Y , X ) ⇐⇒ ∇g is torsionfree.

We take the cyclic permutations of the first equation sum them
with signs +,+,−, and use symmetry of A to obtain

2g(A(X ,Y ),Z ) = (∇ĝ
Xg)(Y ,Z ) + (∇ĝ

Y g)(Z ,X )− (∇ĝ
Zg)(X ,Y ) ;

this equation determines A uniquely as a Hk−1-tensor field. It is
easy checked that it satisfies the two requirements above.



(2) For each local chart u : U → Rm which extends to a compact
neighborhood of U ⊂ M, the Christoffel forms are given by the
usual formula

Γk
ij =

1

2

∑
l

gkl
(∂gij
∂ul
−
∂glj
∂ui
− ∂gil
∂uj

)
∈ Hk−1(U,R) .

They transform as the last part in the second tangent bundle. The
associated spray Sg is an Hk−1-section of both πTM : T 2M → TM
and T (πM) : T 2M → TM. If k > dim(M)

2 + 1, then the Sg is
continuous and we have local existence (but not uniqueness) of
geodesics in each chart separately, by Peano’s theorem. If
k > dim(M)

2 + 2, we have the usual existence and uniqueness of
geodesics, by Picard-Lindelöf, since then Sg is C 1 and thus
Lipschitz.



(3) ∇g : (X ,Y ) 7→ ∇g
XY is a bilinear bounded mapping

ΓHk (ĝ)(TM)× ΓH l (ĝ)(TM)→ ΓH l−1(ĝ)(TM) for 1 ≤ l ≤ k ;

we write ∇g ∈ L2(ΓHk (ĝ)(TM), ΓH l (ĝ)(TM); ΓH l−1(ĝ)(TM)) to
express this fact. Moreover, ∇g has the expected properties

∇g
fXY = f∇g

XY for f ∈ Hk(M,R),

∇g
X (fY ) = df (X )Y + f∇g

XY for f ∈ Hk(M,R).

Its expression in a local chart is

∇X i∂
ui

Y j∂uj = X i (∂ui Y
j)∂uj − X iY jΓk

ij∂uk .

The global implicit equation holds for X ,Z ∈ ΓHk (ĝ)(TM) and

Y ∈ ΓH l (ĝ)(TM) for dim(M)
4 + 1

2 < l ≤ k:

2g(∇XY ,Z ) = X (g(Y ,Z )) + Y (g(Z ,X ))− Z (g(X ,Y ))

− g(X , [Y ,Z ]) + g(Y , [Z ,X ]) + g(Z , [X ,Y ]).

Note that [X ,Y ], [Z ,Y ] ∈ ΓH l−1(ĝ)(TM), by differentiation and
the module properties of Sobolev spaces.



(4) Moreover, for each g ∈ MetHk (ĝ)(M), where k > dim(M)
2 , the

Bochner-Laplacian is defined as

∆gh := (∇g )∗,g∇gh = −Trg
−1

((∇g )2h) = −Tr(g−1.∇g .∇gh).

Here we view ∇gh ∈ ΓH l−1(ĝ)(T ∗M ⊗ E ); on a local chart (U, u)

we have ∇g
XY =

∑
i X i∇∂

ui
Y ∈ Hk(M)|U ⊗ ΓH l−1(ĝ)(E )|U .

The operator ∆g can act on all tensor fields h of Sobolev order l
for 2 ≤ l ≤ k , and it respects the degree and the symmetry
properties of the tensor field it is acting on. If h ∈ ΓH l (ĝ)(S2T ∗M)

then the expression in a local chart (U, ui ) is as follows, using
summation convention:

∆g
(
hkl du

k ⊗ dul
)

=

=

[
∂

∂ui

(
−

1

2
g ij

∂hkl

∂uj

)
− g ij

(
−

1

2

∂gjm

∂ui
gmn ∂hkl

∂un
+

1

2

∂hkl

∂um
Γmij + 2

∂hkn

∂uj
Γnil+

+ hnl
∂Γnjk

∂ui
+ hmlΓ

m
nkΓnij + hnlΓ

n
jmΓmik + hmnΓmjkΓnil

)]
(duk ⊗ dul + dul ⊗ duk )



Theorem

Let k > dim(M)
2 and let E → M be a natural bundle of first order.

Then g 7→ ∇g is a real analytic mapping:

∇ : MetHk (ĝ)(M)→ L2(ΓHk (ĝ)(TM), ΓH l (ĝ)(E ); ΓH l−1(ĝ)(E )),

∇ : MetHk (ĝ)(M)→ L(ΓH l (ĝ)(E ); ΓH l−1(ĝ)(T ∗M ⊗ E )),

for 1 ≤ l ≤ k.
Consequently, g 7→ ∆g is a real analytic mapping

MetHk (ĝ)(M)→ L(ΓH l (ĝ)(E ), ΓH l−2(ĝ)(E )),

for 2 ≤ l ≤ k, where E is a first oder natural bundle over M; i.e.,
E is a bundle associated to the linear frame bundle of M for any
finite dimensional representation of GL(dim(M)).



By the real analytic uniform boundedness theorem of convenient
calculus this means one of the two equivalent assertions:

I For each smooth curve g(t) of Sobolev Riemannian metrics in
MetHk (ĝ)(M) and for all fixed X ∈ ΓH l−1(ĝ)(TM) and

s ∈ ΓH l (ĝ)(E ) the mapping t 7→ ∇g(t)
X s ∈ ΓH l−1(ĝ)(E ) is

smooth. And for each real analytic curve g(t) of Sobolev
Riemannian metrics in MetHk (ĝ)(M) and for all fixed
X ∈ ΓH l−1(ĝ)(TM) and s ∈ ΓH l (ĝ)(E ) the mapping

t 7→ ∇g(t)
X s ∈ ΓH l−1(ĝ)(E ) is real analytic.

I The mapping is real analytic from the open subset
MetHk (ĝ)(M) in the Hilbert space Γ(S2T ∗M) into the Banach
space of all bounded bilinear operators
L2(ΓH l−1(ĝ)(TM), ΓH l (ĝ)(E ); ΓH l−1(ĝ)(E )) in the sense that is
is locally given by convergent power series.

Similarly for the map g 7→ ∆g .



Some Sobolev spaces can be described by (1 + ∆g ) for
g ∈ MetHk(ĝ)(M)

The following results were made possible by [Olaf Müller, 2015].
Let k > m

2 . Obviously, ΓH0(g)(E ) and ΓH0(ĝ)(E ) are isomorphic,
but not isometric. The unbounded operator
(1 + ∆g ) : ΓH0(g)(E )→ ΓH0(g)(E ) is positive, self-adjoint, elliptic,
invertible. This is a k-save differential operator in the sense of
[O.Müller, 2015] with Sobolev coefficients.



Theorem

Let g ∈ MetHk (ĝ)(M). If k > m
2 then for 2 ≤ l ≤ k the Laplacian

is a bounded linear operator:

∆g = Trg
−1
.∇g .∇g : ΓH l (ĝ)(E )→ ΓH l−2(ĝ)(E )

and 1 + ∆g : ΓH l (ĝ)(E )→ ΓH l−2(ĝ)(E ) has a bounded inverse.



Thank you for your attention


