Uniqueness of the Fisher-Rao metric on the space of smooth densities

Peter W. Michor

University of Vienna, Austria
www.mat.univie.ac.at/~ michor
CES-Seminar
April 6, 2018,
Brno
Devoted to the memory of Thomas Friedrich
(12. Oktober 1949 in Leipzig - 27. Februar 2018 in Marburg)

Based on:

[T.Friedrich: Lecture in Winterschool in Srni, 1990 or 1991]
[T.Friedrich. Die Fisher-Information und symplektische Strukturen.
Math. Nachr., 153, 273-296, 1991]
[M.Bauer, M.Bruveris, P.Michor: Uniqueness of the Fisher-Rao metric on the space of smooth densities, Bull. London Math. Soc. 48, 3 (2016), 499-506, arXiv:1411.5577]
[M.Bruveris, P.Michor: Geometry of the Fisher-Rao metric on the space of smooth densities, Mathematische Nachrichten ??, arxiv:1607.04550]
[M.Bruveris, P. Michor, A.Parusinski, A. Rainer: Moser's Theorem for manifolds with corners, Proc. AMS., arxiv:1604.07787]

The infinite dimensional geometry used here is based on:
[Andreas Kriegl, Peter W. Michor: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, Volume: 53, Amer. Math. Soc., 1997]
Wikipedia [https://en.wikipedia.org/wiki/Convenient_vector_space]

Abstract

For a smooth compact manifold M, any weak Riemannian metric on the space of smooth positive densities which is invariant under the right action of the diffeomorphism group $\operatorname{Diff}(M)$ is of the form

$$
G_{\mu}(\alpha, \beta)=C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu+C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta
$$

for smooth functions C_{1}, C_{2} of the total volume $\mu(M)=\int_{M} \mu$.
In this talk the result is extended to compact smooth manifolds with corners (for example, a simplex), and the full proof is given (keeping the (partial) tradition of naturality questions in CES).

The Fisher-Rao metric on the space $\operatorname{Prob}(M)$ of probability densities is of importance in the field of information geometry. Restricted to finite-dimensional submanifolds of $\operatorname{Prob}(M)$, so-called statistical manifolds, it is called Fisher's information metric [Amari: Differential-geometrical methods in statistics, 1985]. The Fisher-Rao metric is invariant under the action of the diffeomorphism group. A uniqueness result was established [Čencov: Statistical decision rules and optimal inference, 1982, p. 156] for Fisher's information metric on finite sample spaces and [Ay, Jost, Le, Schwachhöfer, 2014] extended it to infinite sample spaces.

See also [Ay, Jost, Le, Schwachhöfer: Information Geometry, 2017]. The Fisher-Rao metric on the infinite-dimensional manifold of all positive smooth probability densities was studied in [Friedrich: Die Fisher-Information und symplektische Strukturen, 1991], including the computation of its curvature.

Manifolds with corners

A manifold with corners (recently also called a quadrantic manifold) M is a smooth manifold modelled on open subsets of $\mathbb{R}_{\geq 0}^{m}$. Assume it is connected and second countable; then it is paracompact and it admits smooth partitions of unity. Any manifold with corners M is a submanifold with corners of an open manifold \tilde{M} of the same dim. Restriction $C^{\infty}(\tilde{M}) \rightarrow C^{\infty}(M)$ is a surjective continuous linear map which admits a continuous linear section. Thus $C^{\infty}(M)$ is a topological direct summand in $C^{\infty}(\tilde{M})$ and the same holds for the dual spaces: The space of distributions $\mathcal{D}^{\prime}(\underset{\sim}{M})$, which we identity with $C^{\infty}(M)^{\prime}$, is a direct summand in $\mathcal{D}^{\prime}(\tilde{M})$. It consists of all distributions with support in M.

We do not assume that M is oriented, but eventually, that M is compact. Diffeomorphisms of M map the boundary ∂M to itself and map the boundary $\partial^{q} M$ of corners of codimension q to itself; $\partial^{q} M$ is a submanifold of codimension q in M; in general $\partial^{q} M$ has finitely many connected components. We shall consider ∂M as stratified into the connected components of all $\partial^{q} M$ for $q>0$.

The space of densities

Let M^{m} be a smooth manifold, possibly with corners. Let $\left(U_{\alpha}, u_{\alpha}\right)$ be a smooth atlas for it. The volume bundle $\left(\operatorname{Vol}(M), \pi_{M}, M\right)$ of M is the 1-dimensional vector bundle (line bundle) which is given by the following cocycle of transition functions:

$$
\begin{gathered}
\psi_{\alpha \beta}: U_{\alpha \beta}=U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{R} \backslash\{0\}=G L(1, \mathbb{R}) \\
\psi_{\alpha \beta}(x)=\left|\operatorname{det} d\left(u_{\beta} \circ u_{\alpha}^{-1}\right)\left(u_{\alpha}(x)\right)\right|=\frac{1}{\left|\operatorname{det} d\left(u_{\alpha} \circ u_{\beta}^{-1}\right)\left(u_{\beta}(x)\right)\right|}
\end{gathered}
$$

$\operatorname{Vol}(\mathrm{M})$ is a trivial line bundle over M. But there is no natural trivialization. There is a natural order on each fiber. Since $\operatorname{Vol}(M)$ is a natural bundle of order 1 on M, there is a natural action of the group $\operatorname{Diff}(M)$ on $\operatorname{Vol}(M)$, given by

If M is orientable, then $\operatorname{Vol}(M)=\Lambda^{m} T^{*} M$. If M is not orientable, let \tilde{M} be the orientable double cover of M with its deck-transformation $\tau: \tilde{M} \rightarrow \tilde{M}$. Then $\Gamma(\operatorname{Vol}(M))$ is isomorphic to the space $\left\{\omega \in \Omega^{m}(\tilde{M}): \tau^{*} \omega=-\omega\right\}$. These are the 'formes impaires' of de Rham. See [M 2008, 13.1] for this.

Sections of the line bundle $\operatorname{Vol}(M)$ are called densities. The space $\Gamma(\operatorname{Vol}(M))$ of all smooth sections is a Fréchet space in its natural topology; see [Kriegl-M, 1997]. For each section α of $\operatorname{Vol}(M)$ of compact support the integral $\int_{M} \alpha$ is invariantly defined as follows: Let $\left(U_{\alpha}, u_{\alpha}\right)$ be an atlas on M with associated trivialization $\psi_{\alpha}: \operatorname{Vol}(M) \mid U_{\alpha} \rightarrow \mathbb{R}$, and let f_{α} be a partition of unity with $\operatorname{supp}\left(f_{\alpha}\right) \subset U_{\alpha}$. Then we put

$$
\int_{M} \mu=\sum_{\alpha} \int_{U_{\alpha}} f_{\alpha} \mu:=\sum_{\alpha} \int_{u_{\alpha}\left(U_{\alpha}\right)} f_{\alpha}\left(u_{\alpha}^{-1}(y)\right) \cdot \psi_{\alpha}\left(\mu\left(u_{\alpha}^{-1}(y)\right)\right) d y
$$

The integral is independent of the choice of the atlas and the partition of unity.

The Fisher-Rao metric

Let M^{m} be a smooth compact manifold without boundary. Let Dens $_{+}(M)$ be the space of smooth positive densities on M, i.e., $\operatorname{Dens}_{+}(M)=\{\mu \in \Gamma(\operatorname{Vol}(M)): \mu(x)>0 \forall x \in M\}$.
Let $\operatorname{Prob}(M)$ be the subspace of positive densities with integral 1 .
For $\mu \in \operatorname{Dens}_{+}(M)$ we have $T_{\mu} \operatorname{Dens}_{+}(M)=\Gamma(\operatorname{Vol}(M))$ and for $\mu \in \operatorname{Prob}(M)$ we have
$T_{\mu} \operatorname{Prob}(M)=\left\{\alpha \in \Gamma(\operatorname{Vol}(M)): \int_{M} \alpha=0\right\}$.
The Fisher-Rao metric on $\operatorname{Prob}(M)$ is defined as:

$$
G_{\mu}^{\mathrm{FR}}(\alpha, \beta)=\int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu
$$

It is invariant for the action of $\operatorname{Diff}(M)$ on $\operatorname{Prob}(M)$:

$$
\begin{aligned}
\left(\left(\varphi^{*}\right)^{*} G^{\mathrm{FR}}\right)_{\mu}(\alpha, \beta) & =G_{\varphi^{*} \mu}^{\mathrm{FR}}\left(\varphi^{*} \alpha, \varphi^{*} \beta\right)= \\
& =\int_{M}\left(\frac{\alpha}{\mu} \circ \varphi\right)\left(\frac{\beta}{\mu} \circ \varphi\right) \varphi^{*} \mu=\int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu
\end{aligned}
$$

Main Theorem. [BBM, 2016] for M without boundary

Let M be a connected smooth compact manifold with corners, of dimension ≥ 2. Let G be a smooth (equivalently, bounded) bilinear form on $\operatorname{Dens}_{+}(M)$ which is invariant under the action of $\operatorname{Diff}(M)$. Then

$$
G_{\mu}(\alpha, \beta)=C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu+C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta
$$

for smooth functions C_{1}, C_{2} of the total volume $\mu(M)$.

To see that this theorem implies the uniqueness of the Fisher-Rao metric, note that if G is a $\operatorname{Diff}(M)$-invariant Riemannian metric on $\operatorname{Prob}(M)$, then we can equivariantly extend it to $\operatorname{Dens}_{+}(M)$ via

$$
G_{\mu}(\alpha, \beta)=G_{\frac{\mu}{\mu(M)}}\left(\alpha-\left(\int_{M} \alpha\right) \frac{\mu}{\mu(M)}, \beta-\left(\int_{M} \beta\right) \frac{\mu}{\mu(M)}\right) .
$$

Relations to right-invariant metrics on diffeom. groups

Let $\mu_{0} \in \operatorname{Prob}(M)$ be a fixed smooth probability density. In [Khesin, Lenells, Misiolek, Preston, 2013] it has been shown, that the degenerate, \dot{H}^{1}-metric $\frac{1}{2} \int_{M} \operatorname{div}^{\mu_{0}}(X) \cdot \operatorname{div}^{\mu_{0}}(X)$. μ_{0} on $\mathfrak{X}(M)$ is invariant under the adjoint action of $\operatorname{Diff}\left(M, \mu_{0}\right)$. Thus the induced degenerate right invariant metric on $\operatorname{Diff}(M)$ descends to a metric on $\operatorname{Prob}(M) \cong \operatorname{Diff}\left(M, \mu_{0}\right) \backslash \operatorname{Diff}(M)$ via

$$
\operatorname{Diff}(M) \ni \varphi \mapsto \varphi^{*} \mu_{0} \in \operatorname{Prob}(M)
$$

which is invariant under the right action of $\operatorname{Diff}(M)$. This is the Fisher-Rao metric on $\operatorname{Prob}(M)$. In [Modin, 2014], the \dot{H}^{1}-metric was extended to a non-degenerate metric on $\operatorname{Diff}(M)$, also descending to the Fisher-Rao metric.

Corollary. Let $\operatorname{dim}(M) \geq 2$. If a weak right-invariant (possibly degenerate) Riemannian metric \tilde{G} on $\operatorname{Diff}(M)$ descends to a metric G on $\operatorname{Prob}(M)$ via the right action, i.e., the mapping $\varphi \mapsto \varphi^{*} \mu_{0}$ from $(\operatorname{Diff}(M), \tilde{G})$ to $(\operatorname{Prob}(M), G)$ is a Riemannian submersion, then G has to be a multiple of the Fisher-Rao metric.

Note that any right invariant metric \tilde{G} on $\operatorname{Diff}(M)$ descends to a metric on $\operatorname{Prob}(M)$ via $\varphi \mapsto \varphi_{*} \mu_{0}$; but this is not Diff (M)-invariant in general.

Invariant metrics on Dens $\left(S^{1}\right)$.

Dens $_{+}\left(S^{1}\right)=\Omega_{+}^{1}\left(S^{1}\right)$, and Dens $_{+}\left(S^{1}\right)$ is $\operatorname{Diff}\left(S^{1}\right)$-equivariantly isomorphic to the space of all Riemannian metrics on S^{1} via $\Phi=(\quad)^{2}: \operatorname{Dens}_{+}\left(S^{1}\right) \rightarrow \operatorname{Met}\left(S^{1}\right), \Phi(f d \theta)=f^{2} d \theta^{2}$.
On $\operatorname{Met}\left(S^{1}\right)$ there are many $\operatorname{Diff}\left(S^{1}\right)$-invariant metrics; see [Bauer, Harms, M, 2013]. For example Sobolev-type metrics. Write $g \in \operatorname{Met}\left(S^{1}\right)$ in the form $g=\tilde{g} d \theta^{2}$ and $h=\tilde{h} d \theta^{2}, k=\tilde{k} d \theta^{2}$ with $\tilde{g}, \tilde{h}, \tilde{k} \in C^{\infty}\left(S^{1}\right)$. The following metrics are $\operatorname{Diff}\left(S^{1}\right)$-invariant:

$$
G_{g}^{\prime}(h, k)=\int_{S^{1}} \frac{\tilde{h}}{\tilde{g}} \cdot\left(1+\Delta^{g}\right)^{n}\left(\frac{\tilde{k}}{\tilde{g}}\right) \sqrt{\tilde{g}} d \theta ;
$$

here Δ^{g} is the Laplacian on S^{1} with respect to the metric g. The pullback by Φ yields a $\operatorname{Diff}\left(S^{1}\right)$-invariant metric on $\operatorname{Dens}_{+}(M)$:

$$
G_{\mu}(\alpha, \beta)=4 \int_{S^{1}} \frac{\alpha}{\mu} \cdot\left(1+\Delta^{\Phi(\mu)}\right)^{n}\left(\frac{\beta}{\mu}\right) \mu
$$

For $n=0$ this is 4 times the Fisher-Rao metric. For $n \geq 1$ we get many $\operatorname{Diff}\left(S^{1}\right)$-invariant metrics on $\operatorname{Dens}_{+}\left(S^{1}\right)_{\text {and }}$ on $\operatorname{Prob}\left(S^{1}\right)$.

Moser's theorem for manifolds with corners [BMPR18]

Let M be a compact smooth manifold with corners, possibly non-orientable. Let μ_{0} and μ_{1} be two smooth positive densities in Dens $_{+}(M)$ with $\int_{M} \mu_{0}=\int_{M} \mu_{1}$. Then there exists a diffeomorphism $\varphi: M \rightarrow M$ such that $\mu_{1}=\varphi^{*} \mu_{0}$. If and only if $\mu_{0}(x)=\mu_{1}(x)$ for each corner $x \in \partial^{\geq 2} M$ of codimension ≥ 2, then φ can be chosen to be the identity on ∂M.

This result is highly desirable even for M a simplex. The proof is essentially contained in [Banyaga1974], who proved it for manifolds with boundary.

Aside: Geometry of the Fisher-Rao metric

$$
G_{\mu}(\alpha, \beta)=C_{1}(\mu(M)) \int_{M} \frac{\alpha}{\mu} \frac{\beta}{\mu} \mu+C_{2}(\mu(M)) \int_{M} \alpha \cdot \int_{M} \beta
$$

This metric will be studied in different representations.
Dens $_{+}(M) \xrightarrow{R} C^{\infty}\left(M, \mathbb{R}_{>0}\right) \xrightarrow{\Phi} \mathbb{R}_{>0} \times S \cap C_{>0}^{\infty} \xrightarrow{W \times \text { ld }}\left(W_{-}, W_{+}\right) \times S \cap C_{>0}^{\infty}$.
We fix $\mu_{0} \in \operatorname{Prob}(M)$ and consider the mapping

$$
R: \operatorname{Dens}_{+}(M) \rightarrow C^{\infty}\left(M, \mathbb{R}_{>0}\right), \quad R(\mu)=f=\sqrt{\frac{\mu}{\mu_{0}}}
$$

The map R is a diffeomorphism and we will denote the induced metric by $\tilde{G}=\left(R^{-1}\right)^{*} G$; it is given by the formula

$$
\tilde{G}_{f}(h, k)=4 C_{1}\left(\|f\|^{2}\right)\langle h, k\rangle+4 C_{2}\left(\|f\|^{2}\right)\langle f, h\rangle\langle f, k\rangle,
$$

and this formula makes sense for $f \in C^{\infty}(M, \mathbb{R}) \backslash\{0\}$.
The map R is inspired by [B. Khesin, J. Lenells, G. Misiolek, S. C.
Preston: Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geom. Funct. Anal., 23(1):334-366, 2013.]

Proof of the Main Theorem

Let us fix a basic probability density μ_{0}. By the Moser's theorem for manifolds with corners, there exists for each $\mu \in \operatorname{Dens}_{+}(M)$ a diffeomorphism $\varphi_{\mu} \in \operatorname{Diff}(M)$ with $\varphi_{\mu}^{*} \mu=\mu(M) \mu_{0}=:$ c. μ_{0} where $c=\mu(M)=\int_{M} \mu>0$. Then

$$
\left(\left(\varphi_{\mu}^{*}\right)^{*} G\right)_{\mu}(\alpha, \beta)=G_{\varphi_{\mu}^{*} \mu}\left(\varphi_{\mu}^{*} \alpha, \varphi_{\mu}^{*} \beta\right)=G_{c \cdot \mu_{0}}\left(\varphi_{\mu}^{*} \alpha, \varphi_{\mu}^{*} \beta\right)
$$

Thus it suffices to show that for any $c>0$ we have

$$
G_{c \mu_{0}}(\alpha, \beta)=C_{1}(c) \cdot \int_{M} \frac{\alpha}{\mu_{0}} \frac{\beta}{\mu_{0}} \mu_{0}+C_{2}(c) \int_{M} \alpha \cdot \int_{M} \beta
$$

for some functions C_{1}, C_{2} of the total volume $c=\mu(M)$. Both bilinear forms are still invariant under the action of the group $\operatorname{Diff}\left(M, c \mu_{0}\right)=\operatorname{Diff}\left(M, \mu_{0}\right)=\left\{\psi \in \operatorname{Diff}(M): \psi^{*} \mu_{0}=\mu_{0}\right\}$.

The bilinear form

$$
T_{\mu_{0}} \operatorname{Dens}_{+}(M) \times T_{\mu_{0}}(M) \text { Dens }_{+} \ni(\alpha, \beta) \mapsto G_{c \mu_{0}}\left(\frac{\alpha}{\mu_{0}} \mu_{0}, \frac{\beta}{\mu_{0}} \mu_{0}\right)
$$

can be viewed as a bilinear form

$$
C^{\infty}(M) \times C^{\infty}(M) \ni(f, g) \mapsto G_{c}(f, g) .
$$

We will consider now the associated bounded linear mapping

$$
\check{G}_{c}: C^{\infty}(M) \rightarrow C^{\infty}(M)^{\prime}=\mathcal{D}^{\prime}(M)
$$

(1) The Lie algebra $\mathfrak{X}\left(M, \partial M, \mu_{0}\right)$ of $\operatorname{Diff}\left(M, \mu_{0}\right)$ consists of vector fields X which are tangent to each boundary component $\partial^{q} M$ with

$$
0=\operatorname{div}^{\mu_{0}}(X):=\frac{\mathcal{L}_{X} \mu_{0}}{\mu_{0}}
$$

On an oriented open subset $U \subset M$, each density is an m-form, $m=\operatorname{dim}(M)$, and $\operatorname{div}^{m u_{0}}(X)=\operatorname{dix}_{X} \mu_{0}$.
The mapping $\hat{\iota}_{\mu_{0}}: \mathfrak{X}(U) \rightarrow \Omega^{m-1}(U)$ given by $X \mapsto i_{X} \mu_{0}$ is an isomorphism, and also

$$
\begin{aligned}
\hat{\iota}_{\mu_{0}}: \mathfrak{X}(U, \partial U) \rightarrow & \Omega^{m-1}(U, \partial U)= \\
& =\left\{\alpha \in \Omega^{m-1}(M): j_{\partial q}^{*} M^{\alpha}=0 \text { for all } q \geq 1\right\}
\end{aligned}
$$

is an isomorphism onto the space of differential forms that pull back to 0 on each boundary stratum. The Lie subalgebra $\mathfrak{X}\left(U, \partial U, \mu_{0}\right)$ of divergence free vector fields corresponds to the space of closed $(m-1)$-forms.

Denote by $\mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$ the set (not a vector space) of 'exact' divergence free vector fields $X=\hat{\iota}_{\mu_{0}}^{-1}(d \omega)$, where $\omega \in \Omega_{c}^{m-2}(U, \partial U)$ for an oriented open subset $U \subset M$.
(2) If for $f \in C^{\infty}(M)$ and a connected open set $U \subseteq M$ we have $\left(\mathcal{L}_{X} f\right) \mid U=0$ for all $X \in \mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$, then $f \mid U$ is constant.

Since we shall need some details later on, we prove this well-known fact. Let $x \in U \backslash \partial U$. For every tangent vector $X_{x} \in T_{x} M$ we can find a vector field $X \in \mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$ such that $X(x)=X_{x}$; to see this, choose a chart $\left(U_{x}, u\right)$ near x such that $U_{x} \subseteq U \backslash \partial U$ and $\mu_{0} \mid U_{x}=d u^{1} \wedge \cdots \wedge d u^{m}$, and choose $g \in C_{c}^{\infty}\left(U_{x}\right)$, such that $g=1$ near x. Then
$X:=\hat{\iota}_{\mu_{0}}^{-1} d\left(g \cdot u^{2} . d u^{3} \wedge \cdots \wedge d u^{m}\right) \in \mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$ and $X=\partial_{\mu^{1}}$ near x. So we can produce a basis for $T_{x} M$ and even a local frame near x.

Thus $\mathcal{L}_{X} f \mid U=0$ for all $X \in \mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$ implies $\left.d f\right|_{U \backslash \partial U}=0$, thus $d f=0$ and f is constant on U.
(22) Similarly, if $x \in \partial^{q} M$ and $X_{x} \in T_{x}\left(\partial^{q} M\right)$ we can find $X \in \mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$ with $X(x)=X_{x}$.
(3) If for a distribution $A \in \mathcal{D}^{\prime}(M)$ and a connected open set $U \subseteq M$ we have $\mathcal{L}_{X} A \mid U=0$ for all $X \in \mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$, then $A\left|U=C \mu_{0}\right| U$ for some constant C, meaning $\langle A, f\rangle=C \int_{M} f \mu_{0}$ for all $f \in C_{c}^{\infty}(U)$.

Because $\left\langle\mathcal{L}_{X} A, f\right\rangle=-\left\langle A, \mathcal{L}_{X} f\right\rangle$, the invariance $\mathcal{L}_{X} A \mid U=0$ implies $\left\langle A, \mathcal{L}_{X} f\right\rangle=0$ for all $f \in C_{c}^{\infty}(U)$. Clearly, $\int_{M}\left(\mathcal{L}_{X} f\right) \mu_{0}=0$. For each $x \in U$ let $U_{x} \subset U$ be an open oriented chart which is diffeomorphic to $\mathbb{R}_{\geq 0}^{q} \times \mathbb{R}^{m-q}$. Let $g \in C_{c}^{\infty}\left(U_{x}\right)$ satisfy $\int_{M} g \mu_{0}=0$; we will show that $\langle A, g\rangle=0$. The integral over $g \mu_{0}$ is zero, so the compact cohom. class $\left[g \mu_{0}\right] \in H_{c}^{m}\left(U_{x}, \partial U_{x}\right) \cong \mathbb{R}$ vanishes; see [BMPR2018, section 8]. Thus there exists $\alpha \in \Omega_{c}^{m-1}\left(U_{x}, \partial U_{x}\right) \subset \Omega^{m-1}(M, \partial M)$ with $d \alpha=g \mu_{0}$. Since U_{x} is diffeomorphic to $\mathbb{R}_{\geq 0}^{q} \times \mathbb{R}^{m-q}$, we can write $\alpha=\sum_{j} f_{j} d \beta_{j}$ with $\beta_{j} \in \Omega^{m-2}\left(U_{x}, \partial U_{x}\right)$ and $f_{j} \in C_{c}^{\infty}\left(U_{x}\right)$. Choose $h \in C_{c}^{\infty}\left(U_{x}\right)$ with $h=1$ on $\bigcup_{j} \operatorname{supp}\left(f_{j}\right)$, so that $\alpha=\sum_{j} f_{j} d\left(h \beta_{j}\right)$ and $h \beta_{j} \in \Omega^{m-2}(M, \partial M)$. Then the vector fields $X_{j}=\hat{\iota}_{\mu_{0}}^{-1} d\left(h \beta_{j}\right)$ lie in $\mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$ and we have the identity $\sum_{j} f_{j} . i_{X_{i}} \mu_{0}=\alpha$.

This means $\sum_{j}\left(\mathcal{L}_{X_{j}} f_{j}\right) \mu_{0}=\sum_{j} \mathcal{L}_{X_{j}}\left(f_{j} \mu_{0}\right)=\sum_{j} \operatorname{di}_{X_{j}}\left(f_{j} \mu_{0}\right)=$ $d\left(\sum_{j} f_{j} . i_{X_{j}} \mu_{0}\right)=d \alpha=g \mu_{0}$ or $\sum_{j} \mathcal{L}_{X_{j}} f_{j}=g$, leading to

$$
\langle A, g\rangle=\sum_{j}\left\langle A, \mathcal{L}_{X_{j}} f_{j}\right\rangle=-\sum_{j}\left\langle\mathcal{L}_{X_{j}} A, f_{j}\right\rangle=0
$$

So $\langle A, g\rangle=0$ for all $g \in C_{c}^{\infty}\left(U_{x}\right)$ with $\int_{M} g \mu_{0}=0$. Finally, choose a function φ with support in U_{x} and $\int_{M} \varphi \mu_{0}=1$. Then for any $f \in C_{c}^{\infty}\left(U_{x}\right)$, the function defined by $g=f-\left(\int_{M} f \mu_{0}\right) \cdot \varphi$ in $C^{\infty}(M)$ satisfies $\int_{M} g \mu_{0}=0$ and so

$$
\langle A, f\rangle=\langle A, g\rangle+\langle A, \varphi\rangle \int_{M} f \mu_{0}=C_{x} \int_{M} f \mu_{0}
$$

with $C_{x}=\langle A, \varphi\rangle$. Thus $A\left|U_{x}=C_{x} \mu_{0}\right| U_{x}$. Since U is connected, the constants C_{x} are all equal: Choose $\varphi \in C_{c}^{\infty}\left(U_{x} \cap U_{y}\right)$ with $\int \varphi \mu_{0}=1$. Thus (3) is proved.
(4) The operator $\check{G}_{c}: C^{\infty}(M) \rightarrow \mathcal{D}^{\prime}(M)$ has the following property: If for $f \in C^{\infty}(M)$ and a connected open $U \subseteq M$ the restriction $f \mid U$ is constant, then we have $\check{G}(f)\left|U=C_{U}(f) \mu_{0}\right| U$ for some constant $C_{U}(f)$.

For $x \in U$ choose $g \in C^{\infty}(M)$ with $g=1$ near $M \backslash U$ and $g=0$ on a neighborhood V of x. Then for any $X \in \mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$, that is $X=\hat{\iota}_{\mu_{0}}^{-1}(d \omega)$ for some $\omega \in \Omega_{c}^{m-2}(W, \partial W)$ where $W \subset M$ is an oriented open set, let $Y=\hat{\iota}_{\mu_{0}}^{-1}(d(g \omega))$. The vector field $Y \in \mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$ equals X near $M \backslash U$ and vanishes on V.
Since f is constant on $U, \mathcal{L}_{X} f=\mathcal{L}_{Y} f$. For all $h \in C^{\infty}(M)$ we have $\left\langle\mathcal{L}_{X} \check{G}_{c}(f), h\right\rangle=\left\langle\check{G}_{c}(f),-\mathcal{L}_{X} h\right\rangle=-G_{c}\left(f, \mathcal{L}_{X} h\right)=$ $G_{c}\left(\mathcal{L}_{X} f, h\right)=\left\langle\breve{G}_{c}\left(\mathcal{L}_{X} f\right), h\right\rangle$, since G_{c} is invariant. Thus also

$$
\mathcal{L}_{X} \check{G}_{c}(f)=\check{G}_{c}\left(\mathcal{L}_{X} f\right)=\check{G}_{c}\left(\mathcal{L}_{Y} f\right)=\mathcal{L}_{Y} \check{G}_{c}(f)
$$

Now Y vanishes on V and therefore so does $\mathcal{L}_{X} \check{G}_{c}(f)$. By (3) we have $\check{G}_{c}(f)\left|V=C_{V}(f) \mu_{0}\right| V$ for some $C_{V}(f) \in \mathbb{R}$. Since U is connected, all the constants $C_{V}(f)$ have to agree, giving a constant $C_{U}(f)$, depending only on U and f. Thus (4) follows.

By the Schwartz kernel theorem, \check{G}_{c} has a kernel \hat{G}_{c}, which is a distribution (generalized function) in

$$
\begin{aligned}
\hat{G}_{c} \in \mathcal{D}^{\prime}(M \times M) & =\left(\mathcal{D}(M) \widehat{\widehat{\otimes} \mathcal{D}(M))^{\prime}=}\right. \\
& =(\mathcal{D}(M) \widehat{\otimes} \mathcal{D}(M))^{\prime}=L\left(\mathcal{D}(M), \mathcal{D}^{\prime}(M)\right) \ni \check{G}_{c}
\end{aligned}
$$

where one needs first the completed inductive or ϵ-tensorproduct, and then the projective one. Note the defining relations

$$
G_{c}(f, g)=\left\langle\check{G}_{c}(f), g\right\rangle=\left\langle\hat{G}_{c}, f \otimes g\right\rangle
$$

Moreover, \hat{G}_{c} is invariant under the diagonal action of $\operatorname{Diff}\left(M, \mu_{0}\right)$ on $M \times M$. In view of the tensor product in the defining relations, the infinitesimal version of this invariance is: $\mathcal{L}_{X \times 0+0 \times X} \hat{G}_{c}=0$ for all $X \in \mathfrak{X}\left(M, \partial M, \mu_{0}\right)$.
(5) There exists a constant $C_{2}=C_{2}(c)$ such that the distribution $\hat{G}_{c}-C_{2} \mu_{0} \otimes \mu_{0}$ is supported on the diagonal of $M \times M$.

Namely, if $(x, y) \in M \times M$ is not on the diagonal, then there exist open neighborhoods U_{x} of x and U_{y} of y in M such that $\overline{U_{x}} \times \overline{U_{y}}$ is disjoint to the diagonal, or $\overline{U_{x}} \cap \overline{U_{y}}=\emptyset$. Choose any functions $f, g \in C^{\infty}(M)$ with $\operatorname{supp}(f) \subset U_{x}$ and $\operatorname{supp}(g) \subset U_{y}$. Then $f \mid\left(M \backslash \overline{U_{x}}\right)=0$, so by (4), $\check{G}_{c}(f) \mid\left(M \backslash \overline{U_{x}}\right)=C_{M \backslash \overline{U_{x}}}(f) \cdot \mu_{0}$.
Therefore,

$$
\begin{aligned}
& G_{c}(f, g)=\left\langle\hat{G}_{c}, f \otimes g\right\rangle=\left\langle\check{G}_{c}(f), g\right\rangle \\
& \quad=\left\langle\check{G}_{c}(f)\right|\left(M \backslash \overline{U_{x}}\right), g\left|\left(M \backslash \overline{U_{x}}\right)\right\rangle, \text { since } \operatorname{supp}(g) \subset U_{y} \subset M \backslash \overline{U_{x}}, \\
& \quad=C_{M \backslash \overline{U_{x}}}(f) \cdot \int_{M} g \mu_{0}
\end{aligned}
$$

By applying the argument for the transposed bilinear form $G_{c}^{T}(g, f)=G_{c}(f, g)$, which is also $\operatorname{Diff}\left(M, \mu_{0}\right)$-invariant, we get

$$
G_{c}(f, g)=G_{c}^{T}(g, f)=C_{M \backslash \overline{U_{y}}}^{\prime}(g) \cdot \int_{M} f \mu_{0}
$$

Fix two functions f_{0}, g_{0} with the same properties as f, g and additionally $\int_{M} f_{0} \mu_{0}=1$ and $\int_{M} g_{0} \mu_{0}=1$. Then we get $C_{M \backslash \overline{U_{x}}}(f)=C_{M \backslash \overline{U_{y}}}^{\prime}\left(g_{0}\right) \int_{M} f \mu_{0}$, and so

$$
\begin{aligned}
G_{c}(f, g) & =C_{M \backslash \overline{U_{y}}}^{\prime}\left(g_{0}\right) \int_{M} f \mu_{0} \cdot \int_{M} g \mu_{0} \\
& =C_{M \backslash \overline{U_{x}}}\left(f_{0}\right) \int_{M} f \mu_{0} \cdot \int_{M} g \mu_{0}
\end{aligned}
$$

Since $\operatorname{dim}(M) \geq 2$ and M is connected, the complement of the diagonal in $M \times M$ is also connected, and thus the constants $C_{M \backslash \overline{U_{x}}}\left(f_{0}\right)$ and $C_{M \backslash \overline{U_{y}}}^{\prime}\left(g_{0}\right)$ cannot depend on the functions f_{0}, g_{0} or the open sets U_{x} and U_{y} as long as the latter are disjoint. Thus there exists a constant $C_{2}(c)$ such that for all $f, g \in C^{\infty}(M)$ with disjoint supports we have

$$
G_{c}(f, g)=C_{2}(c) \int_{M} f \mu_{0} \cdot \int_{M} g \mu_{0}
$$

Since $C_{c}^{\infty}\left(U_{x} \times U_{y}\right)=C_{c}^{\infty}\left(U_{x}\right) \bar{\otimes} C_{c}^{\infty}\left(U_{y}\right)$, this implies claim (5).

Now we can finish the proof. We may replace $\hat{G}_{c} \in \mathcal{D}^{\prime}(M \times M)$ by $\hat{G}_{c}-C_{2} \mu_{0} \otimes \mu_{0}$ and thus assume without loss that the constant C_{2} in (5) is 0 . Let (U, u) be an oriented chart on M such that $\mu_{0} \mid U=d u^{1} \wedge \cdots \wedge d u^{m}$, and let \tilde{U} be an extension of U to a smooth manifold without boundary with an extension of the chart mapping u. The distribution $\hat{G}_{c} \mid U \times U \in \mathcal{D}^{\prime}(U \times U) \subset \mathcal{D}^{\prime}(\tilde{U} \times \tilde{U})$ has support contained in the diagonal and is of finite order k. By [Hörmander I, 1983, Theorem 5.2.3], the corresponding operator $\check{G}_{c}: C_{c}^{\infty}(U) \rightarrow \mathcal{D}^{\prime}(U)$ is of the form $\hat{G}_{c}(f)=\sum_{|\alpha| \leq k} A_{\alpha} . \partial^{\alpha} f$ for $A_{\alpha} \in \mathcal{D}^{\prime}(U)$, so that $G(f, g)=\left\langle\check{G}_{c}(f), g\right\rangle=\sum_{\alpha}\left\langle A_{\alpha},\left(\partial^{\alpha} f\right) \cdot g\right\rangle$. Moreover, the A_{α} in this representation are uniquely given, as is seen by a look at [Hörmander I, 1983, Theorem 2.3.5].

For $x \in U$ choose an open set U_{x} with $x \in U_{x} \subset \overline{U_{x}} \subset U$, and choose $X \in \mathfrak{X}_{\text {exact }}\left(M, \partial M, \mu_{0}\right)$ with $X \mid U_{x}=\partial_{u^{i}}$ (tangential to the boundary), as in (2д). For functions $f, g \in C_{c}^{\infty}\left(U_{x}\right)$ we then have, by the invariance of G_{c},

$$
\begin{aligned}
0 & =G_{c}\left(\mathcal{L}_{X} f, g\right)+G_{c}\left(f, \mathcal{L}_{X} g\right)=\left\langle\hat{G}_{c} \mid U \times U, \mathcal{L}_{X} f \otimes g+f \otimes \mathcal{L}_{X} g\right\rangle \\
& =\sum_{\alpha}\left\langle A_{\alpha},\left(\partial^{\alpha} \partial_{u^{i}} f\right) \cdot g+\left(\partial^{\alpha} f\right)\left(\partial_{\mu^{i}} g\right)\right\rangle \\
& =\sum_{\alpha}\left\langle A_{\alpha}, \partial_{u^{i}}\left(\left(\partial^{\alpha} f\right) \cdot g\right)\right\rangle=\sum_{\alpha}\left\langle-\partial_{u^{i}} A_{\alpha},\left(\partial^{\alpha} f\right) \cdot g\right\rangle
\end{aligned}
$$

Since the corresponding operator has again a kernel distribution which is supported on the diagonal, and since the distributions in the representation are unique, we can conclude that $\partial_{\mu^{i}} A_{\alpha} \mid U_{x}=0$ for each α, and each i such that $\partial_{u^{i}}$ is tangential to the boundary.

To see that this implies that $A_{\alpha}\left|U_{x}=C_{\alpha} \mu_{0}\right| U_{x}$, let $f \in C_{c}^{\infty}\left(U_{x}\right)$ with $\int_{M} f \mu_{0}=0$. Then, as in (3), there exists $\omega \in \Omega_{c}^{m-1}\left(U_{x}, \partial U_{x}\right)$ with $d \omega=f \mu_{0}$. We have $\omega=\sum_{i} \omega_{i} \cdot d u^{1} \wedge \cdots \wedge \widehat{d u^{i}} \wedge d u^{m}$ (only those i with $\partial_{u^{i}}$ tangential to the boundary have $\omega_{i} \neq 0$), and so $f=\sum_{i}(-1)^{i+1} \partial_{u^{i}} \omega_{i}$ with $\omega_{i} \in C_{c}^{\infty}\left(U_{x}\right)$. Thus

$$
\left\langle A_{\alpha}, f\right\rangle=\sum_{i}(-1)^{i+1}\left\langle A_{\alpha}, \partial_{u^{i}} \omega_{i}\right\rangle=\sum_{i}(-1)^{i}\left\langle\partial_{u^{i}} A_{\alpha}, \omega_{i}\right\rangle=0 .
$$

Hence $\left\langle A_{\alpha}, f\right\rangle=0$ for all $f \in C_{c}^{\infty}\left(U_{x}\right)$ with zero integral and as in the proof of (3) we can conclude that $A_{\alpha}\left|U_{x}=C_{\alpha} \mu_{0}\right| U_{x}$.

But then $G_{c}(f, g)=\int_{U_{x}}(L f) \cdot g \mu_{0}$ for the differential operator $L=\sum_{|\alpha| \leq k} C_{\alpha} \partial^{\alpha}$ with constant coefficients on U_{x}. Now we choose $g \in C_{c}^{\infty}\left(U_{x}\right)$ such that $g=1$ on the support of f. By the invariance of G_{c} we have again

$$
\begin{gathered}
0=G_{c}\left(\mathcal{L}_{X} f, g\right)+G_{c}\left(f, \mathcal{L}_{X} g\right)=\int_{U_{x}} L\left(\mathcal{L}_{X} f\right) \cdot g \mu_{0}+\int_{U_{x}} L(f) \cdot \mathcal{L}_{X} g \cdot \mu_{0} \\
=\int_{U_{X}} L\left(\mathcal{L}_{X} f\right) \mu_{0}+0
\end{gathered}
$$

for each $X \in \mathfrak{X}\left(M, \partial M, \mu_{0}\right)$. Thus the distribution $f \mapsto \int_{U_{x}} L(f) \mu_{0}$ vanishes on all functions of the form $\mathcal{L}_{X} f$, and by (3) we conclude that $L(\quad) \cdot \mu_{0}=C_{x} \cdot \mu_{0}$ in $\mathcal{D}^{\prime}\left(U_{x}\right)$, or $L=C_{x}$ Id. By covering M with open sets U_{x}, we see that all the constants C_{x} are the same. This concludes the proof of the Main Theorem.

Thank you for listening.

