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Abstract

For a smooth compact manifold M, any weak Riemannian metric
on the space of smooth positive densities which is invariant under
the right action of the diffeomorphism group Diff (M) is of the form

Gµ(α, β) = C1(µ(M))

∫
M

α

µ

β

µ
µ+ C2(µ(M))

∫
M
α ·
∫
M
β

for smooth functions C1,C2 of the total volume µ(M) =
∫
M µ.

In this talk the result is extended to compact smooth manifolds
with corners (for example, a simplex), and the full proof is given
(keeping the (partial) tradition of naturality questions in CES).



The Fisher–Rao metric on the space Prob(M) of probability
densities is of importance in the field of information geometry.
Restricted to finite-dimensional submanifolds of Prob(M), so-called
statistical manifolds, it is called Fisher’s information metric
[Amari: Differential-geometrical methods in statistics, 1985]. The
Fisher–Rao metric is invariant under the action of the
diffeomorphism group. A uniqueness result was established
[Čencov: Statistical decision rules and optimal inference, 1982, p.
156] for Fisher’s information metric on finite sample spaces and
[Ay, Jost, Le, Schwachhöfer, 2014] extended it to infinite sample
spaces.

See also [Ay, Jost, Le, Schwachhöfer: Information Geometry, 2017].

The Fisher–Rao metric on the infinite-dimensional manifold of all
positive smooth probability densities was studied in [Friedrich: Die
Fisher-Information und symplektische Strukturen, 1991], including
the computation of its curvature.



Manifolds with corners

A manifold with corners (recently also called a quadrantic
manifold) M is a smooth manifold modelled on open subsets of
Rm
≥0. Assume it is connected and second countable; then it is

paracompact and it admits smooth partitions of unity. Any
manifold with corners M is a submanifold with corners of an open
manifold M̃ of the same dim. Restriction C∞(M̃)→ C∞(M) is a
surjective continuous linear map which admits a continuous linear
section.Thus C∞(M) is a topological direct summand in C∞(M̃)
and the same holds for the dual spaces: The space of distributions
D′(M), which we identity with C∞(M)′, is a direct summand in
D′(M̃). It consists of all distributions with support in M.

We do not assume that M is oriented, but eventually, that M is
compact. Diffeomorphisms of M map the boundary ∂M to itself
and map the boundary ∂qM of corners of codimension q to itself;
∂qM is a submanifold of codimension q in M; in general ∂qM has
finitely many connected components. We shall consider ∂M as
stratified into the connected components of all ∂qM for q > 0.



The space of densities

Let Mm be a smooth manifold, possibly with corners. Let (Uα, uα)
be a smooth atlas for it. The volume bundle (Vol(M), πM ,M) of
M is the 1-dimensional vector bundle (line bundle) which is given
by the following cocycle of transition functions:

ψαβ : Uαβ = Uα ∩ Uβ → R \ {0} = GL(1,R),

ψαβ(x) = | det d(uβ ◦ u−1
α )(uα(x))| =

1

| det d(uα ◦ u−1
β )(uβ(x))|

.

Vol(M) is a trivial line bundle over M. But there is no natural
trivialization. There is a natural order on each fiber. Since Vol(M)
is a natural bundle of order 1 on M, there is a natural action of the
group Diff(M) on Vol(M), given by

Vol(M)

��

| det(Tϕ−1)| ◦ϕ// Vol(M)

��
M

ϕ // M

.



If M is orientable, then Vol(M) = ΛmT ∗M. If M is not orientable,
let M̃ be the orientable double cover of M with its
deck-transformation τ : M̃ → M̃. Then Γ(Vol(M)) is isomorphic to
the space {ω ∈ Ωm(M̃) : τ∗ω = −ω}. These are the ‘formes
impaires’ of de Rham. See [M 2008, 13.1] for this.

Sections of the line bundle Vol(M) are called densities. The space
Γ(Vol(M)) of all smooth sections is a Fréchet space in its natural
topology; see [Kriegl-M, 1997]. For each section α of Vol(M) of
compact support the integral

∫
M α is invariantly defined as follows:

Let (Uα, uα) be an atlas on M with associated trivialization
ψα : Vol(M)|Uα → R, and let fα be a partition of unity with
supp(fα) ⊂ Uα. Then we put∫

M
µ =

∑
α

∫
Uα

fαµ :=
∑
α

∫
uα(Uα)

fα(u−1
α (y)).ψα(µ(u−1

α (y))) dy .

The integral is independent of the choice of the atlas and the
partition of unity.



The Fisher–Rao metric

Let Mm be a smooth compact manifold without boundary. Let
Dens+(M) be the space of smooth positive densities on M, i.e.,
Dens+(M) = {µ ∈ Γ(Vol(M)) : µ(x) > 0 ∀x ∈ M}.
Let Prob(M) be the subspace of positive densities with integral 1.
For µ ∈ Dens+(M) we have Tµ Dens+(M) = Γ(Vol(M)) and for
µ ∈ Prob(M) we have
Tµ Prob(M) = {α ∈ Γ(Vol(M)) :

∫
M α = 0}.

The Fisher–Rao metric on Prob(M) is defined as:

G FR
µ (α, β) =

∫
M

α

µ

β

µ
µ.

It is invariant for the action of Diff(M) on Prob(M):(
(ϕ∗)∗G FR

)
µ

(α, β) = G FR
ϕ∗µ(ϕ∗α,ϕ∗β) =

=

∫
M

(α
µ
◦ ϕ
)(β

µ
◦ ϕ
)
ϕ∗µ =

∫
M

α

µ

β

µ
µ .



Main Theorem. [BBM, 2016] for M without boundary

Let M be a connected smooth compact manifold with corners, of
dimension ≥ 2. Let G be a smooth (equivalently, bounded) bilinear
form on Dens+(M) which is invariant under the action of Diff(M).
Then

Gµ(α, β) = C1(µ(M))

∫
M

α

µ

β

µ
µ+ C2(µ(M))

∫
M
α ·
∫
M
β

for smooth functions C1,C2 of the total volume µ(M).

To see that this theorem implies the uniqueness of the Fisher–Rao
metric, note that if G is a Diff(M)-invariant Riemannian metric on
Prob(M), then we can equivariantly extend it to Dens+(M) via

Gµ(α, β) = G µ
µ(M)

(
α−

(∫
M
α
) µ

µ(M)
, β −

(∫
M
β
) µ

µ(M)

)
.



Relations to right-invariant metrics on diffeom. groups

Let µ0 ∈ Prob(M) be a fixed smooth probability density. In
[Khesin, Lenells, Misiolek, Preston, 2013] it has been shown, that
the degenerate, Ḣ1-metric 1

2

∫
M divµ0(X ). divµ0(X ).µ0 on X(M) is

invariant under the adjoint action of Diff(M, µ0). Thus the
induced degenerate right invariant metric on Diff(M) descends to
a metric on Prob(M) ∼= Diff(M, µ0)\Diff(M) via

Diff(M) 3 ϕ 7→ ϕ∗µ0 ∈ Prob(M)

which is invariant under the right action of Diff(M). This is the
Fisher–Rao metric on Prob(M). In [Modin, 2014], the Ḣ1-metric
was extended to a non-degenerate metric on Diff(M), also
descending to the Fisher–Rao metric.



Corollary. Let dim(M) ≥ 2. If a weak right-invariant (possibly
degenerate) Riemannian metric G̃ on Diff(M) descends to a metric
G on Prob(M) via the right action, i.e., the mapping ϕ 7→ ϕ∗µ0

from (Diff(M), G̃ ) to (Prob(M),G ) is a Riemannian submersion,
then G has to be a multiple of the Fisher–Rao metric.

Note that any right invariant metric G̃ on Diff(M) descends to a
metric on Prob(M) via ϕ 7→ ϕ∗µ0; but this is not
Diff(M)-invariant in general.



Invariant metrics on Dens+(S1).

Dens+(S1) = Ω1
+(S1), and Dens+(S1) is Diff(S1)-equivariantly

isomorphic to the space of all Riemannian metrics on S1 via
Φ = ( )2 : Dens+(S1)→ Met(S1), Φ(fdθ) = f 2dθ2.
On Met(S1) there are many Diff(S1)-invariant metrics; see [Bauer,
Harms, M, 2013]. For example Sobolev-type metrics. Write
g ∈ Met(S1) in the form g = g̃dθ2 and h = h̃dθ2, k = k̃dθ2 with
g̃ , h̃, k̃ ∈ C∞(S1). The following metrics are Diff(S1)-invariant:

G l
g (h, k) =

∫
S1

h̃

g̃
. (1 + ∆g )n

(
k̃

g̃

)√
g̃ dθ ;

here ∆g is the Laplacian on S1 with respect to the metric g . The
pullback by Φ yields a Diff(S1)-invariant metric on Dens+(M):

Gµ(α, β) = 4

∫
S1

α

µ
.
(

1 + ∆Φ(µ)
)n (β

µ

)
µ .

For n = 0 this is 4 times the Fisher–Rao metric. For n ≥ 1 we get
many Diff(S1)-invariant metrics on Dens+(S1) and on Prob(S1).



Moser’s theorem for manifolds with corners
[BMPR18]

Let M be a compact smooth manifold with corners, possibly
non-orientable. Let µ0 and µ1 be two smooth positive densities in
Dens+(M) with

∫
M µ0 =

∫
M µ1. Then there exists a

diffeomorphism ϕ : M → M such that µ1 = ϕ∗µ0. If and only if
µ0(x) = µ1(x) for each corner x ∈ ∂≥2M of codimension ≥ 2,
then ϕ can be chosen to be the identity on ∂M.

This result is highly desirable even for M a simplex. The proof is
essentially contained in [Banyaga1974], who proved it for manifolds
with boundary.



Aside: Geometry of the Fisher-Rao metric

Gµ(α, β) = C1(µ(M))

∫
M

α

µ

β

µ
µ+ C2(µ(M))

∫
M

α ·
∫
M

β

This metric will be studied in different representations.

Dens+(M)
R // C∞(M,R>0)

Φ // R>0 × S ∩ C∞>0

W×Id// (W−,W+)× S ∩ C∞>0 .

We fix µ0 ∈ Prob(M) and consider the mapping

R : Dens+(M)→ C∞(M,R>0) , R(µ) = f =

√
µ

µ0
.

The map R is a diffeomorphism and we will denote the induced metric by
G̃ =

(
R−1

)∗
G ; it is given by the formula

G̃f (h, k) = 4C1(‖f ‖2)〈h, k〉+ 4C2(‖f ‖2)〈f , h〉〈f , k〉 ,

and this formula makes sense for f ∈ C∞(M,R) \ {0}.
The map R is inspired by [B. Khesin, J. Lenells, G. Misiolek, S. C.

Preston: Geometry of diffeomorphism groups, complete integrability and

geometric statistics. Geom. Funct. Anal., 23(1):334-366, 2013.]



Proof of the Main Theorem

Let us fix a basic probability density µ0. By the Moser’s theorem
for manifolds with corners, there exists for each µ ∈ Dens+(M) a
diffeomorphism ϕµ ∈ Diff(M) with ϕ∗µµ = µ(M)µ0 =: c .µ0 where
c = µ(M) =

∫
M µ > 0. Then(

(ϕ∗µ)∗G
)
µ

(α, β) = Gϕ∗
µµ(ϕ∗µα,ϕ

∗
µβ) = Gc.µ0(ϕ∗µα,ϕ

∗
µβ) .

Thus it suffices to show that for any c > 0 we have

Gcµ0(α, β) = C1(c).

∫
M

α

µ0

β

µ0
µ0 + C2(c)

∫
M
α ·
∫
M
β

for some functions C1,C2 of the total volume c = µ(M). Both
bilinear forms are still invariant under the action of the group
Diff(M, cµ0) = Diff(M, µ0) = {ψ ∈ Diff(M) : ψ∗µ0 = µ0}.



The bilinear form

Tµ0 Dens+(M)× Tµ0(M) Dens+ 3 (α, β) 7→ Gcµ0

( α
µ0
µ0,

β

µ0
µ0

)
can be viewed as a bilinear form

C∞(M)× C∞(M) 3 (f , g) 7→ Gc(f , g) .

We will consider now the associated bounded linear mapping

Ǧc : C∞(M)→ C∞(M)′ = D′(M) .

(1) The Lie algebra X(M, ∂M, µ0) of Diff(M, µ0) consists of vector
fields X which are tangent to each boundary component ∂qM with

0 = divµ0(X ) :=
LXµ0

µ0
.



On an oriented open subset U ⊂ M, each density is an m-form,
m = dim(M), and divmu0(X ) = diXµ0.

The mapping ι̂µ0 : X(U)→ Ωm−1(U) given by X 7→ iXµ0 is an
isomorphism, and also

ι̂µ0 : X(U, ∂U)→ Ωm−1(U, ∂U) =

= {α ∈ Ωm−1(M) : j∗∂qMα = 0 for all q ≥ 1}

is an isomorphism onto the space of differential forms that pull
back to 0 on each boundary stratum. The Lie subalgebra
X(U, ∂U, µ0) of divergence free vector fields corresponds to the
space of closed (m − 1)-forms.

Denote by Xexact(M, ∂M, µ0) the set (not a vector space) of
‘exact’ divergence free vector fields X = ι̂−1

µ0
(dω), where

ω ∈ Ωm−2
c (U, ∂U) for an oriented open subset U ⊂ M.



(2) If for f ∈ C∞(M) and a connected open set U ⊆ M we have
(LX f )|U = 0 for all X ∈ Xexact(M, ∂M, µ0), then f |U is constant.

Since we shall need some details later on, we prove this well-known
fact. Let x ∈ U \ ∂U. For every tangent vector Xx ∈ TxM we can
find a vector field X ∈ Xexact(M, ∂M, µ0) such that X (x) = Xx ; to
see this, choose a chart (Ux , u) near x such that Ux ⊆ U \ ∂U and
µ0|Ux = du1 ∧ · · · ∧ dum, and choose g ∈ C∞c (Ux), such that
g = 1 near x . Then
X := ι̂−1

µ0
d(g .u2.du3 ∧ · · · ∧ dum) ∈ Xexact(M, ∂M, µ0) and

X = ∂u1 near x . So we can produce a basis for TxM and even a
local frame near x .

Thus LX f |U = 0 for all X ∈ Xexact(M, ∂M, µ0) implies
df |U\∂U = 0, thus df = 0 and f is constant on U.

(2∂) Similarly, if x ∈ ∂qM and Xx ∈ Tx(∂qM) we can find
X ∈ Xexact(M, ∂M, µ0) with X (x) = Xx .



(3) If for a distribution A ∈ D′(M) and a connected open set
U ⊆ M we have LXA|U = 0 for all X ∈ Xexact(M, ∂M, µ0), then
A|U = Cµ0|U for some constant C , meaning 〈A, f 〉 = C

∫
M f µ0

for all f ∈ C∞c (U).

Because 〈LXA, f 〉 = −〈A,LX f 〉, the invariance LXA|U = 0
implies 〈A,LX f 〉 = 0 for all f ∈ C∞c (U). Clearly,

∫
M(LX f )µ0 = 0.

For each x ∈ U let Ux ⊂ U be an open oriented chart which is
diffeomorphic to Rq

≥0 × Rm−q. Let g ∈ C∞c (Ux) satisfy∫
M gµ0 = 0; we will show that 〈A, g〉 = 0. The integral over gµ0

is zero, so the compact cohom. class [gµ0] ∈ Hm
c (Ux , ∂Ux) ∼= R

vanishes; see [BMPR2018, section 8]. Thus there exists
α ∈ Ωm−1

c (Ux , ∂Ux) ⊂ Ωm−1(M, ∂M) with dα = gµ0. Since Ux is
diffeomorphic to Rq

≥0 × Rm−q, we can write α =
∑

j fjdβj with

βj ∈ Ωm−2(Ux , ∂Ux) and fj ∈ C∞c (Ux). Choose h ∈ C∞c (Ux) with
h = 1 on

⋃
j supp(fj), so that α =

∑
j fjd(hβj) and

hβj ∈ Ωm−2(M, ∂M). Then the vector fields Xj = ι̂−1
µ0

d(hβj) lie in
Xexact(M, ∂M, µ0) and we have the identity

∑
j fj .iXi

µ0 = α.



This means
∑

j(LXj
fj)µ0 =

∑
j LXj

(fjµ0) =
∑

j diXj
(fjµ0) =

d
(∑

j fj .iXj
µ0

)
= dα = gµ0 or

∑
j LXj

fj = g , leading to

〈A, g〉 =
∑
j

〈A,LXj
fj〉 = −

∑
j

〈LXj
A, fj〉 = 0 .

So 〈A, g〉 = 0 for all g ∈ C∞c (Ux) with
∫
M gµ0 = 0. Finally,

choose a function ϕ with support in Ux and
∫
M ϕµ0 = 1. Then for

any f ∈ C∞c (Ux), the function defined by g = f − (
∫
M f µ0).ϕ in

C∞(M) satisfies
∫
M gµ0 = 0 and so

〈A, f 〉 = 〈A, g〉+ 〈A, ϕ〉
∫
M

f µ0 = Cx

∫
M

f µ0 ,

with Cx = 〈A, ϕ〉. Thus A|Ux = Cxµ0|Ux . Since U is connected,
the constants Cx are all equal: Choose ϕ ∈ C∞c (Ux ∩ Uy ) with∫
ϕµ0 = 1. Thus (3) is proved.



(4) The operator Ǧc : C∞(M)→ D′(M) has the following
property: If for f ∈ C∞(M) and a connected open U ⊆ M the
restriction f |U is constant, then we have Ǧ (f )|U = CU(f )µ0|U for
some constant CU(f ).

For x ∈ U choose g ∈ C∞(M) with g = 1 near M \ U and g = 0
on a neighborhood V of x . Then for any X ∈ Xexact(M, ∂M, µ0),
that is X = ι̂−1

µ0
(dω) for some ω ∈ Ωm−2

c (W , ∂W ) where W ⊂ M
is an oriented open set, let Y = ι̂−1

µ0
(d(gω)). The vector field

Y ∈ Xexact(M, ∂M, µ0) equals X near M \ U and vanishes on V .
Since f is constant on U, LX f = LY f . For all h ∈ C∞(M) we
have

〈
LX Ǧc(f ), h

〉
=
〈
Ǧc(f ),−LXh

〉
= −Gc(f ,LXh) =

Gc(LX f , h) =
〈
Ǧc(LX f ), h

〉
, since Gc is invariant. Thus also

LX Ǧc(f ) = Ǧc(LX f ) = Ǧc(LY f ) = LY Ǧc(f ) .

Now Y vanishes on V and therefore so does LX Ǧc(f ). By (3) we
have Ǧc(f )|V = CV (f )µ0|V for some CV (f ) ∈ R. Since U is
connected, all the constants CV (f ) have to agree, giving a
constant CU(f ), depending only on U and f . Thus (4) follows.



By the Schwartz kernel theorem, Ǧc has a kernel Ĝc , which is a
distribution (generalized function) in

Ĝc ∈ D′(M ×M) = (D(M) ̂̂⊗D(M))′ =

= (D(M)⊗̂D(M))′ = L(D(M),D′(M)) 3 Ǧc

where one needs first the completed inductive or ε-tensorproduct,
and then the projective one. Note the defining relations

Gc(f , g) = 〈Ǧc(f ), g〉 = 〈Ĝc , f ⊗ g〉.

Moreover, Ĝc is invariant under the diagonal action of Diff(M, µ0)
on M ×M. In view of the tensor product in the defining relations,
the infinitesimal version of this invariance is: LX×0+0×X Ĝc = 0 for
all X ∈ X(M, ∂M, µ0).



(5) There exists a constant C2 = C2(c) such that the distribution
Ĝc − C2µ0 ⊗ µ0 is supported on the diagonal of M ×M.

Namely, if (x , y) ∈ M ×M is not on the diagonal, then there exist
open neighborhoods Ux of x and Uy of y in M such that Ux × Uy

is disjoint to the diagonal, or Ux ∩ Uy = ∅. Choose any functions
f , g ∈ C∞(M) with supp(f ) ⊂ Ux and supp(g) ⊂ Uy . Then
f |(M \ Ux) = 0, so by (4), Ǧc(f )|(M \ Ux) = CM\Ux

(f ).µ0.
Therefore,

Gc(f , g) = 〈Ĝc , f ⊗ g〉 = 〈Ǧc(f ), g〉
= 〈Ǧc(f )|(M \ Ux), g |(M \ Ux)〉 , since supp(g) ⊂ Uy ⊂ M \ Ux ,

= CM\Ux
(f ) ·

∫
M

gµ0

By applying the argument for the transposed bilinear form
GT
c (g , f ) = Gc(f , g), which is also Diff(M, µ0)-invariant, we get

Gc(f , g) = GT
c (g , f ) = C ′

M\Uy
(g) ·

∫
M

f µ0 .



Fix two functions f0, g0 with the same properties as f , g and
additionally

∫
M f0µ0 = 1 and

∫
M g0µ0 = 1. Then we get

CM\Ux
(f ) = C ′

M\Uy
(g0)

∫
M f µ0 , and so

Gc(f , g) = C ′
M\Uy

(g0)

∫
M

f µ0 ·
∫
M

gµ0

= CM\Ux
(f0)

∫
M

f µ0 ·
∫
M

gµ0 .

Since dim(M) ≥ 2 and M is connected, the complement of the
diagonal in M ×M is also connected, and thus the constants
CM\Ux

(f0) and C ′
M\Uy

(g0) cannot depend on the functions f0, g0 or

the open sets Ux and Uy as long as the latter are disjoint. Thus
there exists a constant C2(c) such that for all f , g ∈ C∞(M) with
disjoint supports we have

Gc(f , g) = C2(c)

∫
M

f µ0 ·
∫
M

gµ0

Since C∞c (Ux × Uy ) = C∞c (Ux)⊗̄C∞c (Uy ), this implies claim (5).



Now we can finish the proof. We may replace Ĝc ∈ D′(M ×M) by
Ĝc −C2µ0⊗ µ0 and thus assume without loss that the constant C2

in (5) is 0. Let (U, u) be an oriented chart on M such that
µ0|U = du1 ∧ · · · ∧ dum, and let Ũ be an extension of U to a
smooth manifold without boundary with an extension of the chart
mapping u. The distribution Ĝc |U × U ∈ D′(U × U) ⊂ D′(Ũ × Ũ)
has support contained in the diagonal and is of finite order k . By
[Hörmander I, 1983, Theorem 5.2.3], the corresponding operator
Ǧc : C∞c (U)→ D′(U) is of the form Ĝc(f ) =

∑
|α|≤k Aα.∂

αf for

Aα ∈ D′(U), so that G (f , g) = 〈Ǧc(f ), g〉 =
∑

α〈Aα, (∂αf ).g〉.
Moreover, the Aα in this representation are uniquely given, as is
seen by a look at [Hörmander I, 1983, Theorem 2.3.5].



For x ∈ U choose an open set Ux with x ∈ Ux ⊂ Ux ⊂ U, and
choose X ∈ Xexact(M, ∂M, µ0) with X |Ux = ∂ui (tangential to the
boundary), as in (2∂). For functions f , g ∈ C∞c (Ux) we then have,
by the invariance of Gc ,

0 = Gc(LX f , g) + Gc(f ,LXg) = 〈Ĝc |U × U,LX f ⊗ g + f ⊗ LXg〉

=
∑
α

〈Aα, (∂α∂ui f ).g + (∂αf )(∂ui g)〉

=
∑
α

〈Aα, ∂ui ((∂αf ).g)〉 =
∑
α

〈−∂ui Aα, (∂αf ).g〉 .

Since the corresponding operator has again a kernel distribution
which is supported on the diagonal, and since the distributions in
the representation are unique, we can conclude that ∂ui Aα|Ux = 0
for each α, and each i such that ∂ui is tangential to the boundary.



To see that this implies that Aα|Ux = Cαµ0|Ux , let f ∈ C∞c (Ux)
with

∫
M f µ0 = 0. Then, as in (3), there exists ω ∈ Ωm−1

c (Ux , ∂Ux)

with dω = f µ0. We have ω =
∑

i ωi .du1 ∧ · · · ∧ d̂ui ∧ dum (only
those i with ∂ui tangential to the boundary have ωi 6= 0), and so
f =

∑
i (−1)i+1∂uiωi with ωi ∈ C∞c (Ux). Thus

〈Aα, f 〉 =
∑
i

(−1)i+1〈Aα, ∂uiωi 〉 =
∑
i

(−1)i 〈∂ui Aα, ωi 〉 = 0 .

Hence 〈Aα, f 〉 = 0 for all f ∈ C∞c (Ux) with zero integral and as in
the proof of (3) we can conclude that Aα|Ux = Cαµ0|Ux .



But then Gc(f , g) =
∫
Ux

(Lf ).gµ0 for the differential operator
L =

∑
|α|≤k Cα∂

α with constant coefficients on Ux . Now we
choose g ∈ C∞c (Ux) such that g = 1 on the support of f . By the
invariance of Gc we have again

0 = Gc(LX f , g)+Gc(f ,LXg) =

∫
Ux

L(LX f ).gµ0+

∫
Ux

L(f ).LXg .µ0

=

∫
Ux

L(LX f )µ0 + 0

for each X ∈ X(M, ∂M, µ0). Thus the distribution f 7→
∫
Ux

L(f )µ0

vanishes on all functions of the form LX f , and by (3) we conclude
that L( ).µ0 = Cx .µ0 in D′(Ux), or L = Cx Id. By covering M
with open sets Ux , we see that all the constants Cx are the same.
This concludes the proof of the Main Theorem.



Thank you for listening.


