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For a compact manifold Mm equipped with a smooth fixed
background Riemannian metric ĝ we consider the space MetHs (M)
of all Riemannian metrics of Sobolev class Hs for real s < m

2 with
respect to ĝ . The L2-metric on MetC∞(M) was considered by
DeWitt, Ebin, Freed and Groisser, Gil-Medrano and Michor, Clarke.
Sobolev metrics of integer order on MetC∞(M) were considered in
[M.Bauer, P.Harms, and P.W. Michor: Sobolev metrics on the
manifold of all Riemannian metrics. J. Differential Geom.,
94(2):187-208, 2013.] In this talk we consider variants of these
Sobolev metrics which include Sobolev metrics of any positive real
(not integer) order s < m

2 . We derive the geodesic equations and
show that they are well-posed under some conditions and induce a
locally diffeomorphic geodesic exponential mapping.



The diagram

Diff(M)
r-acts //

r-acts

%%
Diff(M,µ)

����

Imm(M,N)

needs ḡxx Diff(M) &&

DiffA(N)

r-acts

��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(M)

Diff(M) %% %%

Bi (M,N)

needs ḡxx
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Diff(M) Lie group of all diffeos on compact mf M
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Imm(M,N) mf of all immersions M → N

Bi (M,N) = Imm/Diff(M) shape space

Vol1+(M) ⊂ Γ(vol(M)) space of positive smooth probability densities



Sobolev spaces of sections of vector bundles

For each s ∈ R we write Hs(Rm,Rn) for the Sobolev space of
order s of real-valued functions on Rm, described via Fourier
transform ‖f ‖Hs = ‖f̂ (ξ)(1 + |ξ|2)s/2‖L2 .
Let E be a vector bundle of rank n ∈ N>0 over M. We choose a
finite vector bundle atlas and a subordinate partition of unity in the
following way: Let (uα : Uα → uα(Uα) ⊆ Rm)α∈A be a finite atlas
for M, let (ϕα)α∈A be a smooth partition of unity subordinated to
(Uα)α∈A, and let ψα : E |Uα → Uα × Rn be vector bundle charts.
Note that we can choose open sets U◦α such that
supp(ψα) ⊂ U◦α ⊂ U◦α ⊂ Uα such that each uα(U◦α) is an open set
in Rm with Lipschitz boundary.
A. Behzadan and M. Holst. On certain geometric operators between Sobolev spaces of sections of tensor bundles

on compact manifolds equipped with rough metrics, 2017.



Then we define for each s ∈ R and f ∈ ΓC∞(E )

‖f ‖2
ΓHs (E) :=

∑
α∈A
‖ prRn ◦ψα ◦ (ϕα · f ) ◦ u−1

α ‖2
Hs(Rm,Rn).

Then ‖ · ‖ΓHs (E) is a norm, which comes from a scalar product, and
we write ΓHs (E ) for the Hilbert completion of ΓC∞(E ) under the
norm. Then ΓHs (E ) is independent of the choice of atlas and
partition of unity, up to equivalence of norms.
C. Schneider and N. Grosse. Sobolev spaces on Riemannian manifolds with bounded geometry: General coordinates
and traces, 2013

H. Triebel. Theory of functions spaces II



About Met(M)

Let Met(M) = Γ(S2
+T
∗M) be the space of all smooth Riemannian

metrics on a compact manifold M.

Let MetHs (M) = ΓHs (S2
+T
∗M) the space of all Sobolev Hs

sections of the bundle of Riemannian metrics, where
s > m

2 = dim(M)
2 ; by the Sobolev inequality then it makes sense to

speak of positive definite metrics.



Weak Riemann metrics on Met(M)

All of them are Diff(M)-invariant; natural, tautological.

Gg (h, k) =

∫
M

g0
2 (h, k) vol(g) =

∫
Tr(g−1hg−1k) vol(g), L2-metr.

or = Φ(Vol(g))

∫
M

g0
2 (h, k) vol(g) conformal

or =

∫
M

Φ(Scalg ).g0
2 (h, k) vol(g) curvature modified

or =

∫
M

(
g0

2 (h, k) + g0
3 (∇gh,∇gk) + · · ·+ g0

p ((∇g )ph, (∇g )pk)
)

vol(g)

or =

∫
M

g0
2 ((1 + ∆g )ph, k) vol(g) Sobolev order p ∈ R>0

or =

∫
M

g0
2

(
f (1 + ∆g )h, k

)
vol(g)

where Φ : R>0 → R>0, Vol =
∫
M vol(g) is total volume of (M, g),

Scal is scalar curvature, and g0
2 is the induced metric on(0

2

)
-tensors. Here f is a suitable spectral function; see below.



∆gh := (∇g )∗,g∇gh = −Trg
−1

((∇g )2h) is the Bochner-Laplacian.
It can act on all tensor fields h, and it respects the degree of the
tensor field it is acting on.
We consider ∆g as an unbounded self-adjoint positive semidefinite
operator on the Hilbert space H0 with compact resolvent. The
domain of definition of ∆g is the space

H2 = H2,g := {h ∈ H0 : (1 + ∆g )h ∈ H0} = {h ∈ H0 : ∆gh ∈ H0}

which is again a Hilbert space with inner product∫
M
g0

2 ((1 + ∆g )h, k) vol(g).

Again H2 does not depend on the choice of g , but the inner
products for different g induce different but equivalent norms on
H2. Similarly we have

H2k = H2k,g : = {h ∈ H0 : (1 + ∆g )kh ∈ H0}
= {h ∈ H0 : ∆gh, (∆g )2, . . . (∆g )k ∈ H0}



The L2-metric on the space of all Riemann metrics

[DeWitt 1969]. [Ebin 1970]. Geodesics and curvature [Freed
Groisser 1989]. [Gil-Medrano Michor 1991] for non-compact M.
[Clarke 2009] showed that geodesic distance for the L2-metric is
positive, and he determined the metric completion of Met(M).
The geodesic equation is completely decoupled from space, it is an
ODE:

gtt = gtg
−1gt + 1

4 Tr(g−1gtg
−1gt) g − 1

2 Tr(g−1gt) gt



A = g−1a for a ∈ TgMet(M)

exp0(A) = 2
n log

(
(1 + 1

4 Tr(A))2 + n
16 Tr(A2

0)
)
Id

+
4√

nTr(A2
0)

arctan

(√
nTr(A2

0)

4 + Tr(A)

)
A0.



Back to the the general metric on Met(M).

We describe all these metrics uniformly as

GP
g (h, k) =

∫
M
g0

2 (Pgh, k) vol(g)

=

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where
Pg : Γ(S2T ∗M)→ Γ(S2T ∗M)

is a positive, symmetric, bijective pseudo-differential operator of
order 2p, p ≥ 0, depending smoothly on the metric g , and also
Diff(M)-equivariantly:

ϕ∗ ◦ Pg = Pϕ∗g ◦ ϕ∗



The geodesic equation in this notation:

gtt = P−1
[
(D(g ,.)Pgt)

∗(gt) +
1

4
.g .Tr(g−1.Pgt .g

−1.gt)

+
1

2
gt .g

−1.Pgt +
1

2
Pgt .g

−1.gt − (D(g ,gt)P)gt

− 1

2
Tr(g−1.gt).Pgt

]
We can rewrite this equation to get it in a slightly more compact

form:

(Pgt)t = (D(g ,gt)P)gt + Pgtt

= (D(g ,.)Pgt)
∗(gt) +

1

4
.g .Tr(g−1.Pgt .g

−1.gt)

+
1

2
gt .g

−1.Pgt +
1

2
Pgt .g

−1.gt −
1

2
Tr(g−1.gt).Pgt



Conserved Quantities on Met(M).

Right action of Diff(M) on Met(M) given by

(g , φ) 7→ φ∗g .

Fundamental vector field (infinitesimal action):

ζX (g) = LXg = −2 Sym∇(g(X )).

If metric GP is invariant, we have the following conserved
quantities

const = GP(gt , ζX (g))

= −2

∫
M
g0

1

(
∇∗ SymPgt , g(X )

)
vol(g)

= −2

∫
M
g
(
g−1∇∗Pgt ,X

)
vol(g)

Since this holds for all vector fields X ,

(∇∗Pgt) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) is const. in t.



On Rn: The pullback of the Ebin metric to DiffS(Rn)

We consider here the right action
r : MetA(Rn)× DiffA(Rn)→ MetA(Rn) which is given by
r(g , ϕ) = ϕ∗g , together with its partial mappings
r(g , ϕ) = rϕ(g) = rg (ϕ) = Pullg (ϕ).

Theorem.If n ≥ 2, the image of Pullḡ , i.e., the DiffA(Rn)-orbit
through ḡ , is the set Metflat

A (Rn) of all flat metrics in MetA(Rn).

The pullback of the Ebin metric to the diffeomorphism group is a
right invariant metric G given by

GId(X ,Y ) = 4

∫
Rn

Tr
(
(Sym dX ).(Sym dY )

)
dx =

∫
Rn

〈
X ,PY

〉
dx

Using the inertia operator P we can write the metric as∫
Rn

〈
X ,PY

〉
dx , with

P = −2(grad div +∆) .



The pullback of the general metric to DiffS(Rn)

We consider now a weak Riemannian metric on MetA(Rn) in its
general form

GP
g (h, k) =

∫
M
g0

2 (Pgh, k) vol(g) =

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where Pg : Γ(S2T ∗M)→ Γ(S2T ∗M) is as described above. If the
operator P is equivariant for the action of DiffA(Rn) on
MetA(Rn), then the induced pullback metric (Pullḡ )∗GP on
DiffA(Rn) is right invariant:

GId(X ,Y ) = −4

∫
Rn

∂j(Pḡ Sym dX )ij .Y
idx (1)

Thus we we get the following formula for the corresponding inertia
operator (P̃X )i =

∑
j ∂j(Pḡ Sym dX )ij . Note that the pullback

metric (Pullḡ )∗GP on DiffA(Rn) is always of one order higher then
the metric GP on MetA(Rn).



The Sobolev metric of order p.

The Sobolev metric GP

GP
g (h, k) =

∫
Rn

Tr(g−1.((1 + ∆)ph).g−1.k) vol(g) .

The pullback of the Sobolev metric GP to the diffeomorphism
group is a right invariant metric G given by

GId(X ,Y ) = −2

∫
Rn

〈
(grad div +∆)(1−∆)pX ,Y

〉
dx .

Thus the inertia operator is given by

P̃ = −2(1−∆)p(∆ + grad div) = −2(1−∆)p(∆ + grad div) .

It is a linear isomorphism Hs(Rn)n → Hs−2p−2(Rn)n for every s.



Theorem

Module properties of Sobolev spaces.
Let E1,E2 be vector bundles over M, and let s1, s2, s ∈ R satisfy

(i) s1 + s2 ≥ 0, min(s1, s2) ≥ s, and s1 + s2 − s > m
2 , or

(ii) s ∈ N, min(s1, s2) > s, and s1 + s2 − s ≥ m
2 , or

(iii) −s1 ∈ N or −s2 ∈ N, s1 + s2 > 0, min(s1, s2) > s,
s1 + s2 − s ≥ m

2 .

Then the tensor product of smooth sections extends to a bounded
bilinear mapping

ΓHs1 (E1)× ΓHs2 (E2)→ ΓHs (E1 ⊗ E2).

A. Behzadan and M. Holst. On certain geometric operators between Sobolev spaces of sections of tensor bundles

on compact manifolds equipped with rough metrics, 2017.



The module properties are invariant under multiplication and
adjoints. Indeed, letting p(s1, s) denote the set of all s2 such that
(s1, s2, s) satisfies condition (i), (ii), or (iii) of theTheorem above,
then the following statements hold for all r , s, t ∈ R:

I If α ∈ p(r , s) and β ∈ p(s, t), then min(α, β) ∈ p(r , t), and
the tensor product of smooth sections extends to a bounded
bilinear mapping

ΓHα(E1)× ΓHβ (E2)→ ΓHmin(α,β)(E1 ⊗ E2).

I If β ∈ p(r , s), then β ∈ p(−s,−r).



Metrics of Sobolev order

For any α ∈ (m2 ,∞], we define the space of Riemannian metrics of
Sobolev order α as

MetHα(M) := ΓHα(S2
+T
∗M).

This is well-defined because the condition α > m
2 ensures that the

tensors in ΓHα(S2T ∗M) are continuous and that MetHα(M) is an
open subset of ΓHα(S2T ∗M). Similarly, fiber metrics on vector
bundles E are defined as elements of ΓHα(S2

+E
∗).

Lemma Let g ∈ MetHα(M) with α > m
2 and let E be a natural

first order vector bundle over M. Then ∇g extends to a bounded
linear mapping

∇g : ΓHs (E )→ ΓHs−1(T ∗M ⊗ E ).

for each s ∈ (−∞, α].



Proof of the lemma

This follows from the module properties: The differential operator
∇g can be written in each vector bundle chart of E as

∇g =
m∑
i=1

ai∂xi + a,

where ai ∈ C∞(Rm,Rn×n) and a ∈ Hα−1(Rm,Rn×n). This can be
seen in several equivalent ways. We only consider the case
E = TM because the general case follows by multilinear algebra.



(1) Using the Levi-Civita covariant derivative ∇ĝ for a smooth
background Riemannian metrig ĝ , we express the Levi-Civita
connection of g ∈ MetHα(M) as

∇g
X = ∇ĝ

X + Ag (X , )

for a suitable
Ag ∈ ΓHα−1(T ∗M ⊗ T ∗M ⊗ TM) = ΓHα−1(T ∗M ⊗ L(TM,TM)).
This tensor field A has to satisfy the following conditions (for
smooth vector fields X , Y , Z ):

(∇ĝ
Xg)(Y ,Z ) = g(A(X ,Y ),Z ) + g(Y ,A(X ,Z )) ⇐⇒ ∇g

Xg = 0,

A(X ,Y ) = A(Y ,X ) ⇐⇒ ∇g is torsionfree.

We take the cyclic permutations of the first equation, sum them
with signs +,+,−, and use symmetry of A to obtain

2g(A(X ,Y ),Z ) = (∇ĝ
Xg)(Y ,Z ) + (∇ĝ

Y g)(Z ,X )− (∇ĝ
Zg)(X ,Y ) ;

this equation determines A uniquely as a Hα−1-tensor field. It is
easy checked that it satisfies the two requirements above.



(2) For each local chart u : U → Rm which extends to a compact
neighborhood of U ⊂ M, the Christoffel forms are given by the
usual formula

Γk
ij =

1

2

∑
l

gkl
(∂gij
∂ul
−
∂glj
∂ui
− ∂gil
∂uj

)
∈ Hα−1(U,R) .

They transform as the last part in the second tangent bundle. The
associated spray Sg is an Hα−1-section of both
πTM : T 2M → TM and T (πM) : T 2M → TM. If α > dim(M)

2 + 1,
then the spray Sg is continuous and we have local existence (but
not uniqueness) of geodesics in each chart separately, by Peano’s

theorem. If α > dim(M)
2 + 2, we have the usual existence and

uniqueness of geodesics, by Picard-Lindelöf, since then Sg is C 1

and thus Lipschitz.



(3) ∇g : (X ,Y ) 7→ ∇g
XY is a bilinear bounded mapping

ΓHα(TM)× ΓH l (TM)→ ΓH l−1(TM) for 1 ≤ l ≤ α;

we write ∇g ∈ L2(ΓHα(TM), ΓH l (TM); ΓH l−1(TM)) to express this
fact. Moreover, ∇g has the expected properties

∇g
fXY = f∇g

XY for f ∈ Hα(M,R),

∇g
X (fY ) = df (X )Y + f∇g

XY for f ∈ Hα(M,R).

Its expression in a local chart is

∇X i∂
ui
Y j∂uj = X i (∂uiY

j)∂uj − X iY jΓk
ij∂uk .

The global implicit equation holds for X ,Z ∈ ΓHα(TM) and
Y ∈ ΓH l (TM) for m

4 + 1
2 < l ≤ α:

2g(∇XY ,Z ) = X (g(Y ,Z )) + Y (g(Z ,X ))− Z (g(X ,Y ))

− g(X , [Y ,Z ]) + g(Y , [Z ,X ]) + g(Z , [X ,Y ]).

Note that [X ,Y ], [Z ,Y ] ∈ ΓH l−1(TM), by differentiation and the
module properties of Sobolev spaces.



Theorem The Bochner Laplacian

Let g ∈ MetHα(M) for α ∈ (m2 ,∞], let E be a natural first order
vector bundle over M, and let s ∈ [2− α, α]. Then the
Bochner-Laplacian ∆g extends to a bounded Fredholm operator of
index zero

∆g : ΓHs (E )→ ΓHs−2(E ),

which is self-adjoint as an unbounded linear operator on ΓHs−2(E )
for the inner product Hs−2(g). For functions the Laplacian extends
to a bounded Fredholm operator of index zero

∆g : Hs(M,R)→ Hs−2(M,R),

even for s ∈ [2− α, α + 1].

The proof involves elliptic estimates from the following papers, where one

also finds similar statements for more general differential operators with

Sobolev coefficients:
O. Müller. Applying the index theorem to non-smooth operators. Journal of Geometry and Physics, 116:140-145,
2017. Theorem 2.

M. Holst, G. Nagy, and G. Tsogtgerel. Rough solutions of the Einstein constraints on closed manifolds without

near-CMC conditions. Communications in Mathematical Physics, 288(2):547-613, 2009. Lemma 34.



Theorem Fractional powers of the Laplacian

Let g ∈ MetHα(M) for α ∈ (m2 ,∞], and let E be a natural first
order vector bundle over M. Then the following statements hold:
(1) There exists a L2(g)-orthonormal basis (ei )i∈N of ΓH0(E ) and a
non-decreasing sequence (λi )i∈N of positive real numbers
converging to ∞ such that it holds for each i ∈ N that
ei ∈ ΓH2(E ) and (1 + ∆g )ei = λiei .
(2) For each function f : {λ1, λ2, . . . } → R the linear operator

ΓH0(E ) ⊃ D(f (1 + ∆g ))
f (1+∆g )−−−−−−−→ ΓH0(E ), h 7→

∑
i∈N
〈hi , ei 〉f (λi )ei

domain D(f (1 + ∆g )) =
{
h ∈ ΓH0(E );

∑
i∈N〈hi , ei 〉2f (λi )

2 <∞
}

is densely defined and self-adjoint with respect to L2(g).
(3) Let α ≥ 2. If s ∈ [0, α] then the Hilbert space D((1 + ∆g )s)
with

‖ · ‖D((1+∆g )s) = ‖(1 + ∆g )s(·)‖ΓH0 (E)

is equal to ΓHs (E ) up to equivalence of norms. If E = R then the
statement holds for s ∈ [0, α + 1].



A message from convenient analysis

Theorem Let E be a vector bundle over M. Then for each
s ∈ (m/2,∞] the space C∞(R, ΓHs (E )) of smooth curves in
ΓHs (E ) consists of all continuous mappings c : R×M → E with
p ◦ c = pr2 : R×M → M such that:

I For each x ∈ M the curve t 7→ c(t, x) ∈ Ex is smooth; let
(∂pt c)(t, x) = ∂pt (c(t, x)), and

I For each p ∈ N≥0, the curve ∂pt c has values in ΓHs (E ) so that
∂pt c : R→ ΓHs (E ), and t 7→ ‖∂tc(t, )‖Hs is bounded,
locally in t.

the proof is based on [4.1.19 and 4.1.23 of Frölicher Kriegl: Linear spaces and differentiation theory, 1988]

Corollary Let E1,E2 be vector bundles over M, let U ⊂ E1 be an
open neighborhood of the image of a smooth section, let
F : U → E2 be a fiber preserving smooth mapping, and let
s ∈ (m/2,∞]. Then the set ΓHs (U) := {h ∈ ΓHs (E1) : h(M) ⊂ U}
is open in ΓHs (E1), and the mapping F∗ : ΓHs (U)→ ΓHs (E2) given
by h 7→ F ◦ h, is smooth. If the restriction of F to each fiber of E1

is real analytic, then F∗ is real analytic.



Theorem The Laplacian depends smoothly on the metric

Let α ∈ (m2 ,∞] and let E → M be a natural bundle of first order.
Then g 7→ ∇g is a real analytic mapping:

∇ : MetHα(M)→ L2(ΓHα(TM), ΓHs (E ); ΓHs−1(E )),

∇ : MetHα(M)→ L(ΓHs (E ); ΓHs−1(T ∗M ⊗ E )),

for 1 ≤ s ≤ α. Consequently, g 7→ ∆g is a real analytic mapping

MetHα(M)→ L(ΓHs (E ), ΓHs−2(E )),

for 2 ≤ s ≤ α. If E = R then g 7→ ∆g is a real analytic mapping

MetHα(M)→ L(Hs(M,R),Hs−2(M,R)),

for 2 ≤ s ≤ α + 1.



The operator f (1 + ∆g)

Let g ∈ MetHα(M) for α ∈ (m2 ,∞], and let E be a natural first
order vector bundle over M. Let (ei )i∈N be an L2(g)-orthonormal
basis of ΓH0(E ) of eigenvectors of 1 + ∆g with eigenvalues
(λi )i∈N ⊂ R>0.
In general the eigenvalues cannot be chosen smoothly, the
eigenfunctions not even continuously, as functions of g . By
[A. Kriegl, P. W. Michor, and A. Rainer. Many parameter Hölder perturbation of unbounded operators. Math.

Ann., 353:519â522, 2012],

the increasingly ordered eigenvalues are Lipschitz in g . However,
along any real analytic curve t 7→ g(t) in MetHα(M) the
eigenvalues and the eigenfunctions can be parameterized real
analytically in t. This follows from a result due to Rellich.



The global resolvent set

{(g , λ) ∈ MetHα(M)×C : (1+∆g−λ) : ΓH2(E )→ ΓH0(E ) invertible}

is open in MetHα(M)× C and contains MetHα(M)× (C \ R>0).
For any simple closed positively oriented C 1-curve γ in C which
does not meet any eigenvalue of 1 + ∆g the operator

P(g , γ) = − 1

2πi

∫
γ

(1 + ∆g − λ)−1dλ : ΓH0(E )→ ΓH2(E )

is the orthogonal projection onto the finite dimensional direct sum
of all eigenspaces for those eigenvalues of 1 + ∆g which lie in the
interior of γ. For fixed γ the operator P(g , γ) is defined for all g in
the open set of those g such that no eigenvalue of 1 + ∆g lies on
γ. It depends smoothly, even Cω, on those g , since inversion

GL(ΓH2(E ), ΓH0(E ))→ L(ΓH0(E ), ΓH2(E ))

is real analytic, and since ΓH2(E )→ ΓH0(E ) is a compact operator.



Let R>0 ⊂ U
f−−→ C be a holomorphic function with

f (R>0) = R>0 where U is an open neighborhood of R>0 in C.

ΓH0(E ) ⊃ D(f (1 + ∆g ))
f (1+∆g )−−−−−−−→ ΓH0(E ), h 7→

∑
i∈N
〈hi , ei 〉f (λi )ei

domain D(f (1 + ∆g )) =
{
h ∈ ΓH0(E );

∑
i∈N〈hi , ei 〉2f (λi )

2 <∞
}

is densely defined and self-adjoint with respect to L2(g). The
domain D(f (1 + ∆g )) is a Hilbert space.



Theorem Let α ∈ The mapping

g 7→ f (1 + ∆g )

MetHα(M)→ L(D(f (1 + ∆g )), ΓH0(E ))

is smooth, and conjecturally, even real analytic.
The proof uses the message from convenient calculus. Namely,
The elements h⊗ k ∈ V ⊗ ΓH0(E ), where V is a dense subspace in
D(f (1 + ∆g )), separate points in L(D(f (1 + ∆g )), ΓH0(E )) and
the latter space has a basis of bounded sets which closed with
respect to it.
Then we use a smooth curve g(t) ∈ MetHα(M), a curve γ
enclosing finitely many eigenvalues of 1 + ∆g(0) in its interior,
h =

∑N
i=1 hiei ,

− 1

2πi

∫
γ
f (λ)

〈
(1 + ∆g − λ)−1h, k

〉
dλ

and their derivatives in t as canditates.



Assumptions for Wellposedness

Assumption 1: For each g ∈ Met(M), the operator Pg is an elliptic
pseudo-differential operator of order 2p for p > 0 which is positive and
symmetric with respect to the H0(g)-metric on Γ(S2T ∗M), i.e.,∫

M

g0
2 (Pgh, k) vol(g) =

∫
M

g0
2 (h,Pgk) vol(g) for h, k ∈ Γ(S2T ∗M).

Assumption 2: P : Met(M)→ L(Γ(S2T ∗M), Γ(S2T ∗M)) and

g 7→
(
(h, k) 7→ (D(g ,h)Ph)∗(k)

)
Met(M)→ L2(Γ(S2T ∗M), Γ(S2T ∗M); Γ(S2T ∗M))

are smooth and extend to smooth mappings between Sobolev completions

MetHα(M)→ L(ΓHα(S2T ∗M), ΓHα−2p (S2T ∗M))

MetHα(M)→ L2(ΓHα(S2T ∗M), ΓHα(S2T ∗M); ΓHα−2p (S2T ∗M))

for α ∈ (dim(M)/2,∞].



Corollary. If g ∈ MetHα(M) for α ∈ (dim(M)/2,∞], then
Pg = (1 + ∆g )p satisfies the assumptions for p ∈ [0, α/2].

Also f (1 + ∆g ) satisfies the assumptions for any real analytic
function f : R>0 → R>0 satisfying (for p as above)

C1.λ
p
i ≤ f (λi ) ≤ C2λ

p
i for all i



Theorem. Let the assumptions above hold. Then for (real) α > dim(M)
2 ,

the initial value problem for the geodesic equation has unique local

solutions in the Sobolev manifold Metα(M) of Hα-metrics. The solutions

depend C∞ on t and on the initial conditions g(0, . ) ∈ Metα(M) and

gt(0, . ) ∈ Hα(S2T ∗M).

If the initial conditions are smooth, then the domain of existence (in t) is

uniform in α > dim(M)
2 and thus this also holds in Met(M).

Moreover, in each Sobolev completion Metα(M), the Riemannian

exponential mapping expP exists and is smooth on a neighborhood of the

zero section in the tangent bundle, and (π, expP) is a diffeomorphism

from a (smaller) neighborhood of the zero section to a neighborhood of

the diagonal in Metα(M)×Metα(M). All these neighborhoods are

uniform in α > dim(M)
2 and can be chosen Hα0 -open for some fixed

α0 >
dim(M)

2 . Thus all properties of the exponential mapping continue to

hold in Met(M).

This theorem is more general that the result in [Bauer, Harms, M.
2011], and the proof is now complete.



Ideas of proof. We consider the geodesic equation as the flow
equation of a smooth (C∞) vector field X on the open set

MetHα × ΓHα−2p(S2T ∗M) ⊂ ΓHα(S2T ∗M)× ΓHα−2p(S2T ∗M).

as follows, using the geodesic equation:

gt = (Pg )−1h =: X1(g , h)

ht =
1

2

(
(D(g ,.)Pg )(Pg )−1h

)∗
((Pg )−1h) +

1

4
.g .Tr(g−1.h.g−1.(Pg )−1h)

+
1

2
(Pg )−1h.g−1.h +

1

2
h.g−1.(Pg )−1h − 1

2
Tr(g−1.(Pg )−1h).h

=: X2(g , h)

For (g , h) ∈ MetHα × ΓHα−2p we have (Pg )−1h ∈ ΓHα . A term by
term investigation of X2(g , h), using the assumptions on the orders
and the module properties of Sobolev spaces, shows that X2(g , h)
is smooth in (g , h) ∈ MetHα × ΓHα−2p with values in ΓHα−2p .
Likewise X1(g , h) is smooth in (g , h) ∈ Metk+2p × Hk with values
in Hk+2p. Now use the theory of smooth ODE’s on Banach spaces.



Thank you for your attention


