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DENJOY-CARLEMAN DIFFERENTIABLE PERTURBATION OF

POLYNOMIALS AND UNBOUNDED OPERATORS

ANDREAS KRIEGL, PETER W. MICHOR, AND ARMIN RAINER

Abstract. Let t 7→ A(t) for t ∈ T be a CM -mapping with values unbounded
operators with compact resolvents and common domain of definition which are
self-adjoint or normal. Here CM stands for Cω (real analytic), a quasianalytic

or non-quasianalytic Denjoy-Carleman class, C∞, or a Hölder continuity class
C0,α. The parameter domain T is either R or Rn or an infinite dimensional
convenient vector space. We prove and review results on CM -dependence on

t of the eigenvalues and eigenvectors of A(t).

Theorem. Let t 7→ A(t) for t ∈ T be a parameterized family of unbounded operators
in a Hilbert space H with common domain of definition and with compact resolvent.
If t ∈ T = R and all A(t) are self-adjoint then the following holds:

(A) If A(t) is real analytic in t ∈ R, then the eigenvalues and the eigenvectors
of A(t) can be parameterized real analytically in t.

(B) If A(t) is quasianalytic of class CQ in t ∈ R, then the eigenvalues and the
eigenvectors of A(t) can be parameterized CQ in t.

(C) If A(t) is non-quasianalytic of class CL in t ∈ R and if no two different
continuously parameterized eigenvalues (e.g., ordered by size) meet of infi-
nite order at any t ∈ R, then the eigenvalues and the eigenvectors of A(t)
can be parameterized CL in t.

(D) If A(t) is C∞ in t ∈ R and if no two different continuously parameterized
eigenvalues meet of infinite order at any t ∈ R, then the eigenvalues and
the eigenvectors of A(t) can be parameterized C∞ in t.

(E) If A(t) is C∞ in t ∈ R, then the eigenvalues of A(t) can be parameterized
twice differentiably in t.

(F) If A(t) is C1,α in t ∈ R for some α > 0, then the eigenvalues of A(t) can
be parameterized C1 in t.

If t ∈ T = R and all A(t) are normal then the following holds:

(G) If A(t) is real analytic in t ∈ R, then for each t0 ∈ R and for each eigenvalue
z0 of A(t0) there exists N ∈ N>0 such that the eigenvalues near z0 of
A(t0 ± sN ) and their eigenvectors can be parameterized real analytically in
s near s = 0.

(H) If A(t) is quasianalytic of class CQ in t ∈ R, then for each t0 ∈ R and for
each eigenvalue z0 of A(t0) there exists N ∈ N>0 such that the eigenvalues
near z0 of A(t0 ± sN ) and their eigenvectors can be parameterized CQ in s
near s = 0.

(I) If A(t) is non-quasianalytic of class CL in t ∈ R, then for each t0 ∈ R and
for each eigenvalue z0 of A(t0) at which no two of the different continuously
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parameterized eigenvalues (which is always possible by [12, II 5.2]) meet of
infinite order, there exists N ∈ N>0 such that the eigenvalues near z0 of
A(t0±sN ) and their eigenvectors can be parameterized CL in s near s = 0.

(J) If A(t) is C∞ in t ∈ R, then for each t0 ∈ R and for each eigenvalue z0 of
A(t0) at which no two of the different continuously parameterized eigenval-
ues meet of infinite order, there exists N ∈ N>0 such that the eigenvalues
near z0 of A(t0 ± sN ) and their eigenvectors can be parameterized C∞ in s
near s = 0.

(K) If A(t) is C∞ in t ∈ R, then for each t0 ∈ R and for each eigenvalue
z0 of A(t0) at which no two of the different continuously parameterized
eigenvalues meet of infinite order, the eigenvalues near z0 of A(t) and their
eigenvectors can be parameterized by absolutely continuous functions in t
near t = t0.

If t ∈ T = R
n and all A(t) are normal then the following holds:

(L) If A(t) is real analytic or quasianalytic of class CQ in t ∈ R
n, then for each

t0 ∈ R
n and for each eigenvalue z0 of A(t0), there exist a neighborhood D of

z0 in C, a neighborhoodW of t0 in R
n, and a finite covering {πk : Uk →W}

of W , where each πk is a composite of finitely many mappings each of which
is either a local blow-up along a real analytic or CQ submanifold or a local
power substitution, such that the eigenvalues of A(πk(s)), s ∈ Uk, in D and
the corresponding eigenvectors can be parameterized real analytically or CQ

in s. If A is self-adjoint, then we do not need power substitutions.
(M) If A(t) is real analytic or quasianalytic of class CQ in t ∈ R

n, then for each
t0 ∈ R

n and for each eigenvalue z0 of A(t0), there exist a neighborhood D
of z0 in C and a neighborhood W of t0 in R

n such that the eigenvalues of
A(t), t ∈W , in D and the corresponding eigenvectors can be parameterized
by functions which are special functions of bounded variation (SBV), see [9]
or [3], in t.

If t ∈ T ⊆ E, a c∞-open subset in a finite or infinite dimensional convenient vector
space then the following holds:

(N) For 0 < α ≤ 1, if A(t) is C0,α (Hölder continuous of exponent α) in
t ∈ T and all A(t) are self-adjoint, then the eigenvalues of A(t) can be
parameterized C0,α in t.

(O) For 0 < α ≤ 1, if A(t) is C0,α in t ∈ T and all A(t) are normal, then we
have: For each t0 ∈ T and each eigenvalue z0 of A(t0) consider a simple
closed C1-curve γ in the resolvent set of A(t0) enclosing only z0 among
all eigenvalues of A(t0). Then for t near t0 in the c∞-topology on T , no
eigenvalue of A(t) lies on γ. Let λ(t) = (λ1(t), . . . , λN (t)) be the N -tuple
of all eigenvalues (repeated according to their multiplicity) of A(t) inside of
γ. Then t 7→ λ(t) is C0,α for t near t0 with respect to the non-separating
metric

d(λ, µ) = min
σ∈SN

max
1≤i≤N

|λi − µσ(i)|

on the space of N -tuples.

Part (A) is due to Rellich [22] in 1942, see also [4] and [12, VII 3.9]. Part (D) has
been proved in [2, 7.8], see also [13, 50.16], in 1997, which contains also a different
proof of (A). (E) and (F) have been proved in [14] in 2003. (G) was proved in [19,
7.1]; it can be proved as (H) with some obvious changes, but it is not a special
case since Cω does not correspond to a sequence which is an L-intersection (see
‘definitions and remarks’ below and [16]). (J) and (K) were proved in [19, 7.1]. (N)
was proved in [17].
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The purpose of this paper is to prove the remaining parts (B), (C), (H), (I), (L),
(M), and (O).

Definitions and remarks. Let M = (Mk)k∈N=N≥0
be an increasing sequence

(Mk+1 ≥ Mk) of positive real numbers with M0 = 1. Let U ⊆ R
n be open. We

denote by CM (U) the set of all f ∈ C∞(U) such that, for each compact K ⊆ U ,
there exist positive constants C and ρ such that

|∂αf(x)| ≤ C ρ|α| |α|!M|α| for all α ∈ N
n and x ∈ K.

The set CM (U) is a Denjoy–Carleman class of functions on U . If Mk = 1, for all
k, then CM (U) coincides with the ring Cω(U) of real analytic functions on U . In
general, Cω(U) ⊆ CM (U) ⊆ C∞(U).

Throughout this paper Q = (Qk)k∈N is a sequence as above which is log-convex
(i.e., Q2

k ≤ Qk−1Qk+1 for all k), derivation closed (i.e., supk(Qk+1/Qk)
1/k <

∞), quasianalytic (i.e.,
∑

k(k!Qk)
−1/k = ∞), and which is also an L-

intersection. We say that Q is an L-intersection if CQ =
⋂

{CN :
N non-quasianalytic, log-convex, N ≥ Q}. Moreover, L = (Lk)k∈N is a sequence
as above which is log-convex, derivation closed, and non-quasianalytic. Then CQ

and CL are closed under composition and allow for the implicit function theorem.
See [16] or [15] and references therein.

That A(t) is a real analytic, CM (where M is either Q or L), C∞, or Ck,α

family of unbounded operators means the following: There is a dense subspace
V of the Hilbert space H such that V is the domain of definition of each A(t),
and such that A(t)∗ = A(t) in the self-adjoint case, or A(t) has closed graph and
A(t)A(t)∗ = A(t)∗A(t) wherever defined in the normal case. Moreover, we require
that t 7→ 〈A(t)u, v〉 is of the respective differentiability class for each u ∈ V and
v ∈ H. From now on we treat only CM = Cω, CM for M = Q, M = L, and
CM = C0,α.

This implies that t 7→ A(t)u is of the same class CM (T,H) (where T is either
R or Rn) or is in C0,α(T,H) (if T is a convenient vector space) for each u ∈ V by
[13, 2.14.4, 10.3] for Cω, by [15, 3.1, 3.3, 3.5] for M = L, by [16, 1.10, 2.1, 2.3] for
M = Q, and by [13, 2.3], [11, 2.6.2] or [10, 4.14.4] for C0,α because C0,α can be
described by boundedness conditions only and for these the uniform boundedness
principle is valid.

A sequence of functions λi is said to parameterize the eigenvalues, if for each
z ∈ C the cardinality |{i : λi(t) = z}| equals the multiplicity of z as eigenvalue of
A(t).

Let X be a Cω or CQ manifold. A local blow-up Φ over an open subset U of X
means the composition Φ = ι ◦ ϕ of a blow-up ϕ : U ′ → U with center a Cω or
CQ submanifold and of the inclusion ι : U → X. A local power substitution is a
mapping Ψ : V → X of the form Ψ = ι ◦ ψ, where ι : W → X is the inclusion of a
coordinate chart W of X and ψ : V →W is given by

(y1, . . . , yq) = ((−1)ǫ1xγ1

1 , . . . , (−1)ǫqxγq

q ),

for some γ = (γ1, . . . , γq) ∈ (N>0)
q and all ǫ = (ǫ1, . . . , ǫq) ∈ {0, 1}q, where

y1, . . . , yq denote the coordinates of W (and q = dimX).
This paper became possible only after some of the results of [15] and [16] were

proved, in particular the uniform boundedness principles. The wish to prove the
results of this paper was the main motivation for us to work on [15] and [16].

Applications. For brevity we confine ourselves to CQ; the same applies to Cω.
Let X be a compact CQ manifold and let t 7→ gt be a C

Q-curve of CQ Riemannian
metrics on X. Then we get the corresponding CQ curve t 7→ ∆(gt) of Laplace-
Beltrami operators on L2(X). By theorem (B) the eigenvalues and eigenvectors
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can be arranged CQ in t. By [1], the eigenfunctions are also CQ as functions on
X (at least for those CQ which can be described by a weight function, see [7]).
Question: Are the eigenvectors viewed as eigenfunctions then also in CQ(X × R)?

Let Ω be a bounded region in R
n with CQ boundary, and let H(t) = −∆+V (t)

be a CQ-curve of Schrödinger operators with varying CQ potential and Dirichlet
boundary conditions. Then the eigenvalues and eigenvectors can be arranged CQ in
t. Question: Are the eigenvectors viewed as eigenfunctions then also in CQ(Ω×R)?

Example. This is an elaboration of [2, 7.4] and [14, Example]. Let S(2) be the
vector space of all symmetric real (2 × 2)-matrices. We use the CL-curve lemma
[15, 3.6] or [16, 2.5]: For each L, there exist sequences µn → ∞, tn → t∞, sn > 0
in R with the following property: For µn-converging sequences An, Bn ∈ S(2), i.e.,
µnAn and µnBn are bounded in S(2), there exists a curve A ∈ CL(R, S(2)) such
that A(tn + t) = An + tBn for |t| ≤ sn.

Choose a sequence νn of reals satisfying µnνn → 0 and (νn)
n ≤ sn for all n and

use the CL-curve lemma for

An := (νn)
n+1

(

1 0
0 −1

)

, Bn := νn

(

0 1
1 0

)

.

The eigenvalues of An + tBn and their derivatives are

λn(t) = ±νn
√

(νn)2n + t2, λ′n(t) = ± νnt
√

(νn)2n + t2
.

Then

λ′(tn + (νn)
n)− λ′(tn)

((νn)n)α
=
λ′n((νn)

n)− λ′n(0)

(νn)nα
= ± νn

(νn)nα
√
2

= ± (νn)
1−nα

√
2

→ ∞ for α > 0.

So the condition (in (C), (D), (I), (J), and (K)) that no two different continuously
parameterized eigenvalues meet of infinite order cannot be dropped. By [2, 2.1],
we may always find a twice differentiable square root of a non-negative smooth
function, so that the eigenvalues λ are functions which are twice differentiable but
not C1,α for any α > 0.

Note that the normed eigenvectors cannot be chosen continuously in this example
(see also example [21, §2]). Namely, we have

A(tn) = (νn)
n+1

(

1 0
0 −1

)

, A(tn + (νn)
n) = (νn)

n+1

(

1 1
1 −1

)

.

Resolvent Lemma. Let CM be any of Cω, CQ, CL, C∞, or C0,α, and let A(t)
be normal. If A is CM then the resolvent (t, z) 7→ (A(t) − z)−1 ∈ L(H,H) is CM

on its natural domain, the global resolvent set

{(t, z) ∈ T × C : (A(t)− z) : V → H is invertible}
which is open (and even connected).

Proof. By definition the function t 7→ 〈A(t)v, u〉 is of class CM for each v ∈ V
and u ∈ H. We may conclude that the mapping t 7→ A(t)v is of class CM into H
as follows: For CM = C∞ we use [13, 2.14.4]. For CM = Cω we use in addition
[13, 10.3]. For CM = CQ or CM = CL we use [16, 2.1] and/or [15, 3.3] where we
replace R by R

n. For CM = C0,α we use [13, 2.3], [11, 2.6.2], or [10, 4.1.14] because
C0,α can be described by boundedness conditions only and for these the uniform
boundedness principle is valid.
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For each t consider the norm ‖u‖2t := ‖u‖2 + ‖A(t)u‖2 on V . Since A(t) is
closed, (V, ‖ ‖t) is again a Hilbert space with inner product 〈u, v〉t := 〈u, v〉 +
〈A(t)u,A(t)v〉.

(1) Claim (see [2, in the proof of 7.8], [13, in the proof of 50.16], or [14, Claim
1]). All these norms ‖ ‖t on V are equivalent, locally uniformly in t. We then
equip V with one of the equivalent Hilbert norms, say ‖ ‖0.

We reduce this to C0,α. Namely, note first that A(t) : (V, ‖ ‖s) → H is bounded
since the graph of A(t) is closed inH×H, contained in V ×H and thus also closed in
(V, ‖ ‖s)×H. For fixed u, v ∈ V , the function t 7→ 〈u, v〉t = 〈u, v〉+〈A(t)u,A(t)v〉
is C0,α since so is t 7→ A(t)u. By the multilinear uniform boundedness princi-
ple ([13, 5.18] or [11, 3.7.4]) the mapping t 7→ 〈 , 〉t is C0,α into the space of
bounded sesquilinear forms on (V, ‖ ‖s) for each fixed s. Thus the inverse image of

〈 , 〉s + 1
2 (unit ball) in L((V, ‖ ‖s)⊕ (V, ‖ ‖s);C) is a c∞-open neighborhood

U of s in T . Thus
√

1/2‖u‖s ≤ ‖u‖t ≤
√

3/2‖u‖s for all t ∈ U , i.e., all Hilbert
norms ‖ ‖t are locally uniformly equivalent, and claim (1) follows.

By the linear uniform boundedness theorem we see that t 7→ A(t) is in
CM (T,L(V,H)) as follows (here it suffices to use a set of linear functionals which
together recognize bounded sets instead of the whole dual): For CM = C∞ we use
[13, 1.7, 2.14.3]. For CM = Cω we use in addition [13, 9.4]. For CM = CQ or
CM = CL we use [16, 2.2, 2.3] and/or [15, 3.5] where we replace R by R

n. For
CM = C0,α see above.

If for some (t, z) ∈ T × C the bounded operator A(t)− z : V → H is invertible,
then this is true locally with respect to the c∞-topology on the product which is
the product topology by [13, 4.16], and (t, z) 7→ (A(t) − z)−1 : H → V is CM , by
the chain rule, since inversion is real analytic on the Banach space L(V,H). �

Note that (A(t) − z)−1 : H → H is a compact operator for some (equivalently
any) (t, z) if and only if the inclusion i : V → H is compact, since i = (A(t)−z)−1 ◦
(A(t)− z) : V → H → H.

Polynomial proposition. Let P be a curve of polynomials

P (t)(x) = xn − a1(t)x
n−1 + · · ·+ (−1)nan(t), t ∈ R.

(a) If P is hyperbolic (i.e., all roots of P (t) are real for each fixed t) and if the
coefficient functions ai are all CQ then there exist CQ functions λi which
parameterize all roots.

(b) If P is hyperbolic, the coefficient functions ai are CL, and no two of the
different continuously arranged roots (e.g., ordered by size) meet of infinite
order, then there exist CL functions λi which parameterize all roots.

(c) If the coefficient functions ai are C
Q, then for each t0 there exists N ∈ N>0

such that the roots of s 7→ P (t0 ± sN ) can be parameterized CQ in s for s
near 0.

(d) If the coefficient functions ai are CL and no two of the different continu-
ously arranged roots (by [12, II 5.2]) meet of infinite order, then for each
t0 there exists N ∈ N>0 such that the roots of s 7→ P (t0 ± sN ) can be
parameterized CL in s for s near 0.

All CQ or CL solutions differ by permutations.

The proof of parts (a) and (b) is exactly as in [2] where the corresponding results
were proven for C∞ instead of CL, and for Cω instead of CQ. For this we need
only the following properties of CQ and CL:

• They allow for the implicit function theorem (for [2, 3.3]).
• They contain Cω and are closed under composition (for [2, 3.4]).
• They are derivation closed (for [2, 3.7]).
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Part (a) is also in [8, 7.6] which follows [2]. It also follows from the multidimensional
version [20, 6.10] since blow-ups in dimension 1 are trivial. The proofs of parts (c)
and (d) are exactly as in [19, 3.2] where the corresponding result was proven for
Cω instead of CQ, and for C∞ instead of CL, if none of the different roots meet of
infinite order. For these we need the properties of CQ and CL listed above.

Matrix proposition. Let A(t) for t ∈ T be a family of (N ×N)-matrices.

(e) If T = R ∋ t 7→ A(t) is a CQ-curve of Hermitian matrices, then the
eigenvalues and the eigenvectors can be chosen CQ.

(f) If T = R ∋ t 7→ A(t) is a CL-curve of Hermitian matrices such that no two
different continuously arranged eigenvalues meet of infinite order, then the
eigenvalues and the eigenvectors can be chosen CL.

(g) If T = R ∋ t 7→ A(t) is a CL-curve of normal matrices such that no two
different continuously arranged eigenvalues meet of infinite order, then for
each t0 there exists N1 ∈ N>0 such that the eigenvalues and eigenvectors of
s 7→ A(t0 ± sN1) can be parameterized CL in s for s near 0.

(h) Let T ⊆ R
n be open and let T ∋ t 7→ A(t) be a Cω or CQ-mapping of

normal matrices. Let K ⊆ T be compact. Then there exist a neighborhood
W of K, and a finite covering {πk : Uk → W} of W , where each πk is a
composite of finitely many mappings each of which is either a local blow-
up along a Cω or CQ submanifold or a local power substitution, such that
the eigenvalues and the eigenvectors of A(πk(s)) can be chosen Cω or CQ

in s. Consequently, the eigenvalues and eigenvectors of A(t) are locally
special functions of bounded variation (SBV). If A is a family of Hermitian
matrices, then we do not need power substitutions.

The proof of the matrix proposition in case (e) and (f) is exactly as in [2, 7.6],
using the polynomial proposition and properties of CQ and CL. Item (g) is exactly
as in [19, 6.2], using the polynomial proposition and properties of CL. Item (h) is
proved in [20, 9.1, 9.6], see also [18].

Proof of the theorem. We have to prove parts (B), (C), (H), (I), (L), (M), and
(O). So let CM be any of Cω, CQ, CL, or C0,α, and let A(t) be normal. Let z
be an eigenvalue of A(t0) of multiplicity N . We choose a simple closed C1 curve γ
in the resolvent set of A(t0) for fixed t0 enclosing only z among all eigenvalues of
A(t0). Since the global resolvent set is open, see the resolvent lemma, no eigenvalue
of A(t) lies on γ, for t near t0. By the resolvent lemma, A : T → L((V, ‖ ‖0), H)
is CM , thus also

t 7→ − 1

2πi

∫

γ

(A(t)− z)−1 dz =: P (t, γ) = P (t)

is a CM mapping. Each P (t) is a projection, namely onto the direct sum of all
eigenspaces corresponding to eigenvalues of A(t) in the interior of γ, with finite
rank. Thus the rank must be constant: It is easy to see that the (finite) rank
cannot fall locally, and it cannot increase, since the distance in L(H,H) of P (t) to
the subset of operators of rank ≤ N = rank(P (t0)) is continuous in t and is either
0 or 1.

So for t in a neighborhood U of t0 there are equally many eigenvalues in the
interior of γ, and we may call them λi(t) for 1 ≤ i ≤ N (repeated with multiplicity).

Now we consider the family of N -dimensional complex vector spaces t 7→
P (t)H ⊆ H, for t ∈ U . They form a CM Hermitian vector subbundle over U
of U ×H → U : For given t, choose v1, . . . , vN ∈ H such that the P (t)vi are linearly
independent and thus span P (t)H. This remains true locally in t. Now we use
the Gram Schmidt orthonormalization procedure (which is Cω) for the P (t)vi to
obtain a local orthonormal CM frame of the bundle.



DENJOY-CARLEMAN DIFFERENTIABLE PERTURBATION 7

Now A(t) maps P (t)H to itself; in a CM local frame it is given by a normal
(N ×N)-matrix parameterized CM by t ∈ U .

Now all local assertions of the theorem follow:

(B) Use the matrix proposition, part (e).
(C) Use the matrix proposition, part (f).
(H) Use the matrix proposition, part (h), and note that in dimension 1 blowups

are trivial.
(I) Use the matrix proposition, part (g).

(L,M) Use the matrix proposition, part (h), for Rn.
(O) We use the following

Result ([6], [5, VII.4.1]) Let A,B be normal (N × N)-matrices and let
λi(A) and λi(B) for i = 1, . . . , N denote the respective eigenvalues. Then

min
σ∈SN

max
j

|λj(A)− λσ(j)(B)| ≤ C‖A−B‖

for a universal constant C with 1 < C < 3. Here ‖ ‖ is the operator norm.

Finally, it remains to extend the local choices to global ones for the cases (B)
and (C) only. There t 7→ A(t) is CQ or CL, respectively, which imply both C∞,
and no two different eigenvalues meet of infinite order. So we may apply [2, 7.8]
(in fact we need only the end of the proof) to conclude that the eigenvalues can
be chosen C∞ on T = R, uniquely up to a global permutation. By the local result
above they are then CQ or CL. The same proof then gives us, for each eigenvalue
λi : T → R with generic multiplicity N , a unique N -dimensional smooth vector
subbundle of R × H whose fiber over t consists of eigenvectors for the eigenvalue
λi(t). In fact this vector bundle is CQ or CL by the local result above, namely the
matrix proposition, part (e) or (f), respectively. �
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(2004), no. 6, 1121–1144.
[9] E. De Giorgi and L. Ambrosio, New functionals in the calculus of variations, Atti Accad.

Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), no. 2, 199–210 (1989).
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