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1. Preliminaries and Notation

1.1, Compactological spaces: The model far a compactological

space 1s a topolegical Hausdorff space together with the
collection of all its compact subsets, disregarding its original

tonology. ©So a coapzctoloziczl space 5 is a set S together with

a collection F(S) of subsets of S, each K € X (S) bearing =
compact {Hausdorff) topology Tg Such that
(1) K (s) is closed under formation of finite unions end
taking closed subsets.
(2) for each Kc L; K, L € ¥ (8) the inclusion K - L
is continuous.,
The category CPTOL of compactological spaces hzs as morphisms
maps £: § -+ T such that for esch K € ¥(S) there is L € X{(T)
with £(K) € L and £|K:K > L is Tp - T - continuous.
By C°(S) we mean the vector space of all bounded complex valued

functions on S whose restrictions to each X € SR(S) are T _,-continuous.

K
A compactological space is said to be regular, if C7°(S) separztes
points on S. e denote the full subecategory of regular
compactologiczl spaces by RCPTOL. Ve note that compactological

spzces may be regorded as formal inductive limits of systems

of compzct spaces. For more information see RUCHTALTER,



E :
1.2. The category MIXC : Objects are triples (E,||.]||, T) where

E is a comrutative involutive algebra with unit over C, [.]| is
a norm on E and ¥ is a loczally convex tonology on E such that:

(1) Bl I = fxe T: | x || < 1} is bounded and complete for T

(2) 7 may be defined by a family of seminorms P on % such that

p(xy) < p(x)p(¥), p(1) = 1 2nd p(x %) = p(x)? holds for all

x,y e Eand pe Pand | x || = sup {p(x), p € P for all x e E,
Korphisms are multiplicative linear maps, respecting involution
and unit, contractive for the norm snd continuous for the locelly
convex topology.

HIXC* may be regarded z2s the category of formal projective limits
- of systems of commutstive C'-algebras with unit. For more
informztion s<e COOPER 1975h.

1.3, The category MIXTOP: Objects are triples (E,]|.

[, T) vhere

E is a vector space (over C), |.|]| is 2 norm on E and T is a
locally convex topology on E such that By 4 = fxe®, || x| <1}
is T-bounded. Morphisms are linsar maps, contractive for ||.| and

continuous for T. (&,]| , T) is said to be complete, if B l”is

T-complete. Then (E, |) is a Banach space. The complete objects
in X IXTOP are exactly the formal projective limits of 3ystems

of Zznach spaces.




4.4, The functor c

e

Let S be a compactological space. Let C7(S) be the space
of all bounded complex valued Tunctions on S whose restrictions

to all K € X (58) are t_-continuous. Consider the following

K
structures on C°(8): || || - the supremum norm
T - the topology of uniform convergence

on members of -A(S).

%
Then (C°(8), ,T) is an object of MIXC . If ¢: S~ T is =a

[

CPT0L-morphian, then C°(@): O°(T) » C°(S), given by X + X o @,

¥
is a MIXC -morphism.
e have constructed a contravariant Tunctor C°: CPTOL - MIXG*

1.5. The functor MT:

-

Let (E, |

[,*) be an object of MIXG.

Denote by I (3) the set of all MIXC _morphisms E - C. e equip

it with the following compactology: members of fZ(M+(E)) are the
weak*—closed subsets of MT(E), whose restriction to B”'|| is
T-equicontinuous, and they besr the restriction of the weak*—topology.
If ¢: E~ F 1is a MIXG*-morphism, then MY(¢):MY(F) - QY(E), given

by £+ f o ¢, is a CPTCL-morphism. We have constructed a

contravarisnt functor MIXC - RCPTOL.
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*
1,.6. Proposition:(COOP=R 1975): The categories MIXC and RCPTROL

are quesi-dual to each other under the functars C° =nd 4,.

The mzps 6: s + (x -» x(s)) gives a nztural isomorphism S - MYCm(S)
for sach S5 € RCPTOL, We call it the Dirac transformation.

The map A: x »(f » f(x)) give a natural isomorphism & - G”MY(E)

for each E < MIXC$. “Je call it the Gelfand-Naimark transformation.

These two maps produce the quasi-duality,

1.,7. The tensor product in MIXC and MIXTOP:

—_—

*
The category RCPTOL has products (the obvious ones), so MIXC as
the (quasi)—dual category has coproducts, The y-tensorproduct,
which we will now describe, is an expliclt construction of the

*
coproduct in MIXC .

*
T.) be two objects of MIXC . Ve
¥R

Yet (B, |l. ) and (F, |.

E, B

consider the folloving structures on E ® F, the vector-space

[

the norms ”.IIE, "'”F (i.e, that induced by the operator norm

2
-the inductive tensor product of

tensor product of = and F:

via the embedding E® F » L(E',F),
2
T = Ty @ Tp -the inductive tensor product of the locally convex
topologies T, Tpe
Let B denote the closure of fue E® F, Jlul]l < 1} in the

Py 2
completion of (E e F, Tp ® To) and let E @y F denote the subspace

R
lln B of this completion, and let [.] be the Minkowski functional

n>0 A 2 2
of B. (& ®,T, | M, v, @’CF)




o
is 2gain an object of MIXC . The szme construction works for

MIXTOP. A result to be found in COOPER 1975 asserts that

"

*
E Fz C”(MY(E) x MY(F)) in MIXC , so the y-tensor product

Y
*
is the coproduct in MIXC .

1.8. The strict topology:

,T] be the

*
Ir (E, ,T) is an element of MIXC , let v = v [ |

finestlocally convex topology on E which agrees with T on

B” | ; ¥ is a complete topology.

R

vle note that [

~ ES 2
g e ] = vl gyl & vl
For further detzils see COCPER 1975.

The same definition holds of course for objects of MIXTOP.

1.9. It is well knovm, that locally compact topological spaces

[

are k-spaces, i.e. their topology is unicuely determined by their
naturz2l compactology. In this spirit we caen regard the category
of locally compact topological spaces (we call it LOCCOMP) as a

full subcategory of RCPTOL and we will speak of loczlly compzct

comnzctological spaces,

E3
1,10. Let (E, ,T) be an object of MIXC =2nd let P be a defining

*
family of C —seminorms on Z (i.e. a family P satisfying 1.2. (2)).

If p € P we denote by Ip the ideal {x € E: p(z) = 0} and by A

T:y I_ = 0O},

its annihil=tor in E, i.e, A_ = {y .

b

M

E is said to be perfect (APOSTOL 1971) if the sum 3 Ap is y-dense
peP

(1.8) in =.



If S is a regular compactological space and if K e 1KKS) and

py the associated C’'- seminorm, then Ip = {x e &(8): x|k = 0}
K

and AL ={y € C°(8): y(s) = 0 for s £ K} So 3 A is the
Px ke¥(s) Px

subspace CC(S) of functions in C°(S) with compact supvort

(i.e. x € CC(S) iff there is K e K(8) with x(s) = 0 for s ¢ K).

1.11. Proposition (COOPIR 1975) Let S be a regular compsctological

space. S is locally compact if and only if C (S) is perfect.



$2. Compactological groups and duality

2.1. Definition. A compactological group is a group in the category
CPTOL of compactological spaces, i.e. it is a quadruple (S,m,e,i)

where 5 is a compactological space and m: S x 8 + S, e:I =28, i: S =+ S

are CFTOL-morphisms so that the following diagrams commute:

S x5 x 8 g xm . sxs
meidS jm
5 x 8 o = » 3
e x ids 1ds X e
I x 5 > 3 X S - 5 x I
m
5
d ide i i x idS d
Sm—» S8 x S » 5 x 5 = S X 5 a— 3
m
e e
I » S - I

(I is the final object of CPTOL, i.e. the one-point set, 4 is the
diagonal map). The compactological groups form a category which
we denote by GCPTOL (the morphisms are those CPTOL-morphisms

which respect the maps (m,e,i). A compactologicszl group is said

to be regular if its underlying compactologica2l space is regular,



j.e. if C°(8) separstes S. GRCPIOL denotes the full subcategory
of regular compsctological groups.

2.2. Problem: Do there exist compactological groups which are

not regular?

*
2.3. Definition: CMIXC denotes the category of cogrouvs in

e tr——
——

. *

¥IXC . Thus an object of CMIXC is a gquadruple (%,c¢,mn,a) where
E3 -

E is an object of MIXC , and c: E » E ®Y E, "E-»C, atE~» E

*
are MIXC —morphisms so that the following diagrams commute:

c ~
) E B
®Y
lc l id. & ¢
F 3 id = =
Eo E cO 1Cg »E® K >
L v QY n.®Y B
K
/lc\‘

- neidg . 5 idg@n T}A c
C®Y < ,QYE > @Y
C - = n » C
& ‘(a idg) E:%Y B (idg,a) g

£
((a,id?)) denotes the canonicsl morphism from Z @, E, the coproduct
n MIZC (cf 1.6) into ¥, defined by the meps a and idg; C is the

initial object of MIXC').



2.4, If (S,m,e,i) is a compactologicel groun, then clearly

(c*(s),(m),C%(e),G°(i)) is a cogroup in MIXC*. Clearly C”
lifts to a functor GCPrTOL —~ CKIXC*.

If on the other ha2n: (B,c¢,mn,a) is 2 cogroup in MIXC*, then again
(MY(E),MY(C),MY(a)) is a regulsr compaciological group. MY lifts

to a functor CUIXC  —+ GRCPTOL.

Proposition: The functors C° and M, induce & duality between

CHIXC and GRCPTOL.

2.5. A compactological group (S,m,e,i) is locelly compact if and

only if its du=zl C°(S) is perfect. (ef 1.11).
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§3. The Bohr Compactification

*
3.17. Let (E,c,n,a) be a cogroup in MIXC If we consider the

i
C -~azlgebra (E,

[.§) is a compact topological

then ¥ _(E

), MES
A

space, in fact, the Stone - Cech compactification of MY(E). It

is, however, in general not a topological group, since (E,|.]]) is
- * » * .

not a cogroup in the category C of commutative C -algebras with
2 Py 2 ] 2

unit, since E® B £ E ®, E, vhere © @ E, is the C -algebra tensor

product or the inductive tensor product of Banach sprces.

Let ¢ = (idE ® a) o C.

*
3.2, Lemma: There is a largest C -subalgebra % of E with the

st

~ ~

property that ¢ (E) c £ @ E. ¥, with the induced norm and cogroup

@»

* ~
structure is a cogroup in C . The assignment ¥ = E is functorial.
Proof': For each ordinal a, we define a subalgebra Ea of E

inductively by

E . = E

[}

- . N‘“’ 2 _

E i =¢ (E‘3 ® EB) (a =B + 1)

Ey: = (1 iEB, B < a} (a is a 1limit ordinal).

Then the family fEa} is eventuzlly stationary and we denote its

~ a~ =
limit by E. Then E is C -subalgebra of E with the desired oproperties.

3.3, The functor % -+ £ is a "forgetful functor" from CHIXC into

2

CC . ie denote it by U. e c¢=n noy define a functor B: = HYO U o c*
from GCPTOL into GCOIP, the cztegory of compzect grouvs. If S is

a compactoldgical group, we c=11 B(S) the Bohr-compsctification
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of S. There is a natural morphism js: S » B(8), ig = MY(l), vhere
g

A: C°(8) » C°(S) is the embedding. jg has dense image, since A is

injective.

3.4, Proposition: B(S) has the following universal property: every

GCIFTOL-morphism from S5 into a compact group factorises over js'
Proof: If B: S+ T is & GCPTOL-morphism, where T is a compact
*

group, then C°(g:C(T) -» C°(8) is a CMIXC -morphism. Since
UC(T) = C(T) and U is a functor, acting on morvhisms by

P
restricting them, we conclude that C°(4) = C°(8) m=ps C(T) into
Panter P d
c°(s8), i.e. factors over A: C°(8) » C°(s).

o~ o~
So =0 o j, i = M C7(d).

3,5, If S is a compzctologiczl group and x € C7(8), then we

P A

define (Lax)(s) = x(as), (Rax)(s) = x(sa) for a, s € 8, x e C°(8)

is said to be (left) almost pericdic if {L X, a € s} is relatively
norm-compact in C(8). We denote by AP(S) the set of left almost
periodic functions on S.

e . . * =0

¥ith. induced norm AP(S) is C -subslgebra of C (5).

a4
3.6, Lemma: C(S) c AP(S).

~
Proof: If x e C°(8), there is an x € C(B(S)) so that

x = X o J by definition of B(S). Then L;¥ = (L, () %) o J, and
3

the result follows from the fact that % is almost pariodic on

B(S).

d
%3.7. Conjecture: C (&) = AP(3)
R
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8y, The Algebra Mt(S) and representations

*
Y.1. Let (B,c,n,a) be a cogroup in MIXC . Equip % with the

strict topology ¥ [

,T] (1.8) and et ET'be its dual.

Define a multiplication on ET' in the following way: if f,g € ET',

then £ * g be given by x -~ £ @ g(e(x)).

%
Proposition: If E is a cogroup in MIXC , then ET' is Banach algebrsa

with identity. It is commutative if E is cocommutative,

L.2, Let S be a compactologic=l spzce.

A premezsure on S is a member of the projective limit of the system

~

Ir : }.5(1{1), - TJ(KQ):KZ c K, KK, € K (8)} ~here ¥(X) denotes the

K1 K2

space of all Ra@&don —measures on K,

If v = {HK}Kei< is a premeasure on S and |MK|$ denotes the outer
measure on K definsd by (uK| then we define, for a set C c 8
|p|*(C) = sup [IuKI*(C NnX): KeK(s)l. A premezsure p on S is
said to be tight if for each € > 0O there is a K e¥ so that
Iul*(S\K) < £, Equivalent is the existence of an incressing
sequence K in K (S) with |p|*(S\Kn) - 0,

7le denote by Mt(S) the space of all tight (pre) measures on S.

If x € C°(S) and p € M,_(S), then the limit 1lim x| K dp, exists
t - n Kn

and is independent of the particular choice of the secuence Kn.

e write /.x dh for this limit.



A premezsure U = qu} is said to have comp=ct surport if there
X
is a K € ¥ (8) so that |u| (S\K) = O. The space M (8) of

premeasures with compact support is identifiable with|Jd§(K).
Ke

Proposition: (COOPER) If S is a regular compactology, then the

dual of [C®(S), ?K(S)] is neturally isomorphic to MO(S) under

, 7]

the bilinear form (x,n) - f x du; and the dual of [CT(8),+l

is naturally isomorphic to Mt(S) under the bilinear form
{x,n) - /; dp.

So c?"(s)v’: M, (8).

4,3, If S is a compsctologicel group, then we can give an

explicit description of the multiplication * (3.1) in Mt(S):

If x € C°(s8), L, v € Mt(S), then we have

[x a (u *v) (Lo v) (c(x))

1l

f x(s.t) d(p ® v)(s.t)

=[fx(s.t) au(s)av(t),

i.e., we have the ordinary convolution.

L., If S is a regular compactological space and E a complete

object of MIXTOP, then define C°(S;E) as the space of all | || -bounded
maps f: S » 3, equipped with the pointwise linear structure and

the following mixed structure:

|1l - the norm [ £l =sup {lI£(s)lf, s e sl.

T - the topology of uniform T _~convergence on members of ﬁ((s).

E



Proposition: If 5 is & regular compasctologic=zl sprce, then the

embedding & S5 > Mt(S) has the following iniversal property: for
every complete cobject ® of MIXTOP and every f e C°(S:;E) there is a
unique T e L(Mt(S);E: which extends f via &; here L(Mt(S);E)ECm(SﬁgyE
is the space of 1in€ar maps which are continuous in a rather
complicated structure on‘Mt(S) - for simplicity's sake we take this

2
equality for definition. So we have C°(S;E) ¥ C°(S) g vy E & L(Mt(S);E). ,

L.5. If S 1is 8 compactological group and, E a complete object in
MIXTOP, then C°(S,E) has a natural map Cpt C”(8;E) » C7(5x8:%),
given by c:x + ({s,t) ™ x(st));

2 ® A
i.e. cg = c® idg: C7(8) s, B - T7(8) &y 7 (s) ®, E.

Let (E,]||.],*) be a complete algebra with unit e in MIXTOP, i.e.

L)

there is an associative multiplication m: E x E - E so that (E,

is a Banach algebra and mIB is T x T —continuous.

=B

Then C®(S;E) has a natural "multiplication".
Mg C®(5:5) x C°(8;2) - C°(5 x 5;E), given by
mE: (x,y) g ((S’t) Lt E(I(S),Y(t))).

Ve say that an element x € C7(S;E) is primitive, if c.(x) = na(x,x).

L4.6. Proposition: Under the identification C°(8;%) = L(M.(8),E)

the primitive elements correspond to the Banach algebra morphisms.
x € C7(5;E) induces a unit preserving operator if and only if

X(C) = E.‘:,.
i
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Proof: Suppose that x € C°(S;%) is primitive. The image T, of x

in L(Mt(S);E) is defin=d by ¢ + /' x du.
S
Then T, (b *v) = ‘[ xdlp *v) =
3

[ez) a e v) - [roxame )

5xS S5x8

= [ x du f yav
s /s

Cathe other hand, if T e L(Mﬁ(s);E), then T = Tx vhere X = T o &.

ir

T, (W) T ().

x(st)

Then e (x)(s,t) T(8g4)

1l

n(T(s.),7(5,))

= m(X(S),X(t)) = mE(X,K)(S,t).

4,7. Corollary: Let 3 be a regular compactological group, X a
Banach space, Then there is a one-one correspondence between
(i) the set of strongly continuous representations of S5 in X.
(ii) the unit preserving Banach algebra morphisms in L(Mt(S);E)
(iii)the primitive elements x of C(S;E) with x(e) = eq

(E denotes the cbject (L(X,X),H.II,TS) of MIXTOP - t_ is the

strong operatar topology}.
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§5. Pontryagin duslity

*
5.1. Let (E,c,n,2) be an object ~° CMIXC . x € E is called

strongly primitive if

(i) c(x) =x@ x
(ii) n(x) =1
(iii) a(x) = %! (in E).

e denote by P(E) the set of strongly primitive elements of E.

5.2, Proposition. P(E), with the topology and the multiplicaztive

| .,T.)), is a topological group.
B E p

structure induced from (E,v(]|.
Tt is contained in {x € 3: [x|] = 1].

Proof: P(Z) is closed under multiplication:

Let %, ¥y € P(E), then

c(xy) = e(x)e(y) = (x0 x)(y @ ¥) = =y @ xv.
n(xy) = n(x) n(y) = 1.1 = 1
a(zy) = a(x)=(y) =x 1y ' = (zy)”

*
(% is commutative: the C -algebra part).
The constant function 1 is a unit for P(Z).

If x € P(2), then a(x) = x is an inverse for xX. Since

multiplication is y [ LI}E, Tz) continuous, (P(E),v[Il.|L,Tp 1)
is a topological group. Since |[x | I x || = lx® x |=1 c(x)]| <] x
and 1 = |[1 ] = [v(&x) (€ || x || we conclude tha% || x | = 1 for

all x € P(®R).
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5.3. Definition: Let S5 be a commtative compactological group.

A character on 8 is a GCPTOL-morphism from S into the circle group
T. The set 5 of all characters form a group. S5, with the topology
of uniform convergence on members of X (8), is a topological group,

and it is complsete in this uniformity.

5.4, Provosition: Let S be a commtative, compactological group.

The 8 = P(C°(S)) (a topological group).

Proof: If x e P(C°(8)), then | x | =1 = | x_1H

, S0 X takes
its values in T,
e(x)(s,t) = x(st) and

(x @ x)(s,t) = x(s)x(t) shox that the strong primitivity of x is

equivalent to its being a character.

Since v [|.

we see that even the topologies

|, ©] = T on B' |
coincide,

5.5. Corollary: Let S be a commutative, regular compzctological

~

group. The S separates 5 1f and only if the vector space generated

by P(C”(S)) is y-dense in C°(8).
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