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§1. Preliminaries and Notation 

1.1. ComnactologicRl snaces: The model far a co~pactological 

sp~ce is a topolcgical Hausdorff space together with the 

collection of all its compact subsets, disregarding its original 

topology. 80 a comD~c~olo~ical space 8 is a set 8 together with 

a collection :/(8) of subsets of S, e8ch K E :k. (8) bearing a 

compRct (F2usdorff) topology ~K such that 

(1) 	 1(8) is closed under formation of finite unions and 

taking closed subsets. 

(2) 	 for each K c Lj K, L E j,( (8) the inclusion K ~ L 

is continuous. 

The category CPI'OL of compactological sps.ces has as morphisms 

maps f: S ~ T such that for each K E jC(8) there is L E :k(T) 

with f(K) eLand f1K:K ~L is 't'K - 't'L - continuous. 

By ~(S) we mean the vector space of all bounded complex valued 

functions on 8 whose restrictions to each K E -:1<.(8) are 't' K-continuous. 

A compactological space is said to be .regular, if CX'(8) separates 

points on 8. We denote the full subcategory of regular 

co:r:rpactologice.l spaces by RePTOL. We note tha t compactological 

sp8ces may be re rded as formal inductive limits of systems 

of comp8ct spaces. For more information see BUClf'.'ALTER. 
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1.2. The category: MIXC* : Objects 	are triples (E,".I/, 't') where 

E is a CO~Tlutative involutive gebra with unit over Ot ~." is 

a norm on E and ~ is a locally convex topology on E such that: 

(1) B 11.11 = IXES: II x II ~ 1} is bounded and complete for 't' 

(2) 	 't' may be defined by a family of seminorms P on E such that 

... 2 
p(xy) ~ p(x)p(y), p(1) ~ 1 and p(x~x) = p(x) holds for all 

x,y E E and PEP and II x II = sup {p(x), pEP} for all x E E. 

}.';orphisms are multiplicative linear maps, respecting involution 

and unit, contractive for the norm and continuous for the locally 

convex topology. 

MIXC * may be regarded es the category of formal projective limits 

of systems of cO~ilut8tive C·-algebras with unit. For more 

information s~e COOPER 1975. 

1.3. The category MIXTOP: Objects are triples (E, II. II, "C) ,,;here 

E is a vector space (over C), 11.11 is a norm on E and 't' is a 

locally convex topology on E such that BII.I :::: {x E E, II xii ~ 1} 

is't'-bounded. Morphisms are linear maps, contractive for II. II and 

continuous for 't'. (B,II.II, 't') is said to be complete, if B II . II is 

't' -complete. Then (E, II • ") is a Banach space. The c.J!:lple te ob je cts 

in l!;: IXTOP are exa ctly the formal pro je ctive limits of sys terns 

of ach ces. 
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. 1 .4. The flLl1.ct or C 
00 

: 

Let S be a compactological ~ace. t cn(S) be the space 


of all bounded complex valued functions on S whose restrictions 


to all K E 1<'(8) are 1:'K-continuous. Consider the follo'sing 


structures on C=(8): " II - the supremum norm 


~ - the topology of uniform convergence 


on members of 1[(8). 


Then (C=(S), 11.11 ,1:') is an object '*
of MIXC. If <p: 8 -+ T is a 


C:?'I'OL-morphii::"ln, then C-:JO(q»: cf'(T) -+ cf'(S), given by x -+ x 0 <P, 


is a MIXC '*-morphism. 


... 
'::e have constructed a contravariant functor cf': CPI'OL -+ IHXC'" 

Let (E, II. II ,~) be an object of MIXC 
=I< 

• 


Denote by M (E) the set of all MIXC '*-morphi sms E -+ C. '.7e equip

y 


it with the following compactology: members of k. (1.1 (E)) are the 
y . 


weak*-closed subsets of M..,. (E), \vhose restriction to B II. II is 


1:'-equicontinuous, and they be8.r the restriction of the "'leak*-topology. 

If q>: E -+ F is a MIXC '*-morphism, then M (q»:M (F) -+ M (E), given
y y y 


by f -+ f 0 q>, is a CPTOL-morphism. ',Ve have constructed a 


:I: 

contravariant functor MIXC -+ RCPTOL. 


http:flLl1.ct
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1.6. ProPosition:(COOP~~ 1975): The categories MIXC * and RCPTROL 
=:It 

are qu?si-dual to each other under the :functors cfO and ~ • 

The maps 0: s ~ (x ~ xes)~ gives a natural isomorphism S ~ My~(S) 

for each S E RCPTOL. call it the Dirac trcnsformation. 

The map x ~(f ~ f(x» give a natural isomo~hism E ~ ~(E) 

.". 

for each E E M.IXC""'. ',7e call it the Gelfand-Naimark transformation. 

These two maps produce the quasi-duality. 

1 .7. The tensor product in MIXC* ~ MIXTOP: 


The category RCPTOL has products (the obvious ones), so MIXC * as 


the (quasi)-dual category has coproducts. The y-tensorproduct, 


y.hich ',:e will ncm describe, is an explicit construction of the 


:I< 
coproduct in MIXC • 


Yet (E, II." E 't'E) and (F,. II. II F' 't'F) be two ob ject$ of MIXC. * 'Ne 
, 
consi der the follo'.Ying structure s on E ® F, the vector-space 


tensor product of E and F: 11.11
t 
-the inductive tensor product of 


the norms II.II 
E

, II.II (i.e. that induced by the operator norm

F 

via the embedding E 0 F ~ L(E' ,F). 

~ 
't' = 't'E 0 't'F -the inductive tensor product of the locally convex 


topologies 't'E' 't'p_ 


Let B denote the closure of {u E E ® F, I/u II ~ ~ 11 in the 


~ ::: 
completion of (E® F, 't'E 0 't'p) and let E 0 y F denote the subspace 

U n B of this completion, and let ~. I be the !1inkowski functional 
n>O 

l""
A A R-

of B. ( E <tP.,..,F, II IIA, t'E <8> t F ) 
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is again an object of MIXC.'" The same construction vvorks for 

MIXTOP. A result to be found in COOPER 1975 asserts that 
,. 
A 

E0 F =cf"(M (E) x My( F) ) in MIXC *, so the y-tens or ]?roducty y 

is the coproduct in MIXC * • 

1.8. The strict topology: 


If (E, 11.11 ,'t') is an element of MIXC*, let y :;: l' [11.11,.,;] be the 


finest locally convex topology on E which agrees wi th 'L on 

; l' is a com:plete topology.B II • II 
A ~ ~ ~ 

','Ie note that 1'[ ". " ''';E 0 't'p] = 1'[ !.I~''';E] 0 y[ I.I~''';F] on E 01' F. 

For fUrther details see COOP~R 1975. 


The same definition holds of course for objects of MIA~OP. 


~ It is -,veIl knorm, that locally compact topological spaces 


are k-spaces, i.e. their topology is uni~uely determined by their 


natural co:n]?Bctology. In this spirit we can reg8rd the category 


of locally compact topologic81 spa.ces (we call it LOCCOUP) as a 


:Cull subcategory of RCP.rOL and we will speak of locall;[-.S..9mua ct 


compactologicel spaces. 


1.10. Let (z,II.!! ,.,;) be an object of MIXC * c:nd let P be a de ning 

~amily of C*-seminorms on 3 (i.e. a family P satisfying 1.2. (2)). 

1\If P E P we denote by I 
p 

the ideal {x E E: p(x) :: 01 and by n. p 

1:1"- = O} •its annihil tor in 1<' i.e. A :: {y .......
-'-', E Y Ipp 

E is said to be perfect (APOSTOL 1971) if the sum A p is 1'-dense 

(1.8) in S. 
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If 8 is a regular compactological space and if K E 1(8) and 

... 
PK the associated C 

T 

_ seminorm, then I 
PK 

:::; LX E ~(s): xlK :::; oj 

and A 
PK 

= LY e CX'(s): yes) :::; 0 for s i KJ 80 Z 
Ke1« s) 

A 
PK 

is the 

subsDa ce 
~ 

C (S)c of functions in Cf'(S) wi th compact sup:port 

(i.e. x e Cc(S) iff' there is K E:i«S) wi th xes) o for s ¢ K).== 

1.11. ProDosition (COOP3R 1975) Let S be a regular compBctological 

space. S is locally compact if and only if CX'(S) is perfect. 
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§2. CORpactological~uDs and duality 

2.1. Definition. A compactological group is a group in the category= 
CPTOL of compactological spaces, i.e. it is a quadruple (S,m,e,i) 

-;'here S is a compactological space and m: S x S ... S, e:I -}oS, i: S ... S 

are CPTOL-morphisms so tha t the f'ollmving diagrams COI!lIT!ute: 

i'\3 x ms x S x S S x S 

ms x S ----------------~----~~ S 

e X idS idS x e 
I x S -----------,.,9< S x ...... S x IS r.-------~--

1m 
s 

d idsx i i )( idS d 
S ----;,. S x s------~~ S x S .. S x S .. s 

1mI 1 

I 

e ,. S .. e 
I 

(I is the final object of CPTOL, i.e. the one-point set, d is the 

diagonal map). The compactological groups form a category which 

we denote by GCPTOL (the morphi sms are those CPTOL-rnorphisms 

which respect the maps (m, e, i). A compactologicel cup is said 

to be regular if its underlying compactologicel space is regular, 



8 

i.e. if ~(S) separates S. GRCPTOL denotes the full subcategory 

of regular compactologic~l groups. 

2.2. Problem: Do there exist cOlIlpactological groups ",:hich are 

not re gular? 

2.3.. Defi ni t'i on: CllIXC* denote s the C8. tegory of cogroups in 

* * MIXC .. Thus an object of C1.:IXC is a quadruple (E,c,l1,a) where 

E is an object of MIXC*, and c: E -4 E @y E, 11: E -4 C, a: E -4 E 

are MIXC*-morphisms so tha t the following d grams cOIil.'!1ute: 

c ~ 
E ---------........ E@E 


E 

Of

1 idE'" C 

:; f: 
__C_<8>_i_d....E=--_.....;....... E <8> E tSb 
 EY -y 

1c 
~ 11 

E 0'( E_ 

C .....___ 11 ----- E ------ 11 ---tIP,.. C 

«a,id~» denotes the canonic8l morphism from E 0 
~ 

y E, the coproouct 
~ 

in UIXC* (cf 1.6) into E, defined by the ID8pS a and C is the 

initial object Of'l.UXC*) .. 
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2.4. If (S,m,e,i) is a compactological group, then cleqrly 

(cF(S),CO(m),~(e),cro(i)) is a cogroup in MIXC.* Clearlye:' 

=I< 
lifts to a :flmc tor GC?TOL --+ C!.:IXC • 

If on the other hane (E,c,ll,a) is a cogroup in lnXC*, then again 

(M (E),Mv(c),M (a)) is a regular compactological group. M lifts
Y Y YI 

... 
to a functor CEIXC'" --+ GRCPTOL. 


ProDosition: The functors ~ and My induce a duality between 


CMIXC* and GRCPl'OL. 


2.5. A compactological group (S,m,e,i) is locally c~pact if and 

only if its dual cro(S) is rerfect. (cf 1.11). 
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§3. The Bohr COIDnactification 

.1. Let (E,c,ll,a) be a cogrOl.l]J in li~IXC* • If' we consider the 

C*-algebra (s,II.II), then My(S, II. I) is a compact topological 

space, in fact, the Stone - '" cech campa ct if'i cati on of' My (s). It 

is, ho';/ever, in general not a topological grO'..rp, since (3,11.11) is 
~... 

not a cogroup in the category C* of cOillTI1utative C -algebras with 

~ $: 	 ~ ..... 

unit, since E ® E j E ® E, where E ® E, is the C~-algebra tensor 
y 

product or the inductive tensor product of Banach spaces. 

0Le t c = (i dE ® a) c. 

3.2. 	 Lemma: There is a largest C*-subalgebra S of E ~~th the 
... 

property that c (E) c E0 E. '8, vd th the induced norm and cogroup 

structure is a cogroup in C * • The assignment E ~ "" E is functorial. 

Proof: For each ordinal a, we define a subalgebra Ea of E 

inductively by 

"'_1 :! 
Ea: = c ® E(3) (a = i3 + 1)(Ei3 

Ea: = n {E {3 < a} (a is a limit ordinal).i3 , 

Then the family [Ea l is eventually stationary and we denote its 

,.., ::I: 
liEli t by E. Then E is C -subalgebra of E with the desired properties. 

3.3 . The functor E ~ E is a "f'orgetful f'unctor" f'rom *anxc into 

... 
CC'" • ''Ie denote it by U. ",'e c~'n no','i define a func tor B:=l~oUo y 

from GC:?TOL into GCO~,~P, the category of com:p3ct groups. If S is 

a compactological group, we c!Cll B(S) the Bohr-co::;:uactification 
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of S. There is a natural morphism j : S -+ B(S), j = M (A), i':here s s y 

r-/


A: ~(S) -+ ~(S) is the embedding. j has dense im~ge, since A is s 

injective. 

3.4. ProDosition: B(S) has the f'ollowing universal property: every 

GCITOL-morphism from S into a compact group factorises over js. 

P,roof': If 1'5: S -+ T is a GCPTOL-morphism, ''''here T is a compact 

group, then G'" (..0): C ( T ) -+ ~(s) is a CMIXC *-morphism. Since 

UC(T) = GeT) and U is a functor, acting on morphisms by 

~ 

restricting them, we conclude that ~(,e5) = cr-:'(,e5) rneps G(T) into 

~ ,-............ 
~(S), i.e. factors over A: ~(S) -+ ~(S). 

r--' 

oj, :::: M y a-o (,0) • 


S 

3.5. If' S is a compacto1ogica1 group and x E C""'(S), then we 

define (L x)(s) :::: x(as), (R x)(s) :::: x(sa) for a, SE S. x E C:C(S)a . a 

is said to be (left) a1~ostDeriodi~ if {LaX, a E sl is relatively 

norm-comp~ct in ~(s). ',Ve denote by APeS) the set of left almost 

periodic functions on S. 


';[ith. induced norm APeS) is G*-suba1gebra of' cf"(S). 


~ 

3.6. Lemma: d"(S) c AP(S). 
~ 

'" Proof: If' x E d"(S), there is an X E CeE(S)) so that 

"" x ::;:; x 0 js and 

,.., 
the result follows :fran the fact that x is almost periodic on 

B( 8). 
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§4. The Algebra Mt(S) and representations 

4.1 . Let (E,c,n,a) be a cogroup in MIXC * Equip E wi th the 

strict topology y [I/.II,'1:'J (1.8) ano. ::'et Eybe its dual. 


Define a multiplication on Ey' in the follO'.':ing way: if f',g E Ey', 


then f' * g be given by x -+ f' 0 g(c(x». 

Proposition: If' E is a cogroup in MIXC * , then Ey' is Banach algebra 

with identity. It is commutative if' E is cocammutative. 

4.2. Let S be a compactologic~l space. 

A premeesure on S is a member of' the projective limit of' the system 

[f K : M(K ) -+ ~J(K2) :K c K1 ,K1 ,K2 E k (s)l ·'·here l:(K) denotes the
K 1 2

1 2 

space of all Radon.-measures on K. 

If Il :: f ~l KEi<. is a premea sure denotes the outer 

measure on K defined by IIlKI then we define, for a set C c S 

~ * 
IiJ.1'" (C) :: sup [ IilK I (C n K): K E 1( (S)}. A premea sure Il on S is 

said to be tight if for each e > 0 there is a K El( so that 

III I*(s\K) < e. Equivalent is the existence of' an increasing 

sequence Kn in 

',7e denote by UteS) the space of all tight (pre) measures on S. 

If x E eo(S) and Il E M (s), then the limi t ~ J x I Kn d+L existst Kn 

and is independent of' the particular choice of the seQ.uence K • n 

·,';e write Jx dJ.I. for this limit. 
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A premeasure ~ = f~Kl is said to have comp~ct sur~ort if there 

is a K E 1<. (8) so tha t I~ I* ( 8\K ) o. The space Mo(8) of 

premeasures with compact support is identifiable Vii t.l-t U M(K). 
KE1t.. 

ProDosition: (COOP3R) If S is a regular compactology, then the 

dual of [cfO(S), 't"1(S)] is naturally isomorphic to Eo(8) under 

the bilinear form (x,l-l) -4 Jx d\-l; and the dual 01' [c:F'(S),y[ II." ,'t"]J 

is naturally isomorphic to M (8) under the bilinear formt 

{x,~) Jx-4 d\-l. 

80 CX'(S)/::; Mt(S). 


l1..3. If S is a CO:llr:;ctological groap, then we can give an 


explicit description of the multiplication * (3.1) in M (8):

t 

If x E OX' (8 ), l-l, V E M ( S), then we have
t 


Jx d (~ * v) = (~0 v) (c(x)) 


= r x(s.t) d(~ ® v)(s.t) 

J 

=JJx(s.t) ~(s)dV(t), 

i.e. we have the ordinary convolution. 

4.4. If S is a regular compactological space and E a complete 

object of MIXTOP, then define (;,"'O(8;E) as the space of all II. II-bounded 

maps 1': S -'t S, equipped with the pOintwise linear structure and 

the following mixed structure: 

- the norm ~ I' II =sup 


't" - the topology of uniform 't"E-convergence on metibers of ~(S). 




• ~ ": ~ J '\" ~ 
, ;~,' .' , .. 

,',' 1,', .. " ..;.......·.1.·'. '. ' ,'....
. ,'" ' ~>,:. ...It.'+' Jt 

Propositi2~: If S is a regular com~8ctologic8l sp~ce, then the 

embedding 0 : S 4 Mt(S) has the follo.ving 	Hniversal property: for 

every complete object E of MIXTOP and every f E ~(S;E) there is a 

unique T E L(Mt(S);E: which exterrls f via 	0; here L(Mt(S);E)';;~(S~YE 

is the space of lirtear maps which are continuous in a rather 

complicated structure on 'Mt(S) - ft)r simplicity's sake we take this 

/} 

e~uality for definition. So we have ~(S;E) ~ ~(S) ~ Y E ~ L(Mt(S);E). 

4.5. If S Is a compactolog1cal group anLE a complete object in 

MIXTOP, then ~(S,E) bas a natural map cE : eo(SjE) 4 cro(SxS;E), 

given by c..,,!X t-+ «s,t) 1-+ x(st));
:1. 

A 
fit A 

~(S) @y .cr='(s) (Nyi.e. 

Let (B,II.1 ,'t") be a complete algebra with 	unit e in MIXTOP, i.e_ 

there is an ass ociati ve mul tiplica ti on m: 	 E x E 4 E so tha t (E, 11.11 ) 
.... .... 

is a Banach algebra and mlB B is 't" X 't" -continuous. 
lI.n x 11.11 

Then ~(S;E) has a natural "multiplicationlt 
• 

mE: ~(S;E) x ~(S;E) 4 ~(s x SiE), given by 

mE : ( x ,y) t-+ « s , t) \-+ m ( x ( s ) ,y ( t ) ) ) • 

','Ie say that an element x E C:O(S;E) is primitive, if ~(x) = m...,(x,x).
-	 .w!'.J 

4.6. Proposition: Under the identification cf'(SjE) ~ L(l.\(S),E) 

the primitive elements correspond to the Banach algebra morphisms. 

X E cf'(S;E) induces a unit preserving operator if and only if 

x(c) ::: e:;-_ 
J..J 
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Proof': Suppose th~t x E ~(S;E) is primitive. The image Tx of x 

in L(:Mt(S);E) is defined by ~ ~ Is x d~. 

Then Tx (~ * v) = Is x d(~ * v) = 

SxS SxS 

O:l t he other hand, if T E L(Me(S) ;E), then T :;:: Tx '.vhere x = ToO. 

T(O * 0 )= s t 


= m(x(s),x(t)) = mE(x,x)(s,t). 


4.7. Corollary: Let S be a regular compactological group, X a 

Banach space. Then there is a one-one cor respondence betvTeen 

(i) the set of st70ngly continuous representations of S in X. 

(ii) the unit preserving Banach algebra morphisms in L(Mt(S);E) 

(iii)the primitive elements x of <f'(S;E) with x(e) e E • 

(E denotes the object (L(X,X), II. II ,t"s) of MIXTOP - 't"s is the 

strong oper~tor topology). 
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§5. p,ontryagin quality 

5.1. Let (E,c,ll,a) be an object 0:: C1\~IXC * • x E E is called 

strongly primitive if 

(i) c(x) = x @ x 

(ii) T}(x) = 1 

1(iii) a(x) = x- (in E). 


~::e denote by peE) the set of strongly primitive elements of E. 


5.2. ProDosition. peE), with the topology and the multiplicative 


structure induced from (E,y( II. II E,'t'E))' is a topological group. 


It is contained in [x E 3: ~xll = 11. 


Proof: p(~) is closed under multiplication: 


Let x, Y E peE), then 


c (xy) = c (x) c (y) == (x @ x)( Y ~ y) == xy 0 xy. 


T}(xy) = T}(X) T}(y) = 1.1 = 1 


-1 -1 ( )-1a(xy) = a(x)a(y) = x Y == xy 


(E is commutative: the C*-algebra part). 


The constant function 1 is a unit for peE). 


If x E p(~), then a(x) = x-1 is an inverse for x. Since 


Llultiplication is y [I/.Il E' 't'E) continuous, (P(E),y[ 1I.lk,'t'E J) 

is a topological group. Since II x I I x II == If x @ x II == II c(x) II ~ Il x II 

and. 1 = 111 I = II y(x)·11 ~ II x II we canclude tha~ II x II = 1 for 

all x E p(Z). 
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5.3. Definition: Let S be a commutative compactological group_ 


A character on S is a GCPTOL-morphism from S into the circle group 


T. The set S of all characters form a group. S, with the topology 


of uniform convergence on members of j<. (S), is a topological group, 


and it is complete in this uniformity. 


5.4. ProDositio~: Let S be a com~tative, compactological group. 


The S = p(~(S)) (a topological group). 


Proof: If.x E p(cf'(s)), then II x I == 1 = II x-ill, so .x takes 


its values in T. 


c(x)(s,t) = x(st) and 


(x ~ x)(s,t) == x(s).x(t) shO"/i' that the strong primitivity of x is 


equivalent to its being a character. 


Since y [11.11, 't"] = 1: on we see tha t even the to pologie s

B I. II 

coinci de. 

Corollary: Let S be a commutative, regular compactological 

group. The S separates S if and only if the vector space generated 

by P(~(S)) is y-dense in ~(S). 



18 


REFERENCES 

*­
C. 	 APOSTOL B -algebras and their representations, Jour. 

Lond. Math. Soc. (2) 3 (1971) 30-38. 

H. 	 BUCHHALTER Topologies, bornologies et compactologies, 

Lyon 

J. B. COOPER 	 The mixed topology and applications. 

H. 	 HEYER Dualit~t lokalkompakter Gruppen, Springer 

Lecture Notes Nr. 150 (Berlin, 1970). 

E. 	 HEWITT, K.A. ROSS The Tannaka-Krein duality theorems, 

Jahresber. D.M.V. 71 (1969) 61-83. 

Abstract harmonic ana is II (Berlin, 1970). 
,'. 

K. 	 H. HOFMANN The duality of compact semigroups and C~-

bigebras, Springer Lecture Notes Nr, 129 

(Berlin 1970)', 

P. MICHOR 	 Dua ty in Groups, unpublished note - 1972. 

J.W. 	 NEGREPONTIS (J ,W, llet ) Dua ty in analysis from 

the point of Vlew of triples, Jour, of 

Algebra 19 (1971) 228-253. 

N. 	 NOBLE k-groups and duality, Trans. Amer. Math. Soc. 

151 (1970) 551-561. 

D. 	 W. ROEDER Category theory applied to Pantryagin duality, 

Pac. J. Math. 52 (1974) 519-527 . 
.'. 

S. 	 SANKARAN,S.A. LESNICK Some rernakrs on C"-bigebras and duality, 

Sernigroups Forum 3 (1971) 108-129. 

S. 	 A. SNICK Watts cohomology for a class' of Banach algebras 

and the duality of compact abelian groups, 

Math. Z. 130 (1973) 313-323. 

M. 	 TAKESAKI Duality and von Neumann algebras (in "Lectures 

on OPerator A bras" - Springer Lecture Hotes 

Nr. 247 - rlin, 1972). 




