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Abstract: The following is & detailed development of Rota's
finite operator calculus to the case of several variables.
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of shift invariance, which is investigated afterwards sepa-
rately. In the last chapter operators invariant under & line-
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§1 Preliminaries

1.1 Multi indices: We consider the space N? of all n - tupels
X = (oq,...,o%) of non negative integers with the usual product
order (x ¢ 3 iff &, ¢ f; for all i). Let 0 = (0,...,0) and
€(i) = (0yeeeylyees,0), where just the i'th coordinate is 1,7 ¢
all other are zero. For W,(&eNn we write l«| = Gt oo +&
& W‘ Q,‘
1 = ! ! =
%! =on! ...00! and (B) (p) ces (@) with the usual
conventions such as O! = 1 and (g) =0 if B €& & does not
hold. If 3 & «, then (g) = o!/ B! (x-p)! . Furthermore we will
o
use (u)p = (3! (p) = “1(“1"1) ) (cx1—ﬁ1+1) e o O(n e e (an-qn+1).
If x = (x1,...,xn) is an n - dimensional commuting variable
x x, Xy, - Xy _
we set x =X, ‘... X Tand (x)g = *!(y) = (x1)u‘... (XHL% ,
where (Xi)“; = Xi(xi-1)"'(xi-°&+1) are the one dimensional

lower factorials.

1.2 We let Pn = K[x] the polynomial ring in n commuting variables
X = (Xyy.+0,%,) over a field K of characteristic 0. For x ¢ NP

the expressions x*, (xl‘, (%) denote elements of P . Any

feP has a unique representation in the form f(x) = é'_ T X7,

where all but finitely many f, = O.

1.3 Clearly we have the binomial formula
™ x -
(x+a) = % (P) af x* B ip P for all « & N* and each
a = (a1,...,an) in K® (or independent variables). We will need

this in more general form:

Lemma: Let A = (a be an nxm matrix whose

ij)1 gig¢n, 1¢jgm
entries are in K or independent variables. Then we have for

Mg
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where ay = (a1j,...,anj), By = (@11""’@im) N,

_ B _ B
B! = TTRy! and A" = TTa, .
i,J i,J
This lemma is just the binomial formula for longer sums for fixed
i, multiplied together for all i. The proof is straightforward

following these lines.

1.4 By L(Pn) let us denote the algebra of K - linear
mappings P ——>P . An element of L(Pn) is called operator
for short. If Q1””’Qn are pairwise commuting operators, we
call the n - tupel Q = (Q1,...,Qn) an operation. By Q. we

mean the operator Q:‘ an" for «eN-,

In the next sections we collect some examples of operators

and operations.

1.5 Let gePn. Then f ~——>f.g 1is an operator on Pn, called
the multiplication operator M(g) induced by g.

M: P — L(Pn) is an isomorphism onto a commutative subalgebra

of L(Pn).

1.6 For any 1<ign let D, or %C be the (formal) partial
i

differential operator on Pn in the direction X8
2 « vy _ a-€(1) 22 p)
o2 (Z £ x™ ) = 2 fuoy x . Clearly & = (?X«"”’i?.,)

is an operation which we call D = (D1,...,Dn) if the "basis"

XqseeesX) is fixed.

1.7 Let a(D) = 2;. 8 D~ be a formal power series in D. This
defines an operator a(D) eL(Pn) by a(D)f = é; Au (D™ £) for
i‘ePn. Since the degree of f 1is finite this is a finite sum.
We have the explicit formula:

(a(D£)(x) = (Z ax D" ) Z 25 x°) = 2o aq £, D™ x
= g.—?; ax £ (B)qu"q = 2;_ (> f/H_% ag (M+a)) <",

(4
This gives an algebra monomorphism onto a commutative subalgebra

€



K [[p]] — L(2,).

1.8 For fixed a =(a1,...,an)e:Kn we have the shift by a, given

by (Ea £f)(x) = f(x+a). For any monom x . , «eN", we have

o * & 6 x=0 aB =03
E, x = ( xX+a ) %; (@) a’ x 2%? Al (<>()(s x
= (ZE_ p® ) x™ = exp(a1D1 +eoot a D ) x° = e<@s D7 ,
where <a D> = <(a1,...,an),(D1,...,Dn)> =a,Dy + cou anDn
is the usual formal inner product.

So in particular we have E_e KI[[DI11.

1.9 Let us interpret for the moment the x; as the coordinate
functionals of the running point x e K? with respect to the
standard basis e,,...,e  of K. If a,,...,a is another basis
with coordinate functionals YqseeesVps then there is an inver-
tible matrix A = (A ) over K such that 2 2{ A j e

If B = (Bij) is the inverse matrix, then in turn

B.. a. A, d .
%? E Bt B ;? ji¥i #me Yy Ei Bii
If feP , £(x) = g; f, x* , let us interpret f as a polynomial
mapping on Kn, expressed in the coordinate functions Xy If we

express in the coordinate functions y; we get

o

=3 £, > f%% TT (&5 7y ) i by 1.3
* B= (B,.)e€ N ©o1, !
ij
lpil" °‘i
~x1 2B B
= % f°‘ ‘(‘3‘!‘ y A
B= ((313)

with the same conventions as in lemma 1.3.

1.10 Consider a linear mapping A: K® —> k" whose matrix with

respect to the standard basis is A = (Aij)' If x = (x1,...,xn)
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then A(x) has the coordinates ( FJ_ A1j X.

5 oreees ;Anj Xy ) .

If feP , £(x) = % f, x™ , then fekeP and we have
- o
(feh)(x) = 2. fu ((2 Ay, x.),)

1

-l

J
-2 = a0 o TP
nn ‘
(= (Dlg)e N
lpl' = O‘i
as the computation in 1.9 shows. i Pn —> P , given by

f —> feoh, is an operator, even a ring homomorphism.

1.11 Now let P: K — K" be a polynomial mapping, i.e.
P = (p1,-u,pn), p; = Z.- Pi« x% e Pn . For fePn we get again
a polynomial feP; f — foP is an operator P*é-L(Pn), even a
ring homomorphism. Let f(x) = ZA" fa x®, then we have

B

G

(£o2)(x) = 3 £, 2% = 3 £5 ( Z pyg xNeey 2 Ppe X7
Here &« runs only formally through all of N? , above some bound

everything is zero. So we may apply lemma 1.3 and the above

equal s
B
2{3' fB > X ND /)\!
M= (/uiu) e N
Ml =% M =By

~x
W
™M
L
ks
3
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§2 Basic sequences and delta operators

2.1 Definition: An admissible sequence p =-(pu)«€1ﬁ1 is a

sequence of polynomials p«e Pn such that pyg is of degree

lx( and for any me N the set {pe« :lal ¢m} is K - linearly
independent in Pn.

It is clear that then Ep“ :ldlsxn} is a K - basis of the space
of all polynomials of degree £ m by an dimension argument.

SO §po X E Nn} is a K - basis of P and any fe P has a unique
representation of the form f = 2 a. P -

The notion of admissible sequence is the generalisation of

the so called Sheffer sequences in (61 y leaving away the

condition of shift invariance.

2.2 Let p = (py) be an admissible sequence, then for 1<ign we
have an operator T; = T(p)ie L(Pn) defined by

Ti (% Qg pc() = %— aog p°(+£(i).

Clearly T = T(p) = (T1,.,.,Tn) is an operation: we call it the

admissible operation for the sequence p = (py). We have the

following formulas: T(p)B (2 aw Px) = 2 8o pq+(3 ’
=< &
&
Px = T(p) (PO) .

. — X 3 . . _
Examples: x = (x%) is an admissible sequence, T(gc_)i = M(xi).
The following is a construction principle: for 1¢ign let
(Pim(t))meiN be a sequence of polynomials in one variable t
such that p, is exactly of degree m for each i and p; # 0.

admissible sequence.

2.3 Remark: If p = (pw) is an admissible sequence then for each
m € N the homogeneous parts of degree m of py for )= m

constitute a basis of the space of all homogeneous polynomials
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m+n-1)

of degree m. This space has dimension ( -

2.4 Proposition: Let p = (pu) be an admissible sequence and

let T = (T1""’Tn) be the admissible operation for p. Then

there exists a unique operation P = (P1,...,Pn) such that

Pi(p,) =Oand P; Ty -1, P =d;, Id, for 1<4,j<n.

If f is of degree m in P , then P, (f) is of degree m-1.

Proof: The idea is from Cigler [ 1].

If there is Pi with Pi Ti - Ti Pi = Id ‘then for m2 1 we have

Py Tim = Tim P m=1, TMis is seen by induction. Now we

use that all the Pi‘s commute and Pi(po) =0 : for «eN™

i + m Ti

x x, «,
X ;. o Xiag oA
= T1 1 e Ti-1 (Pi fi)) Ti+1 s Tn po
™ x—€(1
=T Py py + 3 T Po =% Pu—g(i)*

So we got a formula for Pi;this proves uniqueness:
(1) 23 () = % Pug(s) -
Now we take this formula for definition, then each P, € L(Pn) and
a straightforward computation shows that P = (P1"“’Pn) is an
operation and satisfies P, Tj - Tj P; = Jij Id. The degree
condition is clear from the formula. qed.
2.5 If p=x = (x), then P=D = Q%,...,f%). This motivates

1 LY

the following definition:

Definition: If p = (py) is an admissible sequence then the

operation P = (P1""’Pn) uniquely given by 2.4 is called the

delta operation for the sequence p. We have the following

formula:
LS
(1) P p(i = (B)u pG—u ¢
The name delta operation shold indicate that P acts on p as

the differential operation D =5a; acts on x.
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If a(P) = 42_ ae P* is a formal power series in P = (P1,...,Pn)
then this gives an operator by a(P)f = %'_ ae (P® £), since
P¥f is 0 if « is big enough. This defines an algebra mono-
morphism K[[P]] ——?L(?n) onto a commutative subalgebra of
L(Pn). Exactly as in 1.7 we have the explicit formula

(2) a(®)f = (2 ax P*)( 3¢ f5 pp )

% aq fpa (B)e Pr_a

% (2 fopa da (+@)y ) Do

[l

0

2.6 If p = (py) is an admissible sequence we may define an

inner product in Pn, the p - inner product, by defining it

on the basis Py ! <P« » Pp >p = ! d,5 . By linear extension:
<IT fupar S ga0p 7 = S fu 8o ! 4
For any fePn we get f = %<f y Px =1 Poc ¢

Lemma: If p = (p«) is an admissible sequence, T = (T1""’Tn)

is the admissible operation for p and P = (P1"“’Pn) is the

delta operation for p, then P is the adjoint to T via the

p - inner product < , >p , l.e. <Ti f, g>P = <s, P, g>p

for all f,géPn, or, equivalently, <T°‘f, g>p = <f, P™ g>p

for all oe Nn.

The proof is a straightforward computation which we omit.

2.7 Let us denote by AO: Pn —> K the linear functional which

associates the constant term f(0) to fe Pn.

Lemma: Let p = (ps) be an admissible sequence and let

P = (P1,...,Pn) be the delta operation for p. Then the matrix

( AO( Po‘ P(; ))Os|q|Sm, OSI(SI\<m € G'L((m:n.n), K) for all me N.

Here (m;n) is the dimension of the space of all polynomials

of degree< m.
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Proof: The dimension formula can be seen by induction. We want
to compute the determinant of the matrix considered and start
with the following remarks:

If % ¢ B then P py = (B)y P,_, = O.

If « =p then P"pp = o! p_ .

Let w be a non trivial permutation of {«: O<l«l¢m} . Choose

®x, Oglal¢m , such that « #W(x) and l«l is minimal for that.
Then either « 7{ w(x) and P% Pr(a) = 0 or « < T(x) , but then
— () 4: « (otherwise T '(x) < & and so |w '(x)| < let] which

-4 “
contradicts the minmality of lal), so PT () P = p¥ () Pr(r-'())
= 0. Thus | | AO(P"‘ Py(x)) = O if w # Id, so the determinant

lxj¢m
of the matrix is just [ 1 AO(P“ Po ) = T | et p, # 0. ged.

lelgm lx}<m

2.8 Lemma: If p = (p,,() is an admissible sequence and

P = (P1,...,Pn) is the delta operation for p, then for any

adm;ssibie sequence q = (qq) and for any me N the matrix

e oL(("™), K)

« v
( Ao( P i ))Oshlsm, OglIplgm

Proof: {pq :lulsm} and {Qq :\di\cm} are bases of the space of all
polynomials of degreegm. Thus there is an invertible

(m;n)x(m;n) - matrix A = ( a“@) over K such that

o] gm, Il ¢m
Ag = § Qap Pe - But then

« ox
CACP ap Digigm,ipgm = % Ao CP D4 ) g iy g my i m
= ( Ao( = Dy ))m’_'L . apnp )1“{‘ is the product of two

invertible matrices. ged.

2.9 For me N let M(m) be the space of all (m;n)x(m;n) -

matrices A = ( aup )lxlsm,lmsm over K such that

Bap = 0 if lai>lpl .
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Lemma: M(m) is a subalgebra of the algebra of all

(m;;n)x(m;n) - matrices and M (m) N GL((m"r;n),K) is a subgroup

of GL((™™),K) (i.e. if Ae M(m) and A is invertible then

A~ 1e M(n)), which we denote by (} (m).

Proof: In a suitable order of iu:luISm} M(m) appears as an
algebra of "s®aircased upper triangular matrices".

M(m) is clearly a linear space, we have to show that it is
closed under multiplication: let A,Be€ M(m), A = (a«(s ),

B = (bxs ). Then A.B = ( % Bap Dpp )«’ﬂ . If i) Ip] then
there is no € N" with l«I<|p| and Ixl<Ipl, i.e. no 4 such that
both aqy # O and by, # 0. Thus % 8¢y Dpp = O and A.B eM(m).
Now let A = (aqp )e M(m) be invertible. For «,( let A(x,3) be
the ((™7)-1) ((";)-1) - matrix obtained from A by deleting
the & - th row and the (®- column. If At = (c,‘(; ) then

Cap = (t1) det A(B,x)/ det A. We have

det A(p,x) = > ky T T a5 0(s)

wePerm fqp:lpl <m} 1§lgm
w(p) =£ J#p

If lod>l(5| and w is such a permutation with W(p) = « then there

some & with m» 1§y Ipl and |w (&) ¢ 1Bl . But then
151> 1pl > Iw(8)] , so a5 y(g) = O» SO det A(B,x) = O
and A™ e M(n). qed.

2.10 We consider now the set TM consisting of all (iwn‘finite)
matrices A = (aqp )u,($ ey Such that a,q= 0 if (>3] .

We define multiplication in M by A.B = (27; fap Ppp D, ®

It is easily seen that each sum is actually a finite one and
that for each mé N we have (A.B) = A . B 1f we denote by

m+ny My _ . X

A the ( - ) x( - ) - matrix (am(s )HISm,I{Hsm in M(m).

The method of proof of 2.9 shows that if A€M is such that

A €4} (m) for each m there is a matrix B (with B_ = Am‘1) in M
with B.A = A.B = Id. We define q to be the subset of all these
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matrices.(ﬂ is a topological group, even metrizable. In fact
M is the inverse limit of all the M(m)'s over the projection
maps M(m) —> M(n') (mzm') given by deleting all entries
axg With lI>m' or I8l > m'. Likewise /(% is the inverse limit
of all the groups 4g(m).

Now we have all the results and concepts necessary to give a

reasonable definition of an abstract delta operation.

2.171 Definition: A delta operation on Ih is an operation

R = (R1”"’Rn) satisfying the following properties:
1. Ri(c) = 0 for each constant c ¢ K and all i.
2. If f eP has degree m , then Ri(f) has degree < m-1.

. - %
3, For some admissible sequence q = (qu«) (AO(R q@ ))N,GQ'%-

Remark: In view of 2.10 condition 3 means that
(=4
(AO(R dp )hulgnu)Algnxe‘%(m) for each m. The method of
proof of 2.8 shows that if 3 holds for one admissible sequence

then it holds for all.

2.12 Theorem: Let R = (R1""’Rn) be a delta operation on P, .

For any sequence of constants (cy)

« e NP with c # O there is

a unique admissible sequence p = (p«) With A, Py = Cx Such

that R is just the delta operation for p (i.e. R°“pﬁ = (B), PP-«)'

Proof: If there is such an admissible sequence p then there

exists an infinite matrix A = (a“p ) such that the

n
oy 3 € N
following conditions (1) - (4) are fulfilled:

(1) & = (aup ) € 4.
M
2 x) = 2. a X e
(2) pu(®) = = apa
By (2) alone A is uniquely determined and an element of 49 since
p is an admissible sequence. (1) and (2) are equivalent to the

fact that p is an admissible sequence.
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(3) 2ou = Cu for all ¢ .
This is just the initial condition AO Px = Cg -
Now for any A € N let us consider the linear functional
Az: P, — K, given by 4,( % fo x%) = £y , i.e. the A- th
coordinate functional of the basis x = (xA) of P .
«
Our main concern is R pp = (B« Pa_w 9 i. e. condition
[+ N
(4) R (;_ aﬂ,,x'y') = (B« ; 2\ b M, or
oA 11, - /u
(4') ;_ apg R xT = % (Bl 8, p-w X’ s OT
(4!') %_ af"(‘ A)\ (Ru x"") = ((3)“ ax,p_a for all u'{},A .

We need a
- ot & 4
sublemma: 3= (A (R* x}))(4\(R% x#)) = & R x #) for allepp.
Proof of the sublemma: ; (AO(R/“X'\ ))(A,\(Ro‘x%))
= A R* (2 (h) RY x¥) x*) = A R¥R%x® o RO xF
Now we show that the infinite system of equations (3),(4) has
a unique solution A = (aqp ) in '{a . We can then define the
admissible sequence p by (2) and the theorem follows.

For that we look at the reduced system:

(3) a_ = Cy

O

(4"’ A= 0) % a""ﬂ Ao(Ru X%) = (P)« ao’(;-o(.

which is equivalent to

% 3 -
(5) %AO(R x”) app = ((B)q Caoq foOr all o,f .
Since R is a delta operation, by 2.11.3 (and the following

x _P$

remark) (A (R™ x ))“,7’ e/fa - Also ((P)y cp_ )u,(s G/(g )
since each entry with x4 (3 is zero, so for each m the
projection into M (m) is better than of upper triangular form
and the determinant is just the product of the diagonal elements
which are all #/0 (cf. the proof of 2.7 where we had the
same situation). So (5) is just an equation in /\3 :

(AO(R“ ")) A = ((B), cp_o( ) ’ which clearly has a

%, ¢
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unique solution A in the group4a . This A fulfills (1) and
(3), (4'', A= 0) (these two are equivalent to (5)). It remains
to show that (4'') holds for all A.

It is easily seen that (AX(R«IX# ))Ar“’f'is an element of /M
if one of its indices is fixed.

Thus (% Ay R* x* ) app )X’“ €M , further more

(AO(R/‘ x* ))/w\ (3 Aa and we have

MR XA ) e (Z e AR x¥))y

= 2 aps (AR xP) [ RTx*))

:;. Bpp AO(R”+“ x*) by the sublemma

(B s ©popms by (5)
(e - <(gos)o
(Bl S 2y, pon Ao(R x
(A R x4 )y o C(B)x 2y g )y, -

Putting away the invertible matrix (AO(R/‘XA )) the

]

]

A ) by (5) again

result (4'') follows. ged.

2.13 Definition: If R =g(R1,...,Rn) is a delta operation, then

we call the unique admissible sequence r = (r,) with rO(O) = 1
ol

and r,(0) = 0 for « # O and R Ty = (ﬂ)« re_« the

basic sequence for R,

For a delta operation R we have an algebra monomorphism

K[[R]}] — L(Pn) onto a commutative subalgebra, given

by (;g: a R )—— (f =~ Z2_ a, (R® £f)). Compare 2.5; formula
2.5.2 is here valid too. )

We also note the following

Corollary: If R is a delta operation, then the following
strenghened version of 2.11.2 is valid: if fePn is of

degree m then Ri f is of degree m-1.
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2.14 Lemma: Let p = (py) be _a basic sequence. For any other

basic sequence g = (q,) there is a unique matrix a = (a«ﬁ )

such that:
. a eda
2. a,, = Jo& for all & .

3¢ du = %; 3pa Pp » 4 = DP.2 for short.

Proof: ip“} and {q“} are both bases of Pn respecting the
filtration by degree, so there is an element aeq with q = p.a .

Condition 2 just expresses the fact that p,(0) =4 y Qo(0) = Jo«

ox
qed.

2.15 Let Ajo be the subgroup of 4% consisting of all elements

a

(3up ) with 8oy = J

on the set of all basic sequences. Likewise the subgroup 4@1

o ? then ‘90 acts freely and transitively

of {a consisting of all elements a = (a“ﬁ ) with 2.0 £ 0 acts
freely and transitively on the set of all admissible sequences.
The unique element a of 2.14 could be called the matrix of
connection constants from the basic sequence p to the basic

sequence Q.

2.16 Comllary: Let R and Q be delta operations with basic

sequences r and q respectively. Then there is a unigue

matrix a = (aqp ) such that:
1. ansfao
2., q =r.a
x =
3. ZaMQ r, = Z((z.)u &, o Tu fOT all«,p.

4, ZarpA(Q Ty ) =J°‘f5 ! for all o(,(i.

Remark: 1. and 2. are just a reformulation of 2.15. The whole
statement is theorem 2.12 recasted for the fixed initial

sequence cq = Jb« and with x replaced by r and R replaced by Q.
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3 and 4 are restatements of 2.12.4' and 2.12.5 in this new
situation. The corollary can be proved by going through the
proof of 2.12 again with the obvious changes (AA should be re-
placed by A(f) » the coordinate fundtional for the basis (r,)

in the sublemma).

2.17 Assume the data from 2.16. Let us denote J = («! d,,) eli
G’ x,p o}
then 2.16.4 reads as follows:
>3
1. (A,(Q" ry ))“’{s ca=7J,
so we have
-~ &
2. q = T.aA = - (AO(Q I‘ﬁ ))“’ . J
and by symmetry
[ -1
3. T=q. (AR q, )"s(* . J
but we have also by 1
_ -1 _ -1 x
From 3 and 4 we get
-3 [+ 3 -
5. (A,(Q7rg )), o= T . (A, (R aqp))y o - 7.
As an application we put formulaSback into 1:

6. a =131, (&, (R* q, Nuypr toer 2ug = a A (R ap )

2.18 Formula 2.17.6 is not very deep, we may derive it directly
using

Proposition (Taylor formula): Let R be a delta operation with

bagic sequence r. Then for any f¢ Pn we have

> (a, B £) T -

Proof: We have AO(RN ra ) = ! J;o , S0 we get
1 ;
rB-_-.%m—!(AOR“r(s)r. Since Z%A R™ is an

(-3
operator and (r,) is a basis we have Zi = Id. qed.

™3

.-ln

. . T\
Now 2.17.6 is clear: %; dxp To = 9 = %; 3ﬁ'AO(EX ap ) 3 now

use that (ry) is a basis. -
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2.19 Lemma: Let t = (t1,...,tn) be a n - dimensional commuta-

tive variable, a;(t) = Z a,, t* e K{[t)]for 1<i<n and

b(t) = % b[s 1P ¢ K[[t]l]. Suppose that a;, = O for all i.

Then we have for a(t) = (a1(t),...,an(t)):

b(a(t)) = 2 by (a(t)" \
m Z{;‘ P N2 ()\i«) eNanm AT )
g’\iu = By
iZ>‘io("x =%
A" A; \
where A = (a; ) , A" = 'lj:;l' a;, '* and ! =]T’\iu' .

Proof: See 1.11: if we truncate all a;(t) and b(t) at a certain
degree m, we compose just polynomial mappings and can apply

the formula of 1.11 (which we derived using 1.3). This gives

all the monomials of b(a(t)) up to degree m. Since m is arbitrary
the formula is valid. An alternative proof can be given using
lemma 1.3 for formal power series (instead of finite sums),

where it is valid too, and straightforward computation (as in

1.11). ged.

2.20 Theorem: Let R = (R1""’Rn) be a delta operation and
. ®
Qqse-+»Q, € K[[R]] with representations Q; = Z«_ aj B =1

= ai(R). The operation Q = (Q1,...,Qn) is a delta operation if

and only if a; 6

In this case we have K[(R]] = K[[Q]].

= 0 for all i and ( ai,E(j))i,je GL(n,K).

Proof: Let us first suppose that Q is a delta operation. Then
= = & =

by 2.11.1 0 = Qi(1) = éaiKR (1) = I

Now let p = (py) be the basic sequence for R. Then by 2.11.3

& N .
(AO(Q Pp ))c‘,{s elﬁ, so the following matrix is invertible:

1| o
(AO(Q“P{a))aqlsh\(SlU =( 0 I (a, e(3)) )
? J i’j

1
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and the condition is satisfied.

Now let us suppose that conversely the two conditions are

satisfied. We have to check 2.11.1-3.

1. Qi(c)=Za R (c) =a;, ¢ =0.

2. 1f feP has degree m, then Q (f) = Zi ay (R°< f) ,

all R* f have degree < m-1, so Qi(f) has degree < m-1.

3., We claim that for the basic sequence p = (ps) of R the

matrix (AO(Q“jpB ))“,ﬁ 644. Let a(R) = (a1(R),...,an(R)), then

the constant term of a(R) is zero and the linear term (with

respect to R) is ( Z? a1 g(1) g €(1) yo ooy 2;'3 Je(1) r€(1) )

with an invertible matrix ai,E(j) . By the implicit function

theorem for formal power series (cf.[8], p.137) the formal

power series is invertible with respect to composition, i.e.

there is a formal power series b(R) = (b1(R),...,bn(R))e K[[R11"
0(

such that b(a(R)) = R and a(b(R)) = R. Let b, (R) = Z. b, o .
Now (A (rP pM))B ’ A}] We truncate at me N: b(Q) = R, so

= (Ao( > ()‘2= ()‘i“)eNann 3\—! ) Q P}t))\plém,lylsm
Z-X = Bi
z:xlm =4

by 2.19, where B = (biq ),
! A d
= (Z:‘,\T B™ Nl <m,|§lgm + (£6(Q P%))l.ﬂsm,lylsm.
= (Aiy)

%—Xi«x =By

Z Nig-x =9

l,&
Since the product is invertible, each of the two factor
matrices is invertible and 3 follows.
The last assertion of the theorem is a trivial consequence of

the fact that Q = a(R) and R = b(Q). qed.
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2.21 Proposition: Let R = (R1"“’Rn) be a delta operation,

let Q = (Q1""’Qn) be another delta operation with Qie'K[[R]],

Q. = %;, a; R* . Then the following conditions are satisfied:

1. ai, = O.

)) € GL(n,K).
1 B

i T 2@_‘_ 25 g+e(s) R® € K[[R1]l, then

(Pij) € GL(n,K[[R1]).

2. (ai,E(j

%. If we set Pi

4. Q1 = 2?: Rj Pij , or Q = P.R for short.

Proof: 1 and 2 follow from 2.20.

3, K[[R]] is a commutative K - algebra and a nxn - matrix P

over it is invertible if and only if det P is multiplicatively
invertible in K[[R]1] and that is the case iff Ao(det P)#O

in K. A: K[[R]]l] —— K is an algebra homomorphism, so

_ _ _ 1
Ao(det P ) = det( AP ) = det(AO(Pij))i,j = de‘t(—ﬁ ai,&(j))i,j
and that is not zero.
4, A straightforward computation. ged.

2.22 Theorem: Let R = (R1""’Rn) be a delta operation and
Q = (Q1,...,Qn) with QieK[[R]]. Q is a delta operation if and

only if there is an invertible matrix P = (Pij)e(ﬂxn,K[[R]])

with Q = P.R ., P is in general not unique.

Proof: Necessity follows from 2.21. Sufficiency is seen after

a simple computation by 2.20.
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§3 The Pincherle derivative

3,1 Let R = (R1""’Rn) be a delta operation with basic
sequence r = (r,) and let T(r) be the admissible operation

for r (cf. 2.2). We call T = T(r) the basic operation for K.

We define then for 1 <i <n linear mappings
: L(Pn) """>L(Pn)9
5%, ¢ L(R) —>L(RB),

R.eS - SR, , SeL(Pn) and

o’
>
W
3
~
w
p
il

i

P)
~~
(€]
N’

i

SeT, - TS, SeL(Pn).
These are called the partial Pincherle derivatives induced
by r. Note the asymmetry in the definition.
3,2 Lemma: 1 2 (7,) = R,T, - P,R, =4d,. Id
o Z2=mmar §Ti j i7j i ij .

2. 35 (Ry) = R.T;, - TRy = S. . 1d.

A joi T TNy T %43
3 ) I
3. w— O e
3T, ﬁ'J 3Ty Ty
4 ._a._o_?—- = —-;--o _.?—-
5K, 3R, M‘:j 3R,
) N
5. (Ti),-"ﬁj = sz" (T3 )
p 2
6. (R;)37, 31, (R;)u
dJ
)
7.2 (1) = 0, 37 (R;) = O,
] j

Proof: 1,2 are clear from 2.4. 3,4 are stiraightforward computa-
tions. In 5 (Ti)* (s) = T;o S, likewise (Rilk (s) = R;e S

in 6. 5 and 6 are again to be proved by straightforward com-
putation. 7 follow from 5 and 6:

2 (1) =% e (1), (1a) = (Ti)*»-g‘ﬁj(m - 0. ged.

J J
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3 3 Definition: Generalizing our notation we call

P P .
(aR » +ee 3 3R 3T = ('§T y oo ,'§§ ) again
n 1 n

operations (by 3.2 the constituents commute), and we write

) and

«V\
( ) = (ﬁ ) ('a'ﬁ ) e (5—'R )", «e€ N" and likewise for
1 2 n
;l. .
2T

3.4 Lemma: The partial Pincherle derivatives are derivations

of the algebra L(Pn), i.e.

P ?

755.(81082) = ETE.(S1)‘ S, + S, .__- (S ) and
1 1

2 ) 3

'ﬁi(s1°32) = aRi(S1) °eS, + 54 DRi(SZ)’

Proof: A straightforward computation.

3 R™ -
2.5 Progos1tlon. 1. ——ﬁ (EE; g R ) = %;. 0 (o(){3 R .

2. sjf ( XL[R11 ) =

i «
3. <3§@> (Z oo %)
40 ﬁ.(K[T])z

]

Z bo (), ™ ¢ for Z by e K[T] .

]

. & % Ve - =
Proof: 33(28«3) (2 2w RT)ely Tio(%axR

2o &; R -€(i) .

=

(-4
=%_a,<(R T, - T, R%)
o<y Xiey ; it n ¢
=§ ae (Ry “oue Ry 37" (By T)Rl+1 cee R" -1 R
of; ~ K -4
- %(R;’“...Rl“{'(m RYY + o, R{ 1)1zl+1"‘...Rn“-fJ:i R™)
>
oK

- _ m m-1
We have used R, TJ TJRl, i # j, and R T, =T, Ry +m Ry
from the proof of 2.4. This provesl. 2 follows from 3.2.7.

3 and 4 can be proved with the same method. qed.

3.6 Remark: So f%. is just the formal partial differentiation

on K[[R]] in the direction R, ; hence the name derivative.
It is clear that all the formal rules of differential calculus

hold for g%- on K[[R]] 1like the chain rule or the Leibnitz rule:
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()% @mpE) = 2 ()" @) ()¢ @) .
Likewise for ;% on K[T] .

See books on modern algebraic geometry for a verification of

that statement or Tutte 9 . If K = R then the validity of

the formulas of elementary calculus for formal power series

can be seen by the following simple argument: If one associates

the infinite Taylor expansion to each germ at = of smooth functions
on Rn, then this gives algebra homomorphism onto and to the
composition of germs corresponds exactly the formal composition

of power series. So one may just project down &8l11 the formulas of

differential calculus.

2.7 Proposition: For all a(R)e K[[RI]1 and b(T) e K(T] we have
a®p(n) = Z 4y (™ (M) ($p)7 (@),

This is the commutation rule for K R and K T in L(Pn).

Proof' First we note that for any SeI&?n) and the constant 1€ P
( DT (s))(1) = (RS - SeR; )(1) = R;e8 (1), so for «e N":
(( T)"‘ (5))(1) = Kes (1).
Now let a(R) = % a., R™ € KLLRIT ; ©v(T), c(T)e KLT]. Then:
a(R)b(T)e(T)(1) = 2. ax KB b(T) (1) (1)
= Z- ax ((jy@) (p(T)e(T))) (1)
- % e (Z (5 (20 (o(m) (F%°F (e(m)) (1)
-z (5. <,T>B (6(1)) (2 ()p au B P o(m) (1)
- = # (3 G (208 (aR) o) (1.
c(T) (1) runs through all of P, if c¢(T) runs through K(T] ,

so the result follows. ged.
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84 The formulas of Rodrigues and Lagrange

4.1 Theorem (formula of Rodrigues, Cigler [4]):

Let R = (R1""’Rn) be a delta operation with basic sequence

r = (r,) and basic operation T(r). Let Q = (Q1,...,Qn) be

another delta operation with basic sequence q = (qo) and basic

operation T(q). Assume that all Qe K{[R1]1 . Then T(gq) can be
expressed as

T(Q)i = T(r)1 )Q1 + e + T(r) <:T(r) , A)%.

IR
Proof: By 3.7 we have . T(r), = T(r), 2Bk + 23) . so
=== 2Q; 1 1 )Ql IRt aQy”?
T(q); Ta)y - T(a)y T(a)y

- 2 o)y 35 1)y ?9‘%35 - % T(r), g—%lg JONE

- & 20, 200, %—31; oS e 2 55 (3 3h
- £, M) 20, «;— LN (N % %1(9-%1;) 3o
-3 1)y Fg (3R - ;‘-—Qid-%?)) - o,

where we used the chain rule for formal differentiation of
power series and the fact that 5‘%— )DQ )gQ -9%1 .

So T(q) = (T(q)1,...,T(q) ) is an operatlon, if defined by
the formula of the theorem, Furthermore we have

T(q) - T(q) Q Jig Id , since
2R

; (z )1 3Q1 + oo+ M(r) gQ n)

- (HKIQ1 §%1 + vee + T(T)

) 3%1 * oo+ (Q M(r), - 2(x), Q) %_gr}
J

n DQn) Qi

= (Qi T(r)1 - T(r)1 Ql

_3 }R—, + + Dﬁi -—'n S bv t 3 5
= oo = . by the chain rule again.
? R ?Q )Rn )Qj ij
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If we define now polynomials qx for « € N by o

de = M) 1= <), BT L), B> Ty,

‘hen the formula above impiies that Q% qp = (p?u Qg -5 We

éaw in the proof of 2.4.

By definition q = 1 . If x> 0 then some T(r)j is leading the

formula for g , 80 qu(0) = O. Clearly g is of degree < l«l

for each x , If we canshow that i'qq :ldlg’m} is K - linearly

independent in Pn for each m then q = (gqx) is the basic

sequence for Q and T(q) is the basic operation for Q.

We show this by induction on m. For m = O this is obviously

true. Suppose it is true for m. If there is a linear combination
8s Qo = O with some ap # 0 , |l < m+1, choose i with

lal g m+1

p; # 0. Then ﬁ%gé11 B ¥ Qg_g(y) = (S 2x du ) = 0 would

be a nontrivial relation in {q“ :MISHy} - to see that each

Qw appears only once it suffices to note that qyu q«—&(i)

is injective on the set where it is defined; the rest is taken

care of by the factor x; = 0. qged.

4,2 The rest of this section is devoted to deriving the
Lagrange formula, it is based on Cigler [3]. Very simple
examples (just permute a basic sequence within {cxz\«l=m} )
show that the following is the most general situation where
something like the Lagrange formula can hold, i.e. 4.4, where

q« depends only on T, .

Definition: Let R be a delta operation, let Qe K[[(R]),1sig<n.

Q = (Q1,...,Qn) is called a delta operation of diagonal type

in KI[[RI] if the following holds:for Q = > 2o R® .

«

10 aio=0.

2. (ai,E(j))i,j is an invertible diagonal matrix over K, i.e.

25 g(3) = 0 if i # j and ai,E(i)* 0.
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4.3 Proposition: Let R = (R1,...,Rn) be a delta operation.

Q = (Q1"“’Qn) is a delta operation of diagonal type in

KL[R]] if and only if there are (multiplicatively) inver-

tible operators P, , i = 1,...,n, in K[{R1] such that

Qi = Ri Pi . Then the Pi are uniquely determined.

Proof: Let Q be a delta operation of diagonal type in KI[[RI],

o« «+£(1)
'é;_aiu R;,. Choose P, Zi, 25 wrg(i) R ,

then a, .y.# 0, s0o P, is invertible in K[[RJ] and clearly
i, &(1i): i

Suppose conversely that Q, =R, P. , :E_ b, with
b, # 0 for all i. Then Q, = R, P, 2; bia R“+E(l). Then the

constant term of each Q 1is zero, the (in R) linear term has -
the form of an invertible diagonal matrix with bio on the i'th
place in the main diagonal. So Q is a delta operation by 2.20
and is of diagonal type. It is clear that the Pi are uniquely

determined. ged.

4.4 Theorem (formula of Lagrange - Good):

Let R be a delta operation with basic sequence r = (1), let

Q be a delta operation of diagonal type in K[[R]] with basic

sequence q = (qg). Write n= (1,+..,1) € N and P %=

- 1\ X
= (P, ., P 1% . Then the following formula holds:

- oy 123 (p =
= det (Jgj By % 7%, Py Rj) « To o

3
] 2y L 2 ra) o
(note that for oy = 0 we have ‘aRi(Pj i) = aRj(Id) =0).

Proof: First we show that the two expressions are equal:

2 - —a-
det (-B—%fs_)l’j . P " = det (gRj(RiPi))i,j . P,,_d 1
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R, — -

=de’t( ,)R:S Pl + l ,)R];]_) y\
7 P. -—x-
= Zr._ Slgnv T—T (S W(l) + Ri ﬁ“’(l) . P % v\
- -; -1 2P,
= z%; 51gn“'.T;T (Ji,V(i) Pi + Pi sjﬁr(l) Ri )
- -o; -1 9P,

= det (Sij Pi'“‘ - ’ fR (P %) R, ) .

Now we show that the polynomial sequence given ba the first

formula satisfies the functional equatlon Q. Qo = &5 qu_e(i):

P " P, R, T

Q; det ( ——~1) P ro = det ( 1) x

- det ( -91) DM n )

= &; . det ( ~§-Q1) P—(“"E(l))—w Th-g(1)

That the initial condltion Qg (0) = ;ou is satisfied will follow
from lemma 4.5 below. Here it remains to show that go is of

degree |«l and that {qe} is a basis of P, . This is a trivial
consequence of the fact that det ( 1) 3 is invertible

in K[[R]] (its constant term is the determlnant of the coefficient
matrix of the liner part of Q in its R - expansion, cf. 2.20

and 3.5). So det ( ""a)"'%j:)i,j P X" is invertible and degree-
non-increasing and its inverse has the same property (being in
K[[R1]), so gy has degree lx] . That {q« :MISH@ is linearly

independent can be seen as in the end of the proof of 4.1. ged.

4.5 We need a convenient terminology (Tutte,[9]): by a cyeclic
map we mean a pair L = (W’P) where W£§{1,...,n} and p is a
permutation of W. Let c(L) be the number of cycles of_y .

Let E(L)i = 1 or O accordig as i is or is not in W and let
€(L) = (L)), +.o ,&T), ) N .

Suppose now the data of theorem 4.4 be given and let

-
L(Pi )

P o
(P.” ') if ie W and

PRosy i

P,”% if 14 W, for L = (W,p).

L(Pi""")
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Lemma: With the assumptions of theorem 4.4 we have (1) = (2)

for all «eN" and (2) = (3) for « O , where:

(1) det ( ,le) iy POOTorg

(2) ::. (-1)¢(L) L(P, D L(P, ~%n)

w ? r“‘E(L) i

L =
We T

o

where Uy =zi: % > O} < {1,...,n}

3) S (-n°W LI Pi“"*azr L(P, ™) 1, ep)

where i 1s a fixed element of Uy .

We first indicate how theorem 4.4 follows from this lemma:

If « = O then from (1) = (2) we see that q, = P,‘O...Pno r, = 1.
If x # O then for some ie Uy we have (1) = (3) and in the sum
(3) for g4 each term begins with some T(r)j » 80 gx(0) = O.
Note that (2) and (3) are additional expressions for Qe

which are perhaps useful for some purpose.

Proof: det (—,5——1%1) ’J CPTN r

- 5 signw TT ( ;L( . LR >

= det (——9J ”1) 1,5 0 B rg

- dev (P (e BT - g —-gﬁ-j@i”))i,j L%,

= det (%%é - Qi 3%-3(?."1)). P

= det (84 - Q )R (2,7 5 - P %y

- T smr TT . ) Qi ﬂ?( (A A

. Z: (ciye® TT (@ 52— (2, . To
= (W,p) ieW (1)

since c(L) = k + |W| (mod 2) where |W| is the number of elements

of W, ¢ the restriction of W to W2 {i:n'(i) # i} and k is the
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number of cycles of negative sign of w . The last expression

equals:

1)C(L) l | ((P -1 "1 (P -1
L=%W,g) - ieW a }Rf(') )
1T (RN, REUﬂ T o
j¢w

_ _.ye (D) - ;

We Uy
This is (2).

In order to prove (3) we look at (2) and observe that

L(Pi"“‘) = Id if x; = O . By deleting those i withe, = O

we may suppose thatcxi>'o for all i. Furthermore all the
L(Pi-“‘) commute, so we may suppose that the fixed i in (3) is
just 1 (the formulas are easier to write down then). Write

™r) =T = (T1"“’Tn) for short. Then (2) equals

(4) (-1)° @) L(P,”™) ... L(B "% - €(L) Taan
T =(v,
. -o P i A
Nox}v for ie W we have L(ZPi ) = —,.,—R—;(—i——)(]?i ) =
PJ“‘ To(1) - Te(i) Pi""‘i . If we insert this in (4) and

mu%tiply out we get a sum of expressions of the form

-

; c(L bl e A d, #r _ -, S,
(Sj) (-1) (L) (-1) T ‘(1) 1"1 T9(1) TS’(Z)IPZ * T (2) **

. 1"" «, Jn P]—E-(L)
’ PO T?(n) Pn T \n) T I’“_H ’

where 4,d ¢ {0,713} with 4+ d = g(L) and where we extend ¢ from
W to the whole of {1,...,n} = Uy by p(i) =i for i¢W.

Our purpose is to show that all terms of the form (5) that
appear and have #y = O cancel out, so all terms that begin with
P1-°“ can be neglected and it is clear that (3) remains.

For this end let a term (5) be given and let L = (W,p) be a
cyclic map for which this term appears. We shall construct a

uniquely determined cyclic map * - (W*}f*) for which the same

term appears with the opposite sign. Our construction will be
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such that ** -1,
Suppose first that there is some i€ W with 4, + Ji+1 = 2.

In this case choose the smallest i with this property and let
W=w* and 9*: ge(i,i+1) . Since sign p # sign 9" , (W] = ]w*[
and /yt*= 1/» the corresponding terms have opposite signs.

Now suppose that there is no ie W with T Ji+1 = 1. Consider
first the case 4 = O and W £ [1,n] . let k be

the largest i that is not in W. Let W* = Wu {k} and

5:*= Qo(k,km,...,n). Then cfn*; 1, ¢%(n) =k, J;.'(n) = 1 and
[k,n] < WY Furthermore we have sign o% = (-‘I)n_ksigny , [W*[= |wl +1
and W"l: IM -(n-k) , so the corresponding terms have opposite
signs.

If on the othe hand we have Jn =1, 5)(1}) =k, Jy(n) = 1 and
[k,n] < W, we define W* = W\{k}and y*’: o (kykt1ye00,m) 1.

This is just the opposite construction to the last one above,

so L¥* =1 in this case, the signs of the corresponding terms

are opposite as we saw above.

Now consider the case 5n =1, 69(1’1) = 1 , and there is some

j ¢ W such that all inner points of [, _9(11)] (j<i<g(n))

belong to W. Let k = g(n) and define W¥ = (Wugj})\gk} and

f-ll'
6-1* =1, (5;;(1,1) Y , further sign g

J
|W*| = |Wl and |4*[ =]y | +k-J such that the corresponding terms

¢ °(J,j*+1,...,k-1,k,n) . Then we have ¢*(n) = ¢(j) = j,
*f= (_1)k—j+1

]

sign [

have again opposite signs.

Now consider the case cﬂ =1, J9(1) = 0 and there is kéw
such that all inner points of[p(n),k] belong to W. Let j = p(n)
and define W* = (Wu {k})\ {j}ana p* =§w(j,j+1,...,k-1,k,n)‘1.
It is again clear that this is the opposite construction to the

one above, so L** = 1L and the signs are opposite.
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The only case that remains is (n) = 0O and all i (n) belong
to W. This imlies , = 1 which we have excluded. ged.
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§5 Shift invariant operators

The following results are a very straightforward generalisation
of the theory in one variable (cf. [41, [6]). For completeness;

sake we include proofs too.

5.1 In 1.8 we had for a X" the shift operator E,: P, —> P,

given by (B, £)(x) = £(x+a) = X &5 (0¥ £)(x) = (e <P 71)(x).

o!

Definition: F€L(P ) is called shift invariant if FeE, = EeF
n
for all a eK". We denote by L(P )X the subalgebra of L(E, )

consisting of all shift invariant operators.

By 1.8 we have E_e K[[DI] for all a, K[IDI] is a commutative

n
subalgebra of L(Pn), so K[(D]] SL(Pn)K .

5.2 Definition: An admissible sequence p = (px) is called of

binomial type or a binomial sequence if

P (X+y) = 4:_ (F) pp(x) p“_ﬁ(y) holds for all «e N,

Lemma: If p = (p«) is a binomial sequence then it is a basic

sequence.,

Proof: pu(x) = pu(x+0) = %__ (?‘3) p(s(X) Pq_{g(o)-
Since {p“} is a basis of P and all (;) # 0 for ¢ x we con-

clude that p«_p(o) = 0 for Ogp<« and pO(O) = 1, ged.

5.2 Proposition: Let p = (pq) be the basic sequence of a delta

operation R = (R1""’Rn)' P is of binomial type if and only if

R (i.e. each Ri) is shift invariant.

Proof: Let R be shift invariant. By the Taylor formula 2.18

we have:




-3 -

]

> 2ol 4 % p () - 3 BeR)a RPE b )
== e (e R%p,) = 2 (§) palx) b, o)

Let conversely p = (py) be of binomial type. Then we have:

Do (x+¥)

pu(xsy) = 2 (§) palx) pog(y) = 2 B8 () p, ()

=z Iﬂ;;(-}f) R® p ) ().
This equation (for fixed y) is linear in p« and fpu} is a basis,
so we get for any fe'Pn :
teey) = 2B @ () = 5 ey) @F o))
by symmetry. Insert Rif into this equation:
(B, Ry £)(x) = Ry £ (o) = = Bo{P) (RP Ry £)(x)

=Ry (Z BelP R® )0 =Ry (B, D).

So Ri is shift invariant. qed.

5.4 Theorem: (expansion for shift invariant operators):

Let R be a shift invariant delta operation with basic sequence p.

n
Then for any shift invariant operator FeZL(Bn)K we have

F=§_Q(g| R(s.

Proof: p is of binomial type, so we have as in the proof of 5.3:

E.f= 3> B& (R® £)(y) for any feP_, so
Y [} (3° n

A (R E £) = 3 A—‘K-Fmﬂ‘l (R® £)(y), i.e.

(P £)(y) = 4,(By 7 2) = 4 (F B £) = 2 -&L%Rﬁl (RP £)(y). qed.

n
5.5 Corollary: L(Pn)K = K[[R]] for any shift invariant

delta operation R.

5.6 Corollary: Let R be a shift invariant delta operation

with basic sequence p = (p ). Let R = a(D) be the power series
1

expansion (i.e. R, = ai(D)e'K[[D]J), let a~ ' Dbe the inverse

power series. Then for t= (t1,...,tn) we have for y K :

<7, aTD> | 5 palp) e

o¢




Proof: We extend E_ in a power series in K([[D]1 by 5.4:

E, = > Ao(Ev'ng R = % Baly) g,

y oL s &
Now R* = (a(D))” , thus

e <TD> L g o > By) (ap))*.
y 3 X -
Insert t for D to get

e <yyt> - % _p_"_‘iﬂ (a(t))“.

!
Now a~ | exists by 2.20; insert a—1(t) for t to get

o <¥, 8T (1)> ST Pely) g

=~ . ged.

[0,8
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§6 G - invariant operators

6.1 Let G be a group and G —> GL(n,K) be a representation
of G on XK*. This gives an action of G on P = K[x] by

(g.£)(x) = £(g”".x), fep , xek’, ged.

Definition: We denote by PnG the K -algebra of all G - invariant

polynomials f, i.e. g.f = f .

Let feaPn. We decompose f into its homogeneous parts

f = fo + f, + ... + fm , where m = deg f. This composition

G

1
makes Pn into a graded algebra. Clearly we have: f¢ Pn

G G
eEh . S0 Pn

if

and only if each f. is a graded subalgebra of

J
Pn. This is at the basis of the following theorem, for the

proof see Springer [7] or Poénaru [5] .

6.2 Theorem (Hilbert - Nagata): Let G ——GL(n,K) be a

G is a finitely

completely reducible representation. Then Pn

generated K - algebra.

That means the following: there are finitely many polynomials
VyresesVy € EhG such that each fe;PnG may be written as a
mﬂmmMalinvdw.”vk::ﬂx)=1ﬂvﬁxﬁ.”,ﬁgxn,hePk.
One may assume that all v, are homogeneous and of degree> O.
Another way to express this theorem is the following:

let v = (v1,...,vk): K" — kX be the polynomial map.

G v* . . *
Then O<«—P ~<«———FP surjective, where v (f) = fov .

A reﬁ%entation is completely reducible if each invariant
subspace has an invariant complement. It is well known that
each continuous representation of a compact group is completely
reducible. Furthermore information is available for so called

reductive algebraic groups, see [ 7].
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G

There is a group G and a representation of G such that Pn is

not finitely generated (Nagata).

For finite groups E. Noether gave an explicit construction

of a generating system, see [5] .

6.3 G acts on K[[x]] by acting on the homogeneous parts of

a formal power series, which are polynomials in x.

Theorem: Let G —> GL(n,K) be a completely reducible

representation, Let v = (V1""’Vk) be the polynomial map

consisting of generators of PnG. Then v¥: K[[y]] —> K[Ex]]G

is surjective, where y = (y1,...,yk).

For the proof see again 5 .

6.4 Definition: Let G ——>GL(n,K) be a representation and let

FeL(Pn). F is called G - invariant if F is a G - modul homo-

morphism P >P , i.e. F(g.f) = g.F(f) for all fe P, 8eG.

We denote the subalgebra of all G - invariant operators by
G

L(p, )",

This notation is compatible with PnG , in the latter case

G acts trivially on K.

6.5 Now we look at K[[DI] and let G act on it (where
D= (<% ,...,-2— )): if ge G then the action of g on K is
Xy 99X,
given by a matrix: g(x) = (g1(x),...,gn(x)), where
gi(x) = :%; 8i5 X5 (gij) being an invertible matrix.
Now we let g act formally on D:
t 1 t
bg (D) = (Pg,(D),..., %, (D)), %e; (D) - = g5 D, .
This induces an action of G on K[[Dl1] : for a(D)e KL[DI]

we have (tg.a)(D) = a(tg"1(D)) . This action is the
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transposed action of the original one, taking care of the fact

that the Dy = E%i are "contravariant vectorfields™.
J

With this action a remarkable formula holds:

Theorem: Let G —>GL(n,K) be a representation, let fe P
and a(D)e K[[D]] . Then we have for geG :
a(0)(g.£) = g.((g.2)(D)1)

Proof: Let
Di(g_1.f)(X)

« 2
QEL
]

]

S fux* eP , g€G, then:

(]

i%;(f(gX)) Z f« ;;1 CHCORIINAC

1]

]

(y )[y —g(x) ° Dx (g (x)) by the chain rule,

2
°Yy
2
37,
jl_

J (y )\Y=g(X) © 831

i

gi<n)<f)(gx> - (g'1.< g; (D)) (x).

Furthermore we get:

D, D, (g7.£)(x) = Dy(g”" . (P, (D)D) (x)

= (7. (%gy (D) g (@) £))(x).

Thus for anyo(eNn we have D“(gq.f) = g_1.((tg(D))°< ).
Replace now g-1 by g and apply it to a formal power series

to get the result. ged.
. . G K" G
6.6 Corollary: L(Pn) N L(Pn) = K[[D]1™ .

n
Proof: Let a(D)e KI[DI1 = L(P)* (cf.5.5) and ge G. Then
a(D)(g.f) = g.((%g.2)(D) £) by 6.5, so a(D)(g.f) = g.(a(D)f)
irf Yg.a = a in KI[DII, i.e. ae KI[DIIC, qed.
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6.7 Corollary: Let G——>GL(n,K) be a completely reducible

representation, let ViseeosVy be generating polvynomials
t
for PnG, where tG symbolizes G with the transposed action.

Then any shift and G - invariant operator F can be written

as a formal power series in v1(D),...,vk(D).

Proof: The transposed action g k~—9tg€ GL(n,K) is also com-

pletely reducible since it is the induced action on the

dual K% . So the result follows from 6.6 and 6.3. qed.

6.8 Remark: Let G ~—>GL(n,K) be a non trivial representation.

Then there is no G - invariant delta operation on Pn .

Proof: Assume that R = (R1,...,Rn) is G - invariant and a
delta operation with basic sequence r = (ry). By the Taylor

formula (2.18) we have for each f€P and geG :

g.f = = ARY (g.8) 57 = Z 4,(8.R¥ 1)
= > A (RFf) 3§ = f. .

We have used that g leaves invariant the constant terms of
polynomials since it acts linearly. So PnG = Pn and G has to

act trivially on K. ged.
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