Contributions to finite operator calculus

in several variables

P.Michor

Abstract

The following is a detailed development of Rota's finite operator calculus to the case of several variables. The main results are derived without recourse to the notion of shift invariance, which is investigated afterwards separately. In the last chapter operators invariant under a linear group action are investigated.


```
§ 1 Preliminaries
§ 2 Basic sequences and delta operators
§ 3 The Pincherle derivative
§4 The formulas of Rodrigues and Lagrange
§ 5 Shift invariant operators
§6 G - invariant operators
    References
```

I want to thank J. Cigler for motivation and helpful discussions. This work is mainly based on [6] and Ciglers papers.

§1 Preliminaries

1.1 Multi indices: We consider the space N^{n} of all n - tupels $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of non negative integers with the usual product $\operatorname{order}\left(\alpha \leqslant \beta\right.$ iff $\alpha_{i} \leqslant \beta_{i}$ for all i). Let $0=(0, \ldots, 0)$ and $\varepsilon(i)=(0, \ldots, 1, \ldots, 0)$, where just the i^{\prime} th coordinate is 1,50 all other are zero. For $\alpha, \beta \in \mathbb{N}^{n}$ we write $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$, $\alpha!=\alpha_{1}!\ldots \alpha_{n}!$ and $\binom{\alpha}{\beta}=\binom{\alpha_{n}}{\beta_{1}} \ldots\binom{\alpha_{n}}{\beta_{n}}$ with the usual conventions such as $0!=1$ and $\binom{\alpha}{\beta}=0$ if $\beta \leqslant \alpha$ does not hold. If $\beta \leqslant \alpha$, then $\binom{\alpha}{\beta}=\alpha!/ \beta!(\alpha-\beta)!$. Furthermore we will use $(\alpha)_{\beta}=\beta!\binom{\alpha}{\beta}=\alpha_{1}\left(\alpha_{1}-1\right) \ldots\left(\alpha_{1}-\beta_{1}+1\right) \ldots \alpha_{n} \ldots\left(\alpha_{n}-\alpha_{n}+1\right)$. If $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is an n - dimensional commuting variable we set $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ and $(x)_{\alpha}=\alpha!\binom{x}{\alpha}=\left(x_{1}\right)_{\alpha_{1}} \ldots\left(x_{n}\right)_{\alpha_{n}}$, where $\left(x_{i}\right)_{\alpha_{i}}=x_{i}\left(x_{i}-1\right) \ldots\left(x_{i}-\alpha_{i}+1\right)$ are the one dimensional lower factorials.
1.2 We let $P_{n}=K[x]$ the polynomial ring in n commuting variables $x=\left(x_{1}, \ldots, x_{n}\right)$ over a field K of characteristic 0 . For $\alpha \in \mathbb{N}^{n}$ the expressions $x^{\alpha},(x)_{\alpha},\binom{x}{\alpha}$ denote elements of P_{n}. Any $f \in P_{n}$ has a unique representation in the form $f(x)=\sum_{\alpha} f_{\alpha} x^{\alpha}$, where all but finitely many $f_{\boldsymbol{\alpha}}=0$.
1.3 Clearly we have the binomial formula
$(x+a)^{\alpha}=\sum_{\beta}\binom{\alpha}{\beta} a^{\beta} x^{\alpha-\beta}$ in P_{n} for all $\alpha \in \mathbb{N}^{n}$ and each $a=\left(a_{1}, \ldots, a_{n}\right)$ in K^{n} (or independent variables). We will need this in more general form:

Lemma: Let $A=\left(a_{i j}\right)_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m \text { be an } n \times m \text { matrix whose }, ~}^{\text {men }}$ entries are in K or independent variables. Then we have for each $\alpha \in \mathbb{N}^{n}$:

$$
\left(\sum_{j=1}^{m} a_{j}\right)^{\alpha}=\sum_{\substack{\beta=\left(\beta_{i j}\right) \in \mathbb{N}^{n m} \\\left|\beta_{i}\right|=\alpha_{i}}} \frac{\alpha!}{\beta!} A^{\beta},
$$

where $a_{j}=\left(a_{1 j}, \ldots, a_{n j}\right), \beta_{i}=\left(\beta_{i 1}, \ldots, \beta_{i m}\right) N^{m}$, $\beta!=\prod_{i, j} \beta_{i j}!$ and $A^{\beta}=\prod_{i, j} a_{i j}{ }^{\beta_{1 j}}$.

This lemma is just the binomial formula for longer sums for fixed i, multiplied together for all i. The proof is straightforward following these lines.
1.4 By $L\left(P_{n}\right)$ let us denote the algebra of K - linear mappings $P_{n} \longrightarrow P_{n}$. An element of $L\left(P_{n}\right)$ is called operator for short. If Q_{1}, \ldots, Q_{n} are pairwise commuting operators, we call the n - tupel $Q=\left(Q_{1}, \ldots, Q_{n}\right)$ an operation. By Q^{α} we mean the operator $Q_{1}^{\alpha_{1}} \ldots Q_{n}^{\alpha_{n}}$ for $\alpha \in \mathbb{N}^{n}$.

In the next sections we collect some examples of operators and operations.
1.5 Let $g \in P_{n}$. Then $f \longmapsto f . g$ is an operator on P_{n}, called the multiplication operator $M(g)$ induced by g. $M: P_{n} \longrightarrow L\left(P_{n}\right)$ is an isomorphism onto a commutative subalgebra of $I\left(P_{n}\right)$.
1.6 For any $1 \leqslant i \leqslant n$ let D_{i} or $\frac{\partial}{\partial x_{i}}$ be the (formal) partial differential operator on P_{n} in the direction x_{i} :

$$
\frac{\partial}{\partial x_{i}}\left(\sum f_{\alpha} x^{\alpha}\right)=\sum f_{\alpha} \alpha_{i} x^{\alpha-\varepsilon(i)} \text {. Clearly } \frac{\partial}{\partial x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)
$$ is an operation which we call $D=\left(D_{1}, \ldots, D_{n}\right)$ if the "basis" $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ is fixed.

1.7 Let $a(D)=\sum_{\alpha} a_{\alpha} D^{\alpha}$ be a formal power series in D. This defines an operator $a(D) \in I\left(P_{n}\right)$ by $a(D) f=\sum_{\alpha} a_{\alpha}\left(D^{\alpha} f\right)$ for $f \in P_{n}$. Since the degree of f is finite this is a finite sum. We have the explicit formula:

$$
\begin{aligned}
& (a(D) f)(x)=\left(\sum_{\alpha} a_{\alpha} D^{\alpha}\right)\left(\sum_{\beta} f_{\beta} x^{\beta}\right)=\sum_{\alpha, \beta} a_{\alpha} f_{\beta} D^{\alpha} x^{\beta} \\
& =\sum_{\alpha, \beta} a_{\alpha} f_{\beta}(\beta)_{\alpha} x^{\beta-\alpha}=\sum_{\mu}\left(\sum_{\alpha} f_{\mu+\alpha} a_{\alpha}(\mu+\alpha)_{\alpha}\right) x^{\mu} .
\end{aligned}
$$

This gives an algebra monomorphism onto a commutative subalgebra
$K[[D]] \rightarrow L\left(P_{n}\right)$.
1.8 For fixed $a=\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ we have the shift by a, given by $\left(E_{a} f\right)(x)=f(x+a)$. For any monom $x^{\alpha}, \alpha \in N^{n}$, we have
$E_{a} x^{\alpha}=(x+a)^{\alpha}=\sum_{\beta}\binom{\alpha}{\beta} a^{\beta} x^{\alpha-\beta}=\sum_{\beta} \frac{a^{\beta}}{\beta!}(\alpha)_{\beta} x^{\alpha-\beta}$ $=\left(\sum_{\beta} \frac{a^{\beta}}{\beta!} D^{\beta}\right) x^{\alpha}=\exp \left(a_{1} D_{1}+\ldots+a_{n} D_{n}\right) x^{\alpha}=e^{\langle a, D\rangle} x^{\alpha}$, where $\langle a, D\rangle=\left\langle\left(a_{1}, \ldots, a_{n}\right),\left(D_{1}, \ldots, D_{n}\right)\right\rangle=a_{1} D_{1}+\ldots+a_{n} D_{n}$ is the usual formal inner product.
So in particular we have $E_{a} \in K[[D]]$.
1.9 Let us interpret for the moment the x_{i} as the coordinate functional of the running point $x \in K^{n}$ with respect to the standard basis e_{1}, \ldots, e_{n} of K^{n}. If a_{1}, \ldots, a_{n} is another basis with coordinate functional $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}$, then there is an invertible matrix $A=\left(A_{i j}\right)$ over K such that $a_{j}=\sum_{i} A_{i j} e_{i}$. If $B=\left(B_{i j}\right)$ is the inverse matrix, then in turn $e_{i}=\sum_{j} B_{j i} a_{j}, \quad x_{j}=\sum_{i} A_{j i} y_{i}$ and $y_{j}=\sum_{i} B_{j i} x_{i}$. If $f \in P_{n}, f(x)=\sum_{\alpha} f_{\alpha} X^{\alpha}$, let us interpret f as a polynomial mapping on K^{n}, expressed in the coordinate functions x_{i}. If we express in the coordinate functions y_{i} we get

$$
\begin{aligned}
& f(x)=\sum_{\alpha} f_{\alpha} x^{\alpha}=\sum_{\alpha} f_{\alpha}\left(\sum_{j} A_{1 j} y_{j}, \ldots, \sum_{j} A_{n j} y_{j}\right) \\
& =\sum_{\alpha} f_{\alpha} \sum_{\beta=\left(\beta_{i j}\right) \in N^{n n}} \frac{\alpha!}{\beta!} \prod_{i, j}\left(A_{i j} y_{j}\right)^{\beta_{i j}} \text { by } 1.3 \\
& \left|\beta_{i}\right|=\alpha_{i} \\
& =\sum_{\alpha} f_{\alpha} \sum_{\beta=\left(\beta_{i j}\right)} \frac{\alpha!}{\beta!} y^{\sum \beta_{i}} A^{\beta} \\
& \left|\beta_{i}\right|=\alpha_{i}
\end{aligned}
$$

with the same conventions as in lemma 1.3.
1.10 Consider a linear mapping $\bar{A}: K^{n} \longrightarrow K^{n}$ whose matrix with respect to the standard basis is $A=\left(A_{i j}\right)$. If $x=\left(x_{1}, \ldots, x_{n}\right)$
then $\bar{A}(x)$ has the coordinates $\left(\sum_{j} A_{1 j} x_{j}, \ldots, \sum_{j} A_{n j} x_{j}\right)$. If $f \in P_{n}, f(x)=\sum_{\alpha} f_{\alpha} x^{\alpha}$, then $f \circ \bar{A} \in P_{n}$ and we have

$$
\begin{aligned}
&(f \circ \bar{A})(x)= \sum_{\alpha} f_{\alpha}\left(\left(\sum_{j} A_{i j} x_{j}\right)_{i}\right)^{\alpha} \\
&=\sum_{\alpha} f_{\alpha} \quad \\
& \beta=\left(\beta_{i j}\right) \in N^{n n} \frac{A^{\beta}}{\beta!} \sum_{i} \beta_{i} \\
&\left|\beta_{i}\right|=\alpha_{i}
\end{aligned}
$$

as the computation in 1.9 shows. $\bar{A}^{*}: P_{n} \longrightarrow P_{n}$, given by
$f \longmapsto f \circ \bar{A}$, is an operator, even a ring homomorphism.
1.11 Now let $P: K^{n} \longrightarrow K^{n}$ be a polynomial mapping, ie.
$P=\left(p_{1}, \ldots, p_{n}\right), p_{i}=\sum_{\alpha} p_{i \alpha} x^{\alpha} \in P_{n}$. For $f \in P_{n}$ we get again a polynomial $f \circ P ; f \longmapsto f \circ P$ is an operator $P * \in I\left(P_{n}\right)$, even a ring homomorphism. Let $f(x)=\sum_{\beta} f_{\beta} x^{\beta}$, then we have $(f \circ P)(x)=\sum_{\beta} f_{\beta} P(x)^{\beta}=\sum_{\beta} f_{\beta}\left(\sum_{\alpha} p_{1 \alpha} x^{\alpha}, \ldots, \sum_{\alpha} p_{n \alpha} x^{\alpha}\right)^{\beta}$. Here $\boldsymbol{\alpha}$ runs only formally through all of N^{n}, above some bound everything is zero. So we may apply lemma 1.3 and the above equals

$$
\begin{aligned}
& \sum_{\beta} f_{\beta} \sum_{\mu=\left(\mu_{i \alpha}\right) \in N^{n \times} N^{n}} \frac{\beta!}{\mu!} p^{\mu} x^{\sum_{i, \alpha} \alpha \mu_{i \alpha}} \\
& \left|\mu_{i}\right|=\sum_{\alpha} \mu_{i \alpha}=\beta_{i}
\end{aligned}
$$

$$
\begin{aligned}
&=\sum_{\gamma}\left(\sum_{\beta} f_{\beta} \sum_{\mu=\left(\mu_{i \alpha}\right) \in N^{n \times} N^{n}} \frac{\beta!}{\mu!} p^{\mu}\right) x^{\mu} \\
& \sum_{\alpha} \mu_{i \alpha}=\beta_{i} \\
& \sum_{j, \alpha} \alpha_{i} \mu_{j \alpha}=\mu_{i}
\end{aligned}
$$

§2 Basic sequences and delta operators

2.1 Definition: An admissible sequence $p=\left(p_{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ is a sequence of polynomials $p_{\alpha} \in P_{n}$ such that p_{α} is of degree $|\alpha|$ and for any $m \in N$ the set $\left\{p_{\alpha}:|\alpha| \leqslant m\right\}$ is K - linearly independent in P_{n}.
It is clear that then $\left\{p_{\alpha}:|\alpha| \leqslant m\right\}$ is a K - basis of the space of all polynomials of degree $\leqslant \mathrm{m}$ by an dimension argument. So $\left\{p_{\alpha}: \alpha \in N^{n}\right\}$ is a K - basis of P_{n} and any $f \in P_{n}$ has a unique representation of the form $f=\sum_{\alpha} a_{\alpha} p_{\alpha}$.
The notion of admissible sequence is the generalisation of the so called Sheffer sequences in [6], leaving away the condition of shift invariance.
2.2 Let $p=\left(p_{\alpha}\right)$ be an admissible sequence, then for $1 \leqslant i \leqslant n$ we have an operator $T_{i}=T(p)_{i} \in L\left(P_{n}\right)$ defined by $T_{i}\left(\sum_{\alpha} a_{\alpha} p_{\alpha}\right)=\sum_{\alpha} a_{\alpha} p_{\alpha+\varepsilon(i)}$. Clearly $T=T(p)=\left(T_{1}, \ldots, T_{n}\right)$ is an operation: we call it the admissible operation for the sequence $p=\left(p_{\alpha}\right)$. We have the following formulas: $T(p)^{\beta}\left(\sum_{\alpha} a_{\alpha} p_{\alpha}\right)=\sum_{\alpha} a_{\alpha} p_{\alpha+\beta}$, $p_{\boldsymbol{\alpha}}=T(p)^{\boldsymbol{\alpha}}\left(p_{o}\right)$.
Examples: $\underline{x}=\left(x^{\alpha}\right)$ is an admissible sequence, $T(\underline{x})_{i}=M\left(x_{i}\right)$. The following is a construction principle: for $1 \leqslant i \leqslant n$ let $\left(p_{i m}(t)\right)_{m \in N}$ be a sequence of polynomials in one variable t such that $p_{i m}$ is exactly of degree m for each i and $p_{i o} \neq 0$. Then $p_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=p_{1 \alpha_{1}}\left(x_{1}\right) p_{2 \alpha_{2}}\left(x_{2}\right) \ldots p_{n \alpha_{n}}\left(x_{n}\right)$ is an admissible sequence.
2.3 Remark: If $p=\left(p_{\alpha}\right)$ is an admissible sequence then for each $m \in N$ the homogeneous parts of degree m of p_{α} for $|\alpha|=m$ constitute a basis of the space of all homogeneous polynomials
of degree m. This space has dimension $\binom{m+n-1}{m}$.
2.4 Proposition: Let $p=\left(p_{\alpha}\right)$ be an admissible sequence and
let $T=\left(T_{1}, \ldots, T_{n}\right)$ be the admissible operation for p. Then there exists a unique operation $P=\left(P_{1}, \ldots, P_{n}\right)$ such that $P_{i}\left(p_{0}\right)=0$ and $P_{i} T_{j}-T_{j} P_{i}=\delta_{i j} I d$, for $1 \leqslant i, j \leqslant n$. If f is of degree m in P_{n}, then $P_{i}(f)$ is of degree $m-1$.

Proof: The idea is from Cigler [1].
If there is P_{i} with $P_{i} T_{i}-T_{i} P_{i}=I d$ then for $m \geqslant 1$ we have $P_{i} T_{i}^{m}=T_{i}^{m} P_{i}+m T_{i}^{m-1}$. This is seen by induction. Now we use that all the P_{i} 's commute and $P_{i}\left(p_{0}\right)=0$: for $\alpha \in \mathbb{N}^{n}$ $P_{i}\left(p_{\alpha}\right)=P_{i}\left(T^{\alpha} p_{o}\right)=P_{i} T_{1}^{\alpha_{1}} \ldots T_{n}^{\alpha_{n}} p_{o}$ $=T_{1} \alpha_{1} \ldots T_{i-1}^{\alpha_{i-1}}\left(P_{i} T_{i}^{\alpha_{i}}\right) T_{i+1}^{\alpha_{i+1}} \ldots T_{n}^{\alpha_{n}} p_{o}$
$=T^{\alpha} P_{i} p_{0}+\alpha_{i} T^{\alpha-\varepsilon(i)} p_{0}=\alpha_{i} p_{\alpha-\varepsilon(i)}$.
So we got a formula for P_{i}; this proves uniqueness:
(1) $P_{i}\left(p_{\alpha}\right)=\alpha_{i} p_{\alpha-\varepsilon(i)}$.

Now we take this formula for definition, then each $P_{i} \in L\left(P_{n}\right)$ and a straightforward computation shows that $P=\left(P_{1}, \ldots, P_{n}\right)$ is an operation and satisfies $P_{i} T_{j}-T_{j} P_{i}=\delta_{i j}$ Id. The degree condition is clear from the formula. qed.
2.5 If $p=\underline{x}=\left(x^{\alpha}\right)$, then $P=D=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$. This motivates the following definition:

Definition: If $p=\left(p_{\alpha}\right)$ is an admissible sequence then the operation $P=\left(P_{1}, \ldots, P_{n}\right)$ uniquely given by 2.4 is called the delta operation for the sequence p. We have the following formula:
(1) $P^{\alpha} p_{\beta}=(\beta)_{\alpha} p_{\beta-\alpha}$.

The name delta operation shold indicate that P acts on p as the differential operation $D=\frac{\partial}{\partial x}$ acts on \underline{x}.

If $a(P)=\sum_{\alpha} a_{\alpha} P^{\alpha}$ is a formal power series in $P=\left(P_{1}, \ldots, P_{n}\right)$ then this gives an operator by $a(P) f=\sum_{\alpha} a_{\alpha}\left(P^{\alpha} f\right)$, since $P^{\alpha} f$ is 0 if α is big enough. This defines an algebra monomorphism $K[[P]] \longrightarrow I\left(P_{n}\right)$ onto a commutative subalgebra of $I\left(P_{n}\right)$. Exactly as in 1.7 we have the explicit formula
(2) $a(P) f=\left(\sum_{\alpha} a_{\alpha} P^{\alpha}\right)\left(\sum_{\beta} f_{\beta} p_{\beta}\right)$
$=\sum_{\alpha, \beta} a_{\alpha} f_{\beta}(\beta)_{\alpha} p_{\beta-\alpha}$
$=\sum_{\mu}\left(\sum_{\alpha} f_{\mu+\alpha} a_{\alpha}(\mu+\alpha)_{\alpha}\right) p_{\alpha}$.
2.6 If $p=\left(p_{\alpha}\right)$ is an admissible sequence we may define an inner product in P_{n}, the p - inner product, by defining it on the basis $p_{\alpha}:\left\langle p_{\alpha}, p_{\beta}\right\rangle p_{p}=\alpha!\delta_{\alpha \beta}$. By linear extension: $\left\langle\sum_{\alpha} f_{\alpha} p_{\alpha}, \sum_{\beta} g_{\beta} p_{\beta}\right\rangle p_{p}=\sum_{\alpha} f_{\alpha} g_{\alpha} \alpha!$.
For any $f \in P_{n}$ we get $f=\sum_{\alpha}\left\langle f, p_{\alpha}\right\rangle_{p} \frac{1}{\alpha!} p_{\alpha}$.
Lemma: If $p=\left(p_{\alpha}\right)$ is an admissible sequence, $T=\left(T_{1}, \ldots, T_{n}\right)$ is the admissible operation for p and $P=\left(P_{1}, \ldots, P_{n}\right)$ is the delta operation for p, then P is the adjoint to T via the $p-$ inner product \langle,\rangle_{p}, i.e. $\left\langle T_{i} f, g\right\rangle_{p}=\left\langle f, P_{i} g\right\rangle_{p}$ for all $f, g \in P_{n}$, or, equivalently, $\left\langle T^{\alpha} f, g\right\rangle_{p}=\left\langle f, P^{\alpha}{ }_{g}\right\rangle_{p}$ for all $\alpha \in \mathbb{N}^{n}$.

The proof is a straightforward computation which we omit.
2.7 Let us denote by $A_{0}: P_{n} \longrightarrow K$ the linear functional which associates the constant term $f(0)$ to $f \in P_{n}$.

Lemma: Let $p=\left(p_{\alpha}\right)$ be an admissible sequence and let $P=\left(P_{1}, \ldots, P_{n}\right)$ be the delta operation for p. Then the matrix $\left(A_{0}\left(P^{\alpha} p_{\beta}\right)\right)_{0 \leqslant|\alpha| \leqslant m, \quad 0 \leqslant|\beta| \leqslant m} \in G L\left(\binom{m+n}{m}, K\right)$ for all $m \in N$. Here $\binom{m+n}{m}$ is the dimension of the space of all polynomials of degree $\leqslant \mathrm{m}$.

Proof: The dimension formula can be seen by induction. We want to compute the determinant of the matrix considered and start with the following remarks:
If $\alpha \nLeftarrow \beta$ then $P^{\alpha} p_{\beta}=(\beta)_{\alpha} p_{\beta-\alpha}=0$.
If $\alpha=\beta$ then $P^{\alpha} p_{\beta}=\alpha!p_{0}$.
Let π be a non trivial permutation of $\{\alpha: 0 \leqslant|\alpha| \leqslant m\}$. Choose $\boldsymbol{\alpha}, 0 \leqslant|\alpha| \leqslant m$, such that $\alpha \neq \pi(\alpha)$ and $|\alpha|$ is minimal for that. Then either $\alpha \neq \pi(\alpha)$ and $P^{\alpha} p_{\pi(\alpha)}=0$ or $\boldsymbol{\alpha}<\pi(\boldsymbol{\alpha})$, but then $\pi^{-1}(\alpha) \nmid \alpha$ (otherwise $\pi^{-1}(\alpha)<\alpha$ and so $\left|\pi^{-1}(\alpha)\right|<|\alpha|$ which contradicts the minmality of $|\alpha|$, so $P^{\pi^{-1}(\alpha)} p_{\alpha}=P^{\pi^{-1}(\alpha)} p_{\pi\left(\pi^{-1}(\alpha)\right)}$ $=0$. Thus $\prod_{|\alpha| \leqslant m} A_{0}\left(P^{\alpha} p_{\pi(\alpha)}\right)=0$ if $\pi \neq I d$, so the determinant of the matrix is just $\prod_{|\alpha| \leqslant m} A_{0}\left(P^{\alpha} p_{\alpha}\right)=\prod_{|\alpha| \leqslant m} \alpha!p_{0} \neq 0$. qed. 2.8 Lemma: If $p=\left(p_{\alpha}\right)$ is an admissible sequence and $P=\left(P_{1}, \ldots, P_{n}\right)$ is the delta operation for p, then for any admissible sequence $q=\left(q_{\alpha}\right)$ and for any $m \in N$ the matrix

Proof: $\left\{p_{\alpha}:|\alpha| \leqslant m\right\}$ and $\left\{q_{\alpha}:|\alpha| \leqslant m\right\}$ are bases of the space of all polynomials of degree $\leqslant m$. Thus there is an invertible $\binom{m+n}{m} \times\binom{ m+n}{m}$ - matrix $A=\left(a_{\alpha \beta}\right)|\alpha| \leqslant m,|\beta| \leqslant m$ over K such that $q_{\beta}=\sum_{\alpha} a_{\alpha \beta} p_{\alpha}$. But then
$\left(A_{0}\left(P^{\alpha} q_{\beta}\right)\right)_{|\alpha| \leqslant m,|\beta| \leqslant m}=\left(\sum_{\mu} A_{0}\left(p^{\alpha} p_{\mu}\right) a_{\mu \beta}\right)_{|\alpha| \leqslant m,|\beta| \leqslant m}$ $=\left(A_{0}\left(P^{\alpha} p_{\mu}\right)\right)_{\alpha, \mu} \cdot\left(a_{\mu \beta}\right)_{\mu, \beta}$ is the product of two invertible matrices. qed.
2.9 For $m \in N$ let $M(m)$ be the space of all $\binom{m+n}{m} \times\binom{ m+n}{m}$ matrices $A=\left.\left(a_{\alpha \beta}\right)\right|_{|\alpha| \leqslant m,|\beta| \leqslant m}$ over K such that $a_{\alpha \beta}=0$ if $\left.|\alpha|\right\rangle|\beta|$.

Lemma: $m(m)$ is a subalgebra of the algebra of all
$\binom{m+n}{m} \times\binom{ m+n}{m}-$ matrices and $M(m) \cap G L\left(\binom{m+n}{m}, K\right)$ is a subgroup of $G L\left(\binom{m+n}{m}, K\right)$ (i.e. if $A \in M(m)$ and A is invertible then $\left.A^{-1} \in M(m)\right)$, which we denote by $g(m)$.

Proof: In a suitable order of $\{\alpha:|\alpha| \leqslant m\} \quad m(m)$ appears as an algebra of "staircased upper triangular matrices". $m(m)$ is clearly a linear space, we have to show that it is closed under multiplication: let $A, B \in M(m), A=\left(a_{\alpha \beta}\right)$, $B=\left(b_{\alpha \beta}\right)$. Then $A \cdot B=\left(\sum_{\mu} a_{\alpha \mu} b_{\mu \beta}\right)_{\alpha, \beta}$. If $\left.|\alpha|\right\rangle|\beta|$ then there is no $\mu \in \mathbb{N}^{n}$ with $|\alpha| \leqslant|\mu|$ and $|\mu| \leqslant|\beta|$, i.e. no μ such that both $a_{\alpha \mu} \neq 0$ and $b_{\mu \beta} \neq 0$. Thus $\sum_{\mu} a_{\alpha_{\mu}} b_{\mu \beta}=0$ and $A \cdot B \in M(m)$. Now let $A=\left(a_{\alpha \beta}\right) \in M(m)$ be invertible. For α, β let $A(\alpha, \beta)$ be the $\left.\binom{m+n}{m}-1\right)\left(\binom{m+n}{m}-1\right)$ - matrix obtained from A by deleting the α - th row and the β - column. If $A^{-1}=\left(c_{\alpha \beta}\right)$ then $c_{\alpha \beta}=\left({ }_{-}^{+}\right) \operatorname{det} A(\beta, \alpha) / \operatorname{det} A$. We have $\operatorname{det} A(\beta, \alpha)=$

If $|\alpha|>|\beta|$ and π is such a permutation with $\pi(\beta)=\alpha$ then there some δ with $m \geqslant|\delta|>|\beta|$ and $|\pi(\delta)| \leqslant|\beta|$. But then $|\delta|>|\beta| \geqslant|\pi(\delta)|$, so $a_{\delta, \pi(\delta)}=0$, so $\operatorname{det} A(\beta, \alpha)=0$ and $A^{-1} \in M(m)$.
qed.
2.10 We consider now the set m consisting of all (infinite) matrices $A=\left(a_{\alpha \beta}\right)_{\alpha, \beta \in \mathbb{N}^{n}}$ such that $a_{\alpha \beta}=0$ if $|\alpha|>|\beta|$. We define multiplication in m by $A \cdot B=\left(\sum_{\mu} a_{\alpha \mu} b_{\mu \beta}\right)_{\alpha, \beta}$. It is easily seen that each sum is actually a finite one and that for each $m \in \mathbb{N}$ we have $(A \cdot B)_{m}=A_{m} . B_{m}$ if we denote by A_{m} the $\binom{m+n}{m} \times\binom{ m+n}{m}$ - matrix $\quad\left(a_{\alpha \beta}\right)_{|\alpha| \leqslant m,|\beta| \leqslant m} \quad$ in $M(m)$. The method of proof of 2.9 shows that if $A \in M$ is such that $A_{m} \in \mathscr{G}(m)$ for each m there is a matrix B (with $B_{m}=A_{m}^{-1}$) in M with $B \cdot A=A \cdot B=I d$. We define ig to be the subset of all these
matrices. y is a topological group, even metrizable. In fact m is the inverse limit of all the $m(m)$'s over the projection maps $M(m) \longrightarrow M\left(m^{\prime}\right)\left(m \geqslant m^{\prime}\right)$ given by deleting all entries $a_{\alpha \beta}$ with $|\alpha|>m^{\prime}$ or $|\beta|>m^{\prime}$. Likewise og is the inverse limit of all the groups $1 g(m)$.

Now we have all the results and concepts necessary to give a reasonable definition of an abstract delta operation.
2.11 Definition: A delta operation on P_{n} is an operation $R=\left(R_{1}, \ldots, R_{n}\right)$ satisfying the following properties: 1. $R_{i}(c)=0$ for each constant $c \in K$ and all i. 2. If $f \in P_{n}$ has degree m, then $R_{i}(f)$ has degree $\leqslant m-1$.
3. For some admissible sequence $q=\left(q_{\alpha}\right) \quad\left(A_{0}\left(R^{\alpha} q_{\beta}\right)\right)_{\alpha, \beta} \in \mathcal{G}$.

Remark: In view of 2.10 condition 3 means that
$\left(A_{0}\left(R^{\alpha} q_{\beta}\right)\right)_{|\alpha| \leqslant m,|\beta| \leqslant m} \in g(m)$ for each m. The method of proof of 2.8 shows that if 3 holds for one admissible sequence then it holds for all.
2.12 Theorem: Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be a delta operation on P_{n}. For any sequence of constants $\left(c_{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ with $c_{0} \neq 0$ there is a unique admissible sequence $p=\left(p_{\alpha}\right)$ with $A_{0} p_{\alpha}=c_{\alpha}$ such that R is just the delta operation for p (i.e. $R^{\alpha} p_{\beta}=(\beta)_{\alpha} p_{\beta-\alpha}$).

Proof: If there is such an admissible sequence p then there exists an infinite matrix $A=\left(a_{\alpha \beta}\right)_{\alpha, \beta \in N^{n}}$ such that the following conditions (1) - (4) are fulfilled:
(1) $A=\left(a_{\alpha \beta}\right) \in$ g .
(2) $p_{\alpha}(x)=\sum_{\mu} a_{\mu \alpha} x^{\mu}$.

By (2) alone A is uniquely determined and an element of gg since p is an admissible sequence. (1) and (2) are equivalent to the fact that p is an admissible sequence.
(3) $a_{o \alpha}=c_{\alpha}$ for all α.

This is just the initial condition $A_{o} p_{\alpha}=c_{\alpha}$.
Now for any $\lambda \in \mathbb{N}^{n}$ let us consider the linear functional
$A_{\lambda}: P_{n} \longrightarrow K$, given by $A_{\lambda}\left(\sum_{\alpha} f_{\alpha} x^{\alpha}\right)=f_{\lambda}$, i.e. the λ - th coordinate functional of the basis $\underline{x}=\left(x^{\lambda}\right)$ of P_{n}.
Our main concern is $R^{\alpha} p_{\beta}=(\beta)_{\alpha} p_{\beta-\alpha}$, i. e. condition
(4) $R^{\alpha}\left(\sum_{\gamma} a_{\mu \beta} x^{\mu}\right)=(\beta)_{\alpha} \sum_{\mu} a_{\mu, \beta-\alpha} x^{\mu}$, or
(4') $\sum_{\gamma} a_{\mu \beta} R^{\alpha} x^{\mu}=\sum_{\mu}(\beta)_{\alpha} a_{\mu, \beta-\alpha} x^{\mu}$, or
(4'') $\sum_{\mu} a_{\mu \beta} A_{\lambda}\left(R^{\alpha} x^{\mu}\right)=(\beta)_{\alpha} a_{\lambda, \beta-\alpha}$ for all $\alpha_{1} \beta_{1} \lambda$.
We need a
Sublemma: $\sum_{\lambda}\left(A_{0}\left(R^{\mu}{ }_{x}{ }^{\lambda}\right)\right)\left(A_{\lambda}\left(R^{\alpha} x^{\mu}\right)\right)=A_{0}\left(R^{\alpha+\mu} x^{\mu}\right)$ for all $\alpha_{1} \mu_{1} \mu_{0}$ Proof of the sublemma: $\sum_{\lambda}\left(A_{0}\left(R^{\mu}{ }_{x}{ }^{\lambda}\right)\right)\left(A_{\lambda}\left(R^{\alpha}{ }_{x}{ }^{\mu}\right)\right)$
$=A_{0} R^{\mu}\left(\sum_{\boldsymbol{\lambda}}\left(A_{\lambda} R^{\boldsymbol{\alpha}} x^{\mu}\right) x^{\boldsymbol{\lambda}}\right)=A_{0} R^{\mu} R^{\alpha} x^{\mu}=A_{0} R^{\alpha+\mu} x^{\mu}$.
Now we show that the infinite system of equations (3), (4) has a unique solution $A=\left(a_{\alpha \beta}\right)$ in $1 g$. We can then define the admissible sequence p by (2) and the theorem follows.

For that we look at the reduced system:
(3)

$$
a_{o \alpha}=c_{\alpha}
$$

$\left(4^{\prime \prime}, \lambda=0\right) \sum_{\gamma} a_{\mu \beta} A_{0}\left(R^{\alpha} x^{\mu}\right)=(\beta)_{\alpha} a_{0, \beta-\alpha}$.
which is equivalent to
(5) $\sum_{\mu} A_{0}\left(R^{\alpha} x^{\mu}\right) a_{\mu \beta}=(\beta)_{\alpha} c_{\beta-\alpha}$ for all α, β.

Since R is a delta operation, by 2.11 .3 (and the following remark) $\left(A_{0}\left(R^{\alpha} x^{\mu}\right)\right)_{\alpha, \mu} \in \mathcal{H}$. Also $\left((\beta)_{\alpha} c_{\beta-\alpha}\right)_{\alpha, \beta} \in \mathcal{M}$, since each entry with $\alpha \neq \beta$ is zero, so for each m the projection into $M(m)$ is better than of upper triangular form and the determinant is just the product of the diagonal elements which are all $\neq 10$ (cf. the proof of 2.7 where we had the same situation). So (5) is just an equation in $1 g$: $\left(A_{0}\left(R^{\alpha} x^{\mu}\right)\right)_{\alpha, \mu} \cdot A=\left((\beta)_{\alpha} c_{\beta-\alpha}\right)$, which clearly has a
unique solution A in the group of . This A fulfills (1) and (3), (4'', $\lambda=0$) (these two are equivalent to (5)). It remains to show that ($4^{\prime \prime}$) holds for all λ.
It is easily seen that $\left(A_{\lambda}\left(R^{\alpha} x^{\mu}\right)\right)_{\lambda, \alpha, \mu}$ is an element of M if one of its indices is fixed.

Thus $\left(\sum_{\mu} A_{\lambda}\left(R^{\alpha} x^{\mu}\right) \cdot a_{\mu \beta}\right)_{\lambda, \alpha} \in M$, furtherimore
$\left(A_{0}\left(R^{\mu} x^{\lambda}\right)\right)_{\mu, \lambda} \in \mathcal{V}$ and we have
$\left(A_{0}\left(R^{\mu}{ }_{x}{ }^{\lambda}\right)\right)_{\mu, \lambda} \cdot\left(\sum_{\mu} a_{\mu \beta} A_{\lambda}\left(R^{\alpha} x^{\mu}\right)\right)_{\lambda, \alpha}$
$=\sum_{\mu} a_{\mu \beta}\left(\sum_{\lambda} A_{o}\left(R^{\mu}{ }_{x}^{\lambda}\right) A_{\lambda}\left(R^{\alpha} x^{\mu}\right)\right)$
$=\sum_{\mu} a_{\mu \beta} A_{0}\left(R^{\mu+\alpha} x^{\mu}\right) \quad$ by the sublemma
$=(\beta)_{\mu+\alpha}{ }^{c}{ }_{\beta-\mu-\alpha}$
by (5)
$=(\beta)_{\alpha}(\beta-\alpha)_{\mu}{ }^{c}(\beta-\alpha)-\mu$
$=(\beta)_{\alpha} \sum_{\lambda} a_{\lambda, \beta-\alpha} A_{0}\left(R^{\mu} x^{\lambda}\right) \quad$ by (5) again
$=\left(A_{0}\left(R^{\mu} x^{\lambda}\right)\right)_{\mu, \lambda} \cdot\left((\beta)_{\alpha} a_{\lambda, \beta-\alpha}\right)_{\lambda, \alpha}$.
Putting away the invertible matrix $\left(A_{0}\left(R^{\mu} x^{\lambda}\right)\right)$, the result (4'') follows.
qed.
2.13 Definition: If $R=\left(R_{1}, \ldots, R_{n}\right)$ is a delta operation, then we call the unique admissible sequence $r=\left(r_{\alpha}\right)$ with $r_{0}(0)=1$ and $r_{\alpha}(0)=0$ for $\alpha \neq 0$ and $R^{\alpha} r_{\beta}=(\beta)_{\alpha} r_{\beta-\alpha}$ the
basic sequence for R.
For a delta operation R we have an algebra monomorphism $K[[R]] \longrightarrow L\left(P_{n}\right)$ onto a commutative subalgebra, given by $\left(\sum_{\alpha} a_{\alpha} R^{\alpha}\right) \longmapsto\left(f \longmapsto \sum_{\alpha} a_{\alpha}\left(R^{\alpha} f\right)\right)$. Compare 2.5 ; formula 2.5 .2 is here valid too.

We also note the following
Corollary: If R is a delta operation, then the following strenghened version of 2.11 .2 is valid: if $f \in P_{n}$ is of degree m then $R_{i} f$ is of degree $m-1$.
2.14 Lemma: Let $p=\left(p_{\alpha}\right)$ be a basic sequence. For any other basic sequence $q=\left(q_{\alpha}\right)$ there is a unique matrix $a=\left(a_{\alpha \beta}\right)$ such that:

1. $a \in g$.
2. $a_{o \alpha}=\delta_{0 \alpha}$ for all α.
3. $q_{\alpha}=\sum_{\beta} a_{\beta \alpha} p_{\beta}$, $q=p$.a for short.

Proof: $\left\{p_{\alpha}\right\}$ and $\left\{q_{\alpha}\right\}$ are both bases of p_{n} respecting the filtration by degree, so there is an element $a \in \mathcal{g}$ with $q=p . a$. Condition 2 just expresses the fact that $p_{\alpha}(0)=\delta_{0 \alpha}, q_{\alpha}(0)=\delta_{0 \alpha}$ qed.
2.15 Let g_{0} be the subgroup of g consisting of all elements $a=\left(a_{\alpha \beta}\right)$ with $a_{0 \alpha}=\delta_{0 \alpha}$, then y_{0} acts freely and transitively on the set of all basic sequences. Likewise the subgroup g_{1} of y consisting of all elements $a=\left(a_{\alpha \beta}\right)$ with $a_{00} \neq 0$ acts freely and transitively on the set of all admissible sequences. The unique element a of 2.14 could be called the matrix of connection constants from the basic sequence p to the basic sequence q.
2.16 Comlary: Let R and Q be delta operations with basic sequences r and q respectively. Then there is a unique matrix $a=\left(a_{\alpha \beta}\right)$ such that:

1. $a \in \mathcal{G}_{0}$
2. $q=r . a$
3. $\sum_{\mu} a_{\mu \beta} Q^{\alpha} r_{\mu}=\sum_{\mu}(\beta)_{\alpha} a_{\mu, \beta-\alpha} r_{\mu}$ for all α, β.
4. $\sum_{\gamma} a_{\gamma \beta} A_{0}\left(Q^{\alpha} r_{\mu}\right)=\delta_{\alpha \beta} \alpha$! for all α, β.

Remark: 1. and 2. are just a reformulation of 2.15. The whole statement is theorem 2.12 recasted for the fixed initial sequence $c_{\alpha}=\delta_{0 \alpha}$ and with \underline{x} replaced by r and R replaced by Q.

3 and 4 are restatements of $2.12 .4^{\prime}$ and 2.12 .5 in this new situation. The corollary can be proved by going through the proof of 2.12 again with the obvious changes (A_{λ} should be replaced by $A \underset{\lambda}{(r)}$, the coordinate functional for the basis (r_{λ}) in the sublemma).
2.17 Assume the data from 2.16. Let us denote $J=\left(\alpha!\delta_{\alpha \beta}\right)_{\alpha, \beta} \epsilon \mathcal{G}_{0}$ then 2.16 .4 reads as follows:

1. $\left(A_{0}\left(Q^{\alpha} r_{\beta}\right)\right)_{\alpha, \beta} \cdot a=J$,
so we have
2. $q=r \cdot a=r \cdot\left(A_{o}\left(Q^{\alpha} r_{\beta}\right)\right)_{\alpha, \beta}^{-1} \cdot J$
and by symmetry
3. $r=q \cdot\left(A_{o}\left(R^{\alpha} q_{\beta}\right)_{\alpha, \beta}^{-1} \cdot J\right.$
but we have also by 1
4. $r=q \cdot a^{-1}=q \cdot J^{-1} \cdot\left(A_{o}\left(Q^{\alpha} r_{\beta}\right)\right)_{\alpha, \beta} \cdot$

From 3 and 4 we get
5. $\left(A_{0}\left(Q^{\alpha} r_{\beta}\right)\right)_{\alpha, \beta}=J \cdot\left(A_{0}\left(R^{\alpha} q_{\beta}\right)\right)_{\alpha, \beta}{ }^{-1} \cdot J$.

As an application we put formula5 back into 1:
6. $a=J^{-1} \cdot\left(A_{0}\left(R^{\alpha} q_{\beta}\right)\right)_{\alpha, \beta}$, i.e. $a_{\alpha \beta}=\frac{1}{\alpha!} A_{0}\left(R^{\alpha} q_{\beta}\right)$.
2.18 Formula 2.17 .6 is not very deep, we may derive it directly using

Proposition (Taylor formula): Let R be a delta operation with basic sequence r. Then for any $f \in P_{n}$ we have

$$
f=\sum_{\alpha}\left(A_{0} R^{\alpha} f\right) \frac{1}{\alpha!} r_{\alpha}
$$

Proof: We have $A_{0}\left(R^{\alpha} r_{\beta}\right)=\alpha!\delta_{\alpha \beta}$, so we get $r_{\beta}=\sum_{\alpha} \frac{1}{\alpha!}\left(A_{0} R^{\alpha} r_{\beta}\right) r_{\alpha}$. Since $\sum_{\alpha} \frac{r_{\alpha}}{\alpha!} A_{0} R^{\alpha}$ is an operator and $\left(r_{\alpha}\right)$ is a basis we have $\sum_{\alpha} \frac{r_{\alpha}}{\alpha!} A_{0} R^{\alpha}=I d$. qed. Now 2.17 .6 is clear: $\sum_{\alpha} a_{\alpha \beta} r_{\alpha}=q_{\beta}=\sum_{\alpha} \frac{r_{\alpha}}{\alpha!} A_{0}\left(R^{\alpha} q_{\beta}\right)$; now use that $\left(r_{\alpha}\right)$ is a basis.
2.19 Lemma: Let $t=\left(t_{1}, \ldots, t_{n}\right)$ be a $n-$ dimensional commutaLive variable, $a_{i}(t)=\sum_{\alpha} a_{i \alpha} t^{\alpha} \in K[[t]]$ for $1 \leqslant i \leqslant n$ and $b(t)=\sum_{\beta} b_{\beta} t^{\beta} \in K[[t]]$. Suppose that $a_{i o}=0$ for all i. Then we have for $a(t)=\left(a_{1}(t), \ldots, a_{n}(t)\right):$
$b(a(t))=\sum_{\beta} b_{\beta}(a(t))^{\beta}$

$$
\begin{gathered}
=\sum_{\gamma}^{\beta}\left(\sum_{\beta} b_{\beta} \sum_{\left.\lambda=\left(\lambda_{i \alpha}\right) \in N^{n} \times N^{n} \quad \frac{\beta!}{\lambda!} A^{\lambda}\right) t^{\mu},}^{\sum_{\alpha} \lambda_{i \alpha}=\beta_{i}}\right. \\
\sum_{i \alpha}^{\infty} \lambda_{i \alpha} \cdot \alpha=\mu \\
\lambda \lambda_{i n}
\end{gathered}
$$

where $A=\left(a_{i \alpha}\right), A^{\lambda}=\prod_{i, \alpha} a_{i \alpha} \lambda_{i \alpha}$ and $\lambda!=\prod \lambda_{i \alpha}$! .
Proof: See 1.11: if we truncate all $a_{i}(t)$ and $b(t)$ at a certain degree m, we compose just polynomial mappings and can apply the formula of 1.11 (which we derived using 1.3). This gives all the monomials of $b(a(t))$ up to degree m. Since m is arbitrary the formula is valid. An alternative proof can be given using lemma 1.3 for formal power series (instead of finite sums), where it is valid too, and straightforward computation (as in 1.11). qed.
2.20 Theorem: Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be a delta operation and $Q_{1}, \ldots, Q_{n} \in K[[R]]$ with representations $Q_{i}=\sum_{\alpha} a_{i \alpha} R^{\alpha}=$ $=a_{i}(R)$. The operation $Q=\left(Q_{1}, \ldots, Q_{n}\right)$ is a delta operation if and only if $a_{i o}=0$ for all ind $\left(a_{i,} \boldsymbol{\varepsilon}(j)\right)_{i, j} \in G L(n, K)$. In this case we have $K[[R]]=K[[Q]]$.

Proof: Let us first suppose that Q is a delta operation. Then by $2.11 .10=Q_{i}(1)=\sum_{\alpha} a_{i \alpha} R^{\alpha}(1)=a_{i o}$.
Now let $p=\left(p_{\alpha}\right)$ be the basic sequence for R. Then by 2.11 .3 $\left(A_{o}\left(Q^{\alpha} p_{\beta}\right)\right)_{\alpha, \beta} \in \mathcal{G}$, so the following matrix is invertible: $\left(A_{0}\left(Q^{\alpha} p_{\beta}\right)\right)_{|\alpha| \leqslant 1,|\beta| \leqslant 1}=\left(\begin{array}{c|c}1 & 0 \\ \hline 0 & \left(a_{i, \varepsilon(j)}\right)_{i, j}\end{array}\right)$
and the condition is satisfied.
Now let us suppose that conversely the two conditions are satisfied. We have to check 2.11.1-3.

1. $Q_{i}(c)=\sum_{\alpha} a_{i \alpha} R^{\alpha}(c)=a_{i o} c=0$.
2. If $f \in P_{n}$ has degree m, then $Q_{i}(f)=\sum_{\alpha} a_{i \alpha}\left(R^{\alpha} f\right)$,
all $R^{\alpha} f$ have degree $\leqslant m-1$, so $Q_{i}(f)$ has degree $\leqslant m-1$. 3. We claim that for the basic sequence $p=\left(p_{\alpha}\right)$ of R the $\operatorname{matrix}\left(A_{0}\left(Q^{\alpha} p_{\beta}\right)\right)_{\alpha, \beta} \in \mathcal{H} . \operatorname{Let} a(R)=\left(a_{1}(R), \ldots, a_{n}(R)\right)$, then the constant term of $a(R)$ is zero and the linear term (with respect to R) is ($\left.\sum_{i} a_{1, \varepsilon(i)} R^{\varepsilon(i)}, \ldots, \sum_{i} a_{n, \varepsilon(i)} R^{\varepsilon(i)}\right)$ with an invertible matrix $a_{i, \varepsilon(j)}$. By the implicit function theorem for formal power series (cf.[8], p.137) the formal power series is invertible with respect to composition, ie. there is a formal power series $b(R)=\left(b_{1}(R), \ldots, b_{n}(R)\right) \in K[[R]]^{n}$ such that $b(a(R))=R$ and $a(b(R))=R$. Let $b_{i}(R)=\sum_{\alpha} b_{i \boldsymbol{\alpha}} R^{\alpha}$. Now $\left(A_{0}\left(R^{\beta} p_{\mu}\right)\right)_{\beta, \boldsymbol{\gamma}} \in \mathcal{g}$. We truncate at $m \in N: b(Q)=R$, so $\left(A_{0}\left(R^{\beta} p_{\mu}\right)\right)_{|\beta| \leqslant m,|\mu| \leqslant m}=\left(A_{0}\left((b(Q))^{\beta} p_{\mu}\right)\right)_{|\beta| \leqslant m,|\mu| \leqslant m}$ $=\left(A_{0}\left(\sum_{\delta}\left(\sum_{\lambda=\left(\lambda_{i \alpha}\right) \in N^{n \times} N^{n}} \frac{\beta!}{\lambda!} B^{\lambda}\right) Q^{\delta} p_{\mu}\right)\right)_{|\beta| \leqslant m,|\mu| \leqslant m}$ $\sum_{\alpha} \lambda_{i \alpha}=\beta_{i}$
$\sum_{i, \alpha} \lambda_{i \alpha} \cdot \alpha=\delta$
by 2.19 , where $B=\left(b_{i \alpha}\right)$,

$$
\begin{aligned}
= & \left(\sum_{\lambda=\left(\lambda_{i \alpha}\right)} \frac{\beta!}{\lambda!} B^{\lambda}\right)_{|\beta| \leqslant m},|\delta| \leqslant m \quad \cdot\left(A_{0}\left(Q^{\delta} p_{\mu}\right)\right)_{|\delta| \leqslant m,|\mu| \leqslant m} . \\
& \sum_{i, \alpha} \lambda_{i \alpha}=\beta_{i} \\
& \sum_{i, \alpha} \lambda_{i \alpha} \cdot \alpha=\delta
\end{aligned}
$$

Since the product is invertible, each of the two factor matrices is invertible and 3 follows.

The last assertion of the theorem is a trivial consequence of the fact that $Q=a(R)$ and $R=b(Q)$. qed.
2.21 Proposition: Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be a delta operation, let $Q=\left(Q_{1}, \ldots, Q_{n}\right)$ be another delta operation with $Q_{i} \in K[[R]]$, $Q_{i}=\sum_{\alpha} a_{i \alpha} R^{\alpha}$. Then the following conditions are satisfied:

1. $a_{\text {io }}=0$.
2. $\left(a_{i}, \varepsilon(j)\right) \in G L(n, K)$.
3. If we set $P_{i j}=\frac{1}{n} \sum_{\beta} a_{i, \beta+\varepsilon(j)} R^{\beta} \in K[[R]]$, then $\left(P_{i j}\right) \in G L(n, K[[R]])$.
4. $Q_{i}=\sum_{j} R_{j} P_{i j}$, or $Q=P . R$ for short.

Proof: 1 and 2 follow from 2.20.
3. $K[[R]]$ is a commutative K - algebra and a $n \times n$ - matrix P over it is invertible if and only if $\operatorname{det} P$ is multiplicatively invertible in $K[[R]]$ and that is the case iff $A_{0}(\operatorname{det} P) \neq 0$ in $K . A_{o}: K[[R]] \longrightarrow K$ is an algebra homomorphism, so $A_{0}(\operatorname{det} P)=\operatorname{det}\left(A_{0} P\right)=\operatorname{det}\left(A_{0}\left(P_{i j}\right)\right)_{i, j}=\operatorname{det}\left(\frac{1}{n} a_{i, \varepsilon}(j)\right)_{i, j}$ and that is not zero.
4. A straightforward computation.
qed.
2.22 Theorem: Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be a delta operation and $Q=\left(Q_{1}, \ldots, Q_{n}\right)$ with $Q_{i} \in K[[R]] . Q$ is a delta operation if and only if there is an invertible matrix $P=\left(P_{i j}\right) \in G L(n, K[[R]])$ with $Q=P \cdot R$. P is in general not unique.

Proof: Necessity follows from 2.21. Sufficiency is seen after a simple computation by 2.20 .
3.1 Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be a delta operation with basic sequence $r=\left(r_{\alpha}\right)$ and let $T(r)$ be the admissible operation for r (cf. 2.2). We call $T=T(r)$ the basic operation for K. We define then for $1 \leqslant i \leqslant n$ linear mappings

$$
\begin{aligned}
& \frac{\partial}{\partial T_{i}}: L\left(P_{n}\right) \longrightarrow L\left(P_{n}\right), \\
& \frac{\partial}{\partial R_{i}}: L\left(P_{n}\right) \longrightarrow L\left(P_{n}\right), \\
& \text { by } \frac{\partial}{\partial T_{i}}(S)=R_{i} \circ S-S \bullet R_{i}, S \in L\left(P_{n}\right) \text { and } \\
& \frac{\partial}{\partial R_{i}}(S)=S \bullet T_{i}-T_{i} \bullet S, S \in L\left(P_{n}\right) .
\end{aligned}
$$

These are called the partial Pincherle derivatives induced by r. Note the asymmetry in the definition.
3.2 Lemma: 1. $\frac{\partial}{\partial T_{i}}\left(T_{j}\right)=R_{i} T_{j}-T_{j} R_{i}=\delta_{i j} I d$.
2. $\frac{\partial}{\partial R_{i}}\left(R_{j}\right)=R_{j} T_{i}-T_{i} R_{j}=\delta_{i j} I d$.
3. $\frac{\partial}{\partial T_{i}} \circ \frac{\partial}{\partial T_{j}}=\frac{\partial}{\partial T_{j}} \circ \frac{\partial}{\partial T_{i}}$
4. ${\frac{\partial}{\partial R_{i}}}_{i} \cdot \frac{\partial}{\partial R_{j}}=\frac{\partial}{\partial R_{j}} \circ \frac{\partial}{\partial R_{i}}$
5. $\left(T_{i}\right)_{*} \circ \frac{\partial}{\partial R_{j}}=\frac{\partial}{\partial R_{j}} \circ\left(T_{i}\right)_{*}$
6. $\left(R_{i}\right)_{*}^{\circ} \cdot \frac{\partial}{\partial T_{j}}=\frac{\partial}{\partial T}_{j}^{\circ}\left(R_{i}\right)_{*}$
7. $\frac{\partial}{\partial R_{j}}\left(T_{i}\right)=0, \frac{\partial}{\partial T_{j}}\left(R_{i}\right)=0$.

Proof: 1,2 are clear from 2.4. 3,4 are straightforward computations. In $5\left(T_{i}\right)_{*}(S)=T_{i} \circ S$, likewise $\left(R_{i}\right)_{*}(S)=R_{i} \circ S$ in 6.5 and 6 are again to be proved by straightforward compotation. 7 follow from 5 and 6:
$\frac{\partial}{\partial R_{j}}\left(T_{i}\right)=\frac{\partial}{\partial R_{j}} \circ\left(T_{i}\right)_{*}(I d)=\left(T_{i}\right)_{*} \circ \frac{\partial}{\partial R_{j}}(I d)=0 . \quad$ qed.
3.3 Definition: Generalizing our notation we call
$\frac{\partial}{\partial R}=\left(\frac{\partial}{\partial R_{1}}, \ldots, \frac{\partial}{\partial R_{n}}\right)$ and $\frac{\partial}{\partial T}=\left(\frac{\partial}{\partial T_{1}}, \ldots, \frac{\partial}{\partial T_{n}}\right)$ again operations (by 3.2 the constituents commute), and we write $\left(\frac{\partial}{\partial \mathrm{R}}\right)^{\alpha}=\left(\frac{\partial}{\partial \mathrm{R}_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial \mathrm{R}_{2}}\right)^{\alpha_{2}} \ldots\left(\frac{\partial}{\partial \mathrm{R}_{\mathrm{n}}}\right)^{\alpha_{n}}, \quad \alpha \in \mathrm{~N}^{\mathrm{n}}$ and likewise for $\frac{\partial}{\partial T}$.
3.4 Lemma: The partial Pincherle derivatives are derivations of the algebra $L\left(P_{n}\right)$, i.e.
$\frac{\partial}{\partial T_{i}}\left(S_{1} \cdot S_{2}\right)=\frac{\partial}{\partial T_{i}}\left(S_{1}\right) \cdot S_{2}+S_{1} \cdot \frac{\partial}{\partial T_{i}}\left(S_{2}\right)$ and
$\frac{\partial}{\partial R_{i}}\left(S_{1} \bullet S_{2}\right)=\frac{\partial}{\partial R_{i}}\left(S_{1}\right) \circ S_{2}+S_{1} \cdot \frac{\partial}{\partial R_{i}}\left(S_{2}\right)$.
Proof: A straightforward computation.
3.5 Proposition: 1. $\left(\frac{\partial}{\partial R}\right)^{\beta}\left(\sum_{\alpha} a_{\alpha} R^{\alpha}\right)=\sum_{\alpha} a_{\alpha}(\alpha)_{\beta} R^{\alpha-\beta}$.
2. $\frac{\partial}{\partial T_{i}}(K[[R]])=0$
3. $\left(\frac{\partial^{i}}{\partial T}\right)^{\beta}\left(\sum_{\alpha} b_{\alpha} T^{\alpha}\right)=\sum_{\alpha} b_{\alpha}(\alpha)_{\beta} T^{\alpha-\beta}$ for $\sum_{\alpha} b_{\alpha} T^{\alpha} \in K[T]$.
4. $\frac{\partial}{\partial R_{i}}(K[T])=0$.

Proof: $\frac{\partial}{\partial R_{i}}\left(\sum_{\alpha} a_{\alpha} R^{\alpha}\right)=\left(\sum_{\alpha} a_{\alpha} R^{\alpha}\right) \cdot T_{i}-T_{i} \circ\left(\sum_{\alpha} a_{\alpha} R^{\alpha}\right)$
$=\sum_{\alpha} a_{\alpha}\left(R^{\boldsymbol{\alpha}} T_{i}-T_{i} R^{\boldsymbol{\alpha}}\right)$
$=\sum_{\alpha}^{\alpha} a_{\alpha}\left(R_{1}^{\boldsymbol{\alpha}_{1}} \ldots R_{i-1}^{\boldsymbol{\alpha}_{i-1}}\left(R_{i}^{\boldsymbol{\alpha}_{i}} T_{i}\right) R_{i+1}^{\boldsymbol{\alpha}_{i+1}} \ldots R_{n}^{\boldsymbol{\alpha}_{n}}-T_{i} R^{\boldsymbol{\alpha}}\right)$
$=\sum_{\alpha} a_{\alpha}\left(R_{1}^{\alpha_{1}} \cdots R_{i-1}^{\alpha_{i-1}}\left(T_{i} R_{i}^{\alpha_{i}}+\alpha_{i} R_{i}^{\boldsymbol{\alpha}_{i}-1}\right) R_{i+1}^{\alpha_{i+1}} \cdots R_{n}^{\alpha_{n}}-T_{i} R^{\alpha}\right)$
$=\sum_{\alpha}^{\alpha} a_{\alpha}\left(T_{i} R^{\alpha}+\alpha_{i} R^{\alpha-\varepsilon(i)}-T_{i} R^{\alpha}\right)$
$=\sum_{\alpha} a_{\alpha} \alpha_{i} R^{\alpha-\varepsilon(j)}$.
We have used $R_{i} T_{j}=T_{j} R_{i}$, $i \neq j$, and $R_{i}{ }^{m} T_{i}=T_{i} R_{i}{ }^{m}+m R_{i}{ }^{m-1}$ from the proof of 2.4. This proves 1. 2 follows from 3.2.7.

3 and 4 can be proved with the same method.
qed.
3.6 Remark: So $\frac{\partial}{\partial R_{i}}$ is just the formal partial differentiation on $K[[R]]$ in the direction R_{i}; hence the name derivative.
It is clear that all the formal rules of differential calculus hold for $\frac{\partial}{\partial R}$ on $K[[R]]$ like the chain rule or the Leibnitz rule:
$\left(\frac{\partial}{\partial R}\right)^{\alpha}(a(R) b(R))=\sum_{\beta}\binom{\alpha}{\beta}\left(\frac{\partial}{\partial R}\right)^{\beta}(a(R))\left(\frac{\partial}{\partial R}\right)^{\alpha-\beta}(b(R))$. Likewise for $\frac{\partial}{\partial T}$ on $K[T]$.

See books on modern algebraic geometry for a verification of that statement or Tutte 9 . If $K=R$ then the validity of the formulas of elementary calculus for formal power series can be seen by the following simple argument: If one associates the infinite Taylor expansion to each germ at $=$ of smooth functions on R^{n}, then this gives algebra homomorphism onto and to the composition of germs corresponds exactly the formal composition of power series. So one may just project down all the formulas of differential calculus.
3.7 Proposition: For all $a(R) \in K[[R]]$ and $b(T) \in K[T]$ we have $a(R) b(T)=\sum_{\alpha} \frac{1}{\alpha!}\left(\frac{\partial}{\partial T}\right)^{\alpha}(b(T))\left(\frac{\partial}{\partial R}\right)^{\alpha}(a(R))$.

This is the commutation rule for $K \quad R$ and $K T$ in $I\left(P_{n}\right)$.
Proof: First we note that for any $S \in L\left(P_{n}\right)$ and the constant $1 \in P_{n}$ $\left(\frac{\partial}{\partial T_{i}}(S)\right)(1)=\left(R_{i} \bullet S-S \bullet R_{i}\right)(1)=R_{i} \bullet S(1)$, so for $\alpha \in \mathbb{N}^{n}$: $\left(\left(\frac{\partial^{1}}{\partial T}\right)^{\alpha}(S)\right)(1)=R^{\alpha} \cdot S(1)$.
Now let $a(R)=\sum_{\alpha} a_{\alpha} R^{\alpha} \in K[[R]] ; b(T), c(T) \in K[T]$. Then:
$a(R) b(\mathbb{T}) c(T)(1)=\sum_{\alpha} a_{\alpha} R^{\alpha} b(\mathbb{T}) c(\mathbb{T})$ (1)
$=\sum_{\alpha} a_{\alpha}\left(\left(\frac{\partial}{\partial T}\right)^{\alpha}(b(T) c(T))\right)$ (1)
$=\sum_{\alpha} a_{\alpha}\left(\sum_{\beta}\binom{\alpha}{\beta}\left(\frac{\partial}{\partial T}\right)^{\beta}(b(T))\left(\frac{\partial}{\partial T}\right)^{\alpha-\beta}(c(T))\right)(1)$
$=\sum_{\beta} \frac{1}{\beta!}\left(\frac{\partial}{\partial T}\right)^{\beta}(b(T))\left(\sum_{\alpha}(\alpha)_{\beta} a_{\alpha} R^{\alpha-\beta} c(T)\right)$ (1)
$=\sum_{\beta}^{\beta} \frac{1}{\beta!}\left(\frac{\partial}{\partial T}\right)^{\beta}(b(T))\left(\frac{\partial}{\partial R}\right)^{\beta}(a(R)) c(T)(1)$.
$c(\mathbb{T})$ (1) runs through all of P_{n} if $c(\mathbb{T})$ runs through $K[T]$, so the result follows. qed.
§4 The formulas of Rodrigues and Lagrange
4.1 Theorem (formula of Rodrigues, Cigler [4]):

Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be a delta operation with basic sequence $r=\left(r_{\alpha}\right)$ and basic operation $T(r)$. Let $Q=\left(Q_{1}, \ldots, Q_{n}\right)$ be another delta operation with basic sequence $q=\left(q_{\alpha}\right)$ and basic operation $T(q)$. Assume that all $Q_{i} \in K[[R]]$. Then $T(q)$ can be expressed as

$$
T(q)_{i}=T(r)_{1} \frac{\partial R}{\partial Q_{i}}+\ldots+T(r)_{n} \frac{\partial R}{\partial Q_{i}}=\left\langle T(r), \frac{\partial R}{\partial Q_{i}}\right\rangle
$$

Proof: By 3.7 we have $\frac{\partial R_{k}}{\partial Q_{i}} T(r)_{I}=T(r)_{I} \frac{\partial R_{k}}{\partial Q_{i}}+\frac{\partial}{\partial R_{I}}\left(\frac{\partial R_{1}}{\partial Q_{i}} k\right.$, so

$$
\begin{aligned}
& T(q)_{i} T(q)_{j}-T(q)_{j} T(q)_{i} \\
& =\sum_{k, 1} T(r)_{k} \frac{\partial R_{k}}{\partial Q_{i}} T(r)_{1} \quad \frac{\partial R_{1}}{\partial Q_{j}}-\sum_{k, 1} T(r)_{k} \frac{\partial R_{k}}{\partial Q_{j}} T(r)_{I} \frac{\partial R_{1}}{\partial Q_{i}} \\
& =\sum_{k, I} T(r)_{k} T(r)_{I} \frac{\partial R_{k}}{\partial Q_{i}} \frac{\partial R_{1}}{\partial Q_{j}}+\sum_{k} T(r)_{k} \sum_{I} \frac{\partial}{\partial R_{1}}\left(\frac{\partial R_{k}}{\partial Q_{i}}\right) \frac{\partial R_{1}}{\partial Q_{j}} \\
& -\sum_{k, I} T(r)_{k} T(r)_{l} \quad \frac{\partial R_{k}}{\partial Q_{j}} \frac{\partial R_{1}}{\partial Q_{i}}-\sum_{k} T(r)_{k} \sum_{I} \frac{\partial}{\partial R_{1}}\left(\frac{\partial R_{k}}{\partial Q_{j}}\right) \frac{\partial R_{l}}{\partial Q_{i}} \\
& =\sum_{k} T(r)_{k}\left(\frac{\partial}{\partial Q_{j}}\left(\frac{\partial R_{k}}{\partial Q_{i}}\right)-\frac{\partial}{\partial Q_{i}}\left(\frac{\partial R_{i}}{\partial Q_{j}}\right)\right)=0,
\end{aligned}
$$

where we used the chain rule for formal differentiation of power series and the fact that $\frac{\partial}{\partial Q_{i}} \frac{\partial}{\partial Q_{j}}=\frac{\partial}{\partial Q_{j}} \frac{\partial}{\partial Q_{i}}$. So $T(q)=\left(T(q)_{1}, \ldots, T(q)_{n}\right)$ is an operation, if defined by the formula of the theorem. Furthermore we have

$$
\begin{aligned}
& Q_{i} T(q)_{j}-T(q)_{j} Q_{i}=\delta_{i j} I d, \text { since } \\
& Q_{i}\left(T(r)_{1} \frac{\partial R}{\partial Q_{j}}+\ldots+T(r)_{n} \frac{\partial R}{\partial Q_{j}^{n}}\right) \\
&-\left(T(r)_{1} \frac{\partial R}{\partial Q_{j}}+\ldots+T(r)_{n} \frac{\partial R}{\partial Q_{j}^{n}}\right) Q_{i} \\
&=\left(Q_{i} T(r)_{1}-T(r)_{1} Q_{i}\right) \frac{\partial R}{\partial Q_{j}}+\ldots+\left(Q_{i} T(r)_{n}-T(r)_{n} Q_{i}\right) \frac{\partial R_{n}}{\partial Q_{j}} \\
&= \frac{\partial Q_{i}}{\partial R_{1}^{i}} \frac{\partial R}{\partial Q_{j}}+\ldots+\frac{\partial Q_{i}}{\partial R_{n}^{i}} \frac{\partial R}{\partial Q_{j}}=\delta_{i j} \text { by the chain rule again. }
\end{aligned}
$$

If we define now polynomials q_{α} for $\alpha \in N^{n}$ by $q_{\alpha}=T(q)^{\alpha}{ }_{1}=\left\langle T(r), \frac{\partial R}{\partial Q_{1}}\right\rangle^{\alpha_{1}} \ldots\left\langle T(r), \frac{\partial R}{\partial Q_{n}}\right\rangle^{\alpha_{n}}(1)$, hen the formula above implies that $Q^{\alpha} q_{\beta}=(\beta)_{\alpha} q_{\beta-\alpha}$. as we saw in the proof of 2.4 .

By definition $q_{0}=1$. If $\alpha>0$ then some $T(r)_{j}$ is leading the formula for q_{α}, so $q_{\alpha}(0)=0$. Clearly q_{α} is of degree $\leqslant|\alpha|$ for each α. If we canshow that $\left\{q_{\alpha}:|\alpha| \leqslant m\right\}$ is K - linearly independent in P_{n} for each m then $q=\left(q_{k}\right)$ is the basic sequence for Q and $T(q)$ is the basic operation for Q. We show this by induction on m. For $m=0$ this is obviously true. Suppose it is true for m. If there is a linear combination $\sum_{|\alpha| \leqslant m+1} a_{\alpha} q_{\alpha}=0$ with some $a_{\beta} \neq 0,|\beta| \leqslant m+1$, choose i with $\beta_{i} \neq 0$. Then $\sum_{|\alpha| \leqslant m+1} a_{\alpha} \alpha_{i} q_{\alpha-\varepsilon(i)}=Q_{i}\left(\sum_{\alpha} a_{\alpha} q_{\alpha}\right)=0$ would be a nontrivial relation in $\left\{q_{\alpha}:|\alpha| \leqslant m\right\}$ - to see that each q_{α} appears only once it suffices to note that $q_{\alpha} \longmapsto q_{\alpha-\varepsilon}(i)$ is injective on the set where it is defined; the rest is taken care of by the factor $\alpha_{i}=0$. qed.
4.2 The rest of this section is devoted to deriving the Lagrange formula, it is based on Cigler [3]. Very simple examples (just permute a basic sequence within $\{\alpha:|\alpha|=m\}$) show that the following is the most general situation where something like the Lagrange formula can hold, i.e. 4.4, where q_{α} depends only on r_{α}.

Definition: Let R be a delta operation, let $Q_{i} \in K[[R]], 1 \leqslant i \leqslant n$. $Q=\left(Q_{1}, \ldots, Q_{n}\right)$ is called a delta operation of diagonal type in $K[[R]]$ if the following holdsifor $Q_{i}=\sum_{\alpha} a_{i \alpha} R^{\alpha}$:

1. $a_{\text {io }}=0$.
2. $\left(a_{i}, \varepsilon(j)\right)_{i, j}$ is an invertible diagonal matrix over K, i.e.

$$
a_{i,}, \varepsilon(j)=0 \text { if } i \neq j \text { and } a_{i, \varepsilon(i)} \neq 0
$$

4.3 Proposition: Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be a delta operation. $Q=\left(Q_{1}, \ldots, Q_{n}\right)$ is a delta operation of diagonal type in $K[[R]]$ if and only if there are (multiplicatively) invertible operators P_{i}, $i=1, \ldots, n$, in $K[[R]]$ such that $Q_{i}=R_{i} P_{i}$. Then the P_{i} are uniquely determined.

Proof: Let Q be a delta operation of diagonal type in $K[[R]]$, $Q_{i}=\sum_{\alpha} a_{i \alpha} R^{\alpha}$. Choose $P_{i}=\sum_{\alpha} a_{i, \alpha+\varepsilon(i)} R^{\alpha+\varepsilon(i)}$, then $a_{i, \varepsilon(i)} \neq 0$, so P_{i} is invertible in $K[[R]]$ and clearly $P_{i} R_{i}=Q_{i}$.
Suppose conversely that $Q_{i}=R_{i} P_{i}, P_{i}=\sum_{\beta} b_{i \beta} R^{\beta}$ with $b_{i o} \neq 0$ for all i. Then $Q_{i}=R_{i} P_{i}=\sum_{\beta}^{1} b_{i \beta}^{\beta} R^{\beta+\varepsilon(i)}$. Then the constant term of each Q_{i} is zero, the (in R) linear term has the form of an invertible diagonal matrix with $b_{i o}$ on the i 'th place in the main diagonal. So Q is a delta operation by 2.20 and is of diagonal type. It is clear that the P_{i} are uniquely determined. qed.
4.4 Theorem (formula of Lagrange - Good):

Let R be a delta operation with basic sequence $r=\left(r_{\alpha}\right)$, let Q be a delta operation of diagonal type in $K[[R]]$ with basic sequence $q=\left(q_{\alpha}\right)$. Write $\eta=(1, \ldots, 1) \in \mathbb{N}^{n}$ and $P^{-\alpha}=$ $=\left(P_{1}{ }^{-1}, \ldots, P_{n}{ }^{-1}\right)^{\alpha}$. Then the following formula holds: $q_{\alpha}=\operatorname{det}\left(\frac{\partial Q_{j}}{\partial R_{i}}\right)_{i, j} \cdot P^{-\alpha-\eta} \cdot r_{\alpha}$
$=\operatorname{det}\left(\delta_{i j} P_{j}^{-\alpha_{j}}-\frac{1}{\alpha_{j}} \frac{\partial}{\partial R_{i}}\left(P_{j}^{-\alpha_{j}}\right) R_{j}\right) \cdot r_{\alpha}$.
(note that for $\alpha_{j}=0$ we have $\frac{\partial}{\partial R_{i}}\left(P_{j}{ }^{-\alpha_{j}}\right)=\frac{\partial}{\partial R_{j}}(I d)=0$).
Proof: First we show that the two expressions are equal: $\operatorname{det}\left(\frac{\partial Q_{i}}{\partial R_{j}}\right)_{i, j} \cdot P^{-\alpha-\eta}=\operatorname{det}\left(\frac{\partial}{\partial R_{j}}\left(R_{i} P_{i}\right)\right)_{i, j} \cdot P^{-\alpha-\eta}$
$=\operatorname{det}\left(\frac{\partial R_{i}^{i}}{\partial R_{j}} P_{i}+R_{i} \frac{\partial P_{i}}{\partial R_{j}}\right)_{i, j} \cdot P^{-\alpha-\eta}$
$=\sum_{\pi} \operatorname{sign} \pi \prod_{i}\left(\delta_{i, \pi(i)} P_{i}+R_{i} \frac{\partial P_{i}}{\left.\partial R_{\pi(i)}\right)} \cdot P^{-\alpha-\eta}\right.$
$=\sum_{\pi} \operatorname{sign} \pi \prod_{i}\left(\delta_{i, \pi(i)} P_{i}^{-\alpha_{i}}+P_{i}^{-\alpha_{i}-1} \frac{\partial p_{i}}{\partial R_{\pi}(i)} R_{i}\right)$
$=\operatorname{det}\left(\delta_{i j} P_{i}^{-\alpha_{i}}+P_{i}^{-\alpha_{i}-1} \frac{\partial P_{i}}{\partial R_{j}} R_{i}\right)$
$=\operatorname{det}\left(\delta_{i j} P_{i}^{-\alpha_{i}}-\frac{1}{\alpha_{i}} \frac{\partial}{\partial R_{j}}\left(P_{i}^{-\alpha_{i}}\right) R_{i}\right)$.
Now we show that the polynomial sequence given ba the first formula satisfies the functional equation $Q_{i} q_{\alpha}=\alpha_{i} q_{\alpha-\varepsilon(i)}$: $Q_{i} \operatorname{det}\left(\frac{\partial Q_{i}}{\partial R_{j}}\right)_{i, j} P^{-\alpha-\eta} r_{\alpha}=\operatorname{det}\left(\frac{\partial Q_{i}}{\partial R_{j}}\right)_{i, j} P^{-\alpha-\eta} P_{i} R_{i} r_{\alpha}$ $=\operatorname{det}\left(\frac{\partial Q_{i}}{\partial \mathrm{R}_{j}}\right)_{i, j} P^{-(\alpha-\varepsilon(i))-\eta} \alpha_{i} r_{\alpha-\varepsilon(i)}$
$=\alpha_{i} \cdot \operatorname{det}\left(\frac{\left.\partial Q_{i}^{i}\right)_{i, j}}{} P^{-(\alpha-\varepsilon(i))-\eta} r_{\alpha-\varepsilon(i)} \cdot\right.$
That the initial condition $q_{\alpha}(0)=\delta_{0 \alpha}$ is satisfied will follow from lemma 4.5 below. Here it remains to show that q_{α} is of degree $|\alpha|$ and that $\{q \alpha\}$ is a basis of P_{n}. This is a trivial consequence of the fact that $\operatorname{det}\left(\frac{\partial Q_{i}}{\partial R_{j}}\right)_{i, j}$ is invertible in $K[[R]]$ (its constant term is the determinant of the coefficient matrix of the liner part of Q in its R - expansion, of. 2.20 and 3.5). So $\operatorname{det}\left(\frac{\partial Q_{i}}{\partial R_{j}}\right)_{i, j} P^{-\alpha-\eta}$ is invertible and degree-non-increasing and its inverse has the same property (being in $K[[R]]$), so q_{α} has degree $|\alpha|$. That $\left\{q_{\alpha}:|\alpha| \leqslant m\right\}$ is linearly independent can be seen as in the end of the proof of 4.1. qed.
4.5 We need a convenient terminology (Mute, [9]): by a cyclic map we mean a pair $L=(W, \rho)$ where $W \subseteq\{1, \ldots, n\}$ and ρ is a permutation of W. Let $c(L)$ be the number of cycles of ρ. Let $\varepsilon(L)_{i}=1$ or 0 accordig as i is or is not in W and let $\varepsilon(L)=\left(\varepsilon(L)_{1}, \ldots, \varepsilon(L)_{n}\right) \in \mathbb{N}^{n}$.
Suppose now the data of theorem 4.4 be given and let
$L\left(P_{i}^{-\alpha_{i}}\right)=\frac{\partial}{\partial R_{\rho(i)}}\left(P_{i}^{-\alpha_{i}}\right)$ if $i \in W$ and
$L\left(P_{i}^{-\alpha_{i}}\right)=P_{i}^{-\alpha_{i}}$ if $i \notin W$, for $L=(W, \rho)$.

Lemma: With the assumptions of theorem 4.4 we have (1) = (2) for all $\alpha \in \mathbb{N}^{\mathrm{n}}$ and (2) = (3) for $\alpha>0$, where:
(1) $\operatorname{det}\left(\frac{\partial Q_{i}}{\partial R_{j}}{ }_{i, j} P^{-\alpha-\eta} r_{\alpha}\right.$
 where $U_{\alpha}=\left\{i: \alpha_{i}>0\right\} \subseteq\{1, \ldots, n\}$.
(3) $\sum_{\substack{I=(W, \rho) \\ i \in W \subseteq U U_{\alpha}}}(-1)^{c(L)} T(r)_{\rho(i)} P_{i}^{-\alpha_{i}} \prod_{j \neq i} L\left(P_{j}^{\left.-\alpha_{j}\right)} r_{\alpha-\varepsilon(L)}\right.$, where i is a fixed element of U_{α}.

We first indicate how theorem 4.4 follows from this lemma:
If $\alpha=0$ then from $(1)=(2)$ we see that $q_{0}=P_{1}{ }^{0} \ldots P_{n}{ }^{0} r_{0}=1$. If $\alpha \neq 0$ then for some $i \in U_{\alpha}$ we have (1) $=$ (3) and in the sum (3) for q_{α} each term begins with some $T(r)_{j}$, so $q_{\alpha}(0)=0$. Note that (2) and (3) are additional expressions for q_{α} which are perhaps useful for some purpose.

Proof: $\operatorname{det}\left(\frac{\partial Q_{i}}{\partial R_{j}}\right)_{i, j} \cdot P^{-\alpha-\eta} r_{\alpha}$
$=\sum_{\pi} \operatorname{sign} \pi \prod_{i}\left(\frac{\partial Q_{i}}{\partial R_{\pi(i)}} \cdot P_{i}^{-1}\right)_{i, j} \cdot P^{-\alpha} r_{\alpha}$
$=\operatorname{det}\left(\frac{\partial Q_{i}}{\partial R_{j}} P_{i}^{-1}\right)_{i, j} \cdot P^{-\alpha} r_{\alpha}$
$=\operatorname{det}\left(\frac{\partial}{\partial R_{j}}\left(Q_{i} P_{i}^{-1}\right)-Q_{i} \frac{\partial}{\partial R_{j}}\left(P_{i}^{-1}\right)\right)_{i, j} \cdot P^{-\alpha} r_{\alpha}$
$=\operatorname{det}\left(\frac{\partial R_{i}}{\partial R_{j}}-Q_{i} \frac{\partial}{\partial R_{j}}\left(P_{i}^{-1}\right)\right)_{i, j} \cdot P^{-\alpha} r_{\alpha}$
$=\operatorname{det}\left(\delta_{i j}-Q_{i} \frac{\partial}{\partial R_{j}}\left(P_{i}^{-1}\right)\right)_{i, j} \cdot P^{-\alpha} r_{\alpha}$
$=\sum_{\pi} \operatorname{sign} \pi \prod_{i}\left(\delta_{i}, \pi(i)-Q_{i} \frac{\partial}{\partial R_{\pi(i)}}\left(P_{i}^{-1}\right)\right) \cdot P^{-\alpha} r_{\alpha}$
$=\sum_{I=(W, \rho)}(-1)^{c}(L) \prod_{i \in W}\left(Q_{i} \frac{\partial}{\partial R_{\rho}(i)}\left(P_{i}^{-1}\right)\right) \cdot P^{-\alpha} r_{\alpha}$
since $c(L)=k+|W|(\bmod 2)$ where $|W|$ is the number of elements of W, ρ the restriction of π to $W \geq\{i: \pi(i) \neq i\}$ and k is the
number of cycles of negative sign of π. The last expression equals:

$$
\begin{aligned}
& \sum_{L=(W, \rho)}(-1)^{c(I)} \prod_{i \in W}\left(\left(P_{i}^{-1}\right)^{\alpha_{i}-1} \frac{\partial}{\partial R_{\rho(i)}}\left(P_{i}^{-1}\right)\right) . \\
& =\sum_{\substack{L_{W \subseteq U_{\alpha}=(W, \rho)}}}(-1)^{\left.c(I) \prod_{i}\left(P_{j}^{-\alpha_{j}}\right) \cdot R^{\varepsilon(L)} r_{i}^{-\alpha_{i}}\right) r_{\alpha-\varepsilon(I)} .} .
\end{aligned}
$$

This is (2).
In order to prove (3) we look at (2) and observe that $I\left(P_{i}{ }^{-\alpha_{i}}\right)=I d$ if $\alpha_{i}=0$. By deleting those i with $\alpha_{i}=0$ we may suppose that $\alpha_{i}>0$ for all i. Furthermore all the $L\left(P_{i}{ }^{-\alpha_{i}}\right)$ commute, so we may suppose that the fixed in (3) is just 1 (the formulas are easier to write down then). Write $T(r)=T=\left(T_{1}, \ldots, T_{n}\right)$ for short. Then (2) equals
(4) $\sum_{L=(W,)}(-1)^{c(L)} I\left(P_{1}^{-\alpha_{1}}\right) \ldots L\left(P_{n}^{-\alpha_{n}}\right) T^{\eta-\varepsilon(I)} r_{\alpha-\eta}$. Now for $i \in W$ we have $L\left(P_{i}{ }^{-\alpha_{i}}\right)=\frac{\partial}{\partial R_{\rho}(i)}\left(P_{i}{ }^{-\alpha_{i}}\right)=$ $P_{i}{ }^{-\alpha_{i}} T_{\rho(i)}-T_{\rho(i)} P_{i}^{-\alpha_{i}}$. If we insert this in (4) and multiply out we get a sum of expressions of the form

$$
\begin{align*}
& (-1)^{c(L)}(-1)^{|\mu|} T_{\rho(1)^{\mu_{1}} P_{1}^{-\alpha_{1}} T_{\rho(1)^{\delta_{1}}} T_{\rho(2)^{\mu_{2}} P_{2}^{-\alpha_{2}} T}{ }^{\delta_{2}} \cdots}^{\therefore T_{\rho(n)}^{\mu_{n}} P_{n}{ }^{-\alpha_{n}} T_{\rho(n)} \delta_{n} T^{\eta-\varepsilon(L)} r_{\alpha-\eta},} \tag{5}
\end{align*}
$$

where $\mu, \delta \in\{0,1\}^{n}$ with $\mu+\delta=\varepsilon(L)$ and where we extend ρ from W to the whole of $\{1, \ldots, n\}=U_{\alpha}$ by $\rho(i)=i$ for $i \notin W$. Our purpose is to show that all terms of the form (5) that appear and have $\mu_{1}=0$ cancel out, so all terms that begin with $P_{1}{ }^{-\alpha_{1}}$ can be neglected and it is clear that (3) remains. For this end let a term (5) be given and let $L=(W, \rho)$ be a cyclic map for which this term appears. We shall construct a uniquely determined cyclic map $L^{*}=\left(W^{*}, \rho^{*}\right)$ for which the same term appears with the opposite sign. Our construction will be
such that $L^{* *}=I$.
Suppose first that there is some $i \in W$ with $\mu_{i}+\delta_{i+1}=2$.
In this case choose the smallest i with this property and let $W=W^{*}$ and $\rho^{*}=\rho^{\circ}(i, i+1)$. Since $\operatorname{sign} \rho \neq \operatorname{sign} \rho^{*},|W|=\left|W^{*}\right|$ and $\mu^{*}=\mu$ the corresponding terms have opposite signs.
Now suppose that there is no $i \in W$ with $x_{i}=\delta_{i+1}=1$. Consider first the case $\delta_{n}=0$ and $W \neq[1, n]$. let k be the largest i that is not in W. Let $W^{*}=W u\{k\}$ and $\rho^{*}=\rho^{\circ}(k, k+1, \ldots, n)$. Then $\delta_{n}^{*}=1, \rho^{*}(n)=k, \delta_{\rho^{*}(n)}^{*}=1$ and $[k, n] \subseteq W_{0}^{*}$ Furthermore we have $\operatorname{sign} \rho^{*}=(-1)^{n-k} \operatorname{sign} \rho,\left|w^{*}\right|=|w|+1$ and $\left|\mu^{*}\right|=|\mu|-(n-k)$, so the corresponding terms have opposite signs.
If on the othe hand we have $\delta_{n}=1, \rho(n)=k, \delta_{\rho(n)}=1$ and $[k, n] \subseteq W$, we define $W^{*}=W \backslash\{k\}$ and $\rho^{*}=\rho \circ(k, k+1, \ldots, n)^{-1}$. This is just the opposite construction to the last one above, so $L^{* *}=\mathrm{L}$ in this case, the signs of the corresponding terms are opposite as we saw above.
Now consider the case $\delta_{n}=1, \delta_{\rho(n)}=1$, and there is some $j \notin W$ such that all inner points of $[j, \rho(n)]$ ($j<i<\rho(n))$ belong to W. Let $k=\rho(n)$ and define $W^{*}=(W \cup\{j\}) \backslash\{k\}$ and $\rho^{*}=\rho \circ(j, j+1, \ldots, k-1, k, n)$. Then we have $\rho^{*}(n)=\rho(j)=j$, $\delta_{1}^{*}=1, \delta_{\rho^{*}(n)}^{*}=\delta_{j}^{*}=0$, further $\operatorname{sign} \rho^{*}=(-1)^{k-j+1} \operatorname{sign} \rho$, $\left|W^{*}\right|=|W|$ and $\left|\mu^{*}\right|=|\mu|+k-j$ such that the corresponding terms have again opposite signs.
Now consider the case $\delta_{1}=1, \delta_{\rho(1)}=0$ and there is $k \notin \mathrm{~W}$ such that all inner points of $[\rho(n), k]$ belong to W. Let $j=\rho(n)$ and define $W^{*}=(W \cup\{k\}) \backslash\{j\}$ and $\rho^{*}=\rho \circ(j, j+1, \ldots, k-1, k, n)^{-1}$. It is again clear that this is the opposite construction to the one above, so $I^{* *}=I$ and the signs are opposite.
The only case that remains is (n) $=0$ and all i (n) belong to W. This imlies $1=1$ which we have excluded. qed.
§5 Shift invariant operators

The following results are a very straightforward generalisation of the theory in one variable (cf. [4], [6]). For completeness' sake we include proofs too.
5.1 In 1.8 we had for $a K^{n}$ the shift operator $E_{a}: P_{n} \longrightarrow P_{n}$, given by $\left(E_{a} f\right)(x)=f(x+a)=\sum_{\alpha} \frac{a_{\alpha}}{\alpha!}\left(D^{\alpha} f\right)(x)=\left(e^{\left.\langle a, D\rangle_{f}\right)(x) .}\right.$ Definition: $F \in I\left(P_{n}\right)$ is called shift invariant if $F \bullet E_{a}=E_{a} \bullet F$ for all $a \in K^{n}$. We denote by $L\left(P_{n}\right)^{K^{n}}$ the subalgebra of $L\left(P_{n}\right)$ consisting of all shift invariant operators.

By 1.8 we have $E_{a} \in K[[D]]$ for all $a, K[[D]]$ is a commutative subalgebra of $L\left(P_{n}\right)$, so $K[[D]] \subseteq I\left(P_{n}\right)^{K^{n}}$.
5.2 Definition: An admissible sequence $p=\left(p_{\alpha}\right)$ is called of binomial type or a binomial sequence if $p_{\alpha}(x+y)=\sum_{\beta}\binom{\alpha}{\beta} p_{\beta}(x) p_{\alpha-\beta}(y)$ holds for all $\alpha \in \mathbb{N}^{n}$.

Lemma: If $p=\left(p_{\alpha}\right)$ is a binomial sequence then it is a basic sequence.

Proof: $p_{\alpha}(x)=p_{\alpha}(x+0)=\sum_{\beta}\binom{\alpha}{\beta} p_{\beta}(x) p_{\alpha-\beta}(0)$.
Since $\left\{p_{\alpha}\right\}$ is a basis of P_{n} and all $\binom{\alpha}{\beta} \neq 0$ for $\beta \leqslant \alpha$ we conclude that $p_{\alpha-\beta}(0)=0$ for $0 \leqslant \beta<\alpha$ and $p_{0}(0)=1$. qed.
5.2 Proposition: Let $p=\left(p_{\boldsymbol{\alpha}}\right)$ be the basic sequence of a delta operation $R=\left(R_{1}, \ldots, R_{n}\right) \cdot p$ is of binomial type if and only if R (i.e. each R_{i}) is shift invariant.

Proof: Let R be shift invariant. By the Taylor formula 2.18 we have:

$$
\begin{aligned}
p_{\alpha}(x+y) & =\sum_{\beta} \frac{p_{\beta}(x)}{\beta!} A_{0}\left(R^{\beta} p_{\alpha}(.+y)\right)=\sum_{\beta} \frac{p_{\beta}(x)}{\beta!} A_{0}\left(R^{\beta} E_{y} p_{\alpha}\right) \\
& =\sum_{\beta} \frac{p_{\beta}(x)}{\beta!} A_{0}\left(E_{y} R^{\beta} p_{\alpha}\right)=\sum_{\beta}\binom{\alpha}{\beta} p_{\beta}(x) p_{\alpha-\beta}(y) .
\end{aligned}
$$

Let conversely $p=\left(p_{\alpha}\right)$ be of binomial type. Then we have:

$$
\begin{aligned}
p_{\alpha}(x+y) & =\sum_{\beta}\binom{\alpha}{\beta} p_{\beta}(x) p_{\alpha-\beta}(y)=\sum_{\beta} \frac{p_{\beta}(x)}{\beta!}(\alpha)_{\beta} p_{\alpha-\beta}(y) \\
& =\sum_{\beta} \frac{p_{\beta}(x)}{\beta!}\left(R^{\beta} p_{\alpha}\right)(y) .
\end{aligned}
$$

This equation (for fixed y) is linear in p_{α} and $\left\{p_{\alpha}\right\}$ is a basis, so we get for any $f \in P_{n}$:
$f(x+y)=\sum_{\beta} \frac{p_{\beta}(x)}{\beta!}\left(R^{\beta} f\right)(y)=\sum_{\beta} \frac{p_{\beta}(y)}{\beta!}\left(R^{\beta} f\right)(x)$
by symmetry. Insert $R_{i} f$ into this equation:

$$
\begin{aligned}
\left(E_{y} R_{i} f\right)(x) & =R_{i} f(x+y)=\sum_{\beta} \frac{p_{\beta}(y)}{\beta!}\left(R^{\beta} R_{i} f\right)(x) \\
& =R_{i}\left(\sum_{\beta} \frac{p_{\beta}(y)}{\beta!} R^{\beta} f\right)(x)=R_{i}\left(E_{y} f\right)(x) .
\end{aligned}
$$

So R_{i} is shift invariant. qed.
5.4 Theorem: (expansion for shift invariant operators):

Let R be a shift invariant delta operation with basic sequence p. Then for any shift invariant operator $F \in L\left(P_{n}\right)^{K^{n}}$ we have $F=\sum_{\beta} \frac{A_{0}\left(F p_{\beta}\right)}{\beta!} R^{\beta}$.

Proof: p is of binomial type, so we have as in the proof of 5.3: $E_{y} f=\sum_{\beta} \frac{p_{\beta}}{\beta!}\left(R^{\beta} f\right)(y)$ for any $f \in P_{n}$, so
$A_{0}\left(F E_{y} f\right)=\sum_{\beta} \frac{A_{0}\left(F P_{\beta}\right)}{\beta!}\left(R^{\beta} f\right)(y)$, ie.
$(F f)(y)=A_{0}\left(E_{y} F f\right)=A_{0}\left(F E_{y} f\right)=\sum_{\beta} \frac{A_{0}\left(F p_{\beta}\right)}{\beta!}\left(R^{\beta} f\right)(y)$. qed.
5.5 Corollary: $L\left(P_{n}\right)^{K^{n}}=K[[R]]$ for any shift invariant delta operation R.
5.6 Corollary: Let R be a shift invariant delta operation with basic sequence $p=(p)$. Let $R=a(D)$ be the power series expansion (i.e. $R_{i}=a_{i}(D) \in K[[D]]$), let a^{-1} be the inverse power series. Then for $t=\left(t_{1}, \ldots, t_{n}\right)$ we have for y K^{n} :

$$
\left.e^{\langle y,} a^{-1}(t)\right\rangle=\sum_{\alpha} \frac{p_{\alpha}(y)}{\alpha!} t^{\alpha}
$$

Proof: We extend E_{y} in a power series in $\mathrm{K}[[\mathrm{D}]]$ by 5.4:
$E_{y}=\sum_{\alpha} \frac{A_{0}\left(E_{y} p_{\alpha}\right)}{\alpha!} R^{\alpha}=\sum_{\alpha} \frac{p_{\alpha}(y)}{\alpha!} R^{\alpha}$.
Now $R^{\alpha}=(a(D))^{\alpha}$, thus
$e^{\langle y, D\rangle}=E_{y}=\sum_{\alpha} \frac{p_{\alpha}(y)}{\alpha!}(a(D))^{\alpha}$.
Insert t for D to get
$e^{\langle y, t\rangle}=\sum_{\alpha} \frac{p_{\alpha}(y)}{\alpha!}(a(t))^{\alpha}$.
Now a^{-1} exists by 2.20; insert $a^{-1}(t)$ for t to get
$e^{\left\langle y, a^{-1}(t)\right\rangle}=\sum_{\alpha} \frac{p_{\alpha}(y)}{\alpha!} t^{\alpha}$. qed.
6.1 Let G be a group and $G \longrightarrow G L(n, K)$ be a representation of G on K^{n}. This gives an action of G on $P_{n}=K[x]$ by $(g . f)(x)=f\left(g^{-1} \cdot x\right), f \in P_{n}, x \in K^{n}, g \in G$.
Definition: We denote by $P_{n}{ }^{G}$ the K-algebra of all G - invariant polynomials f, i.e. g.f $=f$.

Let $f \in P_{n}$. We decompose f into its homogeneous parts $f=f_{o}+f_{1}+\ldots+f_{m}$, where $m=\operatorname{deg} f$. This composition makes P_{n} into a graded algebra. Clearly we have: $f \in P_{n}{ }^{G}$ if and only if each $f_{j} \in P_{n}^{G}$. So P_{n}^{G} is a graded subalgebra of P_{n}. This is at the basis of the following theorem, for the proof see Springer [7] or Poènaru [5].
6.2 Theorem (Hilbert - Nagata) : Let $G \longrightarrow G L(n, K)$ be a completely reducible representation. Then $P_{n}{ }^{G}$ is a finitely generated K - algebra.

That means the following: there are finitely many polynomials $v_{1}, \ldots, v_{k} \in P_{n}^{G}$ such that each $f \in P_{n}^{G}$ may be written as a polynomial in $v_{1}, \ldots, v_{k}: f(x)=h\left(v_{1}(x), \ldots, v_{k}(x)\right), h \in P_{k}$. One may assume that all v_{i} are homogeneous and of degree >0. Another way to express this theorem is the following: let $v=\left(v_{1}, \ldots, v_{k}\right): K^{n} \longrightarrow K^{k}$ be the polynomial map. Then $0 \longleftarrow P_{n}^{G} \longleftarrow v^{*} P_{k}$ surjective, where $v^{*}(f)=f \circ v$. A repentation is completely reducible if each invariant subspace has an invariant complement. It is well known that each continuous representation of a compact group is completely reducible. Furthermore information is available for so called reductive algebraic groups, see [7].

There is a group G and a representation of G such that $P_{n}{ }^{G}$ is not finitely generated (Nagata).

For finite groups E. Noether gave an explicit construction of a generating system, see [5].
6.3 G acts on $K[[x]]$ by acting on the homogeneous parts of a formal power series, which are polynomials in x.

Theorem: Let $G \longrightarrow G I(n, K)$ be a completely reducible representation. Let $v=\left(v_{1}, \ldots, v_{k}\right)$ be the polynomial map consisting of generators of $P_{n}{ }^{G}$. Then $v^{*}: K[[y]] \longrightarrow K[[x]]^{G}$ is surjective, where $y=\left(y_{1}, \ldots, y_{k}\right)$.

For the proof see again 5 .
6.4 Definition: Let $G \longrightarrow G L(n, K)$ be a representation and let $F \in I\left(P_{n}\right) . F$ is called G - invariant if F is a G - modul homomorphism $P_{n} \longrightarrow P_{n}$, i.e. $F(g . f)=g . F(f)$ for all $f \in P_{n}, g \in G$. We denote the subalgebra of all G - invariant operators by $L\left(P_{n}\right)^{G}$.
This notation is compatible with $P_{n}{ }^{G}$, in the latter case G acts trivially on K.
6.5 Now we look at $K[[D]]$ and let G act on it (where $\left.D=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial \mathrm{x}_{n}}\right)\right):$ if $g \in G$ then the action of g on K^{n} is given by a matrix: $g(x)=\left(g_{1}(x), \ldots, g_{n}(x)\right)$, where $g_{i}(x)=\sum_{j} g_{i j} x_{j},\left(g_{i j}\right)$ being an invertible matrix. Now we let g act formally on D : $t_{g}(D)=\left({ }^{\left.t_{g_{1}}(D), \ldots, t^{g_{n}}(D)\right), t_{g_{i}}(D)=\sum_{j} g_{j i} D_{j} .}\right.$ This induces an action of G on $K[[D]]$: for $a(D) \in K[[D]]$ we have $\left({ }^{t} g \cdot a\right)(D)=a\left({ }^{t}{ }_{g}^{-1}(D)\right)$. This action is the
transposed action of the original one, taking care of the fact that the $D_{j}=\frac{\partial}{\partial x_{j}}$ are "contravariant vectorfields". With this action a remarkable formula holds:

Theorem: Let $G \longrightarrow G L(n, K)$ be a representation, let $f \in P_{n}$ and $a(D) \in K[[D]]$. Then we have for $g \in G:$

$$
a(D)(g \cdot f)=g \cdot\left(\left(t_{g \cdot a}\right)(D) f\right)
$$

Proof: Let $f=\sum_{\alpha} f_{\alpha} x^{\alpha} \in P_{n}, g \in G$, then:
$D_{i}\left(g^{-1} . f\right)(x)=\frac{\partial}{\partial x_{i}}(f(g x))=\sum_{\alpha} f_{\alpha} \frac{\partial}{\partial x_{i}}\left(g_{1}(x), \ldots, g_{n}(x)\right)^{\alpha}$
$=\left.\sum_{\alpha} f_{\alpha} \sum_{j} \frac{\partial}{\partial y_{j}}\left(y^{\alpha}\right)\right|_{y=g}(x) \cdot \frac{\partial}{\partial x_{i}}\left(g_{j}(x)\right)$ by the chain rule,
$=\left.\sum_{\alpha} f_{\alpha} \sum_{j} \frac{\partial}{\partial y_{j}}\left(y^{\alpha}\right)\right|_{y=g(x)} \cdot g_{j i}$
$=\left.\left(\sum_{j} g_{j i} \frac{\partial}{\partial y_{j}}\right)\left(\sum_{\alpha} f_{\alpha} y^{\alpha}\right)\right|_{y=g(x)}$
$=t^{t} g_{i}(D)(f)(g x)=\left(g^{-1} \cdot\left({ }^{t} g_{i}(D) f\right)\right)(x)$.
Furthermore we get:
$D_{j} D_{i}\left(g^{-1} \cdot f\right)(x)=D_{j}\left(g^{-1} \cdot\left({ }^{t} g_{i}(D) f\right)(x)\right.$
$=\left(g^{-1} \cdot\left({ }^{t} g_{j}(D)^{t} g_{i}(D) f\right)\right)(x)$.
Thus for any $\alpha \in \mathbb{N}^{n}$ we have $D^{\alpha}\left(g^{-1} \cdot f\right)=g^{-1} \cdot\left(\left(t_{g}(D)\right)^{\alpha} f\right)$. Replace now g^{-1} by g and apply it to a formal power series to get the result. qed.
6.6 Corollary: $L\left(P_{n}\right)^{G} \cap L\left(P_{n}\right)^{K^{n}}=K[[D]]^{G}$.

Proof: Let $a(D) \in K[[D]]=L\left(P_{n}\right)^{K^{n}}(c f .5 .5)$ and $g \in G$. Then $a(D)(g . f)=g .\left(\left(t_{g} . a\right)(D) f\right)$ by 6.5, so $a(D)(g . f)=g .(a(D) f)$ iff $t_{g . a}=$ in $K[[D]]$, i.e. $a \in K[[D]]^{G}$.
6.7 Corollary: Let $G \longrightarrow G I(n, K)$ be a completely reducible representation, let v_{1}, \ldots, v_{k} be generating polynomials for $P_{n}{ }^{t_{G}}$, where ${ }^{t_{G}}$ symbolizes G with the transposed action. Then any shift and G - invariant operator F can be written as a formal power series in $v_{1}(D), \ldots, v_{k}(D)$.

Proof: The transposed action $g \longmapsto{ }^{t} g \in G L(n, K)$ is al so completely reducible since it is the induced action on the dual K^{n}. So the result follows from 6.6 and 6.3. qed.
6.8 Remark: Let $G \longrightarrow G L(n, K)$ be a non trivial representation. Then there is no G - invariant delta operation on P_{n}.

Proof: Assume that $R=\left(R_{1}, \ldots, R_{n}\right)$ is G - invariant and a delta operation with basic sequence $r=\left(r_{\alpha}\right)$. By the Taylor formula (2.18) we have for each $f \in P_{n}$ and $g \in G:$

$$
\begin{aligned}
g . f & =\sum_{\alpha} A_{0}\left(R^{\alpha}(g . f)\right) \frac{r_{\alpha}}{\alpha!}=\sum_{\alpha} A_{0}\left(g .\left(R^{\alpha} f\right)\right) \frac{r_{\alpha}}{\alpha!} \\
& =\sum_{\alpha} A_{0}\left(R^{\alpha} f\right) \frac{r_{\alpha}}{\alpha!}=f .
\end{aligned}
$$

We have used that g leaves invariant the constant terms of polynomials since it acts linearly. So $P_{n}{ }^{G}=P_{n}$ and G has to act trivially on K^{n}. qed.

References

1 J. CIGLER: Some remarks on Rota's umbral calculus. To appear in Indagatione Math.
2. J.CIGLER: A note on a paper of I. Carlitz, preprint.

3 J.CIGLER: Sequences of polynomials of binomial type and the Lagrange Good formula, preprint.

4 R. MULLIN, G.-C. ROTA: On the foundations of combinatorial theory III: Theory of binomial enumeration, in "Graph Theory and its Applications" (B. Harris, ed.), pp 167 - 213, Academic Press, New York 1970.

5 V. POENARU: Singularites C en présence de symétrie, Springer Lecture Notes 510 (1976).

6 G.-C. ROTA, D. KAHANER, A. ODLYZKO: On the foundations of combinatorial theory, VIII: Finite operator calculus, J. Math. Anal. Appl. 42 (1973), 684-760.

7 T. A. SPRINGER: Invariant theory, Springer Lecture Notes 585, (1977).

8 O. ZARISKI, P. SAMUEL: Commutative algebra II, D. van Nostrand, New York 1960.

9 W. TUTTE: On elementary calculus and the Good formula, J. Combinatorial theory (B) 18 (1975), 97 - 137.
P. Michor

Mathematisches Institut der Universität Strudhofgasse 4
A - 1090 Wien, Austria

