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I An extremely short introduction to convenient calculus in
infinite dimensions. (I resisted the temptation to present this.
See http://www.mat.univie.ac.at/˜michor/Pisa-2014.pdf )

I A zoo of diffeomorphism groups on Rn

I A diagram of actions of diffeomorphism groups

I Riemannian geometries on diffeomorphism groups and spaces
of immersions and shape spaces.

I Transforming a Riemannian metric on Diff(R) to a flat space,
or solving the Hunter-Saxton equation.

I Sobolev Metrics on Diffeomorphism Groups, and the Derived
Geometry of Shape Spaces.



A Zoo of diffeomorphism groups on Rn

For suitable convenient vector space A(Rn) ⊂ C∞(Rn) let
DiffA(Rn) be the group of all diffeomorphisms of Rn of the form
Id +f for f ∈ A(Rn)n with det(In + df (x)) ≥ ε > 0.

Theorem. The sets of diffeomorphisms Diffc(Rn), DiffS(Rn),
DiffH∞(Rn), and DiffB(Rn) are all smooth regular Lie groups. We
have the following smooth injective group homomorphisms

Diffc(Rn) // DiffS(Rn) // DiffH∞(Rn) // DiffB(Rn) .

Each group is a normal subgroup in any other in which it is
contained, in particular in DiffB(Rn). Similarly for suitable
Denjoy-Carleman spaces of ultradifferentiable functions both of
Roumieu and Beurling type:

DiffD[M] (Rn)�DiffS [M]

[L]

(Rn)�DiffW [M],p (Rn)�DiffW [M],q (Rn)�DiffB[M] (Rn).

Here we require that the M = (Mk) is log-convex and has

moderate growth, and that also C
(M)
b ⊇ Cω in the Beurling case.

[M,Mumford,2013], partly [B.Walter,2012]; for Denjoy-Carleman ultradifferentiable diffeomorphisms [Kriegl, M,
Rainer 2014].



A diagram of actions of diffeomorphism groups.

Diff(M)
r-acts //

r-acts

%%
Diff(M,µ)

����

Imm(M,N)

needs ḡxx Diff(M) &&

DiffA(N)

r-acts

��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(M)

Diff(M) %% %%

Bi (M,N)

needs ḡxx
Vol1+(M) Met(M)

Diff(M) MetA(N)

M compact ,N pssibly non-compact manifold

Met(N) = Γ(S2
+T∗N) space of all Riemann metrics on N

ḡ one Riemann metric on N

Diff(M) Lie group of all diffeos on compact mf M

DiffA(N), A ∈ {H∞,S, c} Lie group of diffeos of decay A to IdN

Imm(M,N) mf of all immersions M → N

Bi (M,N) = Imm/Diff(M) shape space

Vol1+(M) ⊂ Γ(vol(M)) space of positive smooth probability densities



Diff(S1)
r-acts //

r-acts

%%
r-acts

��

Imm(S1,R2)

needs ḡxx Diff(S1) ''

DiffA(R2)

r-acts

��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Vol+(S1)

����

Met(S1)

Diff(S1)

&& &&

Bi (S1,R2)

needs ḡxx
Vol+(S1)
Diff(S1)

∫
fdθ

=
// R>0

Met(S1)
Diff(S1)∫ √

gdθ

=oo Met(R2)

Diff(S1) Lie group of all diffeos on compact mf S1

DiffA(R2), A ∈ {B,H∞,S, c} Lie group of diffeos of decay A to IdR2

Imm(S1
,R2) mf of all immersions S1 → R2

Bi (S
1
,R2) = Imm/Diff(S1) shape space

Vol+(S1) =
{
f dθ : f ∈ C∞(S1

,R>0)
}

space of positive smooth probability densities

Met(S1) =
{
g dθ2 : g ∈ C∞(S1

,R>0)
}

space of metrics on S1



L2 metric

Diff(S1) : G 0
ϕ(X ◦ ϕ,Y ◦ ϕ) = G 0

Id(X ,Y ) =

∫
S1

X (θ)Y (θ)dθ

Imm(S1,R2) : G 0
c (h, k) =

∫
S1

〈h(θ), k(θ)〉ds

DiffA(R2) : G 0
ϕ(X ◦ ϕ,Y ◦ ϕ) = G 0

Id(X ,Y ) =

∫
R2

X (x)Y (x)dx

Problem: The induced geodesic distance vanishes.

Diff(S1)
r-acts //

r-acts $$

Imm(S1,R2)

needs ḡxx Diff(S1) ''

Diffc(R2)
l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(S1) Bi (S1,R2)

Movies about vanishing: Diff(S1) Bi (S1,R2)
[MichorMumford2005a,2005b], [BauerBruverisHarmsMichor2011,2012]



Sobolev type metrics
Weak Riem. metrics on DiffA(N) and Emb(M,N) ⊂ Imm(M,N).

Metrics on the space of immersions of the form:

DiffA(N) : GP
ϕ (X ◦ ϕ,Y ◦ ϕ) =

∫
N

ḡ(PX ,Y ) vol(ḡ)

Imm(M,N) : GP
f (h, k) =

∫
M

ḡ(P f h, k) vol(f ∗ḡ)

where ḡ is some fixed metric on N, g = f ∗ḡ is the induced metric
on M, h, k ∈ Γ(f ∗TN) are tangent vectors at f to Imm(M,N),
and P f is a positive, selfadjoint, bijective (scalar) pseudo
differential operator of order 2p depending smoothly on f . Good
example: P f = 1 + A(∆g )p, where ∆g is the Bochner-Laplacian
on M induced by the metric g = f ∗ḡ . Also P has to be
Diff(M)-invariant: ϕ∗ ◦ Pf = Pf ◦ϕ ◦ ϕ∗.



Advantages of Sobolev type metrics:

1. Positive geodesic distance

2. Geodesic equations are well posed

3. Spaces are geodesically complete for p > dim(M)
2 + 1.

[Bruveris, M, Mumford, 2013] for plane curves. A remark in [Ebin, Marsden, 1970], and [Bruveris, Meyer,

2014] for diffeomorphism groups.

Problems:

1. Analytic solutions to the geodesic equation?

2. Curvature of shape space with respect to these metrics?

3. Numerics are in general computational expensive

wellp.:
Space:

geod. dist.:

p≥1/2

Diff(S1)

+:p> 1
2
,−:p≤ 1

2

r-acts //

r-acts

$$

p≥1

Imm(S1,R2)
−:p=0,+:p≥1

needs ḡ

}} Diff(S1) ""

p≥1

Diffc (R2)

−:p< 1
2
,+:p≥1

l-acts

(LDDMM)

oo

l-acts

(LDDMM)
{{

wellp.:
Space:

geod. dist.:

p≥0

Met(S1)
+:p≥0

p≥1

Bi (S
1,R2)

−:p=0,+:p≥1



Sobolev type metrics

Advantages of Sobolev type metrics:

1. Positive geodesic distance

2. Geodesic equations are well posed

3. Spaces are geodesically complete for p > dim(M)
2 + 1.

[Bruveris, M, Mumford, 2013] for plane curves. A remark in [Ebin, Marsden, 1970], and [Bruveris, Viallard,

2014] for diffeomorphism groups.

Problems:

1. Analytic solutions to the geodesic equation?

2. Curvature of shape space with respect to these metrics?

3. Numerics are in general computational expensive
wellp.:

Space:
dist.:

p≥1
Diff(M)

+:p>1,−:p< 1
2

r-acts //

r-acts

$$

p≥1
Imm(M,N)
−:p=0,+:p≥1

needs ḡ

}}
Diff(M)

##

p≥1
Diffc (N)

−:p< 1
2
,+:p≥1

l-acts

(LDDMM)

oo

l-acts

(LDDMM)
{{

wellp.:
Space:

dist.:

p=k,k∈N
Met(M)

+:p≥0

p≥1
Bi (M,N)
−:p=0,+:p≥1



Right invariant Riemannian geometries on
Diffeomorphism groups.

For M = N the space Emb(M,M) equals the diffeomorphism
group of M. An operator P ∈ Γ

(
L(T Emb; T Emb)

)
that is

invariant under reparametrizations induces a right-invariant
Riemannian metric on this space. Thus one gets the geodesic
equation for right-invariant Sobolev metrics on diffeomorphism
groups and well-posedness of this equation. The geodesic equation
on Diff(M) in terms of the momentum p is given by{

p = Pft ⊗ vol(g),

∇∂t p = −Tf .ḡ(Pft ,∇ft)
] ⊗ vol(g).

Note that this equation is not right-trivialized, in contrast to the
equation given in [Arnold 1966]. The special case of theorem now
reads as follows:



Theorem. [Bauer, Harms, M, 2011] Let p ≥ 1 and k > dim(M)
2 + 1 and

let P satisfy suitable assumptions.

The initial value problem for the geodesic equation has unique local

solutions in the Sobolev manifold Diffk+2p of Hk+2p-diffeomorphisms.

The solutions depend smoothly on t and on the initial conditions f (0, . )

and ft(0, . ). The domain of existence (in t) is uniform in k and thus this

also holds in Diff(M).

Moreover, in each Sobolev completion Diffk+2p, the Riemannian

exponential mapping expP exists and is smooth on a neighborhood of the

zero section in the tangent bundle, and (π, expP) is a diffeomorphism

from a (smaller) neigbourhood of the zero section to a neighborhood of

the diagonal in Diffk+2p ×Diffk+2p. All these neighborhoods are uniform

in k > dim(M)/2 + 1 and can be chosen Hk0+2p-open, for

k0 > dim(M)/2 + 1. Thus both properties of the exponential mapping

continue to hold in Diff(M).



Geodesics of a Right-Invariant Metric on a Lie Group

Let γ = g× g→ R be a positive-definite bounded (weak) inner
product. Then

γx(ξ, η) = γ
(
T (µx

−1
) · ξ, T (µx

−1
) · η

)
= γ

(
κ(ξ), κ(η)

)
is a right-invariant (weak) Riemannian metric on G . Denote by
γ̌ : g→ g∗ the mapping induced by γ, and by 〈α,X 〉g the duality
evaluation between α ∈ g∗ and X ∈ g.
Let g : [a, b]→ G be a smooth curve. The velocity field of g ,
viewed in the right trivializations, coincides with the right
logarithmic derivative

δr (g) = T (µg
−1

) · ∂tg = κ(∂tg) = (g∗κ)(∂t).

The energy of the curve g(t) is given by

E (g) =
1

2

∫ b

a
γg (g ′, g ′)dt =

1

2

∫ b

a
γ
(
(g∗κ)(∂t), (g∗κ)(∂t)

)
dt.



Thus the curve g(0, t) is critical for the energy if and only if

γ̌(∂t(g∗κ)(∂t)) + (ad(g∗κ)(∂t))∗γ̌((g∗κ)(∂t)) = 0.

In terms of the right logarithmic derivative u : [a, b]→ g of
g : [a, b]→ G , given by u(t) := g∗κ(∂t) = Tg(t)(µg(t)−1

) · g ′(t),
the geodesic equation has the expression

∂tu = − γ̌−1 ad(u)∗ γ̌(u) (1)

Thus the geodesic equation exists in general if and only if
ad(X )∗γ̌(X ) is in the image of γ̌ : g→ g∗, i.e.

ad(X )∗γ̌(X ) ∈ γ̌(g) (2)

for every X ∈ X. Condition (2) then leads to the existence of the
Christoffel symbols. [Arnold 1966] has the more restrictive
condition ad(X )∗γ̌(Y ) ∈ γ̌ ∈ g. The geodesic equation for the
momentum p := γ(u):

pt = − ad(γ̌−1(p))∗p.



Soon we shall encounter situations where only the more general
condition is satisfied, but where the usual transpose ad>(X ) of
ad(X ),

ad>(X ) := γ̌−1 ◦ ad∗X ◦ γ̌

does not exist for all X .



Groups related to Diffc(R)

The reflexive nuclear (LF) space C∞c (R) of smooth functions with
compact support leads to the well-known regular Lie group
Diffc(R).
Define C∞c,2(R) = {f : f ′ ∈ C∞c (R)} to be the space of
antiderivatives of smooth functions with compact support. It is a
reflexive nuclear (LF) space. We also define the space

C∞c,1(R) =
{

f ∈ C∞c,2(R) : f (−∞) = 0
}

of antiderivatives of the

form x 7→
∫ x
−∞ g dy with g ∈ C∞c (R).

Diffc,2(R) =
{
ϕ = Id +f : f ∈ C∞c,2(R), f ′ > −1

}
is the

corresponding group.
Define the two functionals Shift`,Shiftr : Diffc,2(R)→ R by

Shift`(ϕ) = ev−∞(f ) = lim
x→−∞

f (x), Shiftr (ϕ) = ev∞(f ) = lim
x→∞

f (x)

for ϕ(x) = x + f (x).



Then the short exact sequence of smooth homomorphisms of Lie
groups

Diffc(R) // // Diffc,2(R)
(Shift`,Shiftr ) // // (R2,+)

describes a semidirect product, where a smooth homomorphic
section s : R2 → Diffc,2(R) is given by the composition of flows
s(a, b) = FlX`a ◦FlXr

b for the vectorfields X` = f`∂x , Xr = fr∂x with
[X`,Xr ] = 0 where f`, fr ∈ C∞(R, [0, 1]) satisfy

f`(x) =

{
1 for x ≤ −1

0 for x ≥ 0,
fr (x) =

{
0 for x ≤ 0

1 for x ≥ 1.
(3)

The normal subgroup
Diffc,1(R) = ker(Shift`) = {ϕ = Id +f : f ∈ C∞c,1(R), f ′ > −1} of
diffeomorphisms which have no shift at −∞ will play an important
role later on.



Some diffeomorphism groups on R

We have the following smooth injective group homomorphisms:

Diffc(R) //

��

DiffS(R)

��

// DiffW∞,1(R)

��
Diffc,1(R) //

��

DiffS1(R) //

��

Diff
W∞,11

(R)

��
Diffc,2(R) // DiffS2(R) // Diff

W∞,12
(R) // DiffB(R)

Each group is a normal subgroup in any other in which it is
contained, in particular in DiffB(R).
For S and W∞,1 this works the same as for C∞c . For H∞ = W∞,2

it is surprisingly more subtle.



Solving the Hunter-Saxton equation: The setting

We will denote by A(R) any of the spaces C∞c (R), S(R) or
W∞,1(R) and by DiffA(R) the corresponding groups Diffc(R),
DiffS(R) or DiffW∞,1(R).
Similarly A1(R) will denote any of the spaces C∞c,1(R), S1(R) or

W∞,1
1 (R) and DiffA1(R) the corresponding groups Diffc,1(R),

DiffS1(R) or Diff
W∞,11

(R).

The Ḣ1-metric. For DiffA(R) and DiffA1(R) the homogeneous
H1-metric is given by

Gϕ(X ◦ ϕ,Y ◦ ϕ) = GId(X ,Y ) =

∫
R

X ′(x)Y ′(x) dx ,

where X ,Y are elements of the Lie algebra A(R) or A1(R). We
shall also use the notation

〈·, ·〉Ḣ1 := G (·, ·) .



Theorem

On DiffA1(R) the geodesic equation is the Hunter-Saxton equation

(ϕt) ◦ ϕ−1 = u ut = −uux +
1

2

∫ x

−∞
(ux(z))2 dz ,

and the induced geodesic distance is positive.
On the other hand the geodesic equation does not exist on the
subgroups DiffA(R), since the adjoint ad(X )∗ǦId(X ) does not lie
in ǦId(A(R)) for all X ∈ A(R).
One obtains the classical form of the Hunter-Saxton equation by
differentiating:

utx = −uuxx −
1

2
u2
x ,

Note that DiffA(R) is a natural example of a non-robust
Riemannian manifold.



Proof

Note that ǦId : A1(R)→ A1(R)∗ is given by ǦId(X ) = −X ′′ if we
use the L2-pairing X 7→ (Y 7→

∫
XYdx) to embed functions into

the space of distributions. We now compute the adjoint of ad(X ):〈
ad(X )∗ǦId(Y ),Z

〉
= ǦId(Y , ad(X )Z ) = GId(Y ,−[X ,Z ])

=

∫
R

Y ′(x)
(
X ′(x)Z (x)− X (x)Z ′(x)

)′
dx

=

∫
R

Z (x)
(
X ′′(x)Y ′(x)− (X (x)Y ′(x))′′

)
dx .

Therefore the adjoint as an element of A∗1 is given by

ad(X )∗ǦId(Y ) = X ′′Y ′ − (XY ′)′′ .



For X = Y we can rewrite this as

ad(X )∗ǦId(X ) = 1
2

(
(X ′2)′ − (X 2)′′′

)
=

1

2

(∫ x

−∞
X ′(y)2 dy − (X 2)′

)′′
=

1

2
ǦId

(
−
∫ x

−∞
X ′(y)2 dy + (X 2)′

)
.

If X ∈ A1(R) then the function −1
2

∫ x
−∞ X ′(y)2 dy + 1

2 (X 2)′ is
again an element of A1(R). This follows immediately from the
definition of A1(R). Therefore the geodesic equation exists on
DiffA1(R) and is as given.
However if X ∈ A(R), a neccessary condition for∫ x
−∞(X ′(y))2dy ∈ A(R) would be

∫∞
−∞ X ′(y)2dy = 0, which would

imply X ′ = 0. Thus the geodesic equation does not exist on A(R).
The positivity of geodesic distance will follow from the explicit
formula for geodesic distance below. QED.



Theorem.

[BBM2014] [A version for Diff (S1) is by J.Lenells 2007,08,11]
We define the R-map by:

R :

{
DiffA1(R)→ A

(
R,R>−2

)
⊂ A(R,R)

ϕ 7→ 2
(
(ϕ′)1/2 − 1

)
.

The R-map is invertible with inverse

R−1 :


A
(
R,R>−2

)
→ DiffA1(R)

γ 7→ x +
1

4

∫ x

−∞
γ2 + 4γ dx .

The pull-back of the flat L2-metric via R is the Ḣ1-metric on
DiffA(R), i.e.,

R∗〈·, ·〉L2 = 〈·, ·〉Ḣ1 .

Thus the space
(
DiffA1(R), Ḣ1

)
is a flat space in the sense of

Riemannian geometry.
Here 〈·, ·〉L2 denotes the L2-inner product on A(R) with constant
volume dx .



Proof

To compute the pullback of the L2-metric via the R-map we first
need to calculate its tangent mapping. For this let
h = X ◦ ϕ ∈ TϕDiffA1(R) and let t 7→ ψ(t) be a smooth curve in
DiffA1(R) with ψ(0) = Id and ∂t |0ψ(t) = X . We have:

TϕR.h = ∂t |0R(ψ(t) ◦ ϕ) = ∂t |02
(

((ψ(t) ◦ ϕ)x)1/2 − 1
)

= ∂t |02((ψ(t)x ◦ ϕ)ϕx)1/2

= 2(ϕx)1/2∂t |0((ψ(t)x)1/2 ◦ ϕ) = (ϕx)1/2
( ψtx(0)

(ψ(0)x)−1/2
◦ ϕ
)

= (ϕx)1/2(X ′ ◦ ϕ) = (ϕ′)1/2(X ′ ◦ ϕ) .

Using this formula we have for h = X1 ◦ ϕ, k = X2 ◦ ϕ:

R∗〈h, k〉L2 = 〈TϕR.h,TϕR.k〉L2 =

∫
R

X ′1(x)X ′2(x) dx = 〈h, k〉Ḣ1 QED



Corollary

Given ϕ0, ϕ1 ∈ DiffA1(R) the geodesic ϕ(t, x) connecting them is
given by

ϕ(t, x) = R−1
(

(1− t)R(ϕ0) + tR(ϕ1)
)

(x)

and their geodesic distance is

d(ϕ0, ϕ1)2 = 4

∫
R

(
(ϕ′1)1/2 − (ϕ′0)1/2

)2
dx .

But this construction shows much more: For S1, C∞1 , and even for
many kinds of Denjoy-Carleman ultradifferentiable model spaces
(not explained here). This shows that Sobolev space methods for
treating nonlinear PDEs is not the only method.



Corollary: The metric space
(
DiffA1(R), Ḣ1

)
is path-connected

and geodesically convex but not geodesically complete. In
particular, for every ϕ0 ∈ DiffA1(R) and h ∈ Tϕ0 DiffA1(R), h 6= 0
there exists a time T ∈ R such that ϕ(t, ·) is a geodesic for
|t| < |T | starting at ϕ0 with ϕt(0) = h, but ϕx(T , x) = 0 for some
x ∈ R.
Theorem: The square root representation on the diffeomorphism
group DiffA(R) is a bijective mapping, given by:

R :

{
DiffA(R)→

(
Im(R), ‖ · ‖L2

)
⊂
(
A
(
R,R>−2

)
, ‖ · ‖L2

)
ϕ 7→ 2

(
(ϕ′)1/2 − 1

)
.

The pull-back of the restriction of the flat L2-metric to Im(R) via R
is again the homogeneous Sobolev metric of order one. The image
of the R-map is the splitting submanifold of A(R,R>−2) given by:

Im(R) =
{
γ ∈ A(R,R>−2) : F (γ) :=

∫
R
γ
(
γ + 4

)
dx = 0

}
.



On the space DiffA(R) the geodesic equation does not exist. Still:
Corollary: The geodesic distance dA on DiffA(R) coincides with
the restriction of dA1 to DiffA(R), i.e., for ϕ0, ϕ1 ∈ DiffA(R) we
have

dA(ϕ0, ϕ1) = dA1(ϕ0, ϕ1) .



Continuing Geodesics Beyond the Group, or How Solutions
of the Hunter–Saxton Equation Blow Up

Consider a straight line γ(t) = γ0 + tγ1 in A(R,R). Then
γ(t) ∈ A(R,R>−2) precisely for t in an open interval (t0, t1) which
is finite at least on one side, say, at t1 <∞. Note that

ϕ(t)(x) := R−1(γ(t))(x) = x +
1

4

∫ x

−∞
γ2(t)(u) + 4γ(t)(u) du

makes sense for all t, that ϕ(t) : R→ R is smooth and that
ϕ(t)′(x) ≥ 0 for all x and t; thus, ϕ(t) is monotone
non-decreasing. Moreover, ϕ(t) is proper and surjective since γ(t)
vanishes at −∞ and ∞. Let

MonA1(R) :=
{

Id +f : f ∈ A1(R,R), f ′ ≥ −1
}

be the monoid (under composition) of all such functions.



For γ ∈ A(R,R) let x(γ) := min{x ∈ R ∪ {∞} : γ(x) = −2}.
Then for the line γ(t) from above we see that x(γ(t)) <∞ for all
t > t1. Thus, if the ‘geodesic’ ϕ(t) leaves the diffeomorphism
group at t1, it never comes back but stays inside
MonA1(R) \ DiffA1(R) for the rest of its life. In this sense,
MonA1(R) is a geodesic completion of DiffA1(R), and
MonA1(R) \ DiffA1(R) is the boundary.
What happens to the corresponding solution
u(t, x) = ϕt(t, ϕ(t)−1(x)) of the HS equation? In certain points it
has infinite derivative, it may be multivalued, or its graph can
contain whole vertical intervals. If we replace an element
ϕ ∈ MonA1(R) by its graph {(x , ϕ(x)) : x ∈ R} ⊂ R we get a
smooth ‘monotone’ submanifold, a smooth monotone relation.
The inverse ϕ−1 is then also a smooth monotone relation. Then
t 7→ {(x , u(t, x)) : x ∈ R} is a (smooth) curve of relations.
Checking that it satisfies the HS equation is an exercise left for the
interested reader. What we have described here is the flow
completion of the HS equation in the spirit of [KhesinMichor2004].



Soliton-Like Solutions of the Hunter Saxton equation

For a right-invariant metric G on a diffeomorphism group one can
ask whether (generalized) solutions u(t) = ϕt(t) ◦ ϕ(t)−1 exist
such that the momenta Ǧ (u(t)) =: p(t) are distributions with
finite support. Here the geodesic ϕ(t) may exist only in some
suitable Sobolev completion of the diffeomorphism group. By the
general theory, the momentum Ad(ϕ(t))∗p(t) = ϕ(t)∗p(t) = p(0)
is constant. In other words,

p(t) = (ϕ(t)−1)∗p(0) = ϕ(t)∗p(0),

i.e., the momentum is carried forward by the flow and remains in
the space of distributions with finite support. The infinitesimal
version (take ∂t of the last expression) is

pt(t) = −Lu(t)p(t) = − adu(t)
∗ p(t).



The space of N-solitons of order 0 consists of momenta of the
form py ,a =

∑N
i=1 aiδyi with (y , a) ∈ R2N . Consider an initial

soliton p0 = Ǧ (u0) = −u′′0 =
∑N

i=1 ai δyi with y1 < y2 < · · · < yN .
Let H be the Heaviside function

H(x) =


0, x < 0,
1
2 , x = 0,

1, x > 0,

and D(x) = 0 for x ≤ 0 and D(x) = x for x > 0. We will see later
why the choice H(0) = 1

2 is the most natural one; note that the
behavior is called the Gibbs phenomenon. With these functions we
can write

u′′
0 (x) = −

N∑
i=1

aiδyi (x)

u′
0(x) = −

N∑
i=1

aiH(x − yi )

u0(x) = −
N∑
i=1

aiD(x − yi ).



We will assume henceforth that
∑N

i=1 ai = 0. Then u0(x) is
constant for x > yN and thus u0 ∈ H1

1 (R); with a slight abuse of
notation we assume that H1

1 (R) is defined similarly to H∞1 (R).
Defining Si =

∑i
j=1 aj we can write

u′0(x) = −
N∑
i=1

Si (H(x − yi )− H(x − yi+1)) .

This formula will be useful because
supp(H(.− yi )− H(.− yi+1)) = [yi , yi+1].
The evolution of the geodesic u(t) with initial value u(0) = u0 can
be described by a system of ordinary differential equations (ODEs)
for the variables (y , a).
Theorem The map (y , a) 7→

∑N
i=1 aiδyi is a Poisson map between

the canonical symplectic structure on R2N and the Lie–Poisson
structure on the dual T ∗Id DiffA(R) of the Lie algebra.



In particular, this means that the ODEs for (y , a) are Hamilton’s
equations for the pullback Hamiltonian

E (y , a) =
1

2
GId(u(y ,a), u(y ,a)),

with u(y ,a) = Ǧ−1(
∑N

i=1 aiδyi ) = −
∑N

i=1 aiD(.− yi ). We can
obtain the more explicit expression

E (y , a) =
1

2

∫
R

(
u(y ,a)(x)′

)2
dx =

1

2

∫
R

(
N∑
i=1

Si1[yi ,yi+1]

)2

dx

=
1

2

N∑
i=1

S2
i (yi+1 − yi ).

Hamilton’s equations ẏi = ∂E/∂ai , ȧi = −∂E/∂yi are in this case

ẏi (t) =
N−1∑
j=i

Si (t)(yi+1(t)− yi (t)),

ȧi (t) =
1

2

(
Si (t)2 − Si−1(t)2

)
.



Using the R-map we can find explicit solutions for these equations
as follows. Let us write ai (0) = ai and yi (0) = yi . The geodesic
with initial velocity u0 is given by

ϕ(t, x) = x +
1

4

∫ x

−∞
t2(u′0(y))2 + 4tu′0(y) dy

u(t, x) = u0(ϕ−1(t, x)) +
t

2

∫ ϕ−1(t,x)

−∞
u′0(y)2 dy .

First note that

ϕ′(t, x) =
(

1 +
t

2
u′0(x)

)2

u′(t, z) =
u′0
(
ϕ−1(t, z)

)
1 + t

2 u′0 (ϕ−1(t, z))
.



Using the identity H(ϕ−1(t, z)− yi ) = H(z − ϕ(t, yi )) we obtain

u′0
(
ϕ−1(t, z)

)
= −

N∑
i=1

aiH (z − ϕ(t, yi )) ,

and thus (
u′0
(
ϕ−1(t, z)

))′
= −

N∑
i=1

aiδϕ(t,yi )(z).

Combining these we obtain

u′′(t, z) =
1(

1 + t
2 u′0 (ϕ−1(t, z))

)2

(
−

N∑
i=1

aiδϕ(t,yi )(z)

)

=
N∑
i=1

−ai(
1 + t

2 u′0(yi )
)2
δϕ(t,yi )(z).

From here we can read off the solution of Hamilton’s equations

yi (t) = ϕ(t, yi )

ai (t) = −ai
(
1 + t

2 u′0(yi )
)−2

.



When trying to evaluate u′0(yi ),

u′0(yi ) = aiH(0)− Si ,

we see that u′0 is discontinuous at yi and it is here that we seem to
have the freedom to choose the value H(0). However, it turns out
that we observe the Gibbs phenomenon, i.e., only the choice
H(0) = 1

2 leads to solutions of Hamilton’s equations. Also, the
regularized theory of multiplications of distributions (Colombeau,
Kunzinger et.al.) leads to this choice. Thus we obtain

yi (t) = yi +
i−1∑
j=1

(
t2

4
S2
j − tSj

)
(yj+1 − yj)

ai (t) =
−ai(

1 + t
2

(
ai
2 − Si

))2
= −

(
Si

1− t
2 Si
− Si−1

1− t
2 Si−1

)
.

It can be checked by direct computation that these functions
indeed solve Hamilton’s equations.



Sobolev Metrics on Diffeomorphism Groups, and the
Derived Geometry of Shape Spaces

Based on:

[Mario Micheli, Peter W. Michor, David Mumford: Sectional curvature in

terms of the cometric, with applications to the Riemannian manifolds of

landmarks. SIAM J. Imaging Sci. 5, 1 (2012), 394-433.]

and

[Mario Micheli, Peter W. Michor, David Mumford: Sobolev Metrics on

Diffeomorphism Groups and the Derived Geometry of Spaces of

Submanifolds. Izvestiya: Mathematics 77:3 (2013), 541-570. ]



Riem. Metric on DiffA(Rn)

GL
ϕ(X ◦ ϕ,Y ◦ ϕ) = GL

Id(X ,Y ) =

∫
Rn

〈LX ,Y 〉 dx

=

∫
Rn×Rn

L(x , y)X (x)Y (y) dx dy , where

L = (1− A∆)l , L(x , y) =
1

(2π)n

∫
ξ∈Rn

e i〈ξ,x−y〉(1 + A|ξ|2)ldξ

L−1α = Kα =

∫
Rn

K (x − y)α(y) dy where

K (x − y) = Kl(x − y) =
1

(2π)n

∫
ξ∈Rn

e i〈ξ,x−y〉

(1 + A|ξ|2)l
dξ

where Kl is a classical Bessel function of differentiability class C 2l .



Landmark space as homogeneus space of solitons

A landmark q = (q1, . . . , qN) is an N-tuple of distinct points in
Rn; so LandN ⊂ (Rn)N is open. Let q0 = (q0

1 , . . . , q
0
N) be a fixed

standard template landmark. Then we have the the surjective
mapping

evq0 : Diff(Rn)→ LandN ,

ϕ 7→ evq0(ϕ) = ϕ(q0) = (ϕ(q0
1), . . . , ϕ(q0

N)).

The fiber of evq0 over a landmark q = ϕ0(q0) is

{ϕ ∈ Diff(Rn) : ϕ(q0) = q}
= ϕ0 ◦ {ϕ ∈ Diff(Rn) : ϕ(q0) = q0}
= {ϕ ∈ Diff(Rn) : ϕ(q) = q} ◦ ϕ0;

The tangent space to the fiber is

{X ◦ ϕ0 : X ∈ XS(Rn),X (qi ) = 0 for all i}.



A tangent vector Y ◦ ϕ0 ∈ Tϕ0 DiffS(Rn) is GL
ϕ0

-perpendicular to
the fiber over q if∫

Rn

〈LY ,X 〉 dx = 0 ∀X with X (q) = 0.

If we require Y to be smooth then Y = 0. So we assume that
LY =

∑
i Pi .δqi , a distributional vector field with support in q.

Here Pi ∈ TqiRn. But then

Y (x) = L−1
(∑

i

Pi .δqi

)
=

∫
Rn

K (x − y)
∑
i

Pi .δqi (y) dy

=
∑
i

K (x − qi ).Pi

Tϕ0(evq0).(Y ◦ ϕ0) = Y (qk)k =
∑
i

(K (qk − qi ).Pi )k



Now let us consider a tangent vector P = (Pk) ∈ Tq LandN . Its
horizontal lift with footpoint ϕ0 is Phor ◦ ϕ0 where the vector field
Phor on Rn is given as follows: Let K−1(q)ki be the inverse of the
(N × N)-matrix K (q)ij = K (qi − qj). Then

Phor(x) =
∑
i ,j

K (x − qi )K−1(q)ijPj

L(Phor(x)) =
∑
i ,j

δ(x − qi )K−1(q)ijPj

Note that Phor is a vector field of class H2l−1.



The Riemannian metric on LandN induced by the gL-metric on
DiffS(Rn) is

gL
q (P,Q) = GL

ϕ0
(Phor,Qhor)

=

∫
Rn

〈L(Phor),Qhor〉 dx

=

∫
Rn

〈∑
i ,j

δ(x − qi )K−1(q)ijPj ,

∑
k,l

K (x − qk)K−1(q)klQl

〉
dx

=
∑
i ,j ,k,l

K−1(q)ijK (qi − qk)K−1(q)kl〈Pj ,Ql〉

gL
q (P,Q) =

∑
k,l

K−1(q)kl〈Pk ,Ql〉. (1)



The geodesic equation in vector form is:

q̈n =

− 1

2

∑
k,i ,j ,l

K−1(q)ki grad K (qi − qj)(K (q)in − K (q)jn)

K−1(q)jl〈q̇k , q̇l〉

+
∑
k,i

K−1(q)ki

〈
grad K (qi − qn), q̇i − q̇n

〉
q̇k



The geodesic equation on T ∗LandN(Rn)

.
The cotangent bundle
T ∗LandN(Rn) = LandN(Rn)× ((Rn)N)∗ 3 (q, α). We shall treat
Rn like scalars; 〈 , 〉 is always the standard inner product on Rn.
The metric looks like

(gL)−1
q (α, β) =

∑
i ,j

K (q)ij〈αi , βj〉,

K (q)ij = K (qi − qj).



The energy function

E (q, α) = 1
2 (gL)−1

q (α, α) = 1
2

∑
i ,j

K (q)ij〈αi , αj〉

and its Hamiltonian vector field (using Rn-valued derivatives to
save notation)

HE (q, α) =
N∑

i ,k=1

(
K (qk − qi )αi

∂

∂qk

+ grad K (qi − qk)〈αi , αk〉
∂

∂αk

)
.

So the geodesic equation is the flow of this vector field:

q̇k =
∑
i

K (qi − qk)αi

α̇k = −
∑
i

grad K (qi − qk)〈αi , αk〉



A covariant formula for curvature and its relations to
O’Neill’s curvature formulas.

Mario Micheli in his 2008 thesis derived the the coordinate version
of the following formula for the sectional curvature expression,
which is valid for closed 1-forms α, β on a Riemannian manifold
(M, g), where we view g : TM → T ∗M and so g−1 is the dual
inner product on T ∗M. Here α] = g−1(α).

g
(
R(α], β])α], β]

)
=

− 1
2α

]α](‖β‖2
g−1)− 1

2β
]β](‖α‖2

g−1) + 1
2 (α]β] + β]α])g−1(α, β)(

last line = −α]β([α], β]]) + β]α([α], β]]])
)

− 1
4‖d(g−1(α, β))‖2

g−1 + 1
4 g−1

(
d(‖α‖2

g−1), d(‖β‖2
g−1)

)
+ 3

4

∥∥[α], β]]
∥∥2

g



Mario’s formula in coordinates

Assume that α = αidx i , β = βidx i where the coefficients αi , βi are
constants, hence α, β are closed.
Then α] = g ijαi∂j , β

] = g ijβi∂j and we have:

4g
(
R(α], β])β], α]

)
= (αiβk − αkβi ) · (αjβl − αlβj)·

·
(

2g is(g jtgkl
,t ),s − 1

2 g ij
,sg stgkl

,t − 3g isgkp
,s gpqg jtg lq

,t

)



Covariant curvature and O’Neill’s formula, finite dim.

Let p : (E , gE )→ (B, gB) be a Riemannian submersion:
For b ∈ B and x ∈ Eb := p−1(b) the gE -orthogonal splitting

TxE = Tx(Ep(x))⊕ Tx(Ep(x))⊥,gE =: Tx(Ep(x))⊕ Horx(p).

Txp : (Horx(p), gE )→ (TbB, gB)

is an isometry. A vector field X ∈ X(E ) is decomposed as
X = X hor + X ver into horizontal and vertical parts. Each vector
field ξ ∈ X(B) can be uniquely lifted to a smooth horizontal field
ξhor ∈ Γ(Hor(p)) ⊂ X(E ).



Semilocal version of Mario’s formula, force, and stress

Let (M, g) be a robust Riemannian manifold, x ∈ M,
α, β ∈ gx(TxM). Assume we are given local smooth vector fields
Xα and Xβ such that:

1. Xα(x) = α](x), Xβ(x) = β](x),

2. Then α] − Xα is zero at x hence has a well defined derivative
Dx(α] − Xα) lying in Hom(TxM,TxM). For a vector field Y
we have Dx(α]−Xα).Yx = [Y , α]−Xα](x) = LY (α]−Xα)|x .
The same holds for β.

3. LXα(α) = LXα(β) = LXβ (α) = LXβ (β) = 0,

4. [Xα,Xβ] = 0.

Locally constant 1-forms and vector fields will do. We then define:

F(α, β) : = 1
2 d(g−1(α, β)), a 1-form on M called the force,

D(α, β)(x) : = Dx(β] − Xβ).α](x)

= d(β] − Xβ).α](x), ∈ TxM called the stress.

=⇒ D(α, β)(x)−D(β, α)(x) = [α], β]](x)



Then in the notation above:

g
(
R(α], β])β], α]

)
(x) = R11 + R12 + R2 + R3

R11 = 1
2

(
L2
Xα(g−1)(β, β)− 2LXαLXβ (g−1)(α, β)

+ L2
Xβ

(g−1)(α, α)
)

(x)

R12 = 〈F(α, α),D(β, β)〉+ 〈F(β, β),D(α, α)〉
− 〈F(α, β),D(α, β) +D(β, α)〉

R2 =
(
‖F(α, β)‖2

g−1 −
〈
F(α, α)),F(β, β)

〉
g−1

)
(x)

R3 = −3
4‖D(α, β)−D(β, α)‖2

gx



Stress and Force on Landmark space

α]k =
∑
i

K (qk − qi )αi , α] =
∑
i ,k

K (qk − qi )〈αi ,
∂
∂qk
〉

D(α, β) : =
∑
i ,j

dK (qi − qj)(α]i − α
]
j )
〈
βj ,

∂

∂qi

〉
, the stress.

D(α, β)−D(β, α) = (Dα]β
])− Dβ]α

] = [α], β]], Lie bracket.

Fi (α, β) =
1

2

∑
k

grad K (qi − qk)(〈αi , βk〉+ 〈βi , αk〉)

F(α, β) : =
∑
i

〈Fi (α, β), dqi 〉 =
1

2
d g−1(α, β) the force.

The geodesic equation on T ∗ LandN(Rn) then becomes

q̇ = α]

α̇ = −F(α, α)



Curvature via the cotangent bundle

From the semilocal version of Mario’s formula for the sectional
curvature expression for constant 1-forms α, β on landmark space,
where α]k =

∑
i K (qk − qi )αi , we get directly:

gL
(
R(α], β])α], β]

)
=

=
〈
D(α, β) +D(β, α),F(α, β)

〉
−
〈
D(α, α),F(β, β)

〉
−
〈
D(β, β),F(α, α)

〉
− 1

2

∑
i ,j

(
d2K (qi − qj)(β]i − β

]
j , β

]
i − β

]
j )〈αi , αj〉

− 2d2K (qi − qj)(β]i − β
]
j , α

]
i − α

]
j )〈βi , αj〉

+ d2K (qi − qj)(α]i − α
]
j , α

]
i − α

]
j )〈βi , βj〉

)
− ‖F(α, β)‖2

g−1 + g−1
(
F(α, α),F(β, β)

)
.

+ 3
4‖[α

], β]]‖2
g



Bundle of embeddings over the differentiable Chow variety.

Let M be a compact connected manifold with dim(M) < dim(N).
The smooth manifold Emb(M,N) of all embeddings M → N is the
total space of a smooth principal bundle with structure group
Diff(M) acting freely by composition from the right hand side.

The quotient manifold B(M,N) can be viewed as the space of all
submanifolds of N of diffeomorphism type M; we call it the
differentiable Chow manifold or the non-linear Grassmannian.

B(M,N) is a smooth manifold with charts centered at
F ∈ B(M,N) diffeomorphic to open subsets of the Frechet space
of sections of the normal bundle TF⊥,g ⊂ TN|F .

Let ` : DiffS(N)× B(M,N)→ B(M,N) be the smooth left action.
In the following we will consider just one open DiffS(N)-orbit
`(DiffS(N),F0) in B(M,N).



The induced Riemannian cometric on T ∗B(M ,N)

We follow the procedure used for DiffS(N). For any F ⊂ N, we
decompose H into:

Hvert
F = j−1

2

(
{X ∈ ΓC2

b
(TN) : X (x) ∈ TxF , for all x ∈ F}

)
Hhor

F = perpendicular complement of Hvert
F

It is then easy to check that we get the diagram:

ΓS(TN) �
� j1 //

res
����

H �
� j2 //

����

ΓC2
b
(TN)

res
����

ΓS(Nor(F )) �
� j f1 // Hhor

F
� � j f2 // ΓC2

b
(Nor(F )).

Here Nor(F ) = TN|F/TF .



As this is an orthogonal decomposition, L and K take Hvert
F and

Hhor
F into their own duals and, as before we get:

ΓS(Nor(F ))� _

j1
��

ΓS′(Nor∗(F ))

Hhor
F� _

j2
��

LF // (Hhor
F )′
?�

j ′1

OO

KF

oo

ΓC2
b
(Nor(F )) ΓM2(Nor∗(F ))

?�

j ′2

OO

KF is just the restriction of K to this subspace of H′ and is given
by the kernel:

KF (x1, x2) := image of K (x1, x2) ∈ Norx1(F )⊗Norx2(F )), x1, x2 ∈ F .

This is a C 2 section over F × F of pr∗1 Nor(F )⊗ pr∗2 Nor(F ).



We can identify Hhor
F as the closure of the image under KF of

measure valued 1-forms supported by F and with values in
Nor∗(F ). A dense set of elements in Hhor

F is given by either taking
the 1-forms with finite support or taking smooth 1-forms. In the
smooth case, fix a volume form κ on M and a smooth covector
ξ ∈ ΓS(Nor∗(F )). Then ξ.κ defines a horizontal vector field h like
this:

h(x1) =

∫
x2∈F

∣∣KF (x1, x2)
∣∣ξ(x2).κ(x2)

〉
The horizontal lift hhor of any h ∈ TFB(M,N) is then:

hhor(y1) = K (LFh)(y1) =

∫
x2∈F

∣∣K (y1, x2)
∣∣LFh(x2)

〉
, y1 ∈ N.

Note that all elements of the cotangent space α ∈ ΓS′(Nor∗(F ))
can be pushed up to N by (jF )∗, where jF : F ↪→ N is the
inclusion, and this identifies (jF )∗α with a 1-co-current on N.



Finally the induced homogeneous weak Riemannian metric on
B(M,N) is given like this:

〈h, k〉F =

∫
N

(hhor(y1), L(khor)(y1)) =

∫
y1∈N

(K (LFh))(y1), (LFk)(y1))

=

∫
(y1,y2)∈N×N

(K (y1, y2), (LFh)(y1)⊗ (LFk)(y2))

=

∫
(x1,x1)∈F×F

〈
LFh(x1)

∣∣KF (x1, x2)
∣∣LFh(x2)

〉
With this metric, the projection from DiffS(N) to B(M,N) is a
submersion.



The inverse co-metric on the smooth cotangent bundle⊔
F∈B(M,N) Γ(Nor∗(F )⊗ vol(F )) ⊂ T ∗B(M,N) is much simpler

and easier to handle:

〈α, β〉F =

∫∫
F×F

〈
α(x1)

∣∣KF (x1, x2)
∣∣β(x1)

〉
.

It is simply the restriction to the co-metric on the Hilbert
sub-bundle of T ∗DiffS(N) defined by H′ to the Hilbert sub-bundle
of subspace T ∗B(M,N) defined by H′F .



Because they are related by a submersion, the geodesics on
B(M,N) are the horizontal geodesics on DiffS(N). We have two
variables: a family {Ft} of submanifolds in B(M,N) and a time
varying momentum α(t, ·) ∈ Nor∗(Ft)⊗ vol(Ft) which lifts to the
horizontal 1-co-current (jFt )∗(α(t, ·) on N. Then the horizontal
geodesic on DiffS(N) is given by the same equations as before:

∂t(Ft) = resNor(Ft)(u(t, ·))

u(t, x) =

∫
(Ft)y

∣∣K (x , y)
∣∣α(t, y)

〉
∈ XS(N)

∂t ((jFt )∗(α(t, ·)) = −Lu(t,·)((jFt )∗(α(t, ·)).

This is a complete description for geodesics on B(M,N) but it is
not very clear how to compute the Lie derivative of (jFt )∗(α(t, ·).
One can unwind this Lie derivative via a torsion-free connection,
but we turn to a different approach which will be essential for
working out the curvature of B(M,N).



Auxiliary tensors on B(M ,N)

For X ∈ XS(N) let BX be the infinitesimal action on B(M,N)
given by BX (F ) = TId(`F )X with its flow FlBX

t (F ) = FlXt (F ). We
have [BX ,BY ] = B[X ,Y ].
{BX (F ) : X ∈ XS(N)} equals the tangent space TFB(M,N).

Note that B(M,N) is naturally submanifold of the vector space of
m-currents on N:

B(M,N) ↪→ ΓS′(ΛmT ∗N), via F 7→
(
ω 7→

∫
F
ω

)
.

Any α ∈ Ωm(N) is a linear coordinate on ΓS′(TN) and this restricts
to the function Bα ∈ C∞(B(M,N),R) given by Bα(F ) =

∫
F α.

If α = dβ for β ∈ Ωm−1(N) then

Bα(F ) = Bdβ(F ) =

∫
F

j∗Fdβ =

∫
F

dj∗Fβ = 0

by Stokes’ theorem.



For α ∈ Ωm(N) and X ∈ XS(N) we can evaluate the vector field
BX on the function Bα:

BX (Bα)(F ) = dBα(BX )(F ) = ∂t |0Bα(FlXt (F ))

=

∫
F

j∗FLXα = BLX (α)(F )

as well as =

∫
F

j∗F (iXdα + diXα) =

∫
F

j∗F iXdα = BiX (dα)(F )

If X ∈ XS(N) is tangent to F along F then
BX (Bα)(F ) =

∫
F LX |F j∗Fα = 0.

More generally, a pm-form α on Nk defines a function B
(p)
α on

B(M,N) by B
(p)
α (F ) =

∫
F p α.



For α ∈ Ωm+k(N) we denote by Bα the k-form in Ωk(B(M,N))
given by the skew-symmetric multi-linear form:

(Bα)F (BX1(F ), . . . ,BXk
(F )) =

∫
F

jF
∗(iX1∧···∧Xk

α).

This is well defined: If one of the Xi is tangential to F at a point
x ∈ F then jF

∗ pulls back the resulting m-form to 0 at x .

Note that any smooth cotangent vector a to F ∈ B(M,N) is equal
to Bα(F ) for some closed (m + 1)-form α. Smooth cotangent
vectors at F are elements of ΓS(F ,Nor∗(F )⊗ ΛmT ∗(F )).



Likewise, a 2m + k form α ∈ Ω2m+k(N2) defines a k-form on
B(M,N) as follows: First, for X ∈ XS(N) let X (2) ∈ X(N2) be
given by

X
(2)
(n1,n2) := (Xn1 × 0n2) + (0n1 × Xn2)

Then we put

(B(2)
α )F (BX1(F ), . . . ,BXk

(F )) =

∫
F 2

jF 2
∗(i

X
(2)
1 ∧···∧X

(2)
k

α).

This is just B applied to the submanifold F 2 ⊂ N2 and to the
special vector fields X (2).
Using this for p = 2, we find that for any two m-forms α, β on N,
the inner product of Bα and Bβ is given by:

g−1
B (Bα,Bβ) = B

(2)
〈α|K |β〉.

We have

iBX
Bα = BiXα

dBα = Bdα for any α ∈ Ωm+k(N)

LBX
Bα = BLXα



Force and Stress

Moving to curvature, fix F . Then we claim that for any two
smooth co-vectors a, b at F , we can construct not only two closed
(m + 1)-forms α, β on N as above but also two commuting vector
fields Xα,Xβ on N in a neighborhood of F such that:

1. Bα(F ) = a and Bβ(F ) = b,

2. BXα(F ) = a] and BXβ (F ) = b]

3. LXα(α) = LXα(β) = LXβ (α) = LXβ (β) = 0

4. [Xα,Xβ] = 0

The force is

2F(α, β) = d(〈Bα,Bβ〉) = d
(

B
(2)
〈α|K |β〉

)
= B

(2)
d(〈α|K |β〉).

The stress D = DN on N can be computed as:

D(α, β,F )(x) =
(
restr. to Nor(F )

)(
−
∫
y∈F

∣∣∣L
X

(2)
α

(x , y)K (x , y)
∣∣∣β(y)

〉)
.



The curvature

Finally, the semilocal Mario formula and some computations lead
to:

〈RB(M,N)(B]
α,B

]
β)B]

β,B
]
α〉(F ) = R11 + R12 + R2 + R3

R11 = 1
2

∫∫
F×F

(〈
β
∣∣L

X
(2)
α
L
X

(2)
α

K
∣∣β〉+

〈
α
∣∣L

X
(2)
β

L
X

(2)
β

K
∣∣α〉

− 2
〈
α
∣∣L

X
(2)
α
L
X

(2)
β

K
∣∣β〉)

R12 =

∫
F

(
〈D(α, α,F ),F(β, β,F )〉+ 〈D(β, β,F ),F(α, α,F )〉

− 〈D(α, β,F ) +D(β, α,F ),F(α, β,F )〉
)

R2 = ‖F(α, β,F )‖2
KF
−
〈
F(α, α,F )),F(β, β,F )

〉
KF

R3 = −3
4‖D(α, β,F )−D(β, α,F )‖2

LF



Thank you for listening


