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Mainly Banach manifolds; they are not enough.

In these lectures I will try to give an overview on infinite
dimensional manifolds with special emphasis on: Lie groups of
diffeomorphisms, manifolds of mappings, shape spaces, the
manifold of all Riemannian metrics on a manifold, and Riemannian
differential geometry on all these.



Infinite-dimensional manifolds

A smooth manifold modelled on the topologival vector space E is a
Hausdorff topological space M together with a family of charts
(uα,Uα)α∈A, such that

1. Uα ⊆ M are open sets,
⋃
α∈A Uα = M;

2. uα : Uα → uα(Uα) ⊆ E are homeomorphisms onto open sets
uα(Uα);

3. uβ ◦ u−1
α : uα(Uα ∩ Uβ)→ uβ(Uα ∩ Uβ) are C∞-smooth.

In this definition it does not matter, whether E is finite or
infinite-dimensional. In fact, if E is finite-dimensional, then
E = Rn for some n ∈ N and we recover the definition of a
finite-dimensional manifold.



Choice of a modelling space

There are many classes of infinite-dimensional locally convex vector
spaces E to choose from. With increasing generality, E can be a

1. Hilbert space;

2. Banach space;

3. Fréchet space;

4. convenient locally convex vector space.

We will assume basic familiarity with Hilbert and Banach spaces.
All topological vector spaces are assumed to be Hausdorff. A
Fréchet space is a locally convex topological vector space X , whose
topology can be induced by a complete, translation-invariant
metric, i.e. a metric d : X × X → R such that
d(x + h, y + h) = d(x , y). Alternatively a Fréchet space can be
characterized as a Hausdorff topological space, whose topology
may be induced by a countable family of seminorms ‖ · ‖n, i.e.,
finite intersections of the sets {y : ‖x − y‖n < ε} with some x , n,
ε form a basis of the topology, and the topology is complete with
respect to this family.



The Hilbert sphere

Let E be a Hilbert space. Then

S = {x ∈ E : ‖x‖ = 1}

is a smooth manifold. We can construct charts on S in the
following way: For x0 ∈ S , define the subspace
Ex0{x0}⊥ = {y ∈ E : 〈y , x0〉 = 0} isomorphic to E . Charts :

ux0 : x 7→ x − 〈x , x0〉x0 , u−1
x0

: y 7→ y +
√

1− ‖y‖2 x0 .

Ux0 = {x ∈ S : 〈x , x0〉 > 0} → ux0(Ux0) = {y ∈ Ex0 : ‖y‖ < 1} .

If E is infinite-dimensional, then the sphere is not compact.



The sphere is smoothly contractible, by the following argument
[Ramadas 1982]: We consider the homotopy A : `2 × [0, 1]→ `2

through isometries which is given by A0 = Id and by

At(a0, a1, a2, . . .) = (a0, . . . , an−2, an−1 cos θn(t), an−1 sin θn(t),

an cos θn(t), an sin θn(t), an+1 cos θn(t), an+1 sin θn(t), . . .)

for 1
n+1 ≤ t ≤ 1

n , where θn(t) = ϕ(n((n + 1)t − 1))π2 for a fixed
smooth function ϕ : R→ R which is 0 on (−∞, 0], grows
monotonely to 1 in [0, 1], and equals 1 on [1,∞).
The mapping A is smooth since it maps smooth curves to smooth
curves (see later: convenient calculus). Then
A1/2(a0, a1, a2, . . .) = (a0, 0, a1, 0, a2, 0, . . .) is in `2

even, and on the
other hand A1(a0, a1, a2, . . .) = (0, a0, 0, a1, 0, a2, 0, . . .) is in `2

odd.
Now At |S for 0 ≤ t ≤ 1/2 is a smooth isotopy on S between the
identity and A1/2(S∞) ⊂ `2

even. The latter set is contractible in a
chart.



One may prove in a simpler way that S∞ is contractible with a real
analytic homotopy with one corner: roll all coordinates one step to
the right and then contract in the stereographic chart opposite to
(1, 0, . . . ). The method explained above has other uses like the
proof of the contractibility of the unitary group on Hilbert space.

Theorem (Eells, Elworthy)

Any (second countable) Hilbert manifold is smoothly diffeomorphic
to an open set in the modelling Hilbert space.



The manifold Imm(S1,Rd )

This is the space of smooth, periodic, immersed curves,

Imm(S1,Rd) = {c ∈ C∞(S1,Rd) : c ′(θ) 6= 0, ∀θ ∈ S1} .

The modelling space for the manifold is C∞(S1,Rd), the space of
smooth, periodic functions. When we talk about manifolds, we
have to specify, what topology we mean. On the space
C∞(S1,Rd) of smooth functions we consider the topology of
uniform convergence in all derivatives, i.e.,

fn → f ⇔ lim
n→∞

‖f (k)
n − f (k)‖∞ = 0 ∀k ∈ N ,

where ‖f ‖∞ = supθ∈S1 |f (θ)|. A basis of open sets is formed by
sets of the form

M(f , ε, k) =
{

g ∈ C∞(S1,Rd) : ‖g (k) − f (k)‖∞ < ε
}
,

with ε ∈ R>0 and k ∈ N .

I C∞(S1,Rd) is a reflexive, nuclear, separable Fréchet space.
I Imm(S1,Rd) is an open subset of C∞(S1,Rd).



The manifold ImmC n(S1,Rd )

Instead of smooth curves, we could consider curves belonging to
some other regularity class. Let n ≥ 1 and

ImmCn(S1,Rd) = {c ∈ Cn(S1,Rd) : c ′(θ) 6= 0, ∀θ ∈ S1} ,

be the space of Cn-immersions. Again we need a topology on the
space Cn(S1,Rd). In this case

‖f ‖n,∞ = sup
0≤k≤n

‖f (k)‖∞ ,

is a norm making (C∞(S1,Rd), ‖ · ‖n,∞) into a Banach space.

I For n ≥ 1, ImmCn(S1,Rd) is an open subset of Cn(S1,Rd).

Thus ImmCn(S1,Rd) is a Banach manifold modeled on the space
Cn(S1,Rd). There is a connection between the spaces of
Cn-immersions and the space of smooth immersions. As sets we
have

Imm(S1,Rd) =
⋂
n≥1

ImmCn(S1,Rd) .



However, more is true: we can consider the diagram

C∞(S1,Rd) ⊆ · · · ⊆ Cn(S1,Rd) ⊆ Cn−1(S1,Rd) ⊆ · · · ⊆ C 1(S1,Rd) ,

and in the category of topological vector spaces as well as in the
the category of locally convex vector spaces

C∞(S1,Rd) = lim←−
n→∞

Cn(S1,Rd)

is the projective limit of the spaces Cn(S1,Rd).



Calculus in Banach spaces

Having chosen a modeling space E , we look back at the definition
of a manifold and see that requires chart changes to be smooth
maps. To a considerable extent multivariable calculus generalizes
without problems from a finite-dimensional Euclidean space to
Banach spaces, but not beyond.
For example, if X , Y are Banach spaces and f : X → Y a
function, we can define the derivative Df (x) of f at x ∈ X to be
the linear map A ∈ L(X ,Y ), such that

lim
h→0

‖f (x + h)− f (x)− A.h‖Y
‖h‖X

= 0 .

I want to emphasize in particular two theorems, that are valid in
Banach spaces, but fail for Fréchet spaces: the existence theorem
for ODEs and the inverse function theorem.



First, the local existence theorem for ODEs with Lipschitz right
hand sides.

Theorem
Let X be a Banach space, U ⊆ X an open subset and
F : (a, b)× U → X a continuous function, that is Lipschitz
continuous in the second variable, i.e.,

‖F (t, x)− F (t, y)‖X ≤ C‖x − y‖X ,

for some C > 0 and all t ∈ (a, b), x , y ∈ U. Then, given
(t0, x0) ∈ (a, b)×U, there exists x : (t0− ε, t0 + ε)→ X , such that

∂tx(t) = F (t, x(t)) , x(t0) = x0 .

In fact more can be said: the solution is as regular as the right
hand side, if the right hand side depends smoothly on some
parameters, then so does the solution and one can estimate the
length of the interval of existence; one can also get by with less
regularity of F (t, x) in the t-variable.



For x ∈ X , let Br (x) = {y ∈ X : ‖y − x‖X < r} be the open
r -ball. The following is a version of the inverse function theorem.

Theorem
Let X , Y be Banach spaces, U ⊆ X open, f ∈ C 1(U,Y ) and
Df (x0) invertible for x0 ∈ U. Then there exists r > 0 such that
f (Br (x0)) is open in Y and f : Br (x0)→ f (Br (x0)) is a
C 1-diffeomorphism.

Both theorems are not valid in Fréchet spaces with easy
counterexamples. But even in Banach spaces two things are lost:
local compactness and uniqueness of the topology.

I Let X be a topological vector space. If X has an open set,
whose closure is compact, then X is finite-dimensional.

I Let X be a topological vector space. If dim X = n, then X is
homeomorphic to Rn.

I Let (X ,F) be a topological vector space. Then, up to
equivalence of norms, there is at most one norm ‖ · ‖ one can
place on X , such that (X , ‖ · ‖) is a Banach space whose
topology is at least as strong as F . So, there is at most one
topology stronger than F which is Banach.



Counterexamples in Fréchet spaces

For an example, that differential equations may not have solutions
in Fréchet spaces, consider C (R), the space of continuous
functions, with the compact open topology. A basis for the
compact open topology consists of sets

M(K ,V ) = {f ∈ C (R) : f (K ) ⊆ V } ,

where K ⊆ R is compact and V ⊆ R is open. The differential
equation

∂t f = f 2 , f (0, x) = x ,

has a smooth right hand side, but admits no solution in C (R): if
we look at the pointwise solution, we have

f (t, x) =
x

1− tx
,

provided tx < 1. Hence for no t 6= 0 do we obtain a function,
defined on all of R.



For an example, that the inverse function theorem fails for Fréchet
spaces, consider the map

F : C (R)→ C (R) , f 7→ ef ,

where C (R) carries the compact open topology. Its derivative is
DF (f ).h = ef .h, which is invertible everywhere. The image of F
consists of everywhere positive functions,

F (C (R)) = {f ∈ C (R) : f > 0} ,

but this set is not open in the compact open topology, because the
topology is not strong enough to control the behaviour towards
infinity.



Why Banach manifolds are not enough

Why are Banach or even Hilbert manifolds not enough? One of the
important objects is the diffeomorphism group

Diff(M) = {ϕ ∈ C∞(M,M) : ϕ bijective, ϕ−1 ∈ C∞(M,M)} ,

of a compact manifold. We will see later that Diff(M) is a smooth
Fréchet–Lie group. What about a Banach manifold version of the
diffeomorphism group? If n ≥ 1, then one can consider

DiffCn(M) = {ϕ ∈ Cn(M,M) : ϕ bijective, ϕ−1 ∈ Cn(M,M)} ,

the group of Cn-diffeomorphisms. The space DiffCn(M) is a
Banach manifold and a topological group, but not a Lie group.
What went wrong? The group operations are continuous, but not
differentiable.



Fix ϕ ∈ DiffCn(M) and consider the map

Lϕ : DiffCn(M)→ DiffCn(M) , ψ 7→ ϕ ◦ ψ ;

its derivative should be

TψLϕ.h = (Dϕ ◦ ψ).h ,

with TψLϕ denoting the derivative of the map Lψ and Dϕ denotes
the derivative of the diffeomorphism ϕ; the former is a map
between infinite-dimensional manifolds, while the latter maps M to
itself. To see this, consider a one-parameter variation ψ(t, x), such
that ψ(0, x) = ψ(x) and ∂tψ(t, x)|t=0 = h(x), and compute

∂tϕ(ψ(t, x))|t=0 = Dϕ(ψ(x)).h(x) .

We see that in general TψLϕ.h lies only in Cn−1. However, if
composition were to be a differentiable operator, TϕLψ would have
to map into Cn-functions.



There seems to be a trade off involved: we can consider smooth
functions, in which case the diffeomorphism group is a Lie group,
but can be modelled only on a Fréchet space; or we look at
functions with finite regularity, but then composition ceases to be
differentiable. This choice cannot be avoided.

Theorem (Omori, 1978)

If a connected Banach–Lie group G acts effectively, transitively
and smoothly on a compact manifold, then G must be a
finite-dimensional Lie group.

A smooth action of a Lie group G on an manifold M is a smooth
map G ×M → M, written as (g , x) 7→ g .x , satisfying the
identities e.x = x and g .(h.x) = (gh).x , for all g , h ∈ G and
x ∈ M with e ∈ G the identity element; i.e., a smooth group
homomorphism G → Diff(M). The action is called

I transitive, if for any two points x , y ∈ M there exists g ∈ G
with g .x = y ;

I effective, if g .x = h.x for all x ∈ M ⇒ g = h.

In other words, an effective action allows us to distinguish group
elements based on their action on the space.



Therefore Omori’s theorem requires us to make a choice: either
our diffeomorphism group is not a Banach manifold or it is not a
smoothly acting Lie group, i.e., the group operations or the action
on the manifold are not smooth. Choosing to work with the group
Diff(M) of smooth diffeomorphisms leads to the Fréchet manifold
setting, where Diff(M) is a Lie group; it is easier to do geometry,
since more operations are differentiable, but establishing analytic
results is more challenging. The other choice is a group like
DiffCn(M) of diffeomorphisms with finitely many derivatives. This
group is a Banach manifold and hence one has multiple tools
available to prove existence results; however, because DiffCn(M) is
not a Lie group, it is a less rich geometric setting. One can use the
intuition and the language of differential geometry, but not
necessarily its tools.



A short introduction to convenient
calculus in infinite dimensions.

Traditional differential calculus works well for finite dimensional
vector spaces and for Banach spaces.
Beyond Banach spaces, the main difficulty is that composition of
linear mappings stops to be jointly continuous at the level of
Banach spaces, for any compatible topology.
For more general locally convex spaces we sketch here the
convenient approach as explained in [Frölicher-Kriegl 1988] and
[Kriegl-M 1997].



The c∞-topology

Let E be a locally convex vector space. A curve c : R→ E is
called smooth or C∞ if all derivatives exist and are continuous. Let
C∞(R,E ) be the space of smooth curves. It can be shown that
the set C∞(R,E ) does not entirely depend on the locally convex
topology of E , only on its associated bornology (system of
bounded sets). The final topologies with respect to the following
sets of mappings into E coincide:

1. C∞(R,E ).

2. The set of all Lipschitz curves (so that

{ c(t)−c(s)
t−s : t 6= s, |t|, |s| ≤ C} is bounded in E , for each C ).

3. The set of injections EB → E where B runs through all
bounded absolutely convex subsets in E , and where EB is the
linear span of B equipped with the Minkowski functional
‖x‖B := inf{λ > 0 : x ∈ λB}.

4. The set of all Mackey-convergent sequences xn → x (there
exists a sequence 0 < λn ↗∞ with λn(xn − x) bounded).



The c∞-topology. II

This topology is called the c∞-topology on E and we write c∞E
for the resulting topological space.
In general (on the space D of test functions for example) it is finer
than the given locally convex topology, it is not a vector space
topology, since addition is no longer jointly continuous. Namely,
even c∞(D ×D) 6= c∞D × c∞D.
The finest among all locally convex topologies on E which are
coarser than c∞E is the bornologification of the given locally
convex topology. If E is a Fréchet space, then c∞E = E .



Convenient vector spaces

A locally convex vector space E is said to be a convenient vector
space if one of the following holds (called c∞-completeness):

1. For any c ∈ C∞(R,E ) the (Riemann-) integral
∫ 1

0 c(t)dt
exists in E .

2. Any Lipschitz curve in E is locally Riemann integrable.

3. A curve c : R→ E is C∞ if and only if λ ◦ c is C∞ for all
λ ∈ E ∗, where E ∗ is the dual of all cont. lin. funct. on E .

I Equiv., for all λ ∈ E ′, the dual of all bounded lin. functionals.
I Equiv., for all λ ∈ V, where V is a subset of E ′ which

recognizes bounded subsets in E .

We call this scalarwise C∞.

4. Any Mackey-Cauchy-sequence (i. e. tnm(xn − xm)→ 0 for
some tnm →∞ in R) converges in E . This is visibly a mild
completeness requirement.



Convenient vector spaces. II

5. If B is bounded closed absolutely convex, then EB is a Banach
space.

6. If f : R→ E is scalarwise Lipk , then f is Lipk , for k > 1.

7. If f : R→ E is scalarwise C∞ then f is differentiable at 0.

Here a mapping f : R→ E is called Lipk if all derivatives up to
order k exist and are Lipschitz, locally on R. That f is scalarwise
C∞ means λ ◦ f is C∞ for all continuous (equiv., bounded) linear
functionals on E .



Smooth mappings

Let E , and F be convenient vector spaces, and let U ⊂ E be
c∞-open. A mapping f : U → F is called smooth or C∞, if
f ◦ c ∈ C∞(R,F ) for all c ∈ C∞(R,U).
If E is a Fréchet space, then this notion coincides with all other
reasonable notions of C∞-mappings. Beyond Fréchet mappings, as
a rule, there are more smooth mappings in the convenient setting
than in other settings, e.g., C∞c .



Main properties of smooth calculus

1. For maps on Fréchet spaces this coincides with all other
reasonable definitions. On R2 this is non-trivial [Boman,1967].

2. Multilinear mappings are smooth iff they are bounded.

3. If E ⊇ U
f−−→ F is smooth then the derivative

df : U × E → F is smooth, and also df : U → L(E ,F ) is
smooth where L(E ,F ) denotes the space of all bounded linear
mappings with the topology of uniform convergence on
bounded subsets.

4. The chain rule holds.

5. The space C∞(U,F ) is again a convenient vector space where
the structure is given by the obvious injection

C∞(U,F )
C∞(c,`)−−−−−−→

∏
c∈C∞(R,U),`∈F∗

C∞(R,R), f 7→ (` ◦ f ◦ c)c,`,

where C∞(R,R) carries the topology of compact convergence
in each derivative separately.



Main properties of smooth calculus, II

6. The exponential law holds: For c∞-open V ⊂ F ,

C∞(U,C∞(V ,G )) ∼= C∞(U × V ,G )

is a linear diffeomorphism of convenient vector spaces.
Note that this is the main assumption of variational calculus.
Here it is a theorem.

7. A linear mapping f : E → C∞(V ,G ) is smooth (by (2)
equivalent to bounded) if and only if

E
f−−→ C∞(V ,G )

evv−−−→ G is smooth for each v ∈ V .

(Smooth uniform boundedness theorem,
see [Kriegl M 1997], theorem 5.26).



Main properties of smooth calculus, III

8. The following canonical mappings are smooth.

ev : C∞(E ,F )× E → F , ev(f , x) = f (x)

ins : E → C∞(F ,E × F ), ins(x)(y) = (x , y)

( )∧ : C∞(E ,C∞(F ,G ))→ C∞(E × F ,G )

( )∨ : C∞(E × F ,G )→ C∞(E ,C∞(F ,G ))

comp : C∞(F ,G )× C∞(E ,F )→ C∞(E ,G )

C∞( , ) : C∞(F ,F1)× C∞(E1,E )→
→ C∞(C∞(E ,F ),C∞(E1,F1))

(f , g) 7→ (h 7→ f ◦ h ◦ g)∏
:
∏

C∞(Ei ,Fi )→ C∞(
∏

Ei ,
∏

Fi )



This ends our review of the standard results of convenient calculus.
Convenient calculus (having properties 6 and 7) exists also for:

I Real analytic mappings [Kriegl,M,1990]

I Holomorphic mappings [Kriegl,Nel,1985] (notion of
[Fantappié, 1930-33])

I Many classes of Denjoy Carleman ultradifferentible functions,
both of Beurling type and of Roumieu-type
[Kriegl,M,Rainer, 2009, 2011, 2013]

I With some adaptations, Lipk [Frölicher-Kriegl, 1988].

I With more adaptations, even C k,α (k-th derivative
Hölder-contin. with index α) [Faure,Frölicher 1989], [Faure,
These Geneve, 1991]



Manifolds of mappings (with compact source) and
diffeomorphism groups as convenient manifolds.

Let M be a compact (for simplicity’s sake) fin. dim. manifold and
N a manifold. We use an auxiliary Riemann metric ḡ on N. Then

0N_�
��

zero section

{{
N� _
��

diagonal

%%
TN V N? _

open
oo (πN ,expḡ )

∼=
// V N×N � �

open
// N × N

C∞(M,N), the space of smooth mappings M → N, has the
following manifold structure. Chart, centered at f ∈ C∞(M,N), is:

C∞(M,N) ⊃ Uf = {g : (f , g)(M) ⊂ V N×N} uf−−−→ Ũf ⊂ Γ(f ∗TN)

uf (g) = (πN , expḡ )−1 ◦ (f , g), uf (g)(x) = (expḡf (x))−1(g(x))

(uf )−1(s) = expḡf ◦s, (uf )−1(s)(x) = expḡf (x)(s(x))



Manifolds of mappings II

Lemma: C∞(R, Γ(M; f ∗TN)) = Γ(R×M; pr2
∗ f ∗TN)

By Cartesian Closedness (after trivializing the bundle f ∗TN).
Lemma: Chart changes are smooth (C∞)
Ũf1 3 s 7→ (πN , expḡ ) ◦ s 7→ (πN , expḡ )−1 ◦ (f2, expḡ

f1
◦s)

since they map smooth curves to smooth curves.
Lemma: C∞(R,C∞(M,N)) ∼= C∞(R×M,N).
By the first lemma.
Lemma: Composition C∞(P,M)× C∞(M,N)→ C∞(P,N),
(f , g) 7→ g ◦ f , is smooth, since it maps smooth curves to smooth
curves
Corollary (of the chart structure):

TC∞(M,N) = C∞(M,TN)
C∞(M,πN)−−−−−−−−→ C∞(M,N).



Regular Lie groups

We consider a smooth Lie group G with Lie algebra g = TeG
modelled on convenient vector spaces. The notion of a regular Lie
group is originally due to Omori et al. for Fréchet Lie groups, was
weakened and made more transparent by Milnor, and then carried
over to convenient Lie groups; see [Kriegl, M 1997], 38.4.
A Lie group G is called regular if the following holds:

I For each smooth curve X ∈ C∞(R, g) there exists a curve
g ∈ C∞(R,G ) whose right logarithmic derivative is X , i.e.,{

g(0) = e

∂tg(t) = Te(µg(t))X (t) = X (t).g(t)

The curve g is uniquely determined by its initial value g(0), if
it exists.

I Put evolrG (X ) = g(1) where g is the unique solution required
above. Then evolrG : C∞(R, g)→ G is required to be C∞

also. We have EvolXt := g(t) = evolG (tX ).



Diffeomorphism group of compact M

Theorem: For each compact manifold M, the diffeomorphism
group is a regular Lie group.
Proof: Diff(M)

open−−−−→ C∞(M,M). Composition is smooth by

restriction. Inversion is smooth: If t 7→ f (t, ) is a smooth curve
in Diff(M), then f (t, )−1 satisfies the implicit equation
f (t, f (t, )−1(x)) = x , so by the finite dimensional implicit
function theorem, (t, x) 7→ f (t, )−1(x) is smooth. So inversion
maps smooth curves to smooth curves, and is smooth.
Let X (t, x) be a time dependent vector field on M (in
C∞(R,X(M))). Then Fl∂t×Xs (t, x) = (t + s,EvolX (t, x)) satisfies
the ODE ∂t Evol(t, x) = X (t,Evol(t, x)). If
X (s, t, x) ∈ C∞(R2,X(M)) is a smooth curve of smooth curves in
X(M), then obviously the solution of the ODE depends smoothly
also on the further variable s, thus evol maps smooth curves of
time dependant vector fields to smooth curves of
diffeomorphism.



The principal bundle of embeddings

For finite dimensional manifolds M, N with M compact,
Emb(M,N), the space of embeddings of M into N, is open in
C∞(M,N), so it is a smooth manifold. Diff(M) acts freely and
smoothly from the right on Emb(M,N).
Theorem: Emb(M,N)→ Emb(M,N)/Diff(M) is a principal fiber
bundle with structure group Diff(M).
Proof: Auxiliary Riem. metric ḡ on N. Given f ∈ Emb(M,N),
view f (M) as submanifold of N. TN|f (M) = Nor(f (M))⊕ Tf (M).

Nor(f (M)) :
expḡ

−−−−→∼= Wf (M)

pf (M)−−−−→ f (M) tubular nbhd of f (M).

If g : M → N is C 1-near to f , then
ϕ(g) := f −1 ◦ pf (M) ◦ g ∈ Diff(M) and
g ◦ ϕ(g)−1 ∈ Γ(f ∗Wf (M)) ⊂ Γ(f ∗Nor(f (M))).
This is the required local splitting. QED



The orbifold bundle of immersions

Imm(M,N), the space of immersions M → N, is open in
C∞(M,N), and is thus a smooth manifold. The regular Lie group
Diff(M) acts smoothly from the right, but no longer freely.
Theorem: [Cervera,Mascaro,M,1991] For an immersion
f : M → N, the isotropy group
Diff(M)f = {ϕ ∈ Diff(M) : f ◦ φ = f } is always a finite group,

acting freely on M; so M
p−−→ M/Diff(M)f is a convering of

manifold and f factors to f = f̄ ◦ p.
Thus Imm(M,N)→ Imm(M,N)/Diff (M) is a projection onto an
honest infinite dimensional orbifold.



Fractional order Sobolev spaces on Rn

‖f ‖2
Hs(Rn) = ‖F−1(1 + |ξ|2)

s
2F f ‖2

L2(Rn),

where F is the Fouriertransform given by:

F f (ξ) = (2π)−
n
2

∫
Rn

e−i〈x ,ξ〉f (x)dx .

Equivalent norm:

‖f ‖2
H

s
(Rn)

= ‖f ‖2
L2(Rn) + ‖|ξ|sF f ‖2

L2(Rn).

Sobolev space of fractional order:

Hs(Rn) = {f ∈ L2(Rn) : ‖f ‖Hs(Rn) <∞}.

Hs(Rn) = Bs
22(Rn) = F s

22(Rn) [Triebel: Theory of function spaces.]



Fractional order Sobolev spaces on M

Equip a finite dimensional smooth manifold M with a Riemannian
metric of bounded geometry, i.e.,
(I ) The injectivity radius of (M, g) is positive.
(B∞) Each iterated covariant derivative of the curvature is
uniformly g -bounded: ‖∇iR‖g < Ci for i = 0, 1, 2, . . . .

[R. E. Greene. Complete metrics of bounded curvature on non-compact manifolds. ]



If (M, g) satisfies (I ) and (B∞) then the following holds:

1. (M, g) is complete.

2. There exists ε0 > 0 such that for each ε ∈ (0, ε0) there is a
countable cover of M by geodesic balls Bε(xα) such that the
cover of M by the balls B2ε(xα) is still uniformly locally finite.

3. Moreover there exists a partition of unity 1 =
∑

α ρα on M
such that ρα ≥ 0, ρα ∈ C∞c (M), supp(ρα) ⊂ B2ε(xα), and

|Dβ
u ρα| < Cβ where u are normal (Riemann exponential)

coordinates in B2ε(xα).

4. In each B2ε(xα), in normal coordinates, we have |Dβ
u gij | < C ′β,

|Dβ
u g ij | < C ′′β , and |Dβ

u Γm
ij | < C ′′′β , where all constants are

independent of α.

[Kordjukov 1991, Shubin 1992, Eichhorn 1991]



I We can define the Hs -norm of a function f on M:

‖f ‖2
Hs(M,g) =

∞∑
α=0

‖(ραf ) ◦ expxα ‖
2
Hs(Rn)

=
∞∑
α=0

‖F−1(1 + |ξ|2)
s
2F((ραf ) ◦ expxα)‖2

L2(Rn).

[Triebel: Theory of function spaces.]

For s ∈ N, the Sobolev space Hs(M, g) consists of those functions
f such that (∇g )k f ∈ ΓL2,g (⊗kT ∗M) with respect to the metric g .
This can be extended to (non-natural) vector bundles over M
which need to carry a fiber metric of bounded geometry with
respect to g .

[ Eichhorn 1991]



Sobolev embedding lemma

Let (Mm, g) be a smooth finite dimensional manifold (with
bounded geometry) of dimension dim(M) = m.

Lemma
If q > m/2 + k , then Hq(Mm, g) ↪→ C k

0 (Mm), a bounded (even
compact) linear embedding.

In the above C k
0 (Rd) denotes the Banach space k-times

continuously differentiable functions, that together with their
derivatives vanish at infinity. When q > m/2, Sobolev spaces also
form an algebra.

Lemma
If q > m/2 and 0 ≤ r ≤ q. Then pointwise multiplication can be
extended to a bounded bilinear map

Hq(Mm, g)× H r (Mm, g)→ H r (Mm, g) , (f , g) 7→ f · g .



More on convenient calculus

[Frölicher-Kriegl 1988], theorem 4.1.19.

Theorem (FK88)

Let c : R→ E be a curve in a convenient vector space E . Let
V ⊂ E ′ be a subset of bounded linear functionals such that the
bornology of E has a basis of σ(E ,V)-closed sets. Then the
following are equivalent:

1. c is smooth

2. There exist locally bounded curves ck : R→ E such that ` ◦ c
is smooth R→ R with (` ◦ c)(k) = ` ◦ ck , for each ` ∈ V.

If E is reflexive, then for any point separating subset V ⊂ E ′ the
bornology of E has a basis of σ(E ,V)-closed subsets, by
[Frölicher-Kriegl 88], 4.1.23.



Theorem
If s > m/2 then the space C∞(R,Hs(Mm, g)) consists of all
mappings ĉ : R×M → R with the following property:

I For fixed x ∈ M the function t 7→ ĉ(t, x) ∈ R is smooth and
each derivative t 7→ ∂kt ĉ(t, ) is a locally bounded curve
R→ Hs(Mm, g)

In general, the space C∞(R,Hs(Mm, g)) consists of all sequences
of locally bounded mappings ĉk : R×M → R such that:

I For fixed f ∈ C∞c (M) (with compact support) each function
t 7→

∫
M f (x)ĉk(t, x) vol(g) ∈ R is smooth and

∂t
∫
M f (x)ĉk(t, x) vol(g) =

∫
M f (x)ĉk+1(t, x) vol(g).

Proof.
Let s > m/2. The space Hs(Mm, g) is reflexive and the point
evaluations f 7→ f (x) form a separating set V of linear functionals
in its dual, by the Sobolev embedding theorem. So the theorem
follows by [FK88]. Similarly for the general case, where the point
evaluations are no longer defined.



Manifolds of Sobolev mappings

Let (Mm, g) be a smooth manifold of bounded geometry, and N
be a finite dimensional manifold. Then the chart construction
given for C∞(M,N) also allows to state the following venerable
results [Eells,Palais, Marsden-Ebin], whose proofs are easy using
the characterization od smooth curves just given:

I If s > m/2 then the space Hs(M,N) of all Hs -mappings
M → N is a smooth manifold (with uncountably many
connected components if M is not compact), modeled on
spaces Hs(f TN) for suitable smooth f : M → N.

I If s > m/2 + 1 then the space ImmHs (M,N) of all
Hs -immersions is an open subset of Hs(M,N).

I If s > m/2 + 1 then the space EmbHs (M,N) of all
Hs -embeddings is an open subset of Hs(M,N).

I If s > m/2 + 1 then group DiffHs (M,M) is a smooth manifold
and a topological group with smooth right transations.



A Zoo of diffeomorphism groups on Rn

Theorem. The following groups of diffeomorphisms on Rn are
regular Lie groups:

I DiffB(Rn), the group of all diffeomorphisms which differ from
the identity by a function which is bounded together with all
derivatives separately.

I DiffH∞(Rn), the group of all diffeomorphisms which differ
from the identity by a function in the intersection H∞ of all
Sobolev spaces Hk for k ∈ N≥0.

I DiffS(Rn), the group of all diffeomorphisms which fall rapidly
to the identity.

I Diffc(Rn) of all diffeomorphisms which differ from the identity
only on a compact subset. (well known since 1980)

[M, Mumford,2013], partly [B.Walter,2012]; for Denjoy-Carleman
ultradifferentiable diffeomorphisms [Kriegl, M, Rainer 2014].
In particular, DiffH∞(Rn) is essential if one wants to prove that the
geodesic equation of a right Riemannian invariant metric is
well-posed with the use of Sobolov space techniques.



The proof needs:

Faá di Bruno formula.
Let g ∈ C∞(Rn,Rk) and let f ∈ C∞(Rk ,Rl). Then the p-th
deivative of f ◦ g looks as follows where symp denotes
symmetrization of a p-linear mapping:

dp(f ◦ g)(x)

p!
=

= symp

( p∑
j=1

∑
α∈Nj

>0
α1+···+αj=p

d j f (g(x))

j!

(dα1g(x)

α1!
, . . . ,

dαj g(x)

αj !

))

The one dimensional version is due to [Faá di Bruno 1855], the
only beatified mathematician.



Groups of smooth diffeomorphisms in the zoo

If we consider the group of all orientation preserving
diffeomorphisms Diff(Rn) of Rn, it is not an open subset of
C∞(Rn,Rn) with the compact C∞-topology. So it is not a smooth
manifold in the usual sense, but we may consider it as a Lie group
in the cartesian closed category of Frölicher spaces, see [Kriegl-M
1997], section 23, with the structure induced by the injection
f 7→ (f , f −1) ∈ C∞(Rn,Rn)× C∞(Rn,R).
We shall now describe regular Lie groups in Diff(Rn) which are
given by diffeomorphisms of the form f = IdR +g where g is in
some specific convenient vector spaces of bounded functions in
C∞(Rn,Rn). Now we discuss these spaces on Rn, we describe the
smooth curves in them, and we describe the corresponding groups.



The group DiffB(Rn) in the zoo

The space B(Rn) (called DL∞(Rn) by [L.Schwartz 1966]) consists
of all smooth functions which have all derivatives (separately)
bounded. It is a Fréchet space. By [Vogt 1983], the space B(Rn)
is linearly isomorphic to `∞⊗̂ s for any completed tensor-product
between the projective one and the injective one, where s is the
nuclear Fréchet space of rapidly decreasing real sequences. Thus
B(Rn) is not reflexive, not nuclear, not smoothly paracompact.
The space C∞(R,B(Rn)) of smooth curves in B(Rn) consists of
all functions c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ Nn
≥0 and each t ∈ R the expression

∂kt ∂
α
x c(t, x) is uniformly bounded in x ∈ Rn, locally in t.

To see this use thm FK for the set {evx : x ∈ R} of point

evaluations in B(Rn). Here ∂αx = ∂|α|

∂xα and ck(t) = ∂kt f (t, ).
Diff+

B (Rn) =
{

f = Id +g : g ∈ B(Rn)n, det(In + dg) ≥ ε > 0
}

denotes the corresponding group, see below.



The group DiffH∞(Rn) in the zoo

The space H∞(Rn) =
⋂

k≥1 Hk(Rn) is the intersection of all
Sobolev spaces which is a reflexive Fréchet space. It is called
DL2(Rn) in [L.Schwartz 1966]. By [Vogt 1983], the space H∞(Rn)
is linearly isomorphic to `2⊗̂ s. Thus it is not nuclear, not
Schwartz, not Montel, but still smoothly paracompact.
The space C∞(R,H∞(Rn)) of smooth curves in H∞(Rn) consists
of all functions c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ Nn
≥0 the expression ‖∂kt ∂αx f (t, )‖L2(Rn)

is locally bounded near each t ∈ R.

The proof is literally the same as for B(Rn), noting that the point
evaluations are continuous on each Sobolev space Hk with k > n

2 .
Diff+

H∞(R) =
{

f = Id +g : g ∈ H∞(R), det(In + dg) > 0
}

denotes
the correponding group.



The group DiffS(Rn) in the zoo

The algebra S(Rn) of rapidly decreasing functions is a reflexive
nuclear Fréchet space.
The space C∞(R,S(Rn)) of smooth curves in S(Rn) consists of
all functions c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ,m ∈ N≥0 and α ∈ Nn
≥0, the expression

(1 + |x |2)m∂kt ∂
α
x c(t, x) is uniformly bounded in x ∈ Rn,

locally uniformly bounded in t ∈ R.

Diff+
S (Rn) =

{
f = Id +g : g ∈ S(Rn)n, det(In + dg) > 0

}
is the

correponding group.



The group Diffc(Rn) in the zoo

The algebra C∞c (Rn) of all smooth functions with compact
support is a nuclear (LF)-space.
The space C∞(R,C∞c (Rn)) of smooth curves in C∞c (Rn) consists
of all functions f ∈ C∞(Rn+1,R) satisfying the following property:

• For each compact interval [a, b] in R there exists a compact
subset K ⊂ Rn such that f (t, x) = 0 for
(t, x) ∈ [a, b]× (Rn \ K ).

Diffc(Rn) =
{

f = Id +g :∈ C∞c (Rn)n, det(In + dg) > 0
}

is the
correponding group.



Ideal properties of function spaces in the zoo

The function spaces are boundedly mapped into each other as
follows:

C∞c (Rn) // S(Rn) // H∞(Rn) // B(Rn)

and each space is a bounded locally convex algebra and a bounded
B(Rn)-module. Thus each space is an ideal in each larger space.



Main theorem in the Zoo

Theorem. The sets of diffeomorphisms Diffc(Rn), DiffS(Rn),
DiffH∞(Rn), and DiffB(Rn) are all smooth regular Lie groups. We
have the following smooth injective group homomorphisms

Diffc(Rn) // DiffS(Rn) // DiffH∞(Rn) // DiffB(Rn) .

Each group is a normal subgroup in any other in which it is
contained, in particular in DiffB(Rn).
Corollary. DiffB(Rn) acts on Γc , ΓS and ΓH∞ of any tensorbundle
over Rn by pullback. The infinitesimal action of the Lie algebra
XB(Rn) on these spaces by the Lie derivative thus maps each of
these spaces into itself. A fortiori, DiffH∞(Rn) acts on ΓS of any
tensor bundle by pullback.



Strong and weak Riemannian manifolds

Let M be a manifold modeled on a convenient vector space E . A
weak Riemannian metric G is a smooth map

G : TM×M TM→ R ,

satisfying

I Gx(·, ·) is bilinear for all x ∈M;

I Gx(h, h) ≥ 0 for all h ∈ TxM with equality only for h = 0.

This implies that the associated map

Ǧ : TM→ T ∗M ,
〈
Ǧx(h), k

〉
= Gx(h, k) ,

is injective. In finite dimensions it would follow by counting
dimensions that Ǧ is bijective and hence an isomorphism. In
infinite dimensions this is not longer the case.



Example: Consider the space of smooth curves Imm(S1,Rd) with
the L2-metric

Gc(h, k) =

∫
S1

〈h(θ), k(θ)〉|c ′| dθ .

Then Ǧc(h) = h.|c ′| and the image of
Tc Imm(S1,Rd) = C∞(S1,Rd) under Ǧc is again C∞(S1,Rd),
while the dual space T ∗c Imm(S1,Rd) = D′(S1)d is the space of
Rd -valued distributions.



This means that in infinite dimensions we have to distinguish
between two different notions of Riemannian metrics. A strong
Riemannian metric is required to additionally satisfy

I The topology of the inner product space (TxM,Gx(·, ·))
coincides with the topology TxM inherits from the manifold
M.

A strong Riemannian metric implies that TxM and hence the
modelling space of M is a Hilbert space. See [Klingenberg 1995],
[Lang 1999].
Example: Let H be a Hilbert space. Then the Hilbert sphere

S = {x ∈ H : ‖x‖ = 1} ,

with the induced Riemannian metric Gx(h, k) = 〈h, k〉 for
h, k ∈ TxS = {h ∈ H : 〈h, x〉 = 0} is a strong Riemannian
manifold.



Why do we consider weak Riemannian manifolds? There are two
reasons:
(1) The only strong Riemannian manifolds are Hilbert manifolds;
when we want to work with the space of smooth functions, any
Riemannian metric on it will be a weak one.
(2) The other reason is that some Riemannian metrics, that are
important in applications (the L2-metric on the diffeomorphism
group for example) cannot be made into strong Riemannian
metrics.



Levi-Civita covariant derivative

After defining the Riemannian metric, one of the next objects to
consider is the covariant derivative. Let (M,G ) be a Riemannian
manifold, modelled on E and X ,Y ,Z vector fields on M. Assume
that M ⊆ E is open or that we are in a chart for M. Then the
Levi-Civita covariant derivative is given by

∇XY (x) = DY (x).X (x) + Γ(x)(X (x),Y (x)) ,

where Γ : M → L(E ,E ; E ) are the Christoffel symbols of G ,

2G (Γ(X ,Y ),Z ) = D·,XG·(Y ,Z ) + D·,Y G·(Z ,X )− D·,ZG·(X ,Y ) .

The important part to note is that in the definition of Γ one uses
the inverse of the metric. In fact we don’t need to be able to
always invert it, but we need to now that the right hand side of lies
in the image Ǧ (TM) of the tangent bundle under Ǧ . For strong
Riemannian metrics this is the case, but not necessarily for weak
ones.



Example. The L2-metric

Consider for example the space of C 1-curves

ImmC1(S1,Rd) = {c ∈ C 1(S1,Rd) : c ′(θ) 6= 0, ∀θ ∈ S1} ,

with the L2-metric

Gc(h, k) =

∫
S1

〈h(θ), k(θ)〉|c ′(θ)|dθ .

Then one can calculate that

Dc,lG·(h, k) =

∫
S1

〈h, k〉〈l ′, c ′〉 1

|c ′|
dθ ,

and we see that the right hand side, which is 2G (Γ(h, k), l) in this
notation, involves derivatives of l , while the left hand side does
not. While this is not a complete proof, it shows the idea, why the
L2-metric on the space of curves with a finite number of
derivatives does not have a covariant derivative.



The geodesic equation

The geodesic equation plays an important role in both shape
analysis and computational anatomy. Informally it describes
least-energy deformations of shapes or optimal paths of
transformations. From a mathematical point we can write it in a
coordinate-free way as

∇ċ ċ = 0 ,

and in charts it becomes

c̈ + Γ(c)(ċ, ċ) = 0 .

From this it seems clear that the geodesic equation needs the
covariant derivative or equivalently the Christoffel symbols to be
written down. A more concise way to say that a metric does not
have a covariant derivative would be to say that the geodesic
equation for the metric does not exist. Now, how can an equation
fail to exist? The geodesic equation corresponds to the
Euler–Lagrange equation of the energy function

E (c) =
1

2

∫ 1

0
Gc(ċ , ċ)dt ,

and a geodesic is a critical point of the energy functional,
restricted to paths with fixed endpoints. In a coordinate chart we
can differentiate the energy functional

Dc,hE =

∫ 1

0
Gc(ċ , ḣ) +

1

2
Dc,hG·(ċ , ċ) dt .

The steps until now can be done with any metric. What cannot
always be done is to isolate h in this expression to obtain
something of the form

∫ 1
0 Gc(. . . , h) dt, where the ellipsis would

contain the geodesic equation.



The geodesic distance

Let (M,G ) be a (weak) Riemannian manifold and assume M is
connected. For x , y ∈ M we can define the geodesic distance
between them as in finite dimensions,

dist(x , y) = inf
c(0)=x
c(1)=y

∫ 1

0

√
Gc(ċ , ċ) dt ,

where the infimum is taken over all smooth paths or equivalently
all piecewise C 1-paths. Then dist has the following properties:

I dist(x , y) ≥ 0 for x , y ∈ M;
I dist(x , y) = dist(y , x);
I dist(x , z) ≤ dist(x , y) + dist(y , z).

What is missing from the list of properties?
I dist(x , y) 6= 0 for x 6= y .

We call this last property point-separating Note that vanishing of
the geodesic distance does not mean that the metric itself is
degenerate. In fact, if x 6= y and c : [0, 1]→ M is a path with
c(0) = x and c(1) = y , then we have

Len(c) =

∫ 1

0

√
Gc(ċ , ċ) dt > 0 ,

with a strict inequality and if Len(c) = 0 then c must be the
constant path. Thus dist(x , y) = 0 arises, because there might
exist a family of paths with positive, yet arbitrary small, length
connecting the given points.
What is the topology induced by the geodesic distance? In finite
dimensions and in fact for strong manifolds we have the following
theorem.

Theorem ([[]Thm. 1.9.5]Klingenberg1995)

Let (M,G ) be a strong Riemannian manifold. Then dist is
point-separating and the topology induced by (M, dist) coincides
with the manifold topology.



A diagram of actions of diffeomorphism groups.

Diff(M)
r-acts //

r-acts

%%
Diff(M,µ)

����

Imm(M,N)

needs ḡxx Diff(M) &&

DiffA(N)

r-acts

��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(M)

Diff(M) %% %%

Bi (M,N)

needs ḡxx
Vol1+(M) Met(M)

Diff(M) MetA(N)

M compact ,N pssibly non-compact manifold

Met(N) = Γ(S2
+T∗N) space of all Riemann metrics on N

ḡ one Riemann metric on N

Diff(M) Lie group of all diffeos on compact mf M

DiffA(N), A ∈ {H∞,S, c} Lie group of diffeos of decay A to IdN

Imm(M,N) mf of all immersions M → N

Bi (M,N) = Imm/Diff(M) shape space

Vol1+(M) ⊂ Γ(vol(M)) space of positive smooth probability densities



Diff(S1)
r-acts //

r-acts

%%
r-acts

��

Imm(S1,R2)

needs ḡxx Diff(S1) ''

DiffA(R2)

r-acts

��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Vol+(S1)

����

Met(S1)

Diff(S1)

&& &&

Bi (S1,R2)

needs ḡxx
Vol+(S1)
Diff(S1)

∫
fdθ

=
// R>0

Met(S1)
Diff(S1)∫ √

gdθ

=oo Met(R2)

Diff(S1) Lie group of all diffeos on compact mf S1

DiffA(R2), A ∈ {B,H∞,S, c} Lie group of diffeos of decay A to IdR2

Imm(S1
,R2) mf of all immersions S1 → R2

Bi (S
1
,R2) = Imm/Diff(S1) shape space

Vol+(S1) =
{
f dθ : f ∈ C∞(S1

,R>0)
}

space of positive smooth probability densities

Met(S1) =
{
g dθ2 : g ∈ C∞(S1

,R>0)
}

space of metrics on S1



The manifold of immersions

Let M be either S1 or [0, 2π].

Imm(M,R2) := {c ∈ C∞(M,R2) : c ′(θ) 6= 0} ⊂ C∞(M,R2).

The tangent space of Imm(M,R2) at a curve c is the set of all
vector fields along c :

Tc Imm(M,R2) =

h :

TR2

π
��

M
c //

h

==

R2

 ∼= {h ∈ C∞(M,R2)}

Some Notation:

v(θ) =
c ′(θ)

|c ′(θ)|
, n(θ) = iv(θ), ds = |c ′(θ)|dθ, Ds =

1

|c ′(θ)|
∂θ



Diff(S1)
r-acts //

r-acts $$

Imm(S1,R2)

needs ḡxx Diff(S1) ''

Diffc(R2)
l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(S1) Bi (S1,R2)

Emb(S1,R2)

��

� � // Imm(S1,R2)

��
Emb(S1,R2)/Diff(S1) �

� // Imm(S1,R2)/Diff(S1)

B(S1,R2) Bi (S1,R2)



Different parameterizations

f1
//

f2 //

f1, f2 : S1 → R2, f1 = f2 ◦ ϕ, ϕ ∈ Diff(S1)



Inducing a metric on shape space

Imm(M,N)

π

��
Bi := Imm(M,N)/Diff(M)

Every Diff(M)-invariant metric ”above“ induces a unique metric
”below“ such that π is a Riemannian submersion.



Inner versus Outer



The vertical and horizontal bundle

I T Imm = Vert
⊕

Hor.

I The vertical bundle is

Vert := ker Tπ ⊂ T Imm .

I The horizontal bundle is

Hor := (ker Tπ)⊥,G ⊂ T Imm .

It might not be a complement - sometimes one has to go to
the completion of (Tf Imm,Gf ) in order to get a complement.



The vertical and horizontal bundle



Definition of a Riemannian metric

Imm(M,N)

π

��
Bi (M,N)

1. Define a Diff(M)-invariant metric G
on Imm.

2. If the horizontal space is a
complement, then Tπ restricted to
the horizontal space yields an
isomorphism

(ker Tf π)⊥,G ∼= Tπ(f )Bi .

Otherwise one has to induce the
quotient metric, or use the
completion.

3. This gives a metric on Bi such that
π : Imm→ Bi is a Riemannian
submersion.



Riemannian submersions

Imm(M,N)

π

��
Bi := Imm(M,N)/Diff(M)

I Horizontal geodesics on Imm(M,N) project down to geodesics
in shape space.

I O’Neill’s formula connects sectional curvature on Imm(M,N)
and on Bi .

[Micheli, M, Mumford, Izvestija 2013]



L2 metric

G 0
c (h, k) =

∫
M
〈h(θ), k(θ)〉ds.

Problem: The induced geodesic distance vanishes.

Diff(S1)
r-acts //

r-acts $$

Imm(S1,R2)

needs ḡxx Diff(S1) ''

Diffc(R2)
l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(S1) Bi (S1,R2)

Movies about vanishing: Diff(S1) Imm(S1,R2)

[M Mumford, 2005a, 2005b], [Bauer, Bruveris, Harms, M, 2011, 2012]



The simplest (L2-) metric on Imm(S1,R2)

G 0
c (h, k) =

∫
S1

〈h, k〉ds =

∫
S1

〈h, k〉|cθ| dθ

Geodesic equation

ctt = − 1

2|cθ|
∂θ

( |ct |2 cθ
|cθ|

)
− 1

|cθ|2
〈ctθ, cθ〉ct .

A relative of Burger’s equation.
Conserved momenta for G 0 along any geodesic t 7→ c( , t):

〈v , ct〉|cθ|2 ∈ X(S1) reparam. mom.∫
S1

ctds ∈ R2 linear moment.∫
S1

〈Jc , ct〉ds ∈ R angular moment.



Horizontal Geodesics for G 0 on Bi (S
1,R2)

〈ct , cθ〉 = 0 and ct = an = aJ cθ
|cθ| for a ∈ C∞(S1,R). We use

functions a, s = |cθ|, and κ, only holonomic derivatives:

st = −aκs, at = 1
2κa2,

κt = aκ2 +
1

s

(aθ
s

)
θ

= aκ2 +
aθθ
s2
− aθsθ

s3
.

We may assume s|t=0 ≡ 1. Let v(θ) = a(0, θ), the initial value for
a. Then
st
s = −aκ = −2at

a , so log(sa2)t = 0, thus
s(t, θ)a(t, θ)2 = s(0, θ)a(0, θ)2 = v(θ)2,

a conserved quantity along the geodesic. We substitute s = v2

a2 and
κ = 2 at

a2 to get



att − 4
a2
t

a
− a6aθθ

2v 4
+

a6aθvθ
v 5

−
a5a2

θ

v 4
= 0,

a(0, θ) = v(θ),

a nonlinear hyperbolic second order equation. Note that wherever
v = 0 then also a = 0 for all t. So substitute a = vb. The
outcome is

(b−3)tt = −v 2

2
(b3)θθ − 2vvθ(b3)θ −

3vvθθ
2

b3,

b(0, θ) = 1.

This is the codimension 1 version where
Burgers’ equation is the codimension 0 version.



Weak Riem. metrics on Emb(M ,N) ⊂ Imm(M ,N).

Metrics on the space of immersions of the form:

GP
f (h, k) =

∫
M

ḡ(P f h, k) vol(f ∗ḡ)

where ḡ is some fixed metric on N, g = f ∗ḡ is the induced metric
on M, h, k ∈ Γ(f ∗TN) are tangent vectors at f to Imm(M,N),
and P f is a positive, selfadjoint, bijective (scalar) pseudo
differential operator of order 2p depending smoothly on f . Good
example: P f = 1 + A(∆g )p, where ∆g is the Bochner-Laplacian
on M induced by the metric g = f ∗ḡ . Also P has to be
Diff(M)-invariant: ϕ∗ ◦ Pf = Pf ◦ϕ ◦ ϕ∗.



Elastic metrics on plane curves

Here M = S1 or [0, 1π], N = R2. The elastic metrics on
Imm(M,R2) is

G a,b
c (h, k) =

∫ 2π

0
a2〈Dsh, n〉〈Dsk , n〉+ b2〈Dsh, v〉〈Dsk, v〉 ds,

with

Pa,b
c (h) =− a2〈D2

s h, n〉n − b2〈D2
s h, v〉v

+ (a2 − b2)κ
(
〈Dsh, v〉n + 〈Dsh, n〉v

)
+ (δ2π − δ0)

(
a2〈n,Dsh〉n + b2〈v ,Dsh〉v

)
.



Sobolev type metrics

Advantages of Sobolev type metrics:

1. Positive geodesic distance

2. Geodesic equations are well posed

3. Spaces are geodesically complete for p > dim(M)
2 + 1.

[Bruveris, M, Mumford, 2013] for plane curves. A remark in [Ebin, Marsden, 1970], and [Bruveris, Meyer,

2014] for diffeomorphism groups.

Problems:

1. Analytic solutions to the geodesic equation?

2. Curvature of shape space with respect to these metrics?

3. Numerics are in general computational expensive

wellp.:
Space:

geod. dist.:

p≥1/2

Diff(S1)

+:p> 1
2
,−:p≤ 1

2

r-acts //

r-acts

$$

p≥1

Imm(S1,R2)
−:p=0,+:p≥1

needs ḡ

}} Diff(S1) ""

p≥1

Diffc (R2)

−:p< 1
2
,+:p≥1

l-acts

(LDDMM)

oo

l-acts

(LDDMM)
{{

wellp.:
Space:

geod. dist.:

p≥0

Met(S1)
+:p≥0

p≥1

Bi (S
1,R2)

−:p=0,+:p≥1



Sobolev type metrics

Advantages of Sobolev type metrics:

1. Positive geodesic distance

2. Geodesic equations are well posed

3. Spaces are geodesically complete for p > dim(M)
2 + 1.

[Bruveris, M, Mumford, 2013] for plane curves. A remark in [Ebin, Marsden, 1970], and [Preston, Misiolek

????], [Bruveris, Vialard, 2014] for diffeomorphism groups.

Problems:

1. Analytic solutions to the geodesic equation?

2. Curvature of shape space with respect to these metrics?

3. Numerics are in general computational expensive
wellp.:

Space:
dist.:

p≥1
Diff(M)

+:p>1,−:p< 1
2

r-acts //

r-acts

$$

p≥1
Imm(M,N)
−:p=0,+:p≥1

needs ḡ

}}
Diff(M)

##

p≥1
Diffc (N)

−:p< 1
2
,+:p≥1

l-acts

(LDDMM)

oo

l-acts

(LDDMM)
{{

wellp.:
Space:

dist.:

p=k,k∈N
Met(M)

+:p≥0

p≥1
Bi (M,N)
−:p=0,+:p≥1



Geodesic equation.

The geodesic equation for a Sobolev-type metric GP on
immersions is given by

∇∂t ft =
1

2
P−1

(
Adj(∇P)(ft , ft)

⊥ − 2.Tf .ḡ(Pft ,∇ft)
]

− ḡ(Pft , ft).Trg (S)
)

− P−1
(

(∇ft P)ft + Trg
(
ḡ(∇ft ,Tf )

)
Pft
)
.

The geodesic equation written in terms of the momentum for a
Sobolev-type metric GP on Imm is given by:

p = Pft ⊗ vol(f ∗ḡ)

∇∂t p =
1

2

(
Adj(∇P)(ft , ft)

⊥ − 2Tf .ḡ(Pft ,∇ft)
]

− ḡ(Pft , ft) Trf
∗ḡ (S)

)
⊗ vol(f ∗ḡ)



Wellposedness
Assumption 1: P,∇P and Adj(∇P)⊥ are smooth sections of the
bundles

L(T Imm; T Imm)

��

L2(T Imm; T Imm)

��

L2(T Imm; T Imm)

��
Imm Imm Imm,

respectively. Viewed locally in trivializ. of these bundles,

Pf h, (∇P)f (h, k),
(

Adj(∇P)f (h, k)
)⊥

are pseudo-differential
operators of order 2p in h, k separately. As mappings in f they are
non-linear, and we assume they are a composition of operators of the
following type:
(a) Local operators of order l ≤ 2p, i.e., nonlinear differential operators
A(f )(x) = A(x , ∇̂l f (x), ∇̂l−1f (x), . . . , ∇̂f (x), f (x))
(b) Linear pseudo-differential operators of degrees li ,
such that the total (top) order of the composition is ≤ 2p.
Assumption 2: For each f ∈ Imm(M,N), the operator Pf is an elliptic
pseudo-differential operator of order 2p for p > 0 which is positive and
symmetric with respect to the H0-metric on Imm, i.e.∫

M

ḡ(Pf h, k) vol(g) =

∫
M

ḡ(h,Pf k) vol(g) for h, k ∈ Tf Imm.



Theorem [Bauer, Harms, M, 2011] Let p ≥ 1 and k > dim(M)/2 + 1,

and let P satisfy the assumptions.

Then the geodesic equation has unique local solutions in the Sobolev

manifold Immk+2p of Hk+2p-immersions. The solutions depend smoothly

on t and on the initial conditions f (0, . ) and ft(0, . ). The domain of

existence (in t) is uniform in k and thus this also holds in Imm(M,N).

Moreover, in each Sobolev completion Immk+2p, the Riemannian

exponential mapping expP exists and is smooth on a neighborhood of the

zero section in the tangent bundle, and (π, expP) is a diffeomorphism

from a (smaller) neigbourhood of the zero section to a neighborhood of

the diagonal in Immk+2p × Immk+2p. All these neighborhoods are

uniform in k > dim(M)/2 + 1 and can be chosen Hk0+2p-open, for

k0 > dim(M)/2 + 1. Thus both properties of the exponential mapping

continue to hold in Imm(M,N).



Sobolev completions of Γ(E ), where E → M is a VB

Fix (background) Riemannian metric ĝ on M and its covariant
derivative ∇M . Equip E with a (background) fiber Riemannian
metric ĝE and a compatible covariant derivative ∇̂E . Then Sobolev
space Hk(E ) is the completion of Γ(E ) for the Sobolev norm

‖h‖2
k =

k∑
j=0

∫
M

(ĝE ⊗ ĝ 0
j )
(
(∇̂E )jh, (∇̂E )jh

)
vol(ĝ).

This Sobolev space is independ of choices of ĝ , ∇M , ĝE and ∇̂E

since M is compact: The resulting norms are equivalent.
Sobolev lemma: If k > dim(M)/2 then the identy on Γ(E )
extends to a injective bounded linear map Hk+p(E )→ Cp(E )
where Cp(E ) carries the supremum norm of all derivatives up to
order p.
Module property of Sobolev spaces: If k > dim(M)/2 then
pointwise evaluation Hk(L(E ,E ))× Hk(E )→ Hk(E ) is bounded
bilinear. Likewise all other pointwise contraction operations are
multilinear bounded operations.



Proof of well-posedness

By assumption 1 the mapping Pf h is of order 2p in f and in h
where f is the footpoint of h. Therefore f 7→ Pf extends to a
smooth section of the smooth Sobolev bundle

L
(
T Immk+2p; T Immk | Immk+2p

)
→ Immk+2p,

where T Immk | Immk+2p denotes the space of all Hk tangent
vectors with foot point a Hk+2p immersion, i.e., the restriction of
the bundle T Immk → Immk to Immk+2p ⊂ Immk .
This means that Pf is a bounded linear operator

Pf ∈ L
(
Hk+2p(f ∗TN),Hk(f ∗TN)

)
for f ∈ Immk+2p.

It is injective since it is positive. As an elliptic operator, it is an
unbounded operator on the Hilbert completion of Tf Imm with
respect to the H0-metric, and a Fredholm operator Hk+2p → Hk

for each k . It is selfadjoint elliptic, so the index =0. Since it is
injective, it is thus also surjective.



By the implicit function theorem on Banach spaces, f 7→ P−1
f is

then a smooth section of the smooth Sobolev bundle

L
(
T Immk | Immk+2p; T Immk+2p

)
→ Immk+2p

As an inverse of an elliptic pseudodifferential operator, P−1
f is also

an elliptic pseudo-differential operator of order −2p.

By assumption 1 again, (∇P)f (m, h) and
(

Adj(∇P)f (m, h)
)⊥

are
of order 2p in f ,m, h (locally). Therefore f 7→ Pf and
f 7→ Adj(∇P)⊥ extend to smooth sections of the Sobolev bundle

L2
(
T Immk+2p; T Immk | Immk+2p

)
→ Immk+2p

Using the module property of Sobolev spaces, one obtains that the
”Christoffel symbols”

Γf (h, h) =
1

2
P−1

(
Adj(∇P)(h, h)⊥ − 2.Tf .g(Ph,∇h)]

− g(Ph, h).Trg (S)− (∇hP)h − Trg
(
g(∇h,Tf )

)
Ph
)

extend to a smooth (C∞) section of the smooth Sobolev bundle

L2
sym

(
T Immk+2p; T Immk+2p

)
→ Immk+2p



Thus h 7→ Γf (h, h) is a smooth quadratic mapping
T Imm→ T Imm which extends to smooth quadratic mappings
T Immk+2p → T Immk+2p for each k ≥ dim(2)

2 + 1. The geodesic

equation ∇g
∂t

ft = Γf (ft , ft) can be reformulated using the linear

connection C g : TN ×N TN → TTN (horizontal lift mapping) of
∇g :

∂t ft = C
(1

2
Hf (ft , ft)− Kf (ft , ft), ft

)
.

The right-hand side is a smooth vector field on T Immk+2p, the
geodesic spray. Note that the restriction to T Immk+1+2p of the
geodesic spray on T Immk+2p equals the geodesic spray there. By
the theory of smooth ODE’s on Banach spaces, the flow of this
vector field exists in T Immk+2p and is smooth in time and in the
initial condition, for all k ≥ dim(2)

2 + 1.
It remains to show that the domain of existence is independent of
k . I omit this. QED



Sobolev metrics of order ≥ 2 on Imm(S1,R2) are complete

Theorem. [Bruveris, M, Mumford, 2014] Let n ≥ 2 and the metric
G on Imm(S1,R2) be given by

Gc(h, k) =

∫
S1

n∑
j=0

aj〈D j
sh,D j

sk〉ds ,

with aj ≥ 0 and a0, an 6= 0. Given initial conditions
(c0, u0) ∈ T Imm(S1,R2) the solution of the geodesic equation

∂t

 n∑
j=0

(−1)j |c ′|D2j
s ct

 = −a0

2
|c ′|Ds (〈ct , ct〉v)

+
n∑

k=1

2k−1∑
j=1

(−1)k+j ak
2
|c ′|Ds

(
〈D2k−j

s ct ,D
j
sct〉v

)
.

for the metric G with initial values (c0, u0) exists for all time.

Recall: ds = |c ′|dθ is arc-length measure, Ds = 1
|c ′|∂θ is the

derivative with respect to arc-length, v = c ′/|c ′| is the unit length
tangent vector to c and 〈 , 〉 is the Euclidean inner product on R2.



Thus if G is a Sobolev-type metric of order at least 2, so that∫
S1

(|h|2 + |D2
s h|2)ds ≤ C Gc(h, h),

then the Riemannian manifold (Imm(S1,R2),G ) is geodesically
complete. If the Sobolev-type metric is invariant under the
reparameterization group Diff(S1), also the induced metric on
shape space Imm(S1,R2)/Diff(S1) is geodesically complete.

The proof of this theorem is surprisingly difficult.



The elastic metric

G a,b
c (h, k) =

∫ 2π

0
a2〈Dsh, n〉〈Dsk , n〉+ b2〈Dsh, v〉〈Dsk, v〉 ds,

ct = u ∈ C∞(R>0 ×M,R2)

P(ut) = P(
1

2
Hc(u, u)− Kc(u, u))

=
1

2
(δ0 − δ2π)

(
〈Dsu,Dsu〉v + 3

4〈v ,Dsu〉2v

− 2〈Dsu, v〉Dsu − 3
2〈n,Dsu〉2v

)
+ Ds

(
〈Dsu,Dsu〉v + 3

4〈v ,Dsu〉2v

− 2〈Dsu, v〉Dsu − 3
2〈n,Dsu〉2v

)
Note: Only a metric on Imm/transl.



Representation of the elastic metrics

Aim: Represent the class of elastic metrics as the pullback metric
of a flat metric on C∞(M,R2), i.e.: find a map

R : Imm(M,R2) 7→ C∞(M,Rn)

such that

G a,b
c (h, k) = R∗〈h, k〉L2 = 〈TcR.h,TcR.k〉L2 .

[Younes M ShahMumford2008] [SrivastavaKlassenJoshiJermyn2011]



The R transform on open curves

Theorem
The metric G a,b is the pullback of the flat L2 metric via the
transform R:

Ra,b : Imm([0, 2π],R2)→ C∞([0, 2π],R3)

Ra,b(c) = |c ′|1/2

(
a

(
v
0

)
+
√

4b2 − a2

(
0
1

))
.

The metric G a,b is flat on open curves, geodesics are the preimages
under the R-transform of geodesics on the flat space im R and the
geodesic distance between c , c ∈ Imm([0, 2π],R2)/ trans is given
by the integral over the pointwise distance in the image Im(R).
The curvature on B([0, 2π],R2) is non-negative.

[BauerBruverisMarsland M 2014]



The R transform on open curves II

Image of R is characterized by the condition:

(4b2 − a2)(R2
1 (c) + R2

2 (c)) = a2R2
3 (c)

Define the flat cone

C a,b = {q ∈ R3 : (4b2 − a2)(q2
1 + q2

2) = a2q2
3 , q3 > 0}.

Then Im R = C∞(S1,C a,b). The inverse of R is given by:

R−1 : im R → Imm([0, 2π],R2)/ trans

R−1(q)(θ) = p0 +
1

2ab

∫ θ

0
|q(θ)|

(
q1(θ)
q2(θ)

)
dθ .



The R transform on closed curves I

Characterize image using the inverse:

R−1(q)(θ) = p0 +
1

2ab

∫ θ

0
|q(θ)|

(
q1(θ)
q2(θ)

)
dθ .

R−1(q)(θ) is closed iff

F (q) =

∫ 2π

0
|q(θ)|

(
q1(θ)
q2(θ)

)
dθ = 0

A basis of the orthogonal complement
(
TqC a,b

)⊥
is given by the

two gradients gradL2
Fi (q)



The R transform on closed curves II

Theorem
The image C a,b of the manifold of closed curves under the
R-transform is a codimension 2 submanifold of the flat space

Im(R)open. A basis of the orthogonal complement
(
TqC a,b

)⊥
is

given by the two vectors

U1(q) =
1√

q2
1 + q2

2

2q2
1 + q2

2

q1q2

0

+
2

a

√
4b2 − a2

 0
0
q1

 ,

U2(q) =
1√

q2
1 + q2

2

 q1q2

q2
1 + 2q2

2

0

+
2

a

√
4b2 − a2

 0
0
q2

 .

[BauerBruverisMarsland M 2012]



compress and stretch



A geodesic Rectangle



Non-symmetric distances

I1 → I2 I2 → I1
I1 I2 # iterations # points distance # iterations # points distance %diff

cat cow 28 456 7.339 33 462 8.729 15.9
cat dog 36 475 8.027 102 455 10.060 20.2
cat donkey 73 476 12.620 102 482 12.010 4.8
cow donkey 32 452 7.959 26 511 7.915 0.6
dog donkey 15 457 8.299 10 476 8.901 6.8

shark airplane 63 491 13.741 40 487 13.453 2.1



An example of a metric space with strongly
negatively curved regions

Diff(S2)
r-acts //

r-acts $$

Imm(S2,R3)

needs ḡxx Diff(S2) ''

Diffc(R2)
l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(S2) Bi (S2,R3)

G Φ
f (h, k) =

∫
M

Φ(f )g(h, k) vol(g)

[BauerHarms M 2012]



Non-vanishing geodesic distance

The pathlength metric on shape space induced by G Φ separates
points if one of the following holds:

I Φ ≥ C1 + C2‖Trg (S)‖2 with C1,C2 > 0 or

I Φ ≥ C3 Vol

This leads us to consider Φ = Φ(Vol, ‖Trg (S)‖2).
Special cases:

I GA-metric: Φ = 1 + A‖Trg (S)‖2

I Conformal metrics: Φ = Φ(Vol)



Geodesic equation on shape space Bi (M ,Rn), with
Φ = Φ(Vol,Tr(L))

ft = a.ν,

at =
1

Φ

[Φ

2
a2 Tr(L)− 1

2
Tr(L)

∫
M

(∂1Φ)a2 vol(g)− 1

2
a2∆(∂2Φ)

+ 2ag−1(d(∂2Φ), da) + (∂2Φ)‖da‖2
g−1

+ (∂1Φ)a

∫
M

Tr(L).a vol(g)− 1

2
(∂2Φ) Tr(L2)a2

]



Sectional curvature on Bi

Chart for Bi centered at π(f0) so that π(f0) = 0 in this chart:

a ∈ C∞(M)←→ π(f0 + a.νf0).

For a linear 2-dim. subspace P ⊂ Tπ(f0)Bi spanned by a1, a1, the
sectional curvature is defined as:

k(P) = −
G Φ
π(f0)

(
Rπ(f0)(a1, a2)a1, a2

)
‖a1‖2‖a2‖2 − G Φ

π(f0)(a1, a2)2
, where

R0(a1, a2, a1, a2) = G Φ
0 (R0(a1, a2)a1, a2) =

1

2
d2G Φ

0 (a1, a1)(a2, a2) +
1

2
d2G Φ

0 (a2, a2)(a1, a1)

− d2G Φ
0 (a1, a2)(a1, a2)

+ G Φ
0 (Γ0(a1, a1), Γ0(a2, a2))− G Φ

0 (Γ0(a1, a2), Γ0(a1, a2)).



Sectional curvature on Bi for Φ = Vol

k(P) = − R0(a1, a2, a1, a2)

‖a1‖2‖a2‖2 − G Φ
π(f0)(a1, a2)2

, where

R0(a1, a2, a1, a2) = −1

2
Vol

∫
M
‖a1da2 − a2da1‖2

g−1 vol(g)

+
1

4 Vol
Tr(L)2

(
a2

1.a
2
2 − a1.a2

2
)

+
1

4

(
a2

1.Tr(L)2a2
2 − 2a1.a2.Tr(L)2a1.a2 + a2

2.Tr(L)2a2
1

)
− 3

4 Vol

(
a2

1.Tr(L)a2
2 − 2a1.a2.Tr(L)a1.Tr(L)a2 + a2

2.Tr(L)a1
2
)

+
1

2

(
a2

1.Trg ((da2)2)− 2a1.a2.Trg (da1.da2) + a2
2Trg ((da1)2)

)
− 1

2

(
a2

1.a
2
2.Tr(L2)− 2.a1.a2.a1.a2.Tr(L2) + a2

2.a
2
1.Tr(L2)

)
.



Sectional curvature on Bi for Φ = 1 + ATr(L)2

k(P) = − R0(a1, a2, a1, a2)

‖a1‖2‖a2‖2 − G Φ
π(f0)(a1, a2)2

, where

R0(a1, a2, a1, a2) =

∫
M

A(a1∆a2 − a2∆a1)2 vol(g)

+

∫
M

2A Tr(L)g 0
2

(
(a1da2 − a2da1)⊗ (a1da2 − a2da1), s

)
vol(g)

+

∫
M

1

1 + A Tr(L)2

[
− 4A2g−1

(
d Tr(L), a1da2 − a2da1

)2

−
(1

2

(
1 + A Tr(L)2

)2
+ 2A2 Tr(L)∆(Tr(L)) + 2A2 Tr(L2) Tr(L)2

)
·

· ‖a1da2 − a2da1‖2
g−1 + (2A2 Tr(L)2)‖da1 ∧ da2‖2

g2
0

+ (8A2 Tr(L))g 0
2

(
d Tr(L)⊗ (a1da2 − a2da1), da1 ∧ da2

)]
vol(g)



Negative Curvature: A toy example

Movies: Ex1: Φ = 1 + .4 Tr(L)2 Ex2: Φ = eVol Ex3: Φ = eVol



Another toy example

G Φ
f (h, k) =

∫
T2 g((1 + ∆)h, k) vol(g) on Imm(T2,R3):

[BauerBruveris2011]



Right invariant Riemannian geometries on
Diffeomorphism groups.

For M = N the space Emb(M,M) equals the diffeomorphism
group of M. An operator P ∈ Γ

(
L(T Emb; T Emb)

)
that is

invariant under reparametrizations induces a right-invariant
Riemannian metric on this space. Thus one gets the geodesic
equation for right-invariant Sobolev metrics on diffeomorphism
groups and well-posedness of this equation. The geodesic equation
on Diff(M) in terms of the momentum p is given by{

p = Pft ⊗ vol(g),

∇∂t p = −Tf .ḡ(Pft ,∇ft)
] ⊗ vol(g).

Note that this equation is not right-trivialized, in contrast to the
equation given in [Arnold 1966]. The special case of theorem now
reads as follows:



Theorem. [Bauer, Harms, M, 2011] Let p ≥ 1 and k > dim(M)
2 + 1 and

let P satisfy the assumptions.

The initial value problem for the geodesic equation has unique local

solutions in the Sobolev manifold Diffk+2p of Hk+2p-diffeomorphisms.

The solutions depend smoothly on t and on the initial conditions f (0, . )

and ft(0, . ). The domain of existence (in t) is uniform in k and thus this

also holds in Diff(M).

Moreover, in each Sobolev completion Diffk+2p, the Riemannian

exponential mapping expP exists and is smooth on a neighborhood of the

zero section in the tangent bundle, and (π, expP) is a diffeomorphism

from a (smaller) neigbourhood of the zero section to a neighborhood of

the diagonal in Diffk+2p ×Diffk+2p. All these neighborhoods are uniform

in k > dim(M)/2 + 1 and can be chosen Hk0+2p-open, for

k0 > dim(M)/2 + 1. Thus both properties of the exponential mapping

continue to hold in Diff(M).



Arnold’s formula for geodesics on Lie groups: Notation

Let G be a regular convenient Lie group, with Lie algebra g. Let
µ : G × G → G be the group multiplication, µx the left translation
and µy the right translation, µx(y) = µy (x) = xy = µ(x , y).

Let L,R : g→ X(G ) be the left- and right-invariant vector field
mappings, given by LX (g) = Te(µg ).X and RX = Te(µg ).X , resp.
They are related by LX (g) = RAd(g)X (g). Their flows are given by

FlLXt (g) = g . exp(tX ) = µexp(tX )(g),

FlRX
t (g) = exp(tX ).g = µexp(tX )(g).

The right Maurer–Cartan form κ = κr ∈ Ω1(G , g) is given by
κx(ξ) := Tx(µx

−1
) · ξ.

The left Maurer–Cartan form κl ∈ Ω1(G , g) is given by
κx(ξ) := Tx(µx−1) · ξ.



κr satisfies the left Maurer-Cartan equation dκ− 1
2 [κ, κ]∧g = 0,

where [ , ]∧ denotes the wedge product of g-valued forms on G
induced by the Lie bracket. Note that 1

2 [κ, κ]∧(ξ, η) = [κ(ξ), κ(η)].
κl satisfies the right Maurer-Cartan equation dκ+ 1

2 [κ, κ]∧g = 0.

Proof: Evaluate dκr on right invariant vector fields RX ,RY for
X ,Y ∈ g.

(dκr )(RX ,RY ) = RX (κr (RY ))− RY (κr (RX ))− κr ([RX ,RY ])

= RX (Y )− RY (X ) + [X ,Y ] = 0− 0 + [κr (RX ), κr (RY )].

The (exterior) derivative of the function Ad : G → GL(g) can be
expressed by

d Ad = Ad .(ad ◦κl) = (ad ◦κr ).Ad

since we have
d Ad(Tµg .X ) = d

dt |0 Ad(g . exp(tX )) = Ad(g). ad(κl(Tµg .X )).



Geodesics of a Right-Invariant Metric on a Lie Group

Let γ = g× g→ R be a positive-definite bounded (weak) inner
product. Then

γx(ξ, η) = γ
(
T (µx

−1
) · ξ, T (µx

−1
) · η

)
= γ

(
κ(ξ), κ(η)

)
is a right-invariant (weak) Riemannian metric on G . Denote by
γ̌ : g→ g∗ the mapping induced by γ, and by 〈α,X 〉g the duality
evaluation between α ∈ g∗ and X ∈ g.
Let g : [a, b]→ G be a smooth curve. The velocity field of g ,
viewed in the right trivializations, coincides with the right
logarithmic derivative

δr (g) = T (µg
−1

) · ∂tg = κ(∂tg) = (g∗κ)(∂t).

The energy of the curve g(t) is given by

E (g) =
1

2

∫ b

a
γg (g ′, g ′)dt =

1

2

∫ b

a
γ
(
(g∗κ)(∂t), (g∗κ)(∂t)

)
dt.



For a variation g(s, t) with fixed endpoints we then use that

d(g∗κ)(∂t , ∂s) = ∂t(g∗κ(∂s))− ∂s(g∗κ(∂t))− 0,

partial integration and the left Maurer–Cartan equation to obtain

∂sE (g) =
1

2

∫ b

a

2γ
(
∂s(g∗κ)(∂t), (g∗κ)(∂t)

)
dt

=

∫ b

a

γ
(
∂t(g∗κ)(∂s)− d(g∗κ)(∂t , ∂s), (g∗κ)(∂t)

)
dt

= −
∫ b

a

γ
(
(g∗κ)(∂s), ∂t(g∗κ)(∂t)

)
dt

−
∫ b

a

γ
(
[(g∗κ)(∂t), (g∗κ)(∂s)], (g∗κ)(∂t)

)
dt

= −
∫ b

a

〈
γ̌(∂t(g∗κ)(∂t)), (g∗κ)(∂s)

〉
g

dt

−
∫ b

a

〈
γ̌((g∗κ)(∂t)), ad(g∗κ)(∂t)(g∗κ)(∂s)

〉
g

dt

= −
∫ b

a

〈
γ̌(∂t(g∗κ)(∂t)) + (ad(g∗κ)(∂t))

∗γ̌((g∗κ)(∂t)), (g∗κ)(∂s)
〉
g

dt.



Thus the curve g(0, t) is critical for the energy if and only if

γ̌(∂t(g∗κ)(∂t)) + (ad(g∗κ)(∂t))∗γ̌((g∗κ)(∂t)) = 0.

In terms of the right logarithmic derivative u : [a, b]→ g of
g : [a, b]→ G , given by u(t) := g∗κ(∂t) = Tg(t)(µg(t)−1

) · g ′(t),
the geodesic equation has the expression

∂tu = − γ̌−1 ad(u)∗ γ̌(u) (1)

Thus the geodesic equation exists in general if and only if
ad(X )∗γ̌(X ) is in the image of γ̌ : g→ g∗, i.e.

ad(X )∗γ̌(X ) ∈ γ̌(g) (2)

for every X ∈ X. Condition then leads to the existence of the
Christoffel symbols. [Arnold 1966] has the more restrictive
condition ad(X )∗γ̌(Y ) ∈ γ̌(g). The geodesic equation for the
momentum p := γ(u):

pt = − ad(γ̌−1(p))∗p.



Soon we shall encounter situations where only the more general
condition is satisfied, but where the usual transpose ad>(X ) of
ad(X ),

ad>(X ) := γ̌−1 ◦ ad∗X ◦ γ̌

does not exist for all X .



Groups related to Diffc(R)

The reflexive nuclear (LF) space C∞c (R) of smooth functions with
compact support leads to the well-known regular Lie group
Diffc(R).
Define C∞c,2(R) = {f : f ′ ∈ C∞c (R)} to be the space of
antiderivatives of smooth functions with compact support. It is a
reflexive nuclear (LF) space. We also define the space

C∞c,1(R) =
{

f ∈ C∞c,2(R) : f (−∞) = 0
}

of antiderivatives of the

form x 7→
∫ x
−∞ g dy with g ∈ C∞c (R).

Diffc,2(R) =
{
ϕ = Id +f : f ∈ C∞c,2(R), f ′ > −1

}
is the

corresponding group.
Define the two functionals Shift`,Shiftr : Diffc,2(R)→ R by

Shift`(ϕ) = ev−∞(f ) = lim
x→−∞

f (x), Shiftr (ϕ) = ev∞(f ) = lim
x→∞

f (x)

for ϕ(x) = x + f (x).



Then the short exact sequence of smooth homomorphisms of Lie
groups

Diffc(R) // // Diffc,2(R)
(Shift`,Shiftr ) // // (R2,+)

describes a semidirect product, where a smooth homomorphic
section s : R2 → Diffc,2(R) is given by the composition of flows
s(a, b) = FlX`a ◦FlXr

b for the vectorfields X` = f`∂x , Xr = fr∂x with
[X`,Xr ] = 0 where f`, fr ∈ C∞(R, [0, 1]) satisfy

f`(x) =

{
1 for x ≤ −1

0 for x ≥ 0,
fr (x) =

{
0 for x ≤ 0

1 for x ≥ 1.
(3)

The normal subgroup
Diffc,1(R) = ker(Shift`) = {ϕ = Id +f : f ∈ C∞c,1(R), f ′ > −1} of
diffeomorphisms which have no shift at −∞ will play an important
role later on.



Some diffeomorphism groups on R

We have the following smooth injective group homomorphisms:

Diffc(R) //

��

DiffS(R)

��

// DiffW∞,1(R)

��
Diffc,1(R) //

��

DiffS1(R) //

��

Diff
W∞,11

(R)

��
Diffc,2(R) // DiffS2(R) // Diff

W∞,12
(R) // DiffB(R)

Each group is a normal subgroup in any other in which it is
contained, in particular in DiffB(R).
For S and W∞,1 this works the same as for C∞c . For H∞ = W∞,2

it is surprisingly more subtle.



Solving the Hunter-Saxton equation: The setting

We will denote by A(R) any of the spaces C∞c (R), S(R) or
W∞,1(R) and by DiffA(R) the corresponding groups Diffc(R),
DiffS(R) or DiffW∞,1(R).
Similarly A1(R) will denote any of the spaces C∞c,1(R), S1(R) or

W∞,1
1 (R) and DiffA1(R) the corresponding groups Diffc,1(R),

DiffS1(R) or Diff
W∞,11

(R).

The Ḣ1-metric. For DiffA(R) and DiffA1(R) the homogeneous
H1-metric is given by

Gϕ(X ◦ ϕ,Y ◦ ϕ) = GId(X ,Y ) =

∫
R

X ′(x)Y ′(x) dx ,

where X ,Y are elements of the Lie algebra A(R) or A1(R). We
shall also use the notation

〈·, ·〉Ḣ1 := G (·, ·) .



Theorem

On DiffA1(R) the geodesic equation is the Hunter-Saxton equation

(ϕt) ◦ ϕ−1 = u ut = −uux +
1

2

∫ x

−∞
(ux(z))2 dz ,

and the induced geodesic distance is positive.
On the other hand the geodesic equation does not exist on the
subgroups DiffA(R), since the adjoint ad(X )∗ǦId(X ) does not lie
in ǦId(A(R)) for all X ∈ A(R).
One obtains the classical form of the Hunter-Saxton equation by
differentiating:

utx = −uuxx −
1

2
u2
x ,

Note that DiffA(R) is a natural example of a non-robust
Riemannian manifold.



Proof

Note that ǦId : A1(R)→ A1(R)∗ is given by ǦId(X ) = −X ′′ if we
use the L2-pairing X 7→ (Y 7→

∫
XYdx) to embed functions into

the space of distributions. We now compute the adjoint of ad(X ):〈
ad(X )∗ǦId(Y ),Z

〉
= ǦId(Y , ad(X )Z ) = GId(Y ,−[X ,Z ])

=

∫
R

Y ′(x)
(
X ′(x)Z (x)− X (x)Z ′(x)

)′
dx

=

∫
R

Z (x)
(
X ′′(x)Y ′(x)− (X (x)Y ′(x))′′

)
dx .

Therefore the adjoint as an element of A∗1 is given by

ad(X )∗ǦId(Y ) = X ′′Y ′ − (XY ′)′′ .



For X = Y we can rewrite this as

ad(X )∗ǦId(X ) = 1
2

(
(X ′2)′ − (X 2)′′′

)
=

1

2

(∫ x

−∞
X ′(y)2 dy − (X 2)′

)′′
=

1

2
ǦId

(
−
∫ x

−∞
X ′(y)2 dy + (X 2)′

)
.

If X ∈ A1(R) then the function −1
2

∫ x
−∞ X ′(y)2 dy + 1

2 (X 2)′ is
again an element of A1(R). This follows immediately from the
definition of A1(R). Therefore the geodesic equation exists on
DiffA1(R) and is as given.
However if X ∈ A(R), a neccessary condition for∫ x
−∞(X ′(y))2dy ∈ A(R) would be

∫∞
−∞ X ′(y)2dy = 0, which would

imply X ′ = 0. Thus the geodesic equation does not exist on A(R).
The positivity of geodesic distance will follow from the explicit
formula for geodesic distance below. QED.



Theorem.

[BBM2014] [A version for Diff (S1) is by J.Lenells 2007,08,11]
We define the R-map by:

R :

{
DiffA1(R)→ A

(
R,R>−2

)
⊂ A(R,R)

ϕ 7→ 2
(
(ϕ′)1/2 − 1

)
.

The R-map is invertible with inverse

R−1 :


A
(
R,R>−2

)
→ DiffA1(R)

γ 7→ x +
1

4

∫ x

−∞
γ2 + 4γ dx .

The pull-back of the flat L2-metric via R is the Ḣ1-metric on
DiffA(R), i.e.,

R∗〈·, ·〉L2 = 〈·, ·〉Ḣ1 .

Thus the space
(
DiffA1(R), Ḣ1

)
is a flat space in the sense of

Riemannian geometry.
Here 〈·, ·〉L2 denotes the L2-inner product on A(R) with constant
volume dx .



Proof

To compute the pullback of the L2-metric via the R-map we first
need to calculate its tangent mapping. For this let
h = X ◦ ϕ ∈ TϕDiffA1(R) and let t 7→ ψ(t) be a smooth curve in
DiffA1(R) with ψ(0) = Id and ∂t |0ψ(t) = X . We have:

TϕR.h = ∂t |0R(ψ(t) ◦ ϕ) = ∂t |02
(

((ψ(t) ◦ ϕ)x)1/2 − 1
)

= ∂t |02((ψ(t)x ◦ ϕ)ϕx)1/2

= 2(ϕx)1/2∂t |0((ψ(t)x)1/2 ◦ ϕ) = (ϕx)1/2
( ψtx(0)

(ψ(0)x)−1/2
◦ ϕ
)

= (ϕx)1/2(X ′ ◦ ϕ) = (ϕ′)1/2(X ′ ◦ ϕ) .

Using this formula we have for h = X1 ◦ ϕ, k = X2 ◦ ϕ:

R∗〈h, k〉L2 = 〈TϕR.h,TϕR.k〉L2 =

∫
R

X ′1(x)X ′2(x) dx = 〈h, k〉Ḣ1 QED



Corollary

Given ϕ0, ϕ1 ∈ DiffA1(R) the geodesic ϕ(t, x) connecting them is
given by

ϕ(t, x) = R−1
(

(1− t)R(ϕ0) + tR(ϕ1)
)

(x)

and their geodesic distance is

d(ϕ0, ϕ1)2 = 4

∫
R

(
(ϕ′1)1/2 − (ϕ′0)1/2

)2
dx .

But this construction shows much more: For S1, C∞1 , and even for
many kinds of Denjoy-Carleman ultradifferentiable model spaces
(not explained here). This shows that Sobolev space methods for
treating nonlinear PDEs is not the only method.



Corollary: The metric space
(
DiffA1(R), Ḣ1

)
is path-connected

and geodesically convex but not geodesically complete. In
particular, for every ϕ0 ∈ DiffA1(R) and h ∈ Tϕ0 DiffA1(R), h 6= 0
there exists a time T ∈ R such that ϕ(t, ·) is a geodesic for
|t| < |T | starting at ϕ0 with ϕt(0) = h, but ϕx(T , x) = 0 for some
x ∈ R.
Theorem: The square root representation on the diffeomorphism
group DiffA(R) is a bijective mapping, given by:

R :

{
DiffA(R)→

(
Im(R), ‖ · ‖L2

)
⊂
(
A
(
R,R>−2

)
, ‖ · ‖L2

)
ϕ 7→ 2

(
(ϕ′)1/2 − 1

)
.

The pull-back of the restriction of the flat L2-metric to Im(R) via R
is again the homogeneous Sobolev metric of order one. The image
of the R-map is the splitting submanifold of A(R,R>−2) given by:

Im(R) =
{
γ ∈ A(R,R>−2) : F (γ) :=

∫
R
γ
(
γ + 4

)
dx = 0

}
.



On the space DiffA(R) the geodesic equation does not exist. Still:
Corollary: The geodesic distance dA on DiffA(R) coincides with
the restriction of dA1 to DiffA(R), i.e., for ϕ0, ϕ1 ∈ DiffA(R) we
have

dA(ϕ0, ϕ1) = dA1(ϕ0, ϕ1) .



Continuing Geodesics Beyond the Group, or How Solutions
of the Hunter–Saxton Equation Blow Up

Consider a straight line γ(t) = γ0 + tγ1 in A(R,R). Then
γ(t) ∈ A(R,R>−2) precisely for t in an open interval (t0, t1) which
is finite at least on one side, say, at t1 <∞. Note that

ϕ(t)(x) := R−1(γ(t))(x) = x +
1

4

∫ x

−∞
γ2(t)(u) + 4γ(t)(u) du

makes sense for all t, that ϕ(t) : R→ R is smooth and that
ϕ(t)′(x) ≥ 0 for all x and t; thus, ϕ(t) is monotone
non-decreasing. Moreover, ϕ(t) is proper and surjective since γ(t)
vanishes at −∞ and ∞. Let

MonA1(R) :=
{

Id +f : f ∈ A1(R,R), f ′ ≥ −1
}

be the monoid (under composition) of all such functions.



For γ ∈ A(R,R) let x(γ) := min{x ∈ R ∪ {∞} : γ(x) = −2}.
Then for the line γ(t) from above we see that x(γ(t)) <∞ for all
t > t1. Thus, if the ‘geodesic’ ϕ(t) leaves the diffeomorphism
group at t1, it never comes back but stays inside
MonA1(R) \ DiffA1(R) for the rest of its life. In this sense,
MonA1(R) is a geodesic completion of DiffA1(R), and
MonA1(R) \ DiffA1(R) is the boundary.
What happens to the corresponding solution
u(t, x) = ϕt(t, ϕ(t)−1(x)) of the HS equation? In certain points it
has infinite derivative, it may be multivalued, or its graph can
contain whole vertical intervals. If we replace an element
ϕ ∈ MonA1(R) by its graph {(x , ϕ(x)) : x ∈ R} ⊂ R we get a
smooth ‘monotone’ submanifold, a smooth monotone relation.
The inverse ϕ−1 is then also a smooth monotone relation. Then
t 7→ {(x , u(t, x)) : x ∈ R} is a (smooth) curve of relations.
Checking that it satisfies the HS equation is an exercise left for the
interested reader. What we have described here is the flow
completion of the HS equation in the spirit of [Khesin M 2004].



Soliton-Like Solutions of the Hunter Saxton equation

For a right-invariant metric G on a diffeomorphism group one can
ask whether (generalized) solutions u(t) = ϕt(t) ◦ ϕ(t)−1 exist
such that the momenta Ǧ (u(t)) =: p(t) are distributions with
finite support. Here the geodesic ϕ(t) may exist only in some
suitable Sobolev completion of the diffeomorphism group. By the
general theory, the momentum Ad(ϕ(t))∗p(t) = ϕ(t)∗p(t) = p(0)
is constant. In other words,

p(t) = (ϕ(t)−1)∗p(0) = ϕ(t)∗p(0),

i.e., the momentum is carried forward by the flow and remains in
the space of distributions with finite support. The infinitesimal
version (take ∂t of the last expression) is

pt(t) = −Lu(t)p(t) = − adu(t)
∗ p(t).



The space of N-solitons of order 0 consists of momenta of the
form py ,a =

∑N
i=1 aiδyi with (y , a) ∈ R2N . Consider an initial

soliton p0 = Ǧ (u0) = −u′′0 =
∑N

i=1 ai δyi with y1 < y2 < · · · < yN .
Let H be the Heaviside function

H(x) =


0, x < 0,
1
2 , x = 0,

1, x > 0,

and D(x) = 0 for x ≤ 0 and D(x) = x for x > 0. We will see later
why the choice H(0) = 1

2 is the most natural one; note that the
behavior is called the Gibbs phenomenon. With these functions we
can write

u′′0 (x) = −
N∑
i=1

aiδyi (x)

u′0(x) = −
N∑
i=1

aiH(x − yi )

u0(x) = −
N∑
i=1

aiD(x − yi ).



We will assume henceforth that
∑N

i=1 ai = 0. Then u0(x) is
constant for x > yN and thus u0 ∈ H1

1 (R); with a slight abuse of
notation we assume that H1

1 (R) is defined similarly to H∞1 (R).
Defining Si =

∑i
j=1 aj we can write

u′0(x) = −
N∑
i=1

Si (H(x − yi )− H(x − yi+1)) .

This formula will be useful because
supp(H(.− yi )− H(.− yi+1)) = [yi , yi+1].
The evolution of the geodesic u(t) with initial value u(0) = u0 can
be described by a system of ordinary differential equations (ODEs)
for the variables (y , a).
Theorem The map (y , a) 7→

∑N
i=1 aiδyi is a Poisson map between

the canonical symplectic structure on R2N and the Lie–Poisson
structure on the dual T ∗Id DiffA(R) of the Lie algebra.



In particular, this means that the ODEs for (y , a) are Hamilton’s
equations for the pullback Hamiltonian

E (y , a) =
1

2
GId(u(y ,a), u(y ,a)),

with u(y ,a) = Ǧ−1(
∑N

i=1 aiδyi ) = −
∑N

i=1 aiD(.− yi ). We can
obtain the more explicit expression

E (y , a) =
1

2

∫
R

(
u(y ,a)(x)′

)2
dx =

1

2

∫
R

(
N∑
i=1

Si1[yi ,yi+1]

)2

dx

=
1

2

N∑
i=1

S2
i (yi+1 − yi ).

Hamilton’s equations ẏi = ∂E/∂ai , ȧi = −∂E/∂yi are in this case

ẏi (t) =
N−1∑
j=i

Si (t)(yi+1(t)− yi (t)),

ȧi (t) =
1

2

(
Si (t)2 − Si−1(t)2

)
.



Using the R-map we can find explicit solutions for these equations
as follows. Let us write ai (0) = ai and yi (0) = yi . The geodesic
with initial velocity u0 is given by

ϕ(t, x) = x +
1

4

∫ x

−∞
t2(u′0(y))2 + 4tu′0(y) dy

u(t, x) = u0(ϕ−1(t, x)) +
t

2

∫ ϕ−1(t,x)

−∞
u′0(y)2 dy .

First note that

ϕ′(t, x) =
(

1 +
t

2
u′0(x)

)2

u′(t, z) =
u′0
(
ϕ−1(t, z)

)
1 + t

2 u′0 (ϕ−1(t, z))
.



Using the identity H(ϕ−1(t, z)− yi ) = H(z − ϕ(t, yi )) we obtain

u′0
(
ϕ−1(t, z)

)
= −

N∑
i=1

aiH (z − ϕ(t, yi )) ,

and thus (
u′0
(
ϕ−1(t, z)

))′
= −

N∑
i=1

aiδϕ(t,yi )(z).

Combining these we obtain

u′′(t, z) =
1(

1 + t
2 u′0 (ϕ−1(t, z))

)2

(
−

N∑
i=1

aiδϕ(t,yi )(z)

)

=
N∑
i=1

−ai(
1 + t

2 u′0(yi )
)2
δϕ(t,yi )(z).

From here we can read off the solution of Hamilton’s equations

yi (t) = ϕ(t, yi )

ai (t) = −ai
(
1 + t

2 u′0(yi )
)−2

.



When trying to evaluate u′0(yi ),

u′0(yi ) = aiH(0)− Si ,

we see that u′0 is discontinuous at yi and it is here that we seem to
have the freedom to choose the value H(0). However, it turns out
that we observe the Gibbs phenomenon, i.e., only the choice
H(0) = 1

2 leads to solutions of Hamilton’s equations. Also, the
regularized theory of multiplications of distributions (Colombeau,
Kunzinger et.al.) leads to this choice. Thus we obtain

yi (t) = yi +
i−1∑
j=1

(
t2

4
S2
j − tSj

)
(yj+1 − yj)

ai (t) =
−ai(

1 + t
2

(
ai
2 − Si

))2
= −

(
Si

1− t
2 Si
− Si−1

1− t
2 Si−1

)
.

It can be checked by direct computation that these functions
indeed solve Hamilton’s equations.



Riemannian geometries on spaces of Riemannian metrics
and pulling them back to diffeomorphism groups.

Diff(M)
r-acts //

r-acts

%%
Diff(M,µ)

����

Imm(M,N)

needs ḡxx Diff(M) &&

DiffA(N)
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��

l-acts

(LDDMM)
oo

l-acts

(LDDMM)xx
Met(M)

Diff(M) %% %%

Bi (M,N)

needs ḡxx
Vol1+(M) Met(M)

Diff(M) Met(N)



Weak Riemann metrics on Met(M)

All of them are Diff(M)-invariant; natural, tautological.

Gg (h, k) =

∫
M

g 0
2 (h, k) vol(g) =

∫
Tr(g−1hg−1k) vol(g), L2-metr.

or = Φ(Vol(g))

∫
M

g 0
2 (h, k) vol(g) conformal

or =

∫
M

Φ(Scalg ).g 0
2 (h, k) vol(g) curvature modified

or =

∫
M

g 0
2 ((1 + ∆g )ph, k) vol(g) Sobolev order p

or =

∫
M

(
g 0

2 (h, k) + g 0
3 (∇gh,∇gk) + . . .

+ g 0
p ((∇g )ph, (∇g )pk)

)
vol(g)

where Φ is a suitable real-valued function, Vol =
∫
M vol(g) is the

total volume of (M, g), Scal is the scalar curvature of (M, g), and
where g 0

2 is the induced metric on
(0

2

)
-tensors.



The L2-metric on the space of all Riemann metrics

[Ebin 1970]. Geodesics and curvature [Freed Groisser 1989].
[Gil-Medrano M 1991] for non-compact M. [Clarke 2009] showed
that geodesic distance for the L2-metric is positive, and he
determined the metric completion of Met(M).
The geodesic equation is completely decoupled from space, it is an
ODE:

gtt = gtg
−1gt + 1

4 Tr(g−1gtg
−1gt) g − 1

2 Tr(g−1gt) gt



exp0(A) = 2
n log

(
(1 + 1

4 Tr(A))2 + n
16 Tr(A2

0)
)

Id

+
4√

n Tr(A2
0)

arctan

(√
n Tr(A2

0)

4 + Tr(A)

)
A0.



Back to the the general metric on Met(M).

We describe all these metrics uniformly as

GP
g (h, k) =

∫
M

g 0
2 (Pgh, k) vol(g)

=

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where
Pg : Γ(S2T ∗M)→ Γ(S2T ∗M)

is a positive, symmetric, bijective pseudo-differential operator of
order 2p, p ≥ 0, depending smoothly on the metric g , and also
Diff(M)-equivariantly:

ϕ∗ ◦ Pg = Pϕ∗g ◦ ϕ∗



The geodesic equation in this notation:

gtt = P−1
[
(D(g ,.)Pgt)

∗(gt) +
1

4
.g .Tr(g−1.Pgt .g

−1.gt)

+
1

2
gt .g

−1.Pgt +
1

2
Pgt .g

−1.gt − (D(g ,gt)P)gt

− 1

2
Tr(g−1.gt).Pgt

]
We can rewrite this equation to get it in a slightly more compact

form:

(Pgt)t = (D(g ,gt)P)gt + Pgtt

= (D(g ,.)Pgt)
∗(gt) +

1

4
.g .Tr(g−1.Pgt .g

−1.gt)

+
1

2
gt .g

−1.Pgt +
1

2
Pgt .g

−1.gt −
1

2
Tr(g−1.gt).Pgt



Well posedness of geodesic equation.

Assumptions Let Pg (h), P−1
g (k) and (D(g ,.)Ph)∗(m) be linear

pseudo-differential operators of order 2p in m, h and of order −2p in k
for some p ≥ 0.
As mappings in the foot point g , we assume that all mappings are
non-linear, and that they are a composition of operators of the following
type:
(a) Non-linear differential operators of order l ≤ 2p, i.e.,

A(g)(x) = A
(
x , g(x), (∇̂g)(x), . . . , (∇̂lg)(x)

)
,

(b) Linear pseudo-differential operators of order ≤ 2p,

such that the total (top) order of the composition is ≤ 2p.

Since h 7→ Pgh induces a weak inner product, it is a symmetric and

injective pseudodifferential operator. We assume that it is elliptic and

selfadjoint. Then it is Fredholm and has vanishing index. Thus it is

invertible and g 7→ P−1
g is smooth

Hk(S2
+T ∗M)→ L(Hk(S2T ∗M),Hk+2p(S2T ∗M)) by the implicit

function theorem on Banach spaces.



Theorem. [Bauer, Harms, M. 2011] Let the assumptions above hold.

Then for k > dim(M)
2 , the initial value problem for the geodesic equation

has unique local solutions in the Sobolev manifold Metk+2p(M) of

Hk+2p-metrics. The solutions depend C∞ on t and on the initial

conditions g(0, . ) ∈ Metk+2p(M) and gt(0, . ) ∈ Hk+2p(S2T ∗M). The

domain of existence (in t) is uniform in k and thus this also holds in

Met(M).

Moreover, in each Sobolev completion Metk+2p(M), the Riemannian

exponential mapping expP exists and is smooth on a neighborhood of the

zero section in the tangent bundle, and (π, expP) is a diffeomorphism

from a (smaller) neighborhood of the zero section to a neighborhood of

the diagonal in Metk+2p(M)×Metk+2p(M). All these neighborhoods are

uniform in k > dim(M)
2 and can be chosen Hk0+2p-open, where

k0 >
dim(M)

2 . Thus all properties of the exponential mapping continue to

hold in Met(M).



Conserved Quantities on Met(M).

Right action of Diff(M) on Met(M) given by

(g , φ) 7→ φ∗g .

Fundamental vector field (infinitesimal action):

ζX (g) = LXg = −2 Sym∇(g(X )).

If metric GP is invariant, we have the following conserved
quantities

const = GP(gt , ζX (g))

= −2

∫
M

g 0
1

(
∇∗ Sym Pgt , g(X )

)
vol(g)

= −2

∫
M

g
(
g−1∇∗Pgt ,X

)
vol(g)

Since this holds for all vector fields X ,

(∇∗Pgt) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) is const. in t.



For which metric is the Ricci flow a gradient flow

Met(M) is convex and open subset, thus contractible. A necessary
and sufficient condition for Ricci curvature to be a gradient vector
field with respect to the GP -metric is that the following exterior
derivative vanishes:(
dGP(Ric, ·)

)
(h, k) = hGP(Ric, k)− kGP(Ric, h)− GP(Ric, [h, k]) = 0.

It suffices to look at constant vector fields h, k , in which case
[h, k] = 0. We have

hGP(Ric, k)− kGP(Ric, h)

=

∫ (
− Tr

(
g−1hg−1(P Ric)g−1k

)
+ Tr

(
g−1kg−1(P Ric)g−1h

)
+ Tr

(
g−1Dg ,h(P Ric)g−1k

)
− Tr

(
g−1Dg ,k(P Ric)g−1h

)
− Tr

(
g−1(P Ric)g−1hg−1k

)
+ Tr

(
g−1(P Ric)g−1kg−1h

)
+

1

2
Tr
(
g−1(P Ric)g−1k

)
Tr(g−1h)− 1

2
Tr
(
g−1(P Ric)g−1h

)
Tr(g−1k)

)
vol(g).



Some terms in this formula cancel out because for symmetric
A,B,C one has

Tr(ABC ) = Tr((ABC )>) = Tr(C>B>A>) = Tr(A>C>B>) = Tr(ACB).

Therefore

hGP( Ric, k)− kGP(Ric, h)

=

∫ (
Tr
(
g−1Dg ,h(P Ric)g−1k

)
− Tr

(
g−1Dg ,k(P Ric)g−1h

)
+

1

2
Tr
(
g−1(P Ric)g−1k

)
Tr(g−1h)

− 1

2
Tr
(
g−1(P Ric)g−1h

)
Tr(g−1k)

)
vol(g).



We write Dg ,h(P Ric) = Q(h) for some differential operator Q
mapping symmetric two-tensors to themselves and Q∗ for the
adjoint of Q with respect to

∫
M g 0

2 (h, k) vol(g).

hGP(Ric, k)− kGP(Ric, h)

=

∫ (
g 0

2

(
Q(h), k

)
− g 0

2

(
Q(k), h

)
+

1

2
g 0

2

(
P Ric, k

)
Tr(g−1h)− 1

2
g 0

2

(
P Ric, h

)
Tr(g−1k)

)
vol(g)

=

∫
g 0

2

(
Q(h)− Q∗(h) +

1

2
(P Ric).Tr(g−1h)− 1

2
g .g 0

2

(
P Ric, h

)
, k
)

vol(g).

We have proved:
Lemma. The Ricci vector field Ric is a gradient field for the
GP -metric if and only if the equation

2
(
Q(h)− Q∗(h)

)
+ (P Ric).Tr(g−1h)− g .g 0

2

(
P Ric, h

)
= 0,

with Q(h) = Qg (h) = Dg ,h(Pg Ricg ),

is satisfied for all g ∈ Met(M) and and all symmetric
(0

2

)
-tensors h.



None of the specific metrics mentioned here satisfies the Lemma in
general dimension. Note that the Lemma is trivially satisfied in
dimension dim(M) = 1. In dimension 2 the equation
Ricg = 1

2 Scalg holds and the operator Pgh = 2 Scal−1
g h satisfies

equation (1) on the open subset {g : Scalg 6= 0}. Generally,
equation (1) is satisfied if Pg Ricg = g , but this cannot hold on the
space of all metrics if dim(M) > 2.



On Rn: DiffA(Rn) acts on MetA(Rn)

For A = C∞c ,S,H∞, we consider here the right action

r : MetA(Rn)× DiffA(Rn)→ MetA(Rn)

MetA(Rn) := {g ∈ Met(Rn) : g − can ∈ ΓA(S2T ∗Rn)}

which is given by r(g , ϕ) = ϕ∗g , together with its partial mappings
r(g , ϕ) = rϕ(g) = rg (ϕ) = Pullg (ϕ).

Lemma. For g ∈ MetA(Rn) the isometry group Isom(g) has
trivial intersection with DiffA(Rn).
Proof. The Killing equation is an elliptic equation whose
coefficients are bounded away from 0. Thus each Killing vector
field grows linearly and cannot lie in XA(Rn).
Alternatively, since g falls towards the standard metric ḡ , each
isometry of g fall towards an isometry of ḡ , i.e., towards an
element of O(n). But O(n) ∩ DiffA(Rn) = {Id}.



Theorem. If n ≥ 2, the image of Pullḡ , i.e., the DiffA(Rn)-orbit
through ḡ , is the set Metflat

A (Rn) of all flat metrics in MetA(Rn).
Proof. Curvature Rϕ∗ḡ = ϕ∗R ḡ = ϕ∗0 = 0, so the orbit consists
of flat metrics. To see the converse, let g ∈ Metflat

A (Rn) be a flat
metric. Considering g as a symmetric positive matrix, let s :=

√
g .

We search for an orthogonal matrix valued function
u ∈ C∞(Rn,SO(n)) such that u.s = dϕ for a diffeomorphism ϕ.
Let σi :=

∑
j sijdx j be the rows of s. Then for the metric we have

g =
∑

i σi ⊗ σi , thus the column vector σ = (σ1, . . . , σn)t of
1-forms is a global orthonormal coframe. We want u.σ = dϕ, so
the 2-form d(u.σ) should vanish. But

0 = d(u.σ) = du ∧ σ + u.dσ ⇐⇒ 0 = u−1.du ∧ σ + dσ

This means that the o(n)-valued 1-form ω := u−1.du is the
connection 1-form for the Levi-Civita connection of the metric g .
Since g is flat, the curvature 2-form Ω = dω + ω ∧ ω vanishes.



We consider now the trivial principal bundle
pr1 : Rn × SO(n)→ Rn and the principal connection form pr∗1 ω on
it which is flat, so the horizontal distribution is integrable. Let
L(u0) ⊂ Rn × SO(n) be the horizontal leaf through the point
(0, u0) ∈ Rn × SO(n), then the restriction pr1 : L(u0)→ Rn is a
covering map and thus a diffeomorphism whose inverse furnishes
us the required u ∈ C∞(Rn, SO(n)) which is unique up to right
multiplication by u0 ∈ SO(n). The function u : Rn → SO(n) is
also called the Cartan development fo ω.



Thus u.σ = dϕ for for a column vector ϕ = (ϕ1, . . . , ϕn) of
functions which defines a smooth map ϕ : Rn → Rn. Since
dϕ = u.σ is everywhere invertible, ϕ is locally a diffeomorphism.
Since g falls to ḡ = In as a function in A, the same is true for σ
and thus also for u.σ since u is bounded. So d(ϕ− IdRn) is
asymptotically 0, thus ϕ− IdRn is asymptotically a constant matrix
A; here we need n ≥ 2. Replacing ϕ by ϕ− A we see that ϕ then
falls asymptotically towards IdRn . Thus ϕ is a proper mapping and
thus has closed image, which is also open since ϕ is still a local
diffeomorphism. Thus ϕ ∈ DiffA(Rn).
Finally, dϕt .dϕ = (u.σ)t .u.σ = σt .ut .u.σ = σt .σ = g . Note that
ϕ is unique in DiffA(Rn). This is also clear from the fact, that the
fiber of Pullḡ over ϕ∗ḡ consists of all isometries of ϕ∗ḡ which is
the group ϕ−1 ◦ (Rn n O(n)) ◦ ϕ ⊂ Diff(Rn) whose intersection
with DiffA(Rn) is trivial.



The pullback of the Ebin metric to DiffS(Rn)

The pullback of the Ebin metric to the diffeomorphism group is a
right invariant metric G given by

GId(X ,Y ) = 4

∫
Rn

Tr
(
(Sym dX ).(Sym dY )

)
dx =

∫
Rn

〈
X ,PY

〉
dx

Using the inertia operator P we can write the metric as∫
Rn

〈
X ,PY

〉
dx , with

P = −2(grad div +∆) .



The pullback of the general metric to DiffS(Rn)

We consider now a weak Riemannian metric on MetA(Rn) in its
general form

GP
g (h, k) =

∫
M

g 0
2 (Pgh, k) vol(g) =

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where Pg : Γ(S2T ∗M)→ Γ(S2T ∗M) is as described above. If the
operator P is equivariant for the action of DiffA(Rn) on
MetA(Rn), then the induced pullback metric (Pullḡ )∗GP on
DiffA(Rn) is right invariant:

GId(X ,Y ) = −4

∫
Rn

∂j(Pḡ Sym dX )ij .Y
idx (4)

Thus we we get the following formula for the corresponding inertia
operator (P̃X )i =

∑
j ∂j(Pḡ Sym dX )ij . Note that the pullback

metric (Pullḡ )∗GP on DiffA(Rn) is always of one order higher then
the metric GP on MetA(Rn).



The Sobolev metric of order p.

The Sobolev metric GP

GP
g (h, k) =

∫
Rn

Tr(g−1.((1 + ∆)ph).g−1.k) vol(g) .

The pullback of the Sobolev metric GP to the diffeomorphism
group is a right invariant metric G given by

GId(X ,Y ) = −2

∫
Rn

〈
(grad div +∆)(1−∆)pX ,Y

〉
dx .

Thus the inertia operator is given by

P̃ = −2(1−∆)p(∆ + grad div) = −2(1−∆)p(∆ + grad div) .

It is a linear isomorphism Hs(Rn)n → Hs−2p−2(Rn)n for every s.



Approximating the Euler equation of fluid mechanics
on DiffH∞(Rn)

On the Lie algebra of VF XH∞(Rn) = H∞(Rn)n we consider a
weak inner product of the form ‖v‖2

L =
∫
Rn〈Lv , v〉 dx where L is a

positive L2-symmetric (pseudo-) differential operator (inertia
operator). Leads to a right invariant metric on DiffH∞(Rn) whose
geodesic equation is

∂tϕ = u ◦ ϕ, ∂tu = − ad>u u, where∫
〈L(ad>u u), v〉 dx =

∫
〈L(u),−[u, v ]〉 dx

Condsider the momentum m = L(v) of a vector field, so that
〈v ,w〉L =

∫
〈m,w〉dx . Then the geodesic equation is of the form:

∂tm = −(v · ∇)m − div(v)m −m · (Dv)t

∂tmi = −
∑
j

(vj∂xj mi + ∂xj vj ·mi + mj∂xi vj)

v = K ∗m, where K is the matrix-valued Green function of L.



Suppose, the time dependent vector field v integrates to a flow ϕ
via

∂tϕ(x , t) = v(ϕ(x , t), t)

and we describe the momentum by a measure-valued 1-form

m̃ =
∑
i

midxi ⊗ (dx1 ∧ · · · ∧ dxn)

so that ‖v‖2
L =

∫
(v , m̃) makes intrinsic sense. Then the geodesic

equation is equivalent to: m̃ is invariant under the flow ϕ, that is,

m̃(·, t) = ϕ(·, t)∗m̃(·, 0),

whose infinitesimal version is the following, using the Lie derivative:

∂tm̃(·, t) = −Lv(·,t)m̃(·, t).



Because of this invariance, if a geodesic begins with momentum of
compact support, its momentum will always have compact
support; and if it begins with momentum which, along with all its
derivatives, has ‘rapid’ decay at infinity, that is it is in O(‖x‖−n)
for every n, this too will persist, because DiffS(Rn) ⊂ DiffH∞(Rn)
is a normal subgroup.
Moreover this invariance gives us a Lagrangian form of EPDiff:

∂tϕ(x , t) =

∫
Kϕ(·,t)(x , y)(ϕ(y , t)∗m̃(y , 0))

= Kϕ(·,t) ∗ (ϕ(·, t)∗m̃(·, 0))

where Kϕ(x , y) = K (ϕ(x), ϕ(y))



Aim of this talk: Solutions of Euler’s equation are limits of
solutions of equations in the EPDiff class with the operator:

Lε,η = (I − η2

p 4)p ◦ (I − 1
ε2∇ ◦ div), for any ε > 0, η ≥ 0.

All solutions of Euler’s equation are limits of solutions of these
much more regular EPDiff equations and give a bound on their
rate of convergence. In fact, so long as p > n/2 + 1, these EPDiff
equations have a well-posed initial value problem with unique
solutions for all time. Moreover, although L0,η does not make
sense, the analog of its Green’s function K0,η does make sense as
do the geodesic equations in momentum form. These are, in fact,
geodesic equations on the group of volume preserving
diffeomorphisms SDiff and become Euler’s equation for η = 0. An
important point is that so long as η > 0, the equations have
soliton solutions (called vortons) in which the momentum is a sum
of delta functions.



Relation to Euler’s equ. Oseledetz 1988

We use the kernel

Kij(x) = δijδ0(x) + ∂xi∂xj H

where H is the Green’s function of −∆. But K now has a rather
substantial pole at the origin. If Vn = Vol(Sn−1),

H(x) =

{
1

(n−2)Vn
(1/|x |n−2) if n > 2,

1
V2

log(1/|x |) if n = 2

so that, as a function

(M0)ij(x) := ∂xi∂xj H(x) =
1

Vn
·

nxixj − δij |x |2

|x |n+2
, if x 6= 0.

Convolution with any (M0)ij is still a Calderon-Zygmund singular
integral operator defined by the limit as ε→ 0 of its value outside
an ε-ball, so it is reasonably well behaved. As a distribution there
is another term:

∂xi∂xj H
distribution

= (M0)ij −
1

n
δijδ0



Pdiv=0 : m 7→ v =
(
m + ∂2(H)distr

)
=
(
n−1
n ·m + M0 ∗m

)
is the orthogonal projection of the space of vector fields m onto
the subspace of divergence free vector fields v , orthogonal in each
Sobolev space Hp, p ∈ Z≥0. (Hodge alias Helmholtz projection).
The matrix M0(x) has Rx as an eigenspace with eigenvalue
(n − 1)/Vn|x |n and Rx⊥ as an eigenspace with eigenvalue
−1/Vn|x |n. Let PRx and PRx⊥ be the orthonormal projections
onto the eigenspaces, then

Pdiv=0(m)(x) = n−1
n ·m(x)+

+
1

Vn
· lim
ε→0

∫
|y |≥ε

1

|y |n
(
(n − 1)PRy (m(x − y))− PRy⊥(m(x − y)

)
dy .



With this K , EPDiff in the variables (v ,m) is the Euler equation in
v with pressure a function of (v ,m). Oseledets’s form for Euler:

v = Pdiv=0(m)

∂tm = −(v · ∇)m −m · (Dv)t

Let m̃ =
∑

i midxi be the 1-form associated to m. Since div v = 0,
we can use m̃ instead of

∑
i midxi ⊗ dx1 ∧ . . . dxn. Integrated form:

∂tϕ = Pdiv=0(m) ◦ ϕ
m̃(·, t) = ϕ(·, t)∗m̃(·, 0)

This uses the variables v ,m instead of v and pressure.
Advantage: m, like vorticity, is constant when transported by the
flow. m determines the vorticity the 2-form ω = d(

∑
i vidxi ),

because v and m differ by a gradient, so ω = dm̃ also. Thus:
vorticity is constant along flows follows from the same fact for
momentum 1-form m̃.



However, these equ. are not part of the true EPDiff framework
because the operator K = Pdiv=0 is not invertible and there is no
corresponding differential operator L.
In fact, v does not determine m as we have rewritten Euler’s
equation using extra non-unique variables m, albeit ones which
obey a conservation law so they may be viewed simply as extra
parameters.



Approximationg Euler by EPDiff

Replace the Green’s function H of −∆ by the Green’s function Hε

of the positive ε2I −4 for ε > 0 (whose dimension is length−1).
The Green’s function is be given explicitly using the ‘K’ Bessel
function via the formula

Hε(x) = cnε
n−2|εx |1−n/2Kn/2−1(|εx |)

for a suitable constant cn independent of ε. Then we get the
modified kernel

(Kε)ij = δijδ0 + (∂xi∂xj Hε)distr

This has exactly the same highest order pole at the origin as K did
and the second derivative is again a Calderon-Zygmund singular
integral operator minus the same delta function. The main
difference is that this kernel has exponential decay at infinity, not
polynomial decay. By weakening the requirement that the velocity
be divergence free, the resulting integro-differential equation
behaves much more locally, more like a hyperbolic equation rather
than a parabolic one.



The corresponding inverse is the differential operator

Lε = I − 1
ε2∇ ◦ div

v = Kε ∗m, m = Lε(v)

‖v‖2
Lε =

∫
〈v , v〉+ 1

ε2 div(v). div(v)dx

Geodesic equation:

∂t(vi ) = (Kε)ij ∗ ∂t(mj)

= −(Kε)ij ∗ (vkvj ,k)− vi div(v)− 1
2 (Kε)ij ∗

(
|v(x)|2 + ( div(v)

ε )2
)
,j

Curiously though, the parameter ε can be scaled away. That is, if
v(x , t),m(x , t) is a solution of EPDiff for the kernel K1, then
v(εx , εt),m(εx , εt) is a solution of EPDiff for Kε.



Regularizing more

Compose Lε with a scaled version of the standard regularizing
kernel (I −4)p to get

Lε,η = (I − η2

p 4)p ◦ (I − 1
ε2∇ ◦ div)

Kε,η : = Lε,η
−1 = G (p)

η ∗ Kε

where G
(p)
η is the Green’s function of (I − η2

p 4)p and is again given

explicitly by a ‘K’-Bessel function dp,nη
−n|x |p−n/2Kp−n/2(|x |/η).

For p � 0, the kernel converges to a Gaussian with variance
depending only on η, namely (2

√
πη)−ne−|x |

2/4η2
. This follows

because the Fourier transform takes G
(p)
η to

(
1 + η2|ξ|2

p

)−p
, whose

limit, as p →∞, is e−η
2|ξ|2 . These approximately Gaussian kernels

lie in Cq if q ≤ p − (n + 1)/2.
So long as the kernel is in C 1, it is known that EPDiff has
solutions for all time, as noted first by A.Trouve and L.Younes.



Theorem. Computing G
(p)
η ∗ Kε.

Let F (x) = f (|x |) be any integrable C 2 radial function on Rn.
Assume n ≥ 3. Define:

HF (x) =

∫
Rn

min
(

1
|x |n−2 ,

1
|y |n−2

)
F (y)dy

=
1

|x |n−2

∫
|y |≤|x |

F (y)dy +

∫
|y |≥|x |

F (y)

|y |n−2
dy

Then HF is the convolution of F with 1
|x |n−2 , is in C 4 and:

∂i (HF )(x) = −(n − 2)
xi
|x |n

∫
|y |≤|x |

F (y)dy

∂i∂j(HF )(x) = (n − 2)

(
nxixj − δij |x |2

|x |n+2

∫
|y |≤|x |

F (y)dy − Vn
xixj
|x |2

F (x)

)

If n = 2, the same holds if you replace 1/|x |n−2 by log(1/|x |) and
omit the factors (n − 2) in the derivatives.



no L K0,0 = Pdiv=0 = δijδ0 + (∂i∂jH)distr

no L K0,η = G
(p)
η ∗ Pdiv=0 – see above

Lε,0 = I − 1
ε2∇ ◦ div Kε,0 = δijδ0 + ∂i∂jHε

Lε,η =
(

I − η2

p 4
)p
◦ Kε,η = δijG

(p)
η + ∂i∂j(G

(p)
η ∗ Hε)

◦
(
I − 1

ε2∇ ◦ div
)

Theorem: Let ε ≥ 0, η > 0, p ≥ (n + 3)/2 and K = Kε,η be the
corresponding kernel. For any vector-valued distribution m0 whose
components are finite signed measures, consider the Lagrangian
equation for a time varying C 1-diffeomorphism ϕ(·, t) with
ϕ(x , 0) ≡ x :

∂tϕ(x , t) =

∫
K (ϕ(x , t)− ϕ(y , t))(Dϕ(y , t))−1,>m0(y)dy .

Here Dϕ is the spatial derivative of ϕ. This equation has a unique
solution for all time t.



Proof: The Eulerian velocity at ϕ is:

Vϕ(x) =

∫
K (x − ϕ(y))(Dϕ(y))−1,>m0(y)dy

and Wϕ(x) = Vϕ(ϕ(x)) is the velocity in ‘material’ coordinates.
Note that because of our assumption on m0, if ϕ is a
C 1-diffeomorphism, then Vϕ and Wϕ are C 1 vector fields on Rn; in
fact, they are as differentiable as K is, for suitably decaying m.
The equation can be viewed as a the flow equation for the vector
field ϕ 7→Wϕ on the union of the open sets

Uc =
{
ϕ ∈ C 1(Rn)n : ‖ Id−ϕ‖C1 < 1/c , det(Dϕ) > c

}
,

where c > 0. The union of all Uc is the group DiffC1
b
(Rn) of all

C 1-diffeomorphisms which, together with their inverses, differ from
the identity by a function in C 1(Rn)n with bounded C 1-norm. We
claim this vector field is locally Lipschitz on each Uc :

‖Wϕ1 −Wϕ2‖C1 ≤ C .‖ϕ1 − ϕ2‖C1

where C depends only on c : Use that K is uniformly continuous
and use ‖Dϕ−1‖ ≤ ‖Dϕ‖n−1/| det(Dϕ)|.



As a result we can integrate the vector field for short times in
DiffC1

b
(Rn). But since (Dϕ(y , t))−1,>m0(y) is then again a signed

finite Rn-valued measure,∫
Vϕ(·,t)(x)(Dϕ(y , t))−1,>m0(y)dx = ‖Vϕ(·,t)‖Lε,η

is actually finite for each t. Using the fact that in EPDiff the
Lε,η-energy ‖Vϕ(·,t)‖Lε,η of the Lε,η-geodesic is constant in t, we
get a bound on the norm ‖Vϕ(·,t)‖Hp , depending of course on η
but independent of t, hence a bound on ‖Vϕ(·,t)‖C1 . Thus
‖ϕ(·, t)‖C0 grows at most linearly in t. But
∂tDϕ = DWϕ = DVϕ ·Dϕ which shows us that Dϕ grows at most
exponentially in t. Hence det Dϕ can shrink at worst exponentially
towards zero, because ∂t det(Dϕ) = Tr(Adj(Dϕ).∂tDϕ). Thus for
all finite t, the solution ϕ(·, t) stays in a bounded subset of our
Banach space and the ODE can continue to be solved. QED.



Lemma: If η ≥ 0 and ε > 0 are bounded above, then the norm

‖v‖2
k,ε,η =

∑
|α|≤k

∫
〈DαLε,ηv ,Dαv〉dx

is bounded above and below by the metric, with constants
independent of ε and η:

‖v‖2
Hk + 1

ε2 ‖div(v)‖2
Hk +

∑
k+1≤|α|≤k+p

η2(|α|−k)

∫
|Dαv |2+ 1

ε2 |Dαdiv(v)|2

Main estimate: Assume k is sufficiently large, for instance
k ≥ (n + 2p + 4) works, then the velocity field of a solution
satisfies:

|∂t
(
‖v‖2

k,ε,η

)
| ≤ C .‖v‖3

k,ε,η

where, so long ε and η are bounded above, the constant C is
independent of ε and η.



Theorem: Fix k , p, n with p > n/2 + 1, k ≥ n + 2p + 4 and
assume (ε, η) ∈ [0,M]2 for some M > 0. Then there are constants
t0,C such that for all initial v0 ∈ Hk+p+1, there is a unique
solution vε,η(x , t) of EPDiff (including the limiting Euler case) for
t ∈ [0, t0]. The solution vε,η(·, t) ∈ Hk+p+1 depends continuously
on ε, η ∈ [0,M]2 and satisfies ‖vε,η(·, t)‖k,ε,η < C for all t ∈ [0, t0].
Theorem: Take any k and M and any smooth initial velocity
v(·, 0). Then there are constants t0,C such that Euler’s equation
and (ε, 0)-EPDiff have solutions v0 and vε respectively for
t ∈ [0, t0] and all ε < M and these satisfy:

‖v0(·, t)− vε(·, t)‖Hk ≤ Cε.

Theorem: Let ε > 0. Take any k and M and any smooth initial
velocity v(·, 0). Then there are constants t0,C such that
(ε, 0)-EPDiff and (ε, η)-EPDiff have solutions v0 and vη
respectively for t ∈ [0, t0] and all ε, η < M and these satisfy:

‖v0(·, t)− vη(·, t)‖Hk ≤ Cη2.



Vortons: Soliton-like solutions via landmark theory

We have a C 1 kernel, so we can consider solutions in which
momentum m is supported in a finite set {P1, · · · ,PN}, so that
the components of the momentum field are given by
mi (x) =

∑
a maiδ(x − Pa). The support is called the set of

landmark points and in this case, EPDiff reduces to a set of
Hamiltonian ODE’s based on the kernel K = Kε,η, ε ≥ 0, η > 0:

Energy E =
∑
a,b

maiKij(Pa − Pb)mjb

dPai

dt
=
∑
b,j

Kij(Pa − Pb)mbj

dmai

dt
= −

∑
b,j ,k

∂xi Kjk(Pa − Pb)majmbk

where a, b enumerate the points and i , j , k the dimensions in Rn.
These are essentially Roberts’ equations from 1972.



One landmark point

Its momentum must be constant hence so is its velocity. Therefore
the momentum moves uniformly in a straight line ` from −∞ to
+∞.
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Momentum is tranformed to vortex-like velocity field by
kernel K0,ε

The dipole given by the kernel K0,η in dimension 2.



Streamlines and MatLab’s ‘coneplot’ to visualize the vector field
given by the x1-derivative of the kernel K0,1 times the vector
(1, 2, 0).



Two landmark points
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Level sets of energy for the collision of two vortons with m = 0,
η = 1, ω = 1. The coordinates are ρ = |δP| and |δm|, and the
state space is the double cover of the area above and right of the
heavy black line, the two sheets being distinguished by the sign of
〈δm, δP〉. The heavy black line which is the curve ρ · |δm| = ω
where 〈δm, δP〉 = 0. Each level set is a geodesic. If they hit the
black line, they flip to the other sheet and retrace their path.
Otherwise ρ goes to zero at one end of the geodesic.



Geodesics in the δP plane all starting at the point marked by an X
but with m = m1 + m2 =const. along the y -axis varying from 0 to
10. Here η = 1, the initial point is (5, 0) and the initial momentum
is (−3, .5). Note how the two vortons repel each other on some
geodesics and attract on others. A blow up shows the spiraling
behavior as they collapse towards each other.



The generalized Euler flow on the space immersions

Let now (N, ḡ) be a Riemannian manifold (of bounded geometry),
and Imm(M,N) the space of all immersions M → N. For f ∈ Imm
we have:

I Tf Imm = Γ(f ∗TN) = {h : M → TN : πN ◦ h = f }.
I Tf Imm 3 h = Tf .h> + h⊥ ∈ Tf .X(M)⊕ Γ(Nor(f ))

I g = f ∗ḡ be the induced metric on M.

I vol(g) = vol(f ∗ḡ) the induced volume form.

I ∇g , ∇ḡ , S = S f ∈ Γ(S2T ∗M ⊗ Nor(f )) second fund. form.

I Trg (S) ∈ Γ(Nor(f )) mean curvature.



The differential of the pullback metric

Imm→ Γ(S2
>0T ∗M), f 7→ g = f ∗ḡ , is given by

D(f ,h)g = 2 Sym ḡ(∇h,Tf ) = −2ḡ(h⊥,S) + 2 Sym∇(h>)[

= −2ḡ(h⊥, S) + Lh>g .

The differential of the volume density

Imm→ Vol(M), f 7→ vol(g) = vol(f ∗ḡ) is given by

D(f ,h) vol(g) = Trg
(
ḡ(∇h,Tf )

)
vol(g)

=
(

divg (h>)− ḡ
(
h⊥,Trg (S)

))
vol(g).



Let us fix a volume density on M.
Theorem. [Mathieu Molitor 2012, for embeddings] The space

Immµ,Tr(S)(M,N) =

= {f ∈ Emb(M,N) : vol(f ∗ḡ) = µ,Tr(S f ) nowhere 0}

of volume preserving immersions with nowhere vanishing mean
curvature is a tame Fréchet submanifold of Imm(M,N).

The proof uses the Hamilton-Nash-Moser implicit function
theorem.



Some weak Riemannian metrics on spaces of immersions

For f ∈ Imm(M,N) and h, k, · · · ∈ Tf Imm(M,N);

G 0
f (h, k) =

∫
M

ḡ(h, k) vol(f ∗ḡ), the L2 −metric.

Geodesic distance vanishes for G 0.

G ε
f (h, h) =

∫
M

(
ḡ(h, h) +

1

ε2

(
divg (h>)− ḡ(h⊥,Trg S)

)2
)

vol(f ∗ḡ)

=

∫
M

ḡ
(

Lε,0h, h
)

vol(f ∗ḡ), where

Lε,0 = . . .

is a linear differential operator Tf Imm(M,N)→ Tf Imm(M,N) of
order 2 which depends smoothly on f . It is not elliptic.
Theorem. Geodesic distance is positive for the weak Riemannian
metric G ε,0 on each connected component of Imm(M,N).



Now we add a regularizing term of order 2p to the metric, using a
parameter η > 0,

G ε,η
f (h, h) =

∫
M

ḡ
(

Lε,ηh, h
)

vol(f ∗ḡ), where

Lε,η = Lε,0 +
η2p

pp
(∆g )p

For p ≥ 2 the differential operator Lε,η is elliptic.
Let Kε and Kε,η be the kernels (inverses) for the operators Lε and
Lε,η.



Theorem. [Core statement due to Mathieu Molitor 2012, for
embeddings]
For f ∈ Imm(M,N) and g = f ∗ḡ let us denote by

Tf ,vol(g)Imm(M,N) :=

= {h ∈ Tf Imm(M,N) : divg (h>)− ḡ(h⊥,Tr(S f )) = 0}.

Then for each h ∈ Tf Imm(M,N) there exist

PTf ,vol(g)Imm(h) = hvol(g) ∈ Tf ,vol(g)Imm(M,N)

PC∞(M)(h) = p = ph ∈ C∞(M)

such that

h = hvol(g) + Tf . gradg (ph) + ph.Tr(S).

Moreover, hvol(g) is uniqely determined by this equation. But ph is
unquely determined only if Tr(S f ) 6= 0 and is unique up to an
additive constant if Tr(S f ) = 0.



This constant can be chosen in such way that the mappings

PTf ,vol(g)Imm : Tf Imm(M,N)→ Tf Imm(M,N)

PC∞(M) : Tf Imm(M,N)→ C∞(M)

are both parts of smooth fiber linear homomorphisms of vector
bundles over Imm(M,N).
If M = N and f = Id this is the Helmholtz-Hodge decomposition
of vector fields X(M) = Xdivg=0(M)⊕ gradg (C∞(M)).



Theorem: Let ε ≥ 0, η > 0, p ≥ (dim(M) + 3)/2. Then the
geodesic equation for the metric G ε,η on Imm(M,N) is globally
wellposed: exp : T Imm→ Imm is everywhere defined and induces
a diffeomorphisms (πImm, exp) : T Imm→ Imm× Imm from a
neighbourhood of the zero section to a neighbourhood of the
diagonal.
Local wellposedness follows from [BHM2012]. Global
wellposedness is NOT yet proved in general, only for the case
Imm(S1,R2), in [BMM2014].
Theorem: Let ε ≥ 0 > 0. Then the geodesic equation for the
metric G ε on Imm(M,N) is locally wellposed:
Not yet proved.



Robust Infinite Dimensional Riemannian manifolds,
Sobolev Metrics on Diffeomorphism Groups, and the
Derived Geometry of Shape Spaces

Based on: [Micheli, M, Mumford: Sobolev Metrics on Diffeomorphism

Groups and the Derived Geometry of Spaces of Submanifolds. Izvestiya:

Mathematics 77:3 (2013), 541-570.]



Recall: Geodesics of a right invariant metric

Let G be a regular Lie group with Lie algebra g. Let
γ = 〈 , 〉 : g× g→ R be a positive definite bounded weak inner
product; so γ̌ : g→ g∗ is injective. Then

γx(ξ, η) = 〈T (µx
−1

) · ξ,T (µx
−1

) · η)〉 = 〈κ(ξ), κ(η)〉

is a right invariant weak Riemannian metric on G .
Let g : [a, b]→ G be a smooth curve. In terms of its right
logarithmic derivative u : [a, b]→ g,
u(t) := g∗κ(∂t) = Tg(t)(µg(t)−1

) · g ′(t) = g ′(t).g(t)−1, the
geodesic equation is

γ̌(ut) = − ad(u)∗γ̌(u)

Condition for the existence of the geodesic equation:

X 7→ γ̌−1(ad(X )∗γ̌(X ))

is bounded quadratic g→ g.



We treated in detail a situation where ad(X )∗γ̌(X ) ∈ γ̌(g) for all
X ∈ g, but the more general [Arnold 1966] condition
ad(X )∗γ̌(Y ) ∈ γ̌(g) for all X ,Y ∈ g does not hold.
[Bauer, Bruveris, M: The homogeneous Sobolev metric of order one
on diffeomorphism groups on the real line. Journal of Nonlinear
Science. doi:10.1007/s00332-014-9204-y. arXiv:1209.2836]

Note also the geodesic equation for the momentum α = γ̌(u):

αt = − ad(γ−1(α))∗ α = − ad(α])∗α. = − ad(u)∗ α.



The covariant derivative for a right invariant metric

The right trivialization, or framing, (πG , κ) : TG → G × g induces
the isomorphism R : C∞(G , g)→ X(G ), given by
R(X )(x) := RX (x) := Te(µx) · X (x), for X ∈ C∞(G , g) and
x ∈ G . Here X(G ) := Γ(TG ) denote the Lie algebra of all vector
fields. For the Lie bracket and the Riemannian metric we have

[RX ,RY ] = R(−[X ,Y ]g + dY · RX − dX · RY ),

R−1[RX ,RY ] = −[X ,Y ]g + RX (Y )− RY (X ),

γx(RX (x),RY (x)) = γ(X (x),Y (x)) , x ∈ G .

In the sequel we shall compute in C∞(G , g) instead of X(G ). In
particular, we shall use the convention

∇XY := R−1(∇RX
RY ) for X ,Y ∈ C∞(G , g).

to express the Levi-Civita covariant derivative.



Lemma. Assume that for all ξ ∈ g the element ad(ξ)∗γ̌(ξ) ∈ g∗ is
in the image of γ̌ : g→ g∗ and that ξ 7→ γ̌−1 ad(ξ)∗γ̌(ξ) is
bounded quadratic (equivalently, smooth). Then the Levi-Civita
covariant derivative of the metric γ exists and is given for any
X ,Y ∈ C∞(G , g) in terms of the isomorphism R by

∇XY = dY .RX + ρ(X )Y − 1
2 ad(X )Y ,

where

ρ(ξ)η = 1
4 γ̌
−1
(

ad∗ξ+η γ̌(ξ + η)− ad∗ξ−η γ̌(ξ − η)
)

= 1
2 γ̌
−1
(

ad∗ξ γ̌(η) + ad∗η γ̌(ξ)
)

is the polarized version. ρ : g→ L(g, g) is bounded and we have
ρ(ξ)η = ρ(η)ξ. We also have:

γ
(
ρ(ξ)η, ζ

)
= 1

2γ(ξ, ad(η)ζ) + 1
2γ(η, ad(ξ)ζ) ,

γ(ρ(ξ)η, ζ) + γ(ρ(η)ζ, ξ) + γ(ρ(ζ)ξ, ξ) = 0 .



The curvature

For X ,Y ∈ C∞(G , g) we have

[RX , ad(Y )] = ad(RX (Y )) and [RX , ρ(Y )] = ρ(RX (Y )).

The Riemannian curvature is then computed by

R(X ,Y ) = [∇X ,∇Y ]−∇−[X ,Y ]g+RX (Y )−RY (X )

= [RX + ρX − 1
2 adX ,RY + ρY − 1

2 adY ]

− R(−[X ,Y ]g + RX (Y )− RY (X ))

− ρ(−[X ,Y ]g + RX (Y )− RY (X ))

+ 1
2 ad(−[X ,Y ]g + RX (Y )− RY (X ))

= [ρX , ρY ] + ρ[X ,Y ]g −
1
2 [ρX , adY ] + 1

2 [ρY , adX ]− 1
4 ad[X ,Y ]g

which visibly is a tensor field.



Sectional Curvature. For a linear 2-dim. subspace P ⊆ g spanned
by X ,Y ∈ g, the sectional curvature is defined as:

k(P) = −
γ
(
R(X ,Y )X ,Y

)
‖X‖2

γ‖Y ‖2
γ − γ(X ,Y )2

.

For the numerator we get:

γ
(
R(X ,Y )X ,Y

)
= γ(ρXX , ρY Y )− ‖ρXY ‖2

γ + 3
4‖[X ,Y ]‖2

γ

− 1
2γ(X , [Y , [X ,Y ]]) + 1

2γ(Y , [X , [X ,Y ]]).

= γ(ρXX , ρY Y )− ‖ρXY ‖2
γ + 3

4‖[X ,Y ]‖2
γ

− γ(ρXY , [X ,Y ]]) + γ(Y , [X , [X ,Y ]]) .

If the adjoint ad(X )> : g→ g exists, this is easily seen to coincide
with Arnold’s original formula [Arnold1966],

γ(R(X ,Y )X ,Y ) = −1
4‖ ad(X )>Y + ad(Y )>X‖2

γ

+ γ(ad(X )>X , ad(Y )>Y )

+ 1
2γ(ad(X )>Y − ad(Y )>X , ad(X )Y ) + 3

4‖[X ,Y ]‖2
γ .



A covariant formula for curvature and its relations to
O’Neill’s curvature formulas.

Mario Micheli in his 2008 thesis derived the the coordinate version
of the following formula for the sectional curvature expression,
which is valid for closed 1-forms α, β on a Riemannian manifold
(M, g), where we view g : TM → T ∗M and so g−1 is the dual
inner product on T ∗M. Here α] = g−1(α).

g
(
R(α], β])α], β]

)
=

− 1
2α

]α](‖β‖2
g−1)− 1

2β
]β](‖α‖2

g−1) + 1
2 (α]β] + β]α])g−1(α, β)(

last line = −α]β([α], β]]) + β]α([α], β]]])
)

− 1
4‖d(g−1(α, β))‖2

g−1 + 1
4 g−1

(
d(‖α‖2

g−1), d(‖β‖2
g−1)

)
+ 3

4

∥∥[α], β]]
∥∥2

g



Mario’s formula in coordinates

Assume that α = αidx i , β = βidx i where the coefficients αi , βi are
constants, hence α, β are closed.
Then α] = g ijαi∂j , β

] = g ijβi∂j and we have:

4g
(
R(α], β])β], α]

)
= (αiβk − αkβi ) · (αjβl − αlβj)·

·
(

2g is(g jtgkl
,t ),s − 1

2 g ij
,sg stgkl

,t − 3g isgkp
,s gpqg jtg lq

,t

)



Covariant curvature and O’Neill’s formula, finite dim.

Let p : (E , gE )→ (B, gB) be a Riemannian submersion:
For b ∈ B and x ∈ Eb := p−1(b) the gE -orthogonal splitting

TxE = Tx(Ep(x))⊕ Tx(Ep(x))⊥,gE =: Tx(Ep(x))⊕ Horx(p).

Txp : (Horx(p), gE )→ (TbB, gB)

is an isometry. A vector field X ∈ X(E ) is decomposed as
X = X hor + X ver into horizontal and vertical parts. Each vector
field ξ ∈ X(B) can be uniquely lifted to a smooth horizontal field
ξhor ∈ Γ(Hor(p)) ⊂ X(E ).



O’Neill’s formula says that for any two horizontal vector fields
X ,Y on E and any x ∈ E , the sectional curvatures of E and B are
related by:

gB
p(x)(RB(p∗(Xx), p∗(Yx))p∗(Yx), p∗(Xx))

= gE
x (RE (Xx ,Yx)Yx ,Xx) + 3

4‖[X ,Y ]ver‖2
x .

Comparing Mario’s formula on E and B gives an immediate proof
of this fact. Namely: If α ∈ Ω1(B), then the vector field (p∗α)] is
horizontal and we have Tp ◦ (p∗α)] = α] ◦ p. Therefore (p∗α)]

equals the horizontal lift (α])hor. For each x ∈ E the mapping
(Txp)∗ : (T ∗p(x)B, g−1

B )→ (T ∗x E , g−1
E ) is an isometry. We also use:

‖[(p∗α)], (p∗β)]]hor‖2
gE

= p∗‖[α], β]]‖2
gB



Requirements for infinite dimensional manifolds

Let (M, g) be a weak Riemannian manifold, modeled on
convenient locally convex vector spaces: Weak: gx : TxM → T ∗x M
is only injective. The image g(TM) ⊂ T ∗M is called the smooth
cotangent bundle associated to g . Now Ω1

g (M) := Γ(g(TM)) and

α] = g−1α ∈ X(M),X [ = gX are as above.
d : Ω1

g (M)→ Ω2(M) = Γ(L2
skew(TM;R)).

Existence of the Levi-Civita covariant derivative is equivalent to:
The metric itself admits symmetric gradients with respect to itself.
Locally: If M is c∞-open in a convenient vector space VM . Then:

Dx ,Xgx(X ,Y ) = gx(X , grad1 g(x)(X ,Y ))

= gx(grad2 g(x)(X ,X ),Y )

where grad1 g , sym grad2 g : M × VM × VM → VM given by
(x ,X ) 7→ grad1,2 g(x)(X ,X ) are smooth and quadratic in X ∈ VM .
Then the rest of the derivation of Mario’s formula goes through
and the final formula for curvature holds in both the finite and
infinite dimensional cases.



Robust weak Riemannian manifolds

Another problem: Some constructions lead to vector fields whose
values do not lie in TxM, but in the Hilbert space completion TxM
with respect to the inner product gx . We need that

⋃
x∈M TxM

forms a smooth vector bundle over M. In a coordinate chart on
open U ⊂ M, TM|U is a trivial bundle U × V and all the inner
products gx , x ∈ U define inner products on the same topological
vector space V . They all should be bounded with respect to each
other, so that the completion V of V with respect to gx does not
depend on x and

⋃
x∈U TxM ∼= U × V . This means that⋃

x∈M TxM forms a smooth vector bundle over M with
trivialisations the linear extensions of the trivialisations of the
bundle TM → M. Chart changes should respect this.
Definition A convenient weak Riemannian manifold (M, g) will be
called a robust Riemannian manifold if
• The Levi-Civita convariant derivative of the metric g exists: The
symmetric gradients gradients should exist.
• The completions TxM form a vector bundle as above.



Covariant curvature and O’Neill’s formula

Some subtle considerations lead to:
Theorem. Let p : (E , gE )→ (B, gB) be a Riemann submersion
between infinite dimensional robust Riemann manifolds. Then for
closed 1-forms α, β ∈ Ω1

gB
(B) O’Neill’s formula holds in the form:

gB
(
RB(α], β])β], α]

)
= gE

(
RE ((p∗α)], (p∗β)])(p∗β)], (p∗α)]

)
+ 3

4‖[(p∗α)], (p∗β)]]ver‖2
gE



Semilocal version of Mario’s formula, force, and stress

Let (M, g) be a robust Riemannian manifold, x ∈ M,
α, β ∈ gx(TxM). Assume we are given local smooth vector fields
Xα and Xβ such that:

1. Xα(x) = α](x), Xβ(x) = β](x),

2. Then α] − Xα is zero at x hence has a well defined derivative
Dx(α] − Xα) lying in Hom(TxM,TxM). For a vector field Y
we have Dx(α]−Xα).Yx = [Y , α]−Xα](x) = LY (α]−Xα)|x .
The same holds for β.

3. LXα(α) = LXα(β) = LXβ (α) = LXβ (β) = 0,

4. [Xα,Xβ] = 0.

Locally constant 1-forms and vector fields will do. We then define:

F(α, β) : = 1
2 d(g−1(α, β)), a 1-form on M called the force,

D(α, β)(x) : = Dx(β] − Xβ).α](x)

= d(β] − Xβ).α](x), ∈ TxM called the stress.

=⇒ D(α, β)(x)−D(β, α)(x) = [α], β]](x)



Then in the notation above:

g
(
R(α], β])β], α]

)
(x) = R11 + R12 + R2 + R3

R11 = 1
2

(
L2
Xα(g−1)(β, β)− 2LXαLXβ (g−1)(α, β)

+ L2
Xβ

(g−1)(α, α)
)

(x)

R12 = 〈F(α, α),D(β, β)〉+ 〈F(β, β),D(α, α)〉
− 〈F(α, β),D(α, β) +D(β, α)〉

R2 =
(
‖F(α, β)‖2

g−1 −
〈
F(α, α)),F(β, β)

〉
g−1

)
(x)

R3 = −3
4‖D(α, β)−D(β, α)‖2

gx



Diffeomorphism groups

Let N be a manifold. We consider the following regular Lie groups:

Diff(N), the group of all diffeomorphisms of N if N is compact.
Diffc(N), the group of diffeomorphisms with compact support.

If (N, g) is a Riemannian manifold of bounded geometry, we also
may consider:

DiffS(N), the group of all diffeos which fall rapidly to the identity.
DiffH∞(N), the group of all diffeos which are modelled on the
space ΓH∞(TM), the intersection of all Sobolev spaces of vector
fields.

The Lie algebras are the spaces XA(N) of vector fields, where
A ∈ {C∞c ,S,H∞}, with the negative of the usual bracket as Lie
bracket.



Riemann metrics on Diff(N).

The concept of robust Riemannian manifolds, and also the
reproducing Hilbert space approach in Chapter 12 of [Younes 2010]
leads to:
We construct a right invariant weak Riemannian metric by
assuming that we have a Hilbert space H together with two
bounded injective linear mappings

XS(N) = ΓS(TN)
j1−−→ H j2−−→ ΓC2

b
(TN) (1)

where ΓC2
b
(TN) is the Banach space of all C 2 vector fields X on N

which are globally bounded together with ∇gX and ∇g∇gX with
respect to g , such that j2 ◦ j1 : ΓS(TN)→ ΓC2

b
(TN) is the

canonical embedding. We also assume that j1 has dense image.



Dualizing the Banach spaces in equation (1) and using the
canonical isomorphisms between H and its dual H′ – which we call
L and K , we get the diagram:

ΓS(TN)� _
j1
��

ΓS′(T ∗N)

H� _
j2
��

L // H′
?�

j ′1

OO

K
oo

ΓC2
b
(TN) ΓM2(T ∗N)

?�

j ′2

OO

Here ΓS′(T ∗N), the space of 1-co-currents, is the dual of the
space of smooth vector fields ΓS(TN) = XS(N). It contains the
space ΓS(T ∗N ⊗ vol(N)) of smooth measure valued cotangent
vectors on N, and also the bigger subspace of second derivatives of
finite measure valued 1-forms on N, written as ΓM2(T ∗N) which is
part of the dual of ΓC2

b
(TN). In what follows, we will have many

momentum variables with values in these spaces.



The restriction of L to XS(N) via j1 gives us a positive definite
weak inner product on XS(N) which may be defined by a
distribution valued kernel – which we also write as L:

〈 , 〉L : XS(N)× XS(N)→ R, defined by

〈X ,Y 〉L = 〈j1X , j1Y 〉H =

∫∫
N×N

(X (y1)⊗ Y (y2), L(y1, y2)),

where L ∈ ΓS′(pr∗1(T ∗N)⊗ pr∗2(T ∗N))

Extending this weak inner product right invariantly over DiffS(N),
we get a robust weak Riemannian manifold.
Given an operator L with appropriate properties we can reconstruct
the Hilbert space H with the two bounded injective mappings j1, j2.



In the case (called the standard case below) that N = Rn and that

〈X ,Y 〉L =

∫
Rn

〈(1− A∆)lX ,Y 〉 dx

we have

L(x , y) =
( 1

(2π)n

∫
ξ∈Rn

e i〈ξ,x−y〉(1 + A|ξ|2)ldξ
)

n∑
i=1

(dui |x ⊗ dx)⊗ (dui |y ⊗ dy)

where dξ, dx and dy denote Lebesque measure, and where (ui ) are
linear coordinates on Rn. Here H is the space of Sobolev H l vector
fields on N.



Construction of the reproducing kernel K

The inverse map K of L is given by a C 2 tensor, the reproducing
kernel. Namely, ΓM2(T ∗N) contains the measures supported at
one point x defined by an element αx ∈ T ∗x N. Then j2(K (j ′2(αx)))
is given by a C 2 vector field Kαx on N which satisfies:

〈Kαx ,X 〉H = αx(j2X )(x) for all X ∈ H, αx ∈ T ∗x N. (*)

The map αx 7→ Kαx is weakly C 2
b , thus by [KM97, theorem 12.8]

strongly Lip1. Since evy ◦K : T ∗x N 3 αx 7→ Kαx (y) ∈ TyN is linear
we get a corresponding element
K (x , y) ∈ L(T ∗x N,TyN) = TxN ⊗ TyN with
K (y , x)(αx) = Kαx (y).
Using (*) twice we have (omitting j2)

βy .K (y , x)(αx) = 〈K ( , x)(αx),K ( , y)(βy )〉H = αx .K (x , y)(βy )

so that:
I K (x , y)> = K (y , x) : T ∗y N → TxN,
I K ∈ ΓC2

b
(pr1

∗ TN ⊗ pr∗2 TN).



Moreover the operator K defined directly by integration

K : ΓM2(T ∗N)→ ΓS(TN)

K (α)(y2) =

∫
y1∈N

(K (y1, y2), α(y1)).

is the same as the inverse K to L.
We will sometimes use the abbreviations 〈α|K |, |K |β〉 and 〈α|K |β〉
for the contraction of the vector values of K in its first and second
variable against 1-forms α and β. Often these are measure valued
1-forms so after contracting, there remains a measure in that
variable which can be integrated.



Thus the C 2 tensor K determines L and hence H and hence the
whole metric on DiffS(N). It is tempting to start with the tensor
K , assuming it is symmetric and positive definite in a suitable
sense. But rather subtle conditions on K are required in order that
its inverse L is defined on all infinitely differentiable vector fields.
For example, if N = R, the Gaussian kernel K (x , y) = e−|x−y |

2

does not give such an L.
In the standard case we have

K (x , y) = Kl(x − y)
n∑

i=1

∂

∂x i
⊗ ∂

∂y i
,

Kl(x) =
1

(2π)n

∫
ξ∈Rn

e i〈ξ,x〉

(1 + A|ξ|2)l
dξ

where Kl is given by a classical Bessel function of differentiability
class C 2l .



The zero compressibility limit

The case originally studied by Arnold – the L2 metric on volume
preserving diffeomorphisms – is not included in the family of
metrics described above. But they do include metrics which have
this case as a limit. Taking N = Rn and starting with the standard
Sobolev metric, we can add a divergence term with a coefficient B:

〈X ,Y 〉L =

∫
Rn

(
〈(1− A∆)lX ,Y 〉+ B.div(X )div(Y )

)
dx

Note that as B approaches ∞, the geodesics will tend to lie on the
cosets with respect to the subgroup of volume preserving
diffeomorphisms. And when, in addition, A approaches zero, we
get the simple L2 metric used by Arnold. This suggests that, as in
the so-called ‘zero-viscosity limit’, we should be able to construct
geodesics in Arnold’s metric, i.e. solutions of Euler’s equation, as
limits of geodesics for this larger family of metrics on the full group.



The resulting kernels L and K are no longer diagonal. To L, we
must add

B
n∑

i=1

n∑
j=1

( 1

(2π)n

∫
ξ∈Rn

e i〈ξ,x−y〉ξi .ξjdξ
)

(dui |x⊗dx)⊗(duj |y⊗dy).

It can be checked that the corresponding kernel K will have the
form

K (x , y) = K0(x−y)
n∑

i=1

∂

∂x i
⊗ ∂

∂y i
+

n∑
i=1

n∑
j=1

(KB),ij(x−y)
∂

∂x i
⊗ ∂

∂y j

where K0 is the kernel as above for the standard norm of order l
and KB is a second radially symmetric kernel on Rn depending on
B.



The geodesic equation on DiffS(N)

According to [Arnold 1966], slightly generalized as explained
above: Let ϕ : [a, b]→ DiffS(N) be a smooth curve. In terms of
its right logarithmic derivative u : [a, b]→ XS(N),
u(t) := ϕ∗κ(∂t) = Tϕ(t)(µϕ(t)−1

) · ϕ′(t) = ϕ′(t) ◦ ϕ(t)−1, the
geodesic equation is

L(ut) = − ad(u)∗L(u)

Condition for the existence of the geodesic equation:

X 7→ K (ad(X )∗L(X ))

is bounded quadratic XS(N)→ XS(N).

The Lie algebra of DiffS(N) is the space XS(N) of all rapidly
decreasing smooth vector fields with Lie bracket the negative of
the usual Lie bracket adX Y = −[X ,Y ].



Using Lie derivatives, the computation of ad∗X is especially simple.
Namely, for any section ω of T ∗N ⊗ vol and vector fields
ξ, η ∈ XS(N), we have:∫

N
(ω, [ξ, η]) =

∫
N

(ω,Lξ(η)) = −
∫
N

(Lξ(ω), η),

hence ad∗ξ(ω) = +Lξ(ω).
Thus the Hamiltonian version of the geodesic equation on the
smooth dual L(XS(N)) ⊂ ΓC2(T ∗N ⊗ vol) becomes

∂tα = − ad∗K(α) α = −LK(α)α,

or, keeping track of everything,

∂tϕ = u ◦ ϕ,
∂tα = −Luα

u = K (α) = α], α = L(u) = u[.

(1)



One can also derive the geodesic equation from the conserved
momentum mapping J : T DiffS(N)→ XS(N)′ given by
J(g ,X ) = L ◦ Ad(g)>X where Ad(g)X = Tg ◦ X ◦ g−1. This
means that Ad(g(t))u(t) is conserved and 0 = ∂t Ad(g(t))u(t)
leads quickly to the geodesic equation. It is remarkable that the
momentum mapping exists if and only if (DiffS(N), 〈 , 〉L) is a
robust weak Riemannian manifold.



Landmark space as homogeneus space of solitons

A landmark q = (q1, . . . , qN) is an N-tuple of distinct points in
Rn; so LandN ⊂ (Rn)N is open. Let q0 = (q0

1 , . . . , q
0
N) be a fixed

standard template landmark. Then we have the the surjective
mapping

evq0 : Diff(Rn)→ LandN ,

ϕ 7→ evq0(ϕ) = ϕ(q0) = (ϕ(q0
1), . . . , ϕ(q0

N)).

The fiber of evq0 over a landmark q = ϕ0(q0) is

{ϕ ∈ Diff(Rn) : ϕ(q0) = q}
= ϕ0 ◦ {ϕ ∈ Diff(Rn) : ϕ(q0) = q0}
= {ϕ ∈ Diff(Rn) : ϕ(q) = q} ◦ ϕ0;

The tangent space to the fiber is

{X ◦ ϕ0 : X ∈ XS(Rn),X (qi ) = 0 for all i}.



A tangent vector Y ◦ ϕ0 ∈ Tϕ0 DiffS(Rn) is GL
ϕ0

-perpendicular to
the fiber over q if∫

Rn

〈LY ,X 〉 dx = 0 ∀X with X (q) = 0.

If we require Y to be smooth then Y = 0. So we assume that
LY =

∑
i Pi .δqi , a distributional vector field with support in q.

Here Pi ∈ TqiRn. But then

Y (x) = L−1
(∑

i

Pi .δqi

)
=

∫
Rn

K (x − y)
∑
i

Pi .δqi (y) dy

=
∑
i

K (x − qi ).Pi

Tϕ0(evq0).(Y ◦ ϕ0) = Y (qk)k =
∑
i

(K (qk − qi ).Pi )k



Now let us consider a tangent vector P = (Pk) ∈ Tq LandN . Its
horizontal lift with footpoint ϕ0 is Phor ◦ ϕ0 where the vector field
Phor on Rn is given as follows: Let K−1(q)ki be the inverse of the
(N × N)-matrix K (q)ij = K (qi − qj). Then

Phor(x) =
∑
i ,j

K (x − qi )K−1(q)ijPj

L(Phor(x)) =
∑
i ,j

δ(x − qi )K−1(q)ijPj

Note that Phor is a vector field of class H2l−1.



The Riemannian metric on LandN induced by the gL-metric on
DiffS(Rn) is

gL
q (P,Q) = GL

ϕ0
(Phor,Qhor)

=

∫
Rn

〈L(Phor),Qhor〉 dx

=

∫
Rn

〈∑
i ,j

δ(x − qi )K−1(q)ijPj ,

∑
k,l

K (x − qk)K−1(q)klQl

〉
dx

=
∑
i ,j ,k,l

K−1(q)ijK (qi − qk)K−1(q)kl〈Pj ,Ql〉

gL
q (P,Q) =

∑
k,l

K−1(q)kl〈Pk ,Ql〉. (1)



The geodesic equation in vector form is:

q̈n =

− 1

2

∑
k,i ,j ,l

K−1(q)ki grad K (qi − qj)(K (q)in − K (q)jn)

K−1(q)jl〈q̇k , q̇l〉

+
∑
k,i

K−1(q)ki

〈
grad K (qi − qn), q̇i − q̇n

〉
q̇k



The geodesic equation on T ∗LandN(Rn)

.
The cotangent bundle
T ∗LandN(Rn) = LandN(Rn)× ((Rn)N)∗ 3 (q, α). We shall treat
Rn like scalars; 〈 , 〉 is always the standard inner product on Rn.
The metric looks like

(gL)−1
q (α, β) =

∑
i ,j

K (q)ij〈αi , βj〉,

K (q)ij = K (qi − qj).



The energy function

E (q, α) = 1
2 (gL)−1

q (α, α) = 1
2

∑
i ,j

K (q)ij〈αi , αj〉

and its Hamiltonian vector field (using Rn-valued derivatives to
save notation)

HE (q, α) =
N∑

i ,k=1

(
K (qk − qi )αi

∂

∂qk

+ grad K (qi − qk)〈αi , αk〉
∂

∂αk

)
.

So the geodesic equation is the flow of this vector field:

q̇k =
∑
i

K (qi − qk)αi

α̇k = −
∑
i

grad K (qi − qk)〈αi , αk〉



Stress and Force

α]k =
∑
i

K (qk − qi )αi , α] =
∑
i ,k

K (qk − qi )〈αi ,
∂
∂qk
〉

D(α, β) : =
∑
i ,j

dK (qi − qj)(α]i − α
]
j )
〈
βj ,

∂

∂qi

〉
, the stress.

D(α, β)−D(β, α) = (Dα]β
])− Dβ]α

] = [α], β]], Lie bracket.

Fi (α, β) =
1

2

∑
k

grad K (qi − qk)(〈αi , βk〉+ 〈βi , αk〉)

F(α, β) : =
∑
i

〈Fi (α, β), dqi 〉 =
1

2
d g−1(α, β) the force.

The geodesic equation on T ∗ LandN(Rn) then becomes

q̇ = α]

α̇ = −F(α, α)



Curvature via the cotangent bundle

From the semilocal version of Mario’s formula for the sectional
curvature expression for constant 1-forms α, β on landmark space,
where α]k =

∑
i K (qk − qi )αi , we get directly:

gL
(
R(α], β])α], β]

)
=

=
〈
D(α, β) +D(β, α),F(α, β)

〉
−
〈
D(α, α),F(β, β)

〉
−
〈
D(β, β),F(α, α)

〉
− 1

2

∑
i ,j

(
d2K (qi − qj)(β]i − β

]
j , β

]
i − β

]
j )〈αi , αj〉

− 2d2K (qi − qj)(β]i − β
]
j , α

]
i − α

]
j )〈βi , αj〉

+ d2K (qi − qj)(α]i − α
]
j , α

]
i − α

]
j )〈βi , βj〉

)
− ‖F(α, β)‖2

g−1 + g−1
(
F(α, α),F(β, β)

)
.

+ 3
4‖[α

], β]]‖2
g



Bundle of embeddings over the differentiable Chow variety.

Let M be a compact connected manifold with dim(M) < dim(N).
The smooth manifold Emb(M,N) of all embeddings M → N is the
total space of a smooth principal bundle with structure group
Diff(M) acting freely by composition from the right hand side.

The quotient manifold B(M,N) can be viewed as the space of all
submanifolds of N of diffeomorphism type M; we call it the
differentiable Chow manifold or the non-linear Grassmannian.

B(M,N) is a smooth manifold with charts centered at
F ∈ B(M,N) diffeomorphic to open subsets of the Frechet space
of sections of the normal bundle TF⊥,g ⊂ TN|F .

Let ` : DiffS(N)× B(M,N)→ B(M,N) be the smooth left action.
In the following we will consider just one open DiffS(N)-orbit
`(DiffS(N),F0) in B(M,N).



The induced Riemannian cometric on T ∗B(M ,N)

We follow the procedure used for DiffS(N). For any F ⊂ N, we
decompose H into:

Hvert
F = j−1

2

(
{X ∈ ΓC2

b
(TN) : X (x) ∈ TxF , for all x ∈ F}

)
Hhor

F = perpendicular complement of Hvert
F

It is then easy to check that we get the diagram:

ΓS(TN) �
� j1 //

res
����

H �
� j2 //

����

ΓC2
b
(TN)

res
����

ΓS(Nor(F )) �
� j f1 // Hhor

F
� � j f2 // ΓC2

b
(Nor(F )).

Here Nor(F ) = TN|F/TF .



As this is an orthogonal decomposition, L and K take Hvert
F and

Hhor
F into their own duals and, as before we get:

ΓS(Nor(F ))� _

j1
��

ΓS′(Nor∗(F ))

Hhor
F� _

j2
��

LF // (Hhor
F )′
?�

j ′1

OO

KF

oo

ΓC2
b
(Nor(F )) ΓM2(Nor∗(F ))

?�

j ′2

OO

KF is just the restriction of K to this subspace of H′ and is given
by the kernel:

KF (x1, x2) := image of K (x1, x2) ∈ Norx1(F )⊗Norx2(F )), x1, x2 ∈ F .

This is a C 2 section over F × F of pr∗1 Nor(F )⊗ pr∗2 Nor(F ).



We can identify Hhor
F as the closure of the image under KF of

measure valued 1-forms supported by F and with values in
Nor∗(F ). A dense set of elements in Hhor

F is given by either taking
the 1-forms with finite support or taking smooth 1-forms. In the
smooth case, fix a volume form κ on M and a smooth covector
ξ ∈ ΓS(Nor∗(F )). Then ξ.κ defines a horizontal vector field h like
this:

h(x1) =

∫
x2∈F

∣∣KF (x1, x2)
∣∣ξ(x2).κ(x2)

〉
The horizontal lift hhor of any h ∈ TFB(M,N) is then:

hhor(y1) = K (LFh)(y1) =

∫
x2∈F

∣∣K (y1, x2)
∣∣LFh(x2)

〉
, y1 ∈ N.

Note that all elements of the cotangent space α ∈ ΓS′(Nor∗(F ))
can be pushed up to N by (jF )∗, where jF : F ↪→ N is the
inclusion, and this identifies (jF )∗α with a 1-co-current on N.



Finally the induced homogeneous weak Riemannian metric on
B(M,N) is given like this:

〈h, k〉F =

∫
N

(hhor(y1), L(khor)(y1)) =

∫
y1∈N

(K (LFh))(y1), (LFk)(y1))

=

∫
(y1,y2)∈N×N

(K (y1, y2), (LFh)(y1)⊗ (LFk)(y2))

=

∫
(x1,x1)∈F×F

〈
LFh(x1)

∣∣KF (x1, x2)
∣∣LFh(x2)

〉
With this metric, the projection from DiffS(N) to B(M,N) is a
submersion.



The inverse co-metric on the smooth cotangent bundle⊔
F∈B(M,N) Γ(Nor∗(F )⊗ vol(F )) ⊂ T ∗B(M,N) is much simpler

and easier to handle:

〈α, β〉F =

∫∫
F×F

〈
α(x1)

∣∣KF (x1, x2)
∣∣β(x1)

〉
.

It is simply the restriction to the co-metric on the Hilbert
sub-bundle of T ∗DiffS(N) defined by H′ to the Hilbert sub-bundle
of subspace T ∗B(M,N) defined by H′F .



Because they are related by a Riemannian submersion, the
geodesics on B(M,N) are the horizontal geodesics on DiffS(N).
We have two variables: a family {Ft} of submanifolds in B(M,N)
and a time varying momentum α(t, ·) ∈ Nor∗(Ft)⊗ vol(Ft) which
lifts to the horizontal 1-co-current (jFt )∗(α(t, ·) on N. Then the
horizontal geodesic on DiffS(N) is given as before:

∂t(Ft) = resNor(Ft)(u(t, ·))

u(t, x) =

∫
(Ft)y

∣∣K (x , y)
∣∣α(t, y)

〉
∈ XS(N)

∂t ((jFt )∗(α(t, ·)) = −Lu(t,·)((jFt )∗(α(t, ·)).

This is a complete description for geodesics on B(M,N) but it is
not very clear how to compute the Lie derivative of (jFt )∗(α(t, ·).
One can unwind this Lie derivative via a torsion-free connection,
but we turn to a different approach which will be essential for
working out the curvature of B(M,N).



Auxiliary tensors on B(M ,N)

For X ∈ XS(N) let BX be the infinitesimal action on B(M,N)
given by BX (F ) = TId(`F )X with its flow FlBX

t (F ) = FlXt (F ). We
have [BX ,BY ] = B[X ,Y ].
{BX (F ) : X ∈ XS(N)} equals the tangent space TFB(M,N).

Note that B(M,N) is naturally submanifold of the vector space of
m-currents on N:

B(M,N) ↪→ ΓS′(ΛmT ∗N), via F 7→
(
ω 7→

∫
F
ω

)
.

Any α ∈ Ωm(N) is a linear coordinate on ΓS′(TN) and this restricts
to the function Bα ∈ C∞(B(M,N),R) given by Bα(F ) =

∫
F α.

If α = dβ for β ∈ Ωm−1(N) then

Bα(F ) = Bdβ(F ) =

∫
F

j∗Fdβ =

∫
F

dj∗Fβ = 0

by Stokes’ theorem.



For α ∈ Ωm(N) and X ∈ XS(N) we can evaluate the vector field
BX on the function Bα:

BX (Bα)(F ) = dBα(BX )(F ) = ∂t |0Bα(FlXt (F ))

=

∫
F

j∗FLXα = BLX (α)(F )

as well as =

∫
F

j∗F (iXdα + diXα) =

∫
F

j∗F iXdα = BiX (dα)(F )

If X ∈ XS(N) is tangent to F along F then
BX (Bα)(F ) =

∫
F LX |F j∗Fα = 0.

More generally, a pm-form α on Nk defines a function B
(p)
α on

B(M,N) by B
(p)
α (F ) =

∫
F p α.



For α ∈ Ωm+k(N) we denote by Bα the k-form in Ωk(B(M,N))
given by the skew-symmetric multi-linear form:

(Bα)F (BX1(F ), . . . ,BXk
(F )) =

∫
F

jF
∗(iX1∧···∧Xk

α).

This is well defined: If one of the Xi is tangential to F at a point
x ∈ F then jF

∗ pulls back the resulting m-form to 0 at x .

Note that any smooth cotangent vector a to F ∈ B(M,N) is equal
to Bα(F ) for some closed (m + 1)-form α. Smooth cotangent
vectors at F are elements of ΓS(F ,Nor∗(F )⊗ ΛmT ∗(F )).



Likewise, a 2m + k form α ∈ Ω2m+k(N2) defines a k-form on
B(M,N) as follows: First, for X ∈ XS(N) let X (2) ∈ X(N2) be
given by

X
(2)
(n1,n2) := (Xn1 × 0n2) + (0n1 × Xn2)

Then we put

(B(2)
α )F (BX1(F ), . . . ,BXk

(F )) =

∫
F 2

jF 2
∗(i

X
(2)
1 ∧···∧X

(2)
k

α).

This is just B applied to the submanifold F 2 ⊂ N2 and to the
special vector fields X (2).
Using this for p = 2, we find that for any two m-forms α, β on N,
the inner product of Bα and Bβ is given by:

g−1
B (Bα,Bβ) = B

(2)
〈α|K |β〉.

We have

iBX
Bα = BiXα

dBα = Bdα for any α ∈ Ωm+k(N)

LBX
Bα = BLXα



Force and Stress

Moving to curvature, fix F . Then we claim that for any two
smooth co-vectors a, b at F , we can construct not only two closed
(m + 1)-forms α, β on N as above but also two commuting vector
fields Xα,Xβ on N in a neighborhood of F such that:

1. Bα(F ) = a and Bβ(F ) = b,

2. BXα(F ) = a] and BXβ (F ) = b]

3. LXα(α) = LXα(β) = LXβ (α) = LXβ (β) = 0

4. [Xα,Xβ] = 0

The force is

2F(α, β) = d(〈Bα,Bβ〉) = d
(

B
(2)
〈α|K |β〉

)
= B

(2)
d(〈α|K |β〉).

The stress D = DN on N can be computed as:

D(α, β,F )(x) =
(
restr. to Nor(F )

)(
−
∫
y∈F

∣∣∣L
X

(2)
α

(x , y)K (x , y)
∣∣∣β(y)

〉)
.



The curvature

Finally, the semilocal Mario formula and some computations lead
to:

〈RB(M,N)(B]
α,B

]
β)B]

β,B
]
α〉(F ) = R11 + R12 + R2 + R3

R11 = 1
2

∫∫
F×F

(〈
β
∣∣L

X
(2)
α
L
X

(2)
α

K
∣∣β〉+

〈
α
∣∣L

X
(2)
β

L
X

(2)
β

K
∣∣α〉

− 2
〈
α
∣∣L

X
(2)
α
L
X

(2)
β

K
∣∣β〉)

R12 =

∫
F

(
〈D(α, α,F ),F(β, β,F )〉+ 〈D(β, β,F ),F(α, α,F )〉

− 〈D(α, β,F ) +D(β, α,F ),F(α, β,F )〉
)

R2 = ‖F(α, β,F )‖2
KF
−
〈
F(α, α,F )),F(β, β,F )

〉
KF

R3 = −3
4‖D(α, β,F )−D(β, α,F )‖2

LF



For Y ∈ X(N) the field Y ◦ ϕ0 is L-perpendicular to the fiber over
f if ond only if

0 = 〈Y ◦ ϕ0,X ◦ ϕ0〉ϕ0 = 〈X ,Y 〉Id

=

∫∫
(y1,y2)∈N×N

(Y (y1)⊗ X (y2), L(y1, y2))

=

∫
y2∈N

(X (y2), L(Y )(y2))

for all X ∈ X(M) with X ◦ f = 0. So if we assume Y to be smooth
then Y = 0. It follows that L(Y ) has support in the submanifold
f (M) ⊂ N. Let us assume that L(Y ) = f∗(ξ⊗κ) := (ξ ◦ f −1).(f∗κ)
for ξ ∈ Γ(f ∗TN) = C∞f (M,TN) and κ ∈ Γ(vol(M)). ξ.κ is smooth
on M but f∗(ξ.κ) is singular since its support is contained in the
lower dimensional submanifold f (M).



Y (y1) = (L−1f∗(ξ.κ))(y1) = K (f∗(ξ.κ))(y1)

=

∫
y2∈N

(K (y1, y2), (f∗ξ)(y2).(f∗κ)(y2))

=

∫
x2∈M

(K (y1, f (x2)), ξ(x2).κ(x2))

Then Y ◦ ϕ0 is a typical horizontal vector field, no longer smooth
but of some finite differentiability class. We have

(Tϕ0 evf0 .(Y ◦ ϕ0))(x1) = (Y ◦ ϕ0 ◦ f0)(x1)

= (Y ◦ f )(x1) =

∫
x2∈M

(K (f (x1), f (x2)), ξ(x2).κ(x2)).

This should be equal to a given tangent vector h ∈ Tf Emb(M,N).



We write

Kf (x1, x2) := K (f (x1), f (x2)),

Kf ∈ ΓC2l (pr∗1 f ∗TN ⊗ pr∗2 f ∗TN → M ×M)

h(x1) =

∫
x2∈M

(Kf (x1, x2), ξ(x2))κ(x2) = Kf (ξ.κ)(x1).

=⇒ ξ.κ = K−1
f (h).

It remains to show that that
Kf : Γ(f ∗T ∗N ⊗ vol(M))→ C∞f (M,TN) = Γ(f ∗TN) is invertible.
Since it induces a positive definite inner product it is injective.
Since it is the restriction of an elliptic pseudo-differential operator,
it is again elliptic and its index is invariant under deformations. We
compute its index then for the template embedding f0 to which f
is isotopic. If M is a sphere and L is a constant coefficient operator
on Rn we can expand in spherical harmonics.



So the horizontal lift hhor of h ∈ Tf Emb(M,N) is given by

L(hhor) = f∗(ξ.κ) = f∗K
−1
f (h),

hhor(y1) = K (f∗K
−1
f h)(y1)

=

∫
y2∈N

(K (y1, y2), (f∗K
−1
f h)(y2))

=

∫
x2∈M

(K (y1, f (x2)), (K−1
f h)(x2)).



Finally we get the induced homogeneous weak Riemannian metric
on Emb(M,N):

〈h, k〉f =

∫
N

(hhor(y1), L(khor)(y1))

=

∫
y1∈N

(K (f∗K
−1
f h))(y1), (f∗K

−1
f k)(y1))

=

∫
N×N

(K (y1, y2), (f∗K
−1
f h)(y1)⊗ (f∗K

−1
f k)(y2))

=

∫
M×M

(K (f (x1), f (x2)), (K−1
f h)(x1)⊗ (K−1

f k)(x2))

=

∫
x2∈M

((Kf K−1
f h)(x2), (K−1

f k)(x2))

=

∫
(x1,x2)∈M×M

(h(x1)⊗ k(x2),K−1
f (x1, x2))



The smooth cotangent bundle⊔
f ∈Emb(M,N) Γ(f ∗T ∗N ⊗ vol(M)) ⊂ T ∗ Emb(M,N) carries the

inverse co-metric which is given by

〈α, β〉f =

∫∫
M×M

(Kf (x1, x2), α(x1)⊗ β(x2))

and is thus easier to handle than the metric on the tangent bundle.



The geodesic equation.

A curve t 7→ f (t, ) ∈ Emb(M,N) is a geodesic iff

∂t f = h,

hhor = K (f∗K
−1
f h))

=

∫
x∈M

(K ( , f (x)), (K−1
f h)(x)) ∈ ΓC2l (TN)

αh = L(hhor) = f∗(K−1
f h) ∈ ΓD′(T ∗N ⊗N vol(N))

∂tα
h = −Lhhorαh.

The action of any α ∈ ΓD′(T ∗N ⊗N vol(N)) on a test vectorfield
X ∈ X(N) given by

〈α,X 〉 :=

∫
M

(α,X ◦ f ) =

∫
x∈M

(α(x),X (f (x)))

identifies α with a 1-current in X(N)′ on N. The Lie derivative
above is the Lie derivative of 1-currents on N along vector fields on
N.



We use a torsionfree connection ∇ on N. In terms of the connector
K : T 2N → TN the covariant derivative of a vector field h along f
is given by ∇Xh = K ◦ Th ◦ X : M → TM → T 2N → TN
Evaluate both sides of the main equation on a test vector field
X ∈ X(N) and get:

(∇∂tα,X ◦ f ) = −(α, (∇Xhhor) ◦ f ) or

∂t f = h,

hhor = K (f∗K
−1
f h))

=

∫
x∈M

(K ( , f (x)), (K−1
f h)(x)) ∈ ΓC2l (TN)

αh = L(hhor) = f∗(K−1
f h) ∈ ΓD′(T ∗N ⊗N vol(N))

∇∂tαh = −(αh, (∇hhor) ◦ f ).

This is independent of the choice of the torsionfree connection on
N



Special differential forms on Emb(M ,N).

For a k-form α ∈ Ωk(N) and a volume density κ ∈ Γ(vol(M)) we
consider the form ωEmb(α, κ) ∈ Ωk(Emb(M,N)) given by

ωEmb(α, κ)f (h1, . . . , hk) :=

=

∫
x∈M

αf (x)(h1(x), . . . , hk(x))κ(x).

We have dωEmb(α, κ) = ωEmb(dα, κ).
We compare special forms on Emb(M,N) with special forms on
Diff(N). We extend the definition of special forms on Diff(N) by
allowing also singular volume forms, e.g. supported on
submanifolds. We will mainly use special forms ωEmb(da, κ) for
a ∈ C∞(N) and κ ∈ Γ(vol(M)). Then

(ev∗f ω
Emb(da, κ))Id = ωDiff(da, f∗κ)Id.



The sectional curvature on Emb(M ,N).

For αi orthonormal closed 1-forms on Emb(M,N), sectional
curvature is given by Mario’s formula

k(α]1, α
]
2) =

= 1
2

(
(α]1)2‖α2‖2 − (α]1 ◦ α

]
2 + α]2 ◦ α

]
1)〈α1, α2〉+ (α]2)2‖α1‖2

)
+ 1

4

(
‖d〈α1, α2〉‖2 − 〈d‖α1‖2, d‖α2‖2〉

)
− 3

4‖[α
]
1, α

]
2]Diff(N)‖2.

Obviously we can find and use special orthonormal 1-forms
αi = ωEmb(dai , κi ).



Sectional curvature on Emb(M,N) now is given by:

k(α
]
1 , α

]
2 )f =

= ‖da2.L
α
]
1

(f )
hor f∗κ2‖

2
Id − 〈da1.L

α
]
2

(f )
hor f∗κ1, da2.L

α
]
1

(f )
hor f∗κ2〉Id

− 〈da1.L
α
]
1

(f )
hor f∗κ1, da2.L

α
]
2

(f )
hor f∗κ2〉Id + ‖da1.L

α
]
2

(f )
hor f∗κ1‖

2
Id

+

∫
N

((
(α
]
1 (f )

hor
)2
α
]
2 (f )

hor − 1
2
α
]
1 (f )

hor
α
]
2 (f )

hor
α
]
1 (f )

hor

− 1
2
α
]
2 (f )

hor
(α
]
1 (f )

hor
)2)a2

)
.f∗κ2

+

∫
N

((
((α

]
2 (f )

hor
)2
α
]
1 (f )

hor − 1
2
α
]
2 (f )

hor
α
]
1 (f )

hor
α
]
2 (f )

hor

− 1
2
α
]
1 (f )

hor
(α
]
2 (f )

hor
)2)a1

)
.f∗κ1

− 〈d(α
]
2 (f )

hor
a2).f∗κ2, da1.L

α
]
1

(f )
hor f∗κ1〉

− 〈d(α
]
1 (f )

hor
a1).f∗κ1, da2.L

α
]
2

(f )
hor f∗κ2〉

+ 1
2

〈
d(α

]
2 (f )

hor
a1).f∗κ1 + d(α

]
1 (f )

hor
a2).f∗κ2,

da2.L
α
]
1

(f )
hor f∗κ2 + da1.L

α
]
2

(f )
hor f∗κ1

〉
+ 1

4
‖ωEmb(d(α

]
2 (f )

hor
a1), κ1

)
f

+ ω
Emb(d(α

]
1 (f )

hor
a2), κ2

)
f
‖2
f

− 〈ωEmb(d(α
]
1 (f )

hor
a1), κ1

)
f
, ω

Emb(d(α
]
2 (f )

hor
a2), κ2

)
f
〉f

− 3
4
‖[α

]
1 , α

]
2 ]f ‖

2
f



The O’Neill tensor

[(ev∗f α1)], (ev∗f α2)]]ver
Id =

= [α]1(f )
hor
, α]2(f )

hor
]ver
N =

= [α]1(f )
hor
, α]2(f )

hor
]N

−
(
[α]1(f )

hor
, α]2(f )

hor
]N ◦ f

)hor
.

Mario’s formula on Emb(M,N) equals Arnold’s formula on Diff(N)
plus the O’Neill term. This is the most complicated computation I
ever co-did in my life. It took the last 2 years.



Uniqueness of the Fisher Rao metric

The Fisher–Rao metric on the space Prob(M) of probability
densities is of importance in the field of information geometry.
Restricted to finite-dimensional submanifolds of Prob(M), so-called
statistical manifolds, it is called Fisher’s information metric
[Amari: Differential-geometrical methods in statistics, 1985]. The
Fisher–Rao metric is invariant under the action of the
diffeomorphism group. A uniqueness result was established
[Čencov: Statistical decision rules and optimal inference, 1982, p.
156] for Fisher’s information metric on finite sample spaces and
[Ay, Jost, Le, Schwachhöfer, 2014] extended it to infinite sample
spaces.
The Fisher–Rao metric on the infinite-dimensional manifold of all
positive probability densities was studied in [Friedrich: Die
Fisher-Information und symplektische Strukturen, 1991], including
the computation of its curvature.



The Fisher–Rao metric

Let Mm be a smooth compact manifold without boundary. Let
Dens+(M) be the space of smooth positive densities on M, i.e.,
Dens+(M) = {µ ∈ Γ(Vol(M)) : µ(x) > 0 ∀x ∈ M}.
Let Prob(M) be the subspace of positive densities with integral 1.
For µ ∈ Dens+(M) we have Tµ Dens+(M) = Γ(Vol(M)) and for
µ ∈ Prob(M) we have
Tµ Prob(M) = {α ∈ Γ(Vol(M)) :

∫
M α = 0}.

The Fisher–Rao metric on Prob(M) is defined as:

G FR
µ (α, β) =

∫
M

α

µ

β

µ
µ.

It is invariant for the action of Diff(M) on Prob(M):(
(ϕ∗)∗G FR

)
µ

(α, β) = G FR
ϕ∗µ(ϕ∗α,ϕ∗β) =

=

∫
M

(α
µ
◦ ϕ
)(β

µ
◦ ϕ
)
ϕ∗µ =

∫
M

α

µ

β

µ
µ .



Theorem [BBM, 2016]

Let M be a compact manifold without boundary of dimension ≥ 2.
Let G be a smooth (equivalently, bounded) bilinear form on
Dens+(M) which is invariant under the action of Diff(M). Then

Gµ(α, β) = C1(µ(M))

∫
M

α

µ

β

µ
µ+ C2(µ(M))

∫
M
α ·
∫
M
β

for smooth functions C1,C2 of the total volume µ(M).

To see that this theorem implies the uniqueness of the Fisher–Rao
metric, note that if G is a Diff(M)-invariant Riemannian metric on
Prob(M), then we can equivariantly extend it to Dens+(M) via

Gµ(α, β) = G µ
µ(M)

(
α−

(∫
M
α
) µ

µ(M)
, β −

(∫
M
β
) µ

µ(M)

)
.



Relations to right-invariant metrics on diffeom. groups

Let µ0 ∈ Prob(M) be a fixed smooth probability density. In
[Khesin, Lenells, Misiolek, Preston, 2013] it has been shown, that
the degenerate, Ḣ1-metric 1

2

∫
M divµ0(X ). divµ0(X ).µ0 on X(M) is

invariant under the adjoint action of Diff(M, µ0). Thus the
induced degenerate right invariant metric on Diff(M) descends to
a metric on Prob(M) ∼= Diff(M, µ0)\Diff(M) via

Diff(M) 3 ϕ 7→ ϕ∗µ0 ∈ Prob(M)

which is invariant under the right action of Diff(M). This is the
Fisher–Rao metric on Prob(M). In [Modin, 2014], the Ḣ1-metric
was extended to a non-degenerate metric on Diff(M), also
descending to the Fisher–Rao metric.



Corollary. Let dim(M) ≥ 2. If a weak right-invariant (possibly
degenerate) Riemannian metric G̃ on Diff(M) descends to a metric
G on Prob(M) via the right action, i.e., the mapping ϕ 7→ ϕ∗µ0

from (Diff(M), G̃ ) to (Prob(M),G ) is a Riemannian submersion,
then G has to be a multiple of the Fisher–Rao metric.
Note that any right invariant metric G̃ on Diff(M) descends to a
metric on Prob(M) via ϕ 7→ ϕ∗µ0; but this is not
Diff(M)-invariant in general.



Invariant metrics on Dens+(S1).

Dens+(S1) = Ω1
+(S1), and Dens+(S1) is Diff(S1)-equivariantly

isomorphic to the space of all Riemannian metrics on S1 via
Φ = ( )2 : Dens+(S1)→ Met(S1), Φ(fdθ) = f 2dθ2.
On Met(S1) there are many Diff(S1)-invariant metrics; see [Bauer,
Harms, M, 2013]. For example Sobolev-type metrics. Write
g ∈ Met(S1) in the form g = g̃dθ2 and h = h̃dθ2, k = k̃dθ2 with
g̃ , h̃, k̃ ∈ C∞(S1). The following metrics are Diff(S1)-invariant:

G l
g (h, k) =

∫
S1

h̃

g̃
. (1 + ∆g )n

(
k̃

g̃

)√
g̃ dθ ;

here ∆g is the Laplacian on S1 with respect to the metric g . The
pullback by Φ yields a Diff(S1)-invariant metric on Dens+(M):

Gµ(α, β) = 4

∫
S1

α

µ
.
(

1 + ∆Φ(µ)
)n (β

µ

)
µ .

For n = 0 this is 4 times the Fisher–Rao metric. For n ≥ 1 we get
different Diff(S1)-invariant metrics on Dens+(M) and on Prob(S1).



Main Theorem

Let M be a compact manifold, possibly with corners, of dimension
≥ 2. Let G be a smooth (equivalently, bounded)

(0
n

)
-tensor field

on Dens+(M) which is invariant under the action of Diff(M). If M
is not orientable or if n ≤ dim(M) = m, then

Gµ(α1, . . . , αn) = C0(µ(M))

∫
M

α1

µ
. . .

αn

µ
µ

+
n∑

i=1

Ci (µ(M))

∫
M
αi ·

∫
M

α1

µ
. . .

α̂i

µ
. . .

αn

µ
µ

+
n∑
i<j

Cij(µ(M))

∫
M

αi

µ

αj

µ
µ ·
∫
M

α1

µ
. . .

α̂i

µ
. . .

α̂i

µ
. . .

αn

µ
µ

+ . . .

+ C12...n(µ(M))

∫
M

α1

µ
µ ·
∫
M

α2

µ
µ · · · · ·

∫
M

αn

µ
µ·

for some smooth functions C0, . . . of the total volume µ(M).



Main Theorem, continued

If M is orientable and n > dim(M) = m, then each integral over
more than m functions αi/µ has to be replaced by the following
expression which we write only for the first term:

C0(µ(M))

∫
M

α1

µ
. . .

αn

µ
µ+

+
∑

CK
0 (µ(M))

∫
αk1

µ
. . .

αkn−m

µ
d
(αkn−m+1

µ

)
∧ · · · ∧ d

(αkn

µ

)
where K = {kn−m+1, . . . , kn} runs through all subsets of
{1, . . . , n} containing exactly m elements.



Moser’s theorem for manifolds with corners
[BMPR16]

Let M be a compact smooth manifold with corners, possibly
non-orientable. Let µ0 and µ1 be two smooth positive densities in
Dens+(M) with

∫
M µ0 =

∫
M µ1. Then there exists a

diffeomorphism ϕ : M → M such that µ1 = ϕ∗µ0. If and only if
µ0(x) = µ1(x) for each corner x ∈ ∂≥2M of codimension ≥ 2,
then ϕ can be chosen to be the identity on ∂M.
This result is highly desirable even for M a simplex. The proof is
essentially contained in [Banyaga1974], who proved it for manifolds
with boundary.



Thank you for your attention


