endienne in den Proceedings der CI.M.E.conference om differential hopology (foliatium) Vorrenna 1976.

Manifolds of differentiable maps

Peter Michor

1. Let X, Y be smooth finite dimensional manifolds, let $C^{\infty}(X,Y)$ be the set of smooth mappings from X to Y; for any non negative integer n let $J^{n}(X,Y)$ denote the fibre bundle of n-jets of smooth maps from X to Y, equipped with the canonical manifold structure which makes $j^{n}f : X \rightarrow J^{n}(X,Y)$ into a smooth section for each $f \in C^{\infty}(X,Y)$, where $j^{n}f(x)$ is the n-jet of f at $x \in X$.

Usually $C^{\infty}(X,Y)$ is equipped with the so called Whitney- C^{∞} . topology: a basis of open sets is given by all sets of the form $M(U) = \{f \in C^{\infty}(X,Y) : j^{n}f(X) \leq U\}$, where U is any open set in $J^{n}(X,Y)$ and $n \in \mathbb{N}$. See [3] and [6] for accounts of this topology. We may describe it intuitively by the following words: if you go to infinity on X you may control better and better partial derivatives up to a fixed order.

2. Anyone familiar with functional analysis may have heard the following words: if you go to infinity (on X) you may control better and better more and more partial derivatives. This describes the inductive limit topology on $\mathbf{J}(\mathbf{R}) =$ $= \lim_{K \to \infty} \mathbf{J}(\mathbf{K})$, where $\mathbf{J}(\mathbf{R})$ is the space of all smooth functions with compact support on \mathbf{R} and $\mathbf{J}(\mathbf{K})$ is the subspace of those functions which have support contained in some fixed compact K of X, equipped with the topology of uniform convergence in all partial derivatives.

The topology induced by the Whitney-C^{∞}-topology on \Im (R)

17

े. . क्रम could be described by the formula $\mathfrak{J}(\mathbb{R}) = \lim_{\Gamma \to \infty} (\lim_{K} \mathfrak{J}^{\Gamma}(\mathbb{K})),$ where $\mathfrak{J}^{\Gamma}(\mathbb{K})$ is the space of all \mathbb{C}^{Γ} -functions on \mathbb{K} with support contained in K. This discussion shows (I hope) that the Whitney- \mathbb{C}^{∞} -topology is not the most natural topology on

C^{►●}(X,Y).

3. We now give an intrinsic description in terms of jets of the topology on $C^{\infty}(X, Y)$ referred to in 2. We call it the **J**-topology. detailed account of it can be found in [7]. There are three equivalent descriptions of the **J**-topology on $C^{\infty}(X, Y)$:

(a) Fix a sequence $K' = (K_n)$ of compact sets in X such that $K_0 = \emptyset$, $K_{n-1} \subseteq K_n^0$, $X = \bigcup K_n$. Then the system of sets of the form $M(m,U) = \{ f \in C^{\bullet}(X,Y) : j^{m_n} f(X-K_n^{\circ}) \leq U_n \text{ for all } n \}$ is a base of open sets for the **D**-topology on C[®](X,Y), where $m = (m_n)$ runs through all sequences of non negative integers and $U = (U_n)$ with U_n open in $J^{m_n}(X,Y)$. The **3**-topology is independent of the choice of the sequence (K_n) . (b) Fix a sequence (d_n) of metrics d_n on $J^n(X,Y)$, compatible with the manifold topologies. Then the system of sets of the $V_{\varphi}(f) = \{g \in C^{\infty}(X,Y): \varphi_n(x) d_n(j^n f(x), j^n g(x)) < 1 \}$ for form all x in X and for all n } is a neighbourhood base for $f \in C^{\infty}(X,Y)$ in the \mathfrak{J} -topology, consisting of open sets, where $\boldsymbol{\varphi} = (\boldsymbol{\varphi}_n)$ runs through all sequences of continuous strictly positive functions on X with (supp ϕ_n / locally finite. The J-topology is independent of the choice of the metrics and

(c) The system of sets of the form $M(L,U) = \{ f \in C^{\infty}(X,Y) : j^{n}f(X-L_{n}^{o}) \leq U_{n} \text{ for all } n \}$ is a base of open sets for the J-topology on $C^{\infty}(X,Y)$, where $L = (L_{n})$ runs trough all sequences of compact sets $L_{n} \leq X$ such that $(X-L_{n}^{o})$ is locally finite and $U = (U_{n})$ runs through all sequences of open sets $U_{n} \leq J^{n}(X,Y)$.

4. The \mathfrak{J} -topology on $\mathfrak{C}^{\infty}(X,Y)$ is finer than the whitney- \mathfrak{C}^{∞} topology. It is exactly the topology \mathfrak{C}^{∞} of MORLET in [2], who proves that $\mathfrak{C}^{\infty}(X,Y)$ is a Baire space in this topology. It was mistoken to be the Whitney-topology by LESLIE [5]. We now list some properties of the \mathfrak{P} -topology:

(a) <u>A sequence</u> (f_n) in C[∞](X,Y) converges to f if and only if there exists a compact set K≤X such that all but finitely many of the f_n's equal f off K and j^kf_n → j^kf "uniformly" on K for all k. So convergence of sequences is the same for the Whitney-topology and for the D -topology. See [7].
(b) if T is a connected metrizable compact topological space and

f: $T \longrightarrow C^{\infty}(X,Y)$ is any continuous mapping (for the \mathfrak{P} -topology), then there is a compact set $K \in X$ such that $t \mapsto f(t)(x)$ is constant on T for $x \in X-K$.

<u>Proof</u>: Any t \in T has a neighbourhood V_t in T such that the stated property holds on V_t: if not one may find a sequence t_n \rightarrow t in T such that the sequence $f(t_n)$ does not satisfy the condition in (a). Now use that T is compact and connected. (c) <u>For each k > 0 the map</u> j^k : C[∞](X,Y) \rightarrow C[∞](X,J^k(X,Y)) <u>is</u> continuous for the **J**-topology. See [7].

- 3 -

(d) If X,Y,Z are smooth finite dimensional manifolds then composition $C^{\infty}(Y,Z) \times C_{\text{prop}}^{\infty}(X,Y) \longrightarrow C^{\infty}(X,Z)$, given by (f,g) \mapsto fog, is continuous in the **D**-topology, where $C_{\text{prop}}^{\infty}(X,Y)$ is the space of all smooth proper maps f: $X \longrightarrow Y$, i.e. $f^{-1}(K)$ is compact if K is compact. See [7].

5. Theorem: Let X,Y be smooth manifolds. Then $C^{\infty}(X,Y)$ is a Baire space with the \mathfrak{J} -topology.

This was proved by MORLET [2]. We give here a quite different proof using the explicit description of the \mathbf{J} -topology. <u>Proof</u>: Let U_1 , U_2 , ... be a countable sequence of \mathbf{J} -opendense subsets of $\mathbb{C}^{\infty}(X,Y)$. We have to show that $\bigcap U_n$ is again \mathbf{J} -dense. Choose metrics d_n on $J^n(X,Y)$, $n = 0,1,\ldots$, compatible with the topologies, such that each $J^n(X,Y)$ becomes a complete metric space with d_n . Let be $f_0 \in \mathbb{C}^{\infty}(X,Y)$ and $V_{\boldsymbol{\varphi}}(f_0)$ be any neighbourhood of f_0 as in 3(b). It suffices to show that $V_{\boldsymbol{\varphi}}(f_0) \cap \bigcap U_i \neq \emptyset$. Let Let $\frac{1}{2} \mathbf{\varphi} = (\frac{1}{2} \mathbf{\varphi}_n)$, then $f_0 \in V_{\frac{1}{2} \mathbf{\varphi}}(f_0) \subseteq \overline{V_{\frac{1}{2} \mathbf{\varphi}}(f_0)} \subseteq V_{\mathbf{\varphi}}(f_0)$, where $\overline{V_{\frac{1}{2} \mathbf{\varphi}}(f_0)} = \{ g \in \mathbb{C}^{\infty}(X,Y) : \frac{1}{2} \mathbf{\varphi}_n(x) d_n(j^n f(x), j^n g(x) \leq 1 \text{ for all} x \in X \text{ and for all } n \geq 0 \}$. It clearly suffices to show that

 $\overline{\mathbb{V}_{4.4}(f_0)} \cap \mathcal{O}_{1} \neq \emptyset.$

To do this we choose inductively a sequence of functions (f_i) in $C^{\bullet \bullet}(X,Y)$; a sequence $(\psi^{(i)})$ of families as in 3(b) such that the following holds:

(Ai)
$$f_{i} \in V_{i} \varphi(f_{0}) \cap \bigcap_{i=1}^{i} V_{\psi} \varphi(f_{j}) \cap U_{i}$$

(Bi) $\overline{V_{\psi} \varphi(f_{i})} \subseteq U_{i}$
(Ci)(i>1) $d_{s}(j^{s}f_{i}(x), j^{s}f_{i-1}(x)) < 1/2^{i}$, 0 $\leq s \leq i$.
Choose $f_{1} \in V_{i} \varphi(f_{0}) \cap U_{1}$ which is possible, since U_{1} is dense.

So (A1) holds. U_1 is open and $f_1 \in U_1$ so we can find a family $\psi^{(\prime)}$ such that $V_{2\psi^{(\prime)}}(f_1) \subseteq U_1$, then $V_{\psi^{(\prime)}}(f_1) \subseteq U_1$ so (B1) holds. (C1) is empty. Now assume inductively that the data is chosen for all $j \leq i-1$. We will choose f_i satisfying (Ai) and (Ci) and not using any (Cj), $j \leq i$, and then we can easily find $\psi^{(i)}$ such that (Bi) holds. Consider the open set $V_{\eta}(f_{i-1})$ where $\eta = (0, 2^{i}, ..., 2^{i}, 0, 0, ...)$ with i-times 2^{i} . Let $E_i = V_{i\varphi}(f_0) \cap \bigcap_{i=1}^{i-1} V_{\varphi(i)}(f_i) \cap V_{\gamma}(f_{i-1})$, then E_i is open and $f_{i-1} \in E_i$ by (A_{i-1}) , so $E_i \neq \emptyset$ and we may pick $f_i \in E_i \cap U_i$ by density of u_i . Then clearly (Ai) holds since we have $f_i \in V_{ij}(f_0) \cap \bigcap V_{ij}(f_j) \cap U_i$. Furthermore we have for $1 \le s \le i$ $d_s(j^s f_{i-1}(x), j^s f_i(x)) < 1/2^i$ by the form of η , so (Ci) is satisfied. Finally $f_i \in U_i$, U_i is open, so there is a family $\psi^{(i)}$ such that $V_{2\psi}(f_i) \in U_i$, so $\overline{V_{\psi}(f_i)} \in U_i$ and (Bi) holds too. Now we use this data to prove the theorem. Define $g^{S}(x) = \lim_{i \to \infty} j^{S}f_{i}(x) \in J^{S}(X,Y)$. This limit exists since for each s d is a complete metric on $J^{S}(X,Y)$ and for each x the sequence $j^{s}f_{i}(x)$ is a Cauchy-sequence by (C). Since $j^{\circ}f_{i}(x) = (x, f_{i}(x))$, the graph of f_{i} , we can define $g: X \rightarrow Y$ by $g^{0}(x) = (x,g(x))$. We claim that g is smooth. This is a local question and in a chart-neighbourhood we see that all partial derivatives of f; converge uniformly by (C), so g is smooth by a classical theorem of subini.

Now $f_i \in V_{i\varphi}(f_0)$ by (Ai), i.e. $\varphi_n(x) d_n(j^n f_0(x), j^n f_i(x)) < 2$ for all $x \in x$ and $n \ge 0$. Since $j^n f_i(x) \longrightarrow j^n g(x)$ for all x and nwe conclude that $\varphi_n(x) d_n(j^n f_0(x), j^n g(x)) \le 2$ for all x and n, so $g \in \overline{V_{i\varphi}(f_0)}$. By (Bi) ψ^{in} was chosen so that $\overline{V_{\psi^{in}}(f_i)} \subseteq U_i$

- 5 -

and by (Ai) we have that $f_s \in V_{\psi^{(i)}}(f_i)$ for all s > i, i.e. $\psi_n^{(i)}(x) d_n(j^n f_i(x), j^n f_s(x)) < 1$ for all x and n. Since $j^n f_s(x) \longrightarrow j^n g(x)$ for all x and n we conclude that $\psi_n^{(i)}(x) d_n(j^n f_i(x), j^n g(x)) \leq 1$ for all x and n, i.e. $g \in V_{\psi^{(i)}}(f_i)$. This holds for all i. So by (B) we have $g \in V_{\frac{1}{2}\psi}(f_0) \cap \bigcap_{i=1}^{\infty} V_{\psi^{(i)}}(f_i) \subseteq V_{\frac{1}{2}\psi}(f_0) \cap \bigcap_{i=1}^{\infty} U_i$. qed.

6. Examples: In his lecture Mather introduced a topology on Diff_C^M, the space of C^r-diffeomorphisms with compact support of a smooth manifold M, by the formula Diff_C^M = lim Diff_K^M, K compact in M. If $r = \infty$, then this is exactly the topology induced from the **J**-topology on $C^{\infty}(M,M)$, if $r < \infty$ then it is the topology induced from the Whitney-O^r-topology.

The same topology was used by Banyaga in his talk on the space of smooth symplectic diffeomorphisms with compact support.

7. We now introduce a refinement of the \mathbf{J} -topology on $C^{\mathbf{o}}(X,Y)$ which is needed for the manifold structure later on. It is called the $\mathbf{J}^{\mathbf{o}}$ -topology in [7], not a very good name. It is given by the following process: If f,g $\in C^{\mathbf{o}}(X,Y)$ and the set $\{x \in X: f(x) \neq g(x)\}$ has compact closure in X we call f equivalent to g $(f \sim g)$. This is an equivalence relation. The $\mathbf{J}^{\mathbf{o}}$ -topology is now the coarsest among all topologies on $C^{\mathbf{o}}(X,Y)$, which are finer than the \mathbf{J} -topology and for which all equivalence classes of the above relation are open. Another description is: equip each equivalence class with the trace of the \mathbf{J} -topology and take their disjoint union.

- 6 -

The intrinsic descriptions of section 3 are still valid with alterations, just add f~g to the definition of $V_{\varphi}(f)$ in (b) and intersect M(m,U) resp. M'(L,U) with equivalence classes. The properties 4(a) - 4(d) remain valid for the \mathcal{T}^{\bullet} -topology too, since the maps and constructions used there are compatibel with the equivalence relation.

 $C^{\infty}(X,Y)$ is no longer a Baire space with the **J**-topology since it looks locally like the model space $\mathbf{J}(f^*TY)$ as we shall see in the next section and functional analysis tells us, that this is no Baire space. But it is a Lindelöf space if X is second countable, so $C^{\infty}(X,Y)$ is normal and paracompact with the \mathcal{J}^{∞} -topology.

3. We now describe the manifold structure on $C^{\infty}(X,Y)$. Let $\tau: TY \longrightarrow Y$ be a smooth map such that for each $y \in Y$ the map $\tau_y: T_yY \longrightarrow Y$ is a diffeomorphism onto an open neighbourhood of y in Y. Such a map may be constructed by using a fibre-respecting diffeomorphism from TY onto an open neighbourhood of the zero-section in TY followed by an appropriate exponential map. If $f \in C^{\infty}(X,Y)$ consider the pullbach $f^{*}TY$ which is a vectorbundle over X, and the space $\mathfrak{P}(f^{*}TY)$ of all smooth sections with compact support of this bundle, equipped with the \mathfrak{P}^{∞} - (or \mathfrak{P} -) topology.

Let Ψ_f : $\mathfrak{F}(f^*TY) \longrightarrow C^{\infty}(X,Y)$ be the mapping $\Psi_f(s)(x) = \mathfrak{T}_{f(x)}s(x) \in Y$. Denote the image of Ψ_f by U_f . $\pi_f = \bigcup_X (\{x\} \times \mathfrak{T}_{f(x)}(T_{f(x)}Y))$ is an open neighbourhood of the graph $\{(x,f(x)), x \in X\}$ of f in $X \times Y = J^{\circ}(X,Y)$ (in fact a tubular neighbourhood), and U_f consists of all $g \in C^{\infty}(X,Y)$ such that the graph of g is contained in Z_f and $g \sim f$, so

- 7 -

L, is open in the \mathfrak{J}^{∞} -topology. ψ_r is continuous by 4(d) and has a continuous inverse $\varphi_f \colon U_f \longrightarrow \mathfrak{J}(f^* \mathfrak{Y})$, given by $\varphi_{f}(g)(x) = \tau_{f(x)}^{-1}(g(x))$, as is easily checked up. we use $\boldsymbol{\varphi}_{\mathbf{f}}$ as coordinate map. Now let us check the form of the coordinate change: let f, $g \in \mathcal{C}^{\infty}(X, Y)$ with $\bigcup_{f} \cap \bigcup_{g} \neq \emptyset$. For $s \in \varphi_{I}(U_{f} \cap U_{g})$ we have $\varphi_{g} \varphi_{f}(s)(x) = \mathcal{C}_{g(x)}^{-1}(\varphi_{f}(s)(x)) = 0$ = $\mathcal{T}_{g(x)}^{-1} \circ \mathcal{T}_{f(x)}(s(x))$, so the map $\varphi_g \circ \varphi_f : \varphi_f(U_f \cap U_g) \subseteq \mathfrak{J}(f^*TY) \longrightarrow \mathfrak{J}(g^*TY)$ is given by $(\boldsymbol{\tau}_{g}^{-1} \boldsymbol{\cdot} \boldsymbol{\tau}_{f})_{\#}$, by pushing forward sections by a fiber bundle diffeomorphism $\tau_{g}^{-1} \cdot \tau_{f}$. This is clearly continuous. So we have constructed on $C^{\infty}(X,Y)$ a structure of a topological manifold, where each f $e C^{\infty}(X, r)$ has a coordinate neighbourhood \cup_{f} homeomorphic to a whole space $\mathbf{\hat{J}}(\mathbf{f}^{*}\mathbf{\Psi}\mathbf{Y})$ of sections with compact support of the vector bundle from Y over X. The construction we have given here is a simplified version of the one given in [7].

9. To make $C^{\infty}(X,Y)$ into a differentiable manifold we just have to take a suitable notion of C^{Γ} - mappings and to show that the coordinate change $(\Upsilon_{g}^{-1} \circ \Upsilon_{f})$ is C^{Γ} . We remark that it is of class C_{Π}^{∞} in the sense of [4], a rather strok notion, as is shown in [7], and probably of class C^{∞} for any notion of differentiability that has appeared in the literature until now. The tangent space at $f \in C^{\infty}(X,Y)$ turns out to be $\Im_{f}(X,TY) = \Im(f^{\pi}Y)$ and the whole tangent bundle is $\Im(X,TY)$, the space of all smooth maps $X \rightarrow TY$ which differ from zero only on a compact pot. It is a vector cundle over $C^{\infty}(X,Y)$ (i.e. locally trivial, in the manifold structure it inherits from $C^{\infty}(X,TY)$ as an open subset. This tangent bundle seems to be independent of differentiation applied, see [7]. or The inverse function theorem I presented in my talk is wrong due to difficulties with chain-rule for the notion of differentiability applied. The statement that remains true is too special to be of any interest.

References

- [1] C. BESSAGA, A. PEZCYNSKY: Slected topics in infinite dimensional topology, Polish scientific Publishers 1975.
- [2] H. CARTAN: Séminaire E.N.S. 1961/62: Topologie differentielle, éxposé by MORLET.
- [3] M. GOLUBITSKY, V. GUILLEMIN: Stable mappings and their singularities, Graduate texts in mathematics 14, Springer.
- [4] H.H. KELLER: Differential calculus in locally convex spaces, Springer lecture Notes 417 (1974).
- [5] J.A. IESLIE: On a differentiable structure for the group of diffeomorphisms, Topology 6 (1967), 263-271.
- [6] J. MARHER: Stability of C -mappings II: infinitesimal stability implies stability. Ann. Math. 89 (1969), 254-291.
- [7] P. MICHOR: Manifolds of smooth maps, to appear in Cahiers de topologie et géometrié differentielle.

P. Michor, Mathematisches Institut der Universität, Strudlhofgasse 4, A-1090 Wien, Austria.

.