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For a compact manifold Mm equipped with a smooth fixed
background Riemannian metric ĝ we consider the space MetHs (M)
of all Riemannian metrics of Sobolev class Hs for real s < m

2 with
respect to ĝ . The L2-metric on MetC∞(M) was considered by
DeWitt, Ebin, Freed and Groisser, Gil-Medrano and Michor, Clarke.
Sobolev metrics of integer order on MetC∞(M) were considered in
[M.Bauer, P.Harms, and P.W. Michor: Sobolev metrics on the
manifold of all Riemannian metrics. J. Differential Geom.,
94(2):187-208, 2013.] In this talk we consider variants of these
Sobolev metrics which include Sobolev metrics of any positive real
(not integer) order s < m

2 . We derive the geodesic equations and
show that they are well-posed under some conditions and induce a
locally diffeomorphic geodesic exponential mapping.
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(LDDMM)xx
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Bi (M,N)

needs ḡxx
Vol1+(M) Met(M)

Diff(M) MetA(N)

M compact ,N possibly non-compact manifold

Met(N) = Γ(S2
+T∗N) space of all Riemann metrics on N

ḡ one Riemann metric on N

Diff(M) Lie group of all diffeos on compact mf M

DiffA(N), A ∈ {H∞,S, c} Lie group of diffeos of decay A to IdN

Imm(M,N) mf of all immersions M → N

Bi (M,N) = Imm/Diff(M) shape space

Vol1+(M) ⊂ Γ(vol(M)) space of positive smooth probability densities



Convenient calculus

We will convenient calculus as developed in [Frölicher-Kriegl 1988]
and [Kriegl-Michor 1997]. A locally convex vector space E is called
convenient if each Mackey Cauchy sequence has a limit;
equivalently, if for each smooth curve c : R→ E the Riemann
integral

∫ 1
0 c(t) dt converges. This property and those mentioned

below depend only on the system of bounded sets in E .
Mappings are smooth if they map smooth curves to smooth
curves. Smooth curves can be recognized by applying bounded
linear functionals in a subset of the dual which is large enough to
recognize bounded subsets. Smooth maps are real analytic if they
are real analytic along each affine line. Up to Fréchet spaces
convenient smoothness coincides with all other notions of C∞. Up
to Banach spaces convenient real analyticity coincides with all
other notions of Cω.



Firstly, consider Met(M)

Let Met(M) = Γ(S2
+T
∗M) be the space of all smooth Riemannian

metrics on a compact manifold M.

Let MetHs (M) = ΓHs (S2
+T
∗M) the space of all Sobolev Hs

sections of the bundle of Riemannian metrics, where
s > m

2 = dim(M)
2 ; by the Sobolev inequality then it makes sense to

speak of positive definite metrics.



Weak Riemann metrics on Met(M)

All of them are Diff(M)-invariant; natural, tautological.

Gg (h, k) =

∫
M

g0
2 (h, k) vol(g) =

∫
Tr(g−1hg−1k) vol(g), L2-metr.

or = Φ(Vol(g))

∫
M

g0
2 (h, k) vol(g) conformal

or =

∫
M

Φ(Scalg ).g0
2 (h, k) vol(g) curvature modified

or =

∫
M

(
g0

2 (h, k) + g0
3 (∇gh,∇gk) + · · ·+ g0

p ((∇g )ph, (∇g )pk)
)

vol(g)

or =

∫
M

g0
2 ((1 + ∆g )ph, k) vol(g) Sobolev order p ∈ R>0

or =

∫
M

g0
2

(
f (1 + ∆g )h, k

)
vol(g)

where Φ : R>0 → R>0, Vol =
∫
M vol(g) is total volume of (M, g),

Scal is scalar curvature, and g0
2 is the induced metric on(0

2

)
-tensors. Here f is a suitable spectral function; see below.



∆gh := (∇g )∗,g∇gh = −Trg
−1

((∇g )2h) is the Bochner-Laplacian.
It can act on all tensor fields h, and it respects the degree of the
tensor field it is acting on.

For p ∈ N≥1 the Sobolev order p-metric was introduced in the
paper
[M. Bauer, P. Harms, and P. W. Michor. Sobolev metrics on the manifold

of all Riemannian metrics. J. Differential Geom. 94.2 (2013), 187–208.]

where we also claimed that the geodesic equation is well-posed.
The proof contained a gap, which is repaired now.



The L2-metric on the space of all Riemann metrics

[DeWitt 1969]. [Ebin 1970]. Geodesics and curvature [Freed
Groisser 1989]. [Gil-Medrano Michor 1991] for non-compact M.
[Clarke 2009] showed that geodesic distance for the L2-metric is
positive, and he determined the metric completion of Met(M).
The geodesic equation is completely decoupled from space, it is an
ODE:

gtt = gtg
−1gt + 1

4 Tr(g−1gtg
−1gt) g − 1

2 Tr(g−1gt) gt



A = g−1a for a ∈ TgMet(M)

exp0(A) = 2
n log

(
(1 + 1

4 Tr(A))2 + n
16 Tr(A2

0)
)
Id

+
4√

nTr(A2
0)

arctan

(√
nTr(A2

0)

4 + Tr(A)

)
A0.



Back to the the general metric on Met(M).

We describe all these metrics uniformly as

GP
g (h, k) =

∫
M
g0

2 (Pgh, k) vol(g) =

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where Pg : Γ(S2T ∗M)→ Γ(S2T ∗M)

is a positive, symmetric, bijective pseudo-differential operator of
order 2p, p ≥ 0, depending smoothly on the metric g , and also
Diff(M)-equivariantly: ϕ∗ ◦ Pg = Pϕ∗g ◦ ϕ∗.
The geodesic equation in this notation:

gtt = P−1
g

[1

2
(D(g ,.)Pggt)

∗(gt) +
1

4
.g .Tr(g−1.(Pggt).g

−1.gt)

+
1

2
gt .g

−1.(Pggt) +
1

2
(Pggt).g

−1.gt − (D(g ,gt)Pg )gt

− 1

2
Tr(g−1.gt).(Pggt)

]



Conserved Quantities on Met(M).

Right action of Diff(M) on Met(M) given by

(g , φ) 7→ φ∗g .

Fundamental vector field (infinitesimal action):

ζX (g) = LXg = −2 Sym∇(g(X )).

If metric GP is invariant, we have the following conserved
quantities

const = GP(gt , ζX (g))

= −2

∫
M
g0

1

(
∇∗ SymPgt , g(X )

)
vol(g)

= −2

∫
M
g
(
g−1∇∗Pgt ,X

)
vol(g)

Since this holds for all vector fields X ,

(∇∗Pgt) vol(g) ∈ Γ(T ∗M ⊗M vol(M)) is const. in t.



On Rn: The pullback of the Ebin metric to DiffS(Rn)

We consider here the right action
r : MetA(Rn)× DiffA(Rn)→ MetA(Rn) which is given by
r(g , ϕ) = ϕ∗g , together with its partial mappings
r(g , ϕ) = rϕ(g) = rg (ϕ) = Pullg (ϕ).

Theorem.If n ≥ 2, the image of Pullḡ , i.e., the DiffA(Rn)-orbit
through ḡ , is the set Metflat

A (Rn) of all flat metrics in MetA(Rn).

The pullback of the Ebin metric to the diffeomorphism group is a
right invariant metric G given by

GId(X ,Y ) = 4

∫
Rn

Tr
(
(Sym dX ).(Sym dY )

)
dx =

∫
Rn

〈
X ,PY

〉
dx

Using the inertia operator P we can write the metric as∫
Rn

〈
X ,PY

〉
dx , with

P = −2(grad div +∆) .



The pullback of the general metric to DiffS(Rn)

We consider now a weak Riemannian metric on MetA(Rn) in its
general form

GP
g (h, k) =

∫
M
g0

2 (Pgh, k) vol(g) =

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where Pg : Γ(S2T ∗M)→ Γ(S2T ∗M) is as described above. If the
operator P is equivariant for the action of DiffA(Rn) on
MetA(Rn), then the induced pullback metric (Pullḡ )∗GP on
DiffA(Rn) is right invariant:

GId(X ,Y ) = −4

∫
Rn

∂j(Pḡ Sym dX )ij .Y
idx (1)

Thus we we get the following formula for the corresponding inertia
operator (P̃X )i =

∑
j ∂j(Pḡ Sym dX )ij . Note that the pullback

metric (Pullḡ )∗GP on DiffA(Rn) is always of one order higher then
the metric GP on MetA(Rn).



The Sobolev metric of order p ∈ N.

The Sobolev metric GP

GP
g (h, k) =

∫
Rn

Tr(g−1.((1 + ∆)ph).g−1.k) vol(g) .

The pullback of the Sobolev metric GP to the diffeomorphism
group is a right invariant metric G given by

GId(X ,Y ) = −2

∫
Rn

〈
(grad div +∆)(1−∆)pX ,Y

〉
dx .

Thus the inertia operator is given by

P̃ = −2(1−∆)p(∆ + grad div) = −2(1−∆)p(∆ + grad div) .

It is a linear isomorphism Hs(Rn)n → Hs−2p−2(Rn)n for every s.



Sobolev spaces of sections of vector bundles.
For s ∈ R let Hs(Rm,Rn) be the Sobolev space of order s
described via Fourier transform ‖f ‖Hs = ‖f̂ (ξ)(1 + |ξ|2)s/2‖L2 .
Let E → M be a vector bundle, M compact. Choose a finite
vector bundle atlas and a subordinate partition of unity in the
following way: Let (uα : Uα → uα(Uα) ⊆ Rm)α∈A be a finite atlas
for M, let (ϕα)α∈A be a smooth partition of unity subordinated to
(Uα)α∈A, and let ψα : E |Uα → Uα × Rn be vector bundle charts.
Choose open sets U◦α such that supp(ψα) ⊂ U◦α ⊂ U◦α ⊂ Uα such
that each uα(U◦α) is an open set in Rm with Lipschitz boundary.
Then we define for each s ∈ R and f ∈ ΓC∞(E )

‖f ‖2
ΓHs (E) :=

∑
α∈A
‖ prRn ◦ψα ◦ (ϕα · f ) ◦ u−1

α ‖2
Hs(Rm,Rn).

Then ‖ · ‖ΓHs (E) is a norm, which comes from a scalar product, and
we write ΓHs (E ) for the Hilbert completion of ΓC∞(E ) under the
norm. Then ΓHs (E ) is independent of the choice of atlas and
partition of unity, up to equivalence of norms.
C. Schneider and N. Grosse. Sobolev spaces on Riemannian manifolds with bounded geometry: General coordinates
and traces, 2013
H. Triebel. Theory of functions spaces II



Theorem. Module properties of Sobolev spaces. Let E1,E2 be
vector bundles over M, and let s1, s2, s ∈ R satisfy

(i) s1 + s2 ≥ 0, min(s1, s2) ≥ s, and s1 + s2 − s > m
2 , or

(ii) s ∈ N, min(s1, s2) > s, and s1 + s2 − s ≥ m
2 , or

(iii) −s1 ∈ N or −s2 ∈ N, s1 + s2 > 0, min(s1, s2) > s,
s1 + s2 − s ≥ m

2 .

Then the tensor product of smooth sections extends to a bounded
bilinear mapping

ΓHs1 (E1)× ΓHs2 (E2)→ ΓHs (E1 ⊗ E2).

A. Behzadan and M. Holst. On certain geometric operators between Sobolev spaces of sections of tensor bundles
on compact manifolds equipped with rough metrics, 2017.

Invariance under multiplication and adjoints. If
p(s1, s) = {s2 : (s1, s2, s) satisfies (i) or (ii) or (iii) above}
then for all r , s, t ∈ R:
I If α ∈ p(r , s) and β ∈ p(s, t), then min(α, β) ∈ p(r , t), and

the tensor product of smooth sections extends to a bounded
bilinear mapping ΓHα(E1)× ΓHβ (E2)→ ΓHmin(α,β)(E1 ⊗ E2).

I If β ∈ p(r , s), then β ∈ p(−s,−r).



Riemannian Metrics of Sobolev order

For any α ∈ ( dim(M)
2 ,∞], we define the space of Riemannian

metrics of Sobolev order α as

MetHα(M) := ΓHα(S2
+T
∗M).

Well-defined: α > m
2 =⇒ ΓHα(S2T ∗M) ⊂ ΓC0(S2T ∗M) .

Lemma. Let α ∈ ( dim(M)
2 ,∞]. Let E → M be a first order natural

bundle. Then:
(1) g ∈ MetHα(M) induces a canonical fiber metric of class Hα on
E (up to the choice of some constants).
(2) This gives a real analytic map MetHα(M)→ ΓHα(S2

+E
∗). In

particular, for E = T ∗M one obtains that g−1 is real analytic in g .
(3) If E is trivial, then the fiber metric is of class C∞ and does not
depend on g .



Covariant derivative

Lemma.
Let α ∈ (dim(M)/2,∞) and s ∈ [1− α, α]. Then:
(1) For each g ∈ MetHα(M) and natural first order vector bundle
E over M, there is a unique bounded linear mapping

ΓHs (E ) 3 h 7→ ∇gh ∈ ΓHs−1(T ∗M ⊗ E )

which acts as a derivation with respect to tensor products,
commutes with each symmetrization operator, and coincides with
the Levi-Civita covariant derivative in the cases E = TM and
E = T ∗M.
(2) The covariant derivative is real analytic as a mapping

MetHα(M) 3 g 7→ ∇g ∈ L(ΓHs (E ), ΓHs−1(T ∗M ⊗ E )).

for all s ∈ [1− α, α].
(3) If E is trivial, then this holds for all s ∈ R.



Remarks to the proof of the lemma

Using the Levi-Civita covariant derivative ∇ĝ for a smooth
background Riemannian metrig ĝ , we express the Levi-Civita
connection of g ∈ MetHα(M) as

∇g
X = ∇ĝ

X + Ag (X , )

for a suitable
Ag ∈ ΓHα−1(T ∗M ⊗ T ∗M ⊗ TM) = ΓHα−1(T ∗M ⊗ L(TM,TM)).
This tensor field A has to satisfy the following conditions (for
smooth vector fields X , Y , Z ):

(∇ĝ
Xg)(Y ,Z ) = g(A(X ,Y ),Z ) + g(Y ,A(X ,Z )) ⇐⇒ ∇g

Xg = 0,

A(X ,Y ) = A(Y ,X ) ⇐⇒ ∇g is torsionfree.

We take the cyclic permutations of the first equation, sum them
with signs +,+,−, and use symmetry of A to obtain

2g(A(X ,Y ),Z ) = (∇ĝ
Xg)(Y ,Z ) + (∇ĝ

Y g)(Z ,X )− (∇ĝ
Zg)(X ,Y ) ;

this equation determines A uniquely as a Hα−1-tensor field. It is
easy checked that it satisfies the two requirements above.



Remark on geodesics

The Christoffel symbols are of class Hα−1. They transform as the
last part in the second tangent bundle, and the associated spray
Sg is an Hα−1-section of both πTM : T 2M → TM and
T (πM) : T 2M → TM.

If α > dim(M)
2 + 1, then the spray Sg is continuous and we have

local existence (but not uniqueness) of geodesics in each chart
separately, by Peano’s theorem.

If α > dim(M)
2 + 2, then Sg is C 1 and there is existence and

uniqueness of geodesics by Picard-Lindelöf.



Bochner Laplacian

Theorem. Let α ∈ (dim(M)/2,∞), let s ∈ [2− α, α], and let E
be a natural first order vector bundle over M. Then:
(1) For each g ∈ MetHα(M), the Bochner Laplacian is a bounded
Fredholm operator of index zero

∆g : ΓHs (E ) 3 h 7→ −Trg
−1

(∇g∇gh) ∈ ΓHs−2(E ).

which is self-adjoint as an unbounded linear operator on the space
ΓHs−2(E ) with the Hs−2(g) inner product.
(2) The Laplacian depends real analytically on the metric, i.e., the
following mapping is real analytic:

MetHα(M) 3 g 7→ ∆g ∈ L(ΓHs (E ), ΓHs−2(E )).

(3) If E is trivial then these statements hold for all
s ∈ [2− α, α + 1].



Derivative of the Laplacian with respect to the metric

This is an essential step of later proofs, and is not obvious.

Lemma. Let α ∈ (m/2,∞) with α ≥ 1, let E be a natural first
order vector bundle over M, let r ∈ [2− α, α], and let
s ∈ [2− r , α]. Then the directional derivative of the Laplace
operator with respect to the metric

d∆ : g 7→ (m 7→ Dg ,m∆g )

MetHα(M)→ L(ΓHα(S2T ∗M), L(ΓHα(E ), ΓHα−2(E )))

extends to a real analytic mapping

MetHα(M)× ΓHr (S2T ∗M) 3 (g , q) 7→
7→ Dg ,q∆g ∈ L(ΓHs (E ), ΓHr+s−2−α(E )).



Functional calculus of the Laplacian

Let α ∈ (dim(M)/2,∞) with α ≥ 1, let g ∈ MetHα(M) and let E
be a natural first order vector bundle over M. Then:
(1) Let ΓH−1(g)(E ) be ΓH−1(E ) with scalar product

〈h, k, 〉H−1(g) = 〈(1 + ∆g )−1h, k〉H0(g).
(2) 1 + ∆g , with domain ΓH1(E ), is unbounded self-adjoint on
ΓH−1(g)(E ) and has a compact resolvent. Thus, there exists an

H−1(g)-orthonormal basis of eigenvectors (ei )i∈N in ΓH−1(g)(E )
and eigenvalues (λi )i∈N in (1,∞) such that

∀i ∈ N : ei ∈ ΓH1(E ), (1 + ∆g )ei = λiei .

(3) For each function f : {λ1, λ2, . . . } → R the following is a
densely defined self-adjoint linear operator on ΓH−1(g)(E ):

f (1 + ∆g ) : Dom(f (1 + ∆g )) 3 h 7→
∑
i∈N
〈hi , ei 〉f (λi )ei ∈ ΓH−1(E ),

Dom(f (1 + ∆g )) =

{
h ∈ ΓH−1(g)(E );

∑
i∈N
〈hi , ei 〉2f (λi )

2 <∞

}
.



(4) Let Sω := {z ∈ C : z 6= 0 and | arg z | < ω} be a sector of angle
ω ∈ (0, π), let © be a closed centered ball contained in the
resolvent set of 1 + ∆g , and let f be a holomorphic function on Sω
such that supλ∈∂Sω |λ

s f (λ)| <∞ for some s ∈ (0,∞). Then the
operator f (1 + ∆g ) ∈ L(ΓH−1(g)(E )) can be represented as

f (1+∆g ) = − 1

2πi

∫
∂(Sω\©)

f (λ)(1+∆g−λ)−1dλ ∈ L(ΓḢ−1(g)(E )),

where the resolvent integral converges in L(ΓH−1(g)(E )).

The above result is based on a functional calculus using 1 + ∆g

viewed as an operator from ΓH1(E ) to ΓH−1(E ). Note, that we
would obtain the same result using a functional calculus based on
the operator 1 + ∆g : L(ΓH2(E ), ΓH0(E )). This would, however,
require the more stringent condition 2 ≤ α ∈ dim(M)/2,∞).



Fractional domain spaces

Let g ∈ MetHα(M) with α ∈ (m/2,∞) satisfying α ≥ 1. Using
1 + ∆g : L(ΓH1(E ), ΓH−1(E )) we let ΓHs(g)(E ) be the space

ΓHs (E ) with inner product 〈h, k〉Hs(g) = 〈(1 + ∆g )s/2h, k〉H0(g).
For all s ∈ [−1,∞) we define the following Hilbert spaces:

ΓHs(g)(E ) : = Dom((1 + ∆g )
s+1

2 ) ⊆ ΓH−1(E ) with norm

‖h‖Ds(g) := ‖(1 + ∆g )
s+1

2 h‖ΓH−1(g)(E)

ΓH−s(g)(E ) : = the completion of ΓH−1(g)(E ) with respect to the norm

‖h‖D−s(g) := ‖(1 + ∆g )−
s+1

2 h‖ΓH−1(g)(E)

We will show that the identity map extends to an isomorphism
ΓHs(g)(E )→ ΓHs (E ) for all s ∈ [−α, α].



Proposition. Fractional Laplacian. Let α ∈ (dim(M)/2,∞) with
α ≥ 1, let g ∈ MetHα(M) and let E be a natural first order vector
bundle over M. Then:
(1) For all r , s ∈ R, the map (1 + ∆g )

s−r
2 : ΓHs(g)(E )→ ΓHr (g)(E )

is an isometry with the same eigenfunctions (ei ) ∈ ΓHα(E ) as

1 + ∆g and with eigenvalues (λ
(s−r)/2
i ).

(2) For all s ∈ [−α, α], the identity on Γ(E ) extends to a bounded
linear map ΓHs(g)(E )→ ΓHs (E ) with bounded inverse such that
the following function is locally bounded:

MetHα(M) 3 g 7→ ‖ Id ‖L(ΓHs (g)(E),ΓHs (E))+‖ Id ‖L(ΓHs (E),ΓHs (g)(E)) ∈ R.

(3) If E = R, then this holds for all s ∈ [−α, α + 1], and the
eigenfunctions ei belong to ΓHα+1(E ).

Note that ΓHs(g)(E ) 6= ΓHs (E ) for s /∈ [−α, α]!



Smoothness and real analycity of the fractional Laplacian

Theorem. Let α ∈ (m/2,∞) with α > 1, let E be a natural first
order vector bundle over M, let r , s ∈ R with s, s + r ∈ [−α, α], let
ϕ ∈ (0, π), and let f be a holomorphic function on Sϕ with
supλ∈Sϕ |λ

r/2f (λ)| <∞. Then the following map is real analytic:

g 7→ f (1 + ∆g ), MetHα(M)→ L(ΓHs (E ), ΓHr+s (E )).

If E is trivial, then this holds with [−α, α] replaced by [−α, α+ 1].

Lemma Let α ∈ (m/2,∞) with α > 1, let E be a natural first
order vector bundle over M, let ϕ ∈ (0, π), and let f be a
holomorphic function on Sϕ which satisfies for some p ∈ (1, α] that
supλ∈Sϕ |λ

pf (λ)| <∞. Then the derivative of Pg = f (1 + ∆g )
with respect to the metric g extends to a real analytic map

MetHα(M)×ΓH2p−α(S2T ∗M)) 3 (g , q) 7→ Dg ,qPg ∈ L(ΓHα(E ), ΓH−α(E )).

This statement also holds for f (z) = zp with p = 1.



Back to the the general Riemannian metric on Met(M).

GP
g (h, k) =

∫
M
g0

2 (Pgh, k) vol(g) =

∫
M

Tr(g−1.Pg (h).g−1.k) vol(g),

where Pg : Γ(S2T ∗M)→ Γ(S2T ∗M) with ϕ∗ ◦ Pg = Pϕ∗g ◦ ϕ∗ .

Conditions on P: There is p ∈ R≥0 and α0 ∈ (m/2,∞) with
α0 ≥ p such that g 7→ Pg satisfies the following for all
α ∈ [α0,∞).
(a) The operator field P is smooth as a map

MetHα(M) 3 g 7→ Pg ∈ GL(ΓHα(S2T ∗M), ΓHα−2p(S2T ∗M)),

(b) P is Diff(M)-equivariant: For all ϕ ∈ Diff(M), g ∈ MetHα(M),
and h ∈ ΓHα(S2T ∗M) we have ϕ∗(Pgh) = Pϕ∗g (ϕ∗h).



(c) Pg is nonnegative and symmetric with respect to the H0(g)
inner product on ΓHα(S2T ∗M), i.e., for all h, k ∈ ΓHα(S2T ∗M):∫
M
g0

2 (Pgh, k) vol(g) =

∫
M
g0

2 (h,Pgk) vol(g),

∫
M
g0

2 (Pgh, h) vol(g) ≥ 0.

(d) The H0(g) adjoint of the derivative of P with respect to the
metric is well-defined as a smooth map

MetHα(M)× ΓHα(S2T ∗M) 3 (g , h) 7→ (D(g ,·)Pgh)∗

∈ L(ΓHα(S2T ∗M), ΓHα−2p(S2T ∗M))

such that the following relation is satisfied for all g ∈ MetHα(M)
and h, k ∈ ΓHα(S2T ∗M):∫

M
g0

2

(
(D(g ,q)Pg )h, k

)
vol(g) =

∫
M
g0

2

(
q, (D(g ,·)Pgh)∗(k)

)
vol(g).



Theorem (Conditions on P)

Let ϕ ∈ (0, π), let p ∈ (1,∞), and let f be a holomorphic function
on the sector Sϕ which satisfies for some constant C > 0 that

∀z ∈ Sϕ : C−1|zp| ≤ |f (z)| ≤ C |zp|.

Then the field of operators

Met(M) 3 g 7→ Pg := f (1 + ∆g ) ∈ L(Γ(S2T ∗M), Γ(S2T ∗M))

satisfies the conditions above for any α0 ∈ (m/2,∞) with α0 > 1
and α0 ≥ p.



Theorem (Well-posedness of the geodesic equation)

Assume that the operator P satisfies the above conditions for some
p ∈ R≥0 and α0 ∈ (m/2,∞). Then for each α ∈ [α0,∞) we have:

1. The initial value problem for the geodesic equation has unique
local solutions in MetHα(M). The solutions depend smoothly
on t and on the initial conditions g(0) ∈ Metα(M) and
gt(0) ∈ ΓHα(S2T ∗M).

2. The Riemannian exponential map expP exists and is smooth
on a neighborhood of the zero section in TMetHα(M), and
(π, expP) is a diffeomorphism from a (smaller) neighborhood
of the zero section to a neighborhood of the diagonal in
Metα(M)×Metα(M).

3. The neighborhoods in 1 and 2 are uniform in α and can be
chosen open in the Hα0 topology. Thus, 1 nd 2 continue to
hold for α =∞, i.e., on the Fréchet manifold Met(M) of
smooth metrics.



Proofs are based on Sectorial operators

For each ω ∈ [0, π], the sector Sω of angle ±ω is defined as

Sω :=

{
{z ∈ C : z 6= 0 and | arg(z)| < ω} if ω ∈ (0, π]

(0,∞) if ω = 0.

For ω ∈ (0, π], let H∞(Sω) be the Banach algebra of bounded
holomorphic functions on Sω with supremum norm.
Let A be a (possibly unbounded) closed linear operator on a
Banach space X . Its resolvent set ρ(A) is the set of λ ∈ C such
that A−λ has a bounded inverse, the resolvent Rλ(A) = (A−λ)−1

for λ ∈ ρ(A). Then A is called sectorial of angle ω ∈ [0, π) if the
spectrum of A is contained in Sω and for all ω′ ∈ (ω, π), the
function C \ Sω′ 3 λ 7→ λRλ(A) ∈ L(X ) is bounded [Haase 2006].



Sectorial operators admit a holomorphic functional calculus: let
0 < ω < ϕ < π, let r > 0, let A be an invertible sectorial operator
of angle strictly less than ω, let © be a closed centered ball
contained in ρ(A), and let f be a holomorphic function on Sϕ
satisfying

sup
λ∈∂(Sω\©)

|λr f (λ)| <∞.

Then the following Bochner integral is well-defined by the
sectoriality of A:

f (A) :=
−1

2πi

∫
∂(Sω\©)

f (λ)Rλ(A)dλ ∈ L(X ).

This primary functional calculus can be extended to larger classes
of functions as described in [Haase 2006]. For any z ∈ C, the
fractional power Az is well-defined as an invertible sectorial
operator. The homogeneous fractional domain space Ẋr of A is
defined for any r ∈ R as the completion of the domain of Ar with
respect to the norm ‖x‖Ẋr

:= ‖Arx‖X .



Lemma (Perturbations of sectorial operators)

Let A be an invertible sectorial operator of angle < ω ∈ (0, π) on a
complex Banach space X , let (Ẋr )r∈R be the fractional domain
spaces and let © be a closed centered ball ⊂ ρ(A). Then there an
open neighbhd. U of A in L(Ẋ1, Ẋ0) such that for all r ∈ (−∞, 1],
ϕ ∈ (ω, π), and holomorphic functions f : Sϕ → C with
supλ∈Sϕ\© |λ

r f (λ)| <∞ we have:
(1) All B ∈ U are sectorial of angle < ω, and ρ(B) ⊃ ©.
(2) The following maps are well-defined and holomorphic:

U 3 B 7→ (λ 7→ λ1−rRλ(B)) ∈ Cb(∂(Sω \©), L(Ẋ0, Ẋr )).

U 3 B 7→ (λ 7→ λ1−rRλ(B)) ∈ Cb(∂(Sω \©), L(Ẋ1−r , Ẋ1)).

(3) If A is densely defined and B : D→ U is holomorphic with
supz∈D ‖f (B(z))‖L(Ẋ0,Ẋr ) <∞. Then

D 3 z 7→ f (B(z)) =
−1

2πi

∫
∂(Sω\©)

f (λ)Rλ(B(z))dλ ∈ L(Ẋ0, Ẋr ),

is holomorphic; integral converges in L(Ẋ0, Ẋ<r ) and L(Ẋ>1−r , Ẋ1).



Lemma (Perturb. of operators with bounded H∞ calculus)

Let A be an invertible densely defined R-sectorial operator of
positive angle < ω ∈ (0, π) with bounded H∞(Sω) calculus on a
complex Banach space X , let (Ẋr )r∈R be the fractional domain
spaces for A, let © ⊂ ρ(A), let δ ∈ R \ {0}, and let
V = L(Ẋ1, Ẋ0) ∩ L(Ẋδ+1, Ẋδ). Then ∃ an open neighbhd U of
A ∈ V such that for all r ∈ [0, 1] and ϕ ∈ (ω, π) we have:
(1) All B ∈ U are R-sectorial of positive angle < ω with ρ(B) ⊃ ©,
and admit a bounded H∞(Sϕ) calculus with uniform bounds

sup
B∈U

sup
g∈H∞(Sϕ)\{0}

‖g(B)‖L(X )

‖g‖H∞(Sϕ)
+ ‖B−r‖L(Ẋ0,Ẋr ) <∞.

(2) For any holomorphic f : Sϕ → C with supλ∈Sϕ |λ
r f (λ)| <∞,

U 3 B 7→ f (B) =

∫
∂(Sω\©)

f (λ)Rλ(B)dλ ∈ L(X , Ẋr )

is well-defined and holomorphic, where the integral converges in
L(Ẋ0, Ẋ<r ) ∩ L(Ẋ>1−r , Ẋ1).



Theorem (Perturb. of operators with bounded H∞ calculus)

Let A be an invertible densely defined R-sectorial operator of
positive angle strictly less than ω ∈ (0, π) with bounded H∞(Sω)
calculus on a complex Banach space X , let (Ẋr )r∈R be the
fractional domain spaces associated to A, let β, γ ∈ R with β < γ,
and let V = L(Ẋβ+1, Ẋβ) ∩ L(Ẋγ+1, Ẋγ). Then there exists an
open neighborhood U of A ∈ V such that for all r , s ∈ R with
s, s + r ∈ [β, γ + 1], ϕ ∈ (ω, π), and holomorphic functions
f : Sϕ → C with supλ∈Sϕ |λ

r f (λ)| <∞, the following map is
well-defined and holomorphic:

U 3 B 7→ f (B) ∈ L(Ẋs , Ẋs+r ).



Thank you for your attention


