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Introduction

At the very conception of the notion of manifolds, in the Habilitationsschrift [Rie-
mann, 1868], infinite dimensional manifolds were mentioned explicitly:

“Es giebt indess auch Mannigfaltigkeiten, in welchen die Ortsbestimmung nicht eine
endliche Zahl, sondern entweder eine unendliche Reihe oder eine stetige Mannig-
faltigkeit von Grössenbestimmungen erfordert. Solche Mannigfaltigkeiten bilden
z.B. die möglichen Bestimmungen einer Function für ein gegebenes Gebiet, die
möglichen Gestalten einer räumlichen Figur u.s.w.”

The purpose of this book is to lay the foundations of infinite dimensional differential
geometry. The book [Palais, 1968] and review article [Eells, 1966] have similar titles
and treat global analysis mainly on manifolds modeled on Banach spaces. Indeed
classical calculus works quite well up to and including Banach spaces: Existence
and uniqueness hold for solutions of smooth ordinary differential equations (even
Lipschitz ones), but not existence for all continuous ordinary differential equations.
The inverse function theorem works well, but the theorem of constant rank presents
problems, and the implicit function theorem requires additional assumptions about
existence of complementary subspaces. There are also problems with partitions of
unity, with the Whitney extension theorem, and with Morse theory and transver-
sality.

Further development has shown that Banach manifolds are not suitable for many
questions of Global Analysis, as shown by the following result, which is due to
[Omori and de la Harpe, 1972], see also [Omori, 1978b]: If a Banach Lie group
acts effectively on a finite dimensional compact smooth manifold it must be finite
dimensional itself. The study of Banach manifolds per se is not very interesting,
since they turn out to be open subsets of the modeling space for many modeling
spaces, see [Eells and Elworthy, 1970].

Our aim in this book is to treat manifolds which are modeled on locally convex
spaces, and which are smooth, holomorphic, or real analytic in an appropriate
sense. To do this we start with a careful exposition of smooth, holomorphic, and
real analytic calculus in infinite dimensions. Differential calculus in infinite dimen-
sions has already quite a long history; in fact it goes back to Bernoulli and Euler,
to the beginnings of variational calculus. During the 20-th century the urge to dif-
ferentiate in spaces which are more general than Banach spaces became stronger,
and many different approaches and definitions were attempted. The main difficulty
encountered was that composition of (continuous) linear mappings ceases to be a
jointly continuous operation exactly at the level of Banach spaces, for any suitable
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topology on spaces of linear mappings. This can easily be explained in a somewhat
simpler example:

Consider the evaluation ev : E × E∗ → R, where E is a locally convex space and
E∗ is its dual of continuous linear functionals equipped with any locally convex
topology. Let us assume that the evaluation is jointly continuous. Then there are
neighborhoods U ⊆ E and V ⊆ E∗ of zero such that ev(U ×V ) ⊆ [−1, 1]. But then
U is contained in the polar of V , so it is bounded in E, and so E admits a bounded
neighborhood and is thus normable.

The difficulty described here was the original motivation for the development of
a whole new field within general topology, convergence spaces. Fortunately it is
no longer necessary to delve into this, because [Frölicher, 1981] and [Kriegl, 1982],
[Kriegl, 1983] presented independently the solution to the question for the right
differential calculus in infinite dimensions, see the monograph [Frölicher and Kriegl,
1988]. The smooth calculus which we present here is the same as in this book, but
our exposition is based on functional analysis rather than on category theory.

Let us try to describe the basic ideas of smooth calculus: One can say that it is
a (more or less unique) consequence of taking variational calculus seriously. We
start by looking at the space of smooth curves C∞(R, E) with values in a locally
convex space E and note that it does not depend on the topology of E, only on
the underlying system of bounded sets. This is due to the fact, that for a smooth
curve difference quotients converge to the derivative much better than arbitrary
converging nets or filters. Smooth curves have integrals in E if and only if a
weak completeness condition is satisfied: it appeared as ‘bornologically complete’
or ‘locally complete’ in the literature; we call it c∞-complete. Surprisingly, this is
equivalent to the condition that scalarwise smooth curves are smooth. All calculus
in this book will be done on convenient vector spaces. These are locally convex
vector spaces which are c∞-complete. Note that the locally convex topology on a
convenient vector space can vary in some range – only the system of bounded set
must remain the same. The next steps are then easy: a mapping between convenient
vector spaces is called smooth if it maps smooth curves to smooth curves, and
everything else is a theorem – existence, smoothness, and linearity of derivatives,
the chain rule, and also the most important feature, cartesian closedness

(1) C∞(E × F,G) ∼= C∞(E,C∞(F,G))

holds without any restriction, for a natural convenient vector space structure on
C∞(F,G): So the old dream of variational calculus becomes true in a concise way.
If one wants (1) and some other mild properties of calculus, then smooth calculus
as described here is unique. Let us point out that on some convenient vector spaces
there are smooth functions which are not continuous for the locally convex topology.
This is not so horrible as it sounds, and is unavoidable if we want the chain rule,
since ev : E×E∗ → R is always smooth but continuous only if E is normable, by the
discussion above. This just tells us that locally convex topology is not appropriate
for non-linear questions in infinite dimensions. We will, however, introduce the c∞-
topology on any convenient vector space, which survives as the fittest for non-linear
questions.
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An eminent mathematician once said that for infinite dimensional calculus each
serious application needs its own foundation. By a serious application one obviously
means some application of a hard inverse function theorem. These theorems can
be proved, if by assuming enough a priori estimates one creates enough Banach
space situation for some modified iteration procedure to converge. Many authors
try to build their platonic idea of an a priori estimate into their differential calculus.
We think that this makes the calculus inapplicable and hides the origin of the a
priori estimates. We believe that the calculus itself should be as easy to use as
possible, and that all further assumptions (which most often come from ellipticity
of some nonlinear partial differential equation of geometric origin) should be treated
separately, in a setting depending on the specific problem. We are sure that in this
sense the setting presented here (and the setting in [Frölicher and Kriegl, 1988]) is
useful for most applications. To give a basis to this statement we present also the
hard implicit function theorem of Nash and Moser, in the approach of [Hamilton,
1982] adapted to convenient calculus, but we give none of its serious applications.

A surprising and very satisfying feature of the notion of convenient vector spaces
is that it is also the right setting for holomorphic calculus as shown in [Kriegl and
Nel, 1985], for real analytic calculus as shown by [Kriegl and Michor, 1990], and
also for multilinear algebra.

In chapter III we investigate the existence of smooth bump functions and smooth
partitions of unity. This is tied intimately to special properties of the locally convex
spaces in question. There is also a section on differentiability of finite order, based
on Lipschitz conditions, whereas the rest of the book is devoted to differentiability
of infinite order. Chapter IV answers the question whether real valued algebra
homomorphisms on algebras of smooth functions are point evaluations. Germs,

extension results like 22.17 , and liftings are the topic of chapter V. Here we also
treat Frölicher spaces (i.e. spaces with a fairly general smooth structure) and free
convenient vector spaces over them.

Chapters VI to VIII are devoted to the theory of infinite dimensional manifolds and
Lie groups and some of their applications. We treat here only manifolds described
by charts although this limits cartesian closedness of the category of manifolds

drastically, see 42.14 and section 23 for more thorough discussions. Then we
investigate tangent vectors seen as derivations or kinematically (via curves): these

concepts differ, and there are some surprises even on Hilbert spaces, see 28.4 .
Accordingly, we have different kinds of tangent bundles, vector fields, differential
forms, which we list in a somewhat systematic manner. The theorem of De Rham
is proved, and a (small) version of the Frölicher-Nijenhuis bracket in infinite di-
mensions is treated. Finally, we discuss Weil functors (certain product preserving
functors of manifolds) as generalized tangent bundles. The theory of infinite di-
mensional Lie groups can be pushed surprisingly far: Exponential mappings are
unique if they exist. A stronger requirement (leading to regular Lie groups) is that
one assumes that smooth curves in the Lie algebra integrate to smooth curves in
the group in a smooth way (an ‘evolution operator’ exists). This is due to [Mil-
nor, 1984] who weakened the concept of [Omori et al., 1982]. It turns out that
regular Lie groups have strong permanence properties. Up to now (April 1997) no
non-regular Lie group is known. Connections on smooth principal bundles with
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a regular Lie group as structure group have parallel transport 39.1 , and for flat

connections the horizontal distribution is integrable 39.2 . So some (equivariant)
partial differential equations in infinite dimensions are very well behaved, although
in general there are counter-examples in every possible direction. As consequence

we obtain in 40.3 that a bounded homomorphism from the Lie algebra of simply
connected Lie group into the Lie algebra of a regular Lie group integrates to a
smooth homomorphism of Lie groups.

The rest of the book describes applications: In chapter IX we treat manifolds of
mappings between finite dimensional manifolds. We show that the group of all
diffeomorphisms of a finite dimensional manifold is a regular Lie group, also the
group of all real analytic diffeomorphisms, and some subgroups of diffeomorphism
groups, namely those consisting of symplectic diffeomorphisms, volume preserving
diffeomorphism, and contact diffeomorphisms. Then we treat principal bundles
with structure group a diffeomorphism group. The first example is the space of all
embeddings between two manifolds, a sort of nonlinear Grassmann manifold, which
leads to a smooth manifold which is a classifying space for the diffeomorphism
group of a compact manifold. Another example is the nonlinear frame bundle
of a fiber bundle with compact fiber, for which we investigate the action of the
gauge group on the space of generalized connections and show that there are no

slices. In section 45 we compute explicitly all geodesics for some natural (pseudo)

Riemannian metrics on the space of all Riemannian metrics. Section 46 is devoted
to the Korteweg–De Vrieß equation which is shown to be the geodesic equation of
a certain right invariant Riemannian metric on the Virasoro group.

Chapter X start with section 47 on direct limit manifolds like the sphere S∞

or the Grassmannian G(k,∞) and shows that they are real analytic regular Lie
groups or associated homogeneous spaces. This put some constructions of alge-

braic topology directly into differential geometry. Section 48 is devoted to weak
symplectic manifolds (where the symplectic form is injective but not surjective as
a mapping from the tangent bundle into the cotangent bundle). Here we describe
precisely the space of smooth functions for which the Poisson bracket makes sense.

In section 49 on representation theory we show how easily the spaces of smooth
(real analytic) vectors can be treated with the help of the calculus developed in this

book. The results 49.3 – 49.5 and their real analytic analogues 49.8 – 49.10
should convince the reader who has seen the classical proofs that convenient anal-
ysis is worthwhile to use. We included also some material on the moment mapping
for unitary representations. This mapping is defined on the space of smooth (real

analytic) vectors. Section 50 is devoted to the preparations and the proof of the-

orem 50.16 which says that a smooth curve of unbounded selfadjoint operators
on Hilbert space with compact resolvent admits smooth parameterizations of its
eigenvalues and eigenvectors, under some condition. The real analytic version of
this is due to [Rellich, 1940]; we also give a new and simpler proof of this result.
In our view, the best advantage of our approach is the natural and easy way to
express what a smooth or real analytic curve of unbounded operators really is.
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Hints for the reader. The numbering of subsections is done extensively and
consecutively, the number valid at the bottom of each page can be found in the
running head, opposite to the page number. Concepts which are not central are
usually defined after the formulation of the result, before the proof, and sometimes
even in the proof. So please look ahead rather than behind (which is advisable in
everyday life also). Related materials from the literature are listed under the name

Result if we include them without proofs. Appendix 52 collects some background

material from functional analysis in compressed form, and appendix 53 contains

a tool for analyzing non-separable Banach spaces which is used in sections 16 and

19 . A list of symbols has been worked into the index.

Reading map for the cross reader. Most of chapter I is essential. Chapter II
is for readers who also want to know the holomorphic and real analytic calculus,
others may leave it for a second reading. Chapters III–V treat special material
which can be looked up later whenever properties like smooth partitions of unity

in infinite dimensions are asked for. In chapter VI section 35 can be skipped,

in chapter VII one may omit some proofs in sections 33 and 35 . Chapter VIII
contains Lie theory and bundle theory, and is necessary for chapter IX and parts
of chapter X.

Thanks. The work on this book was done from 1989 onwards, most of the material
was presented in our joint seminar and elsewhere several times, which led to a lot of
improvement. We want to thank all participants, who devoted a lot of attention and
energy, in particular our (former) students who presented talks on that subject, also
those who helped with proofreading or gave good advise: Eva Adam, Dmitri Alek-
seevsky, Andreas Cap, Stefan Haller, Ann and Bertram Kostant, Grigori Litvinov,
Mark Losik, Josef Mattes, Martin Neuwirther, Tudor Ratiu, Konstanze Rietsch,
Hermann Schichl, Erhard Siegl, Josef Teichmann, Klaus Wegenkittl. The second
author acknowledges the support of ‘Fonds zur Förderung der wissenschaftlichen
Forschung, Projekt P 10037 PHY’.

Preface to the corrected version from 2015

This corrected version keeps the section numbers and the subsection numbers of
the original version. But the pagenumbers changed. The following is a more or less
complete description of the major changes:

In 5.26 Theorem: ... Then C∞(U,F ) is convenient and satisfies ...

In 12.7 Lemma: replace ‘locally bounded’ by ‘bounded on compact sets’. Some
changes in the proof required. (Noted by Helge Glöckner)

The proof of Theorem 42.21 works only for a finite dimensional structure group.
(Noted by Christoph Wockel)

In 43.2 Example ... that Diff(M) contains a smooth curve through IdM whose
points (sauf IdM ) are free generators of an arcwise connected free subgroup which
meets the image of exp only at the identity.

More details in the proof of theorem 44.1 added.
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The statement of 44.2 is much enlarged and proofs have been included (10 pages
more).

In 48.2 replace the second paragraph by the following which is needed in the proof
of 48.8 Theorem (Otherwise it is wrong):
A 2-form σ ∈ Ω2(M) is called a weak symplectic structure on M if the following
three conditions holds:

(1) σ is closed, dσ = 0.
(2) The associated vector bundle homomorphism σ̌ : TM → T ∗M is injective.
(3) The gradient of σ with respect to itself exists and is smooth; this can be

expressed most easily in charts, so let M be open in a convenient vector space
E. Then for x ∈ M and X,Y, Z ∈ TxM = E we have dσ(x)(X)(Y,Z) =

σ(Ωx(Y,Z), X) = σ(Ω̃x(X,Y ), Z) for smooth Ω, Ω̃ : M × E × E → E which
are bilinear in E × E.

In 48.8 Theorem insert before: We have the following long exact sequence of Lie
algebras . . . :
We equip C∞σ (M,R) with the initial structure with respect to the the two following
mappings:

C∞σ (M,R)−⊂→ C∞(M,R), C∞σ (M,R)−gradσ→ X(M).

Then the Poisson bracket is bounded bilinear on C∞σ (M,R).

Many changes in the proof of the theorem.
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This chapter is devoted to calculus of smooth mappings in infinite dimensions. The
leading idea of our approach is to base everything on smooth curves in locally
convex spaces, which is a notion without problems, and a mapping between locally
convex spaces will be called smooth if it maps smooth curves to smooth curves.

We start by looking at the set of smooth curves C∞(R, E) with values in a locally
convex space E, and note that it does not depend on the topology of E, only on
the underlying system of bounded sets, its bornology. This is due to the fact, that

for a smooth curve difference quotients converge to the derivative much better 2.1
than arbitrary converging nets or filters: we may multiply it by some unbounded
sequences of scalars without disturbing convergence (or, even better, boundedness).

Then the basic results are proved, like existence, smoothness, and linearity of deriva-

tives, the chain rule 3.18 , and also the most important feature, the ‘exponential

law’ 3.12 and 3.13 : We have

C∞(E × F,G) ∼= C∞(E,C∞(F,G)),

without any restriction, for a natural structure on C∞(F,G).

Smooth curves have integrals in E if and only if a weak completeness condition
is satisfied: it appeared as bornological completeness, Mackey completeness, or
local completeness in the literature, we call it c∞-complete. This is equivalent to

the condition that weakly smooth curves are smooth 2.14 . All calculus in later
chapters in this book will be done on convenient vector spaces: These are
locally convex vector spaces which are c∞-complete; note that the locally convex
topology on a convenient vector space can vary in some range, only the system of
bounded sets must remain the same.
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Linear or more generally multilinear mappings are smooth if and only if they are

bounded 5.5 , and one has corresponding exponential laws 5.2 for them as well.
Furthermore, there is an appropriate tensor product, the bornological tensor prod-

uct 5.7 , satisfying

L(E ⊗β F,G) ∼= L(E,F ;G) ∼= L(E,L(F,G)).

An important tool for convenient vector spaces are uniform boundedness principles

as given in 5.18 , 5.24 and 5.26 .

It is very natural to consider on E the final topology with respect to all smooth
curves, which we call the c∞-topology, since all smooth mappings are continuous
for it: the vector space E, equipped with this topology is denoted by c∞E, with
lower case c in analogy to kE for the Kelley-fication and in order to avoid any
confusion with any space of smooth functions or sections. The special curve lemma

2.8 shows that the c∞-topology coincides with the usual Mackey closure topology.
The space c∞E is not a topological vector space in general. This is related to the
fact that the evaluation E×E′ → R is jointly continuous only for normable E, but
it is always smooth and hence continuous on c∞(E×E′). The c∞-open subsets are
the natural domains of definitions of locally defined functions. For nice spaces (e.g.

Fréchet and strong duals of Fréchet-Schwartz spaces, see 4.11 ) the c∞-topology
coincides with the given locally convex topology. In general, the c∞-topology is
finer than any locally convex topology with the same bounded sets.

In the last section of this chapter we discuss the structure of spaces of smooth
functions on finite dimensional manifolds and, more generally, of smooth sections
of finite dimensional vector bundles. They will become important in chapter IX as
modeling spaces for manifolds of mappings. Furthermore, we give a short account
of reflexivity of convenient vector spaces and on (various) approximation properties
for them.

1. Smooth Curves

1.1. Notation. Since we want to have unique derivatives all locally convex spaces
E will be assumed Hausdorff. The family of all bounded sets in E plays an impor-
tant rôle. It is called the bornology of E. A linear mapping is called bounded,
sometimes also called bornological, if it maps bounded sets to bounded sets. A
bounded linear bijection with bounded inverse is called bornological isomor-
phism. The space of all continuous linear functionals on E will be
denoted by E∗ and the space of all bounded linear functionals on E by
E′. The adjoint or dual mapping of a linear mapping `, however, will be always
denoted by `∗, because of differentiation.

See also the appendix 52 for some background on functional analysis.

1.2. Differentiable curves. The concept of a smooth curve with values in a
locally convex vector space is easy and without problems. Let E be a locally convex
vector space. A curve c : R → E is called differentiable if the derivative
c′(t) := lims→0

1
s (c(t + s) − c(t)) at t exists for all t. A curve c : R → E is called
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smooth or C∞ if all iterated derivatives exist. It is called Cn for some finite n if
its iterated derivatives up to order n exist and are continuous.

A curve c : R → E is called locally Lipschitzian if every point r ∈ R has a
neighborhood U such that the Lipschitz condition is satisfied on U , i.e., the set{

1
t−s

(
c(t)− c(s)

)
: t 6= s; t, s ∈ U

}
is bounded. Note that this implies that the curve satisfies the Lipschitz condition
on each bounded interval, since for (ti) increasing

c(tn)− c(t0)

tn − t0
=
∑ ti+1 − ti

tn − t0
c(ti+1)− c(ti)
ti+1 − ti

is in the absolutely convex hull of a finite union of bounded sets.

A curve c : R → E is called Lipk or C(k+1)− if all derivatives up to order k exist
and are locally Lipschitzian.

1.3. Lemma. Continuous linear mappings are smooth. A continuous linear
mapping ` : E → F between locally convex vector spaces maps Lipk-curves in E to
Lipk-curves in F , for all 0 ≤ k ≤ ∞, and for k > 0 one has (` ◦ c)′(t) = `(c′(t)).

Proof. As a linear map ` commutes with the formation of difference quotients,
hence the image of a Lipschitz curve is Lipschitz since ` is bounded.

As a continuous map it commutes with the formation of the respective limits. Hence
(` ◦ c)′(t) = `(c′(t)).

Now the rest follows by induction. �

Note that a differentiable curve is continuous, and that a continuously differentiable
curve is locally Lipschitzian: For ` ∈ E∗ we have

`

(
c(t)− c(s)
t− s

)
=

(` ◦ c)(t)− (` ◦ c)(s)
t− s

=

∫ 1

0

(` ◦ c)′(s+ (t− s)r)dr,

which is bounded, since (` ◦ c)′ = ` ◦ c′ is locally bounded. Since boundedness can

be tested by continuous linear functionals (see 52.19 ) we conclude that c is locally
Lipschitzian.

More general, we have by induction the following implications:

Cn+1 =⇒ Lipn =⇒ Cn,

differentiable =⇒ C.

1.4. The mean value theorem. In classical analysis the basic tool for using
the derivative to get statements on the original curve is the mean value theorem.
So we try to generalize it to infinite dimensions. For this let c : R → E be a
differentiable curve. If E = R the classical mean value theorem states, that the
difference quotient (c(a)−c(b))/(a−b) equals some intermediate value of c′. Already
if E is two dimensional this is no longer true. Take for example a parameterization
of the circle by arclength. However, we will show that (c(a) − c(b))/(a − b) lies
still in the closed convex hull of {c′(r) : r}. Having weakened the conclusion, we
can try to weaken the assumption. And in fact c may be not differentiable in at
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most countably many points. Recall however, that there exist strictly monotone
functions f : R → R, which have vanishing derivative outside a Cantor set (which
is uncountable, but has still measure 0).

Sometimes one uses in one dimensional analysis a generalized version of the mean
value theorem: For an additional differentiable function h with non-vanishing deriv-
ative the quotient (c(a)−c(b))/(h(a)−h(b)) equals some intermediate value of c′/h′.
A version for vector valued c (for real valued h) is that (c(a)− c(b))/(h(a)− h(b))
lies in the closed convex hull of {c′(r)/h′(r) : r}. One can replace the assumption
that h′ vanishes nowhere by the assumption that h′ has constant sign, or, more gen-
erally, that h is monotone. But then we cannot form the quotients, so we should
assume that c′(t) ∈ h′(t) ·A, where A is some closed convex set, and we should be
able to conclude that c(b)−c(a) ∈ (h(b)−h(a)) ·A. This is the version of the mean
value theorem that we are going to prove now. However, we will make use of it
only in the case where h = Id and c is everywhere differentiable in the interior.

Proposition. Mean value theorem. Let c : [a, b] =: I → E be a continuous
curve, which is differentiable except at points in a countable subset D ⊆ I. Let h
be a continuous monotone function h : I → R, which is differentiable on I \D. Let
A be a convex closed subset of E, such that c′(t) ∈ h′(t) ·A for all t /∈ D.

Then c(b)− c(a) ∈ (h(b)− h(a)) ·A.

Proof. Assume that this is not the case. By the theorem of Hahn Banach 52.16

there exists a continuous linear functional ` with `(c(b)−c(a)) /∈ `((h(b)− h(a)) ·A).

But then ` ◦ c and `(A) satisfy the same assumptions as c and A, and hence we
may assume that c is real valued and A is just a closed interval [α, β]. We may
furthermore assume that h is monotonely increasing. Then h′(t) ≥ 0, and h(b) −
h(a) ≥ 0. Thus the assumption says that αh′(t) ≤ c′(t) ≤ βh′(t), and we want to
conclude that α(h(b) − h(a)) ≤ c(b) − c(a) ≤ β(h(b) − h(a)). If we replace c by
c− βh or by αh− c it is enough to show that c′(t) ≤ 0 implies that c(b)− c(a) ≤ 0.
For given ε > 0 we will show that c(b) − c(a) ≤ ε(b − a + 1). For this let J be
the set {t ∈ [a, b] : c(s) − c(a) ≤ ε ((s − a) +

∑
tn<s

2−n) for a ≤ s < t}, where

D =: {tn : n ∈ N}. Obviously, J is a closed interval containing a, say [a, b′]. By
continuity of c we obtain that c(b′) − c(a) ≤ ε ((b′ − a) +

∑
tn<b′

2−n). Suppose

b′ < b. If b′ /∈ D, then there exists a subinterval [b′, b′ + δ] of [a, b] such that for
b′ ≤ s < b′ + δ we have c(s)− c(b′)− c′(b′)(s− b′) ≤ ε(s− b′). Hence we get

c(s)− c(b′) ≤ c′(b′)(s− b′) + ε(s− b′) ≤ ε(s− b′),

and consequently

c(s)− c(a) ≤ c(s)− c(b′) + c(b′)− c(a)

≤ ε(s− b′) + ε
(
b′ − a+

∑
tn<b′

2−n
)
≤ ε
(
s− a+

∑
tn<s

2−n
)
.

On the other hand if b′ ∈ D, i.e., b′ = tm for some m, then by continuity of c we
can find an interval [b′, b′ + δ] contained in [a, b] such that for all b′ ≤ s < b′ + δ we
have

c(s)− c(b′) ≤ ε2−m.
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Again we deduce that

c(s)− c(a) ≤ ε2−m + ε
(
b′ − a+

∑
tn<b′

2−n
)
≤ ε
(
s− a+

∑
tn<s

2−n
)
.

So we reach in both cases a contradiction to the maximality of b′. �

Warning: One cannot drop the monotonicity assumption. In fact take h(t) := t2,
c(t) := t3 and [a, b] = [−1, 1]. Then c′(t) ∈ h′(t)[−2, 2], but c(1) − c(−1) = 2 /∈
{0} = (h(1)− h(−1))[−2, 2].

1.5. Testing with functionals. Recall that in classical analysis vector valued
curves c : R → Rn are often treated by considering their components ck := prk ◦c,
where prk : Rn → R denotes the canonical projection onto the k-th factor R. Since
in general locally convex spaces do not have appropriate bases, we use all continuous
linear functionals instead of the projections prk. We will say that a property of a
curve c : R→ E is scalarly true, if ` ◦ c : R→ E → R has this property for all
continuous linear functionals ` on E.

We want to compare scalar differentiability with differentiability. For finite dimen-
sional spaces we know the trivial fact that these two notions coincide. For infinite

dimensions we first consider Lip-curves c : R → E. Since by 52.19 boundedness
can be tested by the continuous linear functionals we see, that c is Lip if and only if
`◦c : R→ R is Lip for all ` ∈ E∗. Moreover, if for a bounded interval J ⊂ R we take

B as the absolutely convex hull of the bounded set c(J)∪{ c(t)−c(s)t−s : t 6= s; t, s ∈ J},
then we see that c|J : J → EB is a well defined Lip-curve into EB . We denote
by EB the linear span of B in E, equipped with the Minkowski functional
pB(v) := inf{λ > 0 : v ∈ λ.B}. This is a normed space. Thus we have the following
equivalent characterizations of Lip-curves:

(1) locally c factors over a Lip-curve into some EB ;
(2) c is Lip;
(3) ` ◦ c is Lip for all ` ∈ E∗.

For continuous instead of Lipschitz curves we obviously have the analogous impli-
cations (1⇒ 2⇒ 3). However, if we take a non-convergent sequence (xn)n, which
converges weakly to 0 (e.g. take an orthonormal base in a separable Hilbert space),
and consider an infinite polygon c through these points xn, say with c( 1

n ) = xn and
c(0) = 0. Then this curve is obviously not continuous but ` ◦ c is continuous for all
` ∈ E∗.
Furthermore, the “worst” continuous curve - i.e. c : R →

∏
C(R,R) R =: E given

by (c(t))f := f(t) for all t ∈ R and f ∈ C(R,R) - cannot be factored locally as
a continuous curve over some EB . Otherwise, c(tn) would converge into some EB
to c(0), where tn is a given sequence converging to 0, say tn := 1

n . So c(tn) would
converge Mackey to c(0), i.e., there have to be µn →∞ with {µn(c(tn)−c(0)) : n ∈
N} bounded in E. Since a set is bounded in the product if and only if its coordinates
are bounded, we conclude that for all f ∈ C(R,R) the sequence µn(f(tn) − f(0))
has to be bounded. But we can choose a continuous function f with f(0) = 0 and
f(tn) = 1√

µn
and conclude that µn(f(tn)− f(0)) =

√
µn is unbounded.
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Similarly, one shows that the reverse implications do not hold for differentiable
curves, for C1-curves and for Cn-curves. However, if we put instead some Lip-
schitz condition on the derivatives, there should be some chance, since this is a
bornological concept. In order to obtain this result, we should study convergence
of sequences in EB .

1.6. Lemma. Mackey-convergence. Let B be a bounded and absolutely convex
subset of E and let (xγ)γ∈Γ be a net in EB. Then the following two conditions are
equivalent:

(1) xγ converges to 0 in the normed space EB;
(2) There exists a net µγ → 0 in R, such that xγ ∈ µγ ·B.

In (2) we may assume that µγ ≥ 0 and is decreasing with respect to γ, at least for
large γ. In the particular case of a sequence (or where we have a confinal countable
subset of Γ) we can choose µγ > 0 for all large γ and hence we may divide.

A net (xγ) for which a bounded absolutely convex B ⊆ E exists, such that xγ con-
verges to x in EB is called Mackey convergent to x or short M-convergent.

Proof. (⇑) Let xγ = µγ ·bγ with bγ ∈ B and µγ → 0. Then pB(xγ) = |µγ | pB(bγ) ≤
|µγ | → 0, i.e. xγ → 0 in EB .

(⇓) Set µγ := 2 pB(xγ) and bγ :=
xγ
µγ

if µγ 6= 0 and bγ := 0 otherwise. Then

pB(bγ) = 1
2 or pB(bγ) = 0, so bγ ∈ B. By assumption, µγ → 0 and xγ = µγ bγ .

For the final assertions, choose γ1 such that |µγ | ≤ 1 for γ ≥ γ1, and for those γ we
replace µγ by sup{|µγ′ | : γ′ ≥ γ} ≥ |µγ | ≥ 0 which is decreasing with respect to γ.

If we have a sequence (γn)n∈N which is confinal in Γ, i.e. for every γ ∈ Γ there
exists an n ∈ N with γ ≤ γn, then γ 7→ νγ := 1/min{n : γ ≤ γn} > 0 converges to
0, and we can replace µγ by max{µγ , νγ} > 0. �

If Γ is the ordered set of all countable ordinals, then it is not possible to find a net
(µγ)γ∈Γ, which is positive everywhere and converges to 0, since a converging net is
finally constant.

1.7. The difference quotient converges Mackey. Now we show how to de-
scribe the quality of convergence of the difference quotient.

Corollary. Let c : R→ E be a Lip1-curve. Then the curve

t 7→ 1

t

(c(t)− c(0)

t
− c′(0)

)
is bounded on bounded subsets of R \ {0}.

Proof. We apply 1.4 to c and obtain:

c(t)− c(0)

t
− c′(0) ∈

〈
c′(r) : 0 < |r| < |t|

〉
closed, convex

− c′(0)

=
〈
c′(r)− c′(0) : 0 < |r| < |t|

〉
closed, convex

=
〈
r
c′(r)− c′(0)

r
: 0 < |r| < |t|

〉
closed, convex
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Let a > 0. Since { c
′(r)−c′(0)

r : 0 < |r| < a} is bounded and hence contained in a
closed absolutely convex and bounded set B, we can conclude that

1

t

(
c(t)− c(0)

t
− c′(0)

)
∈
〈r
t

c′(r)− c′(0)

r
: 0 < |r| < |t|

〉
closed, convex

⊆ B. �

1.8. Corollary. Smoothness of curves is a bornological concept. For
0 ≤ k < ∞ a curve c in a locally convex vector space E is Lipk if and only if for
each bounded open interval J ⊂ R there exists an absolutely convex bounded set
B ⊆ E such that c|J is a Lipk-curve in the normed space EB.

Attention: A smooth curve factors locally into some EB as a Lipk-curve for each
finite k only, in general. Take the “worst” smooth curve c : R →

∏
C∞(R,R) R,

analogously to 1.5 , and, using Borel’s theorem, deduce from c(k)(0) ∈ EB for all
k ∈ N a contradiction.

Proof. (⇑) This follows from lemma 1.3 , since the inclusion EB → E is continu-
ous.

(⇓) For k = 0 this was shown in 1.5 . For k ≥ 1 take a closed absolutely convex

bounded set B ⊆ E containing all derivatives c(i) on J up to order k as well as their
difference quotients on {(t, s) : t 6= s, t, s ∈ J}. We show first that c is differentiable

in EB , say at 0, with derivative c′(0). By the proof of the previous corollary 1.7 we

have that the expression 1
t (
c(t)−c(0)

t − c′(0)) lies in B. So c(t)−c(0)
t − c′(0) converges

to 0 in EB . For the higher order derivatives we can now proceed by induction. �

A consequence of this is, that smoothness does not depend on the topology but only
on the dual (so all topologies with the same dual have the same smooth curves), and
in fact it depends only on the bounded sets, i.e. the bornology. Since on L(E,F )
there is essentially only one bornology (by the uniform boundedness principle, see

52.25 ) there is only one notion of Lipn-curves into L(E,F ). Furthermore, the
class of Lipn-curves doesn’t change if we pass from a given locally convex topology

to its bornologification, see 4.2 , which by definition is the finest locally convex
topology having the same bounded sets.

Let us now return to scalar differentiability. Corollary 1.7 gives us Lipn-ness
provided we have appropriate candidates for the derivatives.

1.9. Corollary. Scalar testing of curves. Let ck : R → E for k < n + 1 be
curves such that ` ◦ c0 is Lipn and (` ◦ c0)(k) = ` ◦ ck for all k < n + 1 and all
` ∈ E∗. Then c0 is Lipn and (c0)(k) = ck.

Proof. For n = 0 this was shown in 1.5 . For n ≥ 1, by 1.7 applied to ` ◦ c0 we
have that

`

(
1

t

(
c0(t)− c0(0)

t
− c1(0)

))
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is locally bounded, and hence by 52.19 the set{
1

t

(
c0(t)− c0(0)

t
− c1(0)

)
: t ∈ I

}
is bounded. Thus c0(t)−c0(0)

t converges even Mackey to c1(0). Now the general
statement follows by induction. �

2. Completeness

Do we really need the knowledge of a candidate for the derivative, as in 1.9 ? In
finite dimensional analysis one often uses the Cauchy condition to prove conver-
gence. Here we will replace the Cauchy condition again by a stronger condition,
which provides information about the quality of being Cauchy:

A net (xγ)γ∈Γ in E is called Mackey-Cauchy provided that there exist a bounded
(absolutely convex) set B and a net (µγ,γ′)(γ,γ′)∈Γ×Γ in R converging to 0, such

that xγ − xγ′ ∈ µγ,γ′ B. As in 1.6 one shows that for a net xγ in EB this is
equivalent to the condition that xγ is Cauchy in the normed space EB .

2.1. Lemma. The difference quotient is Mackey-Cauchy. Let c : R→ E be

scalarly a Lip1-curve. Then t 7→ c(t)−c(0)
t is a Mackey-Cauchy net for t→ 0.

Proof. For Lip1-curves this is a immediate consequence of 1.7 but we only as-

sume it to be scalarly Lip1. It is enough to show that 1
t−s

(
c(t)−c(0)

t − c(s)−c(0)
s

)
is

bounded on bounded subsets in R \ {0}. We may test this with continuous linear
functionals, and hence may assume that E = R. Then by the fundamental theorem
of calculus we have

1

t− s

(
c(t)− c(0)

t
− c(s)− c(0)

s

)
=

∫ 1

0

c′(tr)− c′(sr)
t− s

dr

=

∫ 1

0

c′(tr)− c′(sr)
tr − sr

r dr.

Since c′(tr)−c′(sr)
tr−sr is locally bounded by assumption, the same is true for the integral,

and we are done. �

2.2. Lemma. Mackey Completeness. For a space E the following conditions
are equivalent:

(1) Every Mackey-Cauchy net converges in E;
(2) Every Mackey-Cauchy sequence converges in E;
(3) For every absolutely convex closed bounded set B the space EB is complete;
(4) For every bounded set B there exists an absolutely convex bounded set B′ ⊇ B

such that EB′ is complete.

A space satisfying the equivalent conditions is called Mackey complete. Note
that a sequentially complete space is Mackey complete.

Proof. ( 1 ) ⇒ ( 2 ), and ( 3 ) ⇒ ( 4 ) are trivial.
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( 2 ) ⇒ ( 3 ) Since EB is normed, it is enough to show sequential completeness.
So let (xn) be a Cauchy sequence in EB . Then (xn) is Mackey-Cauchy in E and
hence converges in E to some point x. Since pB(xn − xm) → 0 there exists for
every ε > 0 an N ∈ N such that for all n,m ≥ N we have pB(xn − xm) < ε, and
hence xn − xm ∈ εB. Taking the limit for m → ∞, and using closedness of B we
conclude that xn− x ∈ εB for all n > N . In particular x ∈ EB and xn → x in EB .

( 4 ) ⇒ ( 1 ) Let (xγ)γ∈Γ be a Mackey-Cauchy net in E. So there is some net
µγ,γ′ → 0, such that xγ−xγ′ ∈ µγ,γ′ B for some bounded set B. Let γ0 be arbitrary.
By (4) we may assume that B is absolutely convex and contains xγ0 , and that EB
is complete. For γ ∈ Γ we have that xγ = xγ0 + xγ − xγ0 ∈ xγ0 + µγ,γ0 B ∈ EB ,
and pB(xγ − xγ′) ≤ µγ,γ′ → 0. So (xγ) is a Cauchy net in EB , hence converges in
EB , and thus also in E. �

2.3. Corollary. Scalar testing of differentiable curves. Let E be Mackey
complete and c : R → E be a curve for which ` ◦ c is Lipn for all ` ∈ E∗. Then c
is Lipn.

Proof. For n = 0 this was shown in 1.5 without using any completeness, so let

n ≥ 1. Since we have shown in 2.1 that the difference quotient is a Mackey-Cauchy
net we conclude that the derivative c′ exists, and hence (` ◦ c)′ = ` ◦ c′. So we may
apply the induction hypothesis to conclude that c′ is Lipn−1, and consequently c is
Lipn. �

Next we turn to integration. For continuous curves c : [0, 1] → E one can show
completely analogously to 1-dimensional analysis that the Riemann sum R(c,Z, ξ),
defined by

∑
k(tk − tk−1)c(ξk), where 0 = t0 < t1 < · · · < tn = 1 is a partition

Z of [0, 1] and ξk ∈ [tk−1, tk], form a Cauchy net with respect to the partial strict
ordering given by the size of the mesh max{|tk − tk−1| : 0 < k < n}. So under the
assumption of sequential completeness we have a Riemann integral of curves. A
second way to see this is the following reduction to the 1-dimensional case.

2.4. Lemma. Let L(E∗equi,R) be the space of all linear functionals on E∗ which are
bounded on equicontinuous sets, equipped with the complete locally convex topol-
ogy of uniform convergence on these sets. There is a natural topological embedding
δ : E → L(E∗equi,R) given by δ(x)(`) := `(x).

Proof. The space L(E∗equi,R) is complete, since this is true for the space of all

bounded mappings (see 2.15 ) in which it is obviously closed.

Let U be a basis of absolutely convex closed 0-neighborhoods in E. Then the family
of polars Uo := {` ∈ E∗ : |`(x)| ≤ 1 for all x ∈ U}, with U ∈ U form a basis
for the equicontinuous sets, and hence the bipolars Uoo := {`∗ ∈ L(E∗equi,R) :

|`∗(`)| ≤ 1 for all ` ∈ Uo} form a basis of 0-neighborhoods in L(E∗equi,R). By the

bipolar theorem 52.18 we have U = δ−1(Uoo) for all U ∈ U . This shows that δ is
a homeomorphism onto its image. �

2.5. Lemma. Integral of continuous curves. Let c : R → E be a continuous
curve in a locally convex vector space. Then there is a unique differentiable curve∫
c : R→ Ê in the completion Ê of E such that (

∫
c)(0) = 0 and (

∫
c)′ = c.
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Proof. We show uniqueness first. Let c1 : R→ Ê be a curve with derivative c and
c1(0) = 0. For every ` ∈ E∗ the composite ` ◦ c1 is an anti-derivative of ` ◦ c with
initial value 0, so it is uniquely determined, and since E∗ separates points c1 is also
uniquely determined.

Now we show the existence. By the previous lemma we have that Ê is (isomorphic
to) the closure of E in the obviously complete space L(E∗equi,R). We define (

∫
c)(t) :

E∗ → R by ` 7→
∫ t

0
(` ◦ c)(s)ds. It is a bounded linear functional on E∗equi since for

an equicontinuous and hence bounded subset E ⊆ E∗ the set {(` ◦ c)(s) : ` ∈ E , s ∈
[0, t]} is bounded. So

∫
c : R→ L(E∗equi,R).

Now we show that
∫
c is differentiable with derivative δ ◦ c.(

(
∫
c)(t+ r)− (

∫
c)(r)

t
− (δ ◦ c)(r)

)
(`) =

=
1

t

(∫ t+r

0

(` ◦ c)(s)ds−
∫ r

0

(` ◦ c)(s)ds− t(` ◦ c)(r)
)

=

=
1

t

∫ r+t

r

(
(` ◦ c)(s)− (` ◦ c)(r)

)
ds =

∫ 1

0

`
(
c(r + ts)− c(r)

)
ds.

Let E ⊆ E∗ be equicontinuous, and let ε > 0. Then there exists a neighborhood U
of 0 such that |`(U)| < ε for all ` ∈ E . For sufficiently small t, all s ∈ [0, 1] and fixed

r we have c(r + ts)− c(r) ∈ U . So |
∫ 1

0
`(c(r + ts)− c(r))ds| < ε. This shows that

the difference quotient of
∫
c at r converges to δ(c(r)) uniformly on equicontinuous

subsets.

It remains to show that (
∫
c)(t) ∈ Ê. By the mean value theorem 1.4 the difference

quotient 1
t ((
∫
c)(t)− (

∫
c)(0)) is contained in the closed convex hull in L(E∗equi,R)

of the subset {c(s) = (
∫
c)′(s) : 0 < s < t} of E. So it lies in Ê. �

Definition of the integral. For continuous curves c : R → E the definite

integral
∫ b
a
c ∈ Ê is given by

∫ b
a
c = (

∫
c)(b)− (

∫
c)(a).

2.6. Corollary. Basics on the integral. For a continuous curve c : R→ E we
have:

(1) `(
∫ b
a
c) =

∫ b
a

(` ◦ c) for all ` ∈ E∗.
(2)

∫ b
a
c+

∫ d
b
c =

∫ d
a
c.

(3)
∫ b
a

(c ◦ ϕ)ϕ′ =
∫ ϕ(b)

ϕ(a)
c for ϕ ∈ C1(R,R).

(4)
∫ b
a
c lies in the closed convex hull in Ê of the set

{(b− a)c(t) : a < t < b} in E.

(5)
∫ b
a

: C(R, E)→ Ê is linear.

(6) (Fundamental theorem of calculus.) For each C1-curve c : R→ E we
have c(s)− c(t) =

∫ s
t
c′. �

We are mainly interested in smooth curves and we can test for this by applying linear

functionals if the space is Mackey complete, see 2.3 . So let us try to show that
the integral for such curves lies in E if E is Mackey-complete. So let c : [0, 1]→ E
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be a smooth or just a Lip-curve, and take a partition Z with mesh µ(Z) at most
δ. If we have a second partition, then we can take the common refinement. Let
[a, b] be one interval of the original partition with intermediate point t, and let
a = t0 < t1 < · · · < tn = b be the refinement. Note that |b − a| ≤ δ and hence
|t− tk| ≤ δ. Then we can estimate as follows.

(b− a) c(t)−
∑
k

(tk − tk−1)c(tk) =
∑
k

(tk − tk−1) (c(t)− c(tk)) =
∑
k

µkbk,

where bk := c(t)−c(tk)
δ is contained in the absolutely convex Lipschitz bound

B :=

〈{
c(t)− c(s)
t− s

: t, s ∈ [0, 1]

}〉
abs.conv

of c and µk := (tk−tk−1)δ ≥ 0 and satisfies
∑
k µk = (b−a)δ. Hence we have for the

Riemann sums with respect to the original partition Z1 and the refinement Z ′ that
R(c,Z1)−R(c,Z ′) lies in δ ·B. So R(c,Z1)−R(c,Z2) ∈ 2δB for any two partitions
Z1 and Z2 of mesh at most δ, i.e. the Riemann sums form a Mackey-Cauchy net
with coefficients µZ1,Z2

:= 2 max{µ(Z1), µ(Z2)} and we have proved:

2.7. Proposition. Integral of Lipschitz curves. Let c : [0, 1] → E be a
Lipschitz curve into a Mackey complete space. Then the Riemann integral exists in
E as (Mackey)-limit of the Riemann sums. �

2.8. Now we have to discuss the relationship between differentiable curves and
Mackey convergent sequences. Recall that a sequence (xn) converges if and only if
there exists a continuous curve c (e.g. a reparameterization of the infinite polygon)
and tn ↘ 0 with c(tn) = xn. The corresponding result for smooth curves uses the
following notion.

Definition. We say that a sequence xn in a locally convex space E converges fast
to x in E, or falls fast towards x, if for each k ∈ N the sequence nk(xn − x) is
bounded.

Special curve lemma. Let xn be a sequence which converges fast to x in E.

Then the infinite polygon through the xn can be parameterized as a smooth curve
c : R→ E such that c( 1

n ) = xn and c(0) = x.

Proof. Let ϕ : R→ [0, 1] be a smooth function, which is 0 on {t : t ≤ 0} and 1 on
{t : t ≥ 1}. The parameterization c is defined as follows:

c(t) :=


x for t ≤ 0,

xn+1 + ϕ
(
t− 1

n+1
1
n−

1
n+1

)
(xn − xn+1) for 1

n+1 ≤ t ≤
1
n ,

x1 for t ≥ 1

.

Obviously, c is smooth on R \ {0}, and the p-th derivative of c for 1
n+1 ≤ t ≤ 1

n is
given by

c(p)(t) = ϕ(p)

(
t− 1

n+1
1
n −

1
n+1

)
(n(n+ 1))p(xn − xn+1).
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Since xn converges fast to x, we have that c(p)(t) → 0 for t → 0, because the first
factor is bounded and the second goes to zero. Hence c is smooth on R, by the
following lemma. �

2.9. Lemma. Differentiable extension to an isolated point. Let c : R→ E
be continuous and differentiable on R \ {0}, and assume that the derivative c′ :
R \ {0} → E has a continuous extension to R. Then c is differentiable at 0 and
c′(0) = limt→0 c

′(t).

Proof. Let a := limt→0 c
′(t). By the mean value theorem 1.4 we have c(t)−c(0)

t ∈
〈c′(s) : 0 6= |s| ≤ |t|〉closed, convex. Since c′ is assumed to be continuously extendable
to 0 we have that for any closed convex 0-neighborhood U there exists a δ > 0 such

that c′(t) ∈ a+ U for all 0 < |t| ≤ δ. Hence c(t)−c(0)
t − a ∈ U , i.e. c′(0) = a. �

The next result shows that we can pass through certain sequences xn → x even
with given velocities vn → 0.

2.10. Corollary. If xn → x fast and vn → 0 fast in E, then there exist a smoothly
parameterized polygon c : R → E and tn → 0 in R such that c(tn + t) = xn + tvn
for t in a neighborhood of 0 depending on n.

Proof. Consider the sequence yn defined by

y2n := xn + 1
4n(2n+1)vn and y2n+1 := xn − 1

4n(2n+1)vn.

It is easy to show that yn converges fast to x, and the parameterization c of the
polygon through the yn (using a function ϕ which satisfies ϕ(t) = t for t near 1/2)
has the claimed properties, where

tn := 4n+1
4n(2n+1) =

1

2

(
1

2n
+

1

2n+ 1

)
. �

As first application 2.10 we can give the following sharpening of 1.3 .

2.11. Corollary. Bounded linear maps. A linear mapping ` : E → F between
locally convex vector spaces is bounded (or bornological), i.e. it maps bounded
sets to bounded ones, if and only if it maps smooth curves in E to smooth curves
in F .

Proof. As in the proof of 1.3 one shows using 1.7 that a bounded linear map

preserves Lipk-curves. Conversely, assume that a linear map f : E → F carries
smooth curves to locally bounded curves. Take a bounded set B, and assume that
f(B) is unbounded. Then there is a sequence (bn) in B and some λ ∈ F ′ such
that |(λ ◦ f)(bn)| ≥ nn+1. The sequence (n−nbn) converges fast to 0, hence lies on

some compact part of a smooth curve by 2.8 . Consequently, (λ ◦ f)(n−nbn) =
n−n(λ ◦ f)(bn) is bounded, a contradiction. �

2.12. Definition. The c∞-topology on a locally convex space E is the final
topology with respect to all smooth curves R → E. Its open sets will be called

c∞-open. We will treat this topology in more detail in section 4 : In general
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it describes neither a topological vector space 4.20 and 4.26 , nor a uniform

structure 4.27 . However, by 4.4 and 4.6 the finest locally convex topology
coarser than the c∞-topology is the bornologification of the locally convex topology.

Let (µn) be a sequence of real numbers converging to ∞. Then a sequence (xn) in
E is called µ-converging to x if the sequence (µn(xn − x)) is bounded in E.

2.13. Theorem. c∞-open subsets. Let µn → ∞ be a real valued sequence and
k ∈ N∞. Then a subset U ⊆ E is open for the c∞-topology if it satisfies any of the
following equivalent conditions:

(1) All inverse images under Lipk-curves are open in R;
(2) All inverse images under µ-converging sequences are open in N∞;
(3) The traces to EB are open in EB for all absolutely convex bounded subsets

B ⊆ E.

Note that for closed subsets an equivalent statement reads as follows: A set A is c∞-
closed if and only if for every sequence xn ∈ A, which is µ-converging (respectively
M -converging, resp. fast falling) towards x, the point x belongs to A.

The topology described in ( 2 ) is also called Mackey-closure topology. It is
not the Mackey topology discussed in duality theory.

Proof. ( 1 ) ⇒ ( 2 ) Suppose (xn) is µ-converging to x ∈ U , but xn /∈ U for
infinitely many n. Then we may choose a subsequence again denoted by (xn),
which is fast falling to x, hence lies on some compact part of a smooth curve c as

described in 2.8 . Then c( 1
n ) = xn /∈ U but c(0) = x ∈ U . This is a contradiction.

( 2 ) ⇒ ( 3 ) A sequence (xn), which converges in EB to x with respect to pB ,
is Mackey convergent, hence has a µ-converging subsequence. Note that EB is
normed, and hence it is enough to consider sequences.

( 3 ) ⇒ ( 1 ) Let c : R → E be Lip. By 1.5 c factors locally as continuous curve

over some EB , hence c−1(U) is open. �

Let us show next that the c∞-topology and c∞-completeness are intimately related.

2.14. Theorem. Convenient vector spaces. Let E be a locally convex vector
space. E is said to be c∞-complete or convenient if one of the following equivalent
(completeness) conditions is satisfied:

(1) Any Lipschitz curve in E is locally Riemann integrable.
(2) For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) with c′2 = c1 (existence of an

anti-derivative).
(3) E is c∞-closed in any locally convex space in which it is embedded.
(4) If c : R→ E is a curve such that ` ◦ c : R→ R is smooth for all ` ∈ E∗, then

c is smooth.
(5) Any Mackey-Cauchy sequence converges; i.e. E is Mackey complete, see 2.2 .
(6) If B is bounded closed absolutely convex, then EB is a Banach space. This

property is called locally complete in [Jarchow, 1981, p196].
(7) Any continuous linear mapping from a normed space into E has a continuous

extension to the completion of the normed space.
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Condition ( 4 ) says that in a convenient vector space one can recognize smooth
curves by investigating compositions with continuous linear functionals. Condition

( 5 ) and ( 6 ) say via 2.2.4 that c∞-completeness is a bornological concept. In
[Frölicher and Kriegl, 1988] a convenient vector space is always considered with its
bornological topology — an equivalent but not isomorphic category.

Proof. In 2.3 we showed ( 5 )⇒ ( 4 ), in 2.7 we got ( 5 )⇒ ( 1 ), and in 2.2

we had ( 5 )⇒ ( 6 ).

( 1 ) ⇒ ( 2 ) A smooth curve is Lipschitz, thus locally Riemann integrable. By

2.6.1 the indefinite Riemann integral equals the “weakly defined” integral of

lemma 2.5 , hence is an anti-derivative.

( 2 ) ⇒ ( 3 ) Let E be a topological linear subspace of F . To show that E is c∞-

closed we use 2.13 . Let xn → x∞ be fast falling, xn ∈ E but x∞ ∈ F . By 2.8
the polygon c through (xn) can be smoothly symmetrically parameterized in F .
Hence c′ is smooth and has values in the vector space generated by {xn : n 6=∞},
which is contained in E. Its anti-derivative c2 is up to a constant equal to c, and

by ( 2 ) x1 − x∞ = c(1)− c(0) = c2(1)− c2(0) lies in E. So x∞ ∈ E.

( 4 ) ⇒ ( 3 ) Let E be a topological linear subspace of F as before. We use again

2.13 in order to show that E is c∞-closed in F . So let xn → x∞ be fast falling,

xn ∈ E for n 6= 0, but x∞ ∈ F . By 2.8 the polygon c through (xn) can be
smoothly symmetrically parameterized in F , and c(t) ∈ E for t 6= 0. We consider
c̃(t) := tc(t). This is a curve in E which is smooth in F , so it is scalarwise smooth
in E, thus smooth in E by (4). Then x∞ = c̃′(0) ∈ E.

( 3 ) ⇒ ( 5 ) Let F be the completion Ê of E. Any Mackey Cauchy sequence in E
has a limit in F , and since E is by assumption c∞-closed in F the limit lies in E.
Hence, the sequence converges in E.

( 6 ) ⇒ ( 7 ) Let f : F → E be a continuous mapping on a normed space F . Since
the image of the unit ball is bounded, it is a bounded mapping into EB for some
closed absolutely convex B. But into EB it can be extended to the completion,
since EB is complete.

( 7 ) ⇒ ( 1 ) Let c : R → E be a Lipschitz curve. Then c is locally a continuous

curve into EB for some absolutely convex bounded set B by 1.5 . The inclusion of
EB into E has a continuous extension to the completion of EB , and c is Riemann
integrable in this Banach space, so also in E. �

2.15. Theorem. Inheritance of c∞-completeness. The following construc-
tions preserve c∞-completeness: limits, direct sums, strict inductive limits of se-
quences of closed embeddings, as well as formation of `∞(X, ), where X is a set
together with a family B of subsets of X containing the finite ones, which are called
bounded and `∞(X,F ) denotes the space of all functions f : X → F , which are
bounded on all B ∈ B, supplied with the topology of uniform convergence on the
sets in B.
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Note that the definition of the topology of uniform convergence as initial topology
shows, that adding all subsets of finite unions of elements in B to B does not change
this topology. Hence, we may always assume that B has this stability property; this
is the concept of a bornology on a set.

Proof. The projective limit 52.8 of a functor F is the c∞-closed linear subspace{
(xα) ∈

∏
F(α) : F(f)xα = xβ for all f : α→ β

}
,

hence is c∞-complete, since the product of c∞-complete factors is obviously c∞-
complete.

Since the coproduct 52.7 of spaces Xα is the topological direct sum, and has as
bounded sets those which are contained and bounded in some finite subproduct, it
is c∞-complete if all factors are.

For colimits this is in general not true. For strict inductive limits of sequences of
closed embeddings it is true, since bounded sets are contained and bounded in some

step, see 52.8 .

For the result on `∞(X,F ) we consider first the case, where X itself is bounded.

Then c∞-completeness can be proved as in 52.4 or reduced to this result. In fact
let B be bounded in `∞(X,F ). Then B(X) is bounded in F and hence contained
in some absolutely convex bounded set B, for which FB is a Banach space. So we
may assume that B := {f ∈ `∞(X,F ) : f(X) ⊆ B}. The space `∞(X,F )B is just

the space `∞(X,FB) with the supremum norm, which is a Banach space by 52.4 .
In fact, we have the implications

‖f‖∞ := sup{pB(f(x)) : x ∈ X} < λ⇒ f(x)

λ
∈ B∀x ∈ X

⇒ pB

(
f(x)

λ

)
≤ 1∀x ∈ X ⇒ ‖f‖∞ ≤ λ,

i.e.

{λ : ‖f‖∞ < λ} ⊆ {λ : f ∈ λB} ⊆ {λ : ‖f‖∞ ≤ λ}
and hence

inf{λ : ‖f‖∞ < λ}︸ ︷︷ ︸
=‖f‖∞

≥ inf{λ : f ∈ λB}︸ ︷︷ ︸
=pB(f)

≥ inf{λ : ‖f‖∞ ≤ λ}︸ ︷︷ ︸
=‖f‖∞

.

Let now X and B be arbitrary. Then the restriction maps `∞(X,F ) → `∞(B,F )
give an embedding ι of `∞(X,F ) into the product

∏
B∈B `

∞(B,F ). Since this
product is complete, by what we have shown above, it is enough to show that this
embedding has a closed image. So let fα|B converge to some fB in `∞(B,F ).
Define f(x) := f{x}(x). For any B ∈ B containing x we have that fB(x) =
(limα fα|B)(x) = limα(fα(x)) = limα fα|{x} = f{x}(x) = f(x), and f(B) is boun-
ded for all B ∈ B, since f |B = fB ∈ `∞(B,F ). �

Example. In general, a quotient and an inductive limit of c∞-complete spaces
need not be c∞-complete. In fact, let ED := {x ∈ RN : suppx ⊆ D} for any

subset D ⊆ N of density densD := lim sup{ |D∩[1,n]|
n } = 0. It can be shown that
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E :=
⋃

densD=0ED ⊂ RN is the inductive limit of the Fréchet subspaces ED ∼= RD.
It cannot be c∞-complete, since finite sequences are contained in E and are dense
in RN ⊃ E.

3. Smooth Mappings and the Exponential Law

A particular case of the exponential law for continuous mappings is the following

3.1. Lemma. A map f : R2 → R is continuous if and only if the associated
mapping f∨ : R→ C(R,R) is continuous, where C(R,R) carries the usual Fréchet-
topology of uniform convergence on compact subsets of R.

Proof. (⇒) Obviously f∨ has values f∨(t) : s 7→ f(t, s) in C(R,R). It is con-
tinuous, since for t0 ∈ R, compact J ⊆ R and ε > 0 there is a δ > 0 such that
|f(t, s)− f(t0, s)| < ε for all |t− t0| < δ and s ∈ I, i.e. ‖(f∨(t)− f∨(t0))|J‖∞ ≤ ε
for |t− t0| < δ.

(⇐) Let (t0, s0) ∈ R2 and ε > 0 and choose a compact neighborhood J of s0 such
that |f∨(t0)(s)−f∨(t0)(s0)| < ε for all s ∈ J . Since f∨ is assumed to be continuous
there exists a δ > 0 auch that ‖(f∨(t)− f∨(t0))|J‖∞ ≤ ε for |t− t0| < δ, and hence

|f(t, s)− f(t0, s0)| ≤ |f∨(t)(s)− f∨(t0)(s)|+ |f∨(t0)(s)− f∨(t0)(s0)| ≤ 2ε

for all |t− t0| < δ and all s ∈ J . �

Now let us start proving the exponential law C∞(U × V, F ) ∼= C∞(U,C∞(V, F ))
first for U = V = F = R.

3.2. Theorem. Simplest case of exponential law. Let f : R2 → R be an
arbitrary mapping. Then all iterated partial derivatives exist and are continuous if
and only if the associated mapping f∨ : R → C∞(R,R) exists as a smooth curve,
where C∞(R,R) is considered as the Fréchet space with the topology of uniform
convergence of each derivative on compact sets. Furthermore, we have (∂1f)∨ =
d(f∨) and (∂2f)∨ = d ◦ f∨ = d∗(f

∨).

Proof. We have several possibilities to prove this result. Either we show Mackey

convergence of the difference quotients, via the boundedness of 1
t

(
c(t)−c(0)

t − c′(0)
)

,

and then use the trivial exponential law `∞(X×Y,R) ∼= `∞(X, `∞(Y,R)); or we use

exponential law C(R2,R) ∼= C(R, C(R,R)) of 3.1 . We choose the latter method.

Proof of (⇐) Let g := f∨ : R → C∞(R,R) be smooth. Then both curves dg and

d ◦ g = d∗g are smooth (use 1.3 and that d is continuous and linear). An easy
calculation shows that the partial derivatives of f = g∧ exist and are given by
∂1g
∧ = (dg)∧ and ∂2g

∧ = (d ◦ g)∧. So one obtains inductively that all iterated

derivatives of f exist and are continuous by 3.1 , since they are associated to
smooth curves R→ C∞(R,R)→ C(R,R).

Proof of (⇒) First observe that f∨ : R → C∞(R,R) makes sense and that for all
t ∈ R we have

(1) dp(f∨(t)) = (∂p2f)∨(t).
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Next we claim that f∨ : R → C∞(R,R) is differentiable, with derivative d(f∨) =
(∂1f)∨, or equivalently that for all a the curve

c : t 7→

{
f∨(t+a)−f∨(a)

t for t 6= 0

(∂1f)∨(a) otherwise

is continuous (at 0) as curve R → C∞(R,R). Without loss of generality we may
assume that a = 0. Since C∞(R,R) carries the initial structure with respect to the
linear mappings dp : C∞(R,R)→ C(R,R) we have to show that dp◦c : R→ C(R,R)
is continuous, or equivalently by the exponential law for continuous maps, that
(dp ◦ c)∧ : R2 → R is continuous. For t 6= 0 and s ∈ R we have

(dp ◦ c)∧(t, s) = dp(c(t))(s) = dp
(
f∨(t)− f∨(0)

t

)
(s)

=
∂p2f(t, s)− ∂p2f(0, s)

t
by ( 1 )

=

∫ 1

0

∂1∂
p
2f(t τ, s) dτ by the fundamental theorem.

For t = 0 we have

(dp ◦ c)∧(0, s) = dp(c(0))(s) = dp((∂1f)∨(0))(s)

= (∂p2 (∂1f))∨(0)(s) by ( 1 )

= ∂p2∂1f(0, s)

= ∂1∂
p
2f(0, s) by the theorem of Schwarz.

So we see that (dp ◦ c)∧(t, s) =
∫ 1

0
∂1∂

p
2f(t τ, s) dτ for all (t, s). This function

is continuous in (t, s), since ∂1∂
p
2f : R2 → R is assumed to be continuous, hence

(t, s, τ) 7→ ∂1∂
p
2f(t τ, s) is continuous, and therefore also (t, s) 7→ (τ 7→ ∂1∂

p
2f(t τ, s))

from R2 → C([0, 1],R) by 3.1 . Composition with the continuous linear mapping∫ 1

0
: C([0, 1],R)→ R gives the continuity of (dp ◦ c)∧.

Now we proceed by induction. By the induction hypothesis applied to ∂1f , we
obtain that d(f∨) = (∂1f)∨ and (∂1f)∨ : R → C∞(R,R) is n times differentiable,
so f∨ is (n+ 1)-times differentiable. �

In order to proceed to more general cases of the exponential law we need a definition
of C∞-maps defined on infinite dimensional spaces. This definition should at least
guarantee the chain rule, and so one could take the weakest notion that satisfies
the chain rule. However, consider the following

3.3. Example. We consider the following 3-fold “singular covering” f : R2 → R2

given in polar coordinates by (r, ϕ) 7→ (r, 3ϕ). In cartesian coordinates we obtain
the following formula for the values of f :

(r cos(3ϕ), r sin(3ϕ)) = r
(

(cosϕ)3 − 3 cosϕ(sinϕ)2, 3 sinϕ(cosϕ)2 − (sinϕ)3
)

=

(
x3 − 3xy2

x2 + y2
,

3x2y − y3

x2 + y2

)
.
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Note that the composite from the left with any orthonormal projection is just the
composite of the first component of f with a rotation from the right (Use that f
intertwines the rotation with angle δ and the rotation with angle 3δ).
Obviously, the map f is smooth on R2 \ {0}. It is homogeneous of degree 1, and
hence the directional derivative is f ′(0)(v) = ∂

∂t |t=0f(tv) = f(v). However, both
components are nonlinear with respect to v and thus are not differentiable at (0, 0).

Obviously, f : R2 → R2 is continuous.

We claim that f is differentiable along differentiable curves, i.e. (f ◦ c)′(0) exists,
provided c′(0) exists.
Only the case c(0) = 0 is not trivial. Since c is differentiable at 0 the curve c1
defined by c1(t) := c(t)

t for t 6= 0 and c′(0) for t = 0 is continuous at 0. Hence
f(c(t))−f(c(0))

t = f(t c1(t))−0
t = f(c1(t)). This converges to f(c1(0)), since f is con-

tinuous.

Furthermore, if f ′(x)(v) denotes the directional derivative, which exists everywhere,
then (f ◦ c)′(t) = f ′(c(t))(c′(t)). Indeed for c(t) 6= 0 this is clear and for c(t) = 0 it
follows from f ′(0)(v) = f(v).

The directional derivative of the 1-homogeneous mapping f is 0-homogeneous: In
fact, for s 6= 0 we have

f ′(sx)(v) =
∂

∂t

∣∣∣∣
t=0

f(s x+ tv) = s
∂

∂t

∣∣∣∣
t=0

f(x+
t

s
v) = s f ′(x)(

1

s
v) = f ′(x)(v).

For any s ∈ R we have f ′(s v)(v) = ∂
∂t |t=0f(s v + tv) = ∂

∂t |t=st f(v) = f(v).

Using this homogeneity we show next, that it is also continuously differentiable
along continuously differentiable curves. So we have to show that (f ◦ c)′(t) →
(f ◦ c)′(0) for t → 0. Again only the case c(0) = 0 is interesting. As before we
factor c as c(t) = t c1(t). In the case, where c′(0) = c1(0) 6= 0 we have for t 6= 0
that

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(t c1(t))(c′(t))− f ′(0)(c1(0))

= f ′(c1(t))(c′(t))− f ′(c1(0))(c1(0))

= f ′(c1(t))(c′(t))− f ′(c1(0))(c′(0)),

which converges to 0 for t → 0, since (f ′)∧ is continuous (and even smooth) on
(R2 \ {0})× R2.
In the other case, where c′(0) = c1(0) = 0 we consider first the values of t, for which
c(t) = 0. Then

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(0)(c′(t))− f ′(0)(c′(0))

= f(c′(t))− f(c′(0))→ 0,

since f is continuous. For the remaining values of t, where c(t) 6= 0, we factor
c(t) = ‖c(t)‖ e(t), with e(t) ∈ {x : ‖x‖ = 1}. Then

(f ◦ c)′(t)− (f ◦ c)′(0) = f ′(e(t))(c′(t))− 0→ 0,

since f ′(x)(c′(t))→ 0 for t→ 0 uniformly for ‖x‖ = 1, since c′(t)→ 0.

Furthermore, f ◦ c is smooth for all c which are smooth and nowhere infinitely
flat. In fact, a smooth curve c with c(k)(0) = 0 for k < n can be factored as
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c(t) = tncn(t) with smooth cn, by Taylor’s formula with integral remainder. Since
c(n)(0) = n! cn(0), we may assume that n is chosen maximal and hence cn(0) 6= 0.
But then (f ◦ c)(t) = tn · (f ◦ cn)(t), and f ◦ cn is smooth.

A completely analogous argument shows also that f ◦ c is real analytic for all real
analytic curves c : R→ R2.

However, let us show that f ◦c is not Lipschitz differentiable even for smooth curves
c. For x 6= 0 we have

(∂2)2f(x, 0) =
(
∂
∂s

)2 |s=0f(x, s) = x
(
∂
∂s

)2 |s=0f(1, 1
xs) =

= 1
x

(
∂
∂s

)2 |s=0f(1, s) =: ax 6= 0.

Now we choose a smooth curve c which passes for each n in finite time tn through

( 1
n2n+1 , 0) with locally constant velocity vector (0, 1

nn ), by 2.10 . Then for small t
we get

(f ◦ c)′(tn + t) = ∂1f(c(tn + t)) pr1(c′(tn + t))︸ ︷︷ ︸
=0

+∂2f(c(tn + t)) pr2(c′(tn + t))

(f ◦ c)′′(tn) = 0 + (∂2)2f(c(tn)) (pr2(c′(tn)))2 = a
n2n+1

n2n
= na,

which is unbounded.

So although preservation of (continuous) differentiability of curves is not enough to
ensure differentiability of a function R2 → R, we now prove that smoothness can
be tested with smooth curves.

3.4. Boman’s theorem. [Boman, 1967] For a mapping f : R2 → R the following
assertions are equivalent:

(1) All iterated partial derivatives exist and are continuous.
(2) For v ∈ R2 the iterated directional derivatives

dnvf(x) := ( ∂∂t )
n|t=0(f(x+ tv))

exist and are continuous with respect to x.
(3) For v ∈ R2 the iterated

dnvf(x) := ( ∂∂t )
n|t=0(f(x+ tv))

exist and are locally bounded with respect to x.
(4) For all smooth curves c : R→ R2 the composite f ◦ c is smooth.

Proof.

( 1 ) ⇒ ( 4 ) is a direct consequence of the classical chain rule, namely that (f ◦
c)′(t) = ∂1f(c(t)) · x′(t) + ∂2f(c(t)) · y′(t), where c = (x, y).

( 4 ) ⇒ ( 3 ) Obviously, dpvf(x) := ( ddt )
p|t=0f(x + tv) exists, since t 7→ x + tv is

a smooth curve. Suppose dpvf is not locally bounded. So we may find a sequence

xn which converges fast to x, and such that |dpvf(xn)| ≥ 2n
2

. Let c be a smooth

curve with c(t + tn) = xn + t
2n v locally for some sequence tn → 0, by 2.8 . Then

(f ◦ c)(p)(tn) = dpvf(xn) 1
2np is unbounded, which is a contradiction.
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( 3 ) ⇒ ( 2 ) We prove this by induction on p:

dpvf( +tv)− dpvf( ) = t

∫ 1

0

dp+1
v f( +tτv)dτ → 0

for t → 0 uniformly on bounded sets. Suppose now that |dpvf(xn) − dpvf(x)| ≥
ε for some sequence xn → x. Without loss of generality we may assume that
dpvf(xn)− dpvf(x) ≥ ε. Then by the uniform convergence there exists a δ > 0 such

that dpvf(xn + tv)− dpvf(x+ tv) ≥ ε
2 for |t| ≤ δ. Integration

∫ δ
0
dt yields(

dp−1
v f(xn + δv)− dp−1

v f(xn)
)
−
(
dp−1
v f(x+ δv)− dp−1

v f(x)
)
≥ εδ

2 ,

but by induction hypothesis the left hand side converges towards(
dp−1
v f(x+ δv)− dp−1

v f(x)
)
−
(
dp−1
v f(x+ δv)− dp−1

v f(x)
)

= 0.

( 2 ) ⇒ ( 1 ) We remark now that for a smooth map g : R2 → R we have by the
chain rule

dvg(x+ tv) =
d

dt
g(x+ tv) = ∂1g(x+ tv) · v1 + ∂2g(x+ tv) · v2

and by induction that

dpvg(x) =

p∑
i=0

(
p

i

)
vi1v

p−i
2 ∂i1∂

p−i
2 g(x).

Hence, we can calculate the iterated derivatives ∂i1∂
p−i
2 g(x) for 0 ≤ i ≤ p from

p+ 1 many derivatives dpvjg(x) provided the vj are chosen in such a way, that the

Vandermonde’s determinant det((vj1)i(vj2)p−i)ij 6= 0. For this choose v2 = 1

and all the v1 pairwise distinct, then det((vj1)i(vj2)p−i)ij =
∏
j>k(vj1 − vk1 ) 6= 0.

To complete the proof we use convolution by an approximation of unity. So let
ϕ ∈ C∞(R2,R) have compact support,

∫
R2 ϕ = 1, and ϕ(y) ≥ 0 for all y. Define

ϕε(x) := 1
ε2ϕ( 1

εx), and let

fε(x) := (f ? ϕε)(x) =

∫
R2

f(x− y)ϕε(y) dy =

∫
R2

f(x− εy)ϕ(y)dy.

Since the convolution fε := f ? ϕε of a continuous function f with a smooth
function ϕε with compact support is differentiable with directional derivative dv(f ?
ϕε)(x) = (f ? dvϕε)(x), we obtain that fε is smooth. And since f ? ϕε → f in
C(R2,R) for ε→ 0 and any continuous function f , we conclude dpvfε = dpvf ? ϕε →
dpvf uniformly on compact sets.

By what we said above for smooth g, the iterated derivatives of fε are linear combi-
nations of the derivatives dpvfε for p+1 many vectors v, where the coefficients depend
only on the v’s. So we conclude that the iterated partial derivatives of fε form a
Cauchy sequence in C(R2,R), and hence converge to continuous functions fα. Thus,
all iterated derivatives ∂αf of f exist and are equal to these continuous functions

fα, by the following lemma 3.5 recursively applied to cε(s) := ∂αfε(x+ s v). �

3.5. Lemma. Let cε : R→ E be C1 into a locally convex space E such that cε → c
and c′ε → c1 uniformly on bounded subsets of R for ε → 0. Then c : R → E is C1
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and c′ = c1. With other words, the injection c 7→ (c, c′), C1(R, E) → `∞(R, E)2

has closed image.

Proof. Since C(R, E) is closed in `∞(R, E) the curves c and c1 are continuous,
Remains to show that for fixed s ∈ R the curve

γ : t 7→

{
c(s+t)−c(s)

t for t 6= 0

c1(s) otherwise

is continuous (at 0). The corresponding curve γε for cε can be rewritten as γε(t) =∫ 1

0
c′ε(s + τ t) dτ , which converges by assumption for ε → 0 uniformly on compact

sets to the continuous curve t 7→
∫ 1

0
c1(s + τ t) dτ . Pointwise it converges to γ(t),

hence γ is continuous. �

For the vector valued case of the exponential law we need a locally convex structure
on C∞(R, E).

3.6. Definition. Space of curves. Let C∞(R, E) be the locally convex vector
space of all smooth curves in E, with the pointwise vector operations, and with
the topology of uniform convergence on compact sets of each derivative separately.

This is the initial topology with respect to the linear mappings C∞(R, E) −d
k

→
C∞(R, E)→ `∞(K,E), where k runs through N, where K runs through all compact
subsets of R, and where `∞(K,E) carries the topology of uniform convergence, see

also 2.15 .

Note that the derivatives dk : C∞(R, E) → C∞(R, E), the point evaluations evt :
C∞(R, E)→ E and the pull backs g∗ : C∞(R, E)→ C∞(R, E) for all g ∈ C∞(R,R)
are continuous and linear. For the later one uses that obviously g∗ : `∞(Y,E) →
`∞(X,E) is continuous for bounded mappings g : X → Y .

3.7. Lemma. A space E is c∞-complete if and only if C∞(R, E) is so.

Proof. (⇒) The mapping c 7→ (c(n))n∈N is by definition an embedding of C∞(R, E)
into the c∞-complete product

∏
n∈N `

∞(R, E). Its image is a closed subspace by

lemma 3.5 .

(⇐) Consider the continuous linear mapping const : E → C∞(R, E) given by
x 7→ (t 7→ x). It has as continuous left inverse the evaluation at any point (e.g. ev0 :
C∞(R, E)→ E, c 7→ c(0)). Hence, E can be identified with the closed subspace of
C∞(R, E) given by the constant curves, and is thereby itself c∞-complete. �

3.8. Lemma. Curves into limits. A curve into a c∞-closed subspace of a space
is smooth if and only if it is smooth into the total space. In particular, a curve is
smooth into a projective limit if and only if all its components are smooth.

Proof. Since the derivative of a smooth curve is the Mackey limit of the difference
quotient, the c∞-closedness implies that this limit belongs to the subspace. Thus,
we deduce inductively that all derivatives belong to the subspace, and hence the
curve is smooth into the subspace.
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The result on projective limits now follows, since obviously a curve is smooth into
a product, if all its components are smooth. �

We show now that the bornology, but obviously not the topology, on function spaces
can be tested with the linear functionals on the range space.

3.9. Lemma. Bornology of C∞(R, E). The family

{`∗ : C∞(R, E)→ C∞(R,R) : ` ∈ E∗}

generates the bornology of C∞(R, E). This also holds for E∗ replaced by E′.

A set in C∞(R, E) is bounded if and only if each derivative is uniformly bounded
on compact subsets.

Proof. A set B ⊆ C∞(R, E) is bounded if and only if the sets {dnc(t) : t ∈ I, c ∈ B}
are bounded in E for all n ∈ N and compact subsets I ⊂ R.

This is furthermore equivalent to the condition that the set {`(dnc(t)) = dn(`◦c)(t) :
t ∈ I, c ∈ B} is bounded in R for all ` ∈ E∗, n ∈ N, and compact subsets I ⊂ R
and in turn equivalent to: {` ◦ c : c ∈ B} is bounded in C∞(R,R).

For E∗ replaced by E′ ⊇ E∗ the statement holds, since `∗ is bounded for all ` ∈ E′
by the explicit description of the bounded sets. �

3.10. Proposition. Vector valued simplest exponential law. For a map-
ping f : R2 → E into a locally convex space (which need not be c∞-complete) the
following assertions are equivalent:

(1) f is smooth along smooth curves.
(2) All iterated directional derivatives dpvf exist and are locally bounded.
(3) All iterated partial derivatives ∂αf exist and are locally bounded.
(4) f∨ : R→ C∞(R, E) exists as a smooth curve.

Proof. We prove this result first for c∞-complete spaces E.

We could do this either by carrying over the proofs of 3.2 and 3.4 to the vector
valued situation, or we reduce the vector valued one by linear functionals to the
scalar valued situation. We choose here the second way.

Each of the statements (1-4) is valid if and only if the corresponding statement
with f replaced by ` ◦ f is valid for all ` ∈ E∗. Only (4) needs some arguments:
In fact, f∨(t) ∈ C∞(R, E) if and only if `∗(f

∨(t)) = (` ◦ f)∨(t) ∈ C∞(R,R) for

all ` ∈ E∗ by 2.14 . Since C∞(R, E) is c∞-complete, its bornologically isomorphic
image in

∏
`∈E∗ C

∞(R,R) is c∞-closed. So f∨ : R → C∞(R, E) is smooth if and
only if `∗ ◦ f∨ = (` ◦ f)∨ : R → C∞(R,R) is smooth for all ` ∈ E∗. Note, that
local boundedness of all iterated partial derivatives is equivalent to their continuity,
since if for a function g the partial derivatives ∂1g and ∂2g exist and are locally
bounded then g is continuous:

g(x, y)− g(0, 0) = g(x, y)− g(x, 0) + g(x, 0)− g(0, 0)

= y∂2g(x, r2y) + x∂1g(r1x, 0)
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for suitable r1, r2 ∈ [0, 1], which goes to 0 with (x, y). So the proof is reduced to

the scalar valid case, which was proved in 3.2 and 3.4 .

Now the general case. For the existence of certain derivatives we know by 1.9 that
it is enough that we have some candidate in the space, which is the corresponding
derivative of the map considered as map into the c∞-completion (or even some
larger space). Since the derivatives required in (1-4) depend linearly on each other,
this is true. In more detail this means:

( 1 ) ⇒ ( 2 ) is obvious.

( 2 ) ⇒ ( 3 ) is the fact that ∂α is a universal linear combination of d
|α|
v f .

( 3 ) ⇒ ( 1 ) follows from the chain rule which says that (f ◦ c)(p)(t) is a universal

linear combination of ∂i1 . . . ∂iqf(c(t))c
(p1)
i1

(t) . . . c
(pq)
iq

(t) for ij ∈ {1, 2} and
∑
pj =

p, see also 10.4 .

( 3 )⇔ ( 4 ) holds by 1.9 since (∂1f)∨ = d(f∨) and (∂2f)∨ = d◦f∨ = d∗(f
∨). �

3.11. For the general case of the exponential law we need a notion of smooth
mappings and a locally convex topology on the corresponding function spaces. Of
course, it would be also handy to have a notion of smoothness for locally defined
mappings. Since the idea is to test smoothness with smooth curves, such curves
should have locally values in the domains of definition, and hence these domains
should be c∞-open.

Definition. Smooth mappings and spaces of them. A mapping f : E ⊇ U →
F defined on a c∞-open subset U is called smooth (or C∞) if it maps smooth curves
in U to smooth curves in F .

Let C∞(U,F ) denote the locally convex space of all smooth mappings U → F
with pointwise linear structure and the initial topology with respect to all mappings
c∗ : C∞(U,F )→ C∞(R, F ) for c ∈ C∞(R, U).

For U = E = R this coincides with our old definition. Obviously, any composition
of smooth mappings is also smooth.

Lemma. The space C∞(U,F ) is the (inverse) limit of spaces C∞(R, F ), one for
each c ∈ C∞(R, U), where the connecting mappings are pull backs g∗ along repa-
rameterizations g ∈ C∞(R,R).

Note that this limit is the closed linear subspace in the product∏
c∈C∞(R,U)

C∞(R, F )

consisting of all (fc) with fc◦g = fc ◦ g for all c and all g ∈ C∞(R,R).

Proof. The mappings c∗ : C∞(U,F ) → C∞(R, F ) define a continuous linear
embedding C∞(U,F ) → limc C

∞(R, F ), since for the connecting mappings g∗ we
have c∗(f) ◦ g = f ◦ c ◦ g = (c ◦ g)∗(f). It is surjective since for any (fc) ∈
limc C

∞(R, F ) one has fc = f ◦ c where f is defined as x 7→ fconstx(0). �
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3.12. Theorem. Cartesian closedness. Let Ui ⊆ Ei be c∞-open subsets in
locally convex spaces, which need not be c∞-complete. Then a mapping f : U1 ×
U2 → F is smooth if and only if the canonically associated mapping f∨ : U1 →
C∞(U2, F ) exists and is smooth.

Proof. We have the following implications:

f∨ : U1 → C∞(U2, F ) is smooth.

⇔ f∨ ◦ c1 : R→ C∞(U2, F ) is smooth for all smooth curves c1 in U1, by 3.11 .

⇔ c∗2 ◦f∨ ◦ c1 : R→ C∞(R, F ) is smooth for all smooth curves ci in Ui, by 3.11

and 3.8 .

⇔ f ◦ (c1 × c2) = (c∗2 ◦ f∨ ◦ c1)∧ : R2 → F is smooth for all smooth curves ci in

Ui, by 3.10 .
⇔ f : U1 × U2 → F is smooth.

Here the last equivalence is seen as follows: Each curve into U1 ×U2 is of the form
(c1, c2) = (c1 × c2) ◦ ∆, where ∆ is the diagonal mapping. Conversely, f ◦ (c1 ×
c2) : R2 → F is smooth for all smooth curves ci in Ui, since the product and the

composite of smooth mappings is smooth by 3.11 (and by 3.4 ). �

3.13. Corollary. Consequences of cartesian closedness. Let E, F , G, etc. be
locally convex spaces, and let U , V be c∞-open subsets of such. Then the following
canonical mappings are smooth.

(1) ev : C∞(U,F )× U → F , (f, x) 7→ f(x);
(2) ins : E → C∞(F,E × F ), x 7→ (y 7→ (x, y));
(3) ( )∧ : C∞(U,C∞(V,G))→ C∞(U × V,G);
(4) ( )∨ : C∞(U × V,G)→ C∞(U,C∞(V,G));
(5) comp : C∞(F,G)× C∞(U,F )→ C∞(U,G), (f, g) 7→ f ◦ g;
(6) C∞( , ) : C∞(E2, E1)× C∞(F1, F2)→
→ C∞(C∞(E1, F1), C∞(E2, F2)), (f, g) 7→ (h 7→ g ◦ h ◦ f);

(7)
∏

:
∏
C∞(Ei, Fi)→ C∞(

∏
Ei,
∏
Fi), for any index set.

Proof. ( 1 ) The mapping associated to ev via cartesian closedness is the identity
on C∞(U,F ), which is C∞, thus ev is also C∞.

( 2 ) The mapping associated to ins via cartesian closedness is the identity on E×F ,
hence ins is C∞.

( 3 ) The mapping associated to ( )∧ via cartesian closedness is the smooth com-
position of evaluations ev ◦(ev× Id) : (f ;x, y) 7→ f(x)(y).

( 4 ) We apply cartesian closedness twice to get the associated mapping (f ;x; y) 7→
f(x, y), which is just a smooth evaluation mapping.

( 5 ) The mapping associated to comp via cartesian closedness is (f, g;x) 7→ f(g(x)),
which is the smooth mapping ev ◦(Id× ev).

( 6 ) The mapping associated to the one in question by applying cartesian closed is
(f, g, h) 7→ g ◦ h ◦ f , which is appart permutation of the variables the C∞-mapping
comp ◦(Id× comp).
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( 7 ) Up to a flip of factors the mapping associated via cartesian closedness is the
product of the evaluation mappings C∞(Ei, Fi)× Ei → Fi. �

Next we generalize 3.4 to finite dimensions.

3.14. Corollary. [Boman, 1967]. The smooth mappings on open subsets of Rn in

the sense of definition 3.11 are exactly the usual smooth mappings.

Proof. (⇐) is obvious by the usual chain rule.

(⇒) Both conditions are of local nature, so we may assume that the open subset of
Rn is an open box and (by reparametrizing with a diffeomorphism in usual sense)
even Rn itself.

If f : Rn → F is smooth along smooth curves then by cartesian closedness 3.12 ,

for each coordinate the respective associated mapping f∨i : Rn−1 → C∞(R, F )
is smooth along smooth curves. Moreover the first partial derivative ∂if exists

and we have ∂if = (d ◦ f∨i)∧ (c.f. 3.2 ), so all first partial derivatives exist and
are smooth along smooth curves. Inductively, all iterated partial derivatives exist
and are smooth along smooth curves, thus continuous, so f is smooth in the usual
sense. �

3.15. Differentiation of an integral. We return to the question of differentiating

an integral. So let f : E × R → F be smooth, and let F̂ be the completion of the

locally convex space F . Then we may form the function f0 : E → F̂ defined by x 7→∫ 1

0
f(x, t) dt. We claim that it is smooth, and that the directional derivative is given

by dvf0(x) =
∫ 1

0
dv(f( , t))(x) dt. By cartesian closedness 3.12 the associated

mapping f∨ : E → C∞(R, F ) is smooth, so the mapping f0 :=
∫ 1

0
◦f∨ : E → F̂ is

smooth since integration is a bounded linear operator, and

dvf0(x) = ∂
∂s

∣∣
s=0

f0(x+ sv) = ∂
∂s

∣∣
s=0

(∫ 1

0

◦f∨
)

(x+ sv)

=

∫ 1

0

(
∂
∂s

∣∣
s=0

f∨(x+ sv)
)

(t) dt =

∫ 1

0

evt

(
∂
∂s

∣∣
s=0

f∨(x+ sv)
)
dt

=

∫ 1

0

∂
∂s

∣∣
s=0

(
evt

(
f∨(x+ sv)

))
dt =

∫ 1

0

∂
∂s

∣∣
s=0

f(x+ sv, t)dt

=

∫ 1

0

dv(f( , t))(x) dt.

We want to generalize this to functions f defined only on some c∞-open subset U ⊆
E×R, so we have to show that the natural domain U0 := {x ∈ E : {x}× [0, 1] ⊆ U}
of f0 is c∞-open in E. We will do this in lemma 4.15 . From then on the proof
runs exactly the same way as for globally defined functions, since for x0 ∈ U0 there
exists a bounded open interval J ⊇ [0, 1] such that {x0} × J ⊆ U and hence f∨ is
defined on a c∞-neighborhood of x0 and smooth into C∞(J, F )→ C([0, 1], F ). So
we obtain the

Proposition. Let f : E × R ⊇ U → F be smooth with c∞-open U ⊆ E × R. Then

x 7→
∫ 1

0
f(x, t) dt is smooth on the c∞-open set U0 := {x ∈ E : {x} × [0, 1] ⊆ U}



32 Chapter I . Calculus of Smooth Mappings 3.18

with values in the completion F̂ and dvf0(x) =
∫ 1

0
dv(f( , t))(x) dt for all x ∈ U0

and v ∈ E. �

Now we want to define the derivative of a general smooth map and prove the chain
rule for them.

3.16. Corollary. Smoothness of the difference quotient. For a smooth curve
c : R→ E the difference quotient

(t, s) 7→


c(t)− c(s)
t− s

for t 6= s

c′(t) for t = s

is a smooth mapping R2 → E. Cf. 1.7 and 2.1 .

Proof. By 2.5 we have f : (t, s) 7→ c(t)−c(s)
t−s =

∫ 1

0
c′(s+ r(t− s)) dr, and by 3.15

it is smooth R2 → Ê. The left hand side has values in E, and for t 6= s this is also
true for all iterated directional derivatives. It remains to consider the derivatives
for t = s. The iterated directional derivatives are given by 3.15 as

dp(v,w)f(t, s) = dp(v,w)

∫ 1

0

c′(s+ r(t− s)︸ ︷︷ ︸
rt+(1−r)s

) dr

=

∫ 1

0

(
d
du

)p |u=0c
′(r (t+ u v) + (1− r) (s+ uw)︸ ︷︷ ︸

u (r v+(1−r)w)+(r t+(1−r) s

) dr

=

∫ 1

0

(r v + (1− r)w)p c(p+1)(r t+ (1− r) s) dr

The later integrand is for t = s just
∫ 1

0
(r v + (1 − r)w)p dr c(p+1)(t) ∈ E. Hence

dp(v,w)f(t, s) ∈ E. By 3.10 the mapping f is smooth into E. �

3.17. Definition. Spaces of linear mappings. Let L(E,F ) denote the space

of all bounded (equivalently smooth by 2.11 ) linear mappings from E to F .
It is a closed linear subspace of C∞(E,F ) since f is linear if and only if for all
x, y ∈ E and λ ∈ R we have (evx +λ evy − evx+λy)f = 0. We equip it with this
topology and linear structure.

So a mapping f : U → L(E,F ) is smooth if and only if the composite mapping

U −f→ L(E,F )→ C∞(E,F ) is smooth.

3.18. Theorem. Chain rule. Let E and F be locally convex spaces, and let
U ⊆ E be c∞-open. Then the differentiation operator

d : C∞(U,F )→ C∞(U,L(E,F )),

df(x)v := lim
t→0

f(x+ tv)− f(x)

t
,
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exists, is linear and bounded (smooth). Also the chain rule holds:

d(f ◦ g)(x).v = df(g(x)).dg(x).v.

Proof. Since t 7→ x+tv is a smooth curve we know that d∧∧ : C∞(U,F )×U×E →
F exists. We want to show that it is smooth, so let (f, x, v) : R→ C∞(U,F )×U×E
be a smooth curve. Then

d∧∧(f(t), x(t), v(t)) = lim
s→0

f(t)(x(t) + sv(t))− f(t)(x(t))

s
= ∂2h(t, 0),

which is smooth in t, where the smooth mapping h : R2 ⊇ {(t, s) : x(t) + sv(t) ∈
U} → F is given by (t, s) 7→ f∧(t, x(t) + sv(t)). By cartesian closedness 3.12 the
mapping d∧ : C∞(U,F )× U → C∞(E,F ) is smooth.

Now we show that this mapping has values in the subspace L(E,F ): d∧(f, x)
is obviously homogeneous. It is additive, because we may consider the smooth

mapping (t, s) 7→ f(x+ tv + sw) and compute as follows, using 3.14 .

df(x)(v + w) = ∂
∂t

∣∣
0
f(x+ t(v + w))

= ∂
∂t

∣∣
0
f(x+ tv + 0w) + ∂

∂t

∣∣
0
f(x+ 0v + tw) = df(x)v + df(x)w.

So we see that d∧ : C∞(U,F ) × U → L(E,F ) is smooth, and the mapping d :

C∞(U,F )→ C∞(U,L(E,F )) is smooth by 3.12 and obviously linear.

We first prove the chain rule for a smooth curve c instead of g. We have to show
that the curve

t 7→

{
f(c(t))−f(c(0))

t for t 6= 0

df(c(0)).c′(0) for t = 0

is continuous at 0. It can be rewritten as t 7→
∫ 1

0
df(c(0) + s(c(t) − c(0))).c1(t) ds,

where c1 is the (by 3.16 ) smooth curve given by

t 7→

{
c(t)−c(0)

t for t 6= 0

c′(0) for t = 0
.

Since h : R2 → E × E given by

(t, s) 7→ (c(0) + s(c(t)− c(0)), c1(t))

is smooth, there exist open neighborhoods I of [0, 1] and J of 0 in R such that

map t 7→
(
s 7→ df(c(0) + s(c(t)− c(0))).c1(t)

)
is smooth J → C∞(I, F ), and hence

t 7→
∫ 1

0
df(c(0)+s(c(t)−c(0))).c1(t) ds is smooth as in 3.15 , and hence continuous.

For general g we have

d(f ◦ g)(x)(v) = ∂
∂t

∣∣
0

(f ◦ g)(x+ tv) = (df)(g(x+ 0v))( ∂
∂t

∣∣
0

(g(x+ tv)))

= (df)(g(x))(dg(x)(v)). �

3.19. Lemma. Two locally convex spaces are locally diffeomorphic if and only if
they are linearly diffeomorphic.
Any smooth and 1-homogeneous mapping is linear.
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Proof. By the chain rule the derivatives at corresponding points give the linear
diffeomorphisms.

For a 1-homogeneous mapping f one has df(0)v = ∂
∂t

∣∣
0
f(tv) = f(v), and this is

linear in v. �

4. The c∞-Topology

4.1. Definition. A locally convex vector space E is called bornological if and
only if the following equivalent conditions are satisfied:

(1) Any bounded linear mapping T : E → F in any locally convex space F is
continuous; It is sufficient to know this for all Banach spaces F .

(2) Every bounded seminorm on E is continuous.
(3) Every absolutely convex bornivorous subset is a 0-neighborhood.

A radial subset U (i.e. [0, 1]U ⊆ U) of a locally convex space E is called bor-
nivorous if it absorbs each bounded set, i.e. for every bounded B there exists
r > 0 such that rU ⊇ B.

We will make use of the following simple fact: Let A,B ⊆ E be subsets of a
vector space E with A absolutely convex. Then A absorbs B if and only if the
Minkowski-funktional pA is bounded on B.

Proof.

(1 ⇒ 2) Let p be a bounded seminorm. Then the canonical projection T : E →
E/ker p ⊆ Ê/ker p is bounded and hence continuous by (1). Hence, p = p̃ ◦ T is

continuous, where p̃ denotes the canonical norm on the completion Ê/ker p induced
from p.

(2 ⇒ 3), since the Minkowski-functional p generated by an absolutely convex bor-
nivorous subset is a bounded seminorm.

(3 ⇒ 1) Let T : E → F be bounded linear and V ⊆ F be a absolutely convex
0-neighborhood. Then T−1(V ) is absolutely convex and bornivorous, thus by (3) a
0-neighborhood, i.e. T is continuous. �

4.2. Lemma. Bornologification. The bornologification Eborn of a locally
convex space can be described in the following equivalent ways:

(1) It is the finest locally convex structure having the same bounded sets;
(2) It is the final locally convex structure with respect to the inclusions EB → E,

where B runs through all bounded (closed) absolutely convex subsets.

Moreover, Eborn is bornological. For any locally convex vector space F the contin-
uous linear mappings Eborn → F are exactly the bounded linear mappings E → F .
The continuous seminorms on Eborn are exactly the bounded seminorms of E. An
absolutely convex set is a 0-neighborhood in Eborn if and only if it is bornivorous,
i.e. absorbs bounded sets.

Proof. Let Eborn be the vector space E supplied with the topology described in
(1) and Efin be E supplied with the final toplogy described in (2).
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(Efin → Eborn is continuous), since all bounded absolutely convex sets B in E
are bounded in Eborn, thus the inclusions EB → Eborn are bounded and hence
continuous since EB is normed. Thus, the final structure on E induced by the
inclusions EB → E is finer than the structure of Eborn.

(Eborn → Efin is continuous). It is obviously bounded, since the construction
the bounded subsets B of Eborn are bounded in E, hence contained in bounded
absolutely convex B ⊆ E and hence bounded in EB → Efin.
Hence, Efin has exactly the same bounded sets as E, and so Eborn is by definition
finer than Efin.

Eborn = Efin is bornological by (1) in 4.1 : Let T : E → F be bounded linear, then
T |EB : EB → E → F is bounded and hence T : Efin → F is continuous.

The remaining statements now follow, since Eborn and E have the same bounded
seminorms, the same bounded linear mappings with values in locally convex spaces
and the same bornivorous absolutely convex subsets. And on the bornological space

Eborn these are by 4.1 exactly the continuous seminorms, the continuous linear
mappings and the absolutely convex 0-neighborhoods. �

4.3. Corollary. Bounded seminorms. For a seminorm p and a sequence
µn →∞ the following statements are equivalent:

(1) p is bounded;
(2) p is bounded on compact sets;
(3) p is bounded on M-converging sequences;
(4) p is bounded on µ-converging sequences;

(5) p is bounded on images of bounded intervals under Lipk-curves (for fixed 0 ≤
k ≤ ∞).

The corresponding statement for subsets of E is the following. For a radial subset
U ⊆ E (i.e., [0, 1] · U ⊆ U) the following properties are equivalent:

( 1 ) U is bornivorous.

( 1 ’) For all absolutely convex bounded sets B, the trace U ∩EB is a 0-neighborhood
in EB.

( 2 ) U absorbs all compact subsets in E.

( 3 ) U absorbs all Mackey convergent sequences.

( 3 ’) U absorbs all sequences converging Mackey to 0.

( 4 ) U absorbs all µ-convergent sequences (for a fixed µ).

( 4 ’) U absorbs all sequences which are µ-converging to 0.

( 5 ) U absorbs the images of bounded sets under Lipk-curves (for a fixed 0 ≤ k ≤
∞).

Proof. We prove the statement on radial subsets, for seminorms p it then follows
since p is bounded on a subset A ⊆ E if and only if the radial set U := {x ∈ E :
p(x) ≤ 1} absorbs A (using the equality K · U = {x ∈ E : p(x) ≤ K}).

( 1 ’) ⇔ ( 1 ) ⇒ ( 2 ) ⇒ ( 3 ) ⇒ ( 4 ) ⇒ ( 4 ’), ( 3 ) ⇒ ( 3 ’) ⇒ ( 4 ’), ( 2 ) ⇒
( 5 ), are trivial.
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( 5 ) ⇒ ( 4 ’) Suppose that (xn) is µ-converging to 0 but is not absorbed by U .
Then for each m ∈ N there is an nm ∈ N with xnm /∈ mU and by passing to a
subsequence (nmk)k of (nm)m we may assume that k 7→ 1/µnmk is fast falling. The

sequence (xnmk = 1
µnmk

µnmkxnmk )k is then fast falling and lies on some compact

part of a smooth curve by the special curve lemma 2.8 . The set U absorbs this

by ( 5 ), a contradiction to xmmk /∈ mkU with mk ≥ k →∞.

( 4 ’)⇒ ( 1 ) Suppose U does not absorb some bounded B. Hence, there are bn ∈ B
with bn /∈ µ2

nU . However, bn
µn

is µ-convergent to 0, so it is contained in KU for

some K > 0. Equivalently, bn ∈ µnKU ⊆ µ2
nU for all µn ≥ K, which gives a

contradiction. �

4.4. Corollary. Bornologification as locally-convex-ification.
The bornologification of E is the finest locally convex topology with one (hence all)
of the following properties:

(1) It has the same bounded sets as E.
(2) It has the same Mackey converging sequences as E.
(3) It has the same µ-converging sequences as E (for some fixed µ).

(4) It has the same Lipk-curves as E (for some fixed 0 ≤ k ≤ ∞).
(5) It has the same bounded linear mappings from E into arbitrary locally convex

spaces.
(6) It has the same continuous linear mappings from normed spaces into E.

Proof. Since the bornologification has the same bounded sets as the original topol-
ogy, the other objects are also the same: they depend only on the bornology – this
would not be true for compact sets, e.g. the bornologification of the topology of
pointwise convergence on the dual of any infinite dimensional Banach space is that
of uniform convergence on the unit ball, but the dual unit ball is only compact for
the former.

Conversely, we consider a topology τ which has for one of the above mentioned types

the same objects as the original one. Then τ has by 4.3 the same bornivorous
absolutely convex subsets as the original one. Hence, any 0-neighborhood of τ has

to be bornivorous for the original topology, and hence is by 4.2 a 0-neighborhood
of the bornologification of the original topology. �

4.5. Lemma. Let E be a bornological locally convex vector space, U ⊆ E a convex
subset. Then U is open for the locally convex topology of E if and only if U is open
for the c∞-topology.
Furthermore, an absolutely convex subset U of E is a 0-neighborhood for the locally
convex topology if and only if it is so for the c∞-topology.

Proof. (⇒) The c∞-topology is finer than the locally convex topology, cf. 4.2 .

(⇐) Let first U be an absolutely convex 0-neighborhood for the c∞-topology. Hence,

U absorbs Mackey-0-sequences by 2.13 . By 4.1.3 we have to show that U is
bornivorous, in order to obtain that U is a 0-neighborhood for the locally convex

topology. But this follows immediately from 4.3 .
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Let now U be convex and c∞-open, let x ∈ U be arbitrary. We consider the c∞-
open absolutely convex set W := (U − x) ∩ (x − U) which is a 0-neighborhood of
the locally convex topology by the argument above. Then x ∈ W + x ⊆ U . So U
is open in the locally convex topology. �

4.6. Corollary. The bornologification of a locally convex space E is the finest
locally convex topology coarser than the c∞-topology on E. �

4.7. In 2.12 we defined the c∞-topology on an arbitrary locally convex space E
as the final topology with respect to the smooth curves c : R → E. Now we will
compare the c∞-topology with other refinements of a given locally convex topology.
We first specify those refinements.

Definition. Let E be a locally convex vector space.

(i) We denote by kE the Kelley-fication of the locally convex topology of E,
i.e. the vector space E together with the final topology induced by the inclusions
of the subsets being compact for the locally convex topology.

(ii) We denote by sE the vector space E with the final topology induced by the
curves being continuous for the locally convex topology, or equivalently the se-
quences N∞ → E converging in the locally convex topology. The equivalence holds
since the infinite polygon through a converging sequence can be continuously pa-
rameterized by a compact interval.

(iii) We recall that by c∞E we denote the vector space E with its c∞-topology, i.e.
the final topology induced by the smooth curves.

Using that smooth curves are continuous and that converging sequences N∞ → E
have compact images, the following identities are continuous: c∞E → sE → kE →
E.

If the locally convex topology of E coincides with the topology of c∞E, resp. sE,
resp. kE then we call E smoothly generated, resp. sequentially generated, resp.
compactly generated.

4.8. Example. On E = RJ all the refinements of the locally convex topology

described in 4.7 above are different, i.e. c∞E 6= sE 6= kE 6= E, provided the

cardinality of the index set J is at least that of the continuum.

Proof. It is enough to show this for J equipotent to the continuum, since RJ1 is a
direct summand in RJ2 for J1 ⊆ J2.

(c∞E 6= sE) We may take as index set J the set c0 of all real sequences converging
to 0. Define a sequence (xn) in E by (xn)j := jn. Since every j ∈ J is a 0-sequence
we conclude that the xn converge to 0 in the locally convex topology of the product,
hence also in sE. Assume now that the xn converge towards 0 in c∞E. Then by

4.9 some subsequence converges Mackey to 0. Thus, there exists an unbounded
sequence of reals λn with {λnxn : n ∈ N} bounded. Let j be a 0-sequence with
{jnλn : n ∈ N} unbounded (e.g. (jn)−2 := 1 + max{|λk| : k ≤ n}). Then the j-th
coordinate jnλn of λnx

n is not bounded with respect to n, a contradiction.
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(sE 6= kE) Consider in E the subset

A :=
{
x ∈ {0, 1}J : xj = 1 for at most countably many j ∈ J

}
.

It is clearly closed with respect to the converging sequences, hence closed in sE.
But it is not closed in kE since it is dense in the compact set {0, 1}J .

(kE 6= E) Consider in E the subsets

An :=
{
x ∈ E : |xj | < n for at most n many j ∈ J

}
.

Each An is closed in E since its complement is the union of the open sets {x ∈ E :
|xj | < n for all j ∈ Jo} where Jo runs through all subsets of J with n+ 1 elements.
We show that the union A :=

⋃
n∈NAn is closed in kE. So let K be a compact

subset of E; then K ⊆
∏

prj(K), and each prj(K) is compact, hence bounded in
R. Since the family ({j ∈ J : prj(K) ⊆ [−n, n]})n∈N covers J , there has to exist an
N ∈ N and infinitely many j ∈ J with prj(K) ⊆ [−N,N ]. Thus K ∩An = ∅ for all
n > N , and hence, A ∩K =

⋃
n≤N An ∩K is closed. Nevertheless, A is not closed

in E, since 0 is in Ā but not in A. �

4.9. c∞-convergent sequences. By 2.13 every M -convergent sequence gives
a continuous mapping N∞ → c∞E and hence converges in c∞E. Conversely, a
sequence converging in c∞E is not necessarily Mackey convergent, see [Frölicher
and Kriegl, 1985]. However, one has the following result.

Lemma. A sequence (xn) is convergent to x in the c∞-topology if and only if every
subsequence has a subsequence which is Mackey convergent to x.

Proof. (⇐) is true for any topological convergence. In fact if xn would not converge
to x, then there would be a neighborhood U of x and a subsequence of xn which
lies outside of U and hence cannot have a subsequence converging to x.

(⇒) It is enough to show that (xn) has a subsequence which converges Mackey to x,
since every subsequence of a c∞-convergent sequence is clearly c∞-convergent to the
same limit. Without loss of generality we may assume that x /∈ A := {xn : n ∈ N}.
Hence, A cannot be c∞-closed, and thus there is a sequence nk ∈ N such that
(xnk) converges Mackey to some point x′ /∈ A. The set {nk : k ∈ N} cannot be
bounded, and hence we may assume that the nk are strictly increasing by passing
to a subsequence. But then (xnk) is a subsequence of (xn) which converges in c∞E
to x and Mackey to x′ hence also in c∞E. Thus x′ = x. �

Remark. A consequence of this lemma is, that there is no topology in general
having as convergent sequences exactly the M -convergent ones, since this topology
obviously would have to be coarser than the c∞-topology.

One can use this lemma also to show that the c∞-topology on a locally convex
vector space gives a so called arc-generated vector space. See [Frölicher and
Kriegl, 1988, 2.3.9 and 2.3.13] for a discussion of this.

Let us now describe several important situations where at least some of these topolo-
gies coincide. For the proof we will need the following
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4.10. Lemma. [Averbukh and Smolyanov, 1968] For any locally convex space E
the following statements are equivalent:

(1) The sequential closure of any subset is formed by all limits of sequences in the
subset.

(2) For any given double sequence (xn,k) in E with xn,k convergent to some xk for
n→∞ and k fixed and xk convergent to some x, there are strictly increasing
sequences i 7→ n(i) and i 7→ k(i) with xn(i),k(i) → x for i→∞.

Proof. (1⇒2) Take an a0 ∈ E different from k · (xn+k,k − x) and from k · (xk − x)
for all k and n. Define A := {an,k := xn+k,k − 1

k · a0 : n, k ∈ N}. Then x is in the

sequential closure of A, since xn+k,k − 1
k · a0 converges to xk − 1

k · a0 as n → ∞,

and xk − 1
k · a0 converges to x− 0 = x as k →∞. Hence, by (1) there has to exist

a sequence i 7→ (ni, ki) with ani,ki convergent to x. By passing to a subsequence
we may suppose that i 7→ ki and i 7→ ni are increasing. Assume that i 7→ ki is
bounded, hence finally constant. Then a subsequence xni+ki,ki− 1

ki
·a0 is converging

to xk − 1
k · a0 6= x if i 7→ ni is unbounded, and to xn+k,k − 1

k · a0 6= x if i 7→ ni
is bounded, which both yield a contradiction. Thus, i 7→ ki can be chosen strictly
increasing. But then

xni+ki,ki = ani,ki + 1
ki
a0 → x.

( 1 ) ⇐ ( 2 ) is obvious. �

4.11. Theorem. For any bornological vector space E the following implications
hold:

(1) c∞E = E provided the closure of subsets in E is formed by all limits of
sequences in the subset; hence in particular if E is metrizable.

(2) c∞E = E provided E is the strong dual of a Fréchet Schwartz space;
(3) c∞E = kE provided E is the strict inductive limit of a sequence of Fréchet

spaces.
(4) c∞E = sE provided E satisfies the M-convergence condition, i.e. every

sequence converging in the locally convex topology is M-convergent.
(5) sE = E provided E is the strong dual of a Fréchet Montel space;

Proof. ( 1 ) Using the lemma 4.10 above one obtains that the closure and the
sequential closure coincide, hence sE = E. It remains to show that sE → c∞E is
(sequentially) continuous. So suppose a sequence converging to x is given, and let
(xn) be an arbitrary subsequence. Then xn,k := k(xn − x)→ k · 0 = 0 for n→∞,

and hence by lemma 4.10 there are subsequences ki, ni with ki · (xni − x) → 0,
i.e. i 7→ xni is M-convergent to x. Thus, the original sequence converges in c∞E

by 4.9 .

( 3 ) Let E be the strict inductive limit of the Fréchet spaces En. By 52.8 every
En carries the trace topology of E, hence is closed in E, and every bounded subset
of E is contained in some En. Thus, every compact subset of E is contained as
compact subset in some En. Since En is a Fréchet space such a subset is even
compact in c∞En and hence compact in c∞E. Thus, the identity kE → c∞E is
continuous.
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( 4 ) is valid, since the M-closure topology is the final one induced by the M-
converging sequences.

( 5 ) Let E be the dual of any Fréchet Montel space F . By 52.29 E is bornological.
First we show that kE = sE. Let K ⊆ E = F ′ be compact for the locally convex

topology. Then K is bounded, hence equicontinuous since F is barrelled by 52.25 .

Since F is separable by 52.27 the set K is metrizable in the weak topology σ(E,F )

by 52.21 . By 52.20 this weak topology coincides with the topology of uniform
convergence on precompact subsets of F . Since F is a Montel space, this latter
topology is the strong one, and even the bornological one, as remarked at the
beginning. Thus, the (metrizable) topology on K is the initial one induced by the
converging sequences. Hence, the identity kE → sE is continuous, and therefore
sE = kE.

It remains to show kE = E. Since F is Montel the locally convex topology of
the strong dual coincides with the topology of uniform convergence on precom-
pact subsets of F . Since F is metrizable this topology coincides with the so-called

equicontinuous weak∗-topology, cf. 52.22 , which is the final topology induced by
the inclusions of the equicontinuous subsets. These subsets are by the Alaoğlu-

Bourbaki theorem 52.20 relatively compact in the topology of uniform conver-
gence on precompact subsets. Thus, the locally convex topology of E is compactly
generated.

( 2 ) By ( 5 ), and since Fréchet Schwartz spaces are Montel by 52.24 , we have
sE = E and it remains to show that c∞E = sE. So let (xn) be a sequence
converging to 0 in E. Then the set {xn : n ∈ N} is relatively compact, and
by [Frölicher and Kriegl, 1988, 4.4.39] it is relatively compact in some Banach
space EB . Hence, at least a subsequence has to be convergent in EB . Clearly its
Mackey limit has to be 0. This shows that (xn) converges to 0 in c∞E, and hence
c∞E = sE. One can even show that E satisfies the Mackey convergence condition,

see 52.28 . �

4.12. Example. We give now a non-metrizable example to which 4.11.1 applies.

Let E denote the subspace of RJ of all sequences with countable support. Then
the closure of subsets of E is given by all limits of sequences in the subset, but
for non-countable J the space E is not metrizable. This was proved in [Balanzat,
1960].

4.13. Remark. The conditions 4.11.1 and 4.11.2 are rather disjoint since every
locally convex space, that has a countable basis of its bornology and for which the
sequential adherence of subsets (the set of all limits of sequences in it) is
sequentially closed, is normable as the following proposition shows:

Proposition. Let E be a non-normable bornological locally convex space that has
a countable basis of its bornology. Then there exists a subset of E whose sequential
adherence is not sequentially closed.

Proof. Let {Bk : k ∈ N0} be an increasing basis of the von Neumann bornology
with B0 = {0}. Since E is non-normable we may assume that Bk does not absorb
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Bk+1 for all k. Now choose bn,k ∈ 1
nBk+1 with bn,k /∈ Bk. We consider the

double sequence {bk,0 − bn,k : n, k ≥ 1}. For fixed k the sequence bn,k converges
by construction (in EBk+1

) to 0 for n → ∞. Thus, bk,0 − 0 is the limit of the
sequence bk,0 − bn,k for n → ∞, and bk,0 converges to 0 for k → ∞. Suppose
bk(i),0 − bn(i),k(i) converges to 0. So it has to be bounded, thus there must be
an N ∈ N with B1 − {bk(i),0 − bn(i),k(i) : i ∈ N} ⊆ BN . Hence, bn(i),k(i) =

bk(i),0 − (bk(i),0 − bn(i),k(i)) ∈ BN , i.e. k(i) < N . This contradicts 4.10.2 . �

4.14. Lemma. Let U be a c∞-open subset of a locally convex space, let µn → ∞
be a real sequence, and let f : U → F be a mapping which is bounded on each µ-
converging sequence in U . Then f is bounded on every bornologically compact
subset (i.e. compact in some EB) of U .

Proof. Let K ⊆ EB ∩ U be compact in EB for some bounded absolutely convex
set B. Assume that f(K) is not bounded. By composing with linear functionals
we may assume that F = R. So there is a sequence (xn) in K with |f(xn)| → ∞.
Since K is compact in the normed space EB we may assume that (xn) converges to
x ∈ K. By passing to a subsequence we may even assume that (xn) is µ-converging.
Contradiction. �

4.15. Lemma. Let U be c∞-open in E × R and K ⊆ R be compact. Then
U0 := {x ∈ E : {x} ×K ⊆ U} is c∞-open in E.

Proof. Let x : R → E be a smooth curve in E with x(0) ∈ U0, i.e. (x(0), t) ∈ U
for all t ∈ K. We have to show that x(s) ∈ U0 for all s near 0. So consider the
smooth map x × R : R × R → E × R. By assumption (x × R)−1(U) is open in
c∞(R2) = R2. It contains the compact set {0} ×K and hence also a W ×K for
some neighborhood W of 0 in R. But this amounts in saying that x(W ) ⊆ U0. �

4.16. The c∞-topology of a product. Consider the product E × F of two
locally convex vector spaces. Since the projections onto the factors are linear and
continuous, and hence smooth, we always have that the identity mapping c∞(E ×
F )→ c∞(E)× c∞(F ) is continuous. It is not always a homeomorphism: Just take
a bounded bilinear functional, which is not continuous (like the evaluation map) on

a product of spaces where the c∞-topology is the bornological topology, cf. 4.20 .

However, if one of the factors is finite dimensional the product is well behaved:

Corollary. For any locally convex space E the c∞-topology of E×Rn is the product
topology of the c∞-topologies of the two factors, so that we have c∞(E × Rn) =
c∞(E)× Rn.

Proof. This follows recursively from the special case E × R, for which we can
proceed as follows. Take a c∞-open neighborhood U of some point (x, t) ∈ E × R.
Since the inclusion map s 7→ (x, s) from R into E ×R is continuous and affine, the
inverse image of U in R is an open neighborhood of t. Let’s take a smaller compact
neighborhood K of t. Then by the previous lemma U0 := {y ∈ E : {y} ×K ⊆ U}
is a c∞-open neighborhood of x, and hence U0 ×K is a neighborhood of (x, t) in
c∞(E)× R, what was to be shown. �



42 Chapter I . Calculus of Smooth Mappings 4.20

4.17. Lemma. Let U be c∞-open in a locally convex space and x ∈ U . Then the
star stx(U) := {x + v : x + λv ∈ U for all |λ| ≤ 1} with center x in U is again
c∞-open.

Proof. Let c : R→ E be a smooth curve with c(0) ∈ stx(U). The smooth mapping
f : (t, s) 7→ (1− s)x+ sc(t) maps {0} × {s : |s| ≤ 1} into U . So there exists δ > 0

with f
(
{(t, s) : |t| < δ, |s| ≤ 1}

)
⊆ U . Thus, c(t) ∈ stx(U) for |t| < δ. �

4.18. Lemma. The (absolutely) convex hull of a c∞-open set is again c∞-open.

Proof. Let U be c∞-open in a locally convex vector space E.
For each x ∈ U the set

Ux := {x+ t(y − x) : t ∈ [0, 1], y ∈ U} = U ∪
⋃

0<t≤1

(x+ t(U − x))

is c∞-open. The convex hull can be constructed by applying n times the operation
U 7→

⋃
x∈U Ux and taking the union over all n ∈ N, which respects c∞-openness.

The absolutely convex hull can be obtained by forming first {λ : |λ| = 1}.U =⋃
|λ|=1 λU which is c∞-open, and then forming the convex hull. �

4.19. Corollary. Let E be a bornological convenient vector space containing a
nonempty c∞-open subset which is either locally compact or metrizable in the c∞-
topology. Then the c∞-topology on E is locally convex. In the first case E is finite
dimensional, in the second case E is a Fréchet space.

Proof. Let U ⊆ E be a c∞-open metrizable subset. We may assume that 0 ∈ U .
Then there exists a countable neighborhood basis of 0 in U consisting of c∞-open
sets. This is also a neighborhood basis of 0 for the c∞-topology of E. We take

the absolutely convex hulls of these open sets, which are again c∞-open by 4.18 ,

and obtain by 4.5 a countable neighborhood basis for the bornologification of the

locally convex topology, so the latter is metrizable and Fréchet, and by 4.11 it
equals the c∞-topology.

If U is locally compact in the c∞-topology we may find a c∞-open neighborhood V

of 0 with compact closure V in the c∞-topology. By lemma 4.18 the absolutely

convex hull of V is also c∞-open, and by 4.5 it is also open in the bornologification

Eborn of E. The set V is then also compact in Eborn, hence precompact. So the

absolutely convex hull of V is also precompact by 52.6 . Therefore, the absolutely
convex hull of V is a precompact neighborhood of 0 in Eborn, thus E is finite

dimensional by 52.5 . So Eborn = c∞(E). �

Now we describe classes of spaces where c∞E 6= E or where c∞E is not even a
topological vector space. Finally, we give an example where the c∞-topology is not
completely regular.

4.20. Proposition. Let E and F be bornological locally convex vector spaces. If
there exists a bilinear smooth mapping m : E × F → R that is not continuous with
respect to the locally convex topologies, then c∞(E × F ) is not a topological vector
space.
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We shall show in lemma 5.5 below that multilinear mappings are smooth if and
only if they are bounded.

Proof. Suppose that addition c∞(E×F )× c∞(E×F )→ c∞(E×F ) is continuous
with respect to the product topology. Using the continuous inclusions c∞E →
c∞(E × F ) and c∞F → c∞(E × F ) we can factor the identity as c∞E × c∞F →
c∞(E × F )× c∞(E × F )−+→ c∞(E × F ) and hence c∞E × c∞F = c∞(E × F ).

In particular, m : c∞E × c∞F = c∞(E × F ) → R ist continuous. Thus, for every
ε > 0 there are 0-neighborhoods U and V with respect to the c∞-topology such
that m(U×V ) ⊆ (−ε, ε). Then also m(〈U〉×〈V 〉) ⊆ (−ε, ε) where 〈 〉 denotes the

absolutely convex hull. By 4.5 one concludes that m is continuous with respect
to the locally convex topology, a contradiction. �

4.21. Corollary. Let E be a non-normable bornological locally convex space. Then
c∞(E × E′) is not a topological vector space.

Proof. By 4.20 it is enough to show that ev : E × E′ → R is not continuous for
the bornological topologies on E and E′; if it were so there was be a neighborhood
U of 0 in E and a neighborhood U ′ of 0 in E′ such that ev(U ×U ′) ⊆ [−1, 1]. Since
U ′ is absorbing, U is scalarwise bounded, hence a bounded neighborhood. Thus,
E is normable. �

4.22. Remark. In particular, for a Fréchet Schwartz space E (e.g. RN) and its

dual E′ we have c∞(E×E′) 6= c∞E× c∞E′, since by 4.11 we have c∞E = E and

c∞E′ = E′, so equality would contradict corollary 4.21 .

In order to get a large variety of spaces where the c∞-topology is not a topological
vector space topology the next three technical lemmas will be useful.

4.23. Lemma. Let E be a locally convex vector space. Suppose a double sequence
bn,k in E exists which satisfies the following two conditions:

(b’) For every sequence k 7→ nk the sequence k 7→ bnk,k has no accumulation point
in c∞E.

(b”) For all k the sequence n 7→ bn,k converges to 0 in c∞E.

Suppose furthermore that a double sequence cn,k in E exists that satisfies the fol-
lowing two conditions:

(c’) For every 0-neighborhood U in c∞E there exists some k0 such that cn,k ∈ U
for all k ≥ k0 and all n.

(c”) For all k the sequence n 7→ cn,k has no accumulation point in c∞E.

Then c∞E is not a topological vector space.

Proof. Assume that the addition c∞E × c∞E → c∞E is continuous. In this
proof convergence is meant always with respect to c∞E. We may without loss of
generality assume that cn,k 6= 0 for all n, k, since by (c”) we may delete for each n all
those cn,k which are equal to 0. Then we consider A := {bn,k + εn,kcn,k : n, k ∈ N}
where the εn,k ∈ {−1, 1} are chosen in such a way that 0 /∈ A.
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We first show that A is closed in the sequentially generated topology c∞E: Let
bni,ki + εni,kicni,ki → x, and assume first that (ki) is unbounded. By passing if
necessary to a subsequence we may even assume that i 7→ ki is strictly increasing.
Then cni,ki → 0 by (c’), hence bni,ki → x by the assumption that addition is
continuous, which is a contradiction to (b’). Thus, (ki) is bounded, and we may
assume it to be constant. Now suppose that (ni) is unbounded. Then bni,k → 0 by
(b”), and hence εni,kcni,k → x, and for a subsequence where ε is constant one has
cni,k → ±x, which is a contradiction to (c”). Thus, ni is bounded as well, and we
may assume it to be constant. Hence, x = bn,k + εn,kcn,k ∈ A.

By the assumed continuity of the addition there exists an open and symmetric
0-neighborhood U in c∞E with U + U ⊆ E \ A. For K sufficiently large and n
arbitrary one has cn,K ∈ U by (c’). For such a fixed K and N sufficiently large
bN,K ∈ U by (b’). Thus, bN,K + εN,KcN,K /∈ A, which is a contradiction. �

Let us now show that many spaces have a double sequence cn,k as in the above
lemma.

4.24. Lemma. Let E be an infinite dimensional metrizable locally convex space.

Then a double sequence cn,k subject to the conditions (c’) and (c”) of 4.23 exists.

Proof. If E is normable we choose a sequence (cn) in the unit ball without accu-
mulation point and define cn,k := 1

k cn. If E is not normable we take a countable
increasing family of non-equivalent seminorms pk generating the locally convex
topology, and we choose cn,k with pk(cn,k) = 1

k and pk+1(cn,k) > n. �

Next we show that many spaces have a double sequence bn,k as in lemma 4.23 .

4.25. Lemma. Let E be a non-normable bornological locally convex space hav-
ing a countable basis of its bornology. Then a double sequence bn,k subject to the

conditions (b’) and (b”) of 2.11 exists.

Proof. Let Bn (n ∈ N) be absolutely convex sets forming an increasing basis of
the bornology. Since E is not normable the sets Bn can be chosen such that Bn
does not absorb Bn+1. Now choose bn,k ∈ 1

nBk+1 with bn,k /∈ Bk. �

Using these lemmas one obtains the

4.26. Proposition. For the following bornological locally convex spaces the c∞-
topology is not a vector space topology:

(i) Every bornological locally convex space that contains as c∞-closed subspaces
an infinite dimensional Fréchet space and a space which is non-normable in
the bornological topology and having a countable basis of its bornology.

(ii) Every strict inductive limit of a strictly increasing sequence of infinite dimen-
sional Fréchet spaces.

(iii) Every product for which at least 2ℵ0 many factors are non-zero.
(iv) Every coproduct for which at least 2ℵ0 many summands are non-zero.
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Proof. (i) follows directly from the last 3 lemmas.

(ii) Let E be the strict inductive limit of the spaces En (n ∈ N). Then E contains
the infinite dimensional Fréchet space E1 as subspace. The subspace generated
by points xn ∈ En+1 \ En (n ∈ N) is bornologically isomorphic to R(N), hence its
bornology has a countable basis. Thus, by (i) we are done.

(iii) Such a product E contains the Fréchet space RN as complemented subspace.
We want to show that R(N) is also a subspace of E. For this we may assume that the
index set J is RN and all factors are equal to R. Now consider the linear subspace
E1 of the product generated by the elements xn ∈ E = RJ , where (xn)j := j(n)

for every j ∈ J = RN. The linear map R(N) → E1 ⊆ E that maps the n-th
unit vector to xn is injective, since for a given finite linear combination

∑
tnx

n =
0 the j-th coordinate for j(n) := sign(tn) equals

∑
|tn|. It is continuous since

R(N) carries the finest locally convex structure. So it remains to show that it is a
bornological embedding. We have to show that any bounded B ⊆ E1 is contained
in a subspace generated by finitely many xn. Otherwise, there would exist a strictly
increasing sequence (nk) and bk =

∑
n≤nk t

k
nx

n ∈ B with tknk 6= 0. Define an index

j recursively by j(n) := n|tkn|−1 · sign
(∑

m<n t
k
mj(m)

)
if n = nk and j(n) := 0 if

n 6= nk for all k. Then the absolute value of the j-th coordinate of bk evaluates as
follows:

|(bk)j | =
∣∣∣ ∑
n≤nk

tknj(n)
∣∣∣ =

∣∣∣ ∑
n<nk

tknj(n) + tknkj(nk)
∣∣∣

=
∣∣∣ ∑
n<nk

tknj(n)
∣∣∣+ |tknkj(nk)| ≥ |tknkj(nk)| = nk.

Hence, the j-th coordinates of {bk : k ∈ N} are unbounded with respect to k ∈ N,
thus B is unbounded.

(iv) We can not apply lemma 4.23 since every double sequence has countable

support and hence is contained in the dual R(A) of a Fréchet Schwartz space RA for
some countable subset A ⊂ J . It is enough to show (iv) for R(J) where J = N∪ c0.
Let A := {jn(en + ej) : n ∈ N, j ∈ c0, jn 6= 0 for all n}, where en and ej denote
the unit vectors in the corresponding summand. The set A is c∞-closed, since its
intersection with finite subsums is finite. Suppose there exists a symmetric c∞-open
0-neighborhood U with U + U ⊆ E \ A. Then for each n there exists a jn 6= 0
with jnen ∈ U . We may assume that n 7→ jn converges to 0 and hence defines
an element j ∈ c0. Furthermore, there has to be an N ∈ N with jNej ∈ U , thus
jN (eN + ej) ∈ (U + U) ∩A, in contradiction to U + U ⊆ E \A. �

Remark. A nice and simple example where one either uses (i) or (ii) is RN⊕R(N).
The locally convex topology on both factors coincides with their c∞-topology (the

first being a Fréchet (Schwartz) space, cf. (i) of 4.11 , the second as dual of the

first, cf. (ii) of 4.11 ); but the c∞-topology on their product is not even a vector
space topology.

From (ii) it follows also that each space C∞c (M,R) of smooth functions with com-
pact support on a non-compact separable finite dimensional manifold M has the
property, that the c∞-topology is not a vector space topology.
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4.27. Although the c∞-topology on a convenient vector space is always functionally
separated, hence Hausdorff, it is not always completely regular as the following
example shows.

Example. The c∞-topology is not completely regular. The c∞-topology of
RJ is not completely regular if the cardinality of J is at least 2ℵ0 .

Proof. It is enough to show this for an index set J of cardinality 2ℵ0 , since the
corresponding product is a complemented subspace in every product with larger
index set. We prove the theorem by showing that every function f : RJ → R
which is continuous for the c∞-topology is also continuous with respect to the
locally convex topology. Hence, the completely regular topology associated to the
c∞-topology is the locally convex topology of E. That these two topologies are

different was shown in 4.8 . We use the following theorem of [Mazur, 1952]: Let

E0 := {x ∈ RJ : supp(x) is countable}, and let f : E0 → R be sequentially
continuous. Then there is some countable subset A ⊂ J such that f(x) = f(xA),
where in this proof xA is defined as xA(j) := x(j) for j ∈ A and xA(j) = 0 for
j /∈ A. Every sequence which is converging in the locally convex topology of E0

is contained in a metrizable complemented subspace RA for some countable A and
therefore is even M-convergent. Thus, this theorem of Mazur remains true if f is
assumed to be continuous for the M-closure topology. This generalization follows

also from the fact that c∞E0 = E0, cf. 4.12 . Now let f : RJ → R be continuous
for the c∞-topology. Then f |E0 : E0 → R is continuous for the c∞-topology, and
hence there exists a countable set A0 ⊂ J such that f(x) = f(xA0) for any x ∈ E0.
We want to show that the same is true for arbitrary x ∈ RJ . In order to show this
we consider for x ∈ RJ the map ϕx : 2J → R defined by ϕx(A) := f(xA)−f(xA∩A0

)
for any A ⊆ J , i.e. A ∈ 2J . For countable A one has xA ∈ E0, hence ϕx(A) = 0.
Furthermore, ϕx is sequentially continuous where one considers on 2J the product
topology of the discrete factors 2 = {0, 1}. In order to see this consider a converging
sequence of subsets An → A, i.e. for every j ∈ J one has for the characteristic
functions χAn(j) = χA(j) for n sufficiently large. Then {n(xAn − xA) : n ∈ N} is
bounded in RJ since for fixed j ∈ J the j-th coordinate equals 0 for n sufficiently
large. Thus, xAn converges Mackey to xA, and since f is continuous for the c∞-
topology ϕx(An) → ϕx(A). Now we can apply another theorem of [Mazur, 1952]:
Any function f : 2J → R that is sequentially continuous and is zero on all countable
subsets of J is identically 0, provided the cardinality of J is smaller than the first
inaccessible cardinal. Thus, we conclude that 0 = ϕx(J) = f(x) − f(xA0

) for all
x ∈ RJ . Hence, f factors over the metrizable space RA0 and is therefore continuous
for the locally convex topology. �

In general, the trace of the c∞-topology on a linear subspace is not its c∞-topology.
However, for c∞-closed subspaces this is true:

4.28. Lemma. Closed embedding lemma. Let E be a linear c∞-closed sub-
space of F . Then the trace of the c∞-topology of F on E is the c∞-topology on
E

Proof. Since the inclusion is continuous and hence bounded it is c∞-continuous.
Therefore, it is enough to show that it is closed for the c∞-topologies. So let A ⊆ E
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be c∞E-closed. And let xn ∈ A converge Mackey towards x in F . Then x ∈ E,
since E is assumed to be c∞-closed, and hence xn converges Mackey to x in E.
Since A is c∞-closed in E, we have that x ∈ A. �

We will give an example in 4.33 below which shows that c∞-closedness of the

subspace is essential for this result. Another example will be given in 4.36 .

4.29. Theorem. The c∞-completion. For any locally convex space E there
exists a unique (up to a bornological isomorphism) convenient vector space Ẽ and

a bounded linear injection i : E → Ẽ with the following universal property:

Each bounded linear mapping ` : E → F into a convenient vector space F has
a unique bounded extension ˜̀ : Ẽ → F such that ˜̀◦ i = `.

Furthermore, i(E) is dense for the c∞-topology in Ẽ.

Proof. Let Ẽ be the c∞-closure of E in the locally convex completion Êborn of
the bornologification Eborn of E. The inclusion i : E → Ẽ is bounded (but not

continuous in general). By 4.28 the c∞-topology on Ẽ is the trace of the c∞-

topology on Êborn. Hence, i(E) is dense also for the c∞-topology in Ẽ.

Using the universal property of the locally convex completion the mapping ` has a

unique continuous extension ˆ̀ : Êborn → F̂ into the locally convex completion of

F , whose restriction to Ẽ has values in F , since F is c∞-closed in F̂ , so it is the
desired ˜̀. Uniqueness follows, since i(E) is dense for the c∞-topology in Ẽ. �

4.30. Proposition. c∞-completion via c∞-dense embeddings. Let E be
c∞-dense and bornologically embedded into a c∞-complete locally convex space F .
If E → F has the extension property for bounded linear functionals, then F is
bornologically isomorphic to the c∞-completion of E.

Proof. We have to show that E → F has the universal property for extending
bounded linear maps T into c∞-complete locally convex spaces G. Since we are
only interested in bounded mappings, we may take the bornologification of G and
hence may assume that G is bornological. Consider the following diagram

E
� � //

T

��

F

λ̃◦T

  

��

~~

∏
G′ R

prλ
''

G
) 	

δ
77

λ // R
The arrow δ, given by δ(x)λ := λ(x), is a bornological embedding, i.e. the
image of a set is bounded if and only if the set is bounded, since B ⊆ G is bounded
if and only if λ(B) ⊆ R is bounded for all λ ∈ G′, i.e. δ(B) ⊆

∏
G′ R is bounded.

By assumption, the dashed arrow on the right hand side exists, hence by the uni-
versal property of the product the dashed vertical arrow (denoted T̃ ) exists. It
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remains to show that it has values in the image of δ. Since T̃ is bounded we have

T̃ (F ) = T̃ (E
c∞

) ⊆ T̃ (E)
c∞

⊆ δ(G)
c∞

= δ(G),

since G is c∞-complete and hence also δ(G), which is thus c∞-closed.

The uniqueness follows, since as a bounded linear map T̃ has to be continuous

for the c∞-topology (since it preserves the smooth curves by 2.11 which in turn
generate the c∞-topology), and E lies dense in F with respect to this topology. �

4.31. Proposition. Inductive representation of bornological locally con-

vex spaces. For a locally convex space E the bornologification Eborn is by 4.2 the

colimit of all the normed spaces EB for the absolutely convex bounded sets B. The
colimit of the respective completions ẼB is the linear subspace of the c∞-completion
Ẽ consisting of all limits in Ẽ of Mackey Cauchy sequences in E.

Proof. Let E(1) be the Mackey adherence of E in the c∞-completion Ẽ, by
which we mean the limits in Ẽ of all sequences in E which converge Mackey in Ẽ.

Then E(1) is a subspace of the locally convex completion Êborn. For every absolutely
convex bounded set B ⊆ E we have the continuous inclusion EB → Eborn, and by

passing to the c∞-completion we get mappings ÊB = ẼB → Ẽ. These mappings

commute with the inclusions ÊB → ÊB′ for B ⊆ B′ and have values in the Mackey

adherence of E, since every point in ÊB is the limit of a sequence in EB , and hence
its image is the limit of this Mackey Cauchy sequence in E.

We claim that the Mackey adherence E(1) together with these mappings has the

universal property of the colimit lim−→B
ÊB . In fact, let T : E(1) → F be a linear

mapping, such that ÊB → E(1) → F is continuous for all B. In particular T |E :
E → F has to be bounded, and hence T |Eborn

: Eborn → F is continuous. Thus, it

has a unique continuous extension T̂ : E(1) ⊆ Êborn → F̂ , and it remains to show
that this extension is T . So take a point x ∈ E(1). Then there exists a sequence
(xn) in E, which converges Mackey to x. Thus, the xn form a Cauchy-sequence

in some EB and hence converge to some y in ÊB . Then ιB(y) = x, since the

mapping ιB : ÊB → E(1) is continuous. Since the trace of T to ÊB is continuous

T (xn) converges to T (ιB(y)) = T (x) and T (xn) = T̂ (xn) converges to T̂ (x), i.e.

T (x) = T̂ (x). �

In spite of (1) in 4.36 we can use the Mackey adherence to describe the c∞-closure
in the following inductive way:

4.32. Proposition. Mackey adherences. For ordinal numbers α the Mackey
adherence A(α) of order α is defined recursively by:

A(α) :=

{
M-Adh(A(β)) if α = β + 1⋃
β<αA

(β) if α is a limit ordinal number.

Then the closure A of A in the c∞-topology coincides with A(ω1), where ω1 denotes
the first uncountable ordinal number, i.e. the set of all countable ordinal
numbers.
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Proof. Let us first show that A(ω1) is c∞-closed. So take a sequence xn ∈ A(ω1) =⋃
α<ω1

A(α), which converges Mackey to some x. Then there are αn < ω1 with

xn ∈ A(αn). Let α := supn αn. Then α is a again countable and hence less than
ω1. Thus, xn ∈ A(αn) ⊆ A(α), and therefore x ∈ M-Adh(A(α)) = A(α+1) ⊆ A(ω1)

since α+ 1 ≤ ω1.

It remains to show that A(α) is contained in A for all α. We prove this by transfinite
induction. So assume that for all β < α we have A(β) ⊆ A. If α is a limit
ordinal number then A(α) =

⋃
β<αA

(β) ⊆ A. If α = β + 1 then every point in

A(α) = M-Adh(A(β)) is the Mackey-limit of some sequence in A(β) ⊆ A, and since
A is c∞-closed, this limit has to belong to it. So A(α) ⊆ A in all cases. �

4.33. Example. The trace of the c∞-topology is not the c∞-topology and the
Mackey-adherence is not the c∞-closure, in general.

Proof. Consider E = RN×R(N), A := {an,k := ( 1
nχ{1,..,k},

1
kχ{n}) : n, k ∈ N} ⊆ E.

Let F be the linear subspace of E generated by A. We show that the closure of A
with respect to the c∞-topology of F is strictly smaller than that with respect to
the trace topology of the c∞-topology of E.

A is closed in the c∞-topology of F : Assume that a sequence (anj ,kj ) is M-
converging to (x, y). Then the second component of anj ,kj has to be bounded.
Thus, j 7→ nj has to be bounded and may be assumed to have constant value n∞.
If j 7→ kj were unbounded, then (x, y) = ( 1

n∞
χN, 0), which is not an element of F .

Thus, j 7→ kj has to be bounded too and may be assumed to have constant value
k∞. Thus, (x, y) = an∞,k∞ ∈ A.

A is not closed in the trace topology since (0,0) is contained in the closure of A
with respect to the c∞-topology of E: For k →∞ and fixed n the sequence an,k is
M-converging to ( 1

nχN, 0), and 1
nχN is M-converging to 0 for n→∞. �

4.34. Example. We consider the space `∞(X) := `∞(X,R) as defined in 2.15 for
a set X together with a family B of subsets called bounded. We have the subspace
Cc(X) := {f ∈ `∞(X) : supp f is finite}. And we want to calculate its c∞-closure
in `∞(X).
Claim: The c∞-closure of Cc(X) equals

c0(X) := {f ∈ `∞(X) : f |B ∈ c0(B) for all B ∈ B},
provided that X is countable.

Proof. The right hand side is just the intersection c0(X) :=
⋂
B∈B ι

−1
B (c0(B)),

where ιB : `∞(X) → `∞(B) denotes the restriction map. We use the notation
c0(X), since in the case where X is bounded this is exactly the space {f ∈ `∞(X) :
{x : |f(x)| ≥ ε} is finite for all ε > 0}. In particular, this applies to the bounded
space N, where c0(N) = c0. Since `∞(X) carries the initial structure with respect
to these maps c0(X) is closed. It remains to show that Cc(X) is c∞-dense in c0(X).
So take f ∈ c0(X). Let {x1, x2, . . . } := {x : f(x) 6= 0}.
We consider first the case, where there exists some δ > 0 such that |f(xn)| ≥ δ for
all n. Then we consider the functions fn := f · χx1,...,xn ∈ Cc(X). We claim that
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n(f − fn) is bounded in `∞(X,R). In fact, let B ∈ B. Then {n : xn ∈ B} = {n :
xn ∈ B and |f(xn)| ≥ δ} is finite. Hence, {n(f − fn)(x) : x ∈ B} is finite and thus
bounded, i.e. fn converges Mackey to f .

Now the general case. We set Xn := {x ∈ X : |f(x)| ≥ 1
n} and define fn := f ·χXn .

Then each fn satisfies the assumption of the particular case with δ = 1
n and hence

is a Mackey limit of a sequence in Cc(X). Furthermore, n(f − fn) is uniformly
bounded by 1, since for x ∈ Xn it is 0 and otherwise |n(f−fn)(x)| = n|f(x)| < 1. So
after forming the Mackey adherence (i.e. adding the limits of all Mackey-convergent

sequences contained in the set, see 4.32 for a formal definition) twice, we obtain
c0(X). �

Now we want to show that c0(X) is in fact the c∞-completion of Cc(X).

4.35. Example. c0(X). We claim that c0(X) is the c∞-completion of the subspace
Cc(X) in `∞(X) formed by the finite sequences.
We may assume that the bounded sets of X are formed by those subsets B, for
which f(B) is bounded for all f ∈ `∞(X). Obviously, any bounded set has this
property, and the space `∞(X) is not changed by adding these sets. Furthermore,
the restriction map ιB : `∞(X) → `∞(B) is also bounded for such a B, since

using the closed graph theorem 52.10 we only have to show that evb ◦ιB = ι{b} is
bounded for every b ∈ B, which is obviously the case.

By proposition 4.30 it is enough to show the universal property for bounded
linear functionals. We only have to show that in analogy to Banach-theory the
dual Cc(X)′ is just

`1(X) := {g : X → R : supp g is bounded and g is absolutely summable}.
In fact, any such g acts even as bounded linear functional on `∞(X,R) by 〈g, f〉 :=∑
x g(x) f(x), since a subset is bounded in `∞(X) if and only if it is uniformly

bounded on all bounded sets B ⊆ X. Conversely, let ` : Cc(X) → R be bounded
and linear and define g : X → R, by g(x) := `(ex), where ex denotes the function
given by ex(y) := 1 for x = y and 0 otherwise. Obviously `(f) = 〈g, f〉 for all
f ∈ Cc(X). Suppose indirectly that supp g = {x : `(ex) 6= 0} is not bounded.
Then there exists a sequence xn ∈ supp g and a function f ∈ `∞(X) such that
|f(xn)| ≥ n. In particular, the only bounded subsets of {xn : n ∈ N} are the finite
ones. Hence { n

|g(xn)|exn : n ∈ N} is bounded in Cc(X), but the image under ` is

not. Furthermore, g has to be absolutely summable since the set of finite subsums
of
∑
x sign g(x) ex is uniformly bounded and hence bounded in Cc(X) and its image

under ` are the subsums of
∑
x |g(x)|.

4.36. Corollary. Counter-examples on c∞-topology. The following state-
ments are false:

(1) The c∞-closure of a subset (or of a linear subspace) is given by the Mackey
adherence, i.e. the set formed by all limits of sequences in this subset which
are Mackey convergent in the total space.

(2) A subset U of E that contains a point x and has the property, that every
sequence which M -converges to x belongs to it finally, is a c∞-neighborhood
of x.
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(3) A c∞-dense subspace of a c∞-complete space has this space as c∞-completion.
(4) If a subspace E is c∞-dense in the total space, then it is also c∞-dense in each

linear subspace lying in between.
(5) The c∞-topology of a linear subspace is the trace of the c∞-topology of the

whole space.
(6) Every bounded linear functional on a linear subspace can be extended to such

a functional on the whole space.
(7) A linear subspace of a bornological locally convex space is bornological.
(8) The c∞-completion preserves embeddings.

Proof. ( 1 ) For this we give an example, where the Mackey adherence of Cc(X)
is not all of c0(X).
Let X = N × N, and take as bounded sets all sets of the form Bµ := {(n, k) : n ≤
µ(k)}, where µ runs through all functions N → N. Let f : X → R be defined by
f(n, k) := 1

k . Obviously, f ∈ c0(X), since for given j ∈ N and function µ the set of

points (n, k) ∈ Bµ for which f(n, k) = 1
k ≥

1
j is the finite set {(n, k) : k ≤ j, n ≤

µ(k)}.
Assume there is a sequence fn ∈ Cc(X) Mackey convergent to f . By passing to a
subsequence we may assume that n2(f − fn) is bounded. Now choose µ(k) to be
larger than all of the finitely many n, with fk(n, k) 6= 0. If k2(f − fk) is bounded
on Bµ, then in particular {k2(f − fk)(µ(k), k) : k ∈ N} has to be bounded, but
k2(f − fk)(µ(k), k) = k2 1

k − 0 = k.

( 2 ) Let A be a set for which ( 1 ) fails, and choose x in the c∞-closure of A but

not in the M -adherence of A. Then U := E \ A satisfies the assumptions of ( 2 ).
In fact, let xn be a sequence which converges Mackey to x, and assume that it is
not finally in U . So we may assume without loss of generality that xn /∈ U for
all n, but then A 3 xn → x would imply that x is in the Mackey adherence of A.
However, U cannot be a c∞-neighborhood of x. In fact, such a neighborhood must
meet A since x is assumed to be in the c∞-closure of A.

( 3 ) Let F be a locally convex vector space whose Mackey adherence in its c∞-

completion E is not all of E, e.g. Cc(X) ⊆ c0(X) as in ( 1 ). Choose a y ∈ E
that is not contained in the Mackey adherence of F , and let F1 be the subspace
of E generated by F ∪ {y}. We claim that F1 ⊆ E cannot be the c∞-completion
although F1 is obviously c∞-dense in the convenient vector space E. In order to see
this we consider the linear map ` : F1 → R characterized by `(F ) = 0 and `(y) = 1.
Clearly ` is well defined.

` : F1 → R is bornological: For any bounded B ⊆ F1 there exists an N such that
B ⊆ F + [−N,N ]y. Otherwise, bn = xn + tny ∈ B would exist with tn → ∞ and
xn ∈ F . This would imply that bn = tn(xntn + y), and thus −xntn would converge
Mackey to y; a contradiction.

Now assume that a bornological extension ¯̀ to E exists. Then F ⊆ ker(¯̀) and
ker(¯̀) is c∞-closed, which is a contradiction to the c∞-denseness of F in E. So
F1 ⊆ E does not have the universal property of a c∞-completion.

This shows also that ( 6 ) fails.
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( 4 ) Furthermore, it follows that F is c∞F1-closed in F1, although F and hence F1

are c∞-dense in E.

( 5 ) The trace of the c∞-topology of E to F1 cannot be the c∞-topology of F1,
since for the first one F is obviously dense.

( 7 ) Obviously, the trace topology of the bornological topology on E cannot be
bornological on F1, since otherwise the bounded linear functionals on F1 would be
continuous and hence extendable to E.

( 8 ) Furthermore, the extension of the inclusion ι : F ⊕ R ∼= F1 → E to the

completion is given by (x, t) ∈ E⊕R ∼= F̃ ⊕R = F̃1 7→ x+ ty ∈ E and has as kernel
the linear subspace generated by (y,−1). Hence, the extension of an embedding
to the c∞-completions need not be an embedding anymore, in particular the c∞-
completion functor does not preserve injectivity of morphisms. �

5. Uniform Boundedness Principles and Multilinearity

5.1. The category of locally convex spaces and smooth mappings. The
category of all smooth mappings between bornological vector spaces is a subcate-
gory of the category of all smooth mappings between locally convex spaces which is

equivalent to it, since a locally convex space and its bornologification 4.4 have the

same bounded sets and smoothness depends only on the bornology by 1.8 . So it is

also cartesian closed, but the topology on C∞(E,F ) from 3.11 has to be bornolo-
gized. For an example showing the necessity see [Kriegl, 1983, p. 297] or [Frölicher
and Kriegl, 1988, 5.4.19]: The topology on C∞(R,R(N)) is not bornological, in fact

{c = (cn)n ∈ C∞(R,R(N)) : |c(n)
n (0)| < 1} is absolutely convex, bornivorous but not

a 0-neighborhood.

We will in general, however, work in the category of locally convex spaces and

smooth mappings, so function spaces carry the topology of 3.11 .

The category of bounded (equivalently continuous) linear mappings between bor-
nological vector spaces is in the same way equivalent to the category of all bounded
linear mappings between all locally convex spaces, since a linear mapping is smooth

if and only if it is bounded, by 2.11 . It is closed under formation of colimits and

under quotients (this is an easy consequence of 4.1.1 ). The Mackey-Ulam theo-
rem [Jarchow, 1981, 13.5.4] tells us that a product of non trivial bornological vector
spaces is bornological if and only if the index set does not admit a Ulam measure,
i.e. a non trivial {0, 1}-valued measure on the whole power set. A cardinal admit-
ting a Ulam measure has to be strongly inaccessible, so we can restrict set theory
to exclude measurable cardinals.

Let L(E1, . . . , En;F ) denote the space of all bounded n-linear mappings
from E1× . . .×En → F with the topology of uniform convergence on bounded sets
in E1 × . . .× En.

5.2. Proposition. Exponential law for L. There are natural bornological
isomorphisms

L(E1, . . . , En+k;F ) ∼= L(E1, . . . , En;L(En+1, . . . , En+k;F )).
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Proof. We proof this for bilinear maps, the general case is completely analogous.
We already know that bilinearity translates into linearity into the space of linear
functions. Remains to prove boundedness. So let B ⊆ L(E1, E2;F ) be given. Then
B is bounded if and only if B(B1 × B2) ⊆ F is bounded for all bounded Bi ⊆ Ei.
This however is equivalent to B∨(B1) is contained and bounded in L(E2, F ) for all
bounded B1 ⊆ E1, i.e. B∨ is contained and bounded in L(E1, L(E2, F )). �

Recall that we have already put a structure on L(E,F ) in 3.17 , namely the initial
one with respect to the inclusion in C∞(E,F ). Let us now show that bornologically
these definitions agree:

5.3. Lemma. Structure on L. A subset is bounded in L(E,F ) ⊆ C∞(E,F )
if and only if it is uniformly bounded on bounded subsets of E, i.e. L(E,F ) →
C∞(E,F ) is initial.

Proof. Let B ⊆ L(E,F ) be bounded in C∞(E,F ), and assume that it is not
uniformly bounded on some bounded set B ⊆ E. So there are fn ∈ B, bn ∈ B, and
` ∈ F ∗ with |`(fn(bn))| ≥ nn. Then the sequence n1−nbn converges fast to 0, and
hence lies on some compact part of a smooth curve c by the special curve lemma

2.8 . So B cannot be bounded, since otherwise C∞(`, c) = `∗ ◦ c∗ : C∞(E,F ) →
C∞(R,R) → `∞(R,R) would have bounded image, i.e. {` ◦ fn ◦ c : n ∈ N} would
be uniformly bounded on any compact interval.

Conversely, let B ⊆ L(E,F ) be uniformly bounded on bounded sets and hence
in particular on compact parts of smooth curves. We have to show that dn ◦ c∗ :
L(E,F )→ C∞(R, F )→ `∞(R, F ) has bounded image. But for linear smooth maps

we have by the chain rule 3.18 , recursively applied, that dn(f ◦ c)(t) = f(c(n)(t)),

and since c(n) is still a smooth curve we are done. �

Let us now generalize this result to multilinear mappings. For this we first charac-
terize bounded multilinear mappings in the following two ways:

5.4. Lemma. A multilinear mapping is bounded if and only if it is bounded on
each sequence which converges Mackey to 0.

Proof. Suppose that f : E1 × . . .× Ek → F is not bounded on some bounded set
B ⊆ E1 × . . . × Ek. By composing with a linear functional we may assume that
F = R. So there are bn ∈ B with λk+1

n := |f(bn)| → ∞. Then |f( 1
λn
bn)| = λn →∞,

but ( 1
λn
bn) is Mackey convergent to 0. �

5.5. Lemma. Bounded multilinear mappings are smooth. Let f : E1 ×
. . . × En → F be a multilinear mapping. Then f is bounded if and only if it is
smooth. For the derivative we have the product rule:

df(x1, . . . , xn)(v1, . . . , vn) =

n∑
i=1

f(x1, . . . , xi−1, vi, xi+1, . . . , xn).

In particular, we get for f : E ⊇ U → R, g : E ⊇ U → F and x ∈ U , v ∈ E the
Leibniz formula

(f · g)′(x)(v) = f ′(x)(v) · g(x) + f(x) · g′(x)(v).
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Proof. We use induction on n. The case n = 1 is corollary 2.11 . The induction
goes as follows:

f is bounded
⇐⇒ f(B1 × . . .×Bn) = f∨(B1 × . . .×Bn−1)(Bn) is bounded for all bounded sets

Bi in Ei;

⇐⇒ f∨(B1 × . . .×Bn−1) ⊆ L(En, F ) ⊆ C∞(En, F ) is bounded, by 5.3 ;
⇐⇒ f∨ : E1 × . . .× En−1 → C∞(En, F ) is bounded;
⇐⇒ f∨ : E1 × . . .× En−1 → C∞(En, F ) is smooth by the inductive assumption;

⇐⇒ f : E1 × . . .× En → F is smooth by cartesian closedness 3.13 .

The formula for the derivative follows by direct evaluation of the directional differ-
ence quotient.

The particular case follows by application to the scalar multiplication R × F →
F . �

Now let us show that also the structures coincide:

5.6. Proposition. Structure on space of multilinear maps. The injection
of L(E1, . . . , En;F )→ C∞(E1 × . . .× En, F ) is a bornological embedding.

Proof. We can show this by induction. In fact, let B ⊆ L(E1, . . . , En;F ). Then

B is bounded
⇐⇒ B(B1 × . . .×Bn) = B∨(B1 × . . .×Bn−1)(Bn) is bounded for all bounded Bi

in Ei;

⇐⇒ B∨(B1 × . . .×Bn−1) ⊆ L(En, F ) ⊆ C∞(En, F ) is bounded, by 5.3 ;
⇐⇒ B∨ ⊆ C∞(E1 × . . .×En−1, C

∞(En, F )) is bounded by the inductive assump-
tion;

⇐⇒ B ⊆ C∞(E1 × . . .× En, F ) is bounded by cartesian closedness 3.13 . �

5.7. Bornological tensor product. It is natural to consider the universal prob-
lem of linearizing bounded bilinear mappings. The solution is given by the borno-
logical tensor productE⊗βF , i.e. the algebraic tensor product with the finest
locally convex topology such that E × F → E ⊗ F is bounded. A 0-neighborhood
basis of this topology is given by those absolutely convex sets, which absorb B1⊗B2

for all bounded B1 ⊆ E1 and B2 ⊆ E2. Note that this topology is bornological
since it is the finest locally convex topology with given bounded linear mappings
on it.

Theorem. The bornological tensor product is the left adjoint functor to the Hom-
functor L(E, ) on the category of bounded linear mappings between locally convex
spaces, and one has the following bornological isomorphisms:

L(E ⊗β F,G) ∼= L(E,F ;G) ∼= L(E,L(F,G))

E ⊗β R ∼= E

E ⊗β F ∼= F ⊗β E
(E ⊗β F )⊗β G ∼= E ⊗β (F ⊗β G)
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Furthermore, the bornological tensor product preserves colimits. It neither preserves
embeddings nor countable products.

Proof. We show first that this topology has the universal property for boun-
ded bilinear mappings f : E1 × E2 → F . Let U be an absolutely convex zero
neighborhood in F , and let B1, B2 be bounded sets. Then f(B1×B2) is bounded,

hence it is absorbed by U . Then f̃−1(U) absorbs ⊗(B1×B2), where f̃ : E1⊗E2 → F

is the canonically associated linear mapping. So f̃−1(U) is in the zero neighborhood

basis of E1 ⊗β E2 described above. Therefore, f̃ is continuous.

A similar argument for sets of mappings shows that the first isomorphism L(E ⊗β
F,G) ∼= L(E,F ;G) is bornological.

The topology on E1⊗β E2 is finer than the projective tensor product topology, and
so it is Hausdorff. The rest of the positive results is clear.

The counter-example for embeddings given for the projective tensor product works
also, since all spaces involved are Banach.

Since the bornological tensor-product preserves coproducts it cannot preserve prod-
ucts. In fact (R ⊗β R(N))N ∼= (R(N))N whereas RN ⊗β R(N) ∼= (RN ⊗β R)(N) ∼=
(RN)(N). �

5.8. Proposition. Projective versus bornological tensor product. If every
bounded bilinear mapping on E × F is continuous then E ⊗π F = E ⊗β F . In
particular, we have E ⊗π F = E ⊗β F for any two metrizable spaces, and for a
normable space F we have Eborn ⊗π F = E ⊗β F .

Proof. Recall that E ⊗π F carries the finest locally convex topology such that
⊗ : E × F → E ⊗ F is continuous, whereas E ⊗β F carries the finest locally
convex topology such that ⊗ : E × F → E ⊗ F is bounded. So we have that
⊗ : E × F → E ⊗β F is bounded and hence by assumption continuous, and thus
the topology of E ⊗π F is finer than that of E ⊗β F . Since the converse is true in
general, we have equality.

In 52.23 it is shown that in metrizable locally convex spaces the convergent se-
quences coincide with the Mackey-convergent ones. Now let T : E × F → G be
bounded and bilinear. We have to show that T is continuous. So let (xn, yn) be
a convergent sequence in E × F . Without loss of generality we may assume that
its limit is (0, 0). So there are µn →∞ such that {µn(xn, yn) : n ∈ N} is bounded

and hence also T
(
{µn(xn, yn) : n ∈ N}

)
=
{
µ2
nT (xn, yn) : n ∈ N

}
, i.e. T (xn, yn)

converges even Mackey to 0.

If F is normable and T : Eborn × F → G is bounded bilinear then T∨ : Eborn →
L(F,G) is bounded, and since Eborn is bornological it is even continuous. Clearly,
for normed spaces F the evaluation map ev : L(F,G)× F → G is continuous, and
hence T = ev ◦(T∨ × F ) : Eborn × F → G is continuous. Thus, Eborn ⊗π F =
E ⊗β F . �

Note that the bornological tensor product is invariant under bornologification, i.e.,
Eborn ⊗β Fborn ∼= E ⊗β F . So it is no loss of generality to assume that both spaces
are bornological. Keep however in mind that the corresponding identity for the
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projective tensor product does not hold. Another possibility to obtain the identity
E⊗π F = E⊗β F is to assume that E and F are bornological and every separately
continuous bilinear mapping on E×F is continuous. In fact, every bounded bilinear
mapping is obviously separately bounded, and since E and F are assumed to be
bornological, it has to be separately continuous.

5.9. Corollary. The following mappings are bounded multilinear.

(1) lim : Nat(F ,G) → L(limF , limG), where F and G are two functors on the
same index category, and where Nat(F ,G) is the space of all natural transfor-
mations with the structure induced by the embedding into

∏
i L(F(i),G(i)).

(2) colim : Nat(F ,G)→ L(colimF , colimG).
(3)

L : L(E1, F1)× . . .×L(En, Fn)× L(F,E)→
→ L(L(F1, . . . , Fn;F ), L(E1, . . . , En;E))

(T1, . . . , Tn, T ) 7→ (S 7→ T ◦ S ◦ (T1 × . . .× Tn));

(4)
n⊗
β : L(E1, F1)× . . .× L(En, Fn)→ L(E1 ⊗β · · · ⊗β En, F1 ⊗β · · · ⊗β Fn).

(5)
∧n

: L(E,F ) → L(
∧n

E,
∧n

F ), where
∧n

E is the linear subspace of all
alternating tensors in

⊗n
β E. It is the universal solution of

L
( n∧

E,F
)
∼= Lnalt(E;F ),

where Lnalt(E;F ) is the space of all bounded n-linear alternating mappings E×
. . .×E → F . This space is a direct summand of Ln(E;F ) := L(E, . . . , E;F ).

(6)
∨n

: L(E,F ) → L(
∨n

E,
∨n

F ), where
∨n

E is the linear subspace of all
symmetric tensors in

⊗n
β E. It is the universal solution of

L
( n∨

E,F
)
∼= Lnsym(E;F ),

where Lnsym(E;F ) is the space of all bounded n-linear symmetric mappings
E × . . .× E → F . This space is also a direct summand of Ln(E;F ).

(7)
⊗

β : L(E,F )→ L(
⊗

β E,
⊗

β F ), where
⊗

β E :=
∐∞
n=0

n⊗
βE is the tensor

algebra of E. Note that it has the universal property of prolonging bounded
linear mappings with values in locally convex spaces, which are algebras with
bounded operations, to continuous algebra homomorphisms:

L(E,F ) ∼= Alg
(⊗

β

E,F
)
.

(8)
∧

: L(E,F ) → L(
∧
E,
∧
F ), where

∧
E :=

∐∞
n=0

∧n
E is the exterior

algebra. It has the universal property of prolonging bounded linear map-
pings to continuous algebra homomorphisms into graded-commutative al-
gebras, i.e. algebras in the sense above, which are as vector spaces a coproduct∐
n∈NEn and the multiplication maps Ek × El → Ek+l and for x ∈ Ek and

y ∈ El one has x · y = (−1)kly · x.
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(9)
∨

: L(E,F ) → L(
∨
E,
∨
F ) , where

∨
E :=

∐∞
n=0

∨n
E is the symmetric

algebra. It has the universal property of prolonging bounded linear mappings
to continuous algebra homomorphisms into commutative algebras.

Recall that the symmetric product is given as the image of the symmetrizer
sym : E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E given by

x1 ⊗ · · · ⊗ xn →
1

n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n).

Similarly the wedge product is given as the image of the alternator

alt : E ⊗β · · · ⊗β E → E ⊗β · · · ⊗β E

given by x1 ⊗ · · · ⊗ xn →
1

n!

∑
σ∈Sn

sign(σ)xσ(1) ⊗ · · · ⊗ xσ(n).

Symmetrizer and alternator are bounded projections, so both subspaces are com-
plemented in the tensor product.

Proof. All results follow easily by flipping coordinates until only a composition of
products of evaluation maps remains.

In particular, consider the following diagrams:

( 1 )

Nat(F ,G)× limF //

pri× pri

��

G

pri

��
L(F(i),G(i))×F(i)

ev // G(i)

( 2 )

F(i)
inji // colimF // L(Nat(F ,G), colimG)

F(i)×Nat(F ,G)

Id× pri
��

// colimG

F(i)× L(F(i),G(i))
ev // G(i)

inji

OO

( 3 ) (∏
i L(Ei, Fi)

)
× L(F,E)× L(F1, . . . , Fn;F )×

∏
iEi

∼=
��

// E

L(F,E)× L(F1, . . . , Fn;F )×
∏
i(L(Ei, Fi)× Ei)

Id× ev×...×ev

��
L(F,E)× L(F1, . . . , Fn;F )×

∏
i Fi ev

// L(F,E)× F

ev

OO
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( 4 )

E1 × . . .× En // L(L(E1, F1), . . . , L(En, Fn);F1 ⊗β · · · ⊗β Fn)

E1 × . . .× En × L(E1, F1)× . . .× L(En, Fn) //

∼=
��

F1 ⊗β · · · ⊗β Fn

L(E1, F1)× E1 × . . .× L(En, Fn)× En
ev×...×ev // F1 × . . .× Fn

OO

( 5 )

L(E,F )

∆

��

// L(
∧n

E,
∧n

F )

L(E,F )× . . .× L(E,F )

⊗n

// L(
⊗n

β E,
⊗n

β F )

L(incl,alt)

OO

The projection Ln(E;F )→ Lnalt(E;F ) is given by the alternator

T 7→
(

(v1, . . . , vn) 7→ 1

n!

∑
σ

sign(σ)T (vσ(1), . . . , vσ(n))
)
.

The universal proporty follows from the diagram:

E × . . .× E ⊗ //

f

))

E ⊗β · · · ⊗β E
alt //

f̃

��

∧n
E

f̃ |∧n E
uu

F

( 6 )

L(E,F )

∆

��

// L(
∨n

E,
∨n

F )

L(E,F )× . . .× L(E,F )

⊗n
β // L(

⊗n
β E,

⊗n
β F )

L(incl,alt)

OO

The projection Ln(E;F )→ Lnsym(E;F ) symmetrizer

T 7→
(

(v1, . . . , vn) 7→ 1

n!

∑
σ

T (vσ(1), . . . , vσ(n))
)
.

The universal proporty follows from the diagram:

E × . . .× E ⊗ //

f

))

E ⊗β · · · ⊗β E
sym //

f̃

��

∨n
E

f̃ |∨n E
uu

F



5.10 5. Uniform Boundedness Principles and Multilinearity 59

( 7 )

L(E,F )

⊗
//

(
⊗n)n

��

L(
⊗

β E,
⊗

β F )

∏
n L(

⊗n
β E,

⊗n
β F )

∏
n incl∗ // ∏

n L(
⊗n

β E,
∐
n

⊗n
β F )

∼=

OO

The universal property holds, since to T ∈ L(E,F ) we can associate
∑
n µn◦

⊗n
T ,

where µn :
⊗
F → F denotes the n-fold multiplication of the algebra F .

( 8 )

L(E,F )

∧
//

(
∧n)n

��

L(
∧
E,
∧
F )

∏
n L(

∧n
E,
∧n

F )

∏
n incl∗ // ∏

n L(
∧n

E,
∐
n

∧n
F )

∼=

OO

( 9 )

L(E,F )

∨
//

(
∨n)n

��

L(
∨
E,
∨
F )

∏
n L(

∨n
E,
∨n

F )

∏
n incl∗ // ∏

n L(
∨n

E,
∐
n

∨n
F )

∼=

OO

�

5.10. Lemma. Let E be a convenient vector space. Then E′ ↪→ Pf (E) :=
〈E′〉alg ⊆ C∞(E,R) is the free commutative algebra over the vector space E′, i.e.
to every linear mapping f : E′ → A in a commutative algebra, there exists a unique
algebra homomorphism f̃ : Pf (E)→ A.

Proof. The solution of this universal problem is given by the symmetric alge-

bra
∨
E′ :=

∐∞
k=0

∨k
E′ described in 5.9.9 . In particular we have an algebra

homomorphism ι̃ :
∨
E′ → Pf (E), which is onto, since by definition Pf (E) is gen-

erated by E′. It remains to show that it is injective. So let
∑N
k=1 αk ∈

∨
E′, i.e.

αk ∈
∨k

E′, with ι̃(
∑N
k=1 αk) = 0. Thus all derivatives ι̃(αk) at 0 of this mapping

in Pf (E) ⊆ C∞(E,R) vanish. So it remains to show that
⊗k

β E
′ → L(E, . . . , E;R)

is injective, since then by 5.13 also
∨k

E′ → Pf (E) ⊆ C∞(E,R) is injective.∨k
E′� _

��

// // Lksym(E,R)
� _

��

� � ∆∗ // C∞(E,R)

⊗k
E′ // // Lk(E,R)

We prove by induction that the mapping E′1 ⊗β · · · ⊗β E′n → L(E1, . . . , En;R),
α 7→ α̃ is injective. For n = 0 and n = 1 this is obvious. So let n ≥ 2 and let
α =

∑
k αk⊗xk, where αk ∈ E′1⊗β · · ·⊗βE′n−1 and xk ∈ E′n. We may assume that
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(xk)k is linearly independent and hence may choose xj ∈ En with xk(xj) = δkj and

get 0 = α̃(y1, . . . , yn−1, xj) = α̃j(y
1, . . . , yn−1) for all y1, . . . , yn−1. Hence α̃j = 0

and by induction hypothesis αj = 0 for all j and so α = 0. �

Note, however, that the injective mapping
∨
E′ → C∞(E,R) is not a bornological

embedding in general:
Otherwise also

∨2
E′ → L2

sym(E,R) would be such an embedding. Take E = `2

and consider B = {zn : n ∈ N} ⊆
∨2

`2 where zn :=
∑n
k=1 ek ⊗ ek. The bilinear

form z̃n ∈ L2
sym(`2,R) associated to zn ist given by z̃n(x, y) =

∑
k≤n ek(x) · ek(y) =∑

k≤n x
k yk. Thus the operator norm of z̃n is

‖z̃n‖ = sup
{∑
k≤n

xk yk : ‖x‖2 ≤ 1, ‖y‖2 ≤ 1
}

= 1.

The projective tensor norm of zn is

‖zn‖π = inf
{∑

k

‖ak‖2 ‖bk‖2 : z =
∑
k

ak ⊗ bk
}
≥ n,

since by Hölders inequality∑
k

‖ak‖2 ‖bk‖2 ≥
∑
k

‖ak · bk‖1 =
∑
k,j

|ajk · b
j
k|

≥
∑
j

∣∣∣∑
k

ajk · b
j
k

∣∣∣ =
∑
j

∣∣∣(∑
k

ak ⊗ bk
)∼

(ej , ej)
∣∣∣

=
∑
j

|z̃n(ej , ej)| =
∑
j≤n

1 = n.

5.11. Proposition. Symmetry of higher derivatives. Let f : E ⊇ U → F
be smooth. The n-th derivative f (n)(x) = dnf(x), considered as an element of
Ln(E;F ), is symmetric, so lies in the space Lnsym(E;F ) ∼= L(

∨n
E;F )

Proof. Recall that we can form iterated derivatives as follows:

f : E ⊇ U → F

df : E ⊇ U → L(E,F )

d(df) : E ⊇ U → L(E,L(E,F )) ∼= L(E,E;F )

...

d(. . . (d(df)) . . . ) : E ⊇ U → L(E, . . . , L(E,F ) . . . ) ∼= L(E, . . . , E;F )

The result now follows from the finite dimensional property, since the iterated
derivative dnf(x)(v1, . . . , vn) is given by

∂
∂t1
|t1=0 · · · ∂

∂tn
|tn=0f(x+ t1v1 + · · ·+ tnvn) = ∂1 . . . ∂nf̃(0, . . . , 0),

where f̃(t1, . . . , tn) := f(x+ t1v1 + · · ·+ tnvn). �
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5.12. Theorem. Taylor formula. Let f : U → F be smooth, where U is c∞-open
in E. Then for each segment [x, x+ y] = {x+ ty : 0 ≤ t ≤ 1} ⊆ U we have

f(x+ y) =

n∑
k=0

1

k!
dkf(x)yk +

∫ 1

0

(1− t)n

n!
dn+1f(x+ ty)yn+1dt,

where yk = (y, . . . , y) ∈ Ek.

Proof. This Taylor formula is an assertion on the smooth curve t 7→ f(x + ty).
Using functionals λ we can reduce it to the scalar valued case since ( ddt )

k|t=0λ(f(x+

ty)) = λ(f (k)(x)yk), or we proceed directly by induction on n: The first step is (6)

in 2.6 , and the induction step is partial integration of the remainder integral. �

5.13. Corollary. The following subspaces are direct summands:

L(E1, . . . , En;F ) ⊆ C∞(E1 × . . .× En, F ),

Lnsym(E;F )
∆∗−→ C∞(E,F ).

Note that direct summand is meant in the bornological category, i.e. the embedding
admits a left-inverse in the category of bounded linear mappings, or, equivalently,
with respect to the bornological topology it is a topological direct summand.

Proof. The projection for L(E,F ) ⊆ C∞(E,F ) is f 7→ df(0). The statement on

Ln follows by induction using the exponential laws 3.13 and 5.2 .

The second embedding is given by 4∗, which is bounded and linear C∞(E × . . .×
E,F ) → C∞(E,F ). Here ∆ : E → E × . . . × E denotes the diagonal mapping
x 7→ (x, . . . , x).

Lksym(E;F )

��

� � // Lk(E;F )
_�

��
C∞(E,F ) C∞(E × . . .× E,F )

∆∗oo

A bounded linear left inverse C∞(E,F ) → Lksym(E;F ) is given by f 7→ 1
k!d

kf(0),

since each f = ∆∗(f̃) in the image of ∆∗ is k-homogeneous and so dkf(0)vk =(
d
dt

)k
f(tv)|t=0 = (( ddt )

ktk)|t=0f(v) = k! f(v) = k! f̃ vk and by the polarization

formula 7.13 f̃ = 1
k!d

kf(0).

5.14. Remark. We are now going to discuss polynomials between locally convex
spaces. Recall that for finite dimensional spaces E = Rn a polynomial in a locally
convex vector space F is just a finite sum∑

k∈Nn
akx

k,

where ak ∈ F and xk :=
∏n
i=1 x

ki
i . Thus, it is just an element in the algebra gener-

ated by the coordinate projections pri tensorized with F . Since every (continuous)
linear functional on E = Rn is a finite linear combination of coordinate projections,
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this algebra is also the algebra generated by E∗. For a general locally convex space
E we define the algebra of finite type polynomials to be the one generated by E∗.

However, there is also another way to define polynomials, namely as those smooth
functions for which some derivative is equal to 0. Take for example the square
of the norm ‖ ‖2 : E → R on some infinite dimensional Hilbert space E. Its
derivative is given by x 7→ (v 7→ 2〈x, v〉), and hence is linear. The second derivative
is x 7→ ((v, w) 7→ 2〈v, w〉) and hence constant. Thus, the third derivative vanishes.
This function is not a finite type polynomial. Otherwise, it would be continuous
for the weak topology σ(E,E∗). Hence, the unit ball would be a 0-neighborhood
for the weak topology, which is not true, since it is compact for it.

Note that for (xk) ∈ `2 the series
∑
k x

2
k converges pointwise and even uniformly

on compact sets. In fact, every compact set is contained in the absolutely convex
hull of a 0-sequence xn. In particular µk := sup{|xnk | : n ∈ N} → 0 for k → ∞
(otherwise, we can find an ε > 0 and kj →∞ and nj ∈ N with ‖xnj‖2 ≥ |x

nj
kj
| ≥ ε.

Since xn ∈ `2 ⊆ c0, we conclude that nj → ∞, which yields a contradiction to
‖xn‖2 → 0.) Thus

K ⊆ 〈xn : n ∈ N〉absolutely convex ⊆ 〈µnen〉absolutely convex,

and hence
∑
k≥n |xk| ≤ max{µk : k ≥ n} for all x ∈ K.

The series does not converge uniformly on bounded sets. To see this choose x = ek.

5.15. Definition. A smooth mapping f : E → F is called a polynomial if some
derivative dpf vanishes on E. The largest p such that dpf 6= 0 is called the degree
of the polynomial. The mapping f is called a monomial of degree p if it is of
the form f(x) = f̃(x, . . . , x) for some f̃ ∈ Lpsym(E;F ).

5.16. Lemma. Polynomials versus monomials.

(1) The smooth p-homogeneous maps are exactly the monomials of degree p.
(2) The symmetric multilinear mapping representing a monomial is unique.
(3) A smooth mapping is a polynomial of degree ≤ p if and only if its restriction

to each one dimensional subspace is a polynomial of degree ≤ p.
(4) The polynomials are exactly the finite sums of monomials.

Proof. ( 1 ) Every monomial of degree p is clearly smooth and p-homogeneous. If
f is smooth and p-homogeneous, then

(dpf)(0)(x, . . . , x) = ( ∂∂t )
p
∣∣
t=0

f(tx) = ( ∂∂t )
p
∣∣
t=0

tpf(x) = p!f(x).

( 2 ) The symmetric multilinear mapping g ∈ Lpsym(E;F ) representing a monomial

f is uniquely determined by the polarization formula 7.13 .

( 3 ) & ( 4 ) Let the restriction of f to each one dimensional subspace be a poly-

nomial of degree ≤ p, i.e., we have `(f(tx)) =
∑p
k=0

tk

k! ( ∂∂t )
k
∣∣
t=0

`(f(tx)) for x ∈ E
and ` ∈ F ′. So f(x) =

∑p
k=0

1
k!d

kf(0 · x)(x, . . . , x) and hence is a finite sum of
monomials.
For the derivatives of a monomial q of degree k we have q(j)(tx)(v1, . . . , vj) =
k(k − 1) . . . (k − j + 1)tk−j q̃(x, . . . , x, v1, . . . , vj). Hence, any such finite sum is a
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polynomial in the sense of 5.15 .
Finally, any such polynomial has obviously a polynomial as trace on each one di-
mensional subspace. �

5.17. Lemma. Spaces of polynomials. The space Polyp(E,F ) of polynomi-

als of degree ≤ p is isomorphic to
⊕

k≤p L(
∨k

E;F ) and is a direct summand in

C∞(E,F ) with a complement given by the smooth functions which are p-flat at 0.

Proof. By 5.16 the mapping
⊕

k≤p L(
∨k

E;F ) → C∞(E,F ) given on the sum-

mands by L(
∨k

E;F ) ∼= Lksym(E,F ) −∆∗→ C∞(E,F ) has Polyp(E,F ) as image.

A retraction to it is given by
⊕

k≤p
1
k!d

k|0, since 1
k!d

k|0 is by 5.9.6 together with

5.13 a retraction to the inclusion of the summand L(
∨k

E;F ) which is 0 when

composed with the inclusion of the summands L(
∨j

E;F ) for j 6= k by the formula

for q(k)(x) given in the proof of 5.16 . �

Remark. The corresponding statement is false for infinitely flat functions. E.g.
the short exact sequence E → C∞(R,R) → RN does not split, where E denotes
the space of smooth functions which are infinitely flat at 0 and where the
projection is given by the Taylor-coefficients. Otherwise, RN would be a subspace
of C∞([0, 1],R) (compose the section with the restriction map from C∞(R,R) →
C∞([0, 1],R)) and hence would have the restriction of the supremum norm as con-
tinuous norm.

C∞(R,R) // // C∞([0, 1],R)

����
RN Id //

OO

RN

This is however easily seen to be not the case.

5.18. Theorem. Uniform boundedness principle. If all Ei are convenient
vector spaces, and if F is a locally convex space, then the bornology on the space
L(E1, . . . , En;F ) consists of all pointwise bounded sets.

So a mapping into L(E1, . . . , En;F ) is smooth if and only if all composites with
evaluations at points in E1 × . . .× En are smooth.

Proof. Let us first consider the case n = 1. So let B ⊆ L(E,F ) be a pointwise

bounded subset. By lemma 5.3 we have to show that it is uniformly bounded on
each bounded subset B of E. We may assume that B is closed absolutely convex,
and thus EB is a Banach space, since E is convenient. By the classical uniform

boundedness principle, see 52.25 , the set B|EB is bounded in L(EB , F ), and thus
B is bounded on B.

The smoothness detection principle: Clearly it suffices to recognize smooth curves.
If c : R → L(E,F ) is such that evx ◦c : R → F is smooth for all x ∈ E, then

clearly R−c→ L(E,F )−j→
∏
E F is smooth. We will show that (j ◦ c)′ has values

in L(E,F ) ⊆
∏
E F . Clearly, (j ◦ c)′(s) is linear E → F . The family of mappings

c(s+t)−c(s)
t : E → F is pointwise bounded for s fixed and t in a compact interval,
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so by the first part it is uniformly bounded on bounded subsets of E. It converges
pointwise to (j ◦ c)′(s), so this is also a bounded linear mapping E → F . By the
first part j : L(E,F ) →

∏
E F is a bornological embedding, so c is differentiable

into L(E,F ). Smoothness follows now by induction on the order of the derivative.

The multilinear case follows from the exponential law 5.2 by induction on n: Let
B ⊆ L(E1, . . . , En;F ) be pointwise bounded. Then B(x1, . . . , xn−1, ) is pointwise
bounded in L(En, F ) for all x1, . . . , xn−1. So by the case n = 1 it is bounded in
the locally convex space L(En, F ) and by induction hypothesis B̌ is bounded in

L(E1, . . . , En−1;L(En, F )). By 5.2 B is bounded. �

5.19. Theorem. Multilinear mappings on convenient vector spaces. A
multilinear mapping from convenient vector spaces to a locally convex space is boun-
ded if and only if it is separately bounded.

Proof. Let f : E1 × . . . × En → F be n-linear and separately bounded, i.e.
xi 7→ f(x1, . . . , xn) is bounded for each i and all fixed xj for j 6= i. Then f∨ :

E1× . . .×En−1 → L(En, F ) is (n− 1)-linear. By 5.18 the bornology on L(En, F )
consists of the pointwise bounded sets, so f∨ is separately bounded. By induction
on n it is bounded. The bornology on L(En, F ) consists also of the subsets which

are uniformly bounded on bounded sets by lemma 5.3 , so f is bounded. �

We will now derive an infinite dimensional version of 3.4 , which gives us minimal
requirements for a mapping to be smooth.

5.20. Theorem. Let E be a convenient vector space. An arbitrary mapping f :
E ⊇ U → F is smooth if and only if all unidirectional iterated derivatives
dpvf(x) = ( ∂∂t )

p|0f(x + tv) exist, x 7→ dpvf(x) is bounded on sequences which are
Mackey converging in U , and v 7→ dpvf(x) is bounded on fast falling sequences.

Proof. A smooth mapping obviously satisfies this requirement. Conversely, from

3.4 we see that f is smooth restricted to each finite dimensional subspace, and
the iterated directional derivatives dv1 . . . dvnf(x) exist and are bounded multilinear

mappings in v1, . . . , vn by 5.4 , since they are universal linear combinations of the

unidirectional iterated derivatives dpvf(x), compare with the proof of 3.4 . So
dnf : U → Ln(E;F ) is bounded on Mackey converging sequences with respect to

the pointwise bornology on Ln(E;F ). By the uniform boundedness principle 5.18

together with lemma 4.14 the mapping dnf : U × En → F is bounded on sets
which are contained in a product of a bornologically compact set in U - i.e.
a set in U which is contained and compact in some EB - and a bounded set in En.

Now let c : R→ U be a smooth curve. We have to show that f(c(t))−f(c(0))
t converges

to f ′(c(0))(c′(0)). It suffices to check that

1

t

(
f(c(t))− f(c(0))

t
− f ′(c(0))(c′(0))

)
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is locally bounded with respect to t. Integrating along the segment from c(0) to
c(t) we see that this expression equals

1

t

∫ 1

0

(
f ′
(
c(0) + s(c(t)− c(0))

)(c(t)− c(0)

t

)
− f ′(c(0))(c′(0))

)
ds =

=

∫ 1

0

f ′
(
c(0) + s(c(t)− c(0))

)( c(t)−c(0)
t − c′(0)

t

)
ds

+

∫ 1

0

∫ 1

0

f ′′
(
c(0) + rs(c(t)− c(0))

)(
s
c(t)− c(0)

t
, c′(0)

)
dr ds.

The first integral is bounded since df : U × E → F is bounded on the product of
the bornologically compact set {c(0) + s(c(t)− c(0)) : 0 ≤ s ≤ 1, t near 0} in U and

the bounded set
{

1
t

(
c(t)−c(0)

t − c′(0)
)

: t near 0
}

in E (use 1.6 ).

The second integral is bounded since d2f : U ×E2 → F is bounded on the product
of the bornologically compact set {c(0) + rs(c(t)− c(0)) : 0 ≤ r, s ≤ 1, t near 0} in

U and the bounded set
{(
s c(t)−c(0)

t , c′(0)
)

: 0 ≤ s ≤ 1, t near 0
}

in E2.

Thus f ◦c is differentiable in F with derivative df ◦(c, c′). Since df((x, v)+t(y, w)) =
df(x + ty, v) + t df(x + ty, w) the mapping df : U × E → F satisfies again the
assumptions of the theorem, so we may iterate. �

5.21. The following result shows that bounded multilinear mappings are the right
ones for uses like homological algebra, where multilinear algebra is essential and
where one wants a kind of ‘continuity’. With continuity itself it does not work.
The same results hold for convenient algebras and modules, one just may take
c∞-completions of the tensor products.

So by a bounded algebra A we mean a (real or complex) algebra which is also
a locally convex vector space, such that the multiplication is a bounded bilinear
mapping. Likewise, we consider bounded modules over bounded algebras, where
the action is bounded bilinear.

Lemma. [Cap et al., 1993]. Let A be a bounded algebra, M a bounded right A-
module and N a bounded left A-module.

(1) There are a locally convex vector space M ⊗A N and a bounded bilinear map
b : M × N → M ⊗A N , (m,n) 7→ m ⊗A n such that b(ma, n) = b(m, an) for
all a ∈ A, m ∈ M and n ∈ N which has the following universal property: If
E is a locally convex vector space and f : M ×N → E is a bounded bilinear
map such that f(ma, n) = f(m, an) then there is a unique bounded linear map

f̃ : M ⊗A N → E with f̃ ◦ b = f . The space of all such f is denoted by
LA(M,N ;E), a closed linear subspace of L(M,N ;E).

(2) We have a bornological isomorphism

LA(M,N ;E) ∼= L(M ⊗A N,E).

(3) Let B be another bounded algebra such that N is a bounded right B-module
and such that the actions of A and B on N commute. Then M ⊗A N is in a
canonical way a bounded right B-module.
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(4) If in addition P is a bounded left B-module then there is a natural bornological
isomorphism M ⊗A (N ⊗B P ) ∼= (M ⊗A N)⊗B P .

Proof. We construct M ⊗A N as follows: Let M ⊗β N be the algebraic tensor

product of M and N equipped with the (bornological) topology mentioned in 5.7
and let V be the locally convex closure of the subspace generated by all elements of
the form ma⊗n−m⊗an, and define M ⊗AN to be M ⊗AN := (M ⊗βN)/V . As
M ⊗β N has the universal property that bounded bilinear maps from M ×N into
arbitrary locally convex spaces induce bounded and hence continuous linear maps

on M ⊗N , ( 1 ) is clear.

( 2 ) By (1) the bounded linear map b∗ : L(M ⊗A N,E) → LA(M,N ;E) is a

bijection. Thus, it suffices to show that its inverse is bounded, too. From 5.7 we
get a bounded linear map ϕ : L(M,N ;E)→ L(M ⊗β N,E) which is inverse to the

map induced by the canonical bilinear map. Now let Lann(V )(M ⊗β N,E) be the
closed linear subspace of L(M ⊗β N,E) consisting of all maps which annihilate V .
Restricting ϕ to LA(M,N ;E) we get a bounded linear map ϕ : LA(M,N ;E) →
Lann(V )(M ⊗β N,E).

Let ψ : M ⊗β N → M ⊗A N be the the canonical projection. Then ψ induces a

well defined linear map ψ̂ : Lann(V )(M ⊗β N,E) → L(M ⊗A N,E), and ψ̂ ◦ ϕ is

inverse to b∗. So it suffices to show that ψ̂ is bounded.

This is the case if and only if the associated map Lann(V )(M⊗βN,E)×(M⊗AN)→
E is bounded. This in turn is equivalent to boundedness of the associated map
M ⊗AN → L(Lann(V )(M ⊗β N,E), E) which sends x to the evaluation at x and is
clearly bounded.

( 3 ) Let ρ : Bop → L(N,N) be the right action of B on N and let

Φ : LA(M,N ;M ⊗A N) ∼= L(M ⊗A N,M ⊗A N)

be the isomorphism constructed in ( 2 ). We define the right module structure on
M ⊗A N as:

Bop −ρ→ L(N,N)−Id× → L(M ×N,M ×N)−b∗→
−→ LA(M,N ;M ⊗A N)−Φ→ L(M ⊗A N,M ⊗A N).

This map is obviously bounded and easily seen to be an algebra homomorphism.

( 4 ) Straightforward computations show that both spaces have the following uni-
versal property: For a locally convex vector space E and a trilinear map f : M ×
N × P → E which satisfies f(ma, n, p) = f(m, an, p) and f(m,nb, p) = f(m,n, bp)
there is a unique linear map prolonging f . �

5.22. Lemma. Uniform S-boundedness principle. Let E be a locally convex
space, and let S be a point separating set of bounded linear mappings with common
domain E. Then the following conditions are equivalent.

(1) If F is a Banach space (or even a c∞-complete locally convex space) and
f : F → E is a linear mapping with λ ◦ f bounded for all λ ∈ S, then f is
bounded.
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(2) If B ⊆ E is absolutely convex such that λ(B) is bounded for all λ ∈ S and the
normed space EB generated by B is complete, then B is bounded in E.

(3) Let (bn) be an unbounded sequence in E with λ(bn) bounded for all λ ∈ S,
then there is some (tn) ∈ `1 such that

∑
tn bn does not converge in E for the

initial locally convex topology induced by S.

Definition. We say that E satisfies the uniform S-boundedness principle if these
equivalent conditions are satisfied.

Proof. ( 1 ) ⇒ ( 3 ) : Suppose that ( 3 ) is not satisfied. So let (bn) be an
unbounded sequence in E such that λ(bn) is bounded for all λ ∈ S, and such that for
all (tn) ∈ `1 the series

∑
tn bn converges in E for the initial locally convex topology

induced by S. We define a linear mapping f : `1 → E by f((tn)n) =
∑
tn bn, i.e.

f(en) = bn. It is easily checked that λ ◦ f is bounded, hence by ( 1 ) the image of
the closed unit ball, which contains all bn, is bounded. Contradiction.

( 3 ) ⇒ ( 2 ): Let B ⊆ E be absolutely convex such that λ(B) is bounded for all
λ ∈ S and that the normed space EB generated by B is complete. Suppose that B

is unbounded. Then B contains an unbounded sequence (bn), so by ( 3 ) there is

some (tn) ∈ `1 such that
∑
tn bn does not converge in E for the initial locally convex

topology induced by S. But
∑
tn bn is a Cauchy sequence in EB , since

∑m
k=n tnbn ∈

(
∑m
k=n |tn|) ·B, and thus converges even bornologically, a contradiction.

( 2 ) ⇒ ( 1 ): Let F be convenient, and let f : F → E be linear such that λ ◦ f
is bounded for all λ ∈ S. It suffices to show that f(B), the image of an absolutely
convex bounded set B in F with FB complete, is bounded. By assumption, λ(f(B))
is bounded for all λ ∈ S and the normed space Ef(B) is a quotient of the Banach
space FB , hence complete.

q̃B(y) = inf{qB(x) : y = f(x)} = inf{λ : y = f(x), x ∈ λB}
= inf{λ : y ∈ λ f(B)} = qf(B)(y).

By ( 2 ) the set f(B) is bounded. �

5.23. Lemma. A convenient vector space E satisfies the uniform S-boundedness
principle for each point separating set S of bounded linear mappings on E if and
only if there exists no strictly weaker ultrabornological topology than the bornological
topology of E.

Proof. (⇒) Let τ be an ultrabornological topology on E which is weaker than the
natural bornological topology. Consider S := {Id : E → (E, τ)} and the identity
(E, τ) → E. Since every ultra-bornological space is an inductive limit of Banach

spaces, cf. 52.31 , it is enough to show that for each of these Banach spaces F the

mapping F → (E, τ)→ E is continous. By 5.22.1 this is the case.

(⇐) If S is a point separating set of bounded linear mappings, the ultrabornological
topology given by the inductive limit of the spaces EB with B satisfying the as-

sumptions of 5.22.2 equals the natural bornological topology of E. Hence, 5.22.2
is satisfied. �
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5.24. Theorem. Webbed spaces have the uniform boundedness property.
A locally convex space which is webbed satisfies the uniform S-boundedness principle
for any point separating set S of bounded linear mappings.

Proof. Since the bornologification of a webbed space is webbed, cf. 52.14 , we
may assume that E is bornological, and hence that every bounded linear mapping

on it is continuous, see 4.1.1 . Now the closed graph principle 52.10 applies to

any mapping satisfying the assumptions of 5.22.1 . �

5.25. Lemma. Stability of the uniform boundedness principle. Let F be a
set of bounded linear mappings f : E → Ef between locally convex spaces, let Sf be
a point separating set of bounded linear mappings on Ef for every f ∈ F , and let
S :=

⋃
f∈F f

∗(Sf ) = {g ◦ f : f ∈ F , g ∈ Sf}. If F generates the bornology and Ef
satisfies the uniform Sf -boundedness principle for all f ∈ F , then E satisfies the
uniform S-boundedness principle.

Proof. We check the condition 5.22.1 . So assume h : F → E is a linear mapping
for which g ◦ f ◦ h is bounded for all f ∈ F and g ∈ Sf . Then f ◦ h is bounded by
the uniform Sf -boundedness principle for Ef . Consequently, h is bounded since F
generates the bornology of E. �

5.26. Theorem. Smooth uniform boundedness principle. Let E and F be
convenient vector spaces, and let U be c∞-open in E. Then C∞(U,F ) is convenient
and satisfies the uniform S-boundedness principle where S := {evx : x ∈ U}.

Proof. For E = F = R this follows from 5.24 , since C∞(U,R) is a Fréchet space.

The general case then follows from 5.25 . �

6. Some Spaces of Smooth Functions

6.1. Proposition. Let M be a smooth finite dimensional paracompact manifold.
Then the space C∞(M,R) of all smooth functions on M is a convenient vector space
in any of the following (bornologically) isomorphic descriptions, and it satisfies the
uniform boundedness principle for the point evaluations.

(1) The initial structure with respect to the cone

C∞(M,R)−c
∗
→ C∞(R,R)

for all c ∈ C∞(R,M).
(2) The initial structure with respect to the cone

C∞(M,R)−(u−1
α )∗→ C∞(Rn,R),

where (Uα, uα) is a smooth atlas with uα(Uα) = Rn.
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(3) The initial structure with respect to the cone

C∞(M,R)−j
k

→ C(M ← Jk(M,R))

for all k ∈ N, where Jk(M,R) is the bundle of k-jets of smooth functions on
M , where jk is the jet prolongation, and where all the spaces of continuous
sections are equipped with the compact open topology.

It is easy to see that the cones in ( 2 ) and ( 3 ) induce even the same locally
convex topology which is sometimes called the compact C∞ topology, if C∞(Rn,R)

is equipped with its usual Fréchet topology. From ( 2 ) we see also that with the

bornological topology C∞(M,R) is nuclear by 52.35 , and is a Fréchet space if and
only if M is separable.

Proof. For all three descriptions the initial locally convex topology is convenient,
since the spaces are closed linear subspaces in the relevant products of the right
hand sides:
( 1 ) For this structure C∞(M,R) = lim←−c∈C∞(R,M)

C∞(R,R), where the connecting

mappings are given by g∗ for g ∈ C∞(R,R). Obviously, (c∗)c∈C∞(R,M) has values in

this inductive limit and induces the structure of ( 1 ) on C∞(M,R). This mapping
is bijective, since to (fc)c∈C∞(R,R) ∈ lim←−c C

∞(R,R) we can associate f : M → R
given by f(x) = fconstx(0). Then c∗(f) = fc, since constc(t) = c ◦ constt. Moreover
const∗x(f) = constf(x), so we found the inverse.

( 2 ) For this structure C∞(M,R) = lim←−u C
∞(Rn,R), where u run through all

smooth open embeddings Rn → M and where the connecting mappings are given
by g∗ for smooth embeddings g ∈ C∞(Rn,Rn). Obviously, (u∗)u has values in

this inductive limit and induces the structure of ( 2 ) on C∞(M,R), since locally

such u coincide with some (uα)−1 and C∞(Rn,R) carries the initial structure with
resperct to incl∗V : C∞(Rn,R)→ C∞(V,R), where the V form some open covering
of Rn This mapping (u∗)u is bijective, since to (fu)u ∈ lim←−u C

∞(Rn,R) we can

associate f : M → R given by f(x) = fu(t), where u : Rm → M is some smooth
open embedding with u(t) = x. This definition does not depend on the choice of
(u, t) since two such embeddings can be locally reparametrized into each another.
As before this gives the required invese.

( 3 ) First note for vector bundles p : E → M the compact open topology turns
C(M ← E) into a locally convex space. In fact for a neighborhood subbasis of
this topology it is enough to consider the convex sets NK,U := {σ ∈ C(M ← E) :
σ(K) ⊆ U} for compact subsets K contained in trivializing open subsets V of the
basis and open sets U ⊆ E of the form ψ−1(V ×W ), where ψ : p−1(V )→ V × Rk
is the trivialization and W ⊆ Rk is open and convex in the typical fiber. This
shows also, that the topology is the initial one induced by the restriction maps
incl∗K : C(M ← E) → C(K ← E|K) ∼= C(K,Rk) ⊆ `∞(K,Rk). So it is enough

to show closednes of the image of C∞(M,R) →
∏
k,K C(K,

∏k
j=0 L

j
sym(Rm,Rk))

where the K are assumed to be compact in some chart domain in M . This is
clearly the case.

Thus, the uniform boundedness principle for the point evaluations holds for all
structures since it holds for all right hand sides (for C(M ← Jk(M,R)) we may
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reduce to a connected component of M , and we then have a Fréchet space). So the
identity is bibounded between all structures. �

6.2. Spaces of smooth functions with compact supports. For a smooth
finite dimensional Lindelöf (equivalently, separable metrizable) Hausdorff manifold
M we denote by C∞c (M,R) the vector space of all smooth functions with compact
supports in M .

Corollary. The following convenient structures on the space C∞c (M,R) are all
isomorphic:

(1) Let C∞K (M,R) be the space of all smooth functions on M with supports con-
tained in the fixed compact subset K ⊆M which is a closed linear subspace of
C∞(M,R). Let us consider the final convenient vector space structure on the
space C∞c (M,R) induced by the cone

C∞K (M,R) ↪→ C∞c (M,R)

where K runs through a basis for the compact subsets of M . Then the space
C∞c (M,R) is even the strict inductive limit of a sequence of Fréchet spaces
C∞K (M,R).

(2) We equip C∞c (M,R) with the initial structure with respect to the inclusion
C∞c (M,R)→ C∞(M,R) and the cone

C∞c (M,R)−x
∗
→ Cc(N,R) =

∐
n∈N

Rn = R(N),

where x = (xn)n runs through all sequences in M without accumulation point.
(3) The initial structure with respect to the cone

C∞c (M,R)−j
k

→ Cc(M ← Jk(M,R))

for all k ∈ N, where Jk(M,R) is the bundle of k-jets of smooth functions
on M , where jk is the jet prolongation, and where the spaces of continuous
sections with compact support are equipped with the inductive limit topology
with steps CK(M ← Jk(M,R)) ⊆ C(M ← Jk(M,R)).

For M with only finitely many connected components which are all non-compact,
this is also true for

(4) the convenient vector space structure induced by c∗ : C∞c (M,R)→ C∞c (R,R),
where c : R→M run through the proper smooth curves.

The space C∞c (M,R) satisfies the uniform boundedness principle for the point eval-
uations.

First Proof. We show that in all four descriptions the space C∞c (M,R) is conve-
nient and satisfies the uniform boundedness principle for point evaluations, hence
the identity is bibounded for all structures:

In ( 1 ) we may assume that the basis of compact subsets of M is countable, since
M is Lindelöf, hence has only countable many connected components and these
are metrizable, so the inductive limit is a strict inductive limit of a sequence of
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Fréchet spaces, hence C∞c (M,R) is convenient and webbed by 52.13 and 52.12

and satisfies the uniform boundedness principle by 5.24 .

In ( 2 )–( 4 ) the space is a closed subspace of the product of C∞(M,R) and spaces
on the right hand side which are strict inductive limits of Fréchet spaces, hence
convenient and satisfy the uniform boundedness principle:

In ( 2 ) closedness follows, since for smoothness of f : M → R follows from the
inclusion into C∞(M,R), and compactness of the support follows because this can
be tested along sequences without accumulation point.

In ( 3 ) closedness follows, since C∞(M,R) is closed in
∏
k C(M ← Jk(M,R)) by

the proof of 6.1 and the support is that of f = f0 ∈ Cc(M ← J0(M,R)) =
Cc(M,R).

In ( 4 ) this follows from ( 2 ), since every smooth curve in M coincides locally
with a proper smooth curve and if A ⊆ M is closed and not compact then there
exists some end e ∈ lim←−U π(U) (where π(U) denotes the finite set of (non-compact)

connected components of M \ U for open relative compact U ⊆ M) which is
in the closure of A in the compact topology of the Freudenthal-compactification
M ∪ lim←−U π(U) with the sets eK ∪{e′ ∈ lim←−U π(U) : e′K = eK} for the open relative

compact sets U ⊆M as neighborhoodbasis of e; see [Freudenthal, 1931] and [Rey-
mond, 1960]. Thus for every compact Kn ⊆ M there exists a point an ∈ eKn ∩ A.
Since eKn+1 ⊆ eKn there is a curve in the connected component eKn ⊆ M \ Kn

connecting an with an+1 we may piece these curves smoothly together to obtain a
proper smooth curve c : R→M with c(±n) = an. �

Second Proof.

( 1 → 2 ) For this we consider for sequences x = (xn)n without accumulation point
the diagram

C∞(M,R)

x∗

��

C∞K (M,R) �
� ( 1 )

//

x∗

��

? _oo

((

C∞c (M,R)

( 2 )x∗

��∏
n∈N R Rx−1(K) �

� //? _oo ∐
n∈N R,

where x−1(K) := {n : xn ∈ K} is by assumption finite. Then obviously the identity

on C∞c (M,R) is bounded from the structure ( 1 ) to the structure ( 2 ).

( 1 → 3 ) We consider the diagram:

C∞(M,R)

jk

��

C∞K (M,R) �
� ( 1 )

//

jk

��

? _oo

**

C∞c (M,R)

( 3 )jk

��
C(M ← Jk(M,R)) CK(M ← Jk(M,R))

� � //? _oo Cc(M ← Jk(M,R))

Obviously, the identity on C∞c (M,R) is bounded from the structure ( 1 ) into the

structure ( 3 ).
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( 1 → 4 ) follows from the diagram

C∞(M,R)

e∗

��

C∞K (M,R)
� �

( 1 )
//

e∗

��

? _oo

))

C∞c (M,R)

( 2 )e∗

��
C∞(R,R) C∞e−1(K)(R,R) �

� //? _oo C∞c (R,R)

with proper e : R→M .

( 2 → 1 ) Now let B ⊆ C∞c (M,R) be bounded in the structure of ( 2 ). We claim
that B is contained in some C∞Kn(M,R), where Kn form an exhaustion of M by
compact subsets such that Kn is contained in the interior of Kn+1. Otherwise there
would be xn /∈ Kn and fn ∈ B with fn(xn) 6= 0. Then x∗(B) ist not bounded in∐

N R = lim−→n
Rn, since this limit is regular, but x∗(fn)(n) = fn(xn) 6= 0. Since

C∞c (M,R) → C∞(M,R) is bounded, B is also bounded in C∞Kn(M,R) and hence

in the structure ( 1 ).

( 3 → 1 ) Now let B ⊆ C∞c (M,R) be bounded in the structure of ( 3 ). Then

B = j0(B) is bounded in Cc(M ← J0(M,R)) = Cc(M,R) = lim−→K
CK(M,R) and

since this limit is regular there exists a compact K ⊆M such that B ⊆ CK(M,R).
But then also B ⊆ C∞K (M,R). Since jk(B) ⊆ CK(M ← Jk(M,R)) ⊆ Cc(M ←
Jk(M,R)) is bounded we get that B ⊆ C∞c (M,R) is bounded in the structure ( 3 ).

( 4 → 2 ) Let now M have only finitely many connected components which are all

non-compact and let B ⊆ C∞c (M,R) be bounded for the structure ( 4 ). Since
every smooth curve in M coincides locally with a proper smooth curve the set
B is bounded in C∞(M,R). Suppose there were a sequence x = (xn)n without
accumulation point for which x∗(B) is not bounded in

∐
n∈N Rn. Since evxn(B) is

bounded there are infinitely many n ∈ N for which fn ∈ B exists with fn(xn) 6= 0.
Since we only have finitely many connected components we may assume that all xn
are in the same non-compact connected component. Now we may choose a proper
smooth curve c passing through a subsequence of the xn and hence c∗(B) would
not be bounded in C∞c (R,R).

For the uniform boundedness principle we refer to the first proof. �

Remark. Note that the locally convex topologies described in ( 1 ) and ( 3 ) are

distinct: The continuous dual of (C∞c (R,R), ( 1 )) is the space of all distributions

(generalized functions), whereas the continuous dual of (C∞c (R,R), ( 3 )) are all
distributions of finite order, i.e., globally finite derivatives of continuous functions.

If M is only assumed to be a smooth paracompact Hausdorff manifold, then we

can still consider the structure on C∞c (M,R) given in 1 . It will no longer be an
inductive limit of a sequence of Fréchet spaces but will still satisfy the uniform
boundedness principle for the point-evaluations, by [Frölicher and Kriegl, 1988,
3.4.4]. since

C∞c (M,R) = lim−→
K

C∞K (M,R) = lim−→
K

⊕
i

C∞K∩Mi
(Mi,R) ∼=
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∼=
∐
i

lim−→
K

C∞K∩Mi
(Mi,R) =

∐
i

C∞c (Mi,R),

where the Mi are the connected components and these are Lindelöf.

6.3. Definition. A convenient vector space E is called reflexive if the canonical
embedding E → E′′ is surjective.

It is then even a bornological isomorphism. Note that reflexivity as defined here is
a bornological concept.

Note that this notion is in general stronger than the usual locally convex notion of
reflexivity, since the continuous functionals on the strong dual are bounded func-
tionals on E′ but not conversely.

6.4. Result. [Frölicher and Kriegl, 1988, 5.4.6]. For a convenient bornological
vector space E the following statements are equivalent.

(1) E is reflexive.
(2) E is η-reflexive, see [Jarchow, 1981, p280].
(3) E is completely reflexive, see [Hogbe-Nlend, 1977, p. 89].
(4) E is reflexive in the usual locally convex sense, and the strong dual of E is

bornological.
(5) The Schwartzening (or nuclearification) of E is a complete locally convex

space.

6.5. Results. [Frölicher and Kriegl, 1988, section 5.4].

(1) A Fréchet space is reflexive if and only if it is reflexive in the locally convex
sense.

(2) A convenient vector space with a countable base for its bornology is reflexive
if and only if its bornological topology is reflexive in the locally convex sense.

(3) A bornological reflexive convenient vector space is complete in the locally con-
vex sense.

(4) A closed (in the locally convex sense) linear subspace of a reflexive convenient
vector space is reflexive.

(5) A convenient vector space is reflexive if and only if its bornological topology is
complete and its dual is reflexive.

(6) Products and coproducts of reflexive convenient vector spaces are reflexive if
the index set is of non-measurable cardinality.

(7) If E is a reflexive convenient vector space and M is a finite dimensional
separable smooth manifold then C∞(M,E) is reflexive.

(8) Let U be a c∞-open subset of a dual of a Fréchet Schwartz space, and let F
be a Fréchet Montel space. Then C∞(U,F ) is a Fréchet Montel space, thus
reflexive.

(9) Let U be a c∞-open subset of a dual of a nuclear Fréchet space, and let F be
a nuclear Fréchet space. It has been shown by [Colombeau and Meise, 1981]
that C∞(U,F ) is not nuclear in general.

6.6. Definition. Another important additional property for convenient vector
spaces E is the approximation property, i.e. the denseness of E′ ⊗ E in L(E,E).
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There are at least 3 successively stronger requirements, which have been studied in
[Adam, 1995]:
A convenient vector space E is said to have the bornological approximation
property if E′ ⊗E is dense in L(E,E) with respect to the bornological topology.
It is said to have the c∞-approximation property if this is true with respect to
the c∞-topology of L(E,E). Finally the Mackey approximation property is
the requirement, that there is some sequence in E′⊗E Mackey converging towards
IdE .

Note that although the first condition is the weakest one, it is difficult to check
directly, since the bornologification of L(E,E) is hard to describe explicitly.

6.7. Result. [Adam, 1995, 2.2.9] The natural topology on

L(C∞(R,R), C∞(R,R))

of uniform convergence on bounded sets is not bornological.

6.8. Result. [Adam, 1995, 2.5.5] For any set Γ of non-measurable cardinality the
space E of points in RΓ with countable carrier has the bornological approximation
property.

Note. One first shows that for this space E the topology of uniform convergence
on bounded sets is bornological, and the classical approximation property holds for
this topology by [Jarchow, 1981, 21.2.2], since E is nuclear.

6.9. Lemma. Let E be a convenient vector space with the bornological (resp. c∞-,
resp. Mackey) approximation property. Then for every convenient vector space F
we have that E′ ⊗ F is dense in the bornological topology of L(E,F ) (resp. in the
c∞-topology, resp. every T ∈ L(E,F ) is the limit of a Mackey converging sequence
in E′ ⊗ F ).

Proof. Let T ∈ L(E,F ) and Tα ∈ E′ ⊗ E a net converging to IdE in the borno-
logical topology of L(E,F ) (resp. the c∞-topology, resp. in the sense of Mackey).
Since T∗ : L(E,E) → L(E,F ) is bounded and T ◦ Tα ∈ F ′ ⊗ F , we get the result
in all three cases. �

6.10. Lemma. [Adam, 1995, 2.1.21] Let E be a reflexive convenient vector space.
Then E has the bornological (resp. c∞-, resp. Mackey) approximation property if
and only if E′ has it.

Proof. For reflexive convenient vector spaces we have:

L(E′, E′) ∼= L2(E′, E;R) ∼= L(E,E′′) ∼= L(E,E),

and E′′⊗E corresponds to E′⊗E via this isomorphism. So the result follows. �

6.11. Lemma. [Adam, 1995, 2.4.3] Let E be the product
∏
k∈NEk of a sequence

of convenient vector spaces Ek. Then E has the Mackey (resp. c∞-) approximation
property if and only if all Ek have it.
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Proof. (⇒) follows since one easily checks that these approximation properties are
inherited by direct summands.

(⇐) Let (T kn )n be Mackey convergent to T k in L(Ek, Ek). Then one easily checks
the Mackey convergence of (T kn )k → (T k)n in

∏
k L(Ek, Ek) ⊆ L(E,E). So the

result follows for the Mackey approximation property.

To obtain it also for the c∞-topology, one first notes that by the argument given

in 6.9 it is enough to approximate the identity. Since the c∞-closure can be

obtained as iterated Mackey-adherence by 4.32 this follows now by transfinite
induction. �

6.12. Recall that a set P ⊆ RN
+ of sequences is called a Köthe set if it is directed

upwards with respect to the componentwise partial ordering, see 52.35 . To P we
may associate the set

Λ(P) := {x = (xn)n ∈ RN : (pnxn)n ∈ `1 for all p ∈ P}.
A space Λ(P) is said to be a Köthe sequence space whenever P is a Köthe set.

Lemma. Let P be a Köthe set for which there exists a sequence µ converging
monotonely to +∞ and such that (µnpn)n∈N ∈ P for each p ∈ P. Then the Köthe
sequence space Λ(P) has the Mackey approximation property.

Proof. The sequence
(∑n

j=1 e
′
j⊗ej

)
n∈N

is Mackey convergent in L(Λ(P),Λ(P)) to

idΛ(P), where ej and e′j denote the j-th unit vector in Λ(P) and Λ(P)′ respectively:
Indeed, a subset B ⊆ Λ(P) is bounded if and only if for each p ∈ P there exists
N(p) ∈ R such that ∑

k∈N
pk|xk| ≤ N(p)

for all x = (xk)k∈N ∈ B. But this implies that{
µn+1

(
IdΛ(P)−

n∑
j=1

e′j ⊗ ej
)

: n ∈ N
}
⊆ L(Λ(P),Λ(P))

is bounded. In fact((
Id−

n∑
j=1

e′j ⊗ ej
)

(x)

)
k

=

{
0 for k ≤ n,
xk for k > n.

and hence∑
k

pk

∣∣∣∣µn+1

(
(Id−

n∑
j=1

e′j⊗ej)(x)
)
k

∣∣∣∣ ≤∑
k>n

pk|µn+1xk| ≤
∑
k

pkµk|xk| ≤ N(µ p) �

Let α be an unbounded increasing sequence of positive real numbers and P∞ :=
{(ekαn)n∈N : k ∈ N}. Then the associated Köthe sequence space Λ(P∞) is called
a power series space of infinite type (a Fréchet space by [Jarchow, 1981,
3.6.2]).

6.13. Corollary. Each power series space of infinite type has the Mackey approx-
imation property. �
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6.14. Theorem. The following convenient vector spaces have the Mackey approx-
imation property:

(1) The space C∞(M ← F ) of smooth sections of any smooth finite dimensional

vector bundle F −p→M with separable base M , see 6.1 and 30.1 .
(2) The space C∞c (M ← F ) of smooth sections with compact support any smooth

finite dimensional vector bundle F −p→ M with separable base M , see 6.2

and 30.4 .

(3) The Fréchet space of holomorphic functions H(C,C), see 8.2 .

Proof. The space s of rapidly decreasing sequences coincides with the power series

space of infinite type associated to the sequence (log(n))n∈N. So by 6.13 , 6.11

and 6.10 the spaces s, sN and s(N) =
(
(s′)N

)′
have the Mackey approximation

property. Now assertions ( 1 ) and ( 2 ) follow from the isomorphisms C∞c (M ←
F ) = C∞(M ← F ) ∼= s for compact M and C∞(M ← F ) ∼= sN for non-compact
M (see [Valdivia, 1982] or [Adam, 1995, 1.5.16]) and the isomorphism C∞c (M ←
F ) ∼= s(N) for non-compact M (see [Valdivia, 1982] or [Adam, 1995, 1.5.16]).

( 3 ) follows since by [Jarchow, 1981, 2.10.11] the spaceH(C,C) is isomorphic to the
(complex) power series space of infinite type associated to the sequence (n)n∈N. �

Historical Remarks on Smooth Calculus

Roots in the variational calculus. Soon after the invention of the differen-
tial calculus ideas were developed which would later lead to variational calculus.
Bernoulli used them to determine the shape of a rope under gravity. It evolved
into a ‘useful and applicable but highly formal calculus; even Gauss warned of its
unreflected application’ ([Bemelmans et al., 1990, p. 151]). In his Lecture courses
Weierstrass gave more reliable foundations to the theory, which was made public
by [Kneser, 1900], see also [Bolza, 1909, 1960] and [Hadamard, 1910]. Further de-
velopment concerned mainly the relation between the calculus of variations and
the theory of partial differential equations. The use of the basic principle of vari-
ational calculus for differential calculus itself appeared only in the search for the
exponential law, i.e. a cartesian closed setting for calculus, see below.

The notion of derivative. The first more concise notion of the variational deriva-
tive was introduced by [Volterra, 1887], a concept of analysis on infinite dimensional
spaces; and this happened even before the modern concept of the total derivative
of a function of several variables was born: only partial derivatives were used at
that time. The derivative of a function in several variables in finite dimensions
was introduced by [Stolz, 1893], [Pierpont, 1905], and finally by [Young, 1910]: A

function f : Rn → R is called differentiable if the partial differentials ∂f
∂xi exist and

f(x1 + h1, . . . , xn + hn)− f(x1, . . . , xn) =

m∑
i=1

(
∂f

∂xi
+ εi)h

i

holds, where εi → 0 for ||h|| → 0. The idea that the derivative is an approximation
to the function was emphasized frequently by Hadamard. His student [Fréchet,
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1911] replaced the remainder term by ε.‖h‖ with ε → 0 for ‖h‖ → 0. In [Fréchet,
1937] he writes:

S.241: “C’est M. Volterra qui a eu le premier l’idée d’étendre le champ d’applica-
tion du Calcul différentiel à l’Analyse fonctionnelle. [. . . ] Toutefois M. Hadamard
a signalé qu’il y aurait grand intérèt á généraliser les définitions de M. Volterra.
[. . . ] M. Hadamard a montré le chemin qui devait conduire vers des définitions sat-
isfaisantes en proposant d’imposer à la différentielle d’une fonctionnelle la condition
d’être linéaire par rapport à la différentielle de l‘argument.”

Fréchet derivative. In [Fréchet, 1925a] he defined the derivative of a mapping
f between normed spaces as follows: There exists a continuous linear operator A
such that

lim
||h||→0

f(x+ h)− f(x)−A · h
||h||

= 0.

At this time it was, however, not so clear what a normed space should be. Fréchet
called his spaces somewhat misleadingly ‘vectoriels abstraits distanciés’. Banach
spaces were introduced by Stefan Banach in his Dissertation in 1920, with a view
also to a non-linear theory, as he wrote in [Banach, 1932]:

S.231: “Ces espaces [complex vector spaces] constituent le point de départ de la
théorie des opérations linéaires complexes et d’une classe, encore plus vaste, des
opérations analytiques, qui présentent une généralisation des fonctions analytiques
ordinaires (cf. p. ex. L. Fantappié, I. funzionali analitici, Citta di Castello 1930).
Nous nous proposons d’en exposer la théorie dans un autre volume.”

Gâteaux derivative. Another student of Hadamard defined the derivative in
[Gâteaux, 1913] with proofs in [Gâteaux, 1922] as follows, see also [Gâteaux, 1922]:

“Considérons U(z + λt1) (t1 fonction analogue à z). Supposons que[
d

dλ
U(z + λt1)

]
λ=0

existe quel que soit t1. On l’appelle la variation première de U au point z: δU(z, t1).
C’est une fonctionnelle de z et de t1, qu’on suppose habituellement linéaire, en
chaque point z, par rapport à t1.”

Several mathematicians gave conditions implying the linearity of the Gâteaux-de-
rivative. In [Daniell, 1919] is was shown that this holds for a Lipschitz function
whose Gâteaux-derivative exists locally. Another student of Hadamard assumed
linearity in [Lévy, 1922], see again [Fréchet, 1937]:

S.51: “Une fonction abstraite X = F (x) sera dite différentiable au sens de
M. Paul Levy pour x = x0, s’il existe une transformation vectorielle linéaire
Ψ(∆x) de l’accroissement ∆x telle que, pour chaque vecteur ∆x,

lim
λ→0

−−−−−−−−−−−−−−→
F (x0)F (x0 + λ∆x)

λ
existe et = Ψ(∆x).”
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Hadamard differentiability. In [Hadamard, 1923] a function f : R2 → R was
called differentiable if all compositions with differentiable curves are again differ-
entiable and satisfy the chain rule. He refers to a lecture of Poincaré in 1904.
In [Fréchet, 1937] it was shown that Hadamard’s notion is equivalent to that of
Stolz-Pierpoint-Young:

S.244: “Une fonctionelle U [f ] sera dite différentiable pour f ≡ f0 au sens
de M. Hadamard généralisé, s’il existe une fonctionnelle W [df, f0], linéaire
par rapport à df , telle que si l’on considère une fonction f(t, λ) dérivable par
rapport à λ pour λ = 0, avec f(t, 0) = f0(t), la fonction de λ, U [f(t, λ)] soit
dérivable en λ pour λ = 0 et qu’on ait pour λ = 0

d

dλ
U
[
f(t, λ)

]
= W

[
df

dλ
, f0

]
ou avec les notations des “variations”

δU [f ] = W [δf, f0].”

S.245: “la différentielle au sens de M. Hadamard généralisé qui est équivalente à la
nôtre dans l’Analyse classique est plus générale dans l’Analyse fonctionnelle.”

He also realized the importance of Hadamard’s definition:

S.249: “L’intérêt de la définition de M. Hadamard n’est pas épuisé par son
utilization en Analyse fonctionnelle. Il est peut-être plus encore dans la pos-
sibilité de son extension en Analyse générale.

Dans ce domaine, on peut généraliser la notion de fonctionnelle et considérer
des transformations X = F [x] d‘un élément abstrait x en un élément abstrait
X. Nous avons pu en 1925 [Fréchet, 1925b] étendre notre définition (rap-
pelée plus haut p.241 et 242) de la différentielle d‘une fonctionnelle, définir
la différentielle de F [x] quand X et x appartiennent à des espaces “vectoriels
abstraits distanciés” et en etablir les propriétés les plus importantes.

La définition au sens de M. Hadamard généralisé présente sur notre définition
l’avantage de garder un sens pour des espaces abstraits vectoriels non dis-
tanciés où notre définition ne s‘applique pas. [. . . ]

Il reste à voir si elle conserve les propriétes les plus importantes de la différen-
tielle classique en dehors de la propriété (généralisant le théorème des fonctions
composées) qui lui sert de définition. C’est un point sur lequel nous reviendrons
ultérieurement.”

Hadamard’s notion of differentiability was later extended to infinite dimensions by
[Michal, 1938] who defined a mapping f : E → F between topological vector spaces
to be differentiable at x if there exists a continuous linear mapping ` : E → F
such that f ◦ c : R → F is differentiable at 0 with derivative (` ◦ c′)(0) for each
everywhere differentiable curve c : R→ E with c(0) = x.

Independently, a student of Fréchet extended in [Ky Fan, 1942] differentiability in
the sense of Hadamard to normed spaces, and proved the basic properties like the
chain rule:
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S.307: “M. Fréchet a eu l’obligeance de me conseiller d’étudier cette question qu’il
avait d’abord l’intention de traiter lui-même.”

Hadamard differentiability was further generalized to metrizable vector spaces in
[Balanzat, 1949] and to vector spaces with a sequential limit structure in [Long de
Foglio, 1960]. Finally, in [Balanzat, 1960] the theory was developed for topological
vector spaces. There he proved the chain rule and made the observation that the
implication “differentiable implies continuous” is equivalent to the property that
the closure of a set coincides with the sequential adherence.

Differentiability via bornology. Here the basic observation is that convergence
which appears in questions of differentiability is much better than just topolog-

ical, cf. 1.7 . The relevant notion of convergence was introduced by [Mackey,
1945]. Differentiability based on the von Neumann bornology was first considered
in [Sebastião e Silva, 1956a,b, 1957]. In [Sebastião e Silva, 1961] he extended this
to bornological vector spaces and referred to Waelbroeck and Fantappié for these
spaces:

“. . . de généraliser aux espaces localement convexes, réels ou complexes, la
notion de fonction différentiable, ainsi que les théorèmes fondamentaux du
calcul différentiel et intégral, et de la théorie des fonctions analytiques de
plusieurs variables complexes.

Je me suis persuadé que, pour cette généralisation, c’est la notion d’ensemble borné,
plutôt que celle de voisinage, qui doit jouer un rôle essentiel.”

In [Waelbroeck, 1967a,b] the notion of ‘b-space’ was introduced, and differentiability
in them was discussed. He showed that for Mackey complete spaces a scalar-

wise smooth mapping is already smooth, see 2.14.5 ⇒ 2.14.4 . He refers to
[Mikusinski, 1960], [Waelbroeck, 1960], [Marinescu, 1963], and [Buchwalter, 1965].
Bornological vector spaces were developed in full detail in [Hogbe-Nlend, 1970, 1971,
1977], and differential calculus in them was further developed by [Lazet, 1971], and
[Colombeau, 1973], see also [Colombeau, 1982]. The importance of differentiability
with respect to the bornology generated by the compact subsets was realized in
[Sova, 1966b].

An overview on differentiability of first order can be found in [Averbukh and
Smolyanov, 1968]. One finds there 25 inequivalent definitions of the first deriv-
ative in a single point, and one sees how complicated finite order differentiability
really is beyond Banach spaces.

Higher derivatives. In [Maissen, 1963] it was shown that only for normed spaces
there exists a topology on L(E,E) such that the evaluation mapping L(E,E)×E →
E is jointly continuous, and [Keller, 1965] generalized this. We have given the
archetypical argument in the introduction.

Thus, a ‘satisfactory’ calculus seemed to stop at the level of Banach spaces, where
an elaborated theory including existence theorems was presented already in the
very influential text book [Dieudonné, 1960].



80 Chapter I . Calculus of Smooth Mappings

Beyond Banach spaces one had to use convergence structures in order to force the
continuity of the composition of linear mappings and the general chain rule. Respec-
tive theories based on convergence were presented by [Marinescu, 1963], [Bastiani,
1964], [Frölicher and Bucher, 1966], and by [Binz, 1966]. A review is [Keller, 1974],
where the following was shown: Continuity of the derivative implied stronger re-
mainder convergence conditions. So for continuously differentiable mappings the
many possible notions collapse to 9 inequivalent ones (fewer for Fréchet spaces).
And if one looks for infinitely often differentiable mappings, then one ends up with
6 inequivalent notions (only 3 for Fréchet spaces). Further work in this direction
culminated in the two huge volumes [Gähler, 1977, 1978], and in the historically
very detailed study [Ver Eecke, 1983] and [Ver Eecke, 1985].

Exponential law. The notion of homotopy makes more sense if it is viewed as a
curve I → C(X,Y ). The ‘exponential law’

ZX×Y ∼= (ZY )X , or C(X × Y,Z) ∼= C(X,C(Y,Z)),

however, is not true in general. It holds only for compactly generated spaces, as
was shown by [Brown, 1961], see also [Gabriel and Zisman, 1963/64], or for com-
pactly continuous mappings between arbitrary topological spaces, due to [Brown,
1963] and [Brown, 1964]. Without referring to Brown in the text, [Steenrod, 1967]
made this result really popular under the title ‘a convenient category of topological
spaces’, which is the source of the widespread use of ‘convenient’, also in this book.
See also [Vogt, 1971].

Following the advise of A. Frölicher, [Seip, 1972] used compactly generated vec-
tor spaces for calculus. In [Seip, 1976] he obtained a cartesian closed category of
smooth mappings between compactly generated vector spaces, and in [Seip, 1979]
he modified his calculus by assuming both smoothness along curves and compact
continuity, for all derivatives. Based on this, he obtained a cartesian closed cate-
gory of ‘smooth manifolds’ in [Seip, 1981] by replacing atlas of charts by the set of
smooth curves and assuming a kind of (Riemannian) exponential mapping which
he called local addition.

Motivated by Seip’s work in the thesis [Kriegl, 1980], supervised by Peter Mi-
chor, smooth mappings between arbitrary subsets ‘Vektormengen’ of locally convex
spaces were supposed to respect smooth curves and to induce ‘tangent mappings’
which again should respect smooth curves, and so on. On open subsets of E map-
pings turned out to be smooth if they were smooth along smooth mappings Rn → E
for all n. This gave a cartesian closed setting of calculus without any assumptions
on compact continuity of derivatives. A combination of this with the result of [Bo-
man, 1967] then quickly lead to [Kriegl, 1982] and [Kriegl, 1983], one of the sources
of this book.

Independently, [Frölicher, 1980] considered categories generated by monoids of real
valued functions and characterized cartesian closedness in terms of the monoid.
[Frölicher, 1981] used the result of [Boman, 1967] to show that on Fréchet spaces
usual smoothness is equivalent to smoothness in the sense of the category generated
by the monoid C∞(R,R). That this category is cartesian closed was shown in the
unpublished paper [Lawvere et al., 1981].
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Already [Boman, 1967] used Lipschitz conditions for his result on finite order dif-
ferentiability, since it fails to be true for Cn-functions. Motivated by this, finite
differentiability based on Lipschitz conditions has then been developed by [Frölicher
et al., 1983]. A careful presentation can be found in the monograph [Frölicher and
Kriegl, 1988]. Finite differentiability based on Hölder conditions were studied by
[Faure, 1989] and [Faure, 1991].





Chapter II
Calculus of Holomorphic and Real Analytic

Mappings

7. Calculus of Holomorphic Mappings 84
8. Spaces of Holomorphic Mappings and Germs 95
9. Real Analytic Curves 101
10. Real Analytic Mappings 105
11. The Real Analytic Exponential Law 109
Historical Remarks on Holomorphic and Real Analytic Calculus 119

This chapter starts with an investigation of holomorphic mappings between infinite
dimensional vector spaces along the same lines as we investigated smooth mappings
in chapter I. This theory is rather easy if we restrict to convenient vector spaces.

The basic tool is the set of all holomorphic mappings from the unit disk D ⊂ C
into a complex convenient vector space E, where all possible definitions of being

holomorphic coincide, see 7.4 . This replaces the set of all smooth curves in the
smooth theory. A mapping between c∞-open sets of complex convenient vector
spaces is then said to be holomorphic if it maps holomorphic curves to holomorphic

curves. This can be tested by many equivalent descriptions (see 7.19 ), the most
important are that f is smooth and df(x) is complex linear for each x (i.e. f satisfies
the Cauchy-Riemann differential equation); or that f is holomorphic along each
affine complex line and is c∞-continuous (generalized Hartog’s theorem). Again

(multi-) linear mappings are holomorphic if and only if they are bounded 7.12 .

The space H(U,F ) of all holomorphic mappings from a c∞-open set U ⊆ E into
a convenient vector space F carries a natural structure of a complex convenient

vector space 7.21 , and satisfies the holomorphic uniform boundedness principle

8.10 . Of course our general aim of cartesian closedness 7.22 , 7.23 is valid also
in this setting: H(U,H(V, F )) ∼= H(U × V, F ).

As in the smooth case we have to pay a price for cartesian closedness: holomorphic
mappings can be expanded into power series, but these converge only on a c∞-open
subset in general, and not on open subsets.

The second part of this chapter is devoted to real analytic mappings in infinite di-
mensions. The ideas are similar as in the case of smooth and holomorphic mappings,

but our wish to obtain cartesian closedness forces us to some modifications: In 9.1
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we shall see that for the real analytic mapping f : R2 3 (s, t) 7→ 1
(st)2+1 ∈ R there is

no reasonable topology on Cω(R,R), such that the mapping f∨ : R→ Cω(R,R) is
locally given by its convergent Taylor series, which looks like a counterexample to
cartesian closedness. Recall that smoothness (holomorphy) of curves can be tested

by applying bounded linear functionals (see 2.14 , 7.4 ). The example above shows
at the same time that this is not true in the real analytic case in general; if E′ carries

a Baire topology then it is true 9.6 .

So we are forced to take as basic tool the space Cω(R, E) of all curves c such that
` ◦ c : R→ R is real analytic for each bounded linear functional, and we call these
the real analytic curves. In order to proceed we have to show that real analyticity of
a curve can be tested with any set of bounded linear functionals which generates the

bornology. This is done in 9.4 with the help of an unusual bornological description

of real analytic functions R→ R 9.3 .

Now a mapping f : U → F is called real analytic if f ◦ c is smooth for smooth c
and is real analytic for real analytic c : R→ U . The second condition alone is not
sufficient, even for f : R2 → R. Then a version of Hartog’s theorem is true: f is real

analytic if and only if it is smooth and real analytic along each affine line 10.4 .
In order to get to the aim of cartesian closedness we need a natural structure of a
convenient vector space on Cω(U,F ). We start with Cω(R,R) which we consider as
real part of the space of germs along R of holomorphic functions. The latter spaces

of holomorphic germs are investigated in detail in section 8 . At this stage of

the theory we can prove the real analytic uniform boundedness theorem 11.6 and

11.12 , but unlike in the smooth and holomorphic case for the general exponential

law 11.18 we still have to investigate mixing of smooth and real analytic variables

in 11.17 . The rest of the development of section 11 then follows more or less
standard (categorical) arguments.

7. Calculus of Holomorphic Mappings

7.1. Basic notions in the complex setting. In this section all locally con-
vex spaces E will be complex ones, which we can view as real ones ER together
with continuous linear mapping J with J2 = − Id (the complex structure). So all

concepts for real locally convex spaces from sections 1 to 5 make sense also for
complex locally convex spaces.

A set which is absolutely convex in the real sense need not be absolutely convex
in the complex sense. However, the C-absolutely convex hull of a bounded subset
is still bounded, since there is a neighborhood basis of 0 consisting of C-absolutely
convex sets. So in this section absolutely convex will refer always to the complex

notion. For absolutely convex bounded sets B the real normed spaces EB (see 1.5 )
inherit the complex structure.

A complex linear functional ` on a convex vector space is uniquely determined by
its real part Re ◦`, by `(x) = (Re ◦`)(x) −

√
−1(Re ◦`)(Jx). So for the respective

spaces of bounded linear functionals we have

ER
′ = LR(ER,R) ∼= LC(E,C) =: E∗,
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where the complex structure on the left hand side is given by λ 7→ λ ◦ J .

7.2. Definition. Let D be the the open unit disk {z ∈ C : |z| < 1}. A mapping
c : D→ E into a locally convex space E is called complex differentiable, if

c′(z) = lim
C3w→0

c(z + w)− c(z)
w

exists for all z ∈ D.

7.3. Lemma. Let E be convenient and an ∈ E. Then the following statements
are equivalent:

(1) {rnan : n ∈ N} is bounded for all |r| < 1.
(2) The power series

∑
n≥0 z

nan is Mackey convergent in E, uniformly on each
compact subset of D, i.e., the Mackey coefficient sequence and the bounded set
can be chosen valid in the whole compact subset.

(3) The power series converges weakly for all z ∈ D.

Proof. ( 1 ) ⇒ ( 2 ) Any compact set is contained in rD for some 0 < r < 1, the
set {Rnan : n ∈ N} is contained in some absolutely convex bounded B for some
r < R < 1. So the partial sums of the series form a Mackey Cauchy sequence
uniformly on rD since

1

(r/R)N − (r/R)M+1

M∑
n=N

znan ∈
1

1− (r/R)
B.

( 2 ) ⇒ ( 3 ) is clear.

Proof of ( 3 ) ⇒ ( 1 ) The summands are weakly bounded, thus bounded. �

7.4. Theorem. If E is convenient then the following statements for a curve
c : D→ E are equivalent:

(1) c is complex differentiable.
(2) ` ◦ c : D→ C is holomorphic for all ` ∈ E∗
(3) c is continuous and

∫
γ
c = 0 in the completion of E for all closed smooth

(Lip0-) curves in D.

(4) All c(n)(0) exist and c(z) =
∑∞
n=0

zn

n! c
(n)(0) is Mackey convergent, uniformly

on each compact subset of D.
(5) For each z ∈ D all c(n)(z) exist and c(z + w) =

∑∞
n=0

wn

n! c
(n)(z) is Mackey

convergent, uniformly on each compact set in the largest disk with center z
contained in D.

(6) c(z)dz is a closed Lip1 1-form with values in ER.
(7) c is the complex derivative of some complex curve in E.
(8) c is smooth (Lip1) with complex linear derivative dc(z) for all z.

From now on all locally convex spaces will be convenient. A curve c : D → E
satisfying these equivalent conditions will be called a holomorphic curve.
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Proof. ( 2 )⇒ ( 1 ) By assumption, the difference quotient c(z+w)−c(z)
w , composed

with a linear functional, extends to a complex valued holomorphic function of w,
hence it is locally Lipschitz. So the difference quotient is a Mackey Cauchy net. So
it has a limit for w → 0.

Proof of ( 1 ) ⇒ ( 2 ) Suppose that ` is bounded. Let c : D → E be a complex

differentiable curve. Then c1 : z 7→ 1
z

(
c(z)−c(0)

z − c′(0)
)

is a complex differentiable

curve (test with linear functionals), hence

(` ◦ c1)(z) =
1

z

(
`(c(z))− `(c(0))

z
− `(c′(0))

)
is locally bounded in z. So ` ◦ c is complex differentiable with derivative ` ◦ c′.
Composition with a complex continuous linear functional translates all statements
to one dimensional versions which are all equivalent by complex analysis. Moreover,

each statement is equivalent to its weak counterpart, where for ( 4 ) and ( 5 ) we

use lemma 7.3 . �

7.5. Remarks. In the holomorphic case the equivalence of 7.4.1 and 7.4.2
does not characterize c∞-completeness as it does in the smooth case. The complex
differentiable curves do not determine the bornology of the space, as do the smooth
ones. See [Kriegl and Nel, 1985, 1.4]. For a discussion of the holomorphic analogues

of smooth characterizations for c∞-completeness (see 2.14 ) we refer to [Kriegl and
Nel, 1985, pp. 2.16].

7.6. Lemma. Let c : D→ E be a holomorphic curve in a convenient space. Then
locally in D the curve factors to a holomorphic curve into EB for some bounded
absolutely convex set B.

First Proof. By the obvious extension of lemma 1.8 for smooth mappings R2 ⊃
D→ E the curve c factors locally to a Lip1-curve into some complete EB . Since it

has complex linear derivative, by theorem 7.4 it is holomorphic. �

Second direct proof. Let W be a relatively compact neighborhood of some point
in D. Then c(W ) is bounded in E. It suffices to show that for the absolutely convex
closed hull B of c(W ) the Taylor series of c at each z ∈ W converges in EB , i.e.
that c|W : W → EB is holomorphic. This follows from the

Vector valued Cauchy inequalities. If r > 0 is smaller than the radius of
convergence at z of c then

rk

k! c
(k)(z) ∈ B

where B is the closed absolutely convex hull of { c(w) : |w − z| = r}. (By the
Hahn-Banach theorem this follows directly from the scalar valued case.)

Thus, we get ∑m
k=n(w−zr )k · r

k

k! c
(k)(z) ∈

∑m
k=n(w−zr )k ·B

and so
∑
k
c(k)(z)
k! (w − z)k is convergent in EB for |w − z| < r. �
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This proof also shows that holomorphic curves with values in complex convenient
vector spaces are topologically and bornologically holomorphic in the sense analo-

gous to 9.4 .

7.7. Lemma. Let E be a regular (i.e. every bounded set is contained and bounded
in some step Eα) inductive limit of complex locally convex spaces Eα ⊆ E, let
c : C ⊇ U → E be a holomorphic mapping, and let W ⊆ C be open and such that
the closure W is compact and contained in U . Then there exists some α, such that
c|W : W → Eα is well defined and holomorphic.

Proof. By lemma 7.6 the restriction of c to W factors to a holomorphic curve
c|W : W → EB for a suitable bounded absolutely convex set B ⊆ E. Since B is
contained and bounded in some Eα one has c|W : W → EB = (Eα)B → Eα is
holomorphic. �

7.8. Definition. Let E and F be convenient vector spaces and let U ⊆ E be
c∞-open. A mapping f : U → F is called holomorphic, if it maps holomorphic
curves in U to holomorphic curves in F .

It is remarkable that [Fantappié, 1930] already gave this definition. Connections to
other concepts of holomorphy are discussed in [Kriegl and Nel, 1985, 2.19].

So by 7.4 f is holomorphic if and only if `◦f ◦c : D→ C is a holomorphic function
for all ` ∈ F ∗ and holomorphic curve c.

Clearly, any composition of holomorphic mappings is again holomorphic.

For finite dimensions this coincides with the usual notion of holomorphic mappings,
by the finite dimensional Hartogs’ theorem.

7.9. Hartogs’ Theorem. Let E1, E2, and F be convenient vector spaces with U
c∞-open in E1 × E2. Then a mapping f : U → F is holomorphic if and only if it
is separately holomorphic, i.e. f( , y) and f(x, ) are holomorphic.

Proof. If f is holomorphic then f( , y) is holomorphic on the c∞-open set E1 ×
{y} ∩ U = incl−1

y (U), likewise for f(x, ).

If f is separately holomorphic, for any holomorphic curve (c1, c2) : D→ U ⊆ E1×E2

we consider the holomorphic mapping c1 × c2 : D2 → E1 × E2. Since the ck are

smooth by 7.4.8 also c1 × c2 is smooth and thus (c1 × c2)−1(U) is open in C2.

For each λ ∈ F ∗ the mapping λ ◦ f ◦ (c1 × c2) : (c1 × c2)−1(U) → C is separately
holomorphic and so holomorphic by the usual Hartogs’ theorem. By composing
with the diagonal mapping we see that λ ◦ f ◦ (c1, c2) is holomorphic, thus f is
holomorphic. �

7.10. Lemma. Let f : E ⊇ U → F be holomorphic from a c∞-open subset in
a convenient vector space to another convenient vector space. Then the derivative
(df)∧ : U ×E → F is again holomorphic and complex linear in the second variable.

Proof. (z, v, w) 7→ f(v+ zw) is holomorphic. We test with all holomorphic curves
and linear functionals and see that (v, w) 7→ ∂

∂z |z=0f(v + zw) =: df(v)w is again

holomorphic, C-homogeneous in w by 7.4 .
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Now w 7→ df(v)w is a holomorphic and C-homogeneous mapping E → F . But
any such mapping is automatically C-linear: Composed with a bounded linear
functional on F and restricted to any two dimensional subspace of E this is a finite
dimensional assertion. �

7.11. Remark. In the definition of holomorphy 7.8 one could also have admitted
subsets U which are only open in the final topology with respect to holomorphic

curves. But then there is a counterexample to 7.10 , see [Kriegl and Nel, 1985,
2.5].

7.12. Theorem. A multilinear mapping between convenient vector spaces is holo-
morphic if and only if it is bounded.

This result is false for not c∞-complete vector spaces, see [Kriegl and Nel, 1985,
1.4].

Proof. Since both conditions can be tested in each factor separately by Hartogs’

theorem 7.9 and by 5.19 , and by testing with linear functionals, we may restrict
our attention to linear mappings f : E → C only.

By theorem 7.4.2 a bounded linear mapping is holomorphic. Conversely, suppose
that f : E → C is a holomorphic but unbounded linear functional. So there exists
a sequence (an) in E with |f(an)| > 1 and {2nan} bounded. Consider the power

series
∑∞
n=0(an − an−1)(2z)n. This describes a holomorphic curve c in E, by 7.3

and 7.4.2 . Then f ◦ c is holomorphic and thus has a power series expansion
f(c(z)) =

∑∞
n=0 bnz

n. On the other hand

f(c(z)) =

N∑
n=0

(f(an)− f(an−1))(2z)n + (2z)Nf

(∑
n>N

(an − an−1)(2z)n−N

)
.

So bn = 2n(f(an)− f(an−1)) and we get the contradiction

0 = f(0) = f(c(1/2)) =

∞∑
n=0

(f(an)− f(an−1)) = lim
n→∞

f(an). �

Parts of the following results 7.13 to 10.2 can be found in [Bochnak and Siciak,

1971]. For x in any vector space E let xk denote the element (x, . . . , x) ∈ Ek.

7.13. Lemma. Polarization formulas. Let f : E × · · · × E → F be an k-linear
symmetric mapping between vector spaces. Then we have:

f(x1, . . . , xk) = 1
k!

1∑
ε1,...,εk=0

(−1)k−Σεj f
(

(x0 +
∑
εjxj)

k
)
.(1)

f(xk) = 1
k!

k∑
j=0

(−1)k−j
(
k
j

)
f((a+ jx)k).(2)

f(xk) = kk

k!

k∑
j=0

(−1)k−j
(
k
j

)
f((a+ j

kx)k).(3)
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f(x0
1 + λx1

1, . . . , x
0
k + λx1

k) =

1∑
ε1,...,εk=0

λΣεjf(xε11 , . . . , x
εk
k ).(4)

Formula ( 4 ) will mainly be used for λ =
√
−1 in the passage to the complexifica-

tion.

Proof. ( 1 ). (see [Mazur and Orlicz, 1935]). By multilinearity and symmetry the
right hand side expands to∑

j0+···+jk=k

Aj0,...,jk
j0! · · · jk!

f(x0, . . . , x0︸ ︷︷ ︸
j0

, . . . , xk, . . . , xk︸ ︷︷ ︸
jk

),

where the coefficients are given by

Aj0,...,jk =

1∑
ε1,...,εk=0

(−1)k−Σεjεj11 · · · ε
jk
k .

The only nonzero coefficient is A0,1,...,1 = 1.

( 2 ). In formula ( 1 ) we put x0 = a and all xj = x.

( 3 ). In formula ( 2 ) we replace a by ka and pull k out of the k-linear expression

f((ka+ jx)k).

( 4 ) is obvious. �

7.14. Lemma. Power series. Let E be a real or complex Fréchet space and let
fk be a k-linear symmetric scalar valued bounded functional on E, for each k ∈ N.
Then the following statements are equivalent:

(1)
∑
k fk(xk) converges pointwise on an absorbing subset of E.

(2)
∑
k fk(xk) converges uniformly and absolutely on some neighborhood of 0.

(3) {fk(xk) : k ∈ N, x ∈ U} is bounded for some neighborhood U of 0.
(4) {fk(x1, . . . , xk) : k ∈ N, xj ∈ U} is bounded for some neighborhood U of 0.

If any of these statements are satisfied over the reals, then also for the complexifi-
cation of the functionals fk.

Proof. ( 1 ) ⇒ ( 3 ) The set AK,r := {x ∈ E : |fk(xk)| ≤ Krk for all k} is closed
in E since every bounded multilinear mapping is continuous. The countable union⋃
K,r AK,r is E, since the series converges pointwise on an absorbing subset. Since

E is Baire there are K > 0 and r > 0 such that the interior U of AK,r is non
void. Let x0 ∈ U and let V be an absolutely convex neighborhood of 0 contained
in U − x0

From 7.13 ( 3 ) we get for all x ∈ V the following estimate:

|fk(xk)| ≤ kk

k!

k∑
j=0

(
k
j

)
|fk((x0 + j

kx)k)|

≤ kk

k! 2kKrk ≤ K(2re)k.

Now we replace V by 1
2re V and get the result.
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( 3 ) ⇒ ( 4 ) From 7.13 ( 1 ) we get for all xj ∈ U the estimate:

|f(x1, . . . , xk)| ≤ 1
k!

1∑
ε1,...,εk=0

|f
(

(
∑
εjxj)

k
)
|

= 1
k!

1∑
ε1,...,εk=0

(
∑
εj)

k

∣∣∣∣∣f
((∑

εjxj∑
εj

)k)∣∣∣∣∣
≤ 1

k!

1∑
ε1,...,εk=0

(
∑
εj)

k
C

= 1
k!

k∑
i=0

(
k
i

)
ik C ≤ C(2e)k.

Now we replace U by 1
2e U and get ( 4 ).

Proof of ( 4 ) ⇒ ( 2 ) The series converges on rU uniformly and absolutely for any
0 < r < 1.

( 2 ) ⇒ ( 1 ) is clear.

( 4 ), real case, ⇒ ( 4 ), complex case, by 7.13.4 for λ =
√
−1. �

7.15. Lemma. Let E be a complex convenient vector space and let fk be a k-linear
symmetric scalar valued bounded functional on E, for each k ∈ N. If

∑
k fk(xk)

converges pointwise on E and x 7→ f(x) :=
∑
k fk(xk) is bounded on bounded sets,

then the power series converges uniformly on bounded sets.

Proof. Let B be an absolutely convex bounded set in E. For x ∈ 2B we apply the

vector valued Cauchy inequalities from 7.6 to the holomorphic curve z 7→ f(zx)

at z = 0 for r = 1 and get that fk(xk) is contained in the closed absolutely convex
hull of {f(zx) : |z| = 1}. So {fk(xk) : x ∈ 2B, k ∈ N} is bounded and the series
converges uniformly on B. �

7.16. Example. We consider the power series
∑
k k(xk)k on the Hilbert space

`2 = {x = (xk) :
∑
k |xk|2 < ∞}. This series converges pointwise everywhere, it

yields a holomorphic function f on `2 by 7.19.5 which however is unbounded on
the unit sphere, so convergence cannot be uniform on the unit sphere.

The function g : C(N) × `2 → C given by g(x, y) :=
∑
k xkf(kx1y) is holomor-

phic since it is a finite sum locally along each holomorphic curve by 7.7 , but its
Taylor series at 0 does not converge uniformly on any neighborhood of 0 in the
locally convex topology: A typical neighborhood is of the form {(x, y) : |xk| ≤
εk for all k, ‖y‖2 ≤ ε} and so it contains points (x, y) with |xkf(kx1y)| ≥ 1, for all

large k. This shows that lemma 7.14 is not true for arbitrary convenient vector
spaces.

7.17. Corollary. Let E be a real or complex Fréchet space and let fk be a k-linear
symmetric scalar valued bounded functional on E, for each k ∈ N such that the
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power series
∑
fk(xk) converges to f(x) for x near 0 in E. Let

∑
k≥1 akz

k be a

power series in E which converges to a(z) ∈ E for z near 0 in C.

Then the composite ∑
k≥0

∑
n≥0

∑
k1,...,kn∈N
k1+···+kn=k

fn(ak1 , . . . , akn) zk

of the power series converges to f ◦ a near 0.

Proof. By 7.14 there exists a 0-neighborhood U in E such that {fk(x1, . . . , xk) :
k ∈ N, xj ∈ U} is bounded. Since the series for a converges there is r > 0 such that
akr

k ∈ U for all k. For |z| < r
2 we have

f(a(z)) =
∑
n≥0

fn

(∑
k1≥1

ak1z
k1 , . . . ,

∑
kn≥1

aknz
kn
)

=
∑
n≥0

∑
k1≥1

· · ·
∑
kn≥1

fn
(
ak1 , . . . , akn

)
zk1+···+kn

=
∑
k≥0

∑
n≥0

∑
k1,...,kn∈N
k1+···+kn=k

fn(ak1 , . . . , akn) zk,

since the last complex series converges absolutely: the coefficient of zk is a sum of
2k−1 terms which are bounded when multiplied by rk. The second equality follows
from boundedness of all fk. �

7.18. Almost continuous functions. In the proof of the next theorem we will
need the following notion: A (real valued) function on a topological space is called
almost continuous if removal of a meager set yields a continuous function on
the remainder.

Lemma. [Hahn, 1932, p. 221] A pointwise limit of a sequence of almost continuous
functions on a Baire space is almost continuous.

Proof. Let (fk) be a sequence of almost continuous real valued functions on a Baire
space X which converges pointwise to f . Since the complement of a meager set in
a Baire space is again Baire we may assume that each function fk is continuous
on X. We denote by Xn the set of all x ∈ X such that there exists N ∈ N and a
neighborhood U of x with |fk(y)− f(y)| < 1

n for all k ≥ N and all y ∈ U . The set
Xn is clearly open.

We claim that each Xn is dense: Let V be a nonempty open subset of X. For
N ∈ N the set VN := {x ∈ V : |fk(x) − f`(x)| ≤ 1

2n for all k, ` ≥ N} is closed
in V and V =

⋃
N VN since the sequence (fk) converges pointwise. Since V is a

Baire space, some VN contains a nonempty open set W . For each y ∈ W we have
|fk(y) − f`(y)| ≤ 1

2n for all k, ` ≥ N . We take the pointwise limit for ` → ∞ and
see that W ⊆ V ∩Xn.

Since X is Baire, the set
⋂
nXn has a meager complement and obviously the re-

striction of f on this set is continuous. �
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7.19. Theorem. Let f : E ⊇ U → F be a mapping from a c∞-open subset in
a convenient vector space to another convenient vector space. Then the following
assertions are equivalent:

(1) f is holomorphic.
(2) For all ` ∈ F ∗ and absolutely convex closed bounded sets B the mapping

` ◦ f : EB → C is holomorphic.
(3) f is holomorphic along all affine (complex) lines and is c∞-continuous.
(4) f is holomorphic along all affine (complex) lines and is bounded on bornolog-

ically compact sets (i.e. those compact in some EB).
(5) f is holomorphic along all affine (complex) lines and at each point the first

derivative is a bounded linear mapping.
(6) f is c∞-locally a convergent series of bounded homogeneous complex polyno-

mials.
(7) f is holomorphic along all affine (complex) lines and in every connected com-

ponent for the c∞-topology there is at least one point where all derivatives are
bounded multilinear mappings.

(8) f is smooth and the derivative is complex linear at every point.

(9) f is Lip1 in the sense of 12.1 and the derivative is complex linear at every
point.

Proof. ( 1 ) ⇔ ( 2 ) By 7.6 every holomorphic curve factors locally over some
EB and we test with linear functionals on F .

So for the rest of the proof we may assume that F = C. We prove the rest of the
theorem first for the case where E is a Banach space.

( 1 ) ⇒ ( 5 ) By lemma 7.10 the derivative of f is holomorphic and C-linear in

the second variable. By 7.12 f ′(z) is bounded.

( 5 ) ⇒ ( 6 ) Choose a fixed point z ∈ U . Since f is holomorphic along each
complex line through z it is given there by a pointwise convergent power series. By
the classical Hartogs’ theorem f is holomorphic along each finite dimensional linear
subspace. The mapping f ′ : E ⊇ U → E′ is well defined by assumption and is also
holomorphic along each affine line since we may test this by all point evaluations:

using 5.18 we see that it is smooth and by 7.4.8 it is a holomorphic curve. So
the mapping

v 7→ f (n+1)(z)(v, v1, . . . , vn) = (f ′( )(v))(n)(z)(v1, . . . , vn)

= (f ′)(n)(z)(v1, . . . , vn)(v).

is bounded, and by symmetry of higher derivatives at z they are thus separately

bounded in all variables. By 5.19 f is given by a power series of bounded homo-
geneous polynomials which converges pointwise on the open set {z + v : z + λv ∈
U for all |λ| ≤ 1}. Now ( 6 ) follows from lemma 7.14 .

( 6 ) ⇒ ( 3 ) By lemma 7.14 the series converges uniformly and hence f is con-
tinuous.

( 3 ) ⇒ ( 4 ) is obvious.
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( 4 ) ⇒ ( 5 ) By the (1-dimensional) Cauchy integral formula we have

f ′(z)v =
1

2π
√
−1

∫
|λ|=1

f(z + λv)

λ2
dλ.

So f ′(z) is a linear functional which is bounded on compact sets K for which

{z + λv : |λ| ≤ 1, v ∈ K} ⊆ U , thus it is bounded, by lemma 5.4 .

( 6 ) ⇒ ( 1 ) follows by composing the two locally uniformly converging power

series, see corollary 7.17 .

Sublemma. Let E be a Fréchet space and let U ⊆ E be open. Let f : U → C
be holomorphic along affine lines which is also the pointwise limit on U of a power
series with bounded homogeneous composants. Then f is holomorphic on U .

Proof. By assumption, and the lemma in 7.18 the function f is almost continuous,
since it is the pointwise limit of polynomials. For each z the derivative f ′(z) : E → C
as pointwise limit of difference quotients is also almost continuous on {v : z+ λv ∈
U for |λ| ≤ 1}, thus continuous on E since it is linear and by the Baire property.

By ( 5 ) ⇒ ( 1 ) the function f is holomorphic on U . �

( 6 ) ⇒ ( 7 ) is obvious.

( 7 ) ⇒ ( 1 ) [Zorn, 1945] We treat each connected component of U separately and
assume thus that U is connected. The set U0 := {z ∈ U : f is holomorphic near z}
is open. By ( 6 ) ⇒ ( 1 ) f is holomorphic near the point, where all derivatives are
bounded, so U0 is not empty. From the sublemma above we see that for any point
z in U0 the whole star {z + v : z + λv ∈ U for all |λ| ≤ 1} is contained in U . Since
U is in particular polygonally connected, we have U0 = U .

( 8 ) ⇒ ( 9 ) is trivial.

( 9 ) ⇒ ( 3 ) Clearly, f is holomorphic along affine lines and c∞-continuous.

( 1 )⇒ ( 8 ) All derivatives are again holomorphic by 7.10 and thus locally boun-

ded. So f is smooth by 5.20 .

Now we treat the case where E is a general convenient vector space. Restricting to
suitable spaces EB transforms each of the statements into the weaker corresponding
one where E is a Banach space. These pairs of statements are equivalent: This is
obvious except the following two cases.

For ( 6 ) we argue as follows. The function f |(U ∩EB) satisfies condition ( 6 ) (so

all the others) for each bounded closed absolutely convex B ⊆ E. By 5.20 f is
smooth and it remains to show that the Taylor series at z converges pointwise on a
c∞-open neighborhood of z. The star {z+v : z+λv ∈ U for all |λ|le1} with center

z in U is again c∞-open by 4.17 and on it the Taylor series of f at z converges
pointwise.

For ( 7 ) replace on both sides the condition ”at least one point” by the condition
”for all points”. �
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7.20. Chain rule. The composition of holomorphic mappings is holomorphic and
the usual formula for the derivative of the composite holds.

Proof. Use 7.19.1 ⇔ 7.19.8 , and the real chain rule 3.18 . �

7.21. Definition. For convenient vector spaces E and F and for a c∞-open subset
U ⊆ E we denote by H(U,F ) the space of all holomorphic mappings U → F .

It is a closed linear subspace of C∞(U,F ) by 7.19.8 and we give it the induced
convenient vector space structure.

7.22. Theorem. Cartesian closedness. For convenient vector spaces E1,
E2, and F , and for c∞-open subsets Uj ⊆ Ej a mapping f : U1 × U2 → F is
holomorphic if and only if the canonically associated mapping f∨ : U1 → H(U2, F )
is holomorphic.

Proof. Obviously, f∨ has values in H(U2, F ) and is smooth by smooth cartesian

closedness 3.12 . Since its derivative is canonically associated to the first partial

derivative of f , it is complex linear. So f∨ is holomorphic by 7.19.8 .

If conversely f∨ is holomorphic, then it is smooth into H(U2, F ) by 7.19 , thus
also smooth into C∞(U2, F ). Thus, f : U1 × U2 → F is smooth by smooth carte-
sian closedness. The derivative df(x, y)(u, v) = (df∨(x)v)(y) + (d ◦ f∨)(x)(y)w is
obviously complex linear, so f is holomorphic. �

7.23. Corollary. Let E etc. be convenient vector spaces and let U etc. be c∞-open
subsets of such. Then the following canonical mappings are holomorphic.

ev : H(U,F )× U → F, ev(f, x) = f(x)

ins : E → H(F,E × F ), ins(x)(y) = (x, y)

( )∧ : H(U,H(V,G))→ H(U × V,G)

( )∨ : H(U × V,G)→ H(U,H(V,G))

comp : H(F,G)×H(U,F )→ H(U,G)

H( , ) : H(F, F ′)×H(U ′, E)→ H(H(E,F ),H(U ′, F ′))

(f, g) 7→ (h 7→ f ◦ h ◦ g)∏
:
∏
H(Ei, Fi)→ H(

∏
Ei,
∏

Fi)

Proof. Just consider the canonically associated holomorphic mappings on multiple
products. �

7.24. Theorem (Holomorphic functions on Fréchet spaces).
Let U ⊆ E be open in a complex Fréchet space E. The following statements on
f : U → C are equivalent:

(1) f is holomorphic.
(2) f is smooth and is locally given by its uniformly and absolutely converging

Taylor series.
(3) f is locally given by a uniformly and absolutely converging power series.
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Proof. ( 1 ) ⇒ ( 2 ) follows from 7.14.1 ⇒ 7.14.2 and 7.19.1 ⇒ 7.19.6 .

( 2 ) ⇒ ( 3 ) is obvious.

( 3 ) ⇒ ( 1 ) is the chain rule for converging power series 7.17 . �

8. Spaces of Holomorphic Mappings and Germs

8.1. Spaces of holomorphic functions. For a complex manifold N (always
assumed to be separable) let H(N,C) be the space of all holomorphic func-
tions on N with the topology of uniform convergence on compact subsets of N .

Let Hb(N,C) denote the Banach space of bounded holomorphic functions on N
equipped with the supremum norm.

For any open subset W of N let Hbc(N ⊇W,C) be the closed subspace of Hb(W,C)
of all holomorphic functions on W which extend to continuous functions on the
closure W .

For a poly-radius r = (r1, . . . , rn) with ri > 0 and for 1 ≤ p ≤ ∞ let `pr denote the
real Banach space

{
x ∈ RNn : ‖(xαrα)α∈Nn‖p <∞

}
.

8.2. Theorem (Structure of H(N,C) for complex manifolds N).
The space H(N,C) of all holomorphic functions on N with the topology of uniform
convergence on compact subsets of N is a (strongly) nuclear Fréchet space and
embeds bornologically as a closed subspace into C∞(N,R)2.

Proof. By taking a countable covering of N with compact sets, one obtains a
countable neighborhood basis of 0 in H(N,C). Hence, H(N,C) is metrizable.

That H(N,C) is complete, and hence a Fréchet space, follows since the limit of a
sequence of holomorphic functions with respect to the topology of uniform conver-
gence on compact sets is again holomorphic.

The vector spaceH(N,C) is a subspace of C∞(N,R2) = C∞(N,R)2 since a function
N → C is holomorphic if and only if it is smooth and the derivative at every point
is C-linear. It is a closed subspace, since it is described by the continuous linear
equations df(x)(

√
−1 · v) =

√
−1 · df(x)(v). Obviously, the identity from H(N,C)

with the subspace topology to H(N,C) is continuous, hence by the open mapping

theorem 52.11 for Fréchet spaces it is an isomorphism.

That H(N,C) is nuclear and unlike C∞(N,R) even strongly nuclear can be shown
as follows. For N equal to the open polycylinder Dn ⊆ Cn this result can be found in

52.36 . For an arbitrary N the space H(N,C) carries the initial topology induced

by the linear mappings (u−1)∗ : H(N,C) → H(u(U),C) for all charts (u, U) of
N , for which we may assume u(U) = Dn, and hence by the stability properties of

strongly nuclear spaces, cf. 52.34 , H(N,C) is strongly nuclear. �
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8.3. Spaces of germs of holomorphic functions. For a subset A ⊆ N let
H(N ⊇ A,C) be the space of germs along A of holomorphic functions
W → C for open sets W in N containing A. We equipH(N ⊇ A,C) with the locally
convex topology induced by the inductive cone H(W,C)→ H(N ⊇ A,C) for all W .
This is Hausdorff, since iterated derivatives at points in A are continuous functionals
and separate points. In particular, H(N ⊇ W,C) = H(W,C) for W open in N .
For A1 ⊆ A2 ⊆ N the ”restriction” mappings H(N ⊇ A2,C)→ H(N ⊇ A1,C) are
continuous.

The structure of H(S2 ⊇ A,C), where A ⊆ S2 is a subset of the Riemannian sphere,
has been studied by [Toeplitz, 1949], [Sebastião e Silva, 1950b], [Van Hove, 1952],
[Köthe, 1953], and [Grothendieck, 1953].

8.4. Theorem (Structure of H(N ⊇ K,C) for compact subsets K of com-
plex manifolds N). The following inductive cones are cofinal to each other.

H(N ⊇ K,C)← {H(W,C), N ⊇W ⊇ K}
H(N ⊇ K,C)← {Hb(W,C), N ⊇W ⊇ K}

H(N ⊇ K,C)← {Hbc(N ⊇W,C), N ⊇W ⊇ K}

If K = {z} these inductive cones and the following ones for 1 ≤ p ≤ ∞ are cofinal
to each other.

H(N ⊇ {z},C)← {`pr ⊗ C, r ∈ Rn+}

So all inductive limit topologies coincide. Furthermore, the space H(N ⊇ K,C) is a
Silva space, i.e. a countable inductive limit of Banach spaces, where the connecting
mappings between the steps are compact, i.e. mapping bounded sets to relatively
compact ones. The connecting mappings are even strongly nuclear. In particular,
the limit is regular, i.e. every bounded subset is contained and bounded in some
step, and H(N ⊇ K,C) is complete and (ultra-)bornological (hence a convenient
vector space), webbed, strongly nuclear and thus reflexive, and its dual is a nuclear
Fréchet space. The space H(N ⊇ K,C) is smoothly paracompact. It is however not
a Baire space.

Proof. Let K ⊆ V ⊆ V ⊆ W ⊆ N , where W and V are open and V is compact.
Then the obvious mappings

Hbc(N ⊇W,C)→ Hb(W,C)→ H(W,C)→ Hbc(N ⊇ V,C)
are continuous. This implies the first cofinality assertion. For q ≤ p and multiradii
s < r the obvious maps `qr → `pr , `

∞
r → `1s, and `1r ⊗ C→ Hb({w ∈ Cn : |wi − zi| <

ri},C)→ `∞s ⊗C are continuous, by the Cauchy inequalities from the proof of 7.7 .
So the remaining cofinality assertion follows.

Let us show next that the connecting mapping Hb(W,C) → Hb(V,C) is strongly
nuclear (hence nuclear and compact). Since the restriction mapping from E :=

H(W,C) to Hb(V,C) is continuous, it factors over E → Ẽ(U) for some zero neigh-

borhood U in E, where Ẽ(U) is the completed quotient of E with the Minkowski

functional of U as norm, see 52.15 . Since E is strongly nuclear by 8.2 , there ex-
ists by definition some larger 0-neighborhood U ′ in E such that the natural mapping
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Ẽ(U ′) → Ẽ(U) is strongly nuclear. So the claimed connecting mapping is strongly
nuclear, since it can be factorized as

Hb(W,C)→ H(W,C) = E → Ẽ(U ′) → Ẽ(U) → Hb(V,C).

So H(N ⊇ K,C) is a Silva space. It is strongly nuclear by the permanence proper-

ties of strongly nuclear spaces 52.34 . By 16.10 this also shows that H(N ⊇ K,C)

is smoothly paracompact. The remaining properties follow from 52.37 . �

Completeness of H(Cn ⊇ K,C) was shown in [Van Hove, 1952, théorème II], and
for regularity of the inductive limit H(C ⊇ K,C) see e.g. [Köthe, 1953, Satz 12].

8.5. Lemma. For a closed subset A ⊆ C the space H(S2 ⊇ A,C) of holomorphic
germs and the space H∞(S2 \ A,C) of holomorphic functions vanishing at ∞ are
strongly dual to each other.

Proof. This is due to [Köthe, 1953, Satz 12]. A generalized version is in by
[Grothendieck, 1953, théorème 2 bis] to arbitrary subsets A ⊆ S2. �

Compare also the modern theory of hyperfunctions, cf. [Kashiwara et al., 1986].

8.6. Theorem (Structure of H(N ⊇ A,C) for closed subsets A of complex
manifolds N). The inductive cone

H(N ⊇ A,C)← { H(W,C) : A ⊆W ⊆
open

N}

is regular, i.e. every bounded set is contained and bounded in some step.

The projective cone

H(N ⊇ A,C)→ { H(N ⊇ K,C) : K compact in A}
generates the bornology of H(N ⊇ A,C).

The space H(N ⊇ A,C) is Montel (hence quasi-complete and reflexive), and ultra-
bornological (hence a convenient vector space). Furthermore, it is webbed and conu-
clear.

Proof. Compare also with the proof of the more general theorem 30.6 .

We choose a continuous function f : N → R which is positive and proper. Then
(f−1([n, n + 1]))n∈N0

is an exhaustion of N by compact subsets and (Kn := A ∩
f−1([n, n+ 1])) is a compact exhaustion of A.

Let B ⊆ H(N ⊇ A,C) be bounded. Then B|K is also bounded in H(N ⊇ K,C) for
each compact subset K of A. Since the cone

{H(W,C) : K ⊆W ⊆
open

N} → H(N ⊇ K,C)

is regular by 8.4 , there exist open subsets WK of N containing K such that B|K is
contained (so that the extension of each germ is unique) and bounded in H(WK ,C).
In particular, we choose WKn∩Kn+1 ⊆ WKn ∩WKn+1 ∩ f−1((n, n + 2)). Then we
let W be the union of those connected components of

W ′ :=
⋃
n

(WKn ∩ f−1((n, n+ 1))) ∪
⋃
n

WKn∩Kn+1
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which meet A. Clearly, W is open and contains A. Each f ∈ B has an extension to
W ′: Extend f |Kn uniquely to fn on WKn . The function f |(Kn ∩Kn+1) has also
a unique extension fn,n+1 on WKn∩Kn+1 , so we have fn|WKn∩Kn+1 = fn,n+1. This
extension of f ∈ B has a unique restriction to W . B is bounded in H(W,C) if it is
uniformly bounded on each compact subset K of W . Each K is covered by finitely
many WKn and B|Kn is bounded in H(WKn ,C), so B is bounded as required.

The space H(N ⊇ A,C) is ultra-bornological, Montel and in particular quasi-
complete, and conuclear, as regular inductive limit of the nuclear Fréchet spaces
H(W,C).

And it is webbed because it is the (ultra-)bornologification of the countable pro-

jective limit of webbed spaces H(N ⊇ K,C), see 52.14 and 52.13 . �

8.7. Lemma. Let A be closed in C. Then the dual generated by the projective
cone

H(C ⊇ A,C)→ { H(C ⊇ K,C), K compact in A }
is just the topological dual of H(C ⊇ A,C).

Proof. The induced topology is obviously coarser than the given one. So let λ
be a continuous linear functional on H(C ⊇ A,C). Then we have λ ∈ H∞(S2 ⊇
S2 \A,C) by 8.5 . Hence, λ ∈ H∞(U,C) for some open neighborhood U of S2 \A,

so again by 8.5 λ is a continuous functional on H(S2 ⊇ K,C), where K = S2 \U
is compact in A. So λ is continuous for the induced topology. �

Problem. Does this cone generate even the topology of H(C ⊇ A,C)? This would
imply that the bornological topology on H(C ⊇ A,C) is complete and nuclear.

8.8. Lemma (Structure of H(N ⊇ A,C) for smooth closed submanifolds
A of complex manifolds N). The projective cone

H(N ⊇ A,C)→ { H(N ⊇ {z},C) : z ∈ A}
generates the bornology.

Proof. Let B ⊆ H(N ⊇ A,C) be such that the set B is bounded in H(N ⊇ {z},C)
for all z ∈ A. By the regularity of the inductive cone H(Cn ⊇ {0},C) ← H(W,C)
we find arbitrary small open neighborhoods Wz such that the set Bz of the germs
at z of all germs in B is contained and bounded in H(Wz,C).

Now choose a tubular neighborhood p : U → A of A in N . We may assume that Wz

is contained in U , has fibers which are star shaped with respect to the zero-section
and the intersection with A is connected. The union W of all the Wz, is therefore
an open subset of U containing A. And it remains to show that the germs in B
extend to W . For this it is enough to show that the extensions of the germs at
z1 and z2 agree on the intersection of Wz1 with Wz2 . So let w be a point in the
intersection. It can be radially connected with the base point p(w), which itself can
be connected by curves in A with z1 and z2. Hence, the extensions of both germs
to p(w) coincide with the original germ, and hence their extensions to w are equal.

That B is bounded in H(W,C), follows immediately since every compact subset
K ⊆W can be covered by finitely many Wz. �
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8.9. The following example shows that 8.8 fails to be true for general closed
subsets A ⊆ N .

Example. Let A := { 1
n : n ∈ N} ∪ {0}. Then A is compact in C but the projective

cone H(C ⊇ A,C)→ {H(C ⊇ {z},C) : z ∈ A} does not generate the bornology.

Proof. Let B ⊆ H(C ⊇ A,C) be the set of germs of the following locally constant
functions fn : {x + iy ∈ C : x 6= rn} → C, with fn(x + iy) equal to 0 for x < rn
and equal to 1 for x > rn, where rn := 2

2n+1 , for n ∈ N. Then B ⊆ H(C ⊇ A,C)
is not bounded, otherwise there would exist a neighborhood W of A such that the
germ of fn extends to a holomorphic mapping on W for all n. Since every fn is 0
on some neighborhood of 0, these extensions have to be zero on the component of
W containing 0, which is not possible, since fn( 1

n ) = 1.

But on the other hand the set Bz ⊆ H(C ⊇ {z},C) of germs at z of all germs in B
is bounded, since it contains only the germs of the constant functions 0 and 1. �

8.10. Theorem (Holomorphic uniform boundedness principle).
Let E and F be complex convenient vector spaces, and let U ⊆ E be a c∞-open
subset. Then H(U,F ) satisfies the uniform boundedness principle for the point
evaluations evx, x ∈ U .

For any closed subset A ⊆ N of a complex manifold N the locally convex space
H(N ⊇ A,C) satisfies the uniform S-boundedness principle for every point sepa-
rating set S of bounded linear functionals.

Proof. By definition 7.21 H(U,F ) carries the structure induced from the embed-

ding into C∞(U,F ) and hence satisfies the uniform boundedness principle 5.26

and 5.25 .

The second part is an immediate consequence of 5.24 and 8.6 , and 8.4 . �

Direct proof of a particular case of the second part. We prove the theorem
for a closed smooth submanifold A ⊆ C and the set S of all iterated derivatives at
points in A.

Let us suppose first that A is the point 0. We will show that condition 5.22.3 is
satisfied. Let (bn) be an unbounded sequence in H({0},C) such that each Taylor

coefficient bn,k = 1
k! b

(k)
n (0) is bounded with respect to n:

(1) sup{ |bn,k| : n ∈ N } <∞.
We have to find (tn) ∈ `1 such that

∑
n tn bn is no longer the germ of a holomorphic

function at 0.

Each bn has positive radius of convergence, in particular there is an rn > 0 such
that

(2) sup{ |bn,k rkn| : k ∈ N } <∞.

By theorem 8.4 the space H({0},C) is a regular inductive limit of spaces `∞r .
Hence, a subset B is bounded in H({0},C) if and only if there exists an r > 0 such
that { 1

k!b
(k)(0) rk : b ∈ B, k ∈ N } is bounded. That the sequence (bn) is unbounded
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thus means that for all r > 0 there are n and k such that |bn,k| > ( 1
r )k. We can

even choose k > 0 for otherwise the set { bn,krk : n, k ∈ N, k > 0 } is bounded, so

only { bn,0 : n ∈ N } can be unbounded. This contradicts ( 1 ).

Hence, for each m there are km > 0 such that Nm := {n ∈ N : |bn,km | > mkm }
is not empty. We can choose (km) strictly increasing, for if they were bounded,

|bn,km | < C for some C and all n by ( 1 ), but |bnm,km | > mkm →∞ for some nm.

Since by ( 1 ) the set { bn,km : n ∈ N } is bounded, we can choose nm ∈ Nm such
that

(3)
|bnm,km | ≥ 1

2 |bj,km | for j > nm

|bnm,km | > mkm

We can choose also (nm) strictly increasing, for if they were bounded we would get
|bnm,kmrkm | < C for some r > 0 and C by (2). But ( 1

m )km → 0.

We pass now to the subsequence (bnm) which we denote again by (bm). We put

(4) tm := sign

 1

bm,km

∑
j<m

tj bj,km

 · 1

4m
.

Assume now that b∞ =
∑
m tm bm converges weakly with respect to S to a holomor-

phic germ. Then its Taylor series is b∞(z) =
∑
k≥0 b∞,k z

k, where the coefficients

are given by b∞,k =
∑
m≥0 tm bm,k. But we may compute as follows, using ( 3 )

and ( 4 ) :

|b∞,km | ≥
∣∣∣∣∑
j≤m

tj bj,km

∣∣∣∣−∑
j>m

|tj bj,km |

=

∣∣∣∣∑
j<m

tj bj,km

∣∣∣∣+ |tm bm,km | (same sign)

−
∑
j>m

|tj bj,km | ≥

≥ 0 + |bm,km | ·

|tm| − 2
∑
j>m

|tj |


= |bm,km | ·

1

3 · 4m
≥ mkm

3 · 4m
.

So |b∞,km |1/km goes to ∞, hence b∞ cannot have a positive radius of convergence,
a contradiction. So the theorem follows for the space H({t},C).

Let us consider now an arbitrary closed smooth submanifold A ⊆ C. By 8.8 the
projective cone H(N ⊇ A,C) → {H(N ⊇ {z},C), z ∈ A} generates the bornology.

Hence, the result follows from the case where A = {0} by 5.25 . �
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9. Real Analytic Curves

9.1. As for smoothness and holomorphy we would like to obtain cartesian closed-
ness for real analytic mappings. Thus, one should have at least the following:

f : R2 → R is real analytic in the classical sense if and only if f∨ : R → Cω(R,R)
is real analytic in some appropriate sense.

The following example shows that there are some subtleties involved.

Example. The mapping f : R2 3 (s, t) 7→ 1
(st)2+1 ∈ R is real analytic, whereas

there is no reasonable topology on Cω(R,R), such that the mapping f∨ : R →
Cω(R,R) is locally given by its convergent Taylor series.

Proof. For a topology on Cω(R,R) to be reasonable we require only that all
evaluations evt : Cω(R,R)→ R are bounded linear functionals. Now suppose that
f∨(s) =

∑∞
k=0 fks

k converges in Cω(R,R) for small s, where fk ∈ Cω(R,R). Then

the series converges even bornologically, see 9.5 below, so f(s, t) = evt(f
∨(s)) =∑

fk(t) sk for all t and small s. On the other hand f(s, t) =
∑∞
k=0(−1)k(st)2k for

|s| < 1/|t|. So for all t we have fk(t) = (−1)mtk for k = 2m, and 0 otherwise, since
for fixed t we have a real analytic function in one variable. Moreover, the series(∑

fkz
k
)

(t) =
∑

(−1)kt2kz2k has to converge in Cω(R,R) ⊗ C for |z| ≤ δ and all

t, see 9.5 . This is not the case: use z =
√
−1 δ, t = 1/δ. �

There is, however, another notion of real analytic curves.
Example. Let f : R → R be a real analytic function with finite radius of conver-
gence at 0. Now consider the curve c : R → RN defined by c(t) := (f(k · t))k∈N.
Clearly, the composite of c with any continuous linear functional is real analytic,
since these functionals depend only on finitely many coordinates. But the Taylor
series of c at 0 does not converge on any neighborhood of 0, since the radii of con-
vergence of the coordinate functions go to 0. For an even more natural example see

11.8 .

9.2. Lemma. For a formal power series
∑
k≥0 akt

k with real coefficients the
following conditions are equivalent.

(1) The series has positive radius of convergence.
(2)

∑
akrk converges absolutely for all sequences (rk) with rk t

k → 0 for all t > 0.
(3) The sequence (akrk) is bounded for all (rk) with rk t

k → 0 for all t > 0.
(4) For each sequence (rk) satisfying rk > 0, rkr` ≥ rk+`, and rk t

k → 0 for all
t > 0 there exists an ε > 0 such that (ak rk ε

k) is bounded.

This bornological description of real analytic curves will be rather important for

the theory presented here, since condition ( 3 ) and ( 4 ) are linear conditions on
the coefficients of a formal power series enforcing local convergence.

Proof. ( 1 )⇒ ( 2 ) The series
∑
akrk =

∑
(akt

k)(rkt
−k) converges absolutely for

some small t.

( 2 ) ⇒ ( 3 ) ⇒ ( 4 ) is clear.
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( 4 ) ⇒ ( 1 ) If the series has radius of convergence 0, then
∑
k |ak| (

1
n2 )k =∞ for

all n. There are kn ↗∞ with

kn−1∑
k=kn−1

|ak| ( 1
n2 )k ≥ 1.

We put rk := ( 1
n )k for kn−1 ≤ k < kn, then

∑
k |ak| rk( 1

n )k = ∞ for all n, so

(akrk( 2
n )k)k is not bounded for any n, but rk t

k, which equals ( tn )k for kn−1 ≤ k <
kn, converges to 0 for all t > 0, and the sequence (rk) is subadditive as required. �

9.3. Theorem (Description of real analytic functions). For a smooth func-
tion c : R→ R the following statements are equivalent.

(1) The function c is real analytic.
(2) For each sequence (rk) with rk t

k → 0 for all t > 0, and each compact set K
in R, the set { 1

k! c
(k)(a) rk : a ∈ K, k ∈ N} is bounded.

(3) For each sequence (rk) satisfying rk > 0, rkr` ≥ rk+`, and rk t
k → 0 for

all t > 0, and each compact set K in R, there exists an ε > 0 such that
{ 1
k! c

(k)(a) rk ε
k : a ∈ K, k ∈ N} is bounded.

(4) For each compact set K ⊂ R there exist constants M,ρ > 0 with the property
that | 1k!c

(k)(a)| < Mρk for all k ∈ N and a ∈ K.

Proof. ( 1 ) ⇒ ( 4 ) Clearly, c is smooth. Since the Taylor series of c converges
at a there are constants Ma, ρa satisfying the claimed inequality for fixed a. For a′

with |a − a′| ≤ 1
2ρa

we obtain by differentiating c(a′) =
∑
`≥0

c(`)(a)
`! (a′ − a)` with

respect to a′ the estimate∣∣∣∣c(k)(a′)

k!

∣∣∣∣ ≤Maρ
k
a

1

k!

∂k

∂tk

∣∣∣∣
t=

1
2

1

1− t
,

hence the condition is satisfied locally with some new constants M ′a, ρ
′
a incorporat-

ing the estimates for the coefficients of 1
1−t . Since K is compact the claim follows.

( 4 ) ⇒ ( 2 ) We have | 1k! c
(k)(a) rk| ≤ Mrk(ρ)k which is bounded since rkρ

k → 0,
as required.

( 2 ) ⇒ ( 3 ) follows by choosing ε = 1.

( 3 ) ⇒ ( 1 ) Let ak := supa∈K | 1k! c
(k)(a)|. Using 9.2 .(4⇒1) these are the coeffi-

cients of a power series with positive radius ρ of convergence. Hence, the remainder
1

(k+1)!c
(k+1)(a+ θ(a′ − a))(a′ − a)k+1 of the Taylor series goes locally to zero. �

9.4. Corollary. Real analytic curves. For a curve c : R → E in a convenient
vector space E are equivalent:

(1) ` ◦ c : R → R is real analytic for all ` in some family of bounded linear
functionals, which generates the bornology of E.

(2) ` ◦ c : R→ R is real analytic for all ` ∈ E′
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A curve satisfying these equivalent conditions will be called real analytic.

Proof. The non-trivial implication is (1 ⇒ 2). So assume ( 1 ). By 2.14.6 the
curve c is smooth and hence ` ◦ c is smooth for all bounded linear ` : E → R and
satisfies (`◦ c)(k)(t) = `(c(k)(t)). In order to show that `◦ c is real analytic, we have
to prove boundedness of

`
({ 1

k!
c(k)(a)rk : a ∈ K, k ∈ N

})
=
{ 1

k!
(` ◦ c)(k)(a)rk : a ∈ K, k ∈ N

}
for all compact K ⊂ R and appropriate rk, by 9.3 . Since ` is bounded it suffices

to show that { 1
k!c

(k)(a)rk : a ∈ K, k ∈ N} is bounded, we follows since its image

under all ` mentioned in ( 1 ) is bounded, again by 9.3 . �

9.5. Lemma. Let E be a convenient vector space and let c : R → E be a curve.
Then the following conditions are equivalent.

(1) The curve c is locally given by a power series converging with respect to the
locally convex topology.

(2) The curve c factors locally over a topologically real analytic curve into EB for
some bounded absolutely convex set B ⊆ E.

(3) The curve c extends to a holomorphic curve from some open neighborhood U
of R in C into the complexification (EC, E

′
C).

Where a curve satisfying condition ( 1 ) will be called topologically real an-

alytic. One that satisfies condition ( 2 ) will be called bornologically real
analytic.

Proof. ( 1 ) ⇒ ( 3 ) For every t ∈ R one has for some δ > 0 and all |s| < δ

a converging power series representation c(t + s) =
∑∞
k=1 xks

k. For any complex
number z with |z| < δ the series converges for z = s in EC, hence c can be locally
extended to a holomorphic curve into EC. By the 1-dimensional uniqueness theorem
for holomorphic maps, these local extensions fit together to give a holomorphic
extension as required.

( 3 )⇒ ( 2 ) A holomorphic curve factors locally over (EC)B by 7.6 , where B can

be chosen of the form B ×
√
−1B. Hence, the restriction of this factorization to R

is real analytic into EB .

( 2 ) ⇒ ( 1 ) Let c be bornologically real analytic, i.e. c is locally real analytic
into some EB , which we may assume to be complete. Hence, c is locally even

topologically real analytic in EB by 9.6 and so also in E. �

Although topological real analyticity is a strictly stronger than real analyticity,

cf. 9.4 , sometimes the converse is true as the following slight generalization of
[Bochnak and Siciak, 1971, Lemma 7.1] shows.

9.6. Theorem. Let E be a convenient vector space and assume that a Baire
vector space topology on E′ exists for which the point evaluations evx for x ∈ E are
continuous. Then any real analytic curve c : R→ E is locally given by its Mackey



104 Chapter II . Calculus of Holomorphic and Real Analytic Mappings 9.7

convergent Taylor series, and hence is bornologically real analytic and topologically
real analytic for every locally convex topology compatible with the bornology.

Proof. Since c is real analytic, it is smooth and all derivatives exist in E, since E

is convenient, by 2.14.6 .

Let us fix t0 ∈ R, let an := 1
n!c

(n)(t0). It suffices to find some r > 0 for which
{rnan : n ∈ N0} is bounded; because then

∑
tnan is Mackey-convergent for |t| < r,

and its limit is c(t0 + t) since we can test this with functionals.

Consider the sets Ar := {λ ∈ E′ : |λ(an)| ≤ rn for all n ∈ N}. These Ar are closed
in the Baire topology, since the point evaluations at an are continuous. Since c
is real analytic,

⋃
r>0Ar = E′, and by the Baire property there is an r > 0 such

that the interior U of Ar is not empty. Let λ0 ∈ U , then for all λ in the open
neighborhood U − λ0 of 0 we have |λ(an)| ≤ |(λ+ λ0)(an)|+ |λ0(an)| ≤ 2rn. The
set U −λ0 is absorbing, thus for every λ ∈ E′ some multiple ελ is in U −λ0 and so
λ(an) ≤ 2

εr
n as required. �

9.7. Theorem. Linear real analytic mappings. Let E and F be convenient
vector spaces. For any linear mapping λ : E → F the following assertions are
equivalent.

(1) λ is bounded.
(2) λ ◦ c : R→ F is real analytic for all real analytic c : R→ E.
(3) λ ◦ c : R→ F is bornologically real analytic for all bornologically real analytic

curves c : R→ E
(4) λ◦ c : R→ F is real analytic for all bornologically real analytic curves c : R→

E

This will be generalized in 10.4 to non-linear mappings.

Proof. ( 1 ) ⇒ ( 3 ) ⇒ ( 4 ), and ( 2 ) ⇒ ( 4 ) are obvious.

( 4 ) ⇒ ( 1 ) Let λ satisfy ( 4 ) and suppose that λ is unbounded. By composing
with an ` ∈ E′ we may assume that λ : E → R and there is a bounded sequence
(xk) such that λ(xk) is unbounded. By passing to a subsequence we may suppose
that |λ(xk)| > k2k. Let ak := k−k xk, then (rk ak) is bounded and (rk λ(ak)) is
unbounded for all r > 0. Hence, the curve c(t) :=

∑∞
k=0 t

k ak is given by a Mackey
convergent power series. So λ ◦ c is real analytic and near 0 we have λ(c(t)) =∑∞
k=0 bk t

k for some bk ∈ R. But λ(c(t)) =
∑N
k=0 λ(ak)tk + tNλ(

∑
k>N akt

k−N )

and t 7→
∑
k>N akt

k−N is still a Mackey converging power series in E. Comparing

coefficients we see that bk = λ(ak) and consequently λ(ak)rk is bounded for some
r > 0, a contradiction.

Proof of ( 1 ) ⇒ ( 2 ) Let c : R → E be real analytic. By theorem 9.3 the set

{ 1
k! c

(k)(a) rk : a ∈ K, k ∈ N} is bounded for all compact sets K ⊂ R and for all

sequences (rk) with rk t
k → 0 for all t > 0. Since c is smooth and bounded linear

mappings are smooth by 2.11 , the function λ ◦ c is smooth and (λ ◦ c)(k)(a) =

λ(c(k)(a)). By applying 9.3 we obtain that λ ◦ c is real analytic. �
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9.8. Corollary. For two convenient vector space structures on a vector space E
the following statements are equivalent:

(1) They have the same bounded sets.
(2) They have the same smooth curves.
(3) They have the same real analytic curves.

Proof. ( 1 ) ⇔ ( 2 ) was shown in 2.11 . The implication ( 1 ) ⇒ ( 3 ) follows

from 9.3 , which shows that real analyticity is a bornological concept, whereas the

implication ( 1 ) ⇐ ( 3 ) follows from 9.7 . �

9.9. Corollary. If a cone of linear maps Tα : E → Eα between convenient vector
spaces generates the bornology on E, then a curve c : R → E is Cω resp. C∞

provided all the composites Tα ◦ c : R→ Eα are.

Proof. The statement on the smooth curves is shown in 3.8 . That on the real

analytic curves follows again from the bornological condition of 9.3 . �

10. Real Analytic Mappings

10.1. Theorem (Real analytic functions on Fréchet spaces). Let U ⊆ E
be open in a real Fréchet space E. The following statements on f : U → R are
equivalent:

(1) f is smooth and is real analytic along topologically real analytic curves.
(2) f is smooth and is real analytic along affine lines.
(3) f is smooth and is locally given by its pointwise converging Taylor series.
(4) f is smooth and is locally given by its uniformly and absolutely converging

Taylor series.
(5) f is locally given by a uniformly and absolutely converging power series.

(6) f extends to a holomorphic mapping f̃ : Ũ → C for an open subset Ũ in the

complexification EC with Ũ ∩ E = U .

Proof. ( 1 ) ⇒ ( 2 ) is obvious. The implication ( 2 ) ⇒ ( 3 ) follows from 7.14 ,

( 1 ) ⇒ ( 2 ), whereas ( 3 ) ⇒ ( 4 ) follows from 7.14 ,( 2 ) ⇒ ( 3 ), and ( 4 ) ⇒
( 5 ) is obvious.

Proof of ( 5 ) ⇒ ( 6 ) Locally we can extend converging power series into the

complexification by 7.14 . Then we take the union Ũ of their domains of definition

and use uniqueness to glue f̃ which is holomorphic by 7.24 .

Proof of ( 6 )⇒ ( 1 ) Obviously, f is smooth. Any topologically real analytic curve

c in E can locally be extended to a holomorphic curve in EC by 9.5 . So f ◦ c is
real analytic. �
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10.2. The assumptions ‘f is smooth’ cannot be dropped in 10.1.1 even in finite
dimensions, as shown by the following example, due to [Boman, 1967].

Example. The mapping f : R2 → R, defined by f(x, y) := xyn+2

x2+y2 is real analytic

along real analytic curves, is n-times continuous differentiable but is not smooth
and hence not real analytic.

Proof. Take a real analytic curve t 7→ (x(t), y(t)) into R2. The components can be
factored as x(t) = tku(t), y(t) = tkv(t) for some k and real analytic curves u, v with

u(0)2 +v(0)2 6= 0. The composite f ◦(x, y) is then the function t 7→ tk(n+1) uvn+2

u2+v2 (t),
which is obviously real analytic near 0. The mapping f is n-times continuous
differentiable, since it is real analytic on R2\{0} and the directional derivatives of
order i are (n + 1 − i)-homogeneous, hence continuously extendable to R2. But f
cannot be (n+ 1)-times continuous differentiable, otherwise the derivative of order
n+ 1 would be constant, and hence f would be a polynomial. �

10.3. Definition (Real analytic mappings). Let E be a convenient vector
space. Let us denote by Cω(R, E) the space of all real analytic curves.

Let U ⊆ E be c∞-open, and let F be a second convenient vector space. A mapping
f : U → F will be called real analytic or Cω for short, if f is real analytic
along real analytic curves and is smooth (i.e. is smooth along smooth curves); so
f ◦ c ∈ Cω(R, F ) for all c ∈ Cω(R, E) with c(R) ⊆ U and f ◦ c ∈ C∞(R, F ) for all
c ∈ C∞(R, E) with c(R) ⊆ U . Let us denote by Cω(U,F ) the space of all real
analytic mappings from U to F .

10.4. Analogue of Hartogs’ Theorem for real analytic mappings. Let E
and F be convenient vector spaces, let U ⊆ E be c∞-open, and let f : U → F .
Then f is real analytic if and only if f is smooth and λ ◦ f is real analytic along
each affine line in E, for all λ ∈ F ′.

Proof. One direction is clear, and by definition 10.3 we may assume that F = R.

Let c : R→ U be real analytic. We show that f ◦c is real analytic by using theorem

9.3 . So let (rk) be a sequence such that rkr` ≥ rk+` and rk t
k → 0 for all t > 0

and let K ⊂ R be compact. We have to show, that there is an ε > 0 such that the
set { 1

`! (f ◦ c)
(`)(a) rl (

ε
2 )` : a ∈ K, ` ∈ N} is bounded.

By theorem 9.3 the set { 1
n!c

(n)(a) rn : n ≥ 1, a ∈ K} is contained in some bounded
absolutely convex subset B ⊆ E, such that EB is a Banach space. Clearly, for the
inclusion iB : EB → E the function f ◦ iB is smooth and real analytic along affine

lines. Since EB is a Banach space, by 10.1.2 ⇒ 10.1.4 f ◦ iB is locally given
by its uniformly and absolutely converging Taylor series. Then for each a ∈ K by

7.14.2 ⇒ 7.14.4 there is an ε > 0 such that the set { 1
k!d

kf(c(a))(x1, . . . , xk) :

k ∈ N, xj ∈ εB} is bounded. For each y ∈ 1
2εB termwise differentiation gives

dpf(c(a) + y)(x1, . . . , xp) =
∑
k≥p

1
(k−p)!d

kf(c(a))(x1, . . . , xp, y, . . . , y), so we may

assume that {dkf(c(a))(x1, . . . , xk)/k! : k ∈ N, xj ∈ εB, a ∈ K} is contained in
[−C,C] for some C > 0 and some uniform ε > 0.
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The Taylor series of f ◦ c at a is given by

(f ◦ c)(a+ t) =
∑
`≥0

∑
k≥0

1
k!

∑
(mn)∈NN

0∑
nmn=k∑
nmn n=`

k!∏
nmn!

dkf(c(a))
(∏
n

( 1
n!c

(n)(a))mn
)
t`,

where
∏
n

xmnn := (x1, . . . , x1︸ ︷︷ ︸
m1

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn

, . . . ).

This follows easily from composing the Taylor series of f and c and ordering by
powers of t. Furthermore, we have∑

(mn)∈NN
0∑

nmn=k∑
nmn n=`

k!∏
nmn!

=
(
`−1
k−1

)

by the following argument: It is the `-th Taylor coefficient at 0 of the function
(
∑
n≥0 t

n − 1)k = ( t
1−t )

k = tk
∑∞
j=0

(−k
j

)
(−t)j , which turns out to be the binomial

coefficient in question.

By the foregoing considerations we may estimate as follows.

1
`! |(f ◦ c)

(`)(a)| rl ( ε2 )` ≤

≤
∑
k≥0

∣∣∣ 1
k!

∑
(mn)∈NN

0∑
nmn=k∑
nmn n=`

k!∏
nmn!

dkf(c(a))
(∏
n

( 1
n!c

(n)(a))mn
)∣∣∣ r` ( ε2 )`

≤
∑
k≥0

∣∣∣ 1
k!

∑
(mn)∈NN

0∑
nmn=k∑
nmn n=`

k!∏
nmn!

dkf(c(a))
(∏
n

( 1
n!c

(n)(a) rn ε
n)mn

)∣∣∣ 1
2`

≤
∑
k≥0

(
`−1
k−1

)
C 1

2`
= 1

2C,

because ∑
(mn)∈NN

0∑
nmn=k∑
nmn n=`

k!∏
nmn!

∏
n

( 1
n!c

(n)(a) εn rn)mn ∈
(
`−1
k−1

)
(εB)k ⊆ (EB)k. �

10.5. Corollary. Let E and F be convenient vector spaces, let U ⊆ E be c∞-open,
and let f : U → F . Then f is real analytic if and only if f is smooth and λ ◦ f ◦ c
is real analytic for every periodic (topologically) real analytic curve c : R→ U ⊆ E
and all λ ∈ F ′.

Proof. By 10.4 f is real analytic if and only if f is smooth and λ ◦ f is real
analytic along topologically real analytic curves c : R → E. Let h : R → R be
defined by h(t) = t0 + ε · sin t. Then c ◦ h : R → R → U is a (topologically)
real analytic, periodic function with period 2π, provided c is (topologically) real
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analytic. If c(t0) ∈ U we can choose ε > 0 such that h(R) ⊆ c−1(U). Since sin is
locally around 0 invertible, real analyticity of λ ◦ f ◦ c ◦ h implies that λ ◦ f ◦ c is
real analytic near t0. Hence, the proof is completed. �

10.6. Corollary. Reduction to Banach spaces. Let E be a convenient vector
space, let U ⊆ E be c∞-open, and let f : U → R be a mapping. Then f is real
analytic if and only if the restriction f : EB ⊇ U ∩ EB → R is real analytic for all
bounded absolutely convex subsets B of E.

So any result valid on Banach spaces can be translated into a result valid on con-
venient vector spaces.

Proof. By theorem 10.4 it suffices to check f along bornologically real analytic

curves. These factor by definition 9.4 locally to real analytic curves into some
EB . �

10.7. Corollary. Let U be a c∞-open subset in a convenient vector space E and
let f : U → R be real analytic. Then for every bounded B there is some rB > 0
such that the Taylor series y 7→

∑
1
k!d

kf(x)(yk) converges to f(x + y) uniformly
and absolutely on rBB.

Proof. Use 10.6 and 10.1.4 . �

10.8. Scalar analytic functions on convenient vector spaces E are in general not
germs of holomorphic functions from EC to C:

Example. Let fk : R→ R be real analytic functions with radius of convergence at
zero converging to 0 for k → ∞. Let f : R(N) → R be the mapping defined on the
countable sum R(N) of the reals by f(x0, x1, . . . ) :=

∑∞
k=1 xkfk(x0). Then f is real

analytic, but there is no complex valued holomorphic mapping f̃ on some neigh-
borhood of 0 in C(N) which extends f , and the Taylor series of f is not pointwise
convergent on any c∞-open neighborhood of 0.

Proof. Claim. f is real analytic.
Since the limit R(N) = lim−→n

Rn is regular, every smooth curve (and hence every real

analytic curve) in R(N) is locally smooth (resp. real analytic) into Rn for some n.
Hence, f ◦ c is locally just a finite sum of smooth (resp. real analytic) functions
and is therefore smooth (resp. real analytic).

Claim. f has no holomorphic extension.
Suppose there exists some holomorphic extension f̃ : U → C, where U ⊆ C(N) is c∞-
open neighborhood of 0, and is therefore open in the locally convex Silva topology by

4.11.2 . Then U is even open in the box-topology 52.7 , i.e., there exist εk > 0 for

all k, such that {(zk) ∈ C(N) : |zk| ≤ εk for all k} ⊆ U . Let U0 be the open disk in C
with radius ε0 and let f̃k : U0 → C be defined by f̃k(z) := f̃(z, 0, . . . , 0, εk, 0, . . . )

1
εk

,

where εk is inserted instead of the variable xk. Obviously, f̃k is an extension of
fk, which is impossible, since the radius of convergence of fk is less than ε0 for k
sufficiently large.



11.2 10. Real Analytic Mappings 109

Claim. The Taylor series does not converge.
If the Taylor series would be pointwise convergent on some U , then the previous
arguments for R(N) instead of C(N) would show that the radii of convergence of the
fk were bounded from below. �

11. The Real Analytic Exponential Law

11.1. Spaces of germs of real-analytic functions. Let M be a real analytic
finite dimensional manifold. If f : M → M ′ is a mapping between two such
manifolds, then f is real analytic if and only if f maps smooth curves into smooth

ones and real analytic curves into real analytic ones, by 10.1 .

For each real analytic manifold M of real dimension m there is a complex manifold
MC of complex dimension m containing M as a real analytic closed submanifold,
whose germ along M is unique ([Whitney and Bruhat, 1959, Prop. 1]), and which
can be chosen even to be a Stein manifold, see [Grauert, 1958, section 3]. The
complex charts are just extensions of the real analytic charts of an atlas of M into
the complexification of the modeling real vector space.

Real analytic mappings f : M → M ′ are the germs along M of holomorphic
mappings W →M ′C for open neighborhoods W of M in MC.

Let Cω(M,F ) be the space of real analytic functions f : M → F , for
any convenient vector space F , and let H(MC ⊇ M,C) be the space of germs

along M of holomorphic functions as in 8.3 . Furthermore, for a subset A ⊆ M
let Cω(M ⊇ A,R) denotes the space of germs of real analytic functions
along A, defined on some neighborhood of A.

11.2. Lemma. For any subset A of M the complexification of the real vector space
Cω(M ⊇ A,R) is the complex vector space H(MC ⊇ A,C).

Definition. For any A ⊆ M of a real analytic manifold M we will topologize the
space Cω(M ⊇ A,R) of real analytic sections as subspace of H(MC ⊇ A,C), in fact
as the real part of it.

Proof. Let f, g ∈ Cω(M ⊇ A,R). These are germs of real analytic mappings
defined on some open neighborhood of A in M . Inserting complex numbers into
the locally convergent Taylor series in local coordinates shows, that f and g can be
considered as holomorphic mappings from some neighborhood W of A in MC, which
have real values if restricted to W ∩M . The mapping h := f +

√
−1g : W → C

gives then an element of H(MC ⊇ A,C).

Conversely, let h ∈ H(MC ⊇ A,C). Then h is the germ of a holomorphic function

h̃ : W → C for some open neighborhood W of A in MC. The decomposition of h
into real and imaginary part f = 1

2 (h + h̄) and g = 1
2
√
−1

(h − h̄), which are real

analytic functions if restricted to W ∩M , gives elements of Cω(M ⊇ A,R).

These correspondences are inverse to each other since a holomorphic germ is deter-
mined by its restriction to a germ of mappings M ⊇ A→ C. �
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11.3. Lemma. For a finite dimensional real analytic manifold M the inclusion
Cω(M,R)→ C∞(M,R) is continuous.

Proof. Consider the following diagram, where W is an open neighborhood of M
in its complexification MC.

Cω(M,R) �
� inclusion //

11.2direct summand

��

C∞(M,R)

direct summand

��
H(MC ⊇M,C)

� � inclusion // C∞(M,R2)

H(W,C)
� � inclusion

8.2

//

restriction 8.4

OO

C∞(W,R2)

restriction

OO

�

11.4. Theorem (Structure of Cω(M ⊇ A,R) for closed subsets A of real
analytic manifolds M). The inductive cone

Cω(M ⊇ A,R)← { Cω(W,R) : A ⊆W ⊆
open

M}

is regular, i.e. every bounded set is contained and bounded in some step.

The projective cone

Cω(M ⊇ A,R)→ { Cω(M ⊇ K,R) : K compact in A}
generates the bornology of Cω(M ⊇ A,R).

If A is even a smooth submanifold, then the following projective cone also generates
the bornology.

Cω(M ⊇ A,R)→ { Cω(M ⊇ {x},R) : x ∈ A}

The space Cω(Rm ⊇ {0},R) is also the regular inductive limit of the spaces `pr(r ∈
Rm+ ) for all 1 ≤ p ≤ ∞, see 8.1 .

For general closed A ⊆ N the space Cω(M ⊇ A,R) is Montel (hence quasi-complete
and reflexive), and ultra-bornological (hence a convenient vector space). It is also
webbed and conuclear. If A is compact then it is even a strongly nuclear Silva space
and its dual is a nuclear Fréchet space and it is smoothly paracompact. It is however
not a Baire space.

Proof. This follows using 11.2 from 8.4 , 8.6 , and 8.8 by passing to the real
parts and from the fact that all properties are inherited by complemented subspaces
as Cω(M ⊇ A,R) of H(MC ⊇ A,C). �

11.5. Corollary. A subset B ⊆ Cω(Rm ⊇ {0},R) is bounded if and only if there

exists an r > 0 such that { f
(α)(0)
α! r|α| : f ∈ B, α ∈ Nm0 } is bounded in R.

Proof. The space Cω(Rm ⊇ {0},R) is the regular inductive limit of the spaces

`∞r for r ∈ Rm+ by 11.4 . Hence, B is bounded if and only if it is contained and
bounded in `∞r for some r ∈ Rm+ , which is the looked for condition. �



11.7 11. The Real Analytic Exponential Law 111

11.6. Theorem (Special real analytic uniform boundedness principle).
For any closed subset A ⊆ M of a real analytic manifold M , the space Cω(M ⊇
A,R) satisfies the uniform S-boundedness principle for any point separating set S
of bounded linear functionals.

If A has no isolated points and M is 1-dimensional this applies to the set of all
point evaluations evt, t ∈ A.

Proof. Again this follows from 5.24 using now 11.4 . If A has no isolated points
and M is 1-dimensional the point evaluations are separating, by the uniqueness
theorem for holomorphic functions. �

Direct proof of a particular case. We show that Cω(R,R) satisfies the uniform
S-boundedness principle for the set S of all point evaluations.

We check property 5.22.2 . Let B ⊆ Cω(R,R) be absolutely convex such that
evt(B) is bounded for all t and such that Cω(R,R)B is complete. We have to show
that B is complete.

By lemma 11.3 the set B satisfies the conditions of 5.22.2 in the space C∞(R,R).
Since C∞(R,R) satisfies the uniform S-boundedness principle, cf. [Frölicher and
Kriegl, 1988], the set B is bounded in C∞(R,R). Hence, all iterated derivatives at

points are bounded on B, and a fortiori the conditions of 5.22.2 are satisfied for

B in H(R,C). By the particular case of theorem 8.10 the set B is bounded in
H(R,C) and hence also in the direct summand Cω(R,R). �

11.7. Theorem. The real analytic curves in Cω(R,R) correspond exactly to the
real analytic functions R2 → R.

Proof. (⇒) Let f : R → Cω(R,R) be a real analytic curve. Then f : R →
Cω(R ⊇ {t},R) is also real analytic. We use theorems 11.4 and 9.6 to conclude
that f is even a topologically real analytic curve in Cω(R ⊇ {t},R). By lemma

9.5 for every s ∈ R the curve f can be extended to a holomorphic mapping from

an open neighborhood of s in C to the complexification 11.2 H(C ⊇ {t},C) of
Cω(R ⊇ {t},R).

From 8.4 it follows that H(C ⊇ {t},C) is the regular inductive limit of all spaces

H(U,C), where U runs through some neighborhood basis of t in C. Lemma 7.7
shows that f is a holomorphic mapping V → H(U,C) for some open neighborhoods
U of t and V of s in C.

By the exponential law for holomorphic mappings (see 7.22 ) the canonically asso-
ciated mapping f∧ : V ×U → C is holomorphic. So its restriction is a real analytic
function R× R→ R near (s, t) which coincides with f∧ for the original f .

(⇐) Let f : R2 → R be a real analytic mapping. Then f(t, ) is real analytic, so
the associated mapping f∨ : R → Cω(R,R) makes sense. It remains to show that
it is real analytic. Since the mappings Cω(R,R) → Cω(R ⊇ K,R) generate the

bornology, by 11.4 , it is by 9.9 enough to show that f∨ : R → Cω(R ⊇ K,R)
is real analytic for each compact K ⊆ R, which may be checked locally near each
s ∈ R.
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f : R2 → R extends to a holomorphic function on an open neighborhood V × U of
{s} ×K in C2. By cartesian closedness for the holomorphic setting the associated
mapping f∨ : V → H(U,C) is holomorphic, so its restriction V ∩ R → Cω(U ∩
R,R)→ Cω(K,R) is real analytic as required. �

11.8. Remark. From 11.7 it follows that the curve c : R→ Cω(R,R) defined in

9.1 is real analytic, but it is not topologically real analytic. In particular, it does
not factor locally to a real analytic curve into some Banach space Cω(R,R)B for a
bounded subset B and it has no holomorphic extension to a mapping defined on a
neighborhood of R in C with values in the complexification H(R,C) of Cω(R,R),

cf. 9.5 .

11.9. Lemma. For a real analytic manifold M , the bornology on Cω(M,R) is
induced by the following cone:
Cω(M,R)−c

∗
→ Cα(R,R) for all Cα-curves c : R→M , where α equals ∞ and ω.

Proof. The maps c∗ are bornological since Cω(M,R) is convenient by 11.4 ,

and by the uniform S-boundedness principle 11.6 for Cω(R,R) and by 5.26 for
C∞(R,R) it suffices to check that evt ◦c∗ = evc(t) is bornological, which is obvious.

Conversely, we consider the identity mapping i from the space E into Cω(M,R),
where E is the vector space Cω(M,R), but with the locally convex structure induced
by the cone.
Claim. The bornology of E is complete.

The spaces Cω(R,R) and C∞(R,R) are convenient by 11.4 and 2.15 , respectively.
So their product ∏

c∈Cω(R,M)

Cω(R,R)×
∏

c∈C∞(R,M)

C∞(R,R)

is also convenient. By theorem 10.1.1 ⇔ 10.1.5 the embedding of E into this
product has closed image, hence the bornology of E is complete.

Now we may apply the uniform S-boundedness principle for Cω(M,R) 11.6 , since
obviously evp ◦i = ev0 ◦c∗p is bounded, where cp is the constant curve with value p,
for all p ∈M . �

11.10. Structure on Cω(U,F ). Let E be a real convenient vector space and let
U be c∞-open in E. We equip the space Cω(U,R) of all real analytic functions (cf.

10.3 ) with the locally convex topology induced by the families of mappings

Cω(U,R)−c
∗
→ Cω(R,R), for all c ∈ Cω(R, U)

Cω(U,R)−c
∗
→ C∞(R,R), for all c ∈ C∞(R, U).

For a finite dimensional vector spaces E this definition gives the same bornology

as the one defined in 11.1 , by lemma 11.9 .
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If F is another convenient vector space, we equip the space Cω(U,F ) of all real

analytic mappings (cf. 10.3 ) with the locally convex topology induced by the
family of mappings

Cω(U,F )−λ∗→ Cω(U,R), for all λ ∈ F ′.

Obviously, the injection Cω(U,F )→ C∞(U,F ) is bounded and linear.

11.11. Lemma. Let E and F be convenient vector spaces and let U ⊆ E be
c∞-open. Then Cω(U,F ) is also convenient.

Proof. This follows immediately from the fact that Cω(U,F ) can be considered
as closed subspace of the product of factors Cω(U,R) indexed by all λ ∈ F ′.
And Cω(U,R) can be considered as closed subspace of the product of the fac-
tors Cω(R,R) indexed by all c ∈ Cω(R, U) and the factors C∞(R,R) indexed by
all c ∈ C∞(R, U). Since all factors are convenient so are the closed subspaces. �

11.12. Theorem (General real analytic uniform boundedness principle).
Let E and F be convenient vector spaces and U ⊆ E be c∞-open. Then Cω(U,F )
satisfies the uniform S-boundedness principle, where S := {evx : x ∈ U}.

Proof. The convenient structure of Cω(U,F ) is induced by the cone of mappings
c∗ : Cω(U,F )→ Cω(R, F ) (c ∈ Cω(R, U)) together with the maps c∗ : Cω(U,F )→
C∞(R, F ) (c ∈ C∞(R, U)). Both spaces Cω(R, F ) and C∞(R, F ) satisfy the uni-

form T -boundedness principle, where T := {evt : t ∈ R}, by 11.6 and 5.26 ,
respectively. Hence, Cω(U,F ) satisfies the uniform S-boundedness principle by

lemma 5.25 , since evt ◦ c∗ = evc(t). �

11.13. Remark. Let E and F be convenient vector spaces. Then L(E,F ), the

space of bounded linear mappings from E to F, are by 9.7 exactly the real analytic
ones.

11.14. Theorem. Let Ei for i = 1, . . . n and F be convenient vector spaces. Then

the bornology on L(E, . . . , En;F ) (described in 5.1 , see also 5.6 ) is induced by
the embedding L(E1, . . . , En;F )→ Cω(E1 × . . . En, F ).

Thus, mapping f into L(E1, . . . , En;F ) is real analytic if and only if the composites

evx ◦ f are real analytic for all x ∈ E1 × . . . En, by 9.9 .

Proof. Let S = {evx : x ∈ E1× . . .×En}. Since Cω(E1× . . .×En, F ) satisfies the

uniform S-boundedness principle 11.12 , the inclusion is bounded. On the other

hand L(E1, . . . , En;F ) also satisfies the uniform S-boundedness principle by 5.18 ,
so the identity from L(E1, . . . , En;F ) with the bornology induced from Cω(E1 ×
. . .× En, F ) into L(E1, . . . , En;F ) is bounded as well.

Since to be real analytic depends only on the bornology by 9.4 and since the conve-
nient vector space L(E1, . . . , En;F ) satisfies the uniform S-boundedness principle,
the second assertion follows also. �

The following two results will be generalized in 11.20 . At the moment we will
make use of the following lemma only in case where E = C∞(R,R).
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11.15. Lemma. For any convenient vector space E the flip of variables induces
an isomorphism L(E,Cω(R,R)) ∼= Cω(R, E′) as vector spaces.

Proof. For c ∈ Cω(R, E′) consider c̃(x) := evx ◦c ∈ Cω(R,R) for x ∈ E. By the

uniform S-boundedness principle 11.6 for S = {evt : t ∈ R} the linear mapping c̃
is bounded, since evt ◦c̃ = c(t) ∈ E′.
If conversely ` ∈ L(E,Cω(R,R)), we consider ˜̀(t) = evt ◦` ∈ E′ = L(E,R) for

t ∈ R. Since the bornology of E′ is generated by S := {evx : x ∈ E}, ˜̀ : R→ E′ is

real analytic, for evx ◦˜̀= `(x) ∈ Cω(R,R), by 11.14 . �

11.16. Corollary. We have C∞(R, Cω(R,R)) ∼= Cω(R, C∞(R,R)) as vector
spaces.

Proof. The dual C∞(R,R)′ is the free convenient vector space over R by 23.11 ,
and Cω(R,R) is convenient, so we have

C∞(R, Cω(R,R)) ∼= L(C∞(R,R)′, Cω(R,R))

∼= Cω(R, C∞(R,R)′′) by lemma 11.15

∼= Cω(R, C∞(R,R)),

by reflexivity of C∞(R,R), see 6.5.7 . �

11.17. Theorem. Let E be a convenient vector space, let U be c∞-open in E,
let f : R × U → R be a real analytic mapping and let c ∈ C∞(R, U). Then
c∗ ◦ f∨ : R→ Cω(U,R)→ C∞(R,R) is real analytic.

This result on the mixing of C∞ and Cω will become quite essential in the proof

of cartesian closedness. It will be generalized in 11.21 , see also 42.15 .

Proof. Let I ⊆ R be open and relatively compact, let t ∈ R and k ∈ N. Now
choose an open and relatively compact J ⊆ R containing the closure Ī of I. There
is a bounded subset B ⊆ E such that c | J : J → EB is a Lipk-curve in the Banach

space EB generated by B, by 1.8 . Let UB denote the open subset U ∩ EB of the
Banach space EB . Since the inclusion EB → E is continuous, f is real analytic as

a function R×UB → R×U → R. Thus, by 10.1 there is a holomorphic extension
f : V ×W → C of f to an open set V ×W ⊆ C × (EB)C containing the compact
set {t} × c(Ī). By cartesian closedness of the category of holomorphic mappings
f∨ : V → H(W,C) is holomorphic. Now recall that the bornological structure of
H(W,C) is induced by that of C∞(W,C) := C∞(W,R2). And c∗ : C∞(W,C) →
Lipk(I,C) is a bounded C-linear map, by the chain rule 12.8 for Lipk-mappings

and by the uniform boundedness principle for the point evaluations 12.9 . Thus,

c∗ ◦ f∨ : V → Lipk(I,C) is holomorphic, and hence its restriction to R ∩ V , which

has values in Lipk(I,R), is (even topologically) real analytic by 9.5 . Since t ∈ R
was arbitrary we conclude that c∗ ◦ f∨ : R → Lipk(I,R) is real analytic. But

the bornology of C∞(R,R) is generated by the inclusions into Lipk(I,R), by the

uniform boundedness principles 5.26 for C∞(R,R) and 12.9 for Lipk(R,R), and
hence c∗ ◦ f∨ : R→ C∞(R,R) is real analytic. �
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11.18. Theorem. Cartesian closedness. The category of real analytic mappings
between convenient vector spaces is cartesian closed. More precisely, for convenient
vector spaces E, F and G and c∞-open sets U ⊆ E and W ⊆ G a mapping
f : W × U → F is real analytic if and only if f∨ : W → Cω(U,F ) is real analytic.

Proof.Step 1. The theorem is true for W = G = F = R.

(⇐) Let f∨ : R → Cω(U,R) be Cω. We have to show that f : R × U → R is Cω.
We consider a curve c1 : R→ R and a curve c2 : R→ U .

If the ci are C∞, then c∗2 ◦ f∨ : R → Cω(U,R) → C∞(R,R) is Cω by assumption,
hence is C∞, so c∗2 ◦ f∨ ◦ c1 : R → C∞(R,R) is C∞. By cartesian closedness of
smooth mappings, (c∗2 ◦ f∨ ◦ c1)∧ = f ◦ (c1 × c2) : R2 → R is C∞. By composing
with the diagonal mapping ∆ : R→ R2 we obtain that f ◦ (c1, c2) : R→ R is C∞.

If the ci are Cω, then c∗2 ◦ f∨ : R → Cω(U,R) → Cω(R,R) is Cω by assumption,

so c∗2 ◦ f∨ ◦ c1 : R → Cω(R,R) is Cω. By theorem 11.7 the associated map

(c∗2 ◦ f∨ ◦ c1)∧ = f ◦ (c1 × c2) : R2 → R is Cω. So f ◦ (c1, c2) : R→ R is Cω.

(⇒) Let f : R × U → R be Cω. We have to show that f∨ : R → Cω(U,R) is real
analytic. Obviously, f∨ has values in this space. We consider a curve c : R→ U .

If c is C∞, then by theorem 11.17 the associated mapping c∗ ◦f∨ : R→ C∞(R,R)
is Cω.

If c is Cω, then f ◦ (Id×c) : R × R → R × U → R is Cω. By theorem 11.7 the
associated mapping (f ◦ (Id×c))∨ = c∗ ◦ f∨ : R→ Cω(R,R) is Cω.

Step 2. The theorem is true for F = R.

(⇐) Let f∨ : W → Cω(U,R) be Cω. We have to show that f : W × U → R is Cω.
We consider a curve c1 : R→W and a curve c2 : R→ U .

If the ci are C∞, then c∗2 ◦ f∨ : W → Cω(U,R)→ C∞(R,R) is Cω by assumption,
hence is C∞, so c∗2 ◦ f∨ ◦ c1 : R → C∞(R,R) is C∞. By cartesian closedness of
smooth mappings, the associated mapping (c∗2 ◦ f∨ ◦ c1)∧ = f ◦ (c1 × c2) : R2 → R
is C∞. So f ◦ (c1, c2) : R→ R is C∞.

If the ci are Cω, then f∨ ◦ c1 : R → W → Cω(U,R) is Cω by assumption, so
by step 1 the mapping (f∨ ◦ c1)∧ = f ◦ (c1 × IdU ) : R × U → R is Cω. Hence,
f ◦ (c1, c2) = f ◦ (c1 × IdU ) ◦ (Id, c2) : R→ R is Cω.

(⇒) Let f : W × U → R be Cω. We have to show that f∨ : W → Cω(U,R) is real
analytic. Obviously, f∨ has values in this space. We consider a curve c1 : R→W .

If c1 is C∞, we consider a second curve c2 : R→ U . If c2 is C∞, then f ◦ (c1× c2) :
R × R → W × U → R is C∞. By cartesian closedness the associated mapping
(f ◦ (c1 × c2))∨ = c∗2 ◦ f∨ ◦ c1 : R → C∞(R,R) is C∞. If c2 is Cω, the mapping
f ◦ (IdW ×c2) : W ×R→ R and also the flipped one (f ◦ (IdW ×c2))∼ : R×W → R
are Cω, hence by theorem 11.17 c∗1 ◦ ((f ◦ (IdW ×c2))∼)∨ : R → C∞(R,R) is

Cω. By corollary 11.16 the associated mapping (c∗1 ◦ ((f ◦ (IdW ×c2))∼)∨)∼ =
c∗2 ◦ f∨ ◦ c1 : R→ Cω(R,R) is C∞. So for both families describing the structure of
Cω(U,R) we have shown that the composite with f̌ ◦ c1 is C∞, so f∨ ◦ c1 is C∞.

If c1 is Cω, then f ◦ (c1 × IdU ) : R × U → W × U → R is Cω. By step 1 the
associated mapping (f ◦ (c1 × IdU ))∨ = f∨ ◦ c1 : R→ Cω(U,R) is Cω.
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Step 3. The general case.

f : W × U → F is Cω

⇔ λ ◦ f : W × U → R is Cω for all λ ∈ F ′

⇔ (λ ◦ f)∨ = λ∗ ◦ f∨ : W → Cω(U,R) is Cω, by step 2 and 11.10

⇔ f∨ : W → Cω(U,F ) is Cω. �

11.19. Corollary. Canonical mappings are real analytic. The following
mappings are Cω:

(1) ev : Cω(U,F )× U → F , (f, x) 7→ f(x),
(2) ins : E → Cω(F,E × F ), x 7→ (y 7→ (x, y)),
(3) ( )∧ : Cω(U,Cω(V,G))→ Cω(U × V,G),
(4) ( )∨ : Cω(U × V,G)→ Cω(U,Cω(V,G)),
(5) comp : Cω(F,G)× Cω(U,F )→ Cω(U,G), (f, g) 7→ f ◦ g,
(6) Cω( , ) : Cω(E2, E1)× Cω(F1, F2)→
→ Cω(Cω(E1, F1), Cω(E2, F2)), (f, g) 7→ (h 7→ g ◦ h ◦ f).

Proof. Just consider the canonically associated smooth mappings on multiple

products, as in 3.13 . �

11.20. Lemma. Canonical isomorphisms. One has the following natural
isomorphisms:

(1) Cω(W1, C
ω(W2, F )) ∼= Cω(W2, C

ω(W1, F )),
(2) Cω(W1, C

∞(W2, F )) ∼= C∞(W2, C
ω(W1, F )).

(3) Cω(W1, L(E,F )) ∼= L(E,Cω(W1, F )).
(4) Cω(W1, `

∞(X,F )) ∼= `∞(X,Cω(W1, F )).

(5) Cω(W1,Lipk(X,F )) ∼= Lipk(X,Cω(W1, F )).

In ( 4 ) the space X is a `∞-space, i.e. a set together with a bornology induced
by a family of real valued functions on X, cf. [Frölicher and Kriegl, 1988, 1.2.4].

In ( 5 ) the space X is a Lipk-space, cf. [Frölicher and Kriegl, 1988, 1.4.1]. The

spaces `∞(X,F ) and Lipk(W,F ) are defined in [Frölicher and Kriegl, 1988, 3.6.1
and 4.4.1].

Proof. All isomorphisms, as well as their inverse mappings, are given by the flip of
coordinates: f 7→ f̃ , where f̃(x)(y) := f(y)(x). Furthermore, all occurring function
spaces are convenient and satisfy the uniform S-boundedness theorem, where S
is the set of point evaluations, by 11.11 , 11.14 , 11.12 , and by [Frölicher and
Kriegl, 1988, 3.6.1, 4.4.2, 3.6.6, and 4.4.7].

That f̃ has values in the corresponding spaces follows from the equation f̃(x) =

evx ◦ f . One only has to check that f̃ itself is of the corresponding class, since it
follows that f 7→ f̃ is bounded. This is a consequence of the uniform boundedness
principle, since

(evx ◦ ˜( ))(f) = evx(f̃) = f̃(x) = evx ◦f = (evx)∗(f).
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That f̃ is of the appropriate class in ( 1 ) and ( 2 ) follows by composing with

c1 ∈ Cβ1(R,W1) and Cβ2(λ, c2) : Cα2(W2, F ) → Cβ2(R,R) for all λ ∈ F ′ and
c2 ∈ Cβ2(R,W2), where βk and αk are in {∞, ω} and βk ≤ αk for k ∈ {1, 2}. Then

Cβ2(λ, c2) ◦ f̃ ◦ c1 = (Cβ1(λ, c1) ◦ f ◦ c2)∼ : R → Cβ2(R,R) is Cβ1 by 11.7 and

11.16 , since Cβ1(λ, c1) ◦ f ◦ c2 : R→W2 → Cα1(W1, F )→ Cβ1(R,R) is Cβ2 .

That f̃ is of the appropriate class in ( 3 ) follows, since L(E,F ) is the c∞-closed
subspace of Cω(E,F ) formed by the linear Cω-mappings.

That f̃ is of the appropriate class in ( 4 ) or ( 5 ) follows from ( 3 ), using the free

convenient vector spaces `1(X) or λk(X) over the `∞-space X or the the Lipk-
space X, see [Frölicher and Kriegl, 1988, 5.1.24 or 5.2.3], satisfying `∞(X,F ) ∼=
L(`1(X), F ) or satisfying Lipk(X,F ) ∼= L(λk(X), F ). Existence of these free con-

venient vector spaces can be proved in a similar way as 23.6 . �

Definition. By a C∞,ω-mapping f : U × V → F we mean a mapping f for which
f∨ ∈ C∞(U,Cω(V, F )).

11.21. Theorem. Composition of C∞,ω-mappings. Let f : U × V → F and
g : U1×V1 → V be C∞,ω, and h : U1 → U be C∞. Then f◦(h◦pr1, g) : U1×V1 → F ,
(x, y) 7→ f(h(x), g(x, y)) is C∞,ω.

Proof. We have to show that the mapping x 7→ (y 7→ f(h(x), g(x, y))), U1 →
Cω(V1, F ) is C∞. It is well-defined, since f and g are Cω in the second variable. In
order to show that it is C∞ we compose with λ∗ : Cω(V1, F ) → Cω(V1,R), where
λ ∈ F ′ is arbitrary. Thus, it is enough to consider the case F = R. Furthermore,
we compose with c∗ : Cω(V1,R) → Cα(R,R), where c ∈ Cα(R, V1) is arbitrary for
α equal to ω and ∞.

In case α =∞ the composite with c∗ is C∞, since the associated mapping U1×R→
R is f ◦ (h ◦ pr1, g ◦ (id× c)) which is C∞.

Now the case α = ω. Let I ⊆ R be an arbitrary open bounded interval. Then
c∗ ◦ g∨ : U1 → Cω(R, G) is C∞, where G is the convenient vector space containing
V as an c∞-open subset, and has values in {γ : γ(Ī) ⊆ V } ⊆ Cω(R, G). This set is
c∞-open, since it is open for the topology of uniform convergence on compact sets
which is coarser than the bornological topology on C∞(R, E) and hence than the

c∞-topology on Cω(R, G), see 11.10 .

Thus, the composite with c∗, comp ◦(f∨ ◦ h, c∗ ◦ g∨) is C∞, since f∨ ◦ h : U1 →
U → Cω(V, F ) is C∞, c∗ ◦ g∨ : U1 → Cω(R, G) is C∞ and comp : Cω(V,R)× {γ ∈
Cω(R, G) : γ(Ī) ⊆ V } → Cω(I,R) is Cω, because it is associated to ev ◦(id× ev) :
Cω(V, F )×{γ ∈ Cω(R, G) : γ(Ī) ⊆ V }× I → V . That ev : {γ ∈ Cω(R, G) : γ(Ī) ⊆
V }× I → R is Cω follows, since the associated mapping is the restriction mapping
Cω(R, G)→ Cω(I,G). �

11.22. Corollary. Let w : W1 →W be Cω, let u : U → U1 be smooth, let v : V →
V1 be Cω, and let f : U1 × V1 → W1 be C∞,ω. Then w ◦ f ◦ (u× v) : U × V → W
is again C∞,ω.

This is generalization of theorem 11.17 .
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Proof. Use 11.21 twice. �

11.23. Corollary. Let f : E ⊇ U → F be Cω, let I ⊆ R be open and bounded,
and α be ω or ∞. Then f∗ : Cα(R, E) ⊇ {c : c(Ī) ⊆ U} → Cα(I, F ) is Cω.

Proof. Obviously, f∗(c) := f ◦ c ∈ Cα(I, F ) is well-defined for all c ∈ Cα(R, E)
satisfying c(Ī) ⊆ U .

Furthermore, the composite of f∗ with any Cβ-curve γ : R → {c : c(Ī) ⊆ U} ⊆
Cα(R, E) is a Cβ-curve in Cα(I, F ) for β equal to ω or ∞. For β = α this follows

from cartesian closedness of the Cα-maps. For α 6= β this follows from 11.22 .

Finally, {c : c(Ī) ⊆ U} ⊆ Cα(R, E) is c∞-open, since it is open for the topology
of uniform convergence on compact sets which is coarser than the bornological and
hence than the c∞-topology on Cα(R, E). Here is the only place where we make
use of the boundedness of I. �

11.24. Lemma. Derivatives. The derivative d, where df(x)(v) := d
dt |t=0

f(x+ tv), is bounded and linear d : Cω(U,F )→ Cω(U,L(E,F )).

Proof. The differential df(x)(v) makes sense and is linear in v, because every real
analytic mapping f is smooth. So it remains to show that (f, x, v) 7→ df(x)(v) is
real analytic. So let f , x, and v depend real analytically (resp. smoothly) on a
real parameter s. Since (t, s) 7→ x(s) + tv(s) is real analytic (resp. smooth) into
U ⊆ E, the mapping r 7→ ((t, s) 7→ f(r)(x(s)+tv(s)) is real analytic into Cω(R2, F )
(resp. smooth into C∞(R2, F ). Composing with ∂

∂t |t=0: Cω(R2, F ) → Cω(R, F )

(resp. : C∞(R2, F ) → C∞(R, F )) shows that r 7→ (s 7→ d(f(r))(x(s))(v(s))), R →
Cω(R, F ) is real analytic. Considering the associated mapping on R2 composed
with the diagonal map shows that (f, x, v) 7→ df(x)(v) is real analytic. �

The following examples as well as several others can be found in [Frölicher and
Kriegl, 1988, 5.3.6].

11.25. Example. Let T : C∞(R,R)→ C∞(R,R) be given by T (f) = f ′. Then the
continuous linear differential equation x′(t) = T (x(t)) with initial value x(0) = x0

has a unique smooth solution x(t)(s) = x0(t+s) which is however not real analytic.

Note the curious form x′(t) = x(t)′ of this differential equation. Beware of careless
notation!

Proof. A smooth curve x : R→ C∞(R,R) is a solution of the differential equation
x′(t) = T (x(t)) if and only if ∂

∂t x̂(t, s) = ∂
∂s x̂(t, s). Hence, we have d

dt x̂(t, r− t) = 0,
i.e. x̂(t, r − t) is constant and hence equal to x̂(0, r) = x0(r). Thus, x̂(t, s) =
x0(t+ s).

Suppose x : R → C∞(R,R) were real analytic. Then the composite with ev0 :
C∞(R,R)→ R were a real analytic function. But this composite is just x0 = ev0◦x,
which is not in general real analytic. �

11.26. Example. Let E be either C∞(R,R) or Cω(R,R). Then the mapping
exp∗ : E → E is Cω, has invertible derivative at every point, but the image does
not contain an open neighborhood of exp∗(0).
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Proof. The mapping exp∗ is real analytic by 11.23 . Its derivative is given by

(exp∗)
′(f)(g) : t 7→ g(t)ef(t) and hence is invertible with g 7→ (t 7→ g(t)e−f(t))

as inverse mapping. Now consider the real analytic curve c : R → E given by
c(t)(s) = 1 − (ts)2. One has c(0) = 1 = exp∗(0), but c(t) is not in the image of
exp∗ for any t 6= 0, since c(t)( 1

t ) = 0 but exp∗(g)(t) = eg(t) > 0 for all g and t. �

Historical Remarks on Holomorphic and Real Analytic Calculus

The notion of holomorphic mappings used in section 15 was first defined by the
Italian Luigi Fantappié in the papers [Fantappié, 1930] and [Fantappié, 1933]:

S.1: “Wenn jeder Funktion y(t) einer Funktionenmenge H eine bestimmte
Zahl f entspricht, d.h. die Zahl f von der Funktion y(t) (unabhängige
Veränderliche in der Menge H) abhängt, werden wir sagen, daß ein Funk-
tional von y(t):

f = F [y(t)]

ist; H heißt das Definitionsfeld des Funktionals F .
[. . . ] gemischtes Funktional [. . . ]

f = F [y1(t1, . . .), . . . , yn(t1, . . .); z1, . . . , zm]”

He also considered the ‘functional transform’ and noticed the relation

f = F [y(t); z] corresponds to y 7→ f(z)

S.4: “Sei jetzt F (y(t)) ein Funktional, das in einem Funktionenbereich H (von
analytischen Funktionen) definiert ist, und y0(t) ein Funktion von H, die mit
einer Umgebung (r) oder (r, σ) zu H angehört. Wenn für jede analytische
Mannigfaltigkeit y(t;α1, . . . , αm), die in diese Umgebung eindringt (d.h. eine
solche, die für alle Wertesysteme α1, . . . , αm) eines Bereichs Γ eine Funktion
von t der Umgebung liefert), der Wert des Funktionals

Ft[y(t;α1, . . . , αm)] = f(α1, . . . , αm)

immer eine Funktion der Parameter α1, . . . , αm ist, die nicht nur in Γ definiert,
sondern dort noch eine analytische Funktion ist, werden wir sagen, daß das Funk-
tional F regulär ist in der betrachteten Umgebung y0(t). Wenn ein Funktional F
regulär ist in einer Umgebung jeder Funktion seines Definitionsbereiches, so heißt
F analytisch.”

The development in the complex case was much faster than in the smooth case
since one did not have to explain the concept of higher derivatives.

The Portuguese José Sebastião e Silva showed that analyticity in the sense of
Fantappié coincides with other concepts, in his dissertation [Sebastião e Silva,
1948], published as [Sebastião e Silva, 1950a], and in [Sebastião e Silva, 1953].
An overview over various notions of holomorphicity was given by the Brasilian
Domingos Pisanelli in [Pisanelli, 1972a] and [Pisanelli, 1972b].
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The main aim of this chapter is to discuss the abundance or scarcity of smooth
functions on a convenient vector space: E.g. existence of bump functions and parti-
tions of unity. This question is intimately related to differentiability of seminorms
and norms, and in many examples these are, if at all, only finitely often differen-
tiable. So we start this chapter with a short (but complete) account of finite order
differentiability, based on Lipschitz conditions on higher derivatives, since with this
notion we can get as close as possible to exponential laws. A more comprehensive
exposition of finite order Lipschitz differentiability can be found in the monograph
[Frölicher and Kriegl, 1988].

Then we treat differentiability of seminorms and convex functions, and we have
tried to collect all relevant information from the literature. We give full proofs of
all what will be needed later on or is of central interest. We also collect related
results, mainly on ‘generic differentiability’, i.e. differentiability on a dense Gδ-set.

If enough smooth bump functions exist on a convenient vector space, we call it
‘smoothly regular’. Although the smooth (i.e. bounded) linear functionals separate
points on any convenient vector space, stronger separation properties depend very
much on the geometry. In particular, we show that `1 and C[0, 1] are not even
C1-regular. We also treat more general ‘smooth spaces’ here since most results do
not depend on a linear structure, and since we will later apply them to manifolds.

In many problems like E. Borel’s theorem 15.4 that any power series appears
as Taylor series of a smooth function, or the existence of smooth functions with

given carrier 15.3 , one uses in finite dimensions the existence of smooth functions
with globally bounded derivatives. These do not exist in infinite dimensions in
general; even for bump functions this need not be true globally. Extreme cases
are Hilbert spaces where there are smooth bump functions with globally bounded
derivatives, and c0 which does not even admit C2-bump functions with globally
bounded derivatives.
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In the final section of this chapter a space which admits smooth partitions of unity
subordinated to any open cover is called smoothly paracompact. Fortunately, a
wide class of convenient vector spaces has this property, among them all spaces of
smooth sections of finite dimensional vector bundles which we shall need later as
modeling spaces for manifolds of mappings. The theorem 16.15 of [Toruńczyk,
1973] characterizes smoothly paracompact metrizable spaces, and we will give a
full proof. It is the only tool for investigating whether non-separable spaces are
smoothly paracompact and we give its main applications.

12. Differentiability of Finite Order

12.1. Definition. A mapping f : E ⊇ U → F , where E and F are convenient
vector spaces, and U ⊆ E is c∞-open, is called Lipk if f ◦ c is a Lipk-curve (see

1.2 ) for each c ∈ C∞(R, U).

This is equivalent to the property that f◦c is Lipk on c−1(U) for each c ∈ C∞(R, E).
This can be seen by reparameterization.

12.2. General curve lemma. Let E be a convenient vector space, and let cn ∈
C∞(R, E) be a sequence of curves which converges fast to 0, i.e., for each k ∈ N
the sequence nkcn is bounded. Let sn ≥ 0 be reals with

∑
n sn <∞.

Then there exists a smooth curve c ∈ C∞(R, E) and a converging sequence of reals
tn such that c(t+ tn) = cn(t) for |t| ≤ sn, for all n.

Proof. Let rn :=
∑
k<n( 2

k2 +2sk) and tn := rn+rn+1

2 . Let h : R→ [0, 1] be smooth

with h(t) = 1 for t ≥ 0 and h(t) = 0 for t ≤ −1, and put hn(t) := h(n2(sn +
t)).h(n2(sn−t)). Then we have hn(t) = 0 for |t| ≥ 1

n2 +sn and hn(t) = 1 for |t| ≤ sn,

and for the derivatives we have |h(j)
n (t)| ≤ n2j .Hj , where Hj := max{|h(j)| : t ∈ R}.

Thus, in the sum

c(t) :=
∑
n

hn(t− tn).cn(t− tn)

at most one summand is non-zero for each t ∈ R, and c is a smooth curve since for
each ` ∈ E′ we have

(` ◦ c)(t) =
∑
n

fn(t), where fn(t+ tn) := hn(t).`(cn(t)),

n2. sup
t
|f (k)
n (t)| = n2. sup

{
|f (k)
n (s+ tn)| : |s| ≤ 1

n2 + sn

}
≤ n2

k∑
j=0

(
k
j

)
n2jHj . sup

{
|(` ◦ cn)(k−j)(s)| : |s| ≤ 1

n2 + sn

}

≤
( k∑
j=0

(
k
j

)
n2j+2Hj

)
. sup

{
|(` ◦ cn)(i)(s)| : |s| ≤ max

n
( 1
n2 + sn) and i ≤ k

}
,

which is uniformly bounded with respect to n, since cn converges to 0 fast. �

12.3. Corollary. Let cn : R→ E be polynomials of bounded degree with values in
a convenient vector space E. If for each ` ∈ E′ the sequence n 7→ sup{|(` ◦ cn)(t) :
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|t| ≤ 1} converges to 0 fast, then the sequence cn converges to 0 fast in C∞(R, E),

so the conclusion of 12.2 holds.

Proof. The structure on C∞(R, E) is the initial one with respect to the cone

`∗ : C∞(R, E) → C∞(R,R) for all ` ∈ E′, by 3.9 . So we only have to show the
result for E = R. On the finite dimensional space of all polynomials of degree at
most d the expression in the assumption is a norm, and the inclusion into C∞(R,R)
is bounded. �

12.4. Difference quotients. For a curve c : R→ E with values in a vector space
E the difference quotient δkc of order k is given recursively by

δ0c := c,

δkc(t0, . . . , tk) := k
δk−1c(t0, . . . , tk−1)− δk−1c(t1, . . . , tk)

t0 − tk
,

for pairwise different ti. The constant factor k in the definition of δk is chosen in
such a way that δk approximates the k-th derivative. By induction, one can easily
see that

δkc(t0, . . . , tk) = k!

k∑
i=0

c(ti)
∏

0≤j≤k
j 6=i

1
ti−tj .

We shall mainly need the equidistant difference quotient δkeqc of order k,
which is given by

δkeqc(t; v) := δkc(t, t+ v, . . . , t+ kv) =
k!

vk

k∑
i=0

c(t+ iv)
∏

0≤j≤k
j 6=i

1
i−j .

Lemma. For a convenient vector space E and a curve c : R → E the following
conditions are equivalent:

(1) c is Lipk−1.
(2) The difference quotient δkc of order k is bounded on bounded sets.
(3) ` ◦ c is continuous for each ` ∈ E′, and the equidistant difference quotient δkeqc

of order k is bounded on bounded sets in R× (R \ {0}).

Proof. All statements can be tested by composing with bounded linear functionals
` ∈ E′, so we may assume that E = R.

( 3 )⇒ ( 2 ) Let I ⊂ R be a bounded interval. Then there is some K > 0 such that

|δkeqc(x; v)| ≤ K for all x ∈ I and kv ∈ I. Let ti ∈ I be pairwise different points.

We claim that |δkc(t0, . . . , tk)| ≤ K. Since δkc is symmetric we may assume that
t0 < t1 < · · · < tk, and since it is continuous (c is continuous) we may assume that
all ti−t0

tk−t0 are of the form ni
N for ni, N ∈ N. Put v := tk−t0

N , then δkc(t0, . . . , tk) =

δkc(t0, t0 +n1v, . . . , t0 +nkv) is a convex combination of δkeqc(t0 +rv; v) for 0 ≤ r ≤
maxi ni − k. This follows by recursively inserting intermediate points of the form
t0 +mv, and using
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δk(t0 +m0v, . . . , ̂t0 +miv, . . . , t0 +mk+1v) =

=
mi −m0

mk+1 −m0
δk(t0 +m0v, . . . , t0 +mkv)

+
mk+1 −mi

mk+1 −m0
δk(t1 +m1v, . . . , t0 +mk+1v)

which itself may be proved by induction on k.

( 2 ) ⇒ ( 1 ) We have to show that c is k times differentiable and that δ1c(k) is
bounded on bounded sets. We use induction, k = 0 is clear.

Let T 6= S be two subsets of R of cardinality j + 1. Then there exist enumerations
T = {t0, . . . , tj} and S = {s0, . . . , sj} such that ti 6= sj for i ≤ j; then we have

δjc(t0, . . . , tj)− δjc(s0, . . . , sj) = 1
j+1

j∑
i=0

(ti − si)δj+1c(t0, . . . , ti, si, . . . , sj).

For the enumerations we put the elements of T ∩ S at the end in T and at the
beginning in S. Using the recursive definition of δj+1c and symmetry the right
hand side becomes a telescoping sum.

Since δkc is bounded we see from the last equation that all δjc are also bounded,
in particular this is true for δ2c. Then

c(t+ s)− c(t)
s

− c(t+ s′)− c(t)
s′

= s−s′
2 δ2c(t, t+ s, t+ s′)

shows that the difference quotient of c forms a Mackey Cauchy net, and hence the
limit c′(t) exists.

Using the easily checked formula

c(tj) =

j∑
i=0

1
i!

i−1∏
l=0

(tj − tl) δjc(t0, . . . , tj),

induction on j and differentiability of c one shows that

(4) δjc′(t0, . . . , tj) = 1
j+1

j∑
i=0

δj+1c(t0, . . . , tj , ti),

where δj+1c(t0, . . . , tj , ti) := limt→ti δ
j+1c(t0, . . . , tj , t). The right hand side of ( 4 )

is bounded, so c′ is Lipk−2 by induction on k.

( 1 ) ⇒ ( 2 ) For a differentiable function f : R → R and t0 < · · · < tj there exist
si with ti < si < ti+1 such that

(5) δjf(t0, . . . , tj) = δj−1f ′(s0, . . . , sj−1).

Let p be the interpolation polynomial

(6) p(t) :=

j∑
i=0

1
i!

i−1∏
l=0

(t− tl) δjf(t0, . . . , tj).

Since f and p agree on all tj , by Rolle’s theorem the first derivatives of f and p
agree on some intermediate points si. So p′ is the interpolation polynomial for
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f ′ at these points si. Comparing the coefficient of highest order of p′ and of the

interpolation polynomial ( 6 ) for f ′ at the points si ( 5 ) follows.

Applying ( 5 ) recursively for f = c(k−2), c(k−3), . . . , c shows that δkc is bounded

on bounded sets, and ( 2 ) follows.

( 2 ) ⇒ ( 3 ) is obvious. �

12.5. Let r0, . . . , rk be the unique rational solution of the linear equation

k∑
i=0

ijri =

{
1 for j = 1

0 for j = 0, 2, 3, . . . , k.

Lemma. If f : R2 → R is Lipk for k ≥ 1 and I is a compact interval then there
exists M such that for all t, v ∈ I we have∣∣∣∣∣ ∂∂s |0f(t, s).v −

k∑
i=0

rif(t, iv)

∣∣∣∣∣ ≤M |v|k+1.

Proof. We consider first the case 0 /∈ I so that v stays away from 0. For this it
suffices to show that the derivative ∂

∂s |0f(t, s) is locally bounded. If it is unbounded

near some point x∞, there are xn with |xn−x∞| ≤ 1
2n such that ∂

∂s |0f(xn, s) ≥ n.2n.

We apply the general curve lemma 12.2 to the curves cn : R→ R2 given by cn(t) :=

(xn,
t

2n ) and to sn := 1
2n in order to obtain a smooth curve c : R→ R2 and scalars

tn → 0 with c(t+ tn) = cn(t) for |t| ≤ sn. Then (f ◦ c)′(tn) = 1
2n

∂
∂s |0f(xn, s) ≥ n,

which contradicts that f is Lip1.

Now we treat the case 0 ∈ I. If the assertion does not hold there are xn, vn ∈
I, such that

∣∣∣ ∂∂s |0f(xn, s).vn −
∑k
i=0 rif(xn, ivn)

∣∣∣ ≥ n.2n(k+1)|vn|k+1. We may

assume xn → x∞, and by the case 0 /∈ I we may assume that vn → 0, even with

|xn − x∞| ≤ 1
2n and |vn| ≤ 1

2n . We apply the general curve lemma 12.2 to the

curves cn : R→ R2 given by cn(t) := (xn,
t

2n ) and to sn := 1
2n to obtain a smooth

curve c : R → R2 and scalars tn → 0 with c(t + tn) = cn(t) for |t| ≤ sn. Then we
have∣∣∣(f ◦ c)′(tn)2nvn −

k∑
i=0

ri(f ◦ c)(tn + i2nvn)
∣∣∣ =

=
∣∣∣(f ◦ cn)′(0)2nvn −

k∑
i=0

ri(f ◦ cn)(i2nvn)
∣∣∣

=
∣∣∣ 1

2n
∂
∂s |0f(xn, s)2

nvn −
k∑
i=0

rif(xn, ivn)
∣∣∣ ≥ n(2n|vn|)k+1.

This contradicts the next claim for g = f ◦ c.
Claim. If g : R → R is Lipk for k ≥ 1 and I is a compact interval then there is

M > 0 such that for t, v ∈ I we have
∣∣∣g′(t).v −∑k

i=0 rig(t+ iv)
∣∣∣ ≤M |v|k+1.
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Consider gt(v) := g′(t).v −
∑k
i=0 rig(t+ iv). Then the derivatives up to order k at

v = 0 of gt vanish by the choice of the ri. Since g(k) is locally Lipschitzian there

exists an M such that |g(k)
t (v)| ≤ M |v| for all t, v ∈ I, which we may integrate in

turn to obtain |gt(v)| ≤M |v|k+1

(k+1)! . �

12.6. Lemma. Let f : R2 → R be Lipk+1. Then t 7→ ∂
∂s |0f(t, s) is Lipk.

Proof. Suppose that g : t 7→ ∂
∂s |0f(t, s) is not Lipk. Then by lemma 12.4 the

equidistant difference quotient δk+1
eq g is not locally bounded at some point which we

may assume to be 0. Then there are xn and vn with |xn| ≤ 1/4n and 0 < vn < 1/4n

such that

(1) |δk+1
eq g(xn; vn)| > n.2n(k+2).

We apply the general curve lemma 12.2 to the curves cn : R → R2 given by

cn(t) := en( t
2n + xn) := ( t

2n + xn − vn, t
2n ) and to sn := k+2

2n in order to obtain a

smooth curve c : R→ R2 and scalars tn → 0 with c(t+ tn) = cn(t) for 0 ≤ t ≤ sn.

Put f0(t, s) :=
∑k
i=0 ri f(t, is) for ri as in 12.5 , put f1(t, s) := g(t)s, finally put

f2 := f1−f0. Then f0 in Lipk+1, so f0◦c is Lipk+1, hence the equidistant difference
quotient δk+2

eq (f0 ◦ c)(xn; 2nvn) is bounded.

By lemma 12.5 there exists M > 0 such that |f2(t, s)| ≤ M |s|k+2 for all t, s ∈
[−(k + 1), k + 1], so we get

|δk+2
eq (f2 ◦ c)(xn; 2nvn)| = |δk+2

eq (f2 ◦ cn)(0; 2nvn)|

= 1
2n(k+2) |δk+2

eq (f2 ◦ en)(xn; vn)|

≤ (k+2)!
2n(k+2)

k+2∑
i=1

|f2((i− 1)vn + xn, ivn)|
|ivn|(k+2)

i(k+2)∏
j 6=i |i− j|

≤ (k+2)!
2n(k+2)

k+2∑
i=1

M
i(k+2)∏
j 6=i |i− j|

.

This is bounded, and so for f1 = f0 + f2 the expression |δk+2
eq (f1 ◦ c)(xn; 2nvn)| is

also bounded, with respect to n. However, on the other hand we get

δk+2
eq (f1 ◦ c)(xn; 2nvn) = δk+2

eq (f1 ◦ cn)(0; 2nvn)

= 1
2n(k+2) δ

k+2
eq (f1 ◦ en)(xn; vn)

= (k+2)!
2n(k+2)

k+2∑
i=0

f1((i− 1)vn + xn, ivn)

v
(k+2)
n

∏
0≤j≤k+2

j 6=i

1
i−j

= (k+2)!
2n(k+2)

k+2∑
i=0

g((i− 1)vn + xn)ivn

v
(k+2)
n

∏
0≤j≤k+2

j 6=i

1
i−j
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= (k+2)!
2n(k+2)

k+1∑
l=0

g(lvn + xn)

v
(k+1)
n

∏
0≤j≤k+1

j 6=l

1
l−j

= k+2
2n(k+2) δ

k+1
eq g(xn; vn),

which in absolute value is larger than (k + 2)n by ( 1 ), a contradiction. �

12.7. Lemma. Let U ⊆ E be open in a normed space. Then, a mapping f : U → F
into a convenient vector space is Lip0 if and only if f is Lipschitz on compact subsets

K of U , i.e., { f(x)−f(y)
‖x−y‖ : x 6= y ∈ K} is bounded.

A mapping f : U → F into a Banach space is Lip0 if and only if f is locally

Lipschitz, i.e., for each z ∈ U there exists a ball Bz around z such that { f(x)−f(y)
‖x−y‖ :

x 6= y ∈ Bz} is bounded.

Proof. (⇒) If F is Banach and f is Lip0 but not locally Lipschitz near z ∈ U ,
there are points xn 6= yn in U with ‖xn−z‖ ≤ 1/4n and ‖yn−z‖ ≤ 1/4n, such that

‖f(yn)− f(xn)‖ ≥ n.2n.‖yn − xn‖. Now we apply the general curve lemma 12.2

with sn := 2n.‖yn − xn‖ and cn(t) := xn − z + t yn−xn
2n‖yn−xn‖ to get a smooth curve c

with c(t+ tn)− z = cn(t) for 0 ≤ t ≤ sn. Then 1
sn
‖(f ◦ c)(tn + sn)− (f ◦ c)(tn)‖ =

1
2n.‖yn−xn‖‖f(yn)− f(xn)‖ ≥ n.

If F is convenient, f is Lip0 but not Lipschitz on a compact K, there exist ` ∈ F ′
such that ` ◦ f is not Lipschitz on K. By the first part of the proof, ` ◦ f is locally
Lipschitz, a contradiction.

(⇐) This is obvious, since the composition of Lipschitz mappings is again Lipschitz.
�

12.8. Theorem. Let f : E ⊇ U → F be a mapping, where E and F are convenient
vector spaces, and U ⊆ E is c∞-open. Then the following assertions are equivalent
for each k ≥ 0:

(1) f is Lipk+1.
(2) The directional derivative

(dvf)(x) := ∂
∂t |t=0(f(x+ tv))

exists for x ∈ U and v ∈ E and defines a Lipk-mapping U × E → F .

Note that this result gives a different (more algebraic) proof of Boman’s theorem

3.4 and 3.14 .

Proof. ( 1 ) ⇒ ( 2 ) Clearly, t 7→ f(x + tv) is Lipk+1, and so the directional
derivative exists and is the Mackey-limit of the difference quotients, by lemma

1.7 . In order to show that df : (x, v) 7→ dvf(x) is Lipk we take a smooth curve

(x, v) : R→ U ×E and ` ∈ F ′, and we consider g(t, s) := x(t) + s.v(t), g : R2 → E.

Then ` ◦ f ◦ g : R2 → R is Lipk+1, so by lemma 12.6 the curve

t 7→ `(df(x(t), v(t))) = `
(
∂
∂s |0f(g(t, s))

)
= ∂

∂s |0`(f(g(t, s)))
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is of class Lipk.

( 2 ) ⇒ ( 1 ) If c ∈ C∞(R, U) then

f(c(t))− f(c(0))

t
− df(c(0), c′(0)) =

=

∫ 1

0

(
df(c(0) + s(c(t)− c(0)), c(t)−c(0)

t )− df(c(0), c′(0))
)
ds

converges to 0 for t → 0 since g : (t, s) 7→ df(c(0) + s(c(t) − c(0)), c(t)−c(0)
t ) −

df(c(0), c′(0)) is Lipk, thus by lemma 12.7 g is locally Lipschitz, so the set of all
g(t1,s)−g(t2,s)

t1−t2 is locally bounded, and finally t 7→
∫ 1

0
g(t, s)ds is locally Lipschitz.

Thus, f ◦ c is differentiable with derivative (f ◦ c)′(0) = df(c(0), c′(0)).

Since df is Lipk and (c, c′) is smooth we get that (f ◦ c)′ is Lipk, hence f ◦ c is

Lipk+1. �

12.9. Corollary. Chain rule. The composition of Lipk-mappings is again Lipk,
and the usual formula for the derivative of the composite holds.

Proof. We have to compose f ◦ g with a smooth curve c, but then g ◦ c is a Lipk-
curve, thus it is sufficient to show that the composition of a Lipk curve c : R→ U ⊆
E with a Lipk-mapping f : U → F is again Lipk, and that (f◦c)′(t) = df(c(t), c′(t)).

This follows by induction on k for k ≥ 1 in the same way as we proved theorem

12.8.2 ⇒ 12.8.1 , using theorem 12.8 itself. �

12.10. Definition and Proposition. Let F be a convenient vector space. The
space Lipk(R, F ) of all Lipk-curves in F is again a convenient vector space with
the following equivalent structures:

(1) The initial structure with respect to the k+2 linear mappings (for 0 ≤ j ≤ k+1)

c 7→ δjc from Lipk(R, F ) into the space of all F -valued maps in j+ 1 pairwise
different real variables (t0, . . . , tj) which are bounded on bounded subsets, with
the c∞-complete locally convex topology of uniform convergence on bounded
subsets. In fact, the mappings δ0 and δk+1 are sufficient.

(2) The initial structure with respect to the k+2 linear mappings (for 0 ≤ j ≤ k+1)

c 7→ δjeqc from Lipk(R, F ) into the space of all maps from R × (R \ {0}) into
F which are bounded on bounded subsets, with the c∞-complete locally convex
topology of uniform convergence on bounded subsets. In fact, the mappings δ0

eq

and δk+1
eq are sufficient.

(3) The initial structure with respect to the derivatives of order j ≤ k considered
as linear mappings into the space of Lip0-curves, with the locally convex topol-
ogy of uniform convergence of the curve on bounded subsets of R and of the
difference quotient on bounded subsets of {(t, s) ∈ R2 : t 6= s}.

The convenient vector space Lipk(R, F ) satisfies the uniform boundedness principle
with respect to the point evaluations.
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Proof. All three structures describe closed embeddings into finite products of

spaces, which in ( 1 ) and ( 2 ) are obviously c∞-complete. For ( 3 ) this follows,

since by ( 1 ) the structure on Lip0(R, E) is convenient.

All structures satisfy the uniform boundedness principle for the point evaluations

by 5.25 , and since spaces of all bounded mappings on some (bounded) set satisfy
this principle. This can be seen by composing with `∗ for all ` ∈ E′, since Banach

spaces do this by 5.24 .

By applying this uniform boundedness principle one sees that all these structures
are indeed equivalent. �

12.11. Definition and Proposition. Let E and F be convenient vector spaces
and U ⊆ E be c∞-open. The space Lipk(U,F ) of all Lipk-mappings from U to F
is again a convenient vector space with the following equivalent structures:

(1) The initial structure with respect to the linear mappings c∗ : Lipk(U,F ) →
Lipk(R, F ) for all c ∈ C∞(R, F ).

(2) The initial structure with respect to the linear mappings c∗ : Lipk(U,F ) →
Lipk(R, F ) for all c ∈ Lipk(R, F ).

This space satisfies the uniform boundedness principle with respect to the evaluations
evx : Lipk(U,F )→ F for all x ∈ U .

Proof. The structure ( 1 ) is convenient since by 12.1 it is a closed subspace

of the product space which is convenient by 12.10 . The structure in ( 2 ) is

convenient since it is closed by 12.9 . The uniform boundedness principle for the

point evaluations now follows from 5.25 and 12.10 , and this in turn gives us the
equivalence of the two structures. �

12.12. Remark. We want to call the attention of the reader to the fact that there
is no general exponential law for Lipk-mappings. In fact, if f ∈ Lipk(R,Lipk(R, F ))
then ( ∂∂t )

p( ∂∂s )qf∧(t, s) exists if max(p, q) ≤ k. This describes a smaller space than

Lipk(R2, F ), which is not invariantly describable.

However, some partial results still hold, namely for convenient vector spaces E, F ,
and G, and for c∞-open sets U ⊆ E, V ⊆ F we have

Lipk(U,L(F,G)) ∼= L(F,Lipk(U,G)),

Lipk(U,Lipl(V,G)) ∼= Lipl(V,Lipk(U,G)),

see [Frölicher and Kriegl, 1988, 4.4.5, 4.5.1, 4.5.2]. For a mapping f : U × F → G

which is linear in F we have: f ∈ Lipk(U ×F,G) ⇐⇒ f∨ ∈ Lipk(U,L(E,F )), see
[Frölicher and Kriegl, 1988, 4.3.5]. The last property fails if we weaken Lipschitz
to continuous, see the following example.
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12.13. Smolyanov’s Example. Let f : `2 → R be defined by f :=
∑
k≥1

1
k2 fk,

where fk(x) := ϕ(k(kxk − 1)) ·
∏
j<k ϕ(jxj) and ϕ : R → [0, 1] is smooth with

ϕ(0) = 1 and ϕ(t) = 0 for |t| ≥ 1
4 . We shall show that

(1) f : `2 → R is Fréchet differentiable.
(2) f ′ : `2 → (`2)′ is not continuous.
(3) f ′ : `2 × `2 → R is continuous.

Proof. Let A := {x ∈ `2 : |kxk| ≤ 1
4 for all k}. This is a closed subset of `2.

( 1 ) Remark that for x ∈ `2 at most one fk(x) can be unequal to 0. In fact

fk(x) 6= 0 implies that |kxk − 1| ≤ 1
4k ≤

1
4 , and hence kxk ≥ 3

4 and thus fj(x) = 0
for j > k.

For x /∈ A there exists a k > 0 with |kxk| > 1
4 and the set of points satisfying this

condition is open. It follows that ϕ(kxk) = 0 and hence f =
∑
j<k

1
j2 fj is smooth

on this open set.

On the other hand let x ∈ A. Then |kxk−1| ≥ 3
4 >

1
4 and hence ϕ(k(kxk−1)) = 0

for all k and thus f(x) = 0. Let v ∈ `2 be such that f(x+v) 6= 0. Then there exists
a unique k such that fk(x + v) 6= 0 and therefore |j(xj + vj)| < 1

4 for j < k and

|k(xk+vk)−1| < 1
4k ≤

1
4 . Since |kxk| ≤ 1

4 we conclude |kvk| ≥ 1−|k(xk+vk)−1|−
|kxk| ≥ 1− 1

4 −
1
4 = 1

2 . Hence |f(x+ v)| = 1
k2 |fk(x+ v)| ≤ 1

k2 ≤ (2|vk|)2 ≤ 4‖v‖2.

Thus ‖f(x+v)−0−0‖
‖v‖ ≤ 4‖v‖ → 0 for ‖v‖ → 0, i.e. f is Fréchet differentiable at x

with derivative 0.

( 2 ) If fact take a ∈ R with ϕ′(a) 6= 0. Then f ′(t ek)(ek) = d
dt

1
k2 fk(t ek) =

d
dt

1
k2ϕ(k2 t− k) = ϕ′(k (k t− 1)) = ϕ′(a) if t = tk := 1

k

(
a
k + 1

)
, which goes to 0 for

k →∞. However f ′(0)(ek) = 0 since 0 ∈ A.

( 3 ) We have to show that f ′(xn)(vn)→ f ′(x)(v) for (xn, vn)→ (x, v). For x /∈ A
this is obviously satisfied, since then there exists a k with |kxk| > 1

4 and hence

f =
∑
j≤k

1
j2 fj locally around x.

If x ∈ A then f ′(x) = 0 and thus it remains to consider the case, where xn /∈ A.
Let ε > 0 be given. Locally around xn at most one summand fk does not vanish:
If xn /∈ A then there is some k with |kxk| > 1/4 which we may choose minimal.
Thus |jxj | ≤ 1/4 for all j < k, so |j(jxj −1)| ≥ 3j/4 and hence fj = 0 locally since
the first factor vanishes. For j > k we get fj = 0 locally since the second factor
vanishes. Thus we can evaluate the derivative:

|f ′(xn)(vn)| =
∣∣∣ 1

k2
f ′k(xn)(vn)

∣∣∣ ≤ ‖ϕ′‖∞
k2

(
k2|vnk |+

∑
j<k

j|vnj |
)
.

Since v ∈ `2 we find a K1 such that (
∑
j≥K1

|vj |2)1/2 ≤ ε
2‖ϕ′‖∞ . Thus we conclude

from ‖vn−v‖2 → 0 that |vnj | ≤ ε
‖ϕ′‖∞ for j ≥ K1 and large n. For the finitely many

small n we can increase K1 such that for these n and j ≥ K1 also |vnj | ≤ ε
‖ϕ′‖∞ .

Furthermore there is a constant K2 ≥ 1 such that ‖vn‖∞ ≤ ‖vn‖2 ≤ K2 for all n.
Now choose N ≥ K1 so large that N2 ≥ 1

ε‖ϕ
′‖∞K2K

2
1 . Obviously

∑
n<N

1
n2 fn is
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smooth. So it remains to consider those n for which the non-vanishing term has
index k ≥ N . For those terms we have

|f ′(xn)(vn)| =
∣∣∣ 1

k2
f ′k(xn)(vn)

∣∣∣ ≤ ‖ϕ′‖∞(|vnk |+ 1

k2

∑
j<k

j|vnj |
)

≤ |vnk |‖ϕ′‖∞ + ‖ϕ′‖∞
1

k2

∑
j<K1

j|vnj |+
1

k2

∑
K1≤j<k

j|vnj | ‖ϕ′‖∞

≤ ε+ ‖ϕ′‖∞
K2

1

N2
‖vn‖∞ +

1

k2

∑
K1≤j<k

j ε ≤ ε+ ε+ ε = 3ε

This shows the continuity. �
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13. Differentiability of Seminorms

A desired separation property is that the smooth functions generate the topology.
Since a locally convex topology is generated by the continuous seminorms it is
natural to look for smooth seminorms. Note that every seminorm p : E → R on a
vector space E factors over Ep := E/ ker p and gives a norm on this space. Hence, it

can be extended to a norm p̃ : Ẽp → R on the completion Ẽp of the space Ep which
is normed by this factorization. If E is a locally convex space and p is continuous,
then the canonical quotient mapping E → Ep is continuous. Thus, smoothness of
p̃ off 0 implies smoothness of p on its carrier, and so the case where E is a Banach
space is of central importance.

Obviously, every seminorm is a convex function, and hence we can generalize our
treatment slightly by considering convex functions instead. The question of their
differentiability properties is exactly the topic of this section.

Note that since the smooth functions depend only on the bornology and not on
the locally convex topology the same is true for the initial topology induced by all
smooth functions. Hence, it is appropriate to make the following

Convention. In this chapter the locally convex topology on all convenient vector
spaces is assumed to be the bornological one.

13.1. Remark. It can be easily seen that for a function f : E → R on a vector
space E the following statements are equivalent (see for example [Frölicher and
Kriegl, 1988, p. 199]):

(1) The function f is convex, i.e. f(
∑n
i=1 λi xi) ≤

∑n
i=1 λi f(xi) for λi ≥ 0 with∑n

i=1 λi = 1;
(2) The set Uf := {(x, t) ∈ E × R : f(x) < t} is convex;
(3) The set Af := {(x, t) ∈ E × R : f(x) ≤ t} is convex.

Moreover, for any translation invariant topology on E (and hence in particular for
the locally convex topology or the c∞-topology on a convenient vector space) and
any convex function f : E → R the following statements are equivalent:

(1) The function f is continuous;
(2) The set Uf is open in E × R;
(3) The set f<t := {x ∈ E : f(x) < t} is open in E for all t ∈ R, i.e. f is upper

semi-continuous.

Moreover the following statements are equivalent:

(1) The function f is lower semicontinuous, i.e. the set f>t := {x ∈ E : f(x) > t}
is open in E for all t ∈ R;

(2) The set Af is closed in E × R.

13.2. Result. Convex Lipschitz functions. Let f : E → R be a convex function
on a convenient vector space E. Then the following statements are equivalent:

(1) It is Lip0;
(2) It is continuous for the bornological locally convex topology;
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(3) It is continuous for the c∞-topology;
(4) It is bounded on Mackey converging sequences;

If f is a seminorm, then these further are equivalent to

(5) It is bounded on bounded sets.

If E is normed this further is equivalent to

(6) It is locally bounded.

The proof is due to [Aronszajn, 1976] for Banach spaces and [Frölicher and Kriegl,
1988, p. 200], for convenient vector spaces.

13.3. Basic definitions. Let f : E ⊇ U → F be a mapping defined on a c∞-open
subset of a convenient vector space E with values in another one F . Let x ∈ U and
v ∈ E. Then the (one sided) directional derivative of f at x in direction v is
defined as

f ′(x)(v) = dvf(x) := lim
t↘0

f(x+ t v)− f(x)

t
.

Obviously, if f ′(x)(v) exists, then so does f ′(x)(s v) for s > 0 and equals s f ′(x)(v).

Even if f ′(x)(v) exists for all v ∈ E the mapping v 7→ f ′(x)(v) may not be linear
in general, and if it is linear it will not be bounded in general. Hence, f is called
Gâteaux-differentiable at x, if the directional derivatives f ′(x)(v) exist for all
v ∈ E and v 7→ f ′(x)(v) is a bounded linear mapping from E → F .

Even for Gâteaux-differentiable mappings the difference quotient f(x+t v)−f(x)
t need

not converge uniformly for v in bounded sets (or even in compact sets). Hence, one
defines f to be Fréchet-differentiable at x if f is Gâteaux-differentiable at x

and f(x+t v)−f(x)
t − f ′(x)(v)→ 0 uniformly for v in any bounded set. For a Banach

space E this is equivalent to the existence of a bounded linear mapping denoted
f ′(x) : E → F such that

lim
v→0

f(x+ v)− f(x)− f ′(x)(v)

‖v‖
= 0.

If f : E ⊇ U → F is Gâteaux-differentiable and the derivative f ′ : E ⊇ U →
L(E,F ) is continuous, then f is Fréchet-differentiable, and we will call such a
function C1. In fact, the fundamental theorem applied to t 7→ f(x+ t v) gives us

f(x+ v)− f(x) =

∫ 1

0

f ′(x+ t v)(v) dt,

and hence

f(x+ s v)− f(x)

s
− f ′(x)(v) =

∫ 1

0

(
f ′(x+ t s v)− f ′(x)

)
(v) dt→ 0,

which converges to 0 for s → 0 uniformly for v in any bounded set, since f ′(x +
t s v)→ f ′(x) uniformly on bounded sets for s→ 0 and uniformly for t ∈ [0, 1] and
v in any bounded set, since f ′ is assumed to be continuous.
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Recall furthermore that a mapping f : E ⊇ U → F on a Banach space E is called
Lipschitz if {f(x1)− f(x2)

‖x1 − x2‖
: x1, x2 ∈ U, x1 6= x2

}
is bounded in F.

It is called Hölder of order 0 < p ≤ 1 if{f(x1)− f(x2)

‖x1 − x2‖p
: x1, x2 ∈ U, x1 6= x2

}
is bounded in F.

13.4. Lemma. Gâteaux-differentiability of convex functions. Every convex
function q : E → R has one sided directional derivatives. The derivative q′(x)
is sublinear and locally bounded (or continuous at 0) if q is locally bounded (or
continuous). In particular, such a locally bounded function is Gâteaux-differentiable
at x if and only if q′(x) is an odd function, i.e. q′(x)(−v) = −q′(x)(v).

If E is not normed, then locally bounded-ness should mean bounded on bornologi-
cally compact sets.

Proof. For 0 < t < t′ we have by convexity that

q(x+ t v) = q
(
(1− t

t′
)x+

t

t′
(x+ t′ v)

)
≤ (1− t

t′
) q(x) +

t

t′
q(x+ t′v).

Hence q(x+t v)−q(x)
t ≤ q(x+t′ v)−q(x)

t′ . Thus, the difference quotient is monotone
falling for t→ 0. It is also bounded from below, since for t′ < 0 < t we have

q(x) = q
( t

t− t′
(x+ t′ v) + (1− t

t− t′
) (x+ t v)

)
≤ t

t− t′
q(x+ t′ v) + (1− t

t− t′
) q(x+ t v),

and hence q(x+t′ v)−q(x)
t′ ≤ q(x+t v)−q(x)

t . Thus, the one sided derivative

q′(x)(v) := lim
t↘0

q(x+ t v)− q(x)

t

exists.

As a derivative q′(x) automatically satisfies q′(x)(t v) = t q′(x)(v) for all t ≥ 0. The

derivative q′(x) is convex as limit of the convex functions v 7→ q(x+tv)−q(x)
t . Hence

it is sublinear.

The convexity of q implies that

q(x)− q(x− v) ≤ q′(x)(v) ≤ q(x+ v)− q(x).

Therefore, the local boundedness of q at x implies that of q′(x) at 0. Let ` := f ′(x),
then subadditivity and odd-ness implies `(a) ≤ `(a + b) + `(−b) = `(a + b) − `(b)
and hence the converse triangle inequality. �

Remark. If q is a seminorm, then q(x+tv)−q(x)
t ≤ q(x)+t q(v)−q(x)

t = q(v), hence

q′(x)(v) ≤ q(v), and furthermore q′(x)(x) = limt↘0
q(x+t x)−q(x)

t = limt↘0 q(x) =
q(x). Hence we have

‖q′(x)‖ := sup{|q′(x)(v)| : q(v) ≤ 1} = sup{q′(x)(v) : q(v) ≤ 1} = 1.
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Convention. Let q 6= 0 be a seminorm and let q(x) = 0. Then there exists a v ∈ E
with q(v) 6= 0, and we have q(x + tv) = |t| q(v), hence q′(x)(±v) = q(v). So q is
not Gâteaux differentiable at x. Therefore, we call a seminorm smooth for some
differentiability class, if and only if it is smooth on its carrier {x : q(x) > 0}.

13.5. Differentiability properties of convex functions f can be translated in geo-
metric properties of Af :

Lemma. Differentiability of convex functions. Let f : E → R be a contin-
uous convex function on a Banach space E, and let x0 ∈ E. Then the following
statements are equivalent:

(1) The function f is Gâteaux differentiable at x0;
(2) There exists a unique ` ∈ E′ with

`(v) ≤ f(x0 + v)− f(x0) for all v ∈ E;

(3) There exists a unique affine hyperplane tangent to Af through (x0, f(x0)).
(4) The Minkowski functional of (some translate of) Af is Gâteaux differentiable

at (x0, f(x0)).

Moreover, for a sublinear function f and f(x0) 6= 0 the following statements are
equivalent:

(5) The function f is Gâteaux (Fréchet) differentiable at x0;
(6) The point x0 (strongly) exposes the polar of the set {x : f(x) ≤ 1}.

In particular, the following statements are equivalent for a convex function f :

(7) The function f is Gâteaux (Fréchet) differentiable at x0;
(8) The Minkowski functional of (some translate of) Af is Gâteaux (Fréchet)

differentiable at the point (x0, f(x0));
(9) The point (x0, f(x0)) (strongly) exposes the polar of some translate of Af .

An element x∗ ∈ E∗ is said to expose a subset K ⊆ E if there exists a unique
point k0 ∈ K with x∗(k0) = sup{x∗(k) : k ∈ K}, i.e. x∗ takes it supremum on K
on a unique point k0. It is said to strongly expose K, if satisfies in addition
that x∗(xn)→ x∗(k0) implies xn → k0.

By an affine hyperplane H tangent to a convex set K at a point x ∈ K we mean
that x ∈ H and K lies on one side of H.

Proof. Let f be a convex function. By the proof of 13.4 we have f ′(x0)(v) ≤
f(x0 + v) − f(x0). For any ` ∈ E′ with `(v) ≤ f(x0 + v) − f(x0) for all v ∈ E we

have `(v) = 1
t `(tv) ≤ f(x0+t v)−f(x0)

t for all t > 0, and hence ` ≤ f ′(x0).

( 1 ) ⇒ ( 2 ) Let f be continuous and Gâteaux-differentiable at x0, so f ′(x0) is
linear (and continous) and thus minimal among all sub-linear mappings. By what
we said before f ′(x0) is the unique linear functional satisfying (2).

( 2 ) ⇒ ( 1 ) By what we said before the unique ` in (2) satisfied ` ≤ f ′(x0).
So f ′(x0) − ` ≥ 0. If this is not identical zero, then there exists a µ ∈ E∗ with
0 6= µ ≤ f ′(x0)− ` by Hahn-Banach. Thus `+ µ satisfies (2) also, a contradiction
to the uniqueness of `.
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( 2 ) ⇔ ( 3 ) Any hyperplane tangent to Af at (x0, f(x0)) is described by a func-
tional 0 6= (`, s) ∈ E′ × R such that `(x) + s t ≥ `(x0) + s f(x0) for all t ≥ f(x).
Note that the scalar s cannot be 0, since this would imply that `(x) ≥ `(x0) for
all x. It has to be positive, since otherwise the left side would go to −∞ for
f(x) ≤ t→ +∞. Without loss of generality we may thus assume that s = 1, so the
hyperplane uniquely determines the linear functional ` with `(x−x0) ≥ f(x0)−f(x)
for all x or, by replacing ` by −` and x by x0 + v, we have a unique ` with
`(v) ≤ f(x0 + v)− f(x0) for all v ∈ E.

( 3 ) ⇔ ( 4 ) A sublinear functional p ≥ 0 is Gâteaux-differentiable at x0 with
p(x0) 6= 0 if and only if there is a unique affine hyperplane tangent to {x : p(x) ≤
p(x0)} at x0:

By ( 1 ) ⇔ ( 2 ) p is differentiable at x0 iff there exists a unique ` ∈ E′ with
`(v) ≤ p(x0 + v) − p(x0) for all v, or, equivalently, `(x − x0) ≤ p(x) − p(x0) for
all x. Thus `(x) ≤ `(x0) for all p(x) ≤ p(x0). Conversely let 0 6= ` ∈ E′ satisfy
this condition and x be arbitary. Since {x : p(x) ≤ p(x0)} is absorbing, `(x0) > 0

and we may replace ` by p(x0)
`(x0) `. If p(x) = 0 then p(r x) = 0 ≤ p(x0) for all r

and hence `(r x) ≤ `(x0) for all r, i.e. `(x) = 0 and hence `(x − x0) = −`(x0) =

−p(x0) = p(x) − p(x0). Otherwise we may consider x′ := p(x0)
p(x) x which satisfies

p(x′) = p(x0) and hence `(x0) ≥ `(x′) = p(x0)
p(x) `(x) so `(x − x0) = `(x) − `(x0) ≤

(p(x)− p(x0)) `(x0)
p(x0) = p(x)− p(x0).

We translate Af such that it becomes absorbing (e.g. by −(0, f(0) + 1)). The
sublinear Minkowski functional p of this translated set Af is by what we just
showed Gâteaux-differentiable at (x0, f(x0)) with p(x0, f(x0)) = 1 iff there exists
a unique affine hyperplane tangent to {(x, t) : p(x, t) ≤ p(x0, f(x0))} = f(x0)Af in

(x0, f(x0)), since Af is closed. Since f(x0) 6= 0 this is equivalent with ( 3 ).

( 5 ) ⇔ ( 6 ) We show this for Gâteaux-differentiability. We have to show that
there is a unique tangent hyperplane to x0 ∈ K := {x : f(x) ≤ 1} if and only if
x0 exposes Ko := {` ∈ E∗ : `(x) ≤ 1 for all x ∈ K}. Let us assume 0 ∈ K and
0 6= x0 ∈ ∂K. Then a tangent hyperplane to K at x0 is uniquely determined by
a linear functional ` ∈ E∗ with `(x0) = 1 and `(x) ≤ 1 for all x ∈ K. This is
equivalent to ` ∈ Ko and `(x0) = 1, since by Hahn-Banach there exists an ` ∈ Ko

with `(x0) = 1. From this the result follows.

This shows also ( 7 ) ⇔ ( 8 ) ⇔ ( 9 ) for Gâteaux-differentiability, since {(x, t) :
pAf (x, t) ≤ 1} = Af .

In order to show the statements for Fréchet-differentiability one has to show that
` = f ′(x) is a Fréchet derivative if and only if x0 is a strongly exposing point. This

is left to the reader, see also 13.19 for a more general result. �

13.6. Lemma. Duality for convex functions. [Moreau, 1965].
Let 〈 , 〉 : G× F → R be a dual pairing.

(1) For f : F → R ∪ {+∞}, f 6= +∞ one defines the dual function

f∗ : G→ R ∪ {+∞}, f∗(z) := sup{〈z, y〉 − f(y) : y ∈ F}.
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(2) The dual function f∗ is convex and lower semi-continuous with respect to the
weak topology. Since a function g is lower semi-continuous if and only if for all
a ∈ R the set {x : g(x) > a} is open, equivalently the convex set {x : g(x) ≤ a}
is closed, this is for convex functions the same for every topology which is
compatible with the duality.

(3) f1 ≤ f2 ⇒ f∗1 ≥ f∗2 .
(4) f∗ ≤ g ⇔ g∗ ≤ f .
(5) f∗∗ = f if and only if f is lower semi-continuous and convex.
(6) Suppose z ∈ G satisfies f(x + v) ≥ f(x) + 〈z, v〉 for all v (in particular, this

is true if z = f ′(x)). Then f(x) + f∗(z) = 〈z, x〉.
(7) If f1(y) = f(y − a) for all y, then f∗1 (z) = 〈z, a〉+ f∗(z) for all z.
(8) If f1(y) = f(y) + a for all y, then f∗1 (z) = f∗(z)− a for all z.
(9) If f1(y) = f(y) + 〈b, y〉 for all y, then f∗1 (z) = f∗(z − b) for all z.

(10) If E = F = R and f ≥ 0 with f(0) = 0, then f∗(s) = sup{ts − f(t) : t ≥ 0}
for t ≥ 0.

(11) If γ : R→ R+ is convex and γ(t)
t → 0, then γ∗(t) > 0 for t > 0.

(12) Let (F,G) be a Banach space and its dual. If γ ≥ 0 is convex and γ(0) = 0,
and f(y) := γ(‖y‖), then f∗(z) = γ∗(‖z‖).

(13) A convex function f on a Banach space is Fréchet differentiable at a with
derivative b := f ′(a) if and only if there exists a convex non-negative function

γ, with γ(0) = 0 and limt→0
γ(t)
t = 0, such that

f(a+ h) ≤ f(a) + 〈f ′(a), h〉+ γ(‖h‖).

Proof. ( 1 ) Since f 6= +∞, there is some y for which 〈z, y〉 − f(y) is finite, hence
f∗(z) > −∞.

( 2 ) The function z 7→ 〈z, y〉 − f(y) is continuous and linear, and hence the
supremum f∗(z) is lower semi-continuous and convex. One would like to show
that f∗ is not constant +∞: This is not true. In fact, take f(t) = −t2 then
f∗(s) = sup{s t − f(t) : t ∈ R} = sup{s t + t2 : t ∈ R} = +∞. More generally,

f∗ 6= +∞ ⇔ f lies above some affine hyperplane, see ( 5 ).

( 3 ) If f1 ≤ f2 then 〈z, y〉 − f1(y) ≥ 〈z, y〉 − f2(y), and hence f∗1 (z) ≥ f∗2 (z).

( 4 ) One has

∀z : f∗(z) ≤ g(z)⇔ ∀z, y : 〈z, y〉 − f(y) ≤ g(z)

⇔ ∀z, y : 〈z, y〉 − g(z) ≤ f(y)

⇔ ∀y : g∗(y) ≤ f(y).

( 5 ) Since (f∗)∗ is convex and lower semi-continuous, this is true for f provided
f = (f∗)∗. Conversely, let g(b) = −a and g(z) = +∞ otherwise. Then g∗(y) =
sup{〈z, y〉− g(z) : z ∈ G} = 〈b, y〉+a. Hence, a+ 〈b, 〉 ≤ f ⇔ f∗(b) ≤ −a. If f is
convex and lower semi-continuous, then Af is closed and convex and hence f is the
supremum of all continuous linear functionals a+ 〈b, 〉 below it by Hahn-Banach,
and this is exactly the case if f∗(b) ≤ −a. Hence, f∗∗(y) = sup{〈z, y〉 − f∗(z) : z ∈
G} ≥ 〈b, y〉+ a and thus f = f∗∗.
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( 6 ) Let f(a + y) ≥ f(a) + 〈b, y〉. Then f∗(b) = sup{〈b, y〉 − f(y) : y ∈ F} =
sup{〈b, a + v〉 − f(a + v) : v ∈ F} ≤ sup{〈b, a〉 + 〈b, v〉 − f(a) − 〈b, v〉 : v ∈ F} =
〈b, a〉 − f(a).

( 7 ) Let f1(y) = f(y − a). Then

f∗1 (z) = sup{〈z, y〉 − f(y − a) : y ∈ F}
= sup{〈z, y + a〉 − f(y) : y ∈ F} = 〈z, a〉+ f∗(z).

( 8 ) Let f1(y) = f(y) + a. Then

f∗1 (z) = sup{〈z, y〉 − f(y)− a : y ∈ F} = f∗(z)− a.

( 9 ) Let f1(y) = f(y) + 〈b, y〉. Then

f∗1 (z) = sup{〈z, y〉 − f(y)− 〈b, y〉 : y ∈ F}
= sup{〈z − b, y〉 − f(y) : y ∈ F} = f∗(z − b).

( 10 ) Let E = F = R and f ≥ 0 with f(0) = 0, and let s ≥ 0. Using that
s t− f(t) ≤ 0 for t ≤ 0 and that s 0− f(0) = 0 we obtain

f∗(s) = sup{s t− f(t) : t ∈ R} = sup{s t− f(t) : t ≥ 0}.

( 11 ) Let γ ≥ 0 with limt↘0
γ(t)
t = 0, and let s > 0. Then there are t with s > γ(t)

t ,
and hence

γ∗(s) = sup{st− γ(t) : t ≥ 0} = sup{t(s− γ(t)

t
) : t ≥ 0} > 0.

( 12 ) Let f(y) = γ(‖y‖). Then

f∗(z) = sup{〈z, y〉 − γ(‖y‖) : y ∈ F}
= sup{t〈z, y〉 − γ(t) : ‖y‖ = 1, t ≥ 0}
= sup{sup{t〈z, y〉 − γ(t) : ‖y‖ = 1}, t ≥ 0}
= sup{t‖z‖ − γ(t) : t ≥ 0}
= γ∗(‖z‖).

( 13 ) If f(a+ h) ≤ f(a) + 〈b, h〉+ γ(‖h‖) for all h, then we have for t > 0

f(a+ t h)− f(a)

t
≤ 〈b, h〉+

γ(t ‖h‖)
t

,

hence f ′(a)(h) ≤ 〈b, h〉. Since h 7→ f ′(a)(h) is sub-linear and the linear functionals
are minimal among the sublinear ones, we have equality. By convexity we have

f(a+ t h)− f(a)

t
≥ 〈b, h〉 = f ′(a)(h).

So f is Fréchet-differentiable at a with derivative f ′(a)(h) = 〈b, h〉, since the re-

mainder is bounded by γ(‖h‖) which satisfies γ(‖h‖)
‖h‖ → 0 for ‖h‖ → 0.

Conversely, assume that f is Fréchet-differentiable at a with derivative b. Then

|f(a+ h)− f(a)− 〈b, h〉|
‖h‖

→ 0 for h→ 0,
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and by convexity

g(h) := f(a+ h)− f(a)− 〈b, h〉 ≥ 0.

Let γ(t) := sup{g(u) : ‖u‖ = |t|}. Since g is convex γ is convex, and obviously

γ(t) ∈ [0,+∞], γ(0) = 0 and γ(t)
t → 0 for t→ 0. This is the required function. �

13.7. Proposition. Continuity of the Fréchet derivative. [Asplund, 1968].
The differential f ′ of any continuous convex function f on a Banach space is con-
tinuous on the set of all points where f is Fréchet differentiable. In general, it is

however neither uniformly continuous nor bounded, see 15.8 .

Proof. Let f ′(x)(h) denote the one sided derivative. From convexity we conclude
that f(x + v) ≥ f(x) + f ′(x)(v). Suppose xn → x are points where f is Fréchet
differentiable. Then we obtain f ′(xn)(v) ≤ f(xn + v)− f(xn) which is bounded in
n. Hence, the f ′(xn) form a bounded sequence. We get

f(x) ≥ 〈f ′(xn), x〉 − f∗(f ′(xn)) since f(y) + f∗(z) ≥ 〈z, y〉
= 〈f ′(xn), x〉+ f(xn)− 〈f ′(xn), xn〉 since f∗(f ′(z)) + f(z) = f ′(z)(z)

≥ 〈f ′(xn), x− xn〉+ f(x) + 〈f ′(x), xn − x〉 since f(x+ h) ≥ f(x) + f ′(x)(h)

= 〈f ′(xn)− f ′(x), x− xn〉+ f(x).

Since xn → x and f ′(xn) is bounded, both sides converge to f(x), hence

lim
n→∞

〈f ′(xn), x〉 − f∗(f ′(xn)) = f(x).

Since f is convex and Fréchet-differentiable at a := x with derivative b := f ′(x),

there exists by 13.6.13 a γ with

f(h) ≤ f(a) + 〈b, h− a〉+ γ(‖h− a‖).

By duality we obtain using 13.6.3

f∗(z) ≥ 〈z, a〉 − f(a) + γ∗(‖z − b‖).
If we apply this to z := f ′(xn) we obtain

f∗(f ′(xn)) ≥ 〈f ′(xn), x〉 − f(x) + γ∗(‖f ′(xn)− f ′(x)‖).
Hence

γ∗(‖f ′(xn)− f ′(x)‖) ≤ f∗(f ′(xn))− 〈f ′(xn), x〉+ f(x),

and since the right side converges to 0, we have that γ∗(‖f ′(xn) − f ′(x)‖) → 0.
Then ‖f ′(xn)− f ′(x)‖ → 0 where we use that γ is convex, γ(0) = 0, and γ(t) > 0
for t > 0, thus γ is strictly monotone increasing. �

13.8. Asplund spaces and generic Fréchet differentiability. From 13.4
it follows easily that a convex function f : R → R is differentiable at all except
countably many points. This has been generalized by [Rademacher, 1919] to: Ev-
ery Lipschitz mapping from an open subset of Rn to R is differentiable almost
everywhere. Recall that a locally bounded convex function is locally Lipschitz, see

13.2 .

Proposition. For a Banach space E the following statements are equivalent:
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(1) Every continuous convex function f : E → R is Fréchet-differentiable on a
dense Gδ-subset of E;

(2) Every continuous convex function f : E → R is Fréchet-differentiable on a
dense subset of E;

(3) Every locally Lipschitz function f : E → R is Fréchet-differentiable on a dense
subset of E;

(4) Every equivalent norm is Fréchet-differentiable at least at one point;
(5) E has no equivalent rough norm;
(6) Every (closed) separable subspace has a separable dual;
(7) The dual E∗ has the Radon-Nikodym property;
(8) Every linear mapping E → L1(X,Ω, µ) which is integral is nuclear;
(9) Every closed convex bounded subset of E∗ is the closed convex hull of its ex-

tremal points;
(10) Every bounded subset of E∗ is dentable.

A Banach space satisfying these equivalent conditions is called Asplund space.
Every Banach space with a Fréchet differentiable bump function is Asplund, [Eke-
land and Lebourg, 1976, p. 203]. It is an open question whether the converse is
true.
Every WCG-Banach-space (i.e. a Banach space for which a weakly compact
subset K exists, whose linear hull is the whole space) is Asplund, [John and Zizler,
1976].
The Asplund property is inherited by subspaces, quotients, and short exact se-
quences, [Stegall, 1981].

About the proof. ( 1 ) [Asplund, 1968]: If a convex function is Fréchet differen-
tiable on a dense subset then it is so on a dense Gδ-subset, i.e. a dense countable
intersection of open subsets.

( 2 ) is in fact a local property, since in [Borwein et al., 1991] it is mentioned that
for a Lipschitz function f : E → R with Lipschitz constant L defined on a convex
open set U the function

f̃(x) := inf{f(y) + L‖x− y‖ : y ∈ U}
is a Lipschitz extension with constant L, and it is convex if f is.

( 2 )⇒ ( 3 ) is due to [Preiss, 1990], Every locally Lipschitz function on an Asplund
space is Fréchet differentiable at points of a dense subset.

( 3 ) ⇒ ( 2 ) follows from the fact that continuous convex functions are locally

Lipschitz, see 13.2 .

( 2 ) ⇔ ( 4 ) is mentioned in [Preiss, 1990] without any proof or reference.

( 2 ) ⇔ ( 10 ) is due to [Stegall, 1975]. A subset D of a Banach space is called
dentable, if and only if for every x ∈ D there exists an ε > 0 such that x is not
in the closed convex hull of {y ∈ D : ‖y − x‖ ≥ ε}.

( 2 ) ⇔ ( 5 ) is due to [John and Zizler, 1978]. A norm p is called rough, see also

13.23 , if and only if there exists an ε > 0 such that arbitrary close to each x ∈ X
there are points xi and u with ‖u‖ = 1 such that |p′(x2)(u) − p′(x1)(u)| ≥ ε. The
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usual norms on C[0, 1] and on `1 are rough by 13.12 and 13.13 . A norm is not
rough if and only if the dual ball is w∗-dentable. The unit ball is dentable if and
only if the dual norm is not rough.

( 2 ) ⇔ ( 6 ) is due to [Stegall, 1975].

( 2 ) ⇔ ( 7 ) is due to [Stegall, 1978]. A closed bounded convex subset K of a
Banach space E is said to have the Radon-Nikodym property if for any finite
measure space (Ω,Σ, µ) every µ-continuous countably additive function m : Σ→ E

of finite variation with average range {m(S)
µ(S) : S ∈ Σ, µ(S) > 0} contained in K is

representable by a Bochner integrable function, i.e. there exists a Borel-measurable
essentially separably valued function f : Ω→ E withm(S) =

∫
S
f dµ. This function

f is then called the Radon-Nikodym derivative of m. A Banach space is said to
have the Radon-Nikodym property if every closed bounded convex subset has it.
See also [Diestel, 1975]. A subset K is a Radon-Nikodym set if and only if every
closed convex subset of K is the closed convex hull of its strongly exposed points.

( 7 ) ⇔ ( 8 ) can be found in [Stegall, 1975] and is due to [Grothendieck, 1955]. A
linear mapping E → F is called integral if and only if it has a factorization

E //

��

F // F ∗∗

C(K) // L1(K,µ)

OO

for some Radon-measure µ on a compact space K.
A linear mapping T : E → F is called nuclear if and only if there are x∗n ∈ E∗
and yn ∈ F such that

∑
n ‖x∗n‖ ‖yn‖ <∞ and T =

∑
n x
∗
n ⊗ yn.

( 2 ) ⇔ ( 9 ) is due to [Stegall, 1981, p.516]. �

13.9. Results on generic Gâteaux differentiability of Lipschitz functions.

(1) [Mazur, 1933] & [Asplund, 1968] A Banach space E with the property that
every continuous convex function f : E → R is Gâteaux-differentiable on a
dense Gδ-subset is called weakly Asplund. Separable Banach spaces are
weakly Asplund.

(2) In [Živkov, 1983] it is mentioned that there are Lipschitz functions on R, which
fail to be differentiable on a dense Gδ-subset.

(3) A Lipschitz function on a separable Banach space is “almost everywhere”
Gâteaux-differentiable, [Aronszajn, 1976].

(4) [Preiss, 1990] If the norm on a Banach space is B-differentiable then every
Lipschitz function is B-differentiable on a dense set. A function f : E ⊇ U →
F is called B-differentiable at x ∈ U for some family B of bounded subsets, if
there exists a continuous linear mapping (denoted f ′(x)) in L(E,F ) such that

for every B ∈ B one has f(x+t v)−f(x)
t − f ′(x)(v)→ 0 for t→ 0 uniformly for

v ∈ B.
(5) [Kenderov, 1974], see [Živkov, 1983]. Every locally Lipschitzian function on

a separable Banach space which has one sided directional derivatives for each
direction in a dense subset is Gâteaux differentiable on a non-meager subset.
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(6) [Živkov, 1983]. For every space with Fréchet differentiable norm any locally
Lipschitzian function which has directional derivatives for a dense set of di-
rections is generically Gâteaux differentiable.

(7) There exists a Lipschitz Gâteaux differentiable function f : L1[0, 1] → R
which is nowhere Fréchet differentiable, [Sova, 1966a], see also [Gieraltowska-
Kedzierska and Van Vleck, 1991]. Hence, this is an example of a weakly
Asplund but not Asplund space.

Further references on generic differentiability are: [Phelps, 1989], [Preiss, 1984], and
[Živkov, 1987].

13.10. Lemma. Smoothness of 2n-norm. For n ∈ N the 2n-norm is smooth
on L2n \ {0}.

Proof. Since t 7→ t1/2n is smooth on R+ it is enough to show that x 7→ (‖x‖2n)2n

is smooth. Let p := 2n. Since (x1, . . . , xp) 7→ x1 · · · · · xp is a n-linear contraction
from Lp × . . . × Lp → L1 by the Hölder-inequality (

∑p
i=1

1
p = 1) and

∫
: L1 → R

is a linear contraction the mapping x 7→ (x, . . . , x) 7→
∫
x2n is smooth. Note that

since we have a real Banach space and p = 2n is even we can drop the absolute
value in the formula of the norm. �

13.11. Derivative of the 1-norm. Let x ∈ `1 and j ∈ N be such that xj = 0.
Let ej be the characteristic function of {j}. Then ‖x + t ej‖1 = ‖x‖1 + |t| since
the supports of x and ej are disjoint. Hence, the directional derivative of the norm
p : v 7→ ‖v‖1 is given by p′(x)(ei) = 1 and p′(x)(−ei) = 1, and p is not differentiable
at x. More generally we have:

Lemma. [Mazur, 1933, p.79]. Let Γ be some set, and let p be the 1-norm given
by ‖x‖1 = p(x) :=

∑
γ∈Γ |xγ | for x ∈ `1(Γ). Then p′(x)(h) =

∑
xγ=0 |hγ | +∑

xγ 6=0 hγ signxγ .

The basic idea behind this result is, that the unit sphere of the 1-norm is a hyper-
octahedra, and the points on the faces are those, for which no coordinate vanishes.

Proof. Without loss of generality we may assume that p(x) = 1 = p(h), since for
r > 0 and s ≥ 0 we have p′(r x)(s h) = d

dt |t=0p(r x+ t s h) = d
dt |t=0r p(x+ t ( srh)) =

r p′(x)( srh) = s p′(x)(h).

We have |xγ + hγ | − |xγ | = ||xγ | + hγ signxγ | − |xγ | ≥ |xγ | + hγ signxγ − |xγ | =
hγ signxγ , and is equal to |hγ | if xγ = 0. Summing up these (in)equalities we
obtain

p(x+ h)− p(x)−
∑
xγ=0

|hγ | −
∑
xγ 6=0

hγ signxγ ≥ 0.

For ε > 0 choose a finite set F ⊂ Γ, such that
∑
γ /∈F |hγ | <

ε
2 . Now choose t so

small that
|xγ |+ t hγ signxγ ≥ 0 for all γ ∈ F with xγ 6= 0.

We claim that

p(x+ t h)− p(x)

t
−
∑
xγ=0

|hγ | −
∑
xγ 6=0

hγ signxγ ≤ ε.
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Let first γ be such that xγ = 0. Then
|xγ+t hγ |−|xγ |

t = |hγ |, hence these terms cancel
with −

∑
xγ=0 |hγ |.

Let now xγ 6= 0. For |xγ | + t hγ signxγ ≥ 0 (hence in particular for γ ∈ F with
xγ 6= 0) we have

|xγ + t hγ | − |xγ |
t

=
|xγ |+ t hγ signxγ − |xγ |

t
= hγ signxγ .

Thus, these terms sum up to the corresponding sum
∑
γ hγ signxγ .

It remains to consider γ with xγ 6= 0 and |xγ |+ t hγ signxγ < 0. Then γ /∈ F and

|xγ + t hγ | − |xγ |
t

− hγ signxγ =
−|xγ | − t hγ signxγ − |xγ | − t hγ signxγ

t
≤ −2hγ signxγ ,

and since
∑
γ /∈F |hγ | <

ε
2 these remaining terms sum up to something smaller than

ε. �

Remark. The 1-norm is rough. This result shows that the 1-norm is Gâteaux-
differentiable exactly at those points, where all coordinates are non-zero. Thus, if
Γ is uncountable, the 1-norm is nowhere Gâteaux-differentiable.

In contrast to what is claimed in [Mazur, 1933, p.79], the 1-norm is nowhere Fréchet
differentiable. In fact, take 0 6= x ∈ `1(Γ). For γ with xγ 6= 0 and t > 0 we have
that

p(x+ t (− signxγ eγ))− p(x)− t p′(x)(− signxγ eγ) =

= |xγ − t signxγ | − |xγ |+ t =
∣∣|xγ | − t∣∣− |xγ |+ t ≥ t · 1,

provided t ≥ 2 |xγ |, since then
∣∣|xγ |−t∣∣ = t−|xγ | ≥ |xγ |. Obviously, for every t > 0

there are γ satisfying this required condition; either xγ = 0 then we have a corner,
or xγ 6= 0 then it gets arbitrarily small. Thus, the directional difference quotient
does not converge uniformly on the unit-sphere.

The set of points x in `1(Γ) where at least for one n the coordinate xn vanishes is
dense, and one has

p(x+ t en) = p(x) + |t|, hence p′(x+ t en)(en) =

{
+1 for t ≥ 0

−1 for t < 0
.

Hence the derivative of p is uniformly discontinuous, i.e., in every non-empty open
set there are points x1, x2 for which there exists an h ∈ `1 with ‖h‖ = 1 and
|p′(x1)(h)− p′(x2)(h)| ≥ 2.

13.12. Derivative of the∞-norm. On c0 the norm is not differentiable at points
x, where the norm is attained in at least two points. In fact let |x(a)| = ‖x‖ = |x(b)|
and let h := signx(a) ea. Then p(x + th) = |(x + th)(a)| = ‖x‖ + t for t ≥ 0 and
p(x+ th) = |(x+ th)(b)| = ‖x‖ for t ≤ 0. Thus, t 7→ p(x+ th) is not differentiable
at 0 and thus p not at x.

If the norm of x is attained at a single coordinate a, then p is differentiable at x.
In fact p(x + th) = |(x + th)(a)| = | sign(x(a))‖x‖ + th(a) sign2(x(a))| = |‖x‖ +
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th(a) sign(x(a))| = ‖x‖ + th(a) sign(x(a)) for |t| ‖h‖ ≤ ‖x‖ − sup{|x(t)| : t 6= a}.
Hence the directional difference-quotient converges uniformly for h in the unit-ball.

Let x ∈ C[0, 1] be such that ‖x‖∞ = |x(a)| = |x(b)| for a 6= b. Choose a y with
y(s) between 0 and x(s) for all s and y(a) = x(a) but y(b) = 0. For t ≥ 0 we have
|(x+ t y)(s)| ≤ |x(a) + t y(a)| = (1 + t) ‖x‖∞ and hence ‖x+ t y‖∞ = (1 + t) ‖x‖∞.
For −1 ≤ t ≤ 0 we have |(x+ t y)(s)| ≤ |x(a)| and |(x+ t y)(b)| = ‖x(a)‖ and hence
‖x + t y‖∞ = ‖x‖∞. Thus the directional derivative is given by p′(x)(y) = ‖x‖∞
and p′(x)(−y) = 0. More precisely we have the following results.

Lemma. [Banach, 1932, p. 168]. Let T be a compact metric space. Let x ∈
C(T,R) \ {0} and h ∈ C(T,R). By p we denote the ∞-norm ‖x‖∞ = p(x) :=
sup{|x(t)| : t ∈ T}. Then p′(x)(h) = sup{h(t) signx(t) : |x(t)| = p(x)}.

The idea here is, that the unit-ball is a hyper-cube, and the points on the faces are
exactly those for which the supremum is attained only in one point.

Proof. Without loss of generality we may assume that p(x) = 1 = p(h), since for
r > 0 and s ≥ 0 we have p′(r x)(s h) = d

dt |t=0p(r x+ t s h) = d
dt |t=0r p(x+ t ( srh)) =

r p′(x)( srh) = s p′(x)(h).

Let A := {t ∈ T : |x(t)| = p(x)}. For given ε > 0 we find by the uniform
continuity of x and h a δ1 such that |x(t) − x(t′)| < 1

2 and |h(t) − h(t′)| < ε for
dist(t, t′) < δ1. Then {t : dist(t, A) ≥ δ1} is closed, hence compact. Therefore
δ := ‖x‖∞ − sup{|x(t)| : dist(t, A) ≥ δ1} > 0.

Now we claim that for 0 < t < min{δ, 1} we have

0 ≤ p(x+ t h)− p(x)

t
− sup{h(r) signx(r) : r ∈ A} ≤ ε.

For all s ∈ A we have

p(x+ t h) ≥ |(x+ t h)(s)| =
∣∣|x(s)| signx(s) + t h(s) signx(s)2

∣∣
=
∣∣|x(s)|+ t h(s) signx(s)

∣∣ = p(x) + t h(s) signx(s)

for 0 ≤ t ≤ 1, since |h(s)| ≤ p(h) = p(x). Hence

p(x+ t h)− p(x)

t
≥ sup{h(s) signx(s) : s ∈ A}.

This shows the left inequality.

Let s be a point where the supremum p(x+t h) is attained. From the left inequality
it follows that

p(x+ t h) ≥ p(x) + t sup{h(r) signx(r) : r ∈ A}, and hence

|x(s)| ≥ |(x+ th)(s)| − t |h(s)| ≥ p(x+ t h)− t p(h)

≥ p(x)− t
(
p(h)− sup{h(r) signx(r) : r ∈ A}

)
︸ ︷︷ ︸

≤1

> p(x)− δ = sup{|x(r)| : dist(r,A) ≥ δ1}.
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Therefore dist(s,A) < δ1, and thus there exists an a ∈ A with dist(s, a) < δ1 and
consequently |x(s) − x(a)| < 1

2 and |h(s) − h(a)| < ε. In particular, signx(s) =
signx(a) 6= 0. So we get

p(x+ t h)− p(x)

t
=
|(x+ t h)(s)| − p(x)

t
=

∣∣|x(s)|+ t h(s) signx(s)
∣∣− p(x)

t

=
|x(s)|+ t h(s) signx(s)− p(x)

t
≤ h(s) signx(a)

≤ |h(s)− h(a)|+ h(a) signx(a)

< ε+ sup{h(r) signx(r) : r ∈ A}.

This proves the claim which finally implies

p′(x)(v) = lim
t↘0

p(x+ t h)− p(x)

t
= sup{h(r) signx(r) : |x(r)| = ‖x‖∞}. �

Remark. The ∞-norm is rough. This result shows that the points where the
∞-norm is Gâteaux-differentiable are exactly those x where the supremum p(x) is
attained in a single point a. The Gâteaux-derivative is then given by p′(x)(h) =
h(a) signx(a). In general, this is however not the Fréchet derivative:
Let x 6= 0. Without loss we may assume (that p(x) = 1 and) that there is a unique
point a, where |x(a)| = p(x). Moreover, we may assume x(a) > 0. Let an → a be
such that 0 < x(an) < x(a) and let 0 < δn := x(a) − x(an) < x(a). Now choose
sn := 2δn → 0 and hn ∈ C[0, 1] with p(hn) ≤ 1, hn(a) = 0 and hn(an) := 1 and
p(x+ snhn) = (x+ snhn)(an) = x(an) + 2(x(a)− x(an)) = 2x(a)− x(an). For this
choose (x + snhn)(t) ≤ (x + snhn)(an) locally, i.e.. hn(t) ≤ 1 + (x(an) − x(t))/sn
and 0 far away from an. Then p′(x)(hn) = 0 by 13.12 and

p(x+ sn hn)− p(x)

sn
− p′(x)(hn) =

2x(a)− x(an)− x(a)

sn

=
δn
2δn

=
1

2
6→ 0

Thus the limit is not uniform and p is not Fréchet differentiable at x.

The set of vectors x ∈ C[0, 1] which attain their norm at least at two points a and
b is dense, and one has for appropriately chosen h with h(a) = −x(a), h(b) = x(b)
that

p(x+ t h) = (1 + max{t,−t}) p(x), hence p′(x+ t h)(h) =

{
+1 for t ≥ 0

−1 for t < 0
.

Therefore, the derivative of the norm is uniformly discontinuous, i.e., in every non-
empty open set there are points x1, x2 for which there exists an h ∈ C[0, 1] with
‖h‖ = 1 and |p′(x1)(h)− p′(x2)(h)| ≥ 2.

13.13. Results on the differentiability of p-norms. [Bonic and Frampton,
1966].
For 1 < p < ∞ not an even integer the function t 7→ |t|p is differentiable of order
n if n < p, and the highest derivative (t 7→ p (p− 1) . . . (p− n + 1) |t|p−n) satisfies
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a Hölder-condition with modulus p − n, one can show that the p-norm has exactly
these differentiability properties, i.e.

(1) It is (p− 1)-times differentiable with Lipschitzian highest derivative if p is an
integer.

(2) It is [p]-times differentiable with highest derivative being Hölderian of order
p− [p], otherwise.

(3) The norm has no higher Hölder-differentiability properties.

That the norm on Lp is C1 for 1 < p <∞ was already shown by [Mazur, 1933].

13.14. Proposition. Smooth norms on a Banach space. A norm on a
Banach space is of class Cn on E \ {0} if and only if its unit sphere is a Cn-
submanifold of E.

Proof. Let p : E → R be a smooth norm. Since p′(x)(x) = d
dt |t=0p(x + tx) =

d
dt |t=0(1 + t)p(x) = p(x), we see that p(x) = 1 is a regular equation and hence the

unit sphere S := p−1(1) is a smooth submanifold (of codimension 1), see 27.11 .

Explicitly, this can be shown as follows: For a ∈ S let Φ : ker(p′(a))×R+ → E+ :=
{x ∈ E : p′(a)(x) > 0} be given by (v, t) 7→ t a+v

p(a+v) . This is well-defined, since

p(a + v) ≥ p(a) + p′(a)(v) = p(a) = 1 for v ∈ ker(p′(a)). Note that Φ(v, t) = y
implies that t = p(y) and v ∈ ker(p′(a)) is such that a + v = µ y for some µ 6= 0,
i.e. µ p′(a)(y) = p′(a)(a + v) = p′(a)(a) = p(a) = 1 and hence v = 1

p′(a)(y) y − a.

Thus Φ is a diffeomorphism that maps ker(p′(a))× {1} onto S ∩ E+.

Conversely, let x0 ∈ E \ {0} and a := x0

p(x0) . Then a is in the unit sphere, hence

there exists locally around a a diffeomorphism Φ : E ⊇ U → Φ(U) ⊆ E which maps
S ∩ U → F ∩ Φ(U) for some closed linear subspace F ⊆ E. Let λ : E → R be a
continuous linear functional with λ(a) = 1 and λ ≤ p. Note that b := Φ′(a)(a) 6∈ F ,
since otherwise t 7→ Φ−1(tb) is in S, but then λ(Φ−1(tb)) ≤ 1 and hence 0 =
d
dt |t=0λ(Φ−1(tb)) = λ(Φ′(a)−1b) = λ(a) = 1 gives a contradiction. Choose µ ∈ E′
with µ|F = 0 and µ(b) = 1. We have to show that x 7→ p(x) is Cn locally around
x0, or equivalently that this is true for g : x 7→ 1

p(x) . Then g(x) is solution of

the implicit equation ϕ(x, g(x)) = 0, where ϕ : E × R → F is given by (x, g) 7→
f(g · x) with f := µ ◦ Φ. This solution is Cn by the implicit function theorem,
since ∂2ϕ(x0, g(x0)) = f ′(g(x0)x0)(x0) = p(x0) f ′(a)(a) = p(x0)µ(b) = p(x) 6= 0,
because f is a regular equation at a. �

Although this proof uses the implicit function theorem on Banach spaces we can
do without as the following theorem shows:

13.15. Theorem. Characterization of smooth seminorms. Let E be a
convenient vector space.

(1) Let p : E → R be a convex function which is smooth on a neighborhood of
p−1(1), and assume that U := {x ∈ E : p(x) < 1} is not empty. Then U is open,
and its boundary ∂U equals {x : p(x) = 1}, a smooth splitting submanifold of E.

(2) If U is a convex absorbing open subset of E whose boundary is a smooth sub-
manifold of E then the Minkowski functional pU is a smooth sublinear mapping,
and U = {x ∈ E : pU (x) < 1}.
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Proof. ( 1 ) The set U is obviously convex and open by 4.5 and 13.1 . Let
M := {x : p(x) = 1}. We claim that M = ∂U . Let x0 ∈ U and x1 ∈ M . Since
t 7→ p(x1 + t(x0 − x1)) is convex it is strictly decreasing in a neighborhood of 0.
Hence, there are points x close to x1 with p(x) < p(x1) and such with p(x) ≥ 1,
i.e. x belongs to ∂U . Conversely, let x1 ∈ ∂U . Since U is open we have p(x1) ≥ 1.
Suppose p(x1) > 1, then p(x) > 1 locally around x1, a contradiction to x1 ∈ ∂U .

Now we show that M is a smooth splitting submanifold of E, i.e. every point has a
neighborhood, in which M is up to a diffeomorphism a complemented subspace. Let
x0 ∈ U and x1 ∈M = ∂U . We consider the convex mapping t 7→ p(x0 +t(x1−x0)).
It is locally around 1 differentiable, and its value at 0 is strictly less than that at 1.
Thus, p′(x1)(x1 − x0) ≥ p(x1)− p(x0) > 0, and hence we may replace x0 by some
point on the segment from x0 to x1 closer to x1, such that p′(x0)(x1 − x0) > 0.
Without loss of generality we may assume that x0 = 0. Let U := {x ∈ E : p′(0)x >
0 and p′(x1)x > 0} and V := (U −x1)∩ker p′(x1) ⊆ ker p′(x1). A smooth mapping
from the open set U ⊆ E to the open set V × R ⊆ ker p′(x1) × R is given by

x 7→ (tx− x1, p(x)), where t := p′(x1)(x1)
p′(x1)(x) . This mapping is a diffeomorphism, since

for (y, r) ∈ ker p′(x1) × R the inverse image is given as t(y + x1) where t can be
calculated from r = p(t (y+x1)). Since t 7→ p(t (y+x1)) is a diffeomorphism between
the intervals (0,+∞) → (p(0),+∞) this t is uniquely determined. Furthermore, t
depends smoothly on (y, r): Let s 7→ (y(s), r(s)) be a smooth curve, then t(s) is
given by the implicit equation p(t (y(s) + x1)) = r(s), and by the 2-dimensional
implicit function theorem the solution s 7→ t(s) is smooth.

( 2 ) By general principles pU is a sublinear mapping, and U = {x : pU (x) < 1}
since U is open. Thus it remains to show that pU is smooth on its open carrier. So
let c be a smooth curve in the carrier. By assumption, there is a diffeomorphism
v, locally defined on E near an intersection point a of the ray through c(0) with
the boundary ∂U = {x : p(x) = 1}, such that ∂U corresponds to a closed linear
subspace F ⊆ E. Since U is convex there is a continuous linear functional λ ∈ E′
with λ(a) = 1 and U ⊆ {x ∈ E : λ(x) ≤ 1} by the theorem of Hahn-Banach.
Then λ(Ta(∂U)) = 0 since any smooth curve in ∂U through a stays inside {x :
λ(x) ≤ 1}. Furthermore, b := ∂

∂t |1v(ta) /∈ F , since otherwise t 7→ v−1(tb) ∈ ∂U but

0 = ∂
∂t |1λ(v−1(tb)) = λ(a) = 1.

Put f := 1/pU ◦ c : R → R. Then f is a solution of the implicit equation (λ ◦
dv−1(0) ◦ v)(f(t)c(t)) = 0 which has a unique smooth solution by the implicit
function theorem in dimension 2 since

∂
∂s |s=f(t)(λ ◦ dv−1(0) ◦ v)(sc(t)) = λdv−1(0)dv(f(t)c(t))c(t) 6= 0

for t near 0, since for t = 0 we get λ(c(0)) = 1
f(0) . So pU is smooth on its carrier. �

13.16. The space c0(Γ). For an arbitrary set Γ the space c0(Γ) is the closure
of all functions on Γ with finite support in the Banach space `∞(Γ) of globally
bounded functions on Γ with the supremum norm. The supremum norm on c0(Γ)

is not differentiable on its carrier, see 13.12 . Nevertheless, it was shown in [Bonic
and Frampton, 1965] that c0 is C∞-regular.
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Proposition. Smooth norm on c0. Due to Kuiper according to [Bonic and
Frampton, 1966]. There exists an equivalent norm on c0(Γ) which is smooth off 0.

Proof. To prove this let h : R → R be an unbounded symmetric smooth convex
function vanishing near 0. Let f : c0(Γ) → R be given by f(x) :=

∑
γ∈Γ h(xγ).

Locally on c0(Γ) the function f is just a finite sum, hence f is smooth. In fact let
h(t) = 0 for |t| ≤ δ. For x ∈ c0(Γ) the set F := {γ : |xγ | ≥ δ/2} is finite, and for
‖y − x‖ < δ/2 we have that f(y) =

∑
γ∈F h(yγ).

The set U := {x : f(x) < 1} is open, and bounded: Let h(t) ≥ 1 for |t| ≥ ∆ and
f(x) < 1, then h(xγ) < 1 and thus |xγ | ≤ ∆ for all γ. The set U is also absolutely
convex: Since h is convex, so is f and hence U . Since h is symmetric, so is f and
hence U .

The boundary ∂U = f−1(1) is a splitting submanifold of c0(Γ) by 13.15.1 . So by

13.14 the Minkowski functional pU is smooth off 0. Obviously, it is an equivalent
norm. �

13.17. Proposition. Inheritance properties for differentiable norms.

(1) The product of two spaces with Cn-norm has again a Cn-norm given by

‖(x1, x2)‖ :=
√
‖x1‖2 + ‖x2‖2. More generally, the `2-sum of Cn-normable

Banach spaces is Cn-normable.
(2) A subspace of a space with a Cn-norm has a Cn-norm.
(3) [Godefroy et al., 1988]. If c0(Γ)→ E → F is a short exact sequence of Banach

spaces, and F has a Ck-norm, then E has a Ck-norm. See also 14.12.1 and

16.19 .
(4) For a compact space K let K ′ be the set of all accumulation points of K. The

operation K 7→ K ′ has the following properties:

(a) A ⊆ B ⇒ A′ ⊆ B′

(b) (A ∪B)′ = A′ ∪B′

(c) (A×B)′ = (A′ ×B) ∪ (A×B′)

(d)
(
{0} ∪ { 1

n : n ∈ N}
)′

= {0}
(e) K ′ = ∅ ⇔ K discrete.

(5) If K is compact and K(ω) = ∅ then C(K) has an equivalent C∞-norm, see

also 16.20 .

Proof. ( 1 ) and ( 2 ) are obvious.

( 4 ) (a) is obvious, since if {x} is open in B and x ∈ A, then it is also open in A
in the trace topology, hence A ∩ (B \ B′) ⊆ A \ A′ and hence A′ = A \ (A \ A′) ⊆
(A \A ∩ (B \B′)) = A ∩B′ ⊆ B′.
(b) By monotonicity we have ‘⊇’. Conversely let x ∈ A′ ∪ B′, w.l.o.g. x ∈ A′,
suppose x /∈ (A ∪ B)′, then {x} is open in A ∪ B and hence {x} = {x} ∩ A would
be open in A, i.e. x /∈ A′, a contradiction.
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(c) is obvious, since {(x, y)} is open in A×B ⇔ {x} is open in A and {y} is open
in B.

(d) and (e) are trivial.

For ( 3 ) a construction is used similar to that of Kuiper’s smooth norm for c0.
Let π : E → F be the quotient mapping and ‖ ‖ the quotient norm on F . The
dual sequence `1(A) ← E∗ ← F ∗ splits (just define T : `1(A) → E∗ by selection
of x∗a := T (ea) ∈ E∗ with ‖x∗a‖ = 1 and x∗a|c0(A) = eva using Hahn Banach). Note
that for every x ∈ E and ε > 0 the set {α : |x∗α(x)| ≥ ‖π(x)‖+ ε} is finite. In fact,
by definition of the quotient norm ‖π(x)‖ := sup{‖x + y‖ : y ∈ c0(Γ)} there is a
y ∈ c0(Γ) such that ‖x + y‖ ≤ ‖π(x)‖ + ε/2. The set Γ0 := {α : |yα| ≥ ε/2} is
finite. For all other α we have

|x∗α(x)| ≤ |x∗α(x+ y)|+ |x∗α(y)| ≤ ‖x∗α‖ ‖x+ y‖+ |yα| <
< 1 (‖π(x)‖+ ε/2) + ε/2 = ‖π(x)‖+ ε.

Furthermore, we have

‖x‖ ≤ 2‖π(x)‖+ sup{|x∗α(x)| : α}.

In fact,

‖x‖ = sup{|〈x∗, x〉| : ‖x∗‖ ≤ 1}
≤ sup{|〈T (λ) + y∗ ◦ π, x〉| : ‖λ‖1 ≤ 1, ‖y∗‖ ≤ 2}
= sup{|x∗α(x)| : α}+ 2‖π(x)‖,

since x∗ = T (λ) + x∗ − T (λ), where λ := x∗|c0(Γ) and hence ‖λ‖1 ≤ ‖x∗‖ ≤ 1,
and |T (λ)(x)| ≤ ‖λ‖1 sup{|x∗α(x)| : α} ≤ ‖x‖ hence ‖T (λ)‖ ≤ ‖λ‖1, and y∗ ◦ π =
x∗ − T (λ). Let ‖ ‖ denote a norm on F which is smooth and is larger than the

quotient norm. Analogously to 13.16 we define

f(x) := h(4‖π(x)‖)
∏
a∈A

h(x∗a(x)),

where h : R → [0, 1] is smooth, even, 1 for |t| ≤ 1, 0 for |t| ≥ 2 and concave
on {t : h(t) ≥ 1/2}. Then f is smooth, since if π(x) > 1/2 then the first factor
vanishes locally, and if ‖π(x)‖ < 1 we have that Γ0 := {α : |x∗α(x)| ≥ 1 − ε}
is finite, where ε := (1 − ‖π(x)‖)/2, for ‖y − x‖ < ε also |x∗α(y) − x∗α(x)| < ε
and hence |x∗α(y)| < 1 − ε + ε = 1 for all α /∈ Γ0. So the product is locally
finite. The set {x : f(x) > 1

2} is open, bounded and absolutely convex and has

a smooth boundary {x : f(x) = 1
2}. It is symmetric since f is symmetric. It is

bounded, since f(x) > 1/2 implies h(4‖π(x)‖) ≥ 1/2 and h(x∗a(x)) ≥ 1/2 for all
a. Thus 4‖π(x)‖ ≤ 2 and |x∗a(x)| ≤ 2 and thus ‖x‖ ≤ 2 · 1/2 + 2 = 3. For the
convexity note that xi ≥ 0, yi ≥ 0, 0 ≤ t ≤ 1,

∏
i xi ≥ 1/2,

∏
i yi ≥ 1/2 imply∏

i(txi+(1−t)yi) ≥ 1/2, since log is concave. Since all factors of f have to be ≥ 1/2
and h is concave on this set, convexity follows. Since one factor of f(x) =

∏
α fα(x)

has to be unequal to 1, the derivative f ′(x)(x) < 0, since f ′α(x)(x) ≤ 0 for all α by
concavity and f ′α(x)(x) < 0 for all x with fα(x) < 1. So its Minkowski-functional
is an equivalent smooth norm on E.
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Statement ( 5 ) follows from ( 3 ). First recall that K ′ is the set of accumulation
points of K, i.e. those points x for which every neighborhood meets K \{x}, i.e. {x}
is not open. Thus K \K ′ is discrete. For successor ordinals α = β + 1 one defines
K(α) := (K(β))′ and for limit ordinals α as

⋂
β<αK

(β). For a compact space K the

equality K(ω) = ∅ implies K(n) = ∅ for some n ∈ ω, since K(n) is closed. Now one
shows this by induction. Let E := {f ∈ C(K) : f |K′ = 0}. By the Tietze-Urysohn
theorem one has a short exact sequence c0(K \K ′) ∼= E → C(K) → C(K ′). The
equality E = c0(K \K0) can be seen as follows:

Let f ∈ C(K) with f |K′ = 0. Suppose there is some ε > 0 such that {x : |f(x)| ≥ ε}
is not finite. Then there is some accumulation point x∞ of this set and hence
|f(x∞)| ≥ ε but x∞ ∈ K ′ and so f(x∞) = 0. Conversely let f ∈ c0(K \K ′) and

define f̃ by f̃ |K′ := 0 and f̃ |K\K′ = f . Then f̃ is continuous on K \ K ′, since

K \K ′ is discrete. For x ∈ K ′ we have that f̃(x) = 0 and for each ε > 0 the set

{y : |f̃(y)| ≥ ε} is finite, hence its complement is a neighborhood of x, and f̃ is
continuous at x. So the result follows by induction. �

13.18. Results.

(1) We do not know whether the quotient of a Cn-normable space is again Cn-
normable. Compare however with [Fitzpatrick, 1980].

(2) The statement 13.17.5 is quite sharp, since by [Haydon, 1990] there is a

compact space K with K(ω) = {∞} but without a Gâteaux-differentiable norm.
(3) [Talagrand, 1986] proved that for every ordinal number γ, the compact and

scattered space [0, γ] with the order topology is C1-normable.
(4) It was shown by [Toruńczyk, 1981] that two Banach spaces are homeomorphic

if and only if their density number is the same. Hence, one can view Banach
spaces as exotic (differentiable or linear) structures on Hilbert spaces. If two
Banach spaces are even C1-diffeomorphic then the differential (at 0) gives
a continuous linear homeomorphism. It was for some time unknown if also
uniformly homeomorphic (or at least Lipschitz homeomorphic) Banach spaces
are already linearly homeomorphic. By [Enflo, 1970] a Banach space which
is uniformly homeomorphic to a Hilbert space is linearly homeomorphic to
it. A counter-example to the general statement was given by [Aharoni and
Lindenstrauss, 1978], and another one is due to [Ciesielski and Pol, 1984]:
There exists a short exact sequence c0(Γ1) → C(K) → c0(Γ2) where C(K)
cannot be continuously injected into some c0(Γ) but is Lipschitz equivalent to
c0(Γ). For these and similar questions see [Tzafriri, 1980].

(5) A space all of whose closed subspaces are complemented is a Hilbert space,
[Lindenstrauss and Tzafriri, 1971].

(6) [Enflo et al., 1975] There exists a Banach space E not isomorphic to a Hilbert
space and a short exact sequence `2 → E → `2.

(7) [Bonic and Reis, 1966]. If the norm of a Banach space and its dual norm are
C2 then the space is a Hilbert space.

(8) [Deville et al., 1990]. This yields also an example that existence of smooth

norms is not a three-space property, cf. 14.12 .
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Notes. ( 2 ) Note that K \ K ′ is discrete, open and dense in K. So we get

for every n ∈ N by induction a space Kn with K
(n)
n 6= ∅ and K

(n+1)
n = ∅. In

fact (A × B)(n) =
⋃
i+j=nA

(i) × B(j). Next consider the 1-point compactification

K∞ of the locally compact space
⊔
n∈NKn. Then K ′∞ = {∞} ∪

⊔
n∈NK

′
n. In

fact every neighborhood of {∞} contains all but finitely many of the Kn, thus

we have ⊇. The obvious relation is clear. Hence K
(n)
∞ = {∞} ∪

⊔
i≥nK

(i)
n . And

K
(ω)
∞ =

⋂
n<ωK

(n)
∞ = {∞} 6= ∅. The space of [Haydon, 1990] is the one-point

compactification of a locally compact space L given as follows: L :=
⊔
α<ω1

ωα1 , i.e.
the space of functions ω1 → ω1, which are defined on some countable ordinal. It is
ordered by restriction, i.e. s � t :⇔ dom s ⊆ dom t and t|dom s = s.

( 3 ) The order topology on X := [0, γ] has the sets {x : x < a} and {x : x > a}
as basis. In particular open intervals (a, b) := {x : a < x < b} are open. It is
compact, since every subset has a greatest lower bound. In fact let U on X be a
covering. Consider S := {x ∈ X : [inf X,x) is covered by finitely many U ∈ U}.
Let s∞ := supS. Note that x ∈ S implies that [inf X,x] is covered by finitely many
sets in U . We have that s∞ ∈ S, since there is an U ∈ U with s∞ ∈ U . Then there
is an x with s∞ ∈ (x, s∞] ⊆ U , hence [inf X,x] is covered by finitely many sets in
U since there is an s ∈ S with x < s, so [inf X, s∞] = [inf X,x] ∪ (x, s∞] is covered
by finitely many sets, i.e. s∞ ∈ S.

The space X is scattered, i.e. X(α) = ∅ for some ordinal α. For this we have to
show that every closed non-empty subset K ⊆ X has open points. For every subset
K of X there is a minimum minK ∈ K, hence [inf X,minK + 1) ∩K = {minK}
is open in K.

For γ equal to the first infinite ordinal ω we have [0, γ] = N∞, the one-point
compactification of the discrete space N. Thus C([0, γ]) ∼= c0 × R and the result

follows in this case from 13.16 .

( 5 ) For splitting short exact sequences the result analogous to 13.17.3 is by

13.17.1 obviously true. By ( 5 ) there are non-splitting exact sequences 0→ F →
E → E/F → 0 for every Banach space which is not Hilbertizable.

( 8 ) By ( 6 ) there is a sort exact sequence with hilbertizable ends, but with middle
term E not hilbertizable. So neither the sequence nor the dualized sequence splits.

If E and E′ would have a C2-norm then E would be hilbertizable by ( 7 ).

13.19. Proposition. Let E be a Banach space, ‖x‖ = 1. Then the following
statements are equivalent:

(1) The norm is Fréchet differentiable at x;
(2) The following two equivalent conditions hold:

lim
h→0

‖x+ h‖+ ‖x− h‖ − 2‖x‖
‖h‖

= 0,

lim
t→0

‖x+ th‖+ ‖x− th‖ − 2‖x‖
t

= 0 uniformly in ‖h‖ ≤ 1;

(3) ‖y∗n‖ = 1, ‖z∗n‖ = 1, y∗n(x)→ 1, z∗n(x)→ 1 ⇒ y∗n − z∗n → 0.
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Proof. ( 1 )⇒( 2 ) This is obvious, since for the derivative ` of the norm at x we

have limh→0
‖x±h‖−‖x‖−l(±h)

‖h‖ = 0 and adding these equations gives ( 2 ).

( 2 )⇒ ( 1 ) Since `(h) := limt↘0
‖x+th‖−‖x‖

t always exists, and since

‖x+ th‖+ ‖x− th‖ − 2‖x‖
t

=
‖x+ th‖ − ‖x‖

t
+
‖x+ t(−h)‖ − ‖x‖

t
≥ l(h) + l(−h) ≥ 0

we have `(−h) = `(h), thus ` is linear. Moreover ‖x±th‖−‖x‖t − `(±h) ≥ 0, so the
limit is uniform for ‖h‖ ≤ 1.

( 2 ) ⇒ ( 3 ) By ( 2 ) we have that for ε > 0 there exists a δ such that ‖x + h‖ +
‖x− h‖ ≤ 2 + ε‖h‖ for all ‖h‖ < δ. For ‖y∗n‖ = 1 and ‖z∗n‖ = 1 we have

y∗n(x+ h) + z∗n(x− h) ≤ ‖x+ h‖+ ‖x− h‖.
Since y∗n(x)→ 1 and z∗n(x)→ 1 we get for large n that

(y∗n − z∗n)(h) ≤ 2− y∗n(x)− z∗n(x) + ε‖h‖ ≤ 2εδ,

hence ‖y∗n − z∗n‖ ≤ 2ε, i.e. z∗n − y∗n → 0.

( 3 )⇒ ( 2 ) Otherwise, there exists an ε > 0 and 0 6= hn → 0, such that

‖x+ hn‖+ ‖x− hn‖ ≥ 2 + ε‖hn‖.
Now choose ‖y∗n‖ = 1 and ‖z∗n‖ = 1 with

y∗n(x+ hn) ≥ ‖x+ hn‖ −
1

n
‖hn‖ and z∗n(x− hn) ≥ ‖x− hn‖ −

1

n
‖hn‖.

Then y∗n(x) = y∗n(x+ hn)− y∗n(hn)→ 1 and similarly z∗n(x)→ 1. Furthermore

y∗n(x+ hn) + z∗n(x− hn) ≥ 2 + (ε− 2

n
) ‖hn‖,

hence

(y∗n − z∗n)(hn) ≥ 2 + (ε− 2

n
) ‖hn‖ − (y∗n + z∗n)(x) ≥ (ε− 2

n
) ‖hn‖,

thus ‖y∗n − z∗n‖ ≥ ε− 2
n , a contradiction. �

13.20. Proposition. Fréchet differentiable norms via locally uniformly
rotund duals. [Lovaglia, 1955] If the dual norm of a Banach space E is locally
uniformly rotund on E′ then the norm is Fréchet differentiable on E.

A norm is called locally uniformly rotund if ‖xn‖ → ‖x‖ and ‖x+xn‖ → 2‖x‖
implies xn → x. This is equivalent to 2(‖x‖2 + ‖xn‖2) − ‖x + xn‖2 → 0 implies
xn → x, since

2(‖x‖2 + 2‖xn‖2)− ‖x+ xn‖2 ≥ 2‖x‖2 + 2‖xn‖2 − (‖x‖+ ‖xn‖)2 = (‖x‖ − ‖xn‖)2.

Proof. We use 13.19 , so let ‖x‖ = 1, ‖y∗n‖ = 1, ‖z∗n‖ = 1, y∗n(x)→ 1, z∗n(x)→ 1.
Let ‖x∗‖ = 1 with x∗(x) = 1. Then 2 ≥ ‖x∗ + y∗n‖ ≥ (x∗ + y∗n)(x) → 2. Since
‖ ‖E′ is locally uniformly rotund we get y∗n → x and similarly z∗n → z, hence
y∗n − z∗n → 0. �
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13.21. Remarks on locally uniformly rotund spaces. By [Kadec, 1959] and
[Kadec, 1961] every separable Banach space is isomorphic to a locally uniformly
rotund Banach space. By [Day, 1955] the space `∞(Γ) is not isomorphic to a locally
uniformly rotund Banach space. Every Banach space admitting a continuous linear
injection into some c0(Γ) is locally uniformly rotund renormable, see [Troyanski,

1971]. By 53.21 every WCG-Banach space has such an injection, which is due
to [Amir and Lindenstrauss, 1968]. By [Troyanski, 1968] every Banach space with
unconditional basis (see [Jarchow, 1981, 14.7]) is isomorphic to a locally uniformly
rotund Banach space.

In particular, it follows from these results that every reflexive Banach space has an
equivalent Fréchet differentiable norm. In particular Lp has a Fréchet differentiable
norm for 1 < p < ∞ and in fact the p-norm is itself Fréchet differentiable, see

13.13 .

13.22. Proposition. If E′ is separable then E admits an equivalent norm, whose
dual norm is locally uniform rotund.

Proof. Let E′ be separable. Then there exists a bounded linear operator T : E →
`2 such that T ∗((`2)′) is dense in E′ (and obviously T ∗ is weak∗-continuous):
Take a dense subset {x∗i : i ∈ N} ⊆ E′ of {x∗ ∈ E′ : ‖x∗‖ ≤ 1} with ‖x∗i ‖ ≤ 1.
Define T : E → `2 by

T (x)i :=
x∗i (x)

2i
.

Then for the basic unit vector ei ∈ (`2)′ we have

T ∗(ei)(x) = ei(T (x)) = T (x)i =
x∗i (x)

2i
,

i.e. T ∗(ei) = 2−i x∗i .

Note that the canonical norm on `2 is locally uniformly rotund. We now claim that
E′ has a dual locally uniform rotund norm. For x∗ ∈ E′ and n ∈ N we define

‖x∗‖2n := inf{‖x∗ − T ∗y∗‖2 +
1

n
‖y∗‖2 : y∗ ∈ (`2)′} and

‖x∗‖∞ :=

∞∑
n=1

1

2n
‖x∗‖n.

We claim that ‖ ‖∞ is the required norm.

So we show first, that it is an equivalent norm. For ‖x∗‖ = 1 we have ‖x∗‖n ≥
min{1/(2

√
n‖T ∗‖), 1/2}. In fact if ‖y∗‖ ≥ 1/(2‖T ∗‖) then ‖x∗−T ∗y∗‖2+ 1

n‖y
∗‖2 ≥

1/(2n2‖T ∗‖2) and if ‖y∗‖ ≤ 1/(2‖T ∗‖) then ‖x∗−T ∗y∗‖ ≥ ‖x‖−‖T ∗y∗‖ ≥ 1− 1
2 =

1
2 . Furthermore if we take y := 0 then we see that ‖x∗‖n ≤ ‖x‖. Thus ‖ ‖n and
‖ ‖ are equivalent norms, and hence also ‖ ‖∞.

Note first, that a dual norm is the supremum of the weak∗ (lower semi-)continuous
functions x∗ 7→ |x∗(x)| for ‖x‖ ≤ 1. Conversely the unit ball B has to be weak∗

closed in E′ since the norm is assumed to be weak∗ lower semi-continuous and B
is convex. Let Bo be its polar in E. By the bipolar-theorem (Bo)

o = B, and thus
the dual of the Minkowski functional of Bo is the given norm.
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Next we show that the infimum defining ‖ ‖n is in fact a minimum, i.e. for each n
and x∗ there exists a y∗ with ‖x∗‖n2 = ‖x∗−T ∗y∗‖2+ 1

n‖y
∗‖2. Since fx : y∗ 7→ ‖x∗−

T ∗y∗‖2 + 1
n‖y

∗‖2 is weak∗ lower semi-continuous and satisfies limy∗→∞ fx(y∗) =
+∞, hence it attains its minimum on some large (weak∗-compact) ball.

We have that ‖x‖n → 0 for n→∞.
In fact since the image of T ∗ is dense in E′, there is for every ε > 0 a y∗ with
‖x∗ − T ∗y∗‖ < ε, and so for large n we have ‖x∗‖2n ≤ ‖x∗ − T ∗y∗‖2 + 1

n‖y‖
2 < ε2.

Let us next show that ‖ ‖∞ is a dual norm. For this it is enough to show that ‖ ‖n
is a dual norm, i.e. is weak∗ lower semi-continuous. So let x∗i be a net converging
weak∗ to x∗. Then we may choose y∗i with ‖x∗i ‖2n = ‖x∗i − T ∗y∗i ‖2 + 1

n‖y
∗
i ‖2. Then

{x∗i : i} is bounded, and hence also ‖y∗i ‖2. Let thus y∗ be a weak∗ cluster point
of the (y∗i ). Without loss of generality we may assume that y∗i → y∗. Since the
original norms are weak∗ lower semicontinuous we have

‖x∗‖2n ≤ ‖x∗−T ∗y∗‖2 +
1

n
‖y∗‖2 ≤ lim inf

i
(‖x∗i −T ∗y∗i ‖2 +

1

n
‖y∗i ‖2) = lim inf

i
‖x∗i ‖n2 .

So ‖ ‖n is weak∗ lower semicontinuous.
Here we use that a function f : E → R is lower semicontinuous if and only if
x∞ = limi xi ⇒ f(x∞) ≤ lim infi f(xi).
(⇒) otherwise for some subnet (which we again denote by xi) we have f(x∞) >
limi f(xi) and this contradicts the fact that f−1((a,∞)) has to be a neighborhood
of x∞ for 2a := f(x∞) + limi f(xi).
(⇒) otherwise there exists some x∞ and an a < f(x∞) such that in every neigh-
borhood U of x∞ there is some xU with f(xU ) ≤ a. Hence limU xU = x∞ and
lim infU f(xU ) ≤ lim supU f(xU ) ≤ a < f(x∞).

Let us finally show that ‖ ‖∞ is locally uniform rotund.
So let x∗, x∗j ∈ E′ with

2(‖x∗‖2∞ + ‖x∗j‖2∞)− ‖x∗ + x∗j‖2∞ → 0,

or equivalently

‖x∗j‖∞ → ‖x∗‖∞ and ‖x∗ + x∗j‖∞ → 2‖x∗‖∞.
Thus also

‖x∗j‖n → ‖x∗‖n and ‖x∗ + x∗j‖n → 2‖x∗‖n
and equivalently

2(‖x∗‖2n + ‖x∗j‖2n)− ‖x∗ + x∗j‖2n → 0.

Now we may choose y∗ and y∗j such that

‖x∗‖n2 = ‖x∗ − T ∗y∗‖2 +
1

n
‖y∗‖2 and ‖x∗j‖n2 = ‖x∗j − T ∗y∗j ‖2 +

1

n
‖y∗j ‖2.

We calculate as follows:

2(‖x∗‖2n + ‖x∗j‖2n)− ‖x∗ + x∗j‖2 ≥

≥ 2(‖x∗ − T ∗y∗‖2 +
1

n
‖y∗‖2 + ‖x∗j − T ∗y∗j ‖2 +

1

n
‖y∗j ‖2

− ‖x∗ + x∗j − T ∗(y∗ + y∗j )‖2 − 1

n
‖y∗ + y∗j ‖2
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≥ 2(‖x∗ − T ∗y∗‖2 +
1

n
‖y∗‖2 + ‖x∗j − T ∗y∗j ‖2 +

1

n
‖y∗j ‖2

− (‖x∗ − T ∗(y∗)‖+ ‖x∗j − T ∗(y∗j )‖)2 − 1

n
‖y∗ + y∗j ‖2

≥ (‖x∗ − T ∗y∗‖ − ‖x∗j − T ∗y∗j ‖)2+

+
1

n
(2‖y∗‖2 + 2‖y∗j ‖2 − ‖y∗ + y∗j ‖2) ≥ 0,

hence

‖x∗j − T ∗y∗j ‖ → ‖x∗ − T ∗y∗‖ and 2(‖y∗‖2 + ‖y∗j ‖2)− ‖y∗ + y∗j ‖2 → 0.

Since ‖ ‖ is locally uniformly rotund on (`2)∗ we get that y∗j → y∗. Hence

lim sup
j
‖x∗ − x∗j‖ ≤ lim sup

j
(‖x∗ − T ∗y∗‖+ ‖T ∗(y∗ − y∗j )‖+ ‖x∗j − T ∗y∗j ‖)

= 2 ‖x∗ − T ∗y∗‖ ≤ 2‖x∗‖n.

Since ‖x∗‖n → 0 for n→∞ we get x∗j → x∗. �

13.23. Proposition. [Leach and Whitfield, 1972]. For the norm ‖ ‖ = p on a
Banach space E the following statements are equivalent:

(1) The norm is rough, i.e. p′ is uniformly discontinuous, see 13.8.5 .
(2) There exists an ε > 0 such that for all x ∈ E with ‖x‖ = 1 and all y∗n, z∗n ∈ E′

with ‖y∗n‖ = 1 = ‖z∗n‖ and limn y
∗
n(x) = 1 = limn z

∗
n(x) we have:

lim sup
n
‖y∗n − z∗n‖ ≥ ε;

(3) There exists an ε > 0 such that for all x ∈ E with ‖x‖ = 1 we have that

lim sup
h→0

‖x+ h‖+ ‖x− h‖ − 2

‖h‖
≥ ε;

(4) There exists an ε > 0 such that for every x ∈ E with ‖x‖ = 1 and δ > 0 there
is an h ∈ E with ‖h‖ ≤ 1 and ‖x+ th‖ ≥ ‖x‖+ ε|t| − δ for all |t| ≤ 1.

Note that we always have

0 ≤ ‖x+ h‖+ ‖x− h‖ − 2‖x‖
‖x‖

≤ 2,

hence ε in ( 3 ) satisfies ε ≤ 2. For `1 and C[0, 1] the best choice is ε = 2, see

13.11 and 13.12 .

Proof. ( 3 )⇒( 2 ) is due to [Cudia, 1964]. Let ε > 0 such that for all ‖x‖ = 1
there are 0 6= hn → 0 with ‖x + hn‖ + ‖x − hn‖ − 2 ≥ ε‖hn‖. Now choose y∗n,
z∗n ∈ E′ with ‖y∗n‖ = 1 = ‖zn‖∗, y∗n(x+hn) = ‖x+hn‖ and z∗n(x−hn) = ‖x−hn‖.
Then limn y

∗
n(x) = ‖x‖ = 1 and also limn z

∗
n(x) = 1. Moreover,

y∗n(x+ hn) + z∗n(x− hn) ≥ 2 + ε‖hn‖
and hence

(y∗n − z∗n)(hn) ≥ 2− y∗n(x)− z∗n(x) + ε‖hn‖ ≥ ε‖hn‖,
thus ( 2 ) is satisfied.
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( 2 )⇒( 1 ) By ( 2 ) we have an ε > 0 such that for all ‖x‖ = 1 there are y∗n and
z∗n with ‖y∗n‖ = 1 = ‖z∗n‖, limn y

∗
n(x) = 1 = limn z

∗
n(x) and hn with ‖hn‖ = 1 and

(y∗n − z∗n)(hn) ≥ ε. Let 0 < δ < ε/2 and t > 0. Then

y∗n(x) > 1− δ2

4
and z∗n(x) > 1− δ2

4
for large n.

Thus

‖x+ thn‖ ≥ y∗n(x+ thn) ≥ 1− δ2

4
+ ty∗n(hn)

and hence

t p′(x+ thn)(hn) ≥ ‖x+ thn‖ − ‖x‖ ≥ ty∗n(hn)− δ2

4
⇒

p′(x+ thn)(hn) ≥ y∗n(hn)− δ2

4t

and similarly − p′(x− thn)(hn) ≥ −z∗n(hn)− δ2

4t

If we choose 0 < t < δ such that δ2/(2t) < δ we get

p′(x+ thn)(hn)− p′(x− thn)(hn) ≥ (y∗n − z∗n)(hn)− δ2

2t
> ε− δ > ε

2
.

( 1 )⇒( 4 ) Using the uniform discontinuity assumption of p′ we get xj ∈ E with
p(xj − x) ≤ η/4 and u ∈ E with p(u) = 1 such that (p′(x2) − p′(x1))(u) ≥ ε. Let
µ := (p′(x1) + p′(x2))(u)/(2p(x)) and v := u− µx.

Since p′(x1)(u) ≤ p′(x2)(u)− ε we get (p′(x1) + p′(x2))(u))/2 ≤ p′(x2)(u)− ε/2 ≤
p(u) − ε/2 < 1 and (p′(x1) + p′(x2))(u)/2 ≥ p′(x1)(u) + ε ≥ −p(u) + ε/2 > 1, i.e.
|(p′(x1) + p′(x2))(u)/2| < 1, so 0 < p(v) < 2. For 0 ≤ t ≤ p(x) and s := 1− t µ we
get

x+ tv = sx+ tu = s(x+
t

s
u) = s

(
(x2 +

t

s
u) + (x− x2)

)
.

Thus 0 < s < 2 and

p(x+ tv) ≥ s(p(x2 +
t

s
u)− p(x− x2))

> s
(
p(x2) +

t

s
p′(x2)u− η/4

)
since p(y + w) ≥ p(y) + p′(y)(w)

> sp(x) + t p′(x2)(u)− s η/2 since p(x) ≤ p(x2) + p(x− x2)

= p(x) + (t/2) (p′(x2)− p′(x1))(u)− s η/2
> p(x) + tε/2− η.

If −p(x) ≤ t < 0 we proceed with the role of x1 and x2 exchanged and obtain

p(x+ tv) > sp(x) + t p′(x1)(u)− s η/2
= p(x) + (−t/2) (p′(x2)− p′(x1))(u)− s η/2
> p(x) + |t| ε/2− η.

Thus

p(x+ tv) ≥ p(x) + |t| ε/2− η.
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( 4 )⇒( 3 ) By ( 4 ) there exists an ε > 0 such that for every x ∈ E with ‖x‖ = 1
and δ > 0 there is an h ∈ E with ‖h‖ ≤ 1 and ‖x + th‖ ≥ ‖x‖ + ε|t| − δ for all
|t| ≤ 1. If we put t := 1/n we have

n(‖x+ hn/n‖+ ‖x− hn/n‖ − 2) ≥ ε− 1/n > ε/2 for large n. �

13.24. Results on the non-existence of C1-norms on certain spaces.

(1) [Restrepo, 1964] and [Restrepo, 1965]. A separable Banach space has an equiv-

alent C1-norm if and only if E∗ is separable. This will be proved in 16.11 .
(2) [Kadec, 1965]. More generally, if for a Banach space densE < densE∗ then

no C1-norm exists. This will be proved by showing the existence of a rough

norm in 14.10 and then using 14.9 . The density number densX of a

topological space X is the minimum of the cardinalities of all dense subsets of
X.

(3) [Haydon, 1990]. There exists a compact space K, such that K(ω1) = {∗}, in
particular K(ω1+1) = ∅, but C(K) has no equivalent Gâteaux differentiable

norm, see also 13.18.2 .

One can interpret these results by saying that in these spaces every convex body
necessarily has corners.

14. Smooth Bump Functions

In this section we return to the original question whether the smooth functions
generate the topology. Since we will use the results given here also for manifolds,
and since the existence of charts is of no help here, we consider fairly general non-
linear spaces. This allows us at the same time to treat all considered differentiability
classes in a unified way.

14.1. Convention. We consider a Hausdorff topological space X with a subalge-
bra S ⊆ C(X,R), whose elements will be called the smooth or S-functions on
X. We assume that for functions h ∈ C∞(R,R) (at least for those being constant
off some compact set, in some cases) one has h∗(S) ⊆ S, and that f ∈ S provided it
is locally in S, i.e., there exists an open covering U such that for every U ∈ U there
exists an fU ∈ S with f = fU on U . In particular, we will use for S the classes of
C∞- and of Lipk-mappings on c∞-open subsets X of convenient vector spaces with
the c∞-topology and the class of Cn-mappings on open subsets of Banach spaces,
as well as subclasses formed by boundedness conditions on the derivatives or their
difference quotients.

Under these assumptions on S one has that 1
f ∈ S provided f ∈ S with f(x) > 0

for all x ∈ X: Just choose everywhere positive hn ∈ C∞(R,R) with hn(t) = 1
t for

t ≥ 1
n . Then hn ◦ f ∈ S and 1

f = hn ◦ f on the open set {x : f(x) > 1
n}. Hence,

1
f ∈ S.

For a (convenient) vector space F the carrier carr(f) of a mapping f : X → F
is the set {x ∈ X : f(x) 6= 0}. The zero set of f is the set where f vanishes,
{x ∈ X : f(x) = 0}. The support of f support(f) is the closure of carr(f) in X.
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We say that X is smoothly regular (with respect to S) or S-regular if for
any neighborhood U of a point x there exists a smooth function f ∈ S such that
f(x) = 1 and carr(f) ⊆ U . Such a function f is called a bump function.

14.2. Proposition. Bump functions and regularity. [Bonic and Frampton,
1966]. A Hausdorff space is S-regular if and only if its topology is initial with respect
to S.

Proof. The initial topology with respect to S has as a subbasis the sets f−1(I),
where f ∈ S and I is an open interval in R. Let x ∈ U , with U open for the initial
topology. Then there exist finitely many open intervals I1, . . . , In and f1, . . . , fn ∈ S
with x ∈

⋂n
i=1 f

−1
i (Ii). Without loss of generality we may assume that Ii = {t :

|fi(x)− t| < εi} for certain εi > 0. Let h ∈ C∞(R,R) be chosen such that h(0) = 1

and h(t) = 0 for |t| ≥ 1. Set f(x) :=
∏n
i=1 h( fi(x)

εi
). Then f is the required bump

function. �

14.3. Corollary. Smooth regularity is inherited by products and sub-
spaces. Let Xi be topological spaces and Si ⊆ C(Xi,R). On a space X we con-
sider the initial topology with respect to mappings fi : X → Xi, and we assume that
S ⊆ C(X,R) is given such that f∗i (Si) ⊆ S for all i. If each Xi is Si-regular, then
X is S-regular. �

Note however that the c∞-topology on a locally convex subspace is not the trace

of the c∞-topology in general, see 4.33 and 4.36.5 . However, for c∞-closed

subspaces this is true, see 4.28 .

14.4. Proposition. [Bonic and Frampton, 1966]. Every Banach space with S-
norm is S-regular.

More general, a convenient vector space is smoothly regular if its c∞-topology is
generated by seminorms which are smooth on their respective carriers. For example,
nuclear Fréchet spaces have this property.

Proof. Namely, g ◦ p is a smooth bump function with carrier contained in {x :
p(x) < 1} if g is a suitably chosen real function, i.e., g(t) = 1 for t ≤ 0 and g(t) = 0
for t ≥ 1.

Nuclear spaces have a basis of Hilbert-seminorms 52.34 , and on Fréchet spaces the

c∞-topology coincides with the locally convex one 4.11.1 , hence nuclear Fréchet
spaces are c∞-regular. �

14.5. Open problem. Has every non-separable S-regular Banach space an equiv-

alent S-norm? Compare with 16.11 .

A partial answer is given in:

14.6. Proposition. Let E be a C∞-regular Banach space. Then there exists
a smooth function h : E → R+, which is positively homogeneous and smooth on
E \ {0}.
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Proof. Let f : E \{0} → {t ∈ R : t ≥ 0} be a smooth function, such that carr(f) is
bounded in E and f(x) ≥ 1 for x near 0. Let U := {x : f(tx) 6= 0 for some t ≥ 1}.
Then there exists a smooth function Mf : E \ {0} → R with (Mf)′(x)(x) < 0 for
x ∈ U , limx→0 f(x) = +∞ and carrMf ⊆ U .
The idea is to construct out of the smooth function f ≥ 0 another smooth function
Mf with (Mf)′(x)(x) = −f(x) ≤ 0, i.e. (Mf)′(tx)(tx) = −f(tx) and hence

d

dt
Mf(tx) = (Mf)′(tx)(x) = −f(tx)

t
for t 6= 0.

Since we want bounded support for Mf , we get

Mf(x) = −
[
Mf(tx)

]∞
t=1

= −
∫ ∞

1

d

dt
Mf(tx) dt =

∫ ∞
1

f(tx)

t
dt,

and we take this as a definition of Mf . Since the support of f is bounded, we may

replace the integral locally by
∫ N

1
for some large N , hence Mf is smooth on E \{0}

and (Mf)′(x)(x) = −f(x).
Since f(x) > ε for all ‖x‖ < δ, we have that

Mf(x) ≥
∫ N

1

1

t
f(tx) dt ≥ log(N)ε

for all ‖x‖ < δ
N , i.e. limx→0Mf(x) = +∞.

Furthermore carr(Mf) ⊆ U , since f(tx) = 0 for all t ≥ 1 and x /∈ U .

Now consider M2f := M(Mf) : E \ {0} → R. Since (Mf)′(x)(x) ≤ 0, we have
(M2f)′(x)(x) =

∫∞
1

(Mf)′(tx)(x) dt ≤ 0 and it is < 0 if for some t ≥ 1 we have

(Mf)′(tx)(x) < 0, in particular this is the case if M2f(x) > 0.

Thus Uε := {x : M2f(x) ≥ ε} is radial set with smooth boundary, and the
Minkowski-functional is smooth on E \ {0}. Moreover Uε ∼= E via x 7→ x

M2f(x) . �

14.7. Lemma. Existence of smooth bump functions.

For a class S on a Banach space E in the sense of 14.1 the following statements

are equivalent:

(1) E is not S-regular;
(2) For every f ∈ S, every 0 < r1 < r2 and ε > 0 there exists an x with r1 ≤
‖x‖ ≤ r2 and |f(x)− f(0)| < ε;

(3) For every f ∈ S with f(0) = 0 there exists an x with 1 ≤ ‖x‖ ≤ 2 and
|f(x)| ≤ ‖x‖

Proof. ( 1 ) ⇒ ( 2 ) Assume that there exists an f and 0 < r1 < r2 and ε > 0
such that |f(x)−f(0)| ≥ ε for all r1 ≤ ‖x‖ ≤ r2. Let h : R→ R be a smooth bump
function on R. Let g(x) := h( 1

εf(r1 x)−f(0)). Then g is of the corresponding class,
g(0) = h(0) = 1, and for all x with 1 ≤ ‖x‖ ≤ r2

r1
we have |f(r1 x)− f(0)| ≥ ε, and

hence g(x) = 0. By redefining g on {x : ‖x‖ ≥ r2
r1
} as 0, we obtain the required

bump function.

( 2 ) ⇒ ( 3 ) Take r1 = 1 and r2 = 2 and ε = 1.
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( 3 ) ⇒ ( 1 ) Assume a bump function g exists, i.e., g(0) = 1 and g(x) = 0 for all
‖x‖ ≥ 1. Take f := 2−g. Then f(0) = 0 and f(x) = 2 for ‖x‖ ≥ 1, a contradiction

to ( 3 ). �

14.8. Proposition. Boundary values for smooth mappings. [Bonic and
Frampton, 1966] Let E and F be convenient vector spaces, let F be S-regular but
E not S-regular. Let U ⊆ E be c∞-open and f ∈ C(U,F ) with f∗(S) ⊆ S. Then

f(∂U) ⊇ f(U). Hence, f = 0 on ∂U implies f = 0 on U .

Proof. Since f(U) ⊆ f(U) it is enough to show that f(U) ⊆ f(∂U). Suppose

f(x) /∈ f(∂U) for some x ∈ U . Choose a smooth h on F such that h(f(x)) = 1 and
h = 0 on a neighborhood of f(∂U). Let g = h ◦ f on U and 0 outside. Then g is a
smooth bump function on E, a contradiction. �

14.9. Theorem. C1-regular spaces admit no rough norm. [Leach and
Whitfield, 1972]. Let E be a Banach space whose norm p = ‖ ‖ has uniformly
discontinuous directional derivative. If f is Fréchet differentiable with f(0) = 0
then there exists an x ∈ E with 1 ≤ ‖x‖ < 2 and f(x) ≤ ‖x‖.

By 14.7 this result implies that on a Banach space with rough norm there exists

no Fréchet differentiable bump function. In particular, C([0, 1]) and `1 are not

C1-regular by 13.11 and 13.12 , which is due to [Kurzweil, 1954].

Proof. We try to reach the exterior of the unit ball by a recursively defined sequence
xn in {x : f(x) ≤ p(x)} starting at 0 with large step-length ≤ 1 in directions, where
p′ is large. Given xn we consider the set

Mn :=

y ∈ E :

(1) f(y) ≤ p(y),

(2) p(y − xn) ≤ 1 and

(3) p(y)− p(xn) ≥ (ε/8) p(y − xn)

 .

Since xn ∈Mn, this set is not empty and henceMn := sup{p(y−xn) : y ∈Mn} ≤ 1
is well-defined and it is possible to choose xn+1 ∈Mn with

(4) p(xn+1 − xn) ≥Mn/2.

We claim that p(xn) ≥ 1 for some n, since then x := xn for the minimal n satisfies
the conclusion of the theorem:
Otherwise p(xn) is bounded by 1 and increasing by ( 3 ), hence a Cauchy-sequence.

By ( 3 ) we then get that (xn) is a Cauchy-sequence. So let z be its limit. If z = 0
then Mn = {0} and hence f(y) > p(y) for all |y| ≤ 1. Thus f is not differentiable.
Then p(z) ≤ 1 and f(z) ≤ p(z). Since f is Fréchet-differentiable at z there exists a
δ > 0 such that

f(z + u)− f(z)− f ′(z)(u) ≤ εp(u)/8 for all p(u) < δ.

Without loss of generality let δ ≤ 1 and δ ≤ 2 p(z). By 13.23.4 there exists a v
such that p(v) < 2 and p(z + tv) > p(z) + ε|t|/2 − εδ/8 for all |t| ≤ p(z). Now let
t := − sign(f ′(z)(v)) δ/2. Then

( 1 ) p(z + tv) > p(z) + εδ/8 ≥ f(z) + εp(tv)/8 ≥ f(z + tv),
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( 2 ) p(z + tv − z) = |t|p(v) < δ ≤ 1,

( 3 ) p(z + tv)− p(z) > εδ/8 > εp(tv)/8.

Since f and p are continuous the z + tv satisfy ( 1 )-( 3 ) for large n and hence
Mn ≥ p(z + t v − xn). From p(z + tv − z) > εδ/8 we get Mn > εδ/8 and so

p(xn+1 − xn) > εδ/16 by ( 4 ) contradicts the convergence of xn. �

14.10. Proposition. Let E be a Banach-space with densE < densE′. Then there
is an equivalent rough norm on E.

Proof. The idea is to describe the unit ball of a rough norm as intersection of hyper
planes {x ∈ E : x∗(x) ≤ 1} for certain functionals x∗ ∈ E′. The fewer functionals
we use the more ‘corners’ the unit ball will have, but we have to use sufficiently
many in order that this ball is bounded and hence that its Minkowski-functional is
an equivalent norm. We call a set X large, if and only if |X| > dens(E) and small
otherwise. For x ∈ E and ε > 0 let Bε(x) := {y ∈ E : ‖x − y‖ ≤ ε}. Now we
choose using Zorn’s lemma a subset D ⊆ E′ maximal with respect to the following
conditions:

(1) 0 ∈ D;
(2) x∗ ∈ D ⇒ −x∗ ∈ D;
(3) x∗, y∗ ∈ D, x∗ 6= y∗ ⇒ ‖x∗ − y∗‖ > 1.

Note that D is then also maximal with respect to ( 3 ) alone, since otherwise, we
could add a point x∗ with ‖x∗−y∗‖ > 1 for all y∗ ∈ D and also add the point −x∗,
and obtain a larger set satisfying all three conditions.

Claim. D∞ :=
⋃
n∈N

1
nD is dense in E′, and hence |D∞| ≥ dens(E′):

Assume indirectly, that there is some x∗ ∈ E′ and n ∈ N with B1/n(x∗) ∩ D∞ =
∅. Then B1(nx∗) ∩ D = ∅ and hence we may add x∗ to D, contradicting the
maximality.

Without loss of generality we may assume that D is at least countable. Then |D| =
|
⋃
n∈N

1
nD| ≥ dens(E′) > dens(E), i.e. D is large. Since D =

⋃
n∈ND ∩Bn(0), we

find some n such thatD∩Bn(0) is large. Let y∗ ∈ E′ be arbitrary and w∗ := 1
4n+2y

∗.

For every x∗ ∈ D there is a z∗ ∈ 1
2D such that ‖x∗ + w∗ − z∗‖ ≤ 1

2 (otherwise

we could add 2(x∗ + w∗) to D). Thus we may define a mapping D → 1
2D by

x∗ 7→ z∗. This mapping is injective, since ‖x∗j +w∗− z∗‖ ≤ 1
2 for j ∈ {1, 2} implies

‖x∗1 − x∗2‖ ≤ 1 and hence x∗1 = x∗2. If we restrict it to the large set D ∩ Bn(0) it
has image in 1

2D ∩Bn+1/2(w∗), since ‖z∗ −w∗‖ ≤ ‖z∗ + x∗ −w∗‖+ ‖x∗‖ ≤ 1
2 + n.

Hence also 1
2(4n+2)D ∩B1/4(y∗) = 1

4n+2
1
2D ∩Bn+1/2(w∗) is large.

In particular for y∗ := 0 and 1/4 replaced by 1 we get that A := 1
4(2n+1)D ∩B1(0)

is large. Now let

U :=
{
x ∈ E : ∃A0 ⊆ A small,∀x∗ ∈ A \A0 : x∗(x) ≤ 1

}
.

Since A is symmetric, the set U is absolutely convex (use that the union of two
small exception sets is small). It is a 0-neighborhood, since {x : ‖x‖ ≤ 1} ⊆ U
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(x∗(x) ≤ ‖x∗‖ · ‖x‖ = ‖x‖ ≤ 1 for x∗ ∈ A). It is bounded, since for x ∈ E we may
find by Hahn-Banach an x∗ ∈ E′ with x∗(x) = ‖x‖ and ‖x∗‖ = 1. For all y∗ in the
large set A∩B1/4( 3

4x
∗) we have y∗(x) = (y∗ − 3

4x
∗)(x) + 3

4x
∗(x) ≥ 3

4‖x‖−
1
4‖x‖ ≥

1
2‖x‖. For ‖x‖ > 2 we thus get x /∈ U . Now let σ be the Minkowski-functional
generated by U and σ∗ the dual norm on E′. Let ∆ ⊆ E be a small dense subset.
Then {x∗ ∈ A : σ∗(x∗) > 1} is small, since σ∗(x∗) > 1 for x∗ ∈ A implies that there
exists an x ∈ ∆ with x∗(x) > σ(x), but this is

⋃
n∈N{x∗ ∈ A : x∗(x) > σ(x) + 1

n},
and each of these sets is small by construction of σ(x). Since ∆ is small so is the
union over all x ∈ ∆. Thus A1 := {x∗ ∈ A : σ(x∗) ≤ 1} is large.

Now let ε := 1
8(2n+1) , let x ∈ E, and let 0 < η < ε. We may choose two different

x∗i ∈ A1 for i ∈ {1, 2} with x∗i (x) > σ(x)− η2/2. This is possible, since this is true
for all but a small set of x∗ ∈ A. Thus σ∗(x∗1 − x∗2) ≥ ‖x∗1 − x∗2‖ > 2ε, and hence
there is an h ∈ E with σ(h) = 1 and (x∗1 − x∗2)(h) > 2ε. Let now t > 0. Then

σ(x+ th) ≥ x∗1(x+ th) = x∗1(x) + tx∗1(h) > σ(x)− η2

2
+ tx∗1(h),

σ(x− th) ≥ x∗2(x− th) > σ(x)− η2

2
− tx∗2(h).

Furthermore σ(x) ≥ σ(x+ th)− tσ′(x+ th)(h) implies

σ′(x+ th)(h) ≥ σ(x+ th)− σ(x)

t
> x∗1(h)− η2

2t
,

−σ′(x− th)(h) ≥ −x∗2(h)− η2

2t
.

Adding the last two inequalities gives

σ′(x+ th)(h)− σ′(x− th)(h) ≥ (x∗2 − x∗1)(h)− η2

t
> ε,

since (x∗2 − x∗1)(h) > 2ε and we choose t < η such that η2

t < ε. �

14.11. Results. Spaces which are not smoothly regular. For Banach spaces
one has the following results:

(1) [Bonic and Frampton, 1965]. By 14.9 no Fréchet-differentiable bump func-

tion exists on C[0, 1] and on `1. Hence, most infinite dimensional C∗-algebras
are not regular for 1-times Fréchet-differentiable functions, in particular those
for which a normal operator exists whose spectrum contains an open interval.

(2) [Leduc, 1970]. If densE < densE∗ then no C1-bump function exists. This

follows from 14.10 , 14.9 , and 14.7 . See also 13.24.2 .

(3) [John and Zizler, 1978]. A norm is called strongly rough if and only if
there exists an ε > 0 such that for every x with ‖x‖ = 1 there exists a unit

vector y with lim supt↘0
‖x+ty‖+‖x−ty‖−2

t ≥ ε. The usual norm on `1(Γ) is
strongly rough, if Γ is uncountable. There is however an equivalent non-rough
norm on `1(Γ) with no point of Gâteaux-differentiability. If a Banach space
has Gâteaux differentiable bump functions then it does not admit a strongly
rough norm.
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(4) [Day, 1955]. On `1(Γ) with uncountable Γ there is no Gâteaux differentiable
continuous bump function.

(5) [Bonic and Frampton, 1965]. E < `p, dimE = ∞: If p = 2n + 1 then E is
not Dp-regular. If p /∈ N then E is not S-regular, where S denotes the C [p]-
functions whose highest derivative satisfies a Hölder like condition of order
p− [p] but with o( ) instead of O( ).

14.12. Results.

(1) [Deville et al., 1990]. If c0(Γ) → E → F is a short exact sequence of Banach
spaces and F has Ck-bump functions then also E has them. Compare with

16.19 .

(2) [Meshkov, 1978] If a Banach space E and its dual E∗ admit C2-bump func-

tions, then E is isomorphic to a Hilbert space. Compare with 13.18.7 .

(3) Smooth bump functions are not inherited by short exact sequences.

Notes. ( 1 ) As in 13.17.3 one chooses x∗a ∈ E∗ with x∗a|c0(Γ) = eva. Let g be a
smooth bump function on E/F and h ∈ C∞(R, [0, 1]) with compact support and
equal to 1 near 0. Then f(x) := g(x + F )

∏
a∈Γ h(x∗a(x)) is the required bump

function.

( 3 ) Use the example mentioned in 13.18.6 , and apply ( 2 ).

Open problems. Is the product of C∞-regular convenient vector spaces again
C∞-regular? Beware of the topology on the product!

Is every quotient of any S-regular space again S-regular?
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15. Functions with Globally Bounded Derivatives

In many problems (like Borel’s theorem 15.4 , or the existence of smooth functions

with given carrier 15.3 ) one uses in finite dimensions the existence of smooth

functions with bounded derivatives. In infinite dimensions Ck-functions have lo-
cally bounded k-th derivatives, but even for bump functions this need not be true
globally.

15.1. Definitions. For normed spaces we use the following notation: CkB := {f ∈
Ck : ‖f (k)(x)‖ ≤ B for all x ∈ E} and Ckb :=

⋃
B>0 C

k
B . For general convenient

vector spaces we may still define C∞b as those smooth functions f : U → F for
which the image dkf(U) of each derivative is bounded in the space Lksym(E,F ) of
bounded symmetric multilinear mappings.

Let LipkK denote the space of Ck-functions with global Lipschitz-constant K for

the k-th derivatives and Lipkglobal :=
⋃
K>0 LipkK . Note that CkK = Ck ∩ Lipk−1

K .

15.2. Lemma. Completeness of Cn. Let fj be Cn-functions on some Banach

space such that f
(k)
j converges uniformly on bounded sets to some function fk for

each k ≤ n. Then f := f0 is Cn, and f (k) = fk for all k ≤ n.

Proof. It is enough to show this for n = 1. Since f ′n → f1 uniformly, we have that

f1 is continuous, and hence
∫ 1

0
f1(x+ t h)(h) dt makes sense and

fn(x+ h)− fn(x) =

∫ 1

0

f ′n(x+ t h)(h) dt→
∫ 1

0

f1(x+ t h)(h) dt

for x and h fixed. Since fn → f pointwise, this limit has to be f(x + h) − f(x).
Thus we have

‖f(x+ h)− f(x)− f1(x)(h)‖
‖h‖

=
1

‖h‖

∥∥∥∫ 1

0

(f1(x+ t h)− f1(x))(h) dt
∥∥∥

≤
∫ 1

0

‖f1(x+ t h)− f1(x))‖ dt

which goes to 0 for h→ 0 and fixed x, since f1 is continuous. Thus, f is differen-
tiable and f ′ = f1. �

15.3. Proposition. When are closed sets zero-sets of smooth functions.
[Wells, 1973]. Let E be a separable Banach space and n ∈ N. Then E has a
Cnb -bump function if and only if every closed subset of E is the zero-set of a Cn-
function.

For n =∞ and E a convenient vector space we still have (⇒), provided all Lk(E;R)
satisfy the second countability condition of Mackey, i.e. for every countable
family of bounded sets Bk there exist tk > 0 such that

⋃
k tk Bk is bounded.

Proof. (⇒) Suppose first that E has a Cnb -bump function. Let A ⊆ E be closed and
U := E \ A be the open complement. For every x ∈ U there exists an fx ∈ Cnb (E)
with fx(x) = 1 and carr(fx) ⊆ U . The family of carriers of the fx is an open
covering of U . Since E is separable, those points in a countable dense subset that
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lie in U are dense in the metrizable space U . Thus, U is Lindelöf, and consequently
we can find a sequence of points xn such that for the corresponding functions
fn := fxn the carriers still cover U . Now choose constants tn > 0 such that

tn · sup{‖f (j)
n (x)‖ : x ∈ E} ≤ 1

2n−j for all j < n. Then f :=
∑
n tn fn converges

uniformly in all derivatives, hence represents by 15.2 a Cn-function on E that
vanishes on A. Since the carriers of the fn cover U , it is strictly positive on U , and
hence the required function has as 0-set exactly A.

(⇐) Consider a vector a 6= 0, and let A := E \
⋃
n∈N{x : ‖x− 1

2n a‖ <
1

2n+1 }. Since

A is closed there exists by assumption a Cn-function f : E → R with f−1(0) = A
(without loss of generality we may assume f(E) ⊆ [0, 1]). By continuity of the
derivatives we may assume that f (n) is bounded on some neighborhood U of 0.
Choose n so large that D := {x : ‖x − 1

2n a‖ <
1

2n } ⊆ U , and let g := f on A ∪D
and 0 on E \D. Then f ∈ Cn and f (n) is bounded. Up to affine transformations
this is the required bump function. �

15.4. Borel’s theorem. [Wells, 1973]. Suppose a Banach space E has C∞b -
bump functions. Then every formal power series with coefficients in Lnsym(E;F )
for another Banach space F is the Taylor-series of a smooth mapping E → F .

Moreover, if G is a second Banach space, and if for some open set U ⊆ G we are
given bk ∈ C∞b (U,Lksym(E,F )), then there is a smooth f ∈ C∞(E × U,F ) with

dk(f( , y))(0) = bk(y) for all y ∈ U and k ∈ N. In particular, smooth curves can
be lifted along the mapping C∞(E,F )→

∏
k L

k
sym(E;F ).

Proof. Let ρ ∈ C∞b (E,R) be a C∞b -bump function, which equals 1 locally at 0.
We shall use the notation bk(x, y) := bk(y)(xk). Define

fk(x, y) :=
1

k!
bk(x, y) ρ(x)

and

f(x, y) :=
∑
k≥0

1

tkk
fk(tk · x, y)

with appropriately chosen tk > 0. Then fk ∈ C∞(E × U,F ) and fk has carrier
inside of carr(ρ) × U , i.e. inside {x : ‖x‖ < 1} × U . For the derivatives of bk we
have

∂j1∂
i
2bk(x, y)(ξ, η) = k (k − 1) . . . (k − j) (dibk(y)(η))(xk−j , ξj).

Hence, for ‖x‖ ≤ 1 this derivative is bounded by

(k)j sup
y∈U
‖dibk(y)‖L(F,Lksym(E;G)),

where (k)j := k(k− 1) . . . (k− j). Using the product rule we see that for j ≥ k the

derivative ∂j1∂
i
2fk of fk is globally bounded by∑
l≤k

(
j

l

)
sup{‖ρ(j−l)(x)‖ : x ∈ E} (k)l sup

y∈U
‖dibk(y)‖ <∞.
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The partial derivatives of f would be

∂j1∂
i
2fk(x, y) =

∑
k

tjk
tkk
∂j1∂

i
2fk(tkx, y).

We now choose the tk ≥ 1 such that these series converge uniformly. This is the
case if,

1

tk−jk

sup{‖∂j1∂i2fk(x, y)‖ : x ∈ E, y ∈ U} ≤

≤ 1

t
k−(j+i)
k

sup{‖∂j1∂i2fk(x, y)‖ : x ∈ E, y ∈ U} ≤ 1

2k−(j+i)
,

and thus if

tk ≥ 2. sup{‖∂j1∂i2fk(x, y)‖
1

k−(j+i) : x ∈ E, y ∈ U, j + i < k}.

Since we have ∂j1fk(0, y)(ξ) = 1
k! (k)jbk(y)(0k−j , ξj) ρ(0) = δjk bk(y), we conclude

the desired result ∂j1f(0, y) = bk(y). �

Remarks on Borel’s theorem.

(1) [Colombeau, 1979]. Let E be a strict inductive limit of a non-trivial sequence
of Fréchet spaces En. Then Borel’s theorem is wrong for f : R→ E. The idea
is to choose bn = f (n)(0) ∈ En+1 \ En and to use that locally every smooth
curve has to have values in some En.

(2) [Colombeau, 1979]. Let E = RN. Then Borel’s theorem is wrong for f : E →
R. In fact, let bn : E× . . .×E → R be given by bn := prn⊗ · · ·⊗prn. Assume
f ∈ C∞(E,R) exists with f (n)(0) = bn. Let fn be the restriction of f to

the n-th factor R in E. Then fn ∈ C∞(R,R) and f
(n)
n (0) = 1. Since f ′ :

Rn → (Rn)′ = R(N) is continuous, the image of B := {x : |xn| ≤ 1 for all n}
in R(N) is bounded, hence contained in some RN−1. Since fN is not constant
on the interval (−1, 1) there exists some |tN | < 1 with f ′N (tN ) 6= 0. For
xN := (0, . . . , 0, tN , 0, . . . ) we obtain

f ′(xN )(y) = f ′N (tN )(yN ) +
∑
i6=N

ai yi,

a contradiction to f ′(xn) ∈ RN−1.
(3) [Colombeau, 1979] showed that Borel’s theorem is true for mappings f : E →

F , where E has a basis of Hilbert-seminorms and for any countable family of 0-
neighborhoods Un there exist tn > 0 such that

⋂∞
n=1 tn Un is a 0-neighborhood.

(4) If theorem 15.4 would be true for G =
∏
k L

k
sym(E;F ) and bk = prk, then the

quotient mapping C∞(E,F ) → G =
∏
k L

k
sym(E;F ) would admit a smooth

and hence a linear section. This is well know to be wrong even for E = F = R,

see 21.5 .

15.5. Proposition. Hilbert spaces have C∞b -bump functions. [Wells, 1973]
If the norm is given by the n-th root of a homogeneous polynomial b of even degree
n, then x 7→ ρ(b(xn)) is a C∞b -bump function, where ρ : R → R is smooth with
ρ(t) = 1 for t ≤ 0 and ρ(t) = 0 for t ≥ 1.
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Proof. As before in the proof of 15.4 we see that the j-th derivative of x 7→ b(xn)
is bounded by (n)j on the closed unit ball. Hence, by the chain-rule and the
global boundedness of all derivatives of ρ separately, the composite has bounded
derivatives on the unit ball, and since it is zero outside, even everywhere. Obviously,
ρ(b(0)) = ρ(0) = 1. �

In [Bonic and Frampton, 1966] it is shown that Lp is Lipnglobal-smooth for all n if

p is an even integer and is Lip
[p−1]
global-smooth otherwise. This follows from the fact

(see loc. cit., p. 140) that d(p+1)‖x‖p = 0 for even integers p and∥∥∥dk‖x+ h‖p − dk‖x‖p
∥∥∥ ≤ p!

k!
‖h||p−k

otherwise, cf. 13.13 .

15.6. Estimates for the remainder in the Taylor-expansion. The Taylor
formula of order k of a Ck+1-function is given by

f(x+ h) =

k∑
j=0

1

j!
f (j)(x)(hj) +

∫ 1

0

(1− t)k

k!
f (k+1)(x+ th)(hk+1) dt,

which can easily be seen by repeated partial integration of
∫ 1

0
f ′(x + th)(h) dt =

f(x+ h)− f(x).

For a C2
B function we have

|f(x+ h)− f(x)− f ′(x)(h)| ≤
∫ 1

0

(1− t)‖f (2)(x+ th)‖ ‖h‖2 dt ≤ B 1

2!
‖h‖2.

If we take the Taylor formula of f up to order 0 instead, we obtain

f(x+ h) = f(x) +

∫ 1

0

f ′(x+ th)(h) dt

and usage of f ′(x)(h) =
∫ 1

0
f ′(x)(h) dt gives

|f(x+ h)− f(x)− f ′(x)(h)| ≤
∫ 1

0

‖f ′(x+ th)− f ′(x)‖
‖th‖

‖h‖2 dt ≤ B 1

2!
‖h‖2,

so it is in fact enough to assume f ∈ C1 with f ′ satisfying a Lipschitz-condition
with constant B.

For a C3
B function we have

|f(x+ h)− f(x)− f ′(x)(h)− 1

2
f ′′(x)(h2)| ≤

≤
∫ 1

0

(1− t)2

2!
‖f (3)(x+ th)‖ ‖h‖3 dt ≤ B 1

3!
‖h‖3.

If we take the Taylor formula of f up to order 1 instead, we obtain

f(x+ h) = f(x) + f ′(x)(h) +

∫ 1

0

(1− t) f ′′(x+ th)(h2) dt,

and using 1
2f
′′(x)(h2) =

∫ 1

0
(1− t) f ′′(x)(h2) dt we get
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|f(x+ h)− f(x)− f ′(x)(h)− 1

2
f ′′(x)(h2)| ≤

≤
∫ 1

0

(1− t)t ‖f
′′(x+ th)− f ′′(x)‖

‖th‖
‖h‖3 dt ≤ B 1

3!
‖h‖3.

Hence, it is in fact enough to assume f ∈ C2 with f ′′ satisfying a Lipschitz-condition
with constant B.

Let f ∈ CkB be flat of order k at 0. Applying ‖f(h)− f(0)‖ = ‖
∫ 1

0
f ′(th)(h) dt‖ ≤

sup{‖f ′(th)‖ : t ∈ [0, 1]} ‖h‖ to f (j)( )(h1, . . . , hj) gives using ‖f (k)(x)‖ ≤ B
inductively

‖f (k−1)(x)‖ ≤ B · ‖x‖

‖f (k−2)(x)‖ ≤
∫ 1

0

‖f (k−1)(tx)(x, . . . )‖ dt ≤ B
∫ 1

0

t dt ‖x‖2 =
B

2
‖x‖2

...

‖f (j)(x)‖ ≤ B

(k − j)!
‖x‖k−j .

15.7. Lemma. Lip1
global-functions on Rn. [Wells, 1973]. Let n := 2N and

E = Rn with the ∞-norm. Suppose f ∈ Lip1
M (E,R) with f(0) = 0 and f(x) ≥ 1

for ‖x‖ ≥ 1. Then M ≥ 2N .

The idea behind the proof is to construct recursively a sequence of points xk :=∑
j<k σjhj of norm k−1

N starting at x0 = 0, such that the increment along the
segment is as small as possible. In order to evaluate this increment one uses the
Taylor-formula and chooses the direction hk such that the derivative at xk vanishes.

Proof. Let A be the set of all edges of a hyper-cube, i.e.

A := {x : xi = ±1 for all i except one i0 and |xi0 | ≤ 1}.
Then A is symmetric. Let x ∈ E be arbitrary. We want to find h ∈ A with
f ′(x)(h) = 0. By permuting the coordinates we may assume that i 7→ |f ′(x)(ei)|
is monotone decreasing. For 2 ≤ i ≤ n we choose recursively hi ∈ {±1} such that∑i
j=2 hj f

′(x)(ej) is an alternating sum. Then |
∑i
j=2 f

′(x)(ej)hj | ≤ |f ′(x)(e1)|.
Finally, we choose ‖h1‖ ≤ 1 such that f ′(x)(h) = 0.

Now we choose inductively hi ∈ 1
N A and σi ∈ {±1} such that f ′(xi)(hi) = 0 for

x :=
∑
j<i σjhj and xi has at least 2N−i coordinates equal to i

N . For the last

statement we have that xi+1 = xi + σi hi and at least 2N−i coordinates of xi are
i
N . Among those coordinates all but at most 1 of the hi are ± 1

N . Now let σi be

the sign which occurs more often and hence at least 2N−i/2 times. Then those
2N−(i+1) many coordinates of xi+1 are i+1

N .

Thus ‖xi‖ = i
N for i ≤ N , since at least one coordinate has this value. Furthermore

we have

1 = |f(xN )− f(x0)| ≤
N−1∑
k=0

|f(xk+1)− f(xk)− f ′(xk)(hk)|
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≤
N∑
k=1

M

2
‖hk‖2 ≤ N

M

2

1

N2
,

hence M ≥ 2N . �

15.8. Corollary. c0 is not Lip1
global-regular. [Wells, 1973]. The space c0 is not

Lip1
global-smooth.

Proof. Suppose there exists an f ∈ Lip1
global with f(0) = 1 and f(x) = 0 for all

‖x‖ ≥ 1. Then the previous lemma applied to 1− f restricted to finite dimensional
subspaces shows that the Lipschitz constant M of the derivative has to be greater
or equal to N for all N , a contradiction. �

This shows even that there exist no differentiable bump functions on c0(A) which
have uniformly continuous derivative. Since otherwise there would exist an N ∈ N
such that

‖f(x+ h)− f(x)− f ′(x)h‖ ≤
∫ 1

0

‖f ′(x+ t h)− f ′(x)‖ ‖h‖ dt ≤ 1

2
‖h‖,

for ‖h‖ ≤ 1
N . Hence, the estimation in the proof of 15.7 would give 1 ≤ N 1

2
1
N = 1

2 ,
a contradiction.

15.9. Positive results on Lip1
global-functions. [Wells, 1973].

(1) Every closed subset of a Hilbert space is the zero-set of a Lip1
global-function.

(2) For every two closed subsets of a Hilbert space which have distance d > 0 there
exists a Lip1

4/d2-function which has value 0 on one set and 1 on the other.

(3) Whitney’s extension theorem is true for Lip1
global-functions on closed subsets

of Hilbert spaces.
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16. Smooth Partitions of Unity and Smooth Normality

16.1. Definitions. We say that a Hausdorff space X is smoothly normal with
respect to a subalgebra S ⊆ C(X,R) or S-normal, if for two disjoint closed subsets
A0 and A1 of X there exists a function f : X → R in S with f |Ai = i for i = 0, 1.
If an algebra S is specified, then by a smooth function we will mean an element of
S. Otherwise it is a C∞-function.

A S-partition of unity on a space X is a set F of smooth functions f : X → R
which satisfy the following conditions:

(1) For all f ∈ F and x ∈ X one has f(x) ≥ 0.
(2) The set {carr(f) : f ∈ F} of all carriers is a locally finite covering of X.
(3) The sum

∑
f∈F f(x) equals 1 for all x ∈ X.

Since a family of open sets is locally finite if and only if the family of the closures

is locally finite, the foregoing condition ( 2 ) is equivalent to:

( 2 ’) The set {supp(f) : f ∈ F} of all supports is a locally finite covering of X.

The partition of unity is called subordinated to an open covering U of X, if for
every f ∈ F there exists an U ∈ U with carr(f) ⊆ U .

We say that X is smoothly paracompact with respect to S or S-paracompact
if every open cover U admits a S-partition F of unity subordinated to it. This
implies that X is S-normal.

The partition of unity can then even be chosen in such a way that for every f ∈ F
there exists a U ∈ U with supp(f) ⊆ U . This is seen as follows. Since the family of
carriers is a locally finite open refinement of U , the topology of X is paracompact.
So we may find a finer open cover {Ũ : U ∈ U} such that the closure of Ũ is
contained in U for all U ∈ U , see [Bourbaki, 1966, IX.4.3]. The partition of unity
subordinated to this finer cover has the support property for the original one.

Lemma. Let S be an algebra which is closed under sums of locally finite families
of functions. If F is an S-partition of unity subordinated to an open covering U ,
then we may find an S-partition of unity (fU )U∈U with carr(fU ) ⊆ U .

Proof. For every f ∈ F we choose a Uf ∈ U with carr(f) ∈ Uf . For U ∈ U put
FU := {f : Uf = U} and let fU :=

∑
f∈FU f ∈ S. �

16.2. Proposition. Characterization of smooth normality. Let X be a

Hausdorff space with S ⊆ C(X,R) as in 14.1 Consider the following statements:

(1) X is S-normal;
(2) For any two closed disjoint subsets Ai ⊆ X there is a function f ∈ S with

f |A0 = 0 and 0 /∈ f(A1);
(3) Every locally finite open covering admits S-partitions of unity subordinated to

it.
(4) For any two disjoint zero-sets A0 and A1 of continuous functions there exists

a function g ∈ S with g|Aj = j for j = 0, 1 and g(X) ⊆ [0, 1];
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(5) For any continuous function f : X → R there exists a function g ∈ S with
f−1(0) ⊆ g−1(0) ⊆ f−1(R \ {1}).

(6) The set S is dense in the algebra of continuous functions with respect to the
topology of uniform convergence;

(7) The set of all bounded functions in S is dense in the algebra of continuous
bounded functions on X with respect to the supremum norm;

(8) The bounded functions in S separate points in the Stone-Čech-compactification
βX of X.

The statements ( 1 )-( 3 ) are equivalent, and ( 4 )-( 8 ) are equivalent as well. If

X is metrizable all statements are equivalent.
If every open set is the carrier set of a smooth function then X is S-normal. If X
is S-normal, then it is S-regular.
A space is S-paracompact if and only if it is paracompact and S-normal.

Proof. ( 2 )⇒ ( 1 ). By assumption, there is a smooth function f0 with f0|A1 = 0
and 0 /∈ f0(A0), and again by assumption, there is a smooth function f1 with

f1|A0 = 0 and 0 /∈ f1({x : f0(x) = 0}). The function f = f1
f0+f1

has the required
properties.

( 1 ) ⇒ ( 2 ) is obvious.

( 3 ) ⇒ ( 1 ) Let A0 and A1 be two disjoint closed subset. Then U := {X \A1, X \
A0} admits a S-partition of unity F subordinated to it, and∑

{f ∈ F : carr f ⊆ X \A0}

is the required bump function.

( 1 ) ⇒ ( 3 ) Let U be a locally finite covering of X. The space X is S-normal, so
its topology is also normal, and therefore for every U ∈ U there exists an open set
VU such that VU ⊆ U and {VU : U ∈ U} is still an open cover. By assumption,

there exist smooth functions gU ∈ S such that VU ⊆ carr(gU ) ⊆ U , cf. 16.1 . The
function g :=

∑
U gU is well defined, positive, and smooth since U is locally finite,

and {fU := gU/g : U ∈ U} is the required partition of unity.

( 5 ) ⇒ ( 4 ) Let Aj := f−1
j (aj) for j = 0, 1. By replacing fj by (fj − aj)2 we

may assume that fj ≥ 0 and Aj = f−1
j (0). Then (f1 + f2)(x) > 0 for all x ∈ X,

since A1 ∩ A2 = ∅. Thus, f := f0
f0+f1

is a continuous function in C(X, [0, 1]) with

f |Aj = j for j = 0, 1.

Now we reason as in (( 2 ) ⇒ ( 1 )): By ( 4 ) there exists a g0 ∈ S with A0 ⊆
f−1(0) ⊆ g−1

0 (0) ⊆ f−1(R \ {1}) = X \ f−1(1) ⊆ X \A1. By replacing g0 by g2
0 we

may assume that g0 ≥ 0.
Applying the same argument to the zero-sets A1 and g−1

0 (0) we obtain a g1 ∈ S
with A1 ⊆ g−1

1 (0) ⊆ X \ g−1
0 (0). Thus, (g0 + g1)(x) > 0, and hence g := g0

g0+g1
∈ S

satisfies g|Aj = j for j = 0, 1 and g(X) ⊆ [0, 1].

( 4 )⇒ ( 6 ) Let f be continuous. Without loss of generality we may assume f ≥ 0
(decompose f = f+− f−). Let ε > 0. Then choose gk ∈ S with image in [0, 1], and
gk(x) = 0 for all x with f(x) ≤ k ε, and gk(x) = 1 for all x with f(x) ≥ (k + 1) ε.
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Let k be the largest integer less or equal to f(x)
ε . Then gj(x) = 1 for all j < k, and

gj(x) = 0 for all j > k. Hence, the sum g := ε
∑
k∈N gk ∈ S is locally finite, and

|f(x)− g(x)| < 2 ε.

( 6 ) ⇒ ( 7 ) This is obvious, since for any given bounded continuous f and for

any ε > 0, by ( 6 ) there exists g ∈ S with |f(x) − g(x)| < ε for all x ∈ X, hence
‖f − g‖∞ ≤ ε and ‖g‖∞ ≤ ‖f‖∞ + ‖f − g‖∞ <∞.

( 7 ) ⇔ ( 8 ) This follows from the Stone-Weierstraß theorem, since obviously the
bounded functions in S form a subalgebra in Cb(X) = C(βX). Hence, it is dense
if and only if it separates points in the compact space βX.

( 7 ) ⇒ ( 4 ) By cutting off f at 0 and at 1, we may assume that f is bounded.

By ( 7 ) there exists a bounded g0 ∈ S with ‖f − g0‖∞ < 1
2 . Let h ∈ C∞(R,R)

be such that h(t) = 0 ⇔ t ≤ 1
2 . Then g := h ◦ g0 ∈ S, and f(x) = 0 ⇒ g0(x) ≤

|g0(x)| ≤ |f(x)| + ‖f − g0‖∞ ≤ 1
2 ⇒ g(x) = h(g0(x)) = 0 and also f(x) = 1 ⇒

g0(x) ≥ f(x)− ‖f − g0‖∞ > 1− 1
2 = 1

2 ⇒ g(x) 6= 0.

If X is metrizable and A ⊆ X is closed, then dist( , A) : x 7→ sup{dist(x, a) : a ∈
A} is a continuous function with f−1(0) = A. Thus, ( 1 ) and ( 4 ) are equivalent.

Let every open subset be the carrier of a smooth mapping, and let A0 and A1 be
closed disjoint subsets of X. By assumption, there is a smooth function f with
carr(f) = X \A0.

Obviously, every S-normal space is S-regular. Take as second closed set in ( 2 ) a
single point. If we take instead the other closed set as single point, then we have

what has been called small zero-sets in 19.8 .

That a space is S-paracompact if and only if it is paracompact and S-normal can
be shown as in the proof that a paracompact space admits continuous partitions of
unity, see [Engelking, 1989, 5.1.9]. �

In [Kriegl et al., 1989] it is remarked that in an uncountable product of real lines
there are open subsets, which are not carrier sets of continuous functions.

Corollary. Denseness of smooth functions. Let X be S-paracompact, let F
be a convenient vector space, and let U ⊆ X × F be open such that for all x ∈ X
the set ι−1

x (U) ⊆ F is convex and non-empty, where ιx : F → X × F is given by
y 7→ (x, y). Then there exists an f ∈ S whose graph is contained in U .

Under the following assumption this result is due to [Bonic and Frampton, 1966]:
For U := {(x, y) : p(y − g(x)) < ε(x)}, where g : X → F , ε : X → R+ are
continuous and p is a continuous seminorm on F .

Proof. For every x ∈ X let yx be chosen such that (x, yx) ∈ U . Next choose open
neighborhoods Ux of x such that Ux × {yx} ⊆ U . Since X is S-paracompact there
exists a S-partition of unity F subordinated to the covering {Ux : x ∈ X}. In
particular, for every ϕ ∈ F there exists an xϕ ∈ X with carrϕ ⊆ Uxϕ . Now define
f :=

∑
ϕ∈F yxϕ ϕ. Then f ∈ S and for every x ∈ X we have

f(x) =
∑
ϕ∈F

yxϕ ϕ(x) =
∑

x∈carrϕ

yxϕ ϕ(x) ∈ ι−1
x (U),
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since ι−1
x (U) is convex, contains yxϕ for x ∈ carr(ϕ) ⊆ Uxϕ , and ϕ(x) ≥ 0 with

1 =
∑
ϕ ϕ(x) =

∑
x∈carrϕ ϕ(x). �

16.3. Lemma. Lip2-functions on Rn . [Wells, 1973]. Let B ∈ N and A := {x ∈
RN : xi ≤ 0 for all i and ‖x‖ ≤ 1}. Suppose that f ∈ C3

B(RN ,R) with f |A = 0 and
f(x) ≥ 1 for all x with dist(x,A) ≥ 1. Then N < B2 + 36B4.

Proof. Suppose N ≥ B2+36B4. We may assume that f is symmetric by replacing
f with x 7→ 1

N !

∑
σ f(σ∗x), where σ runs through all permutations, and σ∗ just

permutes the coordinates. Consider points xj ∈ RN for j = 0, . . . , B2 of the form

xj =
(

1
B , . . . ,

1
B︸ ︷︷ ︸

j

,− 1
B , . . . ,−

1
B︸ ︷︷ ︸

B2−j

, 0, . . . , 0︸ ︷︷ ︸
>36B4

)
.

Then ‖xj‖ = 1, x0 ∈ A and d(xB
2

, A) ≥ 1. Since f is symmetric and yj :=
1
2 (xj + xj+1) has vanishing j, B2 + 1, . . . , N coordinates, we have for the partial

derivatives ∂jf(yj) = ∂kf(yj) for k = B2 + 1, . . . , N . Thus

|∂jf(yj)|2 =
1

N −B2

N∑
k=B2+1

|∂kf(yj)|2 ≤ ‖f
′(yj)‖22

36B4
=
‖f ′(yj)‖2

36B4
≤ 1

36B2
,

since from f |A = 0 we conclude that f(0) = f ′(0) = f ′′(0) = f ′′′(0) and hence

‖f (j)(h)‖ ≤ B ‖h‖3−j for j ≤ 3, see 15.6 .

From |f(x+ h)− f(x)− f ′(x)(h)− 1
2f
′′(x)(h2)| ≤ B 1

3! ‖h‖
3 we conclude that

|f(x+ h)− f(x− h)| ≤ |f(x+ h)− f(x)− f ′(x)(h)− 1
2f
′′(x)(h2)|

+ |f(x− h)− f(x) + f ′(x)(h)− 1
2f
′′(x)(h2)|

+ 2|f ′(x)(h)|
≤ 2

3! B‖h‖
3 + 2|f ′(x)(h)|.

If we apply this to x = yj and h = 1
B ej , where ej denotes the j-th unit vector, then

we obtain

|f(xj+1)− f(xj)| ≤ 2

3!
B

1

B3
+ 2|∂jf(yj)| 1

B
≤ 2

3B2
.

Summing up yields 1 ≤ |f(xB
2

)| = |f(xB
2

)− f(x0)| ≤ 2
3 < 1, a contradiction. �

16.4. Corollary. `2 is not Lip2
glob-normal . [Wells, 1973]. Let A0 := {x ∈ `2 :

xj ≤ 0 for all j and ‖x‖ ≤ 1} and A1 := {x ∈ `2 : d(x,A) ≥ 1} and f ∈ C3(`2,R)

with f |Aj = j for j = 0, 1. Then f (3) is not bounded.

Proof. By the preceding lemma a bound B of f (3) must satisfy for f restricted to
RN , that N < B2 + 36B4. This is not for all N possible. �

16.5. Corollary. Whitney’s extension theorem is false on `2. [Wells, 1973].
Let E := R × `2 ∼= `2 and π : E → R be the projection onto the first factor.
For subsets A ⊆ `2 consider the cone CA := {(t, ta) : t ≥ 0, a ∈ A} ⊆ E. Let

A := C(A0 ∪ A1) with A0 and A1 as in 16.4 . Let a jet (f j) on A be defined by

f j = 0 on the cone CA1 and f j(x)(v1, . . . , vj) = h(j)(π(x))(π(v1), . . . , π(vj)) for
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all x in the cone of CA0, where h ∈ C∞(R,R) is infinite flat at 0 but with h(t) 6= 0
for all t 6= 0. This jet has no C3-prolongation to E.

Proof. Suppose that such a prolongation f exists. Then f (3) would be bounded
locally around 0, hence fa(x) := 1− 1

h(a) f(a, ax) would be a C3
B function on `2 for

small a, which is 1 on A1 and vanishes on A0. This is a contradiction to 16.4 .

So it remains to show that the following condition of Whitney 22.2 is satisfied:∥∥∥f j(y)−
k−j∑
i=0

1

i!
f j+i(x)(y − x)j

∥∥∥ = o(‖x− y‖k−j) for A 3 x, y → a.

Let f j1 := 0 and f j0 (x) := h(j)(π(x))◦(π× . . .×π). Then both are smooth on R⊕`2,
and thus Whitney’s condition is satisfied on each cone separately. It remains to
show this when x is in one cone and y in the other and both tend to 0. Thus,
we have to replace f at some places by f1 and at others by f0. Since h is infinite
flat at 0 we have ‖f j0 (z)‖ = o(‖z‖n) for every n. Furthermore for xi ∈ CAi for
i = 0, 1 we have that ‖x1 − x0‖ ≥ sin(arctan 2− arctan 1) max{‖x0‖, ‖x1‖}. Thus,

we may replace f j0 (y) by f j1 (y) and vice versa. So the condition is reduced to the
case, where y and z are in the same cone CAi. �

16.6. Lemma. Smoothly regular strict inductive limits. Let E be the strict
inductive limit of a sequence of C∞-normal convenient vector spaces En such that
En ↪→ En+1 is closed and has the extension property for smooth functions. Then
E is C∞-regular.

Proof. Let U be open in E and 0 ∈ U . Then Un := U∩En is open in En. We choose
inductively a sequence of functions fn ∈ C∞(En,R) such that supp(fn) ⊆ Un,
fn(0) = 1, and fn|En−1 = fn−1. If fn is already constructed, we may choose by
C∞-normality a smooth g : En+1 → R with supp(g) ⊆ Un+1 and g|supp(fn) = 1. By

assumption, fn extends to a function f̃n ∈ C∞(En+1,R). The function fn+1 := g·f̃n
has the required properties.

Now we define f : E → R by f |En := fn for all n. It is smooth since any

c ∈ C∞(R, E) locally factors to a smooth curve into some En by 1.8 since a

strict inductive limit is regular by 52.8 , so f ◦ c is smooth. Finally, f(0) = 1,
and if f(x) 6= 0 then x ∈ En for some n, and we have fn(x) = f(x) 6= 0, thus
x ∈ Un ⊆ U . �

For counter-examples for the extension property see 21.7 and 21.11 . However,
for complemented subspaces the extension property obviously holds.

16.7. Proposition. C∞c is C∞-regular. The space C∞c (Rm,R) of smooth func-

tions on Rm with compact support satisfies the assumptions of 16.6 .

Let Kn := {x ∈ Rm : |x| ≤ n}. Then C∞c (Rm,R) is the strict inductive limit of the
closed subspaces C∞Kn(Rm,R) := {f : supp(f) ⊆ Kn}, which carry the topology of
uniform convergence in all partial derivatives separately. They are nuclear Fréchet

spaces and hence separable, see 52.27 . Thus they are C∞-normal by 16.10 below.
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In order to show the extension property for smooth functions we proof more general
that for certain sets A the subspace {f ∈ C∞(E,R) : f |A = 0} is a complemented
subspace of C∞(E,R). The first result in this direction is:

16.8. Lemma. [Seeley, 1964] The subspace {f ∈ C∞(R,R) : f(t) = 0 for t ≤ 0}
of the Fréchet space C∞(R,R) is a direct summand.

Proof. We claim that the following map is a bounded linear mapping being left
inverse to the inclusion: s(g)(t) := g(t) −

∑
k∈N akh(−t2k)g(−t2k) for t > 0 and

s(g)(t) = 0 for t ≤ 0. Where h : R→ R is a smooth function with compact support
satisfying h(t) = 1 for t ∈ [−1, 1] and (ak) is a solution of the infinite system of
linear equations

∑
k∈N ak(−2k)n = 1 (n ∈ N) (the series is assumed to converge

absolutely). The existence of such a solution is shown in [Seeley, 1964] by taking
the limit of solutions of the finite subsystems. Let us first show that s(g) is smooth.
For t > 0 the series is locally around t finite, since −t2k lies outside the support of
h for k sufficiently large. Its derivative (sg)(n)(t) is

g(n)(t)−
∑
k∈N

ak(−2k)n
n∑
j=0

h(j)(−t2k)g(n−j)(−t2k)

and this converges for t→ 0 towards g(n)(0)−
∑
k∈N ak(−2k)ng(n)(0) = 0. Thus s(g)

is infinitely flat at 0 and hence smooth on R. It remains to show that g 7→ s(g) is a

bounded linear mapping. By the uniform boundedness principle 5.26 it is enough
to show that g 7→ (sg)(t) is bounded. For t ≤ 0 this map is 0 and hence bounded.
For t > 0 it is a finite linear combination of evaluations and thus bounded. �

Now the general result:

16.9. Proposition. Let E be a convenient vector space, and let p be a smooth
seminorm on E. Let A := {x : p(x) ≥ 1}. Then the closed subspace {f : f |A = 0}
in C∞(E,R) is complemented.

Proof. Let g ∈ C∞(E,R) be a smooth reparameterization of p with support in

E \ A equal to 1 near p−1(0). By lemma 16.8 , there is a bounded projection
P : C∞(R,R)→ C∞(−∞,0](R,R). The following mappings are smooth in turn by the

properties of the cartesian closed smooth calculus, see 3.12 :

E × R 3 (x, t) 7→ f(et, x) ∈ R

E 3 x 7→ f(e( )x) ∈ C∞(R,R)

E 3 x 7→ P (f(e( )x)) ∈ C∞(−∞,0](R,R)

E × R 3 (x, r) 7→ P (f(e( )x))(r) ∈ R

carr p 3 x 7→
(

x

p(x)
, ln(p(x))

)
7→ P

(
f(e( ) x

p(x) )
)

(ln(p(x))) ∈ R.

So we get the desired bounded linear projection

P̄ : C∞(E,R)→ {f ∈ C∞(E,R) : f |A = 0},

(P̄ (f))(x) := g(x) f(x) + (1− g(x))P (f(e( ) x
p(x) ))(ln(p(x))). �
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16.10. Theorem. Smoothly paracompact Lindelöf. [Wells, 1973]. If X is
Lindelöf and S-regular, then X is S-paracompact. In particular, all nuclear Fréchet
spaces and strict inductive limits of sequences of such spaces are C∞-paracompact.

Furthermore, nuclear Silva spaces, see 52.37 , are C∞-paracompact.

The first part was proved by [Bonic and Frampton, 1966] under stronger assump-
tions. The importance of the proof presented here lies in the fact that we need not
assume that S is local and that 1

f ∈ S for f ∈ S. The only things used are that S
is an algebra and for each g ∈ S there exists an h : R → [0, 1] with h ◦ g ∈ S and
h(t) = 0 for t ≤ 0 and h(t) = 1 for t ≥ 1. In particular, this applies to S = Lippglobal

and X a separable Banach space.

Proof. Let U be an open covering of X.

Claim. There exists a sequence of functions gn ∈ S(X, [0, 1]) such that {carr gn :
n ∈ N} is a locally finite family subordinated to U and {g−1

n (1) : n ∈ N} is a
covering of X.

For every x ∈ X there exists a neighborhood U ∈ U (since U is a covering) and
hence an hx ∈ S(X, [0, 2]) with hx(x) = 2 and carr(hx) ⊆ U (since X is S-regular).
Since X is Lindelöf we find a sequence xn such that {x : hn(x) > 1 : n ∈ N} is
a covering of X (we denote hn := hxn). Now choose an h ∈ C∞(R, [0, 1]) with
h(t) = 0 for t ≤ 0 and h(t) = 1 for t ≥ 1. Set

gn(x) := h(n (hn(x)− 1) + 1)
∏
j<n

h(n (1− hj(x)) + 1).

Note that

h(n (hn(x)− 1) + 1) =

{
0 for hn(x) ≤ 1− 1

n

1 for hn(x) ≥ 1

h(n (1− hj(x)) + 1) =

{
0 for hj(x) ≥ 1 + 1

n

1 for hj(x) ≤ 1

Then gn ∈ S(X, [0, 1]) and carr gn ⊆ carrhn. Thus, the family {carr gn : n ∈ N} is
subordinated to U .

The family {g−1
n (1) : n ∈ N} covers X since for each x ∈ X there exists a minimal

n with hn(x) ≥ 1, and thus gn(x) = 1.

If we could divide in S, then fn := gn/
∑
j gj would be the required partition of

unity (and we do not need the last claim in this strong from).

Instead we proceed as follows. The family {carr gn : n ∈ N} is locally finite: Let
n be such that hn(x) > 1, and take k > n so large that 1 + 1

k < hn(x), and let

Ux := {y : hn(y) > 1 + 1
k}, which is a neighborhood of x. For m ≥ k and y ∈ Ux

we have that hn(y) > 1 + 1
k ≥ 1 + 1

m , hence the (n+ 1)-st factor of gm vanishes at
y, i.e. {j : carr gj ∩ Ux 6= ∅} ⊆ {1, . . . ,m− 1}.
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Now define fn := gn
∏
j<n(1 − gj) ∈ S. Then carr fn ⊆ carr gn, hence {carr fn :

n ∈ N} is a locally finite family subordinated to U . By induction, one shows that∑
j≤n fj = 1 −

∏
j≤n(1 − gj). In fact

∑
j≤n fj = fn +

∑
j<n fj = gn

∏
j<n(1 −

gj) + 1−
∏
j<n(1− gj) = 1 + (gn − 1)

∏
j<n(1− gj). For every x ∈ U there exists

an n with gn(x) = 1, hence fk(x) = 0 for k > n and
∑∞
j=0 fj(x) =

∑
j≤n fj(x) =

1−
∏
j≤n(1− gj(x)) = 1.

Let us consider a nuclear Silva space. By 52.37 its dual is a nuclear Fréchet space.

By 4.11.2 on the strong dual of a nuclear Fréchet space the c∞-topology coincides
with the locally convex one. Hence, it is C∞-regular since it is nuclear, so it has
a base of (smooth) Hilbert seminorms. A Silva space is an inductive limit of a

sequence of Banach spaces with compact connecting mappings (see 52.37 ), and
we may assume that the Banach spaces are separable by replacing them by the
closures of the images of the connecting mappings, so the topology of the inductive
limit is Lindelöf. Therefore, by the first assertion we conclude that the space is
C∞-paracompact.

In order to obtain the statement on nuclear Fréchet spaces we note that these are

separable, see 52.27 , and thus Lindelöf. A strict inductive limit of a sequence of

nuclear Fréchet spaces is C∞-regular by 16.6 , and it is also Lindelöf for its c∞-
topology, since this is the inductive limit of topological spaces (not locally convex
spaces). �

Remark. In particular, every separable Hilbert space has Lip2
global-partitions of

unity, thus there is such a Lip2
global-partition of functions ϕ subordinated to `2 \A0

and `2 \A1, with A0 and A1 mentioned in 16.4 . Hence, f :=
∑

carrϕ∩A0=∅ ϕ ∈ C2

satisfies f |Aj = j for j = 0, 1. However, f /∈ Lip2
global. The reason behind this is

that Lip2
global is not a sheaf.

Open problem. Classically, one proves the existence of continuous partitions
of unity from the paracompactness of the space. So the question arises whether

theorem 16.10 can be strengthened to: If the initial topology with respect to S
is paracompact, do there exist S-partitions of unity? Or equivalently: Is every
paracompact S-regular space S-paracompact?

16.11. Theorem. Smoothness of separable Banach spaces. Let E be a
separable Banach space. Then the following conditions are equivalent.

(1) E has a C1-norm;
(2) E has C1-bump functions, i.e., E is C1-regular;
(3) The C1-functions separate closed sets, i.e., E is C1-normal;
(4) E has C1-partitions of unity, i.e., E is C1-paracompact;
(5) E has no rough norm, i.e. E is Asplund;
(6) E′ is separable.

Proof. The implications ( 1 ) ⇒ ( 2 ) and ( 4 ) ⇒ ( 3 ) ⇒ ( 2 ) are obviously

true. The implication ( 2 ) ⇒ ( 4 ) is 16.10 . ( 2 ) ⇒ ( 5 ) holds by 14.9 . ( 5 )
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⇒ ( 6 ) follows from 14.10 since E is separable. ( 6 ) ⇒ ( 1 ) is 13.22 together

with 13.20 . �

A more general result is:

16.12. Result. [John and Zizler, 1976] Let E be a WCG Banach space. Then the
following statements are equivalent:

(1) E is C1-normable;
(2) E is C1-regular;
(3) E is C1-paracompact;
(4) E has norm, whose dual norm is LUR;
(5) E has shrinking Markuševič basis, i.e. vectors xi ∈ E and x∗i ∈ E′ with

x∗i (xj) = δi,j and the span of the xi is dense in E and the span of x∗i is dense
in E′.

16.13. Results.

(1) [Godefroy et al., 1983] ([Vanderwerff, 1992]) Let E′ is WCG Banach space (or

even WCD, see 53.8 ). Then E is C1-regular.

(2) [Vanderwerff, 1992] Let K be compact with K(ω1) = ∅. Then C(K) is C1-

paracompact. Compare with 13.18.2 and 13.17.5 .

(3) [Godefroy et al., 1983] Let E be a subspace of a WCG Banach space. If E is

Ck-regular then it is Ck-paracompact. This will be proved in 16.18 .

(4) [MacLaughlin, 1992] Let E′ be a WCG Banach space. If E is Ck-regular then
it is Ck-paracompact.

16.14. Lemma. Smooth functions on c0(Γ). [Toruńczyk, 1973]. The norm-
topology of c0(Γ) has a basis which is a countable union of locally finite families of
carriers of smooth functions, each of which depends locally only on finitely many
coordinates.

Proof. The open balls Br := {x : ‖x‖∞ < r} are carriers of such functions: In

fact, similarly to 13.16 we choose a h ∈ C∞(R,R) with h = 1 locally around 0
and carrh = (−1, 1), and define f(x) :=

∏
γ∈Γ h(xγ). Let

Un,r,q = {Br + q1eγ1 + · · ·+ qneγn : {γ1, . . . , γn} ⊆ Γ}

where n ∈ N, r ∈ Q, q ∈ Qn with |qi| > 2r for 1 ≤ i ≤ n. This is the required
countable family.

Claim. The union
⋃
n,r,q Un,r,q is a basis for the topology.

Let x ∈ c0(Γ) and ε > 0. Choose 0 < r < ε
2 such that r 6= |xγ | for all γ (note that

|xγ | ≥ ε/4 only for finitely many γ). Let {γ1, . . . , γn} := {γ : |xγ | > r}. For qi with
|qi − xγi | < r and |qi| > 2r we have

x−
∑
i

qi eγi ∈ Br,



16.15 16. Smooth Partitions of Unity and Smooth Normality 179

and hence

x ∈ Br +

n∑
i=1

qieγi ⊆ x+B2r ⊆ {y : ‖y − x‖∞ ≤ ε}.

Claim. Each family Un,r,q is locally finite.

For given x ∈ c0(Γ), let {γ1, . . . , γm} := {γ : |xγ | > r
2} and assume there exists a

y ∈ (x+B r
2
) ∩ (Br +

∑n
i=1 qieβi) 6= ∅. For y ∈ x+B r

2
we have |ya| < r for all γ /∈

{γ1, . . . , γm} and for y ∈ Br +
∑n
i=1 qi eβi we have |yγ | > r for all γ ∈ {β1, . . . , βn}.

Hence, {β1, . . . , βn} ⊆ {γ1, . . . , γm} and Un,r,q is locally finite. �

16.15. Theorem, Smoothly paracompact metrizable spaces . [Toruńczyk,
1973]. Let X be a metrizable smooth space. Then the following are equivalent:

(1) X is S-paracompact, i.e. admits S-partitions of unity.
(2) X is S-normal.
(3) The topology of X has a basis which is a countable union of locally finite

families of carriers of smooth functions.
(4) There is a homeomorphic embedding i : X → c0(A) for some A (with image

in the unit ball) such that eva ◦ i is smooth for all a ∈ A.

Proof. ( 1 ) ⇒ ( 3 ) Let Un be the cover formed by all open balls of radius 1/n.

By ( 1 ) there exists a partition of unity subordinated to it. The carriers of these
smooth functions form a locally finite refinement Vn. The union of all Vn is clearly
a base of the topology since that of all Un is one.

( 3 ) ⇒ ( 2 ) Let A1 and A2 be two disjoint closed subsets of X. Let furthermore
Un be a locally finite family of carriers of smooth functions such that

⋃
n Un is a

basis. Let W i
n :=

⋃
{U ∈ Un : U ∩Ai = ∅}. This is the carrier of the smooth locally

finite sum of the carrying functions of the U ’s. The family {W i
n : i ∈ {0, 1}, n ∈ N}

forms a countable cover of X. By the argument used in the proof of 16.10 we

may shrink the W i
n to a locally finite cover of X. Then W 1 =

⋃
nW

1
n is a carrier

containing A2 and avoiding A1. Now use 16.2.2 .

( 2 ) ⇒ ( 1 ) is lemma 16.2 , since metrizable spaces are paracompact.

( 3 ) ⇒ ( 4 ) Let Un be a locally finite family of carriers of smooth functions such

that U :=
⋃
n Un is a basis. For every U ∈ Un let fU : X → [0, 1

n ] be a smooth
function with carrier U . We define a mapping i : X → c0(U), by i(x) = (fU (x))U∈U .
It is continuous at x0 ∈ X, since for n ∈ N there exists a neighborhood V of x0

which meets only finitely many sets U ∈
⋃
k≤2n Uk, and so ‖i(x) − i(x0)‖ ≤ 1

n

for those x ∈ V with |fU (x) − fU (x0)| < 1
n for all U ∈

⋃
k≤n Uk meeting V .

The mapping i is even an embedding, since for x0 ∈ U ∈ U and x /∈ U we have
‖i(x)− i(x0)‖ = fU (x0) > 0.

( 4 ) ⇒ ( 3 ) By 16.14 the Banach space c0(A) has a basis which is a countable
union of locally finite families of carriers of smooth functions, all of which depend
locally only on finitely many coordinates. The pullbacks of all these functions via
i are smooth on X, and their carriers furnish the required basis. �
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16.16. Corollary. Hilbert spaces are C∞-paracompact. [Toruńczyk, 1973].
Every space c0(Γ) (for arbitrary index set Γ) and every Hilbert space (not necessarily
separable) is C∞-paracompact.

Proof. The assertion for c0(Γ) is immediate from 16.15 . For a Hilbert space

`2(Γ) we use the embedding i : `2(Γ)→ c0(Γ ∪ {∗}) given by

i(x)γ =

{
xγ for γ ∈ Γ

‖x‖2 for γ = ∗

This is an embedding: From ‖xn − x‖∞ → 0 we conclude by Hölder’s inequality
that 〈y, xn−x〉 → 0 for all y ∈ `2 and hence ‖xn−x‖2 = ‖xn‖2 +‖x‖2−2〈x, xn〉 →
2‖x‖2 − 2‖x‖2 = 0. �

16.17. Corollary. A countable product of S-paracompact metrizable spaces is
again S-paracompact.

Proof. By theorem 16.15 we have certain embeddings in : Xn → c0(An) with
images contained in the unit balls. We consider the embedding i :

∏
nXn →

c0(
⊔
nAn) given by i(x)a = 1

n in(xn) for a ∈ An which has the required properties

for theorem 16.15 . It is an embedding, since i(xn)→ i(x) if and only if xnk → xk
for all k (all but finitely many coordinates are small anyhow). �

16.18. Corollary. [Godefroy et al., 1983]
Let E be a Banach space with a separable projective resolution of identity, see

53.13 . If E is Ck-regular, then it is Ck-paracompact.

Proof. By 53.20 there exists a linear, injective, norm 1 operator T : E → c0(Γ1)

for some Γ1 and by 53.13 projections Pα for ω ≤ α ≤ densE. Let Γ2 := {∆ :

∆ ⊆ [ω,densE), finite}. For ∆ ∈ Γ2 choose a dense sequence (x∆
n )n in the unit

sphere of Pω(E) ⊕
⊕

α∈∆(Pα+1 − Pα)(E) and let y∆
n ∈ E′ be such that ‖y∆

n ‖ = 1

and y∆
n (x∆

n ) = 1. For n ∈ N let π∆
n : x 7→ x− y∆

n (x)x∆
n . Choose a smooth function

h ∈ C∞(E, [0, 1]) with h(x) = 0 for ‖x‖ ≤ 1 and h(x) = 1 for ‖x‖ ≥ 2. Let
Rα := (Pα+1 − Pα)/‖Pα+1 − Pα‖.
Now define an embedding as follows: Let Γ := N3 × Γ2 t N× [ω,densE) t N t Γ1

and let u : E → c0(Γ) be given by

u(x)γ :=


1

2n+m+l h(mπ∆
n x)

∏
α∈∆ h(lRαx) for γ = (m,n, l,∆) ∈ N3 × Γ2,

1
2m h(mRαx) for γ = (m,α) ∈ N× [ω,densE),
1
2 h( xm ) for γ = m ∈ N,
T (x)α for γ = α ∈ Γ1.

Let us first show that u is well-defined and continuous. We do this only for the
coordinates in the first row (for the others it is easier, the third has locally even
finite support).
Let x0 ∈ E and 0 < ε < 1. Choose n0 with 1/2n0 < ε. Then |u(x)γ | < ε for all
x ∈ X and all α = (m,n, l,∆) with m+ n+ l ≥ n0.
For the remaining coordinates we proceed as follows: We first choose δ < 1/n0. By
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53.13.8 there is a finite set ∆0 ∈ Γ2 such that ‖Rαx0‖ < δ/2 for all α /∈ ∆0. For
those α and ‖x− x0‖ < δ/2 we get

‖Rα(x)‖ ≤ ‖Rα(x0)‖+ ‖Rα(x− x0)‖ < δ

2
+
δ

2
= δ,

hence u(x)γ = 0 for all γ = (m,n, l,∆) with m+ n+ l < n0 and ∆ ∩ ([ω,densE \
∆0) 6= ∅.
For the remaining finitely many coordinates γ = (m,n, l,∆) with m+n+l < n0 and
∆ ⊆ ∆0 we may choose a δ1 > 0 such that |u(x)γ−u(x0)γ | < ε for all ‖x−x0‖ < δ1.
Thus for ‖x−x0‖ < min{δ/2, δ1} we have |u(x)γ −u(x0)γ | < 2ε for all γ ∈ N3×Γ2

and |u(x0)γ | ≥ ε only for α = (m,n, l,∆) with m+ n+ l < n0 and ∆ ⊆ ∆0.

Since T is injective, so is u. In order to show that u is an embedding let x∞, xp ∈ E
with u(xp) → u(x∞). Then xp is bounded, since for n0 > ‖x∞‖ implies that
h(x∞/n0) = 0 and from h(xp/n0) → h(x∞/n0) we conclude that ‖xp/n0‖ ≤ 2 for
large p.

Now we show that for any ε > 0 there is a finite ε-net for {xp : p ∈ N}: For this

we choose m0 > 2/ε. By 53.13.8 there is a finite set ∆0 ⊆ Λ(x∞) :=
⋃
ε>0{α <

densE : ‖Rα(x∞)‖ ≥ ε} and an n0 := n ∈ N such that ‖m0π
∆0
n (x∞)‖ ≤ 1 and

hence h(m0π
∆0
n (x∞)) = 0. In fact by 53.13.9 there is a finite linear combination

of vectors Rα(x∞), which has distance less than ε from x∞, let δ := min{‖Rα(x)‖ :
for those α} > 0. Since the y∆0

n are dense in the unit sphere of Pω ⊕
⊕

α∈∆0
RαE

we may choose an n such that ‖x∞ − ‖x∞‖x∆0
n ‖ < 1

2m0
and hence

‖π∆0
n (x∞)‖ = ‖x∞ − y∆0

n (x∞)x∆0
n ‖

≤
∥∥∥∥x∞ − ‖x∞‖x∆0

n

∥∥∥∥+ ‖x∞‖
∥∥∥∥x∆0

n − y∆0
n (x∆0

n )x∆0
n

∥∥∥∥
+ ‖y∆0

n ‖
∥∥∥∥‖x∞‖x∆0

n − x∞)

∥∥∥∥ ‖x∆0
n ‖

≤ 1

2m0
+ 0 +

1

2m0
=

1

m0

Next choose l0 := l ∈ N such that l0δ0 ≥ 2 and hence ‖l0Rαx∞‖ ≥ 2 for all α ∈ ∆0.
Then

h(m0π
∆0
n0
xp)

∏
α∈∆0

h(l0Rαxp)→ h(m0π
∆0
n0
x∞)

∏
α∈∆0

h(l0Rαx∞)

and h(l0Rαxp)→ h(l0Rαx∞) = 1 for α ∈ ∆0

Hence

h(m0π
∆0
n0
xp)→ h(m0π

∆0
n0
x∞) = 0,

and so ‖π∆0
n0
xp‖ ≤ 2/m0 < ε for all large p. Thus d(xp,Rx∆0

n0
) ≤ ε, hence {xp : p ∈

N} has a finite ε-net, since its projection onto the one dimensional subspace Rx∆0
n0

is bounded.

Thus {x∞, xp : p ∈ N} is relatively compact, and hence u restricted to its closure
is a homeomorphism onto the image. So xp → x∞.

Now the result follows from 16.15 . �
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16.19. Corollary. [Deville et al., 1990]. Let c0(Γ) → E → F be a short exact
sequence of Banach spaces and assume F admits Cp-partitions of unity. Then E
admits Cp-partitions of unity.

Proof. Without loss of generality we may assume that the norm of E restricted
to c0(Γ) is the supremum norm. Furthermore there is a linear continuous splitting

T : `1(Γ) → E′ by 13.17.3 and a continuous splitting S : F → E by 53.22 with
S(0) = 0. We put Tγ := T (eγ) for all γ ∈ Γ. For n ∈ N let Fn be a Cp-partition
of unity on F with diam(carr(f)) ≤ 1/n for all f ∈ Fn. Let F :=

⊔
n Fn and let

Γ2 := {∆ ⊆ Γ : ∆ is finite}. For any f ∈ F choose xf ∈ S(carr(f)) and for any
∆ ∈ Γ2 choose a dense sequence {y∆

f,m : m ∈ N} 3 0 in the linear subspace generated

by {xf + eγ : γ ∈ ∆}. Let `∆f,m ∈ E′ be such that `∆f,m(y∆
f,m) = ‖`∆f,m‖ · ‖y∆

f,m‖ = 1.

Let π∆
f,m : E → E be given by π∆

f,m(x) := x − `∆f,m(x) y∆
f,m. Let h : E → R be

Cp with h(x) = 0 for ‖x‖ ≤ 1 and h(x) = 1 for ‖x‖ ≥ 2. Let g : R → [−1, 1] be
Cp with g(t) = 0 for |t| ≤ 1 and injective on {t : |t| > 1}. Now define a mapping

u : E → c0(Γ̃), where

Γ̃ := (F × Γ2 × N2) t (F × Γ) t (F × N) t t N t N

by

u(x)γ̃ :=
1

2n+m+j
f(x̂)h(j π∆

f,m(x))
∏
γ∈∆

g(nTγ(x− xf ))

for γ̃ = (f,∆, j,m) ∈ Fn × Γ2 × N2, and by

u(x)γ̃ :=



1
2n f(x̂) g(nTγ(x− xf )) for γ̃ = (f, γ) ∈ Fn × Γ

1
2n+j f(x̂)h(j (x− xf )) for γ̃ = (f, j) ∈ Fn × N
1

2n f(x̂) for γ̃ = f ∈ Fn ⊆ F
1

2n h(nx) for γ̃ = n ∈ N
1

2n h(x/n) for γ̃ = n ∈ N.

We first claim that u is well-defined and continuous. Every coordinate x 7→ u(x)γ
is continuous, so it remains to show that for every ε > 0 locally in x the set
of coordinates γ, where |u(x)γ | > ε is finite. We do this for the first type of
coordinates. For this we may fix n, m and j (since the factors are bounded by 1).
Since Fn is a partition of unity, locally f(x̂) 6= 0 for only finitely many f ∈ Fn, so we
may also fix f ∈ Fn. For such an f the set ∆0 := {γ : |Tγ(x−xf )| ≥ π(x−xf )+ 1

n}
is finite by the proof of 13.17.3 . Since ‖x̂ − xf‖ = ‖π(x − xf )‖ ≤ 1/n be have
g(nTγ(x− xf )) = 0 for γ /∈ ∆0.

Thus only for those ∆ contained in the finite set ∆0, we have that the corresponding
coordinate does not vanish.

Next we show that u is injective. Let x 6= y ∈ E.
If x̂ 6= ŷ, then there is some n and a f ∈ Fn such that f(x̂) 6= 0 = f(ŷ). Thus this
is detected by the 4th row.
If x̂ = ŷ then Sx̂ = Sŷ and since x− Sx̂, y − Sŷ ∈ c0(Γ) there is a γ ∈ Γ with

Tγ(x− Sx̂) = (x− Sx̂)γ 6= (y − Sŷ)γ = Tγ(y − Sŷ).
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We will make use of the following method repeatedly:
For every n there is a fn ∈ Fn with fn(x̂) 6= 0 and hence ‖x̂ − x̂fn‖ ≤ 1/n.
Since S is continuous we get xfn = S(x̂fn) → S(x̂) and thus limn Tγ(x − xfn) =
limn Tγ(x− S(x̂fn)) = Tγ(x− S(x̂)).
So we get

lim
n
Tγ(x− xfn) = Tγ(x− S(x̂)) 6= Tγ(y − S(ŷ)) = lim

n
Tγ(y − xfn).

If all coordinates for u(x) and u(y) in the second row would be equal, then

g(nTγ(x− xf )) = g(nTγ(y − xf ))

since fγ(x̂) 6= 0, and hence ‖Tγ(x− xf )− Tγ(y − xf )‖ ≤ 2/n, a contradiction.

Now let us show that u is a homeomorphism onto its image. We have to show
xk → x provided u(xk)→ u(x).
We consider first the case, where x = Sx̂. As before we choose fn ∈ Fn with
fn(x̂) 6= 0 and get xfn = S(x̂fn)→ S(x̂) = x. Let ε > 0 and j > 3/ε. Choose an n
such that ‖xfn − x‖ < 1/j. Then h(j (xfn − x)) = 0. From the coordinates in the
third and fourth row we conclude

f(x̂k)h(j (xk − xfn))→ f(x̂)h(j (x− xfn)) and f(x̂k)→ f(x̂) 6= 0.

Hence

h(j (xk − xfn))→ h(j (x− xfn)) = 0.

Thus ‖xk − xfn‖ < 2/j for all large k. But then

‖xk − x‖ ≤ ‖xk − xfn‖+ ‖xfn − x‖ <
3

j
< ε,

i.e. xk → x.
Now the case, where x 6= Sx̂. We show first that {xk : k ∈ N} is bounded. Pick
n > ‖x‖. From the coordinates in the last row we get that limk h(xk/n) = 0, i.e.
‖xk‖ ≤ 2n for all large k.
We claim that for j ∈ N there is an n ∈ N and an f ∈ Fn with f(x̂) 6= 0, a finite
set ∆ ⊆ Γ with

∏
γ∈∆ g(nTγ(x− xf )) 6= 0 and an m ∈ N with h(j π∆

f,m(x)) = 0.

From 0 6= (x − Sx̂) ∈ c0(Γ) we deduce that there is a finite set ∆ ⊆ Γ with
Tγ(x− Sx̂) = (x− Sx̂)γ 6= 0 for all γ ∈ ∆ and dist(x− Sx̂, 〈eγ : γ ∈ ∆〉) < 1/(3j),
i.e. |(x−Sx̂)γ | ≤ 1/(3j) for all γ /∈ ∆. As before we choose fn ∈ Fn with fn(x̂) 6= 0
and get xfn = S(x̂fn)→ S(x̂) and

lim
n
Tγ(x− xfn) = (x− Sx̂)γ 6= 0 for γ ∈ ∆.

Thus g(n (Tγ(x− xfn))) 6= 0 for all large n and γ ∈ ∆. Furthermore, dist(x, xfn +
〈eγ : γ ∈ ∆〉) = dist(x − xfn , 〈eγ : γ ∈ ∆〉) < 1/(2j). Since {y∆

fn,m
: m ∈ N} is

dense in 〈xfn + eγ : γ ∈ ∆〉 there is an m such that ‖x − y∆
fn,m
‖ < 1/(2j). Since

‖π∆
fn,m
‖ ≤ 2 we get

‖π∆
fn,m(x)‖ ≤ ‖x− y∆

fn,m‖+ |1− `∆fn,m(x)| ‖y∆
fn,m‖

≤ 1

2j
+ ‖`∆fn,m‖ ‖x− y

∆
fn,m‖ ‖y

∆
fn,m‖ ≤

1

2j
+

1

2j
=

1

j
,

hence h(j π∆
fn,m

(x)) = 0.
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We claim that for every ε > 0 there is a finite ε-net of {xk : k ∈ N}. Let ε > 0.
We choose j > 4/ε and we pick n ∈ N, f ∈ Fn, ∆ ⊆ Γ finite, and m ∈ N satisfying
the previous claim. From u(xk)→ u(x) we deduce from the coordinates in the first
row, that

f(x̂k)h(j π∆
f,m(xk))

∏
γ∈∆

g(nTγ(xk − xf ))→

→ f(x̂)h(j π∆
f,m(x))

∏
γ∈∆

g(nTγ(x− xf )) for k →∞

and since by the coordinates in the fourth row f(x̂k) → f(x̂) 6= 0 we obtain from
the coordinates in the second row, that

g(nTγ(xk − xf ))→ g(nTγ(x− xf )) 6= 0 for γ ∈ ∆.

Hence
h(j π∆

f,m(xk))→ h(j π∆
f,m(x)) = 0.

Therefore

‖xk − `∆f,m(xk) y∆
f,n‖ = ‖π∆

f,m(xk)‖ < 1

j
<
ε

4
for all large k.

Thus there is a finite dimensional subspace in E spanned by y∆
f,n and finitely many

xk, such that all xk have distance ≤ ε/4 from it. Since {xk : k ∈ N} are bounded,
the compactness of the finite dimensional balls implies that {xk : k ∈ N} has an
ε-net, hence {xk : k ∈ N} is relatively compact, and since u is injective we have
limk xk = x.

Now the result follows from 16.15 . �

Remark. In general, the existence of C∞-partitions of unity is not inherited by the
middle term of short exact sequences: Take a short exact sequence of Banach spaces

with Hilbert ends and non-Hilbertizable E in the middle, as in 13.18.6 . If both E

and E∗ admitted C2-partitions of unity, then they would admit C2-bump functions,
hence E was isomorphic to a Hilbert space by [Meshkov, 1978], a contradiction.

16.20. Results on C(K). Let K be compact. Then for the Banach space C(K)
we have:

(1) [Deville et al., 1990]. If K(ω) = ∅ then C(K) is C∞-paracompact.
(2) [Vanderwerff, 1992] If K(ω1) = ∅ then C(K) is C1-paracompact.

(3) [Haydon, 1990] In contrast to ( 2 ) there exists a compact space K with K(ω1) =
{∗}, but such that C(K) has no Gâteaux-differentiable norm. Nevertheless

C(K) is C1-regular by [Haydon, 1991]. Compare with 13.18.2 .

(4) [Namioka and Phelps, 1975]. If there exists an ordinal number α with K(α) = ∅
then the Banach space C(K) is Asplund (and conversely), hence it does not

admit a rough norm, by 13.8 .

(5) [Ciesielski and Pol, 1984] There exists a compact K with K(3) = ∅. Conse-
quently, there is a short exact sequence c0(Γ1) → C(K) → c0(Γ2), and the
space C(K) is Lipschitz homeomorphic to some c0(Γ). However, there is no
continuous linear injection of C(K) into some c0(Γ).
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Notes. ( 1 ) Applying theorem 16.19 recursively we get the result as in 13.17.5 .

16.21. Some radial subsets are diffeomorphic to the whole space. We are
now going to show that certain subsets of convenient vector spaces are diffeomorphic
to the whole space. So if these subsets form a base of the c∞-topology of the
modeling space of a manifold, then we may choose charts defined on the whole
modeling space. The basic idea is to ‘blow up’ subsets U ⊆ E along all rays
starting at a common center. Without loss of generality assume that the center
is 0. In order for this technique to work, we need a positive function ρ : U → R,
which should give a diffeomorphism f : U → E, defined by f(x) := 1

ρ(x)x. For

this we need that ρ is smooth, and since the restriction of f to U ∩ R+x → R+x
has to be a diffeomorphism as well, and since the image set is connected, we need
that the domain U ∩ R+x is connected as well, i.e., U has to be radial. Let Ux :=
{t > 0 : tx ∈ U}, and let fx : Ux → R be given by f(tx) = t

ρ(tx)x =: fx(t)x.

Since up to diffeomorphisms this is just the restriction of the diffeomorphism f , we

need that 0 < f ′x(t) = ∂
∂t

t
ρ(tx) = ρ(tx)−tρ′(tx)(x)

ρ(tx)2 for all x ∈ U and 0 < t ≤ 1. This

means that ρ(y) > ρ′(y)(y) for all y ∈ U , which is quite a restrictive condition,
and so we want to construct out of an arbitrary smooth function ρ : U → R, which
tends to 0 towards the boundary, a new smooth function ρ satisfying the additional
assumption.

Theorem. Let U ⊆ E be c∞-open with 0 ∈ U and let ρ : U → R+ be smooth, such
that for all x /∈ U with tx ∈ U for 0 ≤ t < 1 we have ρ(tx) → 0 for t ↗ 1. Then
starU := {x ∈ U : tx ∈ U for all t ∈ [0, 1]} is diffeomorphic to E.

Proof. First remark that starU is c∞-open. In fact, let c : R → E be smooth
with c(0) ∈ starU . Then ϕ : R2 → E, defined by ϕ(t, s) := t c(s) is smooth and
maps [0, 1]×{0} into U . Since U is c∞-open and R2 carries the c∞-topology there
exists a neighborhood of [0, 1] × {0}, which is mapped into U , and in particular
there exists some ε > 0 such that c(s) ∈ starU for all |s| < ε. Thus c−1(starU)
is open, i.e., starU is c∞-open. Note that ρ satisfies on starU the same boundary
condition as on U . So we may assume without loss of generality that U is radial.
Furthermore, we may assume that ρ = 1 locally around 0 and 0 < ρ ≤ 1 everywhere,
by composing with some function which is constantly 1 locally around [ρ(0),+∞).

Now we are going to replace ρ by a new function ρ̃, and we consider first the
case, where E = R. We want that ρ̃ satisfies ρ̃′(t)t < ρ̃(t) (which says that the
tangent to ρ̃ at t intersects the ρ̃-axis in the positive part) and that ρ̃(t) ≤ ρ(t),
i.e., log ◦ρ̃ ≤ log ◦ρ, and since we will choose ρ̃(0) = 1 = ρ(0) it is sufficient to have
ρ̃′

ρ̃ = (log ◦ρ̃)′ ≤ (log ◦ρ)′ = ρ′

ρ or equivalently ρ̃′(t)t
ρ̃(t) ≤

ρ′(t)t
ρ(t) for t > 0. In order

to obtain this we choose a smooth function h : R → R which satisfies h(t) < 1,
and h(t) ≤ t for all t, and h(t) = t for t near 0, and we take ρ̃ as solution of the
following ordinary differential equation

ρ̃′(t) =
ρ̃(t)

t
· h
(
ρ′(t)t

ρ(t)

)
with ρ̃(0) = 1.
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Note that for t near 0, we have 1
th
(
ρ′(t)t
ρ(t)

)
= ρ′(t)

ρ(t) , and hence locally a unique

smooth solution ρ̃ exists. In fact, we can solve the equation explicitly, since

(log ◦ρ̃)′(t) = ρ̃′(t)
ρ̃(t) = 1

t · h
(
ρ′(t)t
ρ(t)

)
, and hence ρ̃(s) = exp(

∫ s
0

1
t · h(ρ

′(t)t
ρ(t) ) dt), which

is smooth on the same interval as ρ is.

Note that if ρ is replaced by ρs : t 7→ ρ(ts), then the corresponding solution ρ̃s
satisfies ρ̃s = ρ̃s. In fact,

(log ◦ρ̃s)′(t) =
(ρ̃s)

′(t)

ρ̃s(t)
=
sρ̃′(st)

ρ̃(st)
=

1

t
· stρ̃

′(st)

ρ̃(st)
=

1

t
h
(stρ′(st)
ρ(st)

)
=

1

t
h
( t(ρs)′(t)

ρs(t)

)
.

For arbitrary E and x ∈ E let ρx : Ux → R+ be given by ρx(t) := ρ(tx), and let
ρ̃ : U → R+ be given by ρ̃(x) := ρ̃x(1), where ρ̃x is the solution of the differential
equation above with ρx in place of ρ.

Let us now show that ρ̃ is smooth. Since U is c∞-open, it is enough to consider
a smooth curve x : R → U and show that t 7→ ρ̃(x(t)) = ρ̃(x(t))(1) is smooth.

This is the case, since (t, s) 7→ 1
sh
(
ρ′x(t)(s)s

ρx(t)(s)

)
= 1

sh
(
ρ′(s x(t))(s x(t))

ρ(s x(t))

)
is smooth,

since ϕ(t, s) := ρ′(s x(t))(s x(t))
ρ(s x(t)) satisfies ϕ(t, 0) = 0, and hence 1

sh(ϕ(t, s)) = ϕ(t,s)
s =

ρ′(s x(t))(x(t))
ρ(s x(t)) locally.

From ρsx(t) = ρ(tsx) = ρx(ts) we conclude that ρ̃sx(t) = ρ̃x(ts), and hence ρ̃(sx) =
ρ̃x(s). Thus, ρ̃′(x)(x) = ∂

∂t |t=1ρ̃(tx) = ∂
∂t |t=1ρ̃x(t) = ρ̃′x(1) < ρ̃x(1) = ρ̃(x). This

shows that we may assume without loss of generality that ρ : U → (0, 1] satisfies
the additional assumption ρ′(x)(x) < ρ(x).

Note that fx : t 7→ t
ρ(tx) is bijective from Ux := {t > 0 : tx ∈ U} to R+, since 0

is mapped to 0, the derivative is positive, and t
ρ(tx) → ∞ if either ρ(tx) → 0 or

t→∞ since ρ(tx) ≤ 1.

It remains to show that the bijection x 7→ 1
ρ(x)x is a diffeomorphism. Obviously,

its inverse is of the form y 7→ σ(y)y for some σ : E → R+. They are inverse
to each other so 1

ρ(σ(y)y)σ(y)y = y, i.e., σ(y) = ρ(σ(y)y) for y 6= 0. This is

an implicit equation for σ. Note that σ(y) = 1 for y near 0, since ρ has this
property. In order to show smoothness, let t 7→ y(t) be a smooth curve in E.
Then it suffices to show that the implicit equation (σ ◦ y)(t) = ρ((σ ◦ y)(t) · y(t))
satisfies the assumptions of the 2-dimensional implicit function theorem, i.e., 0 6=
∂
∂σ (σ−ρ(σ ·y(t))) = 1−ρ′(σ ·y(t))(y(t)), which is true, since multiplied with σ > 0
it equals σ − ρ′(σ · y(t))(σ · y(t)) < σ − ρ(σ · y(t)) = 0. �
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As motivation for the developments in this chapter let us tell a mathematical short
story which was posed as an exercise in [Milnor and Stasheff, 1974, p.11]. For a
finite dimensional Hausdorff second countable manifold M , one can prove that the
space of algebra homomorphisms Hom(C∞(M,R),R) equals M as follows. The
kernel of a homomorphism ϕ : C∞(M,R) → R is an ideal of codimension 1 in
C∞(M,R). The zero sets Zf := f−1(0) for f ∈ kerϕ form a filter of closed sets,
since Zf ∩Zg = Zf2+g2 , which contains a compact set Zf for a function f which is
proper (i.e., compact sets have compact inverse images). Thus

⋂
f∈kerϕ Zf is not

empty, it contains at least one point x0 ∈ M . But then for any f ∈ C∞(M,R)
the function f − ϕ(f)1 belongs to the kernel of ϕ, so vanishes on x0 and we have
f(x0) = ϕ(f).

This question has many rather complicated (partial) answers in any infinite dimen-
sional setting which are given in this chapter. One is able to prove that the answer
is positive surprisingly often, but the proofs are involved and tied intimately to the
class of spaces under consideration. The existing counter-examples are based on
rather trivial reasons. We start with setting up notation and listing some interesting
algebras of functions on certain spaces.

First we recall the topological theory of realcompact spaces from the literature and
discuss the connections to the concept of smooth realcompactness. For an algebra
homomorphism ϕ : A → R on some algebra of functions on a space X we investigate
when ϕ(f) = f(x) for some x ∈ X for one function f , later for countably many, and
finally for all f ∈ A. We study stability of smooth realcompactness under pullback
along injective mappings, and also under (left) exact sequences. Finally we discuss
the relation between smooth realcompactness and bounding sets, i.e. sets on which
every function of the algebra is bounded. In this chapter, the ordering principle for
sections and results is based on the amount of evaluating properties obtained and
we do not aim for linearly ordered proofs. So we will often use results presented
later in the text. We believe that this is here a more transparent presentation than
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the usual one. Most of the material in this chapter can also be found in the theses’
[Biström, 1993] and [Adam, 1993].

17. Basic Concepts and Topological Realcompactness

17.1. The setting. In [Hewitt, 1948, p.85] those completely regular topological
spaces were considered under the name Q-spaces, for which each real valued alge-
bra homomorphism on the algebra of all continuous functions is the evaluation at
some point of the space. Later on these spaces where called realcompact spaces.
Accordingly, we call a ‘space’ smoothly realcompact if this is true for ‘the’
algebra of smooth functions. There are other algebras for which this question is
interesting, like polynomials, real analytic functions, Ck-functions. So we will treat
the question in the following setting. Let
X be a set;
A ⊆ RX a point-separating subalgebra with unit; If X is a topological space we

also require that A ⊆ C(X,R); If X = E is a locally convex vector space we
also assume that A is invariant under all translations and contains the dual
E∗ of all continuous linear functionals;

XA the set X equipped with the initial topology with respect to A;
ϕ : A → R an algebra homomorphism preserving the unit;
Zf := {x ∈ X : f(x) = ϕ(f)} for f ∈ A;
HomA be the set of all real valued algebra homomorphisms A → R preserving

the unit.

Moreover,
ϕ is called F-evaluating for some subset F ⊆ A if there exists an x ∈ X with

ϕ(f) = f(x) for all f ∈ F ; equivalently
⋂
f∈F Zf 6= ∅;

ϕ is called m-evaluating for a cardinal number m if ϕ is F-evaluating for all
F ⊆ A with cardinality of F at most m; This is most important for m = 1
and for m = ω, the first infinite cardinal number;

ϕ is said to be 1̄-evaluating if ϕ(f) ∈ f(X) for all f ∈ A.
ϕ is said to be evaluating if ϕ is A-evaluating, i.e., ϕ = evx for some x ∈ X;
Homω A is the set of all ω-evaluating homomorphisms in HomA;
A is called m-evaluating if ϕ is m-evaluating for each algebra homomorphism

ϕ ∈ HomA;
A is called evaluating if ϕ is evaluating for algebra homomorphism ϕ ∈ HomA;
X is called A-realcompact if A is evaluating; i.e., each algebra homomorphism

ϕ ∈ HomA is the evaluation at some point in X.

The algebra A is called
inversion closed if 1/f ∈ A for all f ∈ A with f(x) > 0 for every x ∈ X;

equivalently, if 1/f ∈ A for all f ∈ A with f nowhere 0 (use f2 > 0).
bounded inversion closed if 1/f ∈ A for f ∈ A with f(x) > ε for some ε > 0 and

all x ∈ X;
C(∞)-algebra if h ◦ f ∈ A for all f ∈ A and h ∈ C∞(R,R);
C∞-algebra if h ◦ (f1, . . . , fn) ∈ A for all fj ∈ A and h ∈ C∞(Rn,R);
C∞lfs -algebra if it is a C∞-algebra which is closed under locally finite sums with

non-measurable index set, with respect to a specified topology on X. This
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holds if A is local, i.e., it contains any function f such that for each x ∈ X
there is some fx ∈ A with f = fx near x.

C∞lfcs-algebra if it is a C∞-algebra which is closed under locally finite countable
sums.

Interesting algebras are the following, where in this chapter in the notation we shall
generally omit the range space R.

Cb
� � // C

C∞lfcs
� � // C∞ �

� // C∞ ∩ C� r

%%

+ �

99

Pf
� � //
- 

;;

P �
� //� r

$$

Cω �
� //
+ �

99

Cω ∩ C� s

&&

+ �

88

C∞

Cωconv
� � // Cω

, �

99

C(X) = C(X,R), the algebra of continuous functions on a topological space X.
It has all the properties from above.

Cb(X) = Cb(X,R), the algebra of bounded continuous functions on a topological
space X. It is only bounded inversion closed and a C∞-algebra, in general.

C∞(X) = C∞(X,R), the algebra of smooth functions on a Frölicher space X,

see 23.1 , or on a smooth manifold X, see section 27 . It has all properties
from above, where we may use the c∞-topology.

C∞(E) ∩ C(E), the algebra of smooth and continuous functions on a locally
convex space E. It has all properties from above, where we use the locally
convex topology on E.

C∞(E) = C∞(E,R), the algebra of smooth functions, all of whose derivatives
are continuous on a locally convex space E. It has all properties from above,
again for the locally convex topology on E.

Cω(X) = Cω(X,R), the algebra of real analytic functions on a real analytic
manifold X. It is only inversion closed.

Cω(E)∩C(E), the algebra of real analytic and continuous functions on a locally
convex space E. It is only inversion closed.

Cω(E) = Cω(E,R), the algebra of real analytic functions, all of whose derivatives
are continuous on a locally convex space E. It is only inversion closed.

Cωconv(E) = Cωconv(E,R), the algebra of globally convergent power series on a
locally convex space E.

Pf (E) = Polyf (E,R), the algebra of finite type polynomials on a locally convex
space E, i.e. the algebra 〈E′〉Alg generated by E′. This is the free commu-

tative algebra generated by the vector space E′, see 18.12 . It has none of
the properties from above.

P (E) = Poly(E,R), the algebra of polynomials on a locally convex space E, see

5.15 , 5.17 , i.e. the homogeneous parts are given by bounded symmetric
multilinear mappings. No property from above holds.
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C∞lfcs(E) = C∞lfcs(E,R), the C∞lfcs-algebra (see below) generated by E′, and hence
also called (E′)∞lfcs. Only the C∞lfs -property does not hold.

17.2. Results. For completely regular topological spaces X and A = C(X) the
following holds:

(1) See [Engelking, 1989, 3.11.16]. The realcompactification νX of a completely
regular space X is defined as the realcompact space Hom(C(X)) ⊆ RC(X) of all
R-valued algebra-homomorphisms mit the topology of pointwise convergence.
It is the closure of δ(X) in RC(X). It has the universal property of extend-
ing continuous functions f : X → Y into realcompact spaces Y uniquely to
continuous functions f̃ : νX → Y .

(2) See [Engelking, 1989, 3.11.10]. The space νX is homeomorphic to the subspace⋂
f∈C(X) f̄

−1(R) =
⋂
{h−1((0, 1]) : h ∈ C(βX, [0, 1]), h|X > 0} ⊆ βX where f̄

denotes the extension of f : Y → R→ R∞ to the Stone-Čech-compactification
βX.

(3) For every y ∈ βX \ νX there exists countably many closed neighborhoods Un
with νX ∩

⋂
n Un = ∅.

(4) For every y ∈ νX\X and closed neighborhoods Un of y we have X∩
⋂
n Un 6= ∅.

(5) Due to [Hewitt, 1948, p.85 + p.60] & [Shirota, 1952, p.24], see also [Engelking,
1989, 3.12.22.g & 3.11.3]. The space X is called realcompact if all algebra
homomorphisms in HomC(X) are evaluations at points of X, equivalently, if
X is a closed subspace of a product of R’s.

(6) Due to [Hewitt, 1948, p.61] & [Katětov, 1951, p.82], see also [Engelking, 1989,
3.11.4 & 3.11.5]. Hence every closed subspace of a product of realcompact
spaces is realcompact.

(7) Due to [Hewitt, 1948, p.85], see also [Engelking, 1989, 3.11.12]. Each Lindelöf
space is realcompact.

(8) See [Engelking, 1989, 3.11.H] The realcompact spaces are exactly the (projec-
tive) limits of Lindelöf spaces.

(9) See [Engelking, 1989, 3.11.8] If f : X → Y is continuous X and Z ⊆ Y
realcompact and Y T2. Then f−1(Z) is realcompact. In particular functionally
open subsets are realcompact.

(10) See [Engelking, 1989, 3.11.1] A topological space is compact if and only if it is
pseudocompact and realcompact.

(11) See [Engelking, 1989, 3.11.2] An example for a non-realcompact space is the
space Ω = [0,Ω) of countable ordinals

(12) Due to [Hewitt, 1950, p.170, p.175] & [Mackey, 1944], see also [Engelking,
1989, 3.11.D.a]. Discrete spaces are realcompact if and only if their cardinality
is non-measurable.

(13) Due to [Dieudonné, 1939] see also [Engelking, 1989, 8.5.13.a].
For a topological space X the following statements are equivalent:
(a) X admits a complete uniformity, i.e. X is Dieudonné complete;
(b) X is closed embedable into a product of complete metrizable spaces;
(c) X is closed embedable into a product of metrizable spaces;
(d) X is a projective limit of complete metrizable spaces;
(e) X is a projective limit of metrizable spaces;
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(14) Stone’s Theorem: Let X be metrizable and U an open covering of X. Then
there exists an open locally finite and σ-discrete refinement of U . Note, that
σ-discrete means that it is a countable union of discrete sets of subsets, i.e.
every point in X has a neighborhood that intersections at most one of the
subsets.

(15) See [Engelking, 1989, 5.1.J.e] and [Engelking, 1989, 8.5.13.h]. A topological
space is realcompact if and only if it is Dieudonné complete and each closed
discrete subspace is realcompact.

(16) [Shirota, 1952], see also [Engelking, 1989, 5.5.10 & 8.5.13.h]. A topolog-
ical space of non-measurable cardinality is realcompact if and only if it is
Dieudonné complete.

(17) See [Engelking, 1989, 8.5.13b] or [Engelking, 1989, 5.1.J.f]. Every paracompact
space is Dieudonné completeand obviously every complete locally convex space
is Dieudonné complete.

(18) Due to [Katětov, 1951, p.82], see also [Engelking, 1989, 5.5.10]. Paracompact
spaces are realcompact if and only if all closed discrete subspaces are realcom-
pact.

(19) See also [Engelking, 1989, 4.1.15]. For metrizable spaces and infinite cardinal
numbers κ the following statements are equivalent:
(a) There exists a basis of the topology of cardinality ≤ κ.
(b) Every open covering has a subcovering of cardinality ≤ κ.
(c) Every closed discrete subspace has cardinality ≤ κ.
(d) Every discrete subspace has cardinality ≤ κ.
(e) Every family of pairwise disjoint non-empty open subsets has cardinality
≤ κ.

(f) There exists a dense subset of cardinality ≤ κ.
(20) Metrizable locally convex spaces (and in particular Banach and Fréchet spaces)

are realcompact if and only if their density (i.e., the cardinality of a maximal
discrete or of a minimal dense subset) or their cardinality is non-measurable.

Realcompact spaces where introduced by [Hewitt, 1948, p.85] under the name Q-

compact spaces. The equivalence in ( 5 ) is due to [Shirota, 1952, p.24]. The

results ( 5 ) and ( 6 ) are proved in [Engelking, 1989] for a different notion of
realcompactness, which was shown to be equivalent to the original one by [Katětov,
1951], see also [Engelking, 1989, 3.12.22.g].

Proof. ( 1 ) See 17.3 . Let νX := Hom(C(X)) ⊆ RC(X) and δ : X → νX
be given by x 7→ evx := (f(x))f . Then every f ∈ C(X) extends along δ to

f̃ := prf : RC(X) → R. Obviously Hom(C(X)) is closed in RC(X) and X is dense
in Hom(C(X)), since for ϕ ∈ ν(X), f1, . . . , fn ∈ C(X) and ε > 0 we find an x ∈ X
with ϕ(fi) = fi(x) for all i. Thus the extension f̃ is unique.

Now let Y be a realcompact space, then δY : Y → ν(Y ) is a homeomorphism and
any continuous f : X → Y induces a continuous map f∗∗ : RC(X) → RC(Y ) which
thus maps δ(X) = νX into δ(f(X)) ⊆ νY . This extension f̃ : νX → νY is unique,
since X is dense in νX.
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Furthermore νX is realcompact: Let ϕ : C(νX)→ R be an algebra-homomorphism.
then ψ := ϕ◦(δ∗)−1 : C(X)→ R is an algebra-homomorphism and hence an element

of ν(X), i.e. ϕ(g) = (ψ◦δ∗)(g) = ψ(g◦δ) = g(ψ) = evψ(g), since g = g̃ ◦ δ = evδ∗(g).

( 2 ) Consider the subspace γX :=
⋂
f∈C(X) f̄

−1(R) ⊆ βX. Obviously X is dense

in γX and any f ∈ C(X) extends (uniquely) to f̄ : γX → R. We show the
universal property of the realcompactification for δ : X → γX: So let f : X → Y
be continuous into a realcompact space which is closed in RC(Y ). Then f extends
to a continuous map γX → RC(Y ) and as before it has values in δ(Y ) = Y .

Furthermore,

βX \ ν(X) =
⋃{

f̄−1(∞) : f ∈ C(X,R)
}

=
⋃{

f̄−1(∞) : f ∈ C(X, [1,+∞))
}

=
⋃{

f̄−1(0) : f ∈ C(X, (0, 1])
}
,

where the second equality follows since for f ∈ C(X,R) with f̄(y) = ∞ we can
consider g := 1 + |f | ∈ C(X, [1,+∞)) with ḡ = 1 + |f̄ |, hence ḡ(y) = ∞, and the
third follows by considering 1/f instead of f .

( 3 ) Let y ∈ βX \ νX. By ( 2 ) there exists an f ∈ C(X) with f̄(y) = ∞.

Thus Un := {z ∈ βX : |f̄(z)| ≥ n} are closed neighborhoods of y in βX and⋂
n Un = f̄−1(∞) ⊆ βX \ νX.

( 4 ) Let Un be closed neigborhoods of y ∈ νX \ X. Since νX is completely
regular there are fn ∈ C(νX,R) with fn(y) = 1 and fn(νX \ Un) = 0. Suppose
X ∩

⋂
n Un = ∅. Then

∑
n fn is locally finite on X hence f :=

∑∞
n=1 fn ∈ C(X,R)

but for its extension f̄(y) =∞, so y /∈ νX by ( 2 ).

( 5 ) If X is realcompact, then X ∼= ν(X) ⊆ RC(X) is a closed subspace of a product

of R. Conversely, let ι : X → RJ be a closed embedding. This may be extended to
a continuous mapping ι̃ : νX → RJ along δ : X → νX. Since δ has dense image
ι̃ has values in ι(X) = ι(X), hence ι−1 ◦ ι̃ ◦ δ = Id and thus δ is a closed dense
embedding, i.e. an isomorphism.

( 6 ) follows trivially from ( 5 ).

( 7 ) follows from 18.11 and 18.24 .

( 8 ) By ( 7 ) and ( 6 ) each limit of Lindelöf spaces is realcompact. Conversely,
realcompact spaces X = νX = Hom(C(X)) embed into

∏
A Hom(A), where A

runs through the finitely generated (hence countable) subrings A of C(X) and
Hom(A) ⊂ RA denotes the ring-homomorphisms preserving the unit. Note that
homogeneity follows by considering rings containing f and λ.

( 9 ) We have f−1(Z) ∼= graph(f |f−1(Z)) = graph(f)∩X ×Z, a closed subspace of

the product X × Z of realcompact spaces, and hence realcompact by ( 6 ). Since

open subsets O ⊆ R are Lindelöf, they are realcompact by ( 7 ) and so is their
inverse image under a continuous mapping in any realcompact space.
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( 10 ) Every compact space is Lindelöf hence realcompact by ( 7 ) and obviously
pseudocompact, i.e. every continuous f : X → R is bounded. Conversely, let f be

realcompact and pseudocompact and y ∈ βX \ νX = βX \X. Then by ( 2 ) there

exists an f ∈ C(X,R) with f̄(y) = ∞, but since f is by assumption bounded its
extension to βX is bounded, a contradiction.

( 11 ) Obvioulsy Ω is not compact, since {[0, α) : α ∈ Ω} form an open cover. It is
pseudocompact, since otherwise there would be a continuous unbounded function
f : Ω → R and hence countable ordinals αn with |f(αn)| ≥ n. But then α∞ :=
limn αn is also a countable ordinal with f(α∞) =∞.

( 12 ) Let X be discrete. Hence C(X) = RX is complete and by 18.9 any algebra-
homomorphism on C(X) is bounded. We claim that the algebra-homomorphisms ϕ
correspond uniquely to {0, 1}-valued probability measures µ on P(X) via µ(A) :=
ϕ(χA). Since χ⊔

i Ai
=
∑
i χAi we get the countable additivity. From µ(A) =

ϕ(χA) = ϕ(χ2
A) = ϕ(χA)2 = µ(A)2 we get that µ is {0, 1}-valued and in par-

ticular positiv. Moreover µ(X) = ϕ(1) = 1. Conversely, any µ can be ex-
tended to all (=measurable) functions as usual by defining ϕ(f) := sup{

∫
g dµ :

g ist simple and g ≤ f} for f ≥ 0 and µ(f) := µ(f+) − µ(f−) for general f =
f+ − f−. Since µ is {0, 1}-valued this extension ϕ is multiplicative: In fact, using
µ(A∪B) + µ(A∩B) = µ(A) + µ(B) gives µ(A∩B) = 1 ⇔ µ(A) = 1 = µ(B). The
point-evaluations evx correspond to the point measures µ(A) = 1 iff x ∈ A. Thus
there exists an algebra-homomorphism being not a point evaluation if and only if
there exists such a measure µ with µ({x}) = 0 for all x ∈ X, i.e. iff the cardinality
of X is measurable.

( 13 ) (a⇒d) Let the complete uniformity of X be given by a directed set of quasi-
metrics d : X × X → R. Then X embeds as uniform space into the product∏
dX/ ∼d of metrizable spaces, where the equivalence relation ∼d is given by

x1 ∼d x2 ⇔ d(x1, x2) = 0. As connecting mappings X/ ∼d1→ X/ ∼d2 for d1 ≥ d2

we have the canonical quotient mappings and X is a dense subspace of the cor-

responding projective limit of their completions X̂/ ∼d: In fact, let z be in the
completion of X/ ∼d then for ε > 0 there is some x ∈ X with d([x], z) < ε. Since

the uniformity is complete X coincides with the limit lim←−d X̂/ ∼d.

(d⇒e), (e⇒c) and (b⇒a) are obvious.

(c⇒b) It is enough to embed any metrizable space X closed into a product of

complete metrizable spaces. For this consider the completion X̃ and for each x ∈ X̃\
X the closed embedding embeddings X̃ \{x} → X̃×R given by y 7→ (y, 1/d(y, x)))

and X →
∏
x∈X̃\X X̃ \ {x}.

( 14 ) Let � be a well-ordering on U and d a metric for X. For n ∈ N and U ∈ U
let

Vn := {VU,n : U ∈ U}, where

VU,n :=
⋃{

U 1
2n

(y) : min
y∈W∈U

W = U ⊇ U 3
2n

(y); y ∈ X \
⋃
k<n

⋃
Vk
}

is recursively defined. Then V :=
⋃∞
n=1 Vn has the required properties:
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• VU,n ⊆ U is open.
• For each x ∈ X let U be minimal with x ∈ U and n ∈ N be such that
B3/2n(x) ⊆ U . Then either x ∈

⋃
k<n

⋃
Vk, or x ∈ VU,n, hence V is a covering

of X.
• x1 ∈ VU1,n, x2 ∈ VU2,n with U1 6= U2 implies d(x1, x2) > 1/2n (hence Vn

is discrete, since every 1/2n+1-ball meets at most one member of Vn): Let
U1 � U2. Thus there are points yi as above with xi ∈ U1/2n(yi) ⊆ VUi,n. In
particular, U3/2n(y1) ⊆ U1 and y2 /∈ U1 since U1 ≺ U2. So

d(x1, x2) ≥ d(y1, y2)− d(y1, x1)− d(y2, x2) ≥ 3

2n
− 1

2n
− 1

2n
=

1

2n
.

• The set V is locally finite: For x ∈ X there are m,n ≥ 1 and U ∈ U with
U1/2n(x) ⊆ VU,m. We claim that

∀j ≥ n+m∀W ∈ U : U1/2n+m(x) ∩ VW,j = ∅.
The y in the definition of VW,j do not belong to VU,m ⊇ U1/2n(x) for all
j ≥ n+m > m and hence d(x, y) ≥ 1/2n and thus U1/2n+m(x)∩U1/2j (y) = ∅.

( 15 ) If X is realcompact, then X is a closed subspace of RC(X) and hence

Dieudonné-complete by ( 13 ) and each closed subspace of X is realcompact by

( 6 ). Conversely, let X be Dieudonné complete and every discrete closed subspace

realcompact. By the proof of ( 13 , a ⇒ d) the space X is the projective limit
of the metrizable spaces X/∼d. Let A ⊆ X/∼d be closed and discrete. Then
{a ∈ A : π−1(a)} is a discrete family with closed union in X where π denotes the
natural quotient mapping. By choosing a section σ : A → π−1(A) to π|π−1(A) we
get a closed discrete and hence realcompact subspace σ(A) of X which is home-

omorphic to A. So by ( 6 ) we may assume without loss of generality that X is

metrizable. For y ∈ βX \X let U := {X \UβX : U is a neighborhood of y in βX},
an open covering of X. By 14 we finde a σ-discrete (locally finite open) cover-
ing F =

⋃
n Fn of X which is a refinement of U , in particular Fn is discrete and

y /∈ F
βX

for any F ∈ Fn. By passing to the closures F in X of the F we may
assume w.l.o.g. that the F are closed in X. Let Fn :=

⋃
Fn. Then Fn is closed in

X, since every point x ∈ X \ Fn has a neighborhood which meets at most one F
and the intersection with the open complement X \ F is then a neighborhood in
X \ Fn.
We claim that there exists an f ∈ C(βX, I) with f(y) = 0 and f |X > 0 (then by

( 2 ) we have y /∈ νX, so X = νX is realcompact):

If y /∈ Fn
βX

for all n, then there exist fn ∈ C(βX, [0, 1]) with fn(y) = 0 and
fn|Fn = 1 and thus f :=

∑
n

1
2n fn ∈ C(βX, [0, 1]) with f(y) = 0 and f |X > 0.

Otherwise y ∈ Fn
βX

for some n and we consider the quotient mapping π : Fn ∪
{y} → Fn ∪ {y}. Since Fn is discrete, the elements F ∈ Fn are open sub-
sets of Fn and since Fn ⊆ Fn ∪ {y} is open also in Fn ∪ {y} and hence {F}
is open in Fn ∪ {y}. So Fn ⊆ Fn ∪ {y} is discrete. The restriction mapping
incl∗ : Cb(Fn ∪ {y})→ Cb(Fn) is bijective, since for every f ∈ Cb(Fn) the compos-
ite f ◦ π ∈ Cb(Fn) and hence extends to a bounded continuous function on X by
Tietze-Urysohn and furtheron to βX. Its restriction to Fn ∪ {y} factors over π to
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a continuous bounded functions on Fn ∪ {y} and since Fn is dense in Fn ∪ {y} this
extension is unique. Note that the functions in Cb(Fn) separate points of Fn∪{y},
since for the discrete subspace Fn this is obvious and for F ∈ Fn we have y /∈ F βX

and hence an f ∈ Cb(βX, I) exists with f |F = 0 and f(y) = 1. Now we replace
f by x 7→ sup(f(F )) for x ∈ F ∈ Fn. Then f is continuous (at y) and constant
on the F ∈ Fn hence factors over π. So we have an injective continuous mapping
Fn ∪ {y} → Alg(Cb(Fn ∪ {y})) ∼= Alg(Cb(Fn)) = β(Fn). Since Fn is realcompact
(choose points in each F ∈ Fn to obtain a discrete closed subspace of X and use

12 ) there exists an f ∈ C(β(Fn), [0, 1]) with f(y) = 0 and f |Fn > 0 again by ( 2 ).
Now f ◦π|Fn can be extended to X by the theorem of Tietze and Urysohn (even as
positive function, since Fn and f−1 are closed and dsjoint in X we may replace f
with max(f, h), where h ∈ C(X, I) with h|Fn = 0 and h|f−1(0) = 1) and furtheron
to βX and this extension vanishes on y, since it coincides on the dense subset Fn
with f ◦ π and the later one vanishes on y.

( 16 ) follows from 15 and 5 .

( 17 ) We show that the uniformity given by all continuous pseudo-metrics d :
X × X → R is complete. So let xi ∈ X be Cauchy for all d. In particular, for
df (y1, y2) := |f(y1) − f(y2)| for any f ∈ Cb(X,R). So δ(xi)(f) = f(xi) is Cauchy

in RCb(X) and hence converges to some x̃ ∈ βX. Suppose x̃ /∈ X. Since X is

paracompact there is a partition F of unity with x̃ /∈ f−1((0, 1])
βX

for all f ∈ F . Let
d0(x1, x2) :=

∑
f∈F |f(x1)−f(x2)|. Note that this sum is locally finite, since F is it.

So d0 is a continuous pseudo-metric onX. For every x ∈ X and f ∈ F with f(x) 6= 0
there exists a neighborhood of x̃ in βX by construction on which f vanishes. Let
U be the finite intersection of these neighborhoods. Then xi ∈ U finally. We
claim that d0 has no continuous extension d̃0 to x̃. Otherwise, for x ∈ X we have
d̃0(x, x̃) = limi d0(x, xi) and d0(x, xi) =

∑
f |f(x)− f(xi)| ≥

∑
f(x)6=0 f(x) = 1. In

particular d̃0(xi, x̃) ≥ 1 in contradiction to d̃0(xi, x̃)→ d̃0(x̃, x̃) = 0, so x̃ ∈ X.
Note that d(x̃, xi) → 0 for each continuous pseudo-metric d : X × X → R, since
xi → x̃ in βX and hence in X and d is continuous, so d(x̃, xi) = limj d(xj , xi) ≤ ε,
since (xi)i is assumed to be Cauchy.

( 18 ) follows from 17 and 15 .

( 19 ) (a⇒b) Let B be a basis of the topology with |B| ≤ κ and let U be an open
covering. Let B0 := {W ∈ B : ∃U ∈ U : W ⊆ U} and choose a function f : B0 → U
with W ⊆ f(U). Then f(B0) is the required subcovering: Let x ∈ X =

⋃
U . Then

there exists a U ∈ U with x ∈ U and hence a W ∈ B: x ∈ W ⊆ U . Thus W ∈ B0

and x ∈W ⊆ Uf(W ) ∈ U .

(b⇒c) Let A ⊆ X be closed and discrete, i.e. for every a ∈ A exists an open Ua
with A ∩ Ua = {a}. Now take a subcovering of {X \A} ∪ {Ua : a ∈ A}.
(c⇒d) Let D be a discrete subset of X. Then D is open in D: Otherwise there
exists an x ∈ D for which the open neighborhood U of x with U ∩D = {x} meets
D \D. Let x′ ∈ U ∩ (D \D) and take an open neighborhood U ′ of x′ contained in
U \ {x}. Then U ′ ∩D ⊆ (U \ {x})∩D = {x} \ {x} = ∅, in contradiction to x′ ∈ D.
Now we have D =

⋃
nAn with the closed sets An := {x ∈ D : d(x, ∂D) ≥ 1/n}.

Thus |An| ≤ κ by (c) and hence also |D| ≤ κ.
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(d⇒e) Let U be a family as required in (e). Choose in each U ∈ U a point xU .
Then {xU : U ∈ U} satisfies the requirements of (d).

(e⇒f) By the Teichmüller-Tukey lemma there are maximal subsets An ⊆ X with
1/n ≤ d(x, y) for all x, y ∈ An with x 6= y. By (e) we have |An| ≤ κ. Furthermore,
A :=

⋃
nAn is dense in X, otherwise an x ∈ X exists and an n such that 1/n ≤

d(x,A) ≤ d(x,An) in contradiction to the maximality of An.

(f⇒a) Let D be a dense subset of X with |D| ≤ κ. Let B := {Ur(x) : x ∈ D, 0 <
r ∈ Q}. Then B is a basis of the topology: In fact, consider a ball Ur(x) with x ∈ X
and r > 0. Since D is dense there exists an x′ ∈ D with d(x, x′) < r/2. Choose a
rational number d(x, x′) < r′ < r/2. Then x ∈ Ur′(x′) ⊆ Ur(x).

( 20 ) Metrizable spaces are paracompact. So by 18 they are realcompact iff all

their closed discrete subsets are non-measurable. By ( 19 ) this is equivalent to the
non-measurability of the discrete subsets or the minimal dense subsets. It is also
equivalent to the non-measurability of their cardinality, since this can be estimated
by the cardinality of sequences in a minimal dense subset. �

17.3. Lemma. [Kriegl et al., 1989, 2.2, 2.3]. Let A be 1̄-evaluating. Then we have
a topological embedding

δ : XA ↪→
∏
A

R, prf ◦δ := f,

with dense image in the closed subset HomA ⊆
∏
A R. Hence X is A-realcompact

if and only if δ has closed image, or, equivalently, if the uniformity induced by A
is complete.

Proof. The topology of XA is by definition initial with respect to all f = prf ◦δ,
hence δ is an embedding. Obviously HomA ⊆

∏
A R is closed. Let ϕ : A → R be an

algebra-homomorphism. For f ∈ A consider Zf . If A is 1-evaluating then by 18.8
for any finite subset F ⊆ A there exists an xF ∈

⋂
f∈F Zf . Thus δ(xF )f = ϕ(f)

for all f ∈ F . If A is only 1̄-evaluating, then we get as in the proof of 18.3 for
every ε > 0 a point xF ∈ X such that |f(xF )−ϕ(f)| < ε for all f ∈ F . Thus δ(xF )
lies in the corresponding neighborhood of (ϕ(f))f . Thus δ(X) is dense in HomA.

Now X is A-realcompact if and only if δ has HomA as image, and hence if and
only if the image of δ is closed. �

17.4. Theorem. [Kriegl et al., 1989, 2.4] & [Adam et al., 1999, 3.1]. The topology
of pointwise convergence on Homω A is realcompact. If XA is not realcompact
then there exists an ω-evaluating homomorphism ϕ which is not evaluating, and in
particular X ist not A-realcompact.

Proof. We first show the weaker statement, that: If XA is not realcompact then
there exists a non-evaluating ϕ, i.e., X is not A-realcompact.
Assume that X is A-realcompact, then A is 1-evaluating and hence by lemma

17.3 δ : XA →
∏
A R is a closed embedding. Thus by 17.2.5 the space XA is

realcompact.
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Now we give a proof of the stronger statement that Homω A is realcompact:
We supply all sets of homomorphisms with the topology of pointwise convergence.
Let M ⊆ 2A be the family of all countable subsets of A containing the unit.
For M ∈ M, consider the topological space Homω〈M〉, where 〈M〉 denotes the
subalgebra generated by M . Obviously the family (δf )f∈M , where δf (ϕ) = ϕ(f), is
a countable subset of C(Homω〈M〉) that separates the points in Homω〈M〉. Hence

Homω〈M〉 = Hom(C(Homω〈M〉)) by 18.25 , since C(Homω〈M〉) is ω-evaluating

by 18.11 , i.e. Homω〈M〉 is realcompact. Now Homω A is an inverse limit of the
spaces Homω〈M〉 for M ∈ M. Since Homω〈M〉 is Hausdorff, we obtain that
Homω A as a closed subset of a product of realcompact spaces is realcompact by

17.2.6 .

Since X is not realcompact in the topology XA, which is that induced from the
embedding into Homω A, we have that X 6= Homω A and the statement is proved.

�

17.5. Counter-example. [Kriegl and Michor, 1993, 3.6.2]. The locally con-
vex space RΓ

count of all points in the product with countable carrier is not C∞-
realcompact, if Γ is uncountable and not measurable.

Proof. By [Engelking, 1989, 3.10.17 & 3.11.2] the spaceX := RΓ
count is not realcom-

pact, in fact every c∞-continuous function on it extends to a continuous function on

RΓ, see the proof of 4.27 . Since the projections are smooth, XC∞ is the product

topology. So the result follows from 17.4 . �

17.6. Theorem. [Kriegl et al., 1989, 3.2] & [Garrido et al., 1994, 1.8]. Let X be
a realcompact and completely regular topological space, let A be uniformly dense in
C(X) (e.g. X is A-paracompact) and 1̄-evaluating. Then X is A-realcompact.

In [Kriegl et al., 1989] it is shown that C∞lfcs-algebra A is uniformly dense in C(X)
if and only if A ∩ Cb(X) is uniformly dense in Cb(X). One may find also other
equivalent conditions there.

Proof. Since A ⊆ C(X) we have that the identity X → XA is continuous, and
hence A ⊆ C(XA) ⊆ C(X). For each of these point-separating algebras we consider
the natural inclusion δ of X into the product of factors R over the corresponding
algebra, given by prf ◦δ = f . It is a uniform embedding for the uniformity induced
on X by this algebra and the complete product uniformity on

∏
R with basis formed

by the sets Uf,ε := {(u, v) : |prf (u)− prf (v)| < ε} with ε > 0.

The condition that A ⊆ C is dense implies that the uniformities generated by
C(X), by C(XA) and by A coincide and hence we will consider X as a uniform
space endowed with this uniform structure in the sequel. In fact for an arbitrarily
given continuous map f and ε > 0 choose a g ∈ A such that |g(x) − f(x)| < ε for
all x ∈ X. Then

{(x, y) : |f(x)− f(y)| < ε} ⊆ {(x, y) : |g(x)− g(y)| < 3ε}
⊆ {(x, y) : |f(x)− f(y)| < 5ε}.
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Since X is realcompact, δC(X) = Hom(C(X)) and hence X is closed in
∏
C(X) R

and so the uniform structure on X is complete. Thus, also the image δA(X) is a
complete uniform subspace of

∏
A R and so it is closed with respect to the product

topology, i.e. X is A-realcompact by 17.3 . �

17.7. In the case of a locally convex vector space the last result 17.6 can be
slightly generalized to:

Result. [Biström and Lindström, 1993b, Thm.6]. For E a realcompact locally
convex vector space, let E∗ ⊆ A ⊆ C(E) be a ω-evaluating C(∞)-algebra which
is invariant under translations and homotheties. Moreover, we assume that there
exists a 0-neighborhood U in E such that for each f ∈ C(E) there exists g ∈ A with
supx∈U |f(x)− g(x)| <∞.

Then E is A-realcompact.

18. Evaluation Properties of Homomorphisms

In this section we consider first properties near the evaluation property at single
functions, then evaluation properties for homomorphisms on countable many func-
tions, and finally direct situations where all homomorphisms are point evaluations.

18.1. Remark. If ϕ in HomA is 1-evaluating (i.e., ϕ(f) ∈ f(X) for all f in A),
then ϕ is 1̄-evaluating. �

18.2. Lemma. [Biström et al., 1991, p.181]. For a topological space X the follow-
ing assertions are equivalent:

(1) ϕ is 1̄-evaluating;

(2) There exists x̃ in the Stone-Čech compactification βX with ϕ(f) = f̃(x̃) for
all f ∈ A.

Here f̃ denotes the extension of f : X → R ↪→ R∞ to the Stone-Čech-compactifi-
cation βX with values in the 1-point compactification R∞ of R.

In [Garrido et al., 1994, 1.3] it is shown for a subalgebra of Cb(R) that x̃ need not
be unique.

Proof. For f ∈ A and ε > 0 let U(f, ε) := {x ∈ X : |ϕ(f)−f(x)| < ε}. Then U :=
{U(f, ε) : f ∈ A, ε > 0} is a filter basis on X: For f := (f1−ϕ(f1))2 +(f2−ϕ(f2))2

we have in fact

U(f1, ε1) ∩ U(f2, ε2) ⊇ U(f,min{ε1, ε2}2).

Consider X as embedded into βX and take an ultrafilter Ũ on βX that is finer than
U . Let x̃ ∈ βX be the point to which Ũ converges. For an arbitrary function f in
A the filter f(U) converges to ϕ(f) by construction. But f̃(Ũ) ≥ f̃(U) = f(U), so

ϕ(f) = f̃(x̃). The converse is obvious since ϕ(f) = f̃(x̃) ∈ f̃(βX) ⊆ f(X) ⊆ R∞,
and ϕ(f) ∈ R. �
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18.3. Lemma. [Adam et al., 1999, 4.1]. An algebra homomorphism ϕ is 1̄-
evaluating if and only if ϕ extends (uniquely) to an algebra homomorphism on A∞,
the C∞-algebra generated by A.

Proof. For C∞-algebras A, we have that

ϕ(h ◦ (f1, . . . , fn)) = h(ϕ(f1), . . . , ϕ(fn))

for all h ∈ C∞(Rn,R) and f1, . . . , fn in A.

In fact set a := (ϕ(f1), . . . , ϕ(fn)) ∈ Rn. Then

h(x)− h(a) =

∫ 1

0

n∑
j=1

∂jh(a+ t(x− a)) dt · (xj − aj) =

n∑
j=1

haj (x) · (xj − aj),

where haj (x) :=
∫ 1

0
∂jh(a+ t(x−a)) dt. Applying ϕ to this equation composed with

the fi one obtains

ϕ(h ◦ (f1, . . . , fn))− h(ϕ(f1), . . . , ϕ(fn)) =

=
∑
j≤n

ϕ(haj ◦ (f1, . . . , fn)) · (ϕ(fj)− ϕ(fj)) = 0.

(⇒) We define ϕ̃(h ◦ (f1, . . . , fn)) := h(ϕ(f1), . . . , ϕ(fn)). By what we have shown
above (1-preserving) algebra homomorphisms are C∞-algebra homomorphisms and
hence this is the only candidate for an extension. This map is well defined. Indeed,
let h ◦ (f1, . . . , fn) = k ◦ (g1, . . . , gm). For each ε > 0 there is a point x ∈ E such
that |ϕ(fi)− fi(x)| < ε for i = 1, ..., n, and |ϕ(gj)− gj(x)| < ε for j = 1, ...,m. In

fact by 18.2 there is a point x̃ ∈ βX with ϕ(f) = f̃(x̃) for

f :=

n∑
i=1

(fi − ϕ(fi))
2 +

m∑
j=1

(gj − ϕ(gj))
2,

and hence ϕ(fi) = f̃i(x̃) and ϕ(gj) = g̃j(x̃) (Note that h̃2 = h̃2, (
∑
i hi)

∼ =
∑
h h̃i

for hi ≥ 0 and (h− c)∼ = h̃− c for c ∈ R). Now approximate x̃ by x ∈ X.
By continuity of h and k we obtain that

h(ϕ(f1), . . . , ϕ(fn)) = k(ϕ(f1), . . . , ϕ(fm)),

and we therefore have a well defined extension of ϕ. This extension is a homo-
morphism, since for every polynomial θ on Rm (or even for θ ∈ C∞(Rm)) and
gi := hi ◦ (f i1, . . . , f

i
ni) ∈ A

∞ we have

ϕ̃(θ ◦ (g1, . . . , gm)) = ϕ̃(θ ◦ (h1 × . . .× hm) ◦ (f1
1 , . . . , f

m
nm))

= (θ ◦ (h1 × . . .× hm))(ϕ(f1
1 ), . . . , ϕ(fmnm))

= θ(h1(ϕ(f1
1 ), . . . , ϕ(f1

n1
)), . . . , hm(ϕ(fm1 ), . . . , ϕ(fmnm))

= θ(ϕ̃(g1), . . . , ϕ̃(gm)).

(⇐) By 18.5 and 18.4 every algebra homomorphism on the C∞-algebra A∞ is
1̄-evaluating and hence also on A. �
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18.4. Proposition. [Garrido et al., 1994, 1.2]. If A is bounded inversion closed
and ϕ ∈ HomA then ϕ is 1̄-evaluating.

Proof. We assume indirectly that there is a function f ∈ A with ϕ(f) 6∈ f(X).
Let ε := infx∈X |ϕ(f)− f(x)| and g(x) := 1

ε2 (ϕ(f)− f(x))2. Then g ∈ A, ϕ(g) = 0

and g(x) ≥ 1
ε2 |ϕ(f) − f(x)|2 ≥ 1 for each x ∈ X. Thus 1/g ∈ A. But then

1 = ϕ(g · 1/g) = ϕ(g)ϕ(1/g) = 0 gives a contradiction. �

18.5. Lemma. Any C(∞)-algebra is bounded inversion closed.

Moreover, it is stable under composition with smooth locally defined functions, which
contain the closure of the image in its domain of definition.

Proof. Let A be a C∞-algebra (resp. C(∞)-algebra), n a natural number (resp.
n = 1), U ⊆ Rn open, h ∈ C∞(U,R), f := (f1, . . . , fn), with fi ∈ A such that

f(X) ⊆ U , then h ◦ f ∈ A . Indeed, choose ρ ∈ C∞(Rn,R) with ρ|
f(X)

= 1 and

supp ρ ⊆ U . Then k := ρ · h is a globally defined smooth function and h ◦ f =
k ◦ f ∈ A. �

18.6. Lemma. Any inverse closed algebra A is 1-evaluating.

By 18.10 the converse is wrong.

Proof. Let f ∈ A and g := f − ϕ(f). Then g ∈ A and assume indirectly that
g(x) 6= 0 for all x ∈ X, by which 1/g ∈ A since A is inverse-closed. But then
1 = ϕ(g · 1/g) = ϕ(g)ϕ(1/g) = 0, which is a contradiction. �

18.7. Proposition. [Biström et al., 1995, Lem.14] & [Adam et al., 1999, 4.2]. For
ϕ in HomA the following statements are equivalent:

(1) ϕ is 1-evaluating.
(2) ϕ extends to a (unique) (1-evaluating) homomorphism on the algebra RA :=
{f/g : f, g ∈ A, 0 /∈ g(X)}.

(3) ϕ extends to a (unique) (1-evaluating) homomorphism on the following C∞-
algebra A〈∞〉 constructed from A:

A〈∞〉 := {h ◦ (f1, . . . , fn) :fi ∈ A, (f1, . . . , fn)(X) ⊆ U,
U open in some Rn, h ∈ C∞(U)}.

Proof. ( 1 ) ⇒ ( 3 ) We define ϕ(h ◦ (f1, . . . , fn)) := h(ϕ(f1), . . . , ϕ(fn)). Since

there exists by 18.8 an x with ϕ(fi) = fi(x), we have (ϕ(f1), . . . , ϕ(fn)) ∈ U ,
hence the right side makes sense. The rest follows in the same way as in the

proof of 18.3 . Uniqueness follows, since every algebra homomorphism on the C∞-

algebra A〈∞〉 is 1-evaluating, hence finitely evaluating by 18.8 and thus satisfies
ϕ(h ◦ (f1, . . . , fn)) := h(ϕ(f1), . . . , ϕ(fn)).

( 3 ) ⇒ ( 2 ) Existence is obvious, since RA ⊆ A〈∞〉, and uniqueness follows from
the definition of RA.

( 2 ) ⇒ ( 1 ) Since RA is inverse-closed, the extension of ϕ to this algebra is 1-

evaluating by 18.6 , hence the same is true for ϕ on A. �
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18.8. Lemma. Every 1-evaluating homomorphism is finitely evaluating.

Proof. Let F be a finite subset of A. Define a function f : X → R by

f :=
∑
g∈F

(g − ϕ(g))2.

Then f ∈ A and ϕ(f) = 0. By assumption there is a point x ∈ X with ϕ(f) = f(x).
Hence g(x) = ϕ(g) for all g ∈ F . �

18.9. Theorem. Automatic boundedness. [Kriegl and Michor, 1993] & [Arias-
de Reyna, 1988] Every 1-evaluating homomorphism ϕ ∈ HomA is positive, i.e.,
0 ≤ ϕ(f) for all 0 ≤ f ∈ A. Moreover we even have ϕ(f) > 0 for f ∈ A with
f(x) > 0 for all x ∈ X.

Every positive homomorphism ϕ ∈ HomA is bounded for any convenient algebra
structure on A.

A convenient algebra structure on A is a locally convex topology, which turns A
into a convenient vector space and such that the multiplication A × A → A is

bounded, compare 5.21 .

Proof. Positivity: Let f1 ≤ f2. By 17 and 18.8 there exists an x ∈ X such
that ϕ(fi) = fi(x) for i = 1, 2. Thus ϕ(f1) = f1(x) ≤ f2(x) = ϕ(f2). Note that if
f(x) > 0 for all x, then ϕ(f) > 0.

Boundedness: Suppose fn is a bounded sequence, but |ϕ(fn)| is unbounded. By
replacing fn by f2

n we may assume that fn ≥ 0 and hence also ϕ(fn) ≥ 0. Choosing
a subsequence we may even assume that ϕ(fn) ≥ 2n. Now consider

∑
n

1
2n fn. This

series converges Mackey, and since the bornology on A is by assumption complete
the limit is an element f ∈ A. Applying ϕ yields

ϕ(f) = ϕ

(
N∑
n=0

1

2n
fn +

∑
n>N

1

2n
fn

)
=

N∑
n=0

1

2n
ϕ(fn) + ϕ

(∑
n>N

1

2n
fn

)
≥

≥
N∑
n=0

1

2n
ϕ(fn) + 0 =

N∑
n=0

1

2n
ϕ(fn),

where we used the monotonicity of ϕ applied to
∑
n>N

1
2n fn ≥ 0. Thus the series

N 7→
∑N
n=0

1
2nϕ(fn) is bounded and increasing, hence converges, but its summands

are bounded by 1 from below. This is a contradiction. �

18.10. Lemma. For a locally convex vector space E the algebra Pf (E) is 1-
evaluating.

More on the algebra Pf (E) can be found in 18.27 , 18.28 , and 18.12 .

Proof. Every finite type polynomial p is a polynomial in a finite number of linearly
independent functionals `1, . . . , `n in E′. By the theorem of Hahn-Banach there are
points ai ∈ E for all 1 ≤ i ≤ n such that `i(ai) = ϕ(`i) and `j(ai) = 0 for all j 6= i.
Let a :=

∑
i ai. Then `i(a) = `i(ai) = ϕ(`i) for i = 1, . . . , n hence ϕ(p) = p(a). �
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Countably Evaluating Homomorphisms

18.11. Theorem. Idea of [Arias-de Reyna, 1988, proof of thm.8], [Adam et al.,
1999, 2.5]. For a topological space X any C∞lfcs-algebra A ⊆ C(X) is closed under
composition with local smooth functions and is ω-evaluating.

Note that this does not apply to Cω.

Proof. We first show closedness under local smooth functions (and hence in partic-
ular under inversion), i.e. if h ∈ C∞(U), where U ⊆ Rn is open and f := (f1, . . . , fn)
with fi ∈ A has values in U , then h ◦ f ∈ A:
Consider a smooth partition of unity {hj : j ∈ N} of U , such that supphj ⊆ U .
Then hj ·h is a smooth function on Rn vanishing outside supphj . Hence (hj ·h)◦f ∈
A . Since we have

carr
(

(hj · h) ◦ f
)
⊆ f−1(carrhj),

the family {carr((hj · h) ◦ f) : j ∈ N} is locally finite, f is continuous, and since
1 =

∑
j∈N hj on U we obtain that h ◦ f =

∑
j∈N(hj · h) ◦ f ∈ A .

By 18.6 we have that ϕ is 1-evaluating, hence finitely evaluating by 18.8 . We
now show that ϕ is countably evaluating:
For this take a sequence (fn)n in A. Then hn : x 7→ (fn(x) − ϕ(fn))2 belongs to
A and ϕ(hn) = 0. We have to show that there exists an x ∈ X with hn(x) = 0
for all n. Assume that this were not true, i.e. for all x ∈ X there exists an n with
hn(x) > 0. Take h ∈ C∞(R, [0, 1]) with carrh = {t : t > 0} and let gn : x 7→
h(hn(x)) · h( 1

n − h1(x)) · · · · · h( 1
n − hn−1(x)). Then gn ∈ A and the sum

∑
n

1
2n gn

is locally finite, hence defines a function g ∈ A. Since ϕ is 1-evaluating there exists
for any n an xn ∈ X with hn(xn) = ϕ(hn) = 0 and ϕ(gn) = gn(xn). Hence

ϕ(gn) = gn(xn) = h(hn(xn)) · h( 1
n − h1(xn)) · · · · · h( 1

n − hn−1(xn)) = 0.

By assumption on the hn and h we have that g > 0. Hence by 18.9 ϕ(g) > 0,

since ϕ is 1-evaluating. Let N be so large that 1/2N < ϕ(g). Again since A is
1-evaluating, there is some a ∈ X such that ϕ(g) = g(a) and ϕ(gj) = gj(a) for
j ≤ N . Then

1

2N
< ϕ(g) = g(a) =

∑
n

1

2n
gn(a) =

∑
n≤N

1

2n
ϕ(gn) +

∑
n>N

1

2n
gn(a) ≤ 0 +

1

2N

gives a contradiction. �

18.12. Counter-example. [Biström et al., 1995, Prop.17]. For any non-reflexive
weakly realcompact locally convex space (and any non-reflexive Banach space) E the
algebra Pf (E) of finite type polynomials is not ω-evaluating.

Moreover, EA is realcompact, but E is not A-realcompact, for A = Pf (E), so that

the converse of the assertion in 17.4 holds only under additional assumptions like

in 17.6 .

As example we may take E = `1, which is non-reflexive, but by 18.27 weakly
realcompact.
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By 18.10 the algebra Pf (E) is 1-evaluating and hence by 18.7 it has the same

homomorphisms as RPf (E), Pf (E)∞ or even Pf (E)〈∞〉. So these algebras are not
ω-evaluating for spaces E as above.

Proof. By the universal property 5.10 of Pf (E) we get HomPf (E) ∼= (E′)×, the
space of (not necessarily bounded) linear functionals on E′. For weakly realcompact

E by 18.27 we have Homω Pf (E) = E. So if Pf (E) were ω-evaluating then even
E = HomPf (E). Any bounded subset of E is obviously Pf -bounding and hence

by 20.2 relatively compact in the weak topology, since EPf (E) = (E, σ(E,E′)).
Since E is not semi-reflexive, this is a contradiction, see [Jarchow, 1981, 11.4.1].

If we have a (not necessarily weakly compact) Banach space, we can replace in the

argument above 20.2 by the following version given in [Biström, 1993, 5.10]: If
Homω Pf (E) = HomPf (E) then every A-bounding set with complete closed convex
hull is relatively compact in the weak topology. �

18.13. Lemma. The C∞lfcs-algebra A∞lfcs can be obtained in two steps as (A∞)lfcs.

Proof. We only have to show that (A∞)lfcs is closed under composition with
smooth mappings. So take h ∈ C∞(Rn) and

∑
j≥1 fi,j ∈ (A∞)lfcs for i = 1, . . . , n.

We put h0 := 0 and hk := h ◦ (
∑k
j=1 f1,j , . . . ,

∑k
j=1 fn,j) ∈ A∞ and obtain

h ◦
(∑
j≥1

f1,j , . . . ,
∑
j≥1

fn,j

)
=
∑
k≥1

(hk − hk−1),

where the right member is locally finite and hence an element of (A∞)lfcs. �

18.14. Theorem. [Adam et al., 1999, 4.3]. A homomorphism ϕ in HomA is
ω-evaluating if and only if ϕ extends (uniquely) to an (ω-evaluating) algebra homo-
morphism on the C∞lfcs-algebra A∞lfcs generated by A.

Proof. (⇒) Let ϕ ∈ HomA be ω-evaluating. By 18.3 it extends to A∞ and it is
countably evaluating there, since in any f ∈ A∞ only finitely many elements of A
are involved. By 18.13 we have A∞lfcs = (A∞)lfcs so it remains to show that ϕ can

be extended to Alfcs where it is countably evaluating by 18.11 .
For a locally finite sum f =

∑
k fk we define ϕ(f) :=

∑
k ϕ(fk). This makes sense,

since there exists an x ∈ X with ϕ(fn) = fn(x) for all n, and since
∑
n fn is point

finite, we have that the sum
∑
n ϕ(fn) =

∑
n fn(x) is in fact finite. It is well

defined, since for
∑
n fn =

∑
n gn we can choose an x ∈ X with ϕ(fn) = fn(x) and

ϕ(gn) = gn(x) for all n, and hence
∑
n ϕ(fn) =

∑
n fn(x) =

∑
n gn(x) =

∑
n ϕ(gn).

The extension is a homomorphism, since for the product for example we have

ϕ
((∑

n

fn
)(∑

k

gk
))

= ϕ
(∑
n,k

fn gk

)
=
∑
n,k

ϕ(fn gk) =

=
∑
n,k

ϕ(fn)ϕ(gk) =
(∑

n

ϕ(fn)
)(∑

k

ϕ(gk)
)
.
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Since A∞lfcs is a C∞lfcs-algebra the extension is countably evaluating by 18.11 . In
particular, the extension is uniquely determined since ϕ(

∑
n fn) =

∑
fn(x) =∑

ϕ(fn) for some x which evaluates
∑
n fn and all fn.

(⇐) By 18.11 the extension of ϕ is countably evaluating and hence so is its
restriction to A. �

18.15. Proposition. [Garrido et al., 1994, 1.10]. Let fn ∈ A for all n ∈ N be
such that

∑∞
n=1 λnf

j
n ∈ A for all λ ∈ `1 and j ∈ {1, 2}.

Then every 1-evaluating ϕ ∈ HomA is {fn : n ∈ N}-evaluating.

For a convenient algebra structure on A and {fn : n ∈ N} bounded in A the second

condition holds, as used in 18.16 .

It would be interesting to know if the assumption for j = 2 can be removed, since

then the application in 18.26 to finite type polynomials would work.

Proof. Choose a positive absolutely summable sequence (λn)n∈N such that the
sequences (λn ϕ(fn))n∈N and (λn ϕ(fn)2)n∈N are summable. Then the sum

g :=

∞∑
n=1

λn(fn − ϕ(fn))2 ∈ A.

If there exists x ∈ X with g(x) = 0, we are done. If not, then consider the (positive)
function

h :=

∞∑
n=1

1

2n
λn(fn − ϕ(fn))2 ∈ A.

For every n ∈ N there exists xn ∈ X such that ϕ(fk) = fk(xn) for all k ≤ n,

ϕ(g) = g(xn) and ϕ(h) = h(xn). But then for all n ∈ N we have by 18.9 that

0 < 2nϕ(h) = ϕ
(∑
k>n

2n−kλk (fk − ϕ(fk))2
)
≤ ϕ

(∑
k>n

λk (fk − ϕ(fk))2
)

= ϕ(g),

a contradiction. �

18.16. Corollary. [Biström et al., 1995, Prop.9]. Let E be a Banach space,
A ⊇ P (E) and (pn)n∈N a sequence in P (E) with uniformly bounded degree. Then
every 1-evaluating ϕ ∈ HomA is {f} ∪ {fn : n ∈ N}-evaluating for each f ∈ A.

Proof. Let (δn)n∈N be a sequence of positive reals such that {δnpn : n ∈ N} is

bounded in the Banach space Polyd(E,R) of polynomials of degree at most d. Then

by 18.15 the set {f, δnpn} is evaluated. �

18.17. Theorem. [Adam et al., 1999, 3.3]. Let |Γ| be non-measurable and
(fγ)γ∈Γ be a family in A such that

∑
γ∈Γ zγf

j
γ is a pointwise convergent sum in A

for all z = (zγ) ∈ `∞(Γ) and j = 1, 2.

Then every ω-evaluating ϕ ∈ HomA is {fγ : γ ∈ Γ}-evaluating.

We will apply this in particular if {fγ : γ ∈ Γ} is locally finite, and A stable
under locally finite sums. Note that we can always add finitely many f ∈ A to
{fγ : γ ∈ Γ}.
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Again it would be nice to get rid of the assumption for j = 2.

Proof. Let x ∈ X and set zγ := sign(fγ(x)) for all γ ∈ Γ. Then z = (zγ) ∈ `∞(Γ)
and

∑
γ∈Γ |fγ(x)| =

∑
γ∈Γ zγfγ(x) < ∞, i.e. (fγ(x))γ∈Γ ∈ `1(Γ). Next observe

that (ϕ(fγ))γ∈Γ ∈ c0(Γ), since otherwise there exists some ε > 0 and a countable
set Λ ⊆ Γ with |ϕ(fγ)| ≥ ε for each γ ∈ Λ. By the countably evaluating property
of ϕ there is a point x ∈ X with |fγ(x)| = |ϕ(fγ)| ≥ ε for each γ ∈ Λ, violating the
condition (fγ(x))γ∈Γ ∈ `1(Γ). Since as a vector in c0(Γ) it has countable support
and since ϕ is countably evaluating we get even (ϕ(fγ))γ∈Γ ∈ `1(Γ). Therefore we
may consider g, defined by

X 3 x 7→ g(x) :=
(

(fγ(x)− ϕ(fγ))2
)
γ∈Γ
∈ `1(Γ).

This gives a map g∗ : `∞(Γ) = `1(Γ)′ → A, by

g∗(z) : x 7→ 〈z, g(x)〉 =
∑
γ∈Γ

zγ · (fγ(x)− ϕ(fγ))2.

Let Φ : `∞(Γ) → R be the linear map Φ := ϕ ◦ g∗ : `∞(Γ) → A → R. By the
countably evaluating property of ϕ, for any sequence (zn) in `∞(Γ) there exists
an x ∈ X such that Φ(zn) = ϕ(g∗(zn)) = g∗(zn)(x) = 〈zn, g(x)〉 for all n. For
non-measurable |Γ| the weak topology on `1(Γ) is realcompact by [Edgar, 1979,

p.575]. By 18.19 there exists a point c ∈ `1(Γ) such that Φ(z) = 〈z, c〉 for all
z ∈ `∞(Γ). For each standard unit vector eγ ∈ `∞(Γ) we have 0 = Φ(eγ) =
〈eγ , c〉 = cγ . Hence c = 0 and therefore Φ = 0. For the constant vector 1 in `∞(Γ),
we get 0 = Φ(1) = ϕ(g∗(1)). Since ϕ is 1-evaluating there exists an a ∈ X with
ϕ(g∗(1)) = g∗(1)(a) = 〈1, g(a)〉 =

∑
γ∈Γ(fγ(a) − ϕ(fγ))2, hence ϕ(fγ) = fγ(a) for

each γ ∈ Γ. �

18.18. Valdivia gives in [Valdivia, 1982] a characterization of the locally convex
spaces which are realcompact in their weak topologies. Let us mention some classes
of spaces that are weakly realcompact:

Result.

(1) All locally convex spaces E with σ(E′, E)-separable E′.
(2) All weakly Lindelöf locally convex spaces, and hence in particular all weakly

countably determined Banach spaces, see [Vašák, 1981]. In particular this
applies to C0(X) for locally compact metrizable X by [Corson, 1961, p.5].

(3) The Banach spaces E with angelic weak∗ dual unit ball [Edgar, 1979, p.564].
Note that (E∗,weak∗) is angelic :⇔ for all bounded B ⊆ E∗ the weak∗-closure
is obtained by the limits of weak∗-convergent sequences in B, i.e. the weak∗-
topology is sequentially.

(4) `1(Γ) for |Γ| non-measurable. Furthermore the spaces C[0, 1], `∞, L∞[0, 1],
the space JL of [Johnson and Lindenstrauss, 1974] (a short exact sequence
c0 → JL → `2(Γ) exists), the space D[0, 1] or right-continuous functions
having left sided limits, by [Edgar, 1979, p.575] and [Edgar, 1977]. All these
spaces are not weakly Lindelöf.

(5) All closed subspaces of products of the spaces listed above.
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(6) Not weakly realcompact are C[0, ω1] and `∞count[0, 1], the space of bounded func-
tions on [0, 1] with countable support, by [Edgar, 1979].

18.19. Lemma. [Corson, 1961]. If E is a weakly realcompact locally convex space,
then every linear countably evaluating Φ : E∗ → R is given by a point-evaluation
evx on E∗ with x ∈ E.

Proof. Since Φ : E∗ → R is countably evaluating it is linear and F := {ZK :=⋂
x∗∈K Zx∗ : K ⊆ E∗ countable} does not contain the empty set and generates a

filter. We claim that this filter is Cauchy with respect to the uniformity defined by
the weakly continuous real functions on E:
To see this, let f : E → R be weakly continuous. For each r ∈ R, let Lr := {x ∈
E : f(x) < r} and similarly Ur := {x ∈ E : f(x) > r}. Then E is σ(E∗×, E∗)-
dense in E∗×, where ( )× denotes the algebraic dual, since otherwise 0 6= x∗ ∈
E∗ = (E∗×, σ(E∗×, E∗))′ would exist with x∗|E = 0. Thus there are open disjoint

subsets L̃r and Ũr on E∗× having trace Lr and Ur on E (take the complements
of the closures of the complements). Let B ⊆ E∗ be an algebraic basis of E∗.
Then the map χ : E∗× → RB, l 7→ (l(x∗))x∗∈B is a topological isomorphism for
σ(E∗×, E∗). By [Bockstein, 1948] there exists a countable subset Kr ⊆ B ⊆ E∗,

such that the images under prKr : RB → RKr of the open sets L̃r and Ũr are
disjoint. Let K =

⋃
r∈QKr. For ε > 0 we have that ZK ×ZK ⊆ {(x1, x2) : f(x1) =

f(x2)} ⊆ {(x1, x2) : |f(x1) − f(x2)| < ε}, i.e. the filter generated by F is Cauchy:
In fact, let x1, x2 ∈ ZK . Then x∗(x1) = ϕ(x∗) = x∗(x2) for all x∗ ∈ K. Suppose
f(x1) 6= f(x2). Without loss of generality we find a r ∈ Q with f(x1) < r < f(x2),
i.e. x1 ∈ Lr and x2 ∈ Ur. But then x∗(x1) 6= x∗(x2) for some x∗ ∈ Kr ⊆ K gives a
contradiction.

By realcompactness of (E, σ(E,E∗)) the uniform structure generated by the weakly

continuous functions E → R is complete by the proof of 17.2.15 and hence the

filter F converges to a point a ∈ E. Thus a ∈ ZK = ZK for all countable K ⊆ E∗,
and in particular Φ(x∗) = x∗(a) for all x∗ ∈ E∗. �

18.20. Proposition. [Biström et al., 1995, Thm.10]. Let E be a Banach space,
let A ⊇ Cωconv(E) let F be a countable subset of Cωconv(E).

Then every 1-evaluating ϕ ∈ HomA is {f} ∪ F is evaluating for each f ∈ A.

In particular, RCωconv(E) (see 18.7.2 ) is ω-evaluating for every Banach space E.

Proof. Let (pn)n∈N be a sequence of homogeneous polynomials in P (E) and
(kn)n∈N a sequence of odd natural numbers with k1 = 1 and kn+1 > 2kn(1+deg pn)
for n ∈ N. Then |pknn (x)| ≤ ‖pn‖kn · ‖x‖kn deg pn for every x ∈ E. Set

g :=

∞∑
n=1

1

λn
· 1

2n
· 1

n2kn deg pn
(pknn − ϕ(pknn ))2,

where (λn)n∈N is a sequence of reals with

λn ≥ ‖pn‖2kn + 2|ϕ(pknn )| · ‖pn‖kn + (ϕ(p2kn
n ))2 for all n ∈ N.
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Then

0 ≤ g(x) ≤
∞∑
n=1

1

2n
· 1

n2kn deg pn

(
‖x‖kn2 deg pn + ‖x‖kn deg pn + 1

)
≤
∞∑
n=1

1

2n

(
‖x
n
‖2kn deg pn + ‖ x

n2
‖kn deg pn + 1

)
<∞ for all x ∈ E

Since g is pointwise convergent, it is a function in Cωconv(E). By the technique used

in 18.15 there exists x ∈ E with ϕ(f) = f(x) and ϕ(pknn ) = pknn (x) for all n ∈ N.
As for each n ∈ N the number kn is odd, it follows that ϕ(pn) = pn(x) for all n ∈ N.
Since each g ∈ F is a sum

∑
n∈N pn,g of homogeneous polynomials pn,g ∈ P (E)

of degree n for n ∈ N, there exists x ∈ E with ϕ(g) = g(x) for all g ∈ F , and
ϕ(pn,g) = pn,g(x) for all n ∈ N, whence ϕ(g) =

∑
n∈N ϕ(pn,g) for all g ∈ F . Let

a ∈ E with ϕ(f) = f(a) and ϕ(pn,g) = pn,g(a) for all n ∈ N and all g ∈ F . Then

ϕ(g) =
∑
n∈N

ϕ(pn,g) =
∑
n∈N

pn,g(a) = g(a) for all g ∈ F . �

18.21. Result. [Adam et al., 1999, 2.1]. Given two infinite cardinals m < n, let
E := {x ∈ Rn : | suppx| ≤ m} Then for any algebra A ⊆ C(E), containing the
natural projections (prγ)γ∈n, there is a homomorphism ϕ on A that is m-evaluating
but not n-evaluating.

Proof. By the proof of 4.27 , each f ∈ C(E) extends to f̃ ∈ C(Rn). Since
E is dense in Rn, this extension is unique and therefore each x ∈ Rn gives a
homomorphism ψx on A by means of the map ψx(f) = f̃(x). Take a ∈ Rn \ E.
Then ψa is not n-evaluating, since otherwise it would evaluate the point separating
family (prγ)γ∈n in a unique point b ∈ E. Since some projection prγ separates a from
b, we have a contradiction. On the other hand, take a set B ⊆ A with |B| ≤ m. By

the proof of 4.27 , each f ∈ A depends only on a countable number of coordinates
Nf ⊂ n. Set N :=

⋃
f∈B Nf . Then |N | ≤ m. Set âγ := aγ if γ ∈ N and zero

otherwise. Then â := (âγ)γ∈n ∈ E and f(â) = f̃(a) for all f ∈ B. Thus ψa is
m-evaluating. �

Evaluating Homomorphisms

18.22. Proposition. [Garrido et al., 1994, 1.7]. Let X be a closed subspace of a
product RΓ. Let A ⊆ C(X) be a subalgebra containing the projections prγ |X : X ⊆
RΓ → R.

Then every 1̄-evaluating ϕ ∈ HomA is evaluating.

Proof. Set aγ = ϕ(prγ |X). Then the point a = (aγ)γ∈Γ is an element in X:
Otherwise, since X is closed there exists a finite set J ⊆ Γ and ε > 0 such that
no point y with |yγ − aγ | < ε for all γ ∈ J is contained in X. Set p(x) :=∑
γ∈J(prγ(x)− aγ)2 for x ∈ X. Then p ∈ A and ϕ(p) = 0. By assumption there is

an x ∈ X, such that |ϕ(p)− p(x)| < ε2, but then |prγ(x)− aγ | < ε for all γ ∈ J , a
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contradiction. Thus a ∈ X and ϕ(g) = g(a) for all g in the algebra A0 generated
by all functions prγ |X .

By the assumption and by 18.2 there exists a point x̃ in the Stone-Čech compact-

ification βX such that ϕ(f) = f̃(x̃) for all f ∈ A, where f̃ is the unique continuous
extension βX → R∞ of f . We claim that x̃ = a. This holds if x̃ ∈ X since the prγ
separate points on X. So let x̃ ∈ βX \X. Then x̃ is the limit of an ultrafilter F
in X. Since F does not converge to a, there is a neighborhood U /∈ F of a in X,
without loss of generality of the form U = {x ∈ X : f(x) > 0} for some f ∈ A0,
and, in particular, f(a) > 0. But then the complement {x : f(x) ≤ 0} of U is in F ,

thus f̃(x̃) ≤ 0. But this contradicts f̃(x̃) = ϕ(f) = f(a) for all f ∈ A0. �

2nd Proof. We apply 19.8.3 to Y = RΓ and AY the algebra Pf (Y ) generated by
{prγ : γ ∈ Γ}. Then Y ist AY -regular and T ∗(AY ) ⊆ AX by assumption and AY
is evaluating, since ϕ = evy where yγ := ϕ(prγ) for all γ ∈ Γ. �

18.23. Proposition. [Kriegl and Michor, 1993, 1]. If A is finitely generated then
every 1-evaluating ϕ ∈ HomA is evaluating.

Finitely generated can even be meant in the sense of C〈∞〉-algebra, see the proof.
This applies to the algebras RP , Cω, Cωconv and C∞ on Rn (or a closed submanifold
of Rn).

Proof. Let F ⊆ A be a finite subset which generates A in the sense that A ⊆
F 〈∞〉 := (〈F〉Alg)〈∞〉, compare 18.7.3 . Since A is assumed to be point separating
the same is true for F : In fact, let f(x) = f(y) for all f ∈ F . Then the same is
true for f := h ◦ (f1, . . . , fn), where fi ∈ F and h ∈ C∞(U,R), and in particular
for all f ∈ A, so x = y.

By 18.7 again we have that ϕ restricted to 〈F〉Alg extends to ϕ̃ ∈ HomF 〈∞〉
by ϕ̃(h ◦ (f1, . . . , fn)) := h(ϕ(f1), . . . , ϕ(fn)) for fi ∈ F , h ∈ C∞(U,R) where
(f1, . . . , fn)(X) ⊆ U and U is open in Rn. For f ∈ A there exists x ∈ X such that
ϕ = evx on f and on F , which implies that ϕ̃(f) = f(x) = ϕ(f). Finally note that
if ϕ = evx on F then ϕ̃ = evx on F 〈∞〉, thus ϕ = evx on A. �

18.24. Proposition. [Biström et al., 1992, Prop.4]. Let X be Lindelöf (for some
topology finer than XA).

Then every ω-evaluating ϕ ∈ HomA is evaluating.

This applies to any ω-evaluating algebra on a separable Fréchet space, [Arias-de
Reyna, 1988, 8].

It applies also to A = C∞lfcs(E) for any weakly Lindelöf space by 18.27 . In par-

ticular, for 1 < p ≤ ∞ the space `p(Γ) is weakly Lindelöf by 18.18.1 as weak∗-

dual of the normed space `q with q := 1/(1 − 1
p ) and the same holds for the

spaces (`1(Γ), σ(`1(Γ), c0(Γ))). Furthermore it is true for (`1(Γ), σ(`1(Γ), `∞(Γ)))
by [Edgar, 1979], and for (c0(Γ), σ(c0(Γ), `1(Γ))) by [Corson, 1961, p.5].

Proof. By the sequentially evaluating property of A the family (Zf )f∈A of closed
sets Zf = {x ∈ X : f(x) = ϕ(f)} has the countable intersection property. Since X
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is Lindelöf, the intersection of all sets in this collection is non-empty. Thus ϕ is a
point evaluation with a point in this intersection. �

The basic strategy behind the following results is the following. Find a point
separating subset S ⊆ A such that for each f ∈ A the homomorphism is by some
of the previous results {f} ∪ S-evaluating. Then it is evaluating, since for each f
there exists a point x ∈ X with ϕ(f) = f(x) and ϕ(g) = g(x) for all g ∈ S and
since S is point separating x does not depend on f .

18.25. Proposition. Let A be an algebra which contains a countable point-separat-
ing subset.

Then every ω-evaluating ϕ ∈ HomA is evaluating.

If a Banach space E has weak∗-separable dual and D ⊆ E′ is countable and weak∗-
dense, then D is point-separating, since for x 6= 0 there is some ` ∈ E′ with `(x) = 1
and since {x′ ∈ E′ : x′(x) > 0} is open in the weak∗-topology also an ` ∈ D with
`(x) > 0. The converse is true as well, see [Biström, 1993, p.28].

Thus 18.25 applies to all Banach-spaces with weak∗-separable dual and the alge-
bras RP , Cω, RCωconv, C∞.

Proof. Let {fn}n be a countable subset of A separating the points of X. Let
f ∈ A. Since A is ω-evaluating there exists a point xf ∈ X with f(xf ) = ϕ(f) and
fn(xf ) = ϕ(fn) for all n ∈ N. Since the fn are point-separating this point xf is
uniquely determined and hence independent on f ∈ A. �

18.26. Proposition. [Arias-de Reyna, 1988, Thm.8] for Cm on separable Banach
spaces; [Gómez and Llavona, 1988, Thm.1] for ω-evaluating algebras on locally
convex spaces with w∗-separable dual; [Adam, 1993, 6.40].
Let E be a convenient vector space, let A ⊇ P (E) be an algebra containing a point
separating bounded sequence of homogeneous polynomials of fixed degree.

Then every 1-evaluating ϕ ∈ HomA is evaluating.

In particular this applies to c0 and `p for 1 ≤ p ≤ ∞. It also applies to a dual of a
separable Fréchet space, since then any dense countable subset of E can be made
equicontinuous on E′ by [Biström, 1993, 4.13].

Proof. Let {pn : n ∈ N} be a point-separating bounded sequence. By the polar-

ization formulas given in 7.13 this is equivalent to boundedness of the associated
multilinear symmetric mappings, hence {pn : n ∈ N} satisfies the assumptions of

18.15 and thus {pn : n ∈ N} is evaluated. Now the result follows as in 18.25 . �

18.27. Theorem. [Adam et al., 1999, 5.1]. A bornological locally convex space E
is weakly realcompact if and only if E = Homω Pf (E)(= HomC∞lfcs(E)).

Proof. We have Homω Pf (E) =
18.14

====== Homω C
∞
lfcs(E) =

18.11
====== HomC∞lfcs(E).

(⇒) Let E be weakly realcompact. It follows from 18.19 that any ϕ ∈ Homω Pf (E)
is E′-evaluating and hence also evaluating on the algebra Pf (E) generated by E′ =
E∗.
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(⇐) By 17.4 the space Homω(Pf (E)) is realcompact in the topology of pointwise
convergence. Since E = Homω Pf (E) and σ(E,E′) equals the topology of pointwise
convergence on Homω(Pf (E)), we have that (E, σ(E,E′)) is realcompact. �

18.28. Proposition. [Biström et al., 1995, Thm.13]. Let E be a Banach space
with the Dunford-Pettis property that does not contain a copy of `1. Then Pf (E)
is dense in P (E) for the topology of uniform convergence on bounded sets.

A Banach space E is said to have the Dunford-Pettis property [Diestel, 1984,
p.113] if x∗n → 0 in σ(E′, E′′)) and xn → 0 in σ(E,E′) implies x∗n(xn) → 0. Well
known Banach spaces with the Dunford-Pettis property are L1(µ), C(K) for any
compact K, and `∞(Γ) for any Γ. Furthermore c0(Γ) and `1(Γ) belong to this class
since if E′ has the Dunford-Pettis property then also E has. According to [Aron,
1976, p.215], the space `1 is not contained in C(K) if and only if K is dispersed,
i.e. K(α) = ∅ for some α, or equivalently whenever its closed subsets admit isolated
points.

Proof. According to [Carne et al., 1989, theorem 7.1], the restriction of any p ∈
P (E) to a weakly compact set is weakly continuous if E has the Dunford-Pettis
property and, consequently, sequentially weakly continuous. By [Llavona, 1986,
theorems 4.4.7 and 4.5.9], such a polynomial p is weakly uniformly continuous on
bounded sets if E, in addition, does not contain a copy of `1. The assertion therefore
follows from [Llavona, 1986, theorem 4.3.7]. �

18.29. Theorem. [Garrido et al., 1994, 2.4] & [Adam et al., 1999, 3.4]. Let E
be `2n(Γ) for some n and some Γ of non-measurable cardinality. Let P (E) ⊆ A ⊆
C(E).

Then every 1-evaluating ϕ ∈ HomA is evaluating.

Proof. For f ∈ A let Af be the algebra generated by f and all i-homogeneous
polynomials in P (E) with degree i ≤ 4n + 2. Take a sequence (pn) of continuous
polynomials with degree i ≤ 2n + 1. Then there is a sequence (tn) in R+ such

that {tnpn : n ∈ N} is bounded, hence ϕ is by 18.15 evaluating on it, i.e. ϕ is
ω-evaluating on Af .

Given z = (zγ) ∈ `∞(Γ) and x ∈ E, set

fz,j(x) := f(x)j +
∑
γ∈Γ

zγ prγ(x)(2n+1)j ,

where j = 1, 2. Then fz,j ∈ Af and we can apply 18.17 . Thus there is a point

xf ∈ E with ϕ(f) = f(xf ) and ϕ(prγ)2n+1 = prγ(xf )2n+1 for all γ ∈ Γ. Hence
ϕ(prγ) = prγ(xf ), and since (prγ)γ∈Γ is point separating, xf is uniquely determined
and thus not depending on f and we are finished. �

18.30. Proposition. Let E = c0(Γ) with Γ non-measurable. If one of the following
conditions is satisfied, then ϕ is evaluating:

(1) [Biström, 1993, 2.22] & [Adam et al., 1999, 5.4]. C∞lfs (E) ⊆ A and ϕ is ω-
evaluating.
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(2) [Garrido et al., 1994, 2.7]. P (E) ⊆ A, every f ∈ A depends only on countably
many coordinates and ϕ is 1-evaluating.

Proof. ( 1 ) Since ϕ is ω-evaluating, it follows that (ϕ(prγ))γ∈Γ ∈ c0(Γ), where

prγ : c0(Γ) → R are the natural coordinate projections (see the proof of 18.17 ).
Fix n and consider the function fn : c0(Γ)→ R defined by the locally finite product

fn(x) :=
∏
γ∈Γ

h
(
n · (prγ(x)− ϕ(prγ))

)
,

where h ∈ C∞(R, [0, 1]) is chosen such that h(t) = 1 for |t| ≤ 1/2 and h(t) = 0 for
|t| ≥ 1. Note that a locally finite product f :=

∏
i∈I fi (i.e. locally only finitely

many factors fi are unequal to 1) can be written as locally finite sum f =
∑
J gJ ,

where gi := fi− 1 and for finite subsets J ⊆ I let gJ :=
∏
j∈J gj ∈ A and the index

J runs through all finite subsets of I. Since I is at least countable, the set of these
indices has the same cardinality as I has.

By means of 18.17 ϕ(fn) =
∏
γ∈Γ h(0) = 1 for all n. Now let f ∈ A. Then there

exists a xf ∈ E with ϕ(f) = f(xf ) and 1 = ϕ(fn) = fn(xf ). Hence |n · (prγ(xf )−
ϕ(prγ))| < 1 for all n, i.e. prγ(xf ) = ϕ(prγ) for all γ ∈ Γ. Since (prγ)γ∈Γ is point
separating, the point xf ∈ E is unique and thus does not depend on f .

( 2 ) By 18.16 the restriction of ϕ to the algebra generated by {prγ : γ ∈ Γ}
is ω-evaluating. Since c0(K) is weakly-realcompact by [Corson, 1961] for locally

compact metrizable K and hence in particular for discrete K, we have by 18.19
that ϕ is evaluating on this algebra, i.e. there exists a = (aγ)γ∈Γ ∈ E with aγ =
prγ(a) = ϕ(prγ) for all γ ∈ Γ.

Every f ∈ A(E) depends only on countably many coordinates, i.e. there exists a

countable Γf ⊆ Γ and a function f̃ : c0(Γf )→ R with f̃ ◦ prΓf
= f . Let

Af := {g ∈ Rc0(Γf ) : g ◦ prΓf
∈ A}

and let ϕ̃ : Af → R be given by ϕ̃ := ϕ ◦ pr∗Γf . Since Γf is countable there is by

18.16 an xf ∈ c0(Γf ) with ϕ̃(f̃) = f̃(xf ) and aγ = ϕ(prγ) = ϕ̃(prγ) = prγ(xf ) =

xfγ for all γ ∈ Γf . Thus prΓf
(a) = xf and

ϕ(f) = ϕ(f̃ ◦ prΓf
) = ϕ̃(f̃) = f̃(xf ) = f̃(prΓf

(a)) = f(a). �

18.31. Proposition. [Garrido et al., 1994, 2.7]. Each f ∈ Cω(c0(Γ)) depends
only on countably many coordinates.

Proof. Let f : c0(Γ) → R be real analytic. So there is a ball Bε(0) ⊆ c0(Γ) such
that f(x) =

∑∞
n=1 pn(x) for all x ∈ Bε(0), where pn ∈ Lnsym(c0(Γ);R) for all n ∈ N.

By 18.28 the space Pf (c0(Γ)) is dense in P (c0(Γ)) for the topology of uniform
convergence on bounded sets, since c0(Γ) has the Dunford-Pettis property and does
not contain `1 as topological linear subspace. Thus we have that for any n, k ∈ N
there is some qnk ∈ Pf (c0(Γ)) with

sup{|pn(x)− qnk(x)| : x ∈ Bε(0)} < 1

k
.
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Since each q ∈ Pf (c0(Γ)) is a polynomial in elements of `1(Γ), there is a countable
set Λnk ⊆ Γ such that qnk only depends on the coordinates with index in Λnk,
whence pn on Bε(0) only depends on coordinates with index in Λn :=

⋃
k∈N Λnk.

Set Λ :=
⋃
n∈N Λn and let ιΛ : c0(Λ)→ c0(Γ) denote the natural injection given by

(ιΛ(x))γ = xγ if γ ∈ Λ and (ιΛ(x))γ = 0 otherwise. By construction f = f ◦ ιΛ ◦prΛ

on Bε(0). Since both functions are real analytic and agree on Bε(0), they also agree
on c0(Γ). �

18.32. Example. [Garrido et al., 1994, 2.6]. For uncountable Γ the space c0(Γ) \
{0} is not Cω-realcompact.

But for non-measurable Γ the whole space c0(Γ) is Cω-evaluating by 18.30 and

18.31 .

Proof. Let Ω := c0(Γ) \ {0}, let f : Ω → R be real analytic and consider any
sequence (um)m∈N in Ω with um → 0. For each m ∈ N there exists εm > 0 and
homogeneous Pnm in P (c0(Γ)) of degree n for all n, such that, for ‖h‖ < εm

f(um + h) = f(um) +

∞∑
n=1

Pnm(h).

As carried out in 18.31 , each Pnm only depends on coordinates with index in some
countable set Λnm ⊆ Γ. The set Λ := (

⋃
n,m∈N Λnm) ∪ (

⋃
m∈N suppum) is countable.

Let γ ∈ Γ \ Λ. Then, since Pnm(eγ) = 0 and um + teγ 6= 0 for all m,n ∈ N and
t ∈ R, we get f(um + teγ) = f(um) for all |t| < εm. Thus f(um + teγ) = f(um) for
every t ∈ R, since the function t 7→ f(um+ teγ) is real analytic on R. In particular,
f(um + eγ) = f(um) and, since um + eγ → eγ , there exists

ϕ(f) := lim
m∈N

f(um) = lim
m∈N

f(um + eγ) = f(eγ).

Then ϕ is an algebra homomorphism, since a common γ can be found for finitely
many f . And since `1(Γ) ⊆ Cω(Ω) is point separating the homomorphism ϕ cannot
be an evaluation at some point of Ω. �

18.33. Example. [Biström et al., 1995, Prop.16]. The algebra Cωconv(`∞) is not
1-evaluating.

Proof. Suppose that Cωconv(`∞) is 1-evaluating. By 20.3 the unit ball Bc0 of c0

is Cωconv-bounding in `∞. By 18.20 the algebra Cωconv(`∞) is ω-evaluating and,
since (`∞)′ admits a point separating sequence, we have `∞ = Hom(Cωconv(`∞)) by

18.25 . Hence by 20.2 , every Cωconv-bounding set in `∞ is relatively compact in
the initial topology induced by Cωconv(`∞) and in particular relatively σ(`∞, (`∞)′)-
compact. Therefore, since the topologies σ(c0, `

1) and σ(`∞, (`∞)′) coincide on c0,
we have that Bc0 is σ(c0, `

1)-compact, which contradicts the non-reflexivity of c0
by by [Jarchow, 1981, 11.4.4]. �
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19. Stability of Smoothly Realcompact Spaces

In this section stability of evaluation properties along certain mappings are studied
which furnish some large classes of smoothly realcompact spaces.

The basic strategy of this section is to consider a mapping T : X → Y and algebras
AX on X and AY on Y with T ∗(AY ) ⊆ AX and try to deduce from evaluation
properties of AY such of AX . Namely, if ϕ ∈ HomAX then ψ := ϕ ◦ T ∗ ∈ AY and
hence ψ = evy for some y ∈ Y . It them remains to show that y ∈ T (X) and not
only is ϕ given by the evaluation evx on T ∗(AY ) but also on AX . For this we will
need point-detection principles like AY -regularity, small-AY -zerosets or AY being
isolating as defined later.

19.1. Proposition. Let AX and AY be algebras of functions on sets X and Y as

in 17.1 , let T : X → Y be injective with T ∗(AY ) ⊆ AX , and suppose that Y is

AY -realcompact. Then we have:

(1) [Jaramillo, 1992, 5]. If AX is 1-evaluating and AY is 1-isolating on Y , then
X is AX-realcompact and AX is 1-isolating on X.

(2) [Biström and Lindström, 1993a, Thm.2]. If AX is ω-evaluating and AY is
ω-isolating on Y , then X is AX-realcompact and AX is ω-isolating on X.

We say that AX is 1-isolating on X if for every x ∈ X there is an f ∈ AX with
{x} = f−1(f(x)).

Similarly AX is called ω-isolating on X if for every x ∈ X there exists a se-
quence (fn)n in AX such that {x} =

⋂
n f
−1
n (fn(x)). This was called A-countably

separated in [Biström and Lindström, 1993a].

Proof. Let ϕ ∈ AlgAX and ψ := ϕ ◦ T ∗. There is a point y ∈ Y with ψ = evy.
Let G ⊆ AY be such that {y} =

⋂
g∈G g

−1(g(y)), where G is either a single function
or countably many functions. Let f ∈ AX be arbitrary. By assumption there
exists xf ∈ X with ϕ(f) = f(xf ) and ϕ(T ∗(g)) = T ∗(g)(xf ) for all g ∈ G. Since
g(y) = ψ(g) = ϕ(T ∗(g)) = T ∗(g)(xf ) = g(T (xf )) for all g ∈ G, we obtain that
y = T (xf ). Since T is injective, we get that xf does not depend on f , and hence ϕ
is evaluating. �

19.2. Lemma. If E is a convenient vector space which admits a bounded point-
separating sequence in the dual E′ then the algebra P (E) of polynomials is 1-
isolating on E.

Proof. Let {x′n : n ∈ N} ⊆ E′ be such a sequence and let a ∈ E be arbitrary. Then
the series x 7→

∑∞
n=1 2−nx′n(x−a)2 converges in P (E), since x′n( −a)2 is bounded

and
∑∞
n=1 2−n <∞. It gives a polynomial which vanishes exactly at a. �

19.3. Examples. [Garrido et al., 1994, 2.4 and 2.5.2]. Any super-reflexive Banach
space X of non-measurable cardinality is AX-realcompact, for each 1-isolating and

1-evaluating algebra AX as in 17.1 which contains the algebra of rational functions

RP (X), see 18.7.2 .
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A Banach-space E is called super-reflexive, if all Banach-spaces F which are
finitely representable in E (i.e. for any finite dimensional subspace F1 in F and
ε > 0 there exists a isomorphism T : F1

∼= E1 ⊆ E onto a subspace E1 of E with
‖T‖ · ‖T−1‖ ≤ 1 + ε) are reflexive (see [Enflo et al., 1975]). This is by [Enflo,
1972] equivalent to the existence of an equivalent uniformly convex norm, i.e.
inf{2−‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε} > 0 for all 0 < ε < 2. In [Enflo et al.,
1975] it is shown that superreflexivity has the 3-space property.

Proof. A super-reflexive Banach space injects continuously and linearly into `p(Γ)
for some p > 1 and some Γ by [John et al., 1981, p.133] and hence into some

`2n(Γ). We apply 19.1.1 to the situation X := E → `2n(Γ) =: Y , which is
possible because the algebra P (Y ) is 1-isolating on Y , since the 2n-th power of the

norm is a polynomial and can be used as isolating function. By 18.6 the algebra

RP (Y ) is 1-evaluating, and by 18.29 it is thus evaluating on Y . �

19.4. Lemma.

(1) Every 1-isolating algebra is ω-isolating.
(2) If X is A-regular and XA has first countable topology then A is ω-isolating.
(3) If for a convenient vector space the dual (E′, σ(E′, E)) is separable then the

algebra Pf (E) of finite type polynomials is ω-isolating on E.

Proof. ( 1 ) is trivial.

( 2 ) Let x ∈ X be given and consider a countable neighborhood base (Un)n of x.
Since X is assumed to be A-regular, there exist fn ∈ A with fn(y) = 0 for y 6∈ Un
and fn(x) = 1. Thus

⋂
n f
−1
n (fn(x)) = {x}.

( 3 ) Let {x′n : n ∈ N} be dense in (E′, σ(E′, E)) and 0 6= x ∈ E. Then there
is some x′ ∈ E′ with x′(x) = 1. By the denseness there is some n such that
|x′n(x)− x′(x)| < 1 and hence x′n(x) > 0. So {0} =

⋂
n(x′n)−1(0). �

19.5. Example. For Γ of non-measurable cardinality, the Banach space E :=

c0(Γ) is C∞lfs (E)-paracompact by 16.15 , and hence any 1̄-evaluating algebra A ⊇
C∞lfs (E) is ω-isolating and evaluating.

Proof. The Banach space E is C∞lfs (E)-paracompact by 16.16 . By 17.6 the

space E is A-realcompact for any A ⊇ C∞lfs (E) and is ω-isolating by 19.4.2 . �

19.6. Example. Let K be a compact space of non-measurable cardinality with
K(ω) = ∅.
Then the Banach space C(K) is C∞-paracompact by 16.20.1 , hence C∞(C(K))
is ω-isolating and C(K) is C∞-realcompact.

Proof. By 16.19 C(K) is C∞-paracompact, hence by 17.6 the space E is C∞-

realcompact and is ω-isolating by 19.4.2 . �

19.7. Example. [Biström and Lindström, 1993a, Corr.3bac]. The following locally
convex space are A-realcompact for each ω-evaluating algebra A ⊇ C∞lfs , if their
cardinality is non-measurable.
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(1) Weakly compactly generated (WCG) Banach spaces, in particular separable
Banach spaces and reflexive ones. More generally weakly compactly determined

(WCD) Banach spaces (see 53.8 ).

(2) C(K) for Valdivia-compact spaces K, i.e. compact subsets K ⊆ RΓ with K ∩
{x ∈ RΓ : suppx countable} being dense in K.

(3) The dual of any realcompact Asplund Banach space (see 13.8 ).

Proof. All three classes of spaces inject continuous and linearly into some c0(Γ)

with non-measurable Γ by 53.21 . Now we apply 19.5 for the algebra C∞lfs on c0(Γ)

to see that the conditions of 19.1.2 for the range space Y = c0(Γ) are satisfied.

So 19.1.2 implies the result. �

19.8. Proposition. Let T : X → Y be a closed embedding between topological
spaces equipped with algebras of continuous functions such that T ∗(AY ) ⊆ AX . Let
ϕ ∈ HomAX such that ψ := ϕ ◦ T ∗ is AY -evaluating.

(1) [Kriegl and Michor, 1993, 8]. If ϕ is 1-evaluating on AX and AY has 1-small
zerosets on Y then ϕ is AX-evaluating, and AX has 1-small zerosets on X.

(2) [Biström and Lindström, 1993b, p.178]. If ϕ is ω-evaluating on AX and AY
has ω-small zerosets on Y then ϕ is AX-evaluating, and AX has ω-small
zerosets on X.

(3) If ϕ is 1̄-evaluating on AX and Y ist AY -regular then ϕ is AX-evaluating,
and X is AX-regular.

Let m be a cardinal number (often 1 or ω). We say that there are m-small AY -
zerosets on Y or AY has m-small zerosets on Y if for every y ∈ Y and neighborhood
U of y there exists a subset G ⊆ AY with

⋂
g∈G g

−1(g(y)) ⊆ U and |G| ≤ m.

For m = 1 this was called large A-carriers in [Kriegl and Michor, 1993], and for
m = ω it was called weakly A-countably separated in [Biström and Lindström,
1993b, p.178].

Proof. Let y ∈ Y be a point with ψ = evy.

( 1 ) and ( 2 ) Since Y admits m-small AY -zerosets there exists for every neighbor-

hood U of y a set G ⊆ AY of functions with
⋂
g∈G g

−1(g(y)) ⊆ U with |G| ≤ m. Let
now f ∈ AX be arbitrary. Since AX is assumed to be m-evaluating, there exists
a point xf,U such that f(xf,U ) = ϕ(f) and g(T (xf,U )) = T ∗(g)(xf,U ) = ϕ(T ∗g) =
ψ(g) = g(y) for all g ∈ G, hence T (xf,U ) ∈ U . Thus the net T (xf,U ) converges
to y for U → y and since T is a closed embedding there exists a unique x with
T (x) = y and x = limU xf,U . Consequently f(x) = f(limU xf,U ) = limU f(xf,U ) =
limU ϕ(f) = ϕ(f) since f is continuous.

( 3 ) Since Y is AY -regular there exists for every neighborhood U of y a functions
g ∈ AY with g(y) = 1 and {y′ : g(y′) > 0} ⊆ U . Let now f ∈ AX be arbi-
trary. Since AX is assumed to be 1̄-evaluating, there exists a point xf,U such that
|f(xf,U ) − ϕ(f)| < 1 and 1 > |T ∗(g)(xf,U ) − ϕ(T ∗g)| = |g(T (xf,U )) − 1|. Hence
g(T (xf,U )) > 0 and thus T (xf,U ) ∈ U . Thus the net T (xf,U ) converges to y for
U → y and since T is a closed embedding there exists a unique x with T (x) = y
and x = limU xf,U . Consequently f(x) = f(limU xf,U ) = limU f(xf,U ) since f is
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continuous and thus |f(x)− ϕ(f)| ≤ 1 for all f ∈ A and in particular for n f , thus
|f(x)− ϕ(f)| ≤ 1

n for all n, i.e. f(x) = ϕ(f) for all f ∈ A.

The additional assertions are obvious. �

19.9. Corollary. [Adam et al., 1999, 5.6]. Let E be a locally convex space,
A ⊇ E∗, and let ϕ ∈ HomA be ω-evaluating. Assume ϕ is E∗-evaluating (this

holds if (E, σ(E,E∗)) is realcompact by 18.27 , e.g.). Then ϕ is evaluating on A
if one of the following two conditions is satisfied:

1. E admits ω-small-Pf (E)-zerosets and A ⊇ Pf (E).
2. E admits ω-small-C∞lfs (E)-zerosets and A ⊇ C∞lfs (E).

Proof. We may apply 19.8.2 to X = Y := E, AX = A and AY either Pf (E) or

C∞lfs (E), since ϕ is evaluating on Pf (E) by 18.27 and by the proof of 18.3 and

18.17 it is evaluating on functions obtained by composing with smooth functions
and by taking locally finite sums and hence on C∞lfs (E). �

19.10. Lemma. [Adam et al., 1999, 5.5].

(1) If a space is A-regular then it admits 1-small A-zerosets (and in turn also
ω-small A-zerosets).

(2) For any cardinality m, any m-isolating algebra A has m-small A-zerosets.
(3) If a topological space X is first countable and admits ω-small A-zerosets then
A is ω-isolating.

(4) Any Lindelöf locally convex space admits ω-small Pf -zerosets.

The converse to ( 1 ) is false for Pf (E), where E is an infinite dimensional separable
Banach space E, see [Adam et al., 1999, 5.5].

The converse to ( 2 ) is false for Pf (RΓ) with uncountable Γ, see [Adam et al., 1999,
5.5].

Proof. ( 1 ) and ( 2 ) are obvious.

( 3 ) Let x ∈ X and U a countable neighborhood basis of x. For every U ∈ U there

is a countable set GU ⊆ A with
⋂
g∈GU g

−1(g(y)) ⊆ U . Then G :=
⋃
U∈U GU is

countable and ⋂
g∈G

g−1(g(y)) ⊆
⋂
U∈U

⋂
g∈GU

g−1(g(y)) ⊆
⋂
U∈U

U = {y}

( 4 ) Take a point x and an open set U with x ∈ U ⊆ E. For each y ∈ E \ U let
py ∈ E∗ ⊆ Pf (E) with py(x) = 0 and py(y) = 1. Set Vy := {z ∈ E : py(z) > 0}. By
the Lindelöf property, there is a sequence (yn) in E \ U such that {U} ∪ {Vyn}n∈N
is a cover of E. Hence for each y ∈ E \ U there is some n ∈ N such that y ∈ Vyn ,
i.e. pyn(y) > 0 = pyn(x). �

19.11. Theorem. [Kriegl and Michor, 1993] & [Biström and Lindström, 1993b,
Prop.4]. Let X be a closed subspace of

∏
i∈I Xi, let A be an algebra of functions on
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X and let Ai be algebras on Xi, respectively, such that pr∗i (Ai) ⊆ A for all i. Let
m be 1 or an infinite cardinal.

If each Xi admits m-small Ai-zerosets then X admits m-small A-zerosets.

If in addition ϕ ∈ HomA is m-evaluating on A and ϕi := ϕ ◦ pr∗i ∈ HomAi is
evaluating on Ai for all i, then ϕ is evaluating A on X.

Proof. We consider Y :=
∏
iXi and the algebra AY generated by

⋃
i{fi ◦ pri :

fi ∈ AXi}, where prj :
∏
iXi → Xj denotes the canonical projection.

Now we prove the first statement for AY . Let x ∈ Y and U a neighborhood of
x = (xi)i in Y , which we may assume to be of the form

∏
i Ui with Ui = Xi for all

but finitely many i. Let F be the finite set of those exceptional i. For each i ∈ F we
choose a set Gi ⊆ A with

⋂
g∈Gi g

−1(g(xi)) ⊆ Ui. Without loss of generality we may

assume g(xi) = 0 and g ≥ 0 (replace g by x 7→ (g(x)−g(xi))
2). For any g ∈

∏
i∈F Gi

we define g̃ ∈ AY by g̃ :=
∑
i∈F gi ◦ pri ∈ AY . Then g̃(x) =

∑
i∈F gi(xi) = 0 and⋂

g∈
∏
i∈F Gi

g̃−1(0) ⊆ U,

since for z /∈ U we have zi /∈ Ui for at least one i ∈ F . Note that |
∏
i∈F Gi| ≤ m,

since m is either 1 or infinite.

The algebra AY is evaluating, since ϕi := ϕ ◦ pri
∗ : AXi → AX → R is an algebra

homomorphism and AXi is evaluating, so there exists a point ai ∈ Xi such that
ϕ(fi ◦pri) = (ϕ◦pri

∗)(fi) = fi(ai) for all fi ∈ AXi , thus every f ∈ AY is evaluated
at a := (ai)i.

Finally, if X is a closed subspace of the product Y :=
∏
iXi then we can apply

19.8.1 and 19.8.2 . �

19.12. Theorem 19.11 is usually applied as follows. Let U be a zero-neighborhood

basis of a locally convex space E. Then E embeds into
∏
U∈U Ê(U), where Ê(U)

denotes the completion of the Banach space E(U) := E/ ker pU , where pU denotes
the Minkowski functional of U . If E is complete, then this is a closed embedding,

and in order to apply 19.11 we have to find an appropriate basis U and for each U ∈
U an algebra AU on Ê(U), which pulls back into A along the canonical projections

πU : E → E(U) ⊆ Ê(U), such that the Banach space Ê(U) is AU -realcompact and
has m-small AU -zerosets.

Examples.

(1) [Kriegl and Michor, 1993]. A complete, trans-separable (i.e. contained in prod-
uct of separable normed spaces) locally convex space is A-realcompact for every
1-evaluating algebra A ⊇

⋃
U π
∗
U (Pf ).

Note that for products of separable Banach spaces one has C∞ = C∞, see
[Adam, 1993, 9.18] & [Kriegl and Michor, 1993].

(2) [Biström, 1993, 4.5]. A complete, Hilbertizable (i.e. there exists a basis of
Hilbert seminorms, in particular nuclear spaces) locally convex space is A-
realcompact for every 1-evaluating A ⊇

⋃
U π
∗
U (P ).
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(3) [Biström and Lindström, 1993b, Cor.3]. Every complete non-measurable WCG
locally convex space is C∞-realcompact.

(4) [Biström and Lindström, 1993b, Cor.5]. Any reflexive non-measurable Fréchet
space is C∞ = C∞-realcompact.

(5) [Biström and Lindström, 1993b, Cor.4]. Any complete non-measurable infra-
Schwarz (i.e. a 0-neighborhood basis exists such that the connecting mappings
are weakly compact) space is C∞-realcompact.

(6) [Biström, 1993, 4.16-4.18]. Every countable coproduct of locally convex spaces,
and every countable `p-sum or c0-sum of Banach-spaces injects continuously
into the corresponding product. Thus from A being ω-isolating and evaluating

on each factor, we deduce the same for the total space by 19.1.2 if A is
ω-evaluating on it.

A locally convex space is usually called WCG if there exists a sequence of absolutely
convex, weakly-compact subsets, whose union is dense.

Proof. ( 1 ) We have for Ê(U) that it is A-realcompact for every 1-evaluating

A ⊇ P by 18.26 and Pf is 1-isolating by 19.2 and hence has 1-small zero sets by

19.10.2 .

For a product E of metrizable spaces the two algebras C∞(E) and C∞(E) coincide:
Every Mackey continuous function, and in particular every C∞-function, depends
only on countable many coordinates, thus factors over the projection to some sub-
product with countable index set A. This can be shown by the same proof as for a

product of factors R in 4.27 , since the result of [Mazur, 1952] is valid for a product
of separable metrizable spaces. For every countable subset A of the index set, the
corresponding product is metrizable, hence C∞ and C∞ coincide.

( 2 ) By 19.3 we have that `2(Γ) is A-realcompact for every 1-evaluating A ⊇ P
and P is 1-isolating.

( 3 ) For every U the Banach space Ê(U) is then WCG, hence as in 19.7.1 there is

a SPRI, and by 53.20 a continuous linear injection into some c0(Γ). By 19.5 any
ω-evaluating algebra A on c0(Γ) which contains C∞lfs is evaluating and ω-isolating.

By 19.1.2 this is true for such stable algebras on Ê(U), and hence by 19.11 for
E.

( 4 ) Here E(U) embeds into C(K), where K := (Uo, σ(E′, E′′)) is Talagrand com-
pact [Cascales and Orihuela, 1987, theorem 12] and hence Corson compact [Negre-

pontis, 1984, 6.23]. Thus by 19.7.2 we have PRI. Now we proceed as in ( 3 ).

( 5 ) Any complete infra-Schwarz space is a closed subspace of a product of reflexive
and hence WCG Banach spaces, since weakly compact mappings factor over such

spaces by [Jarchow, 1981, p.374]. Hence we may proceed as in ( 3 ). �

Short Exact Sequences

In the following we will consider exact sequences of locally convex spaces

0→ H −ι→ E −π→ F,
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i.e. ι : H → E is a embedding of a closed subspace and π has ι(H) as kernel. Let
algebras AH , AE and AF on H, E and F be given, which satisfy π∗(AF ) ⊆ AE and
ι∗(AE) ⊇ AH , the latter one telling us that AH functions on H can be extended

to AE functions on E. This is a very strong requirement, since by 21.11 not even
polynomials of degree 2 on a closed subspace of a Banach space can be extended
to a smooth function. The only algebra, where we have the extension property in
general is that of finite type polynomials. So we will apply the following theorem

in 19.14 and 19.15 to situations, where AH is of quite different type then AE
and AF .

19.13. Theorem. [Adam et al., 1999, 6.1]. Let 0→ H −ι→ E −π→ F be an exact
sequence of locally convex spaces equipped with algebras satisfying

(i) π∗(AF ) ⊆ AE and ι∗(AE) ⊇ AH .
(ii) AF is ω-isolating on F .
(iii) AE is translation invariant.

Then we have:

(1) If AH is ω-isolating on H then AE is ω-isolating on E.
(2) If H has ω-small AH-zerosets then E has ω-small AE-zerosets.

If in addition

(iv) Homω AF = F and Homω AH = H,

then we have:

(3) If ϕ ∈ HomAE is ω-evaluating on AE then ϕ is evaluating on A0 := {f ∈
AE : ι∗(f) ∈ AH}.

(4) If ϕ ∈ HomAE is ω-evaluating on AE and if AH is ω-isolating on H then ϕ
is evaluating on AE; i.e., E = Homω AE.

Proof. We have to isolate an arbitrary point in E by functions in AE . By (iii)
we may assume that this point is 0. By (ii) there is a sequence (gn) in AF which
isolates π(0) = 0 in F , i.e. gn(0) = 0 and

⋂
g−1
n (0) = {0}.

( 1 ) By assumption there exist countable many hn ∈ AH which isolate 0 in H.

According to (i) π∗(gn) ∈ AE and there exist h̃n ∈ AE with h̃n ◦ ι = hn. Now the

functions π∗(gn) together with the sequence (h̃n) isolate 0. Indeed, if x ∈ E is such
that (gn ◦ π)(x) = (gn ◦ π)(0) for all n, then π(x) = π(0) = 0, i.e. x ∈ H. From

hn(x) = h̃n(x) = h̃n(0) = hn(0) we conclude that x = 0.

( 2 ) Let U be a 0-neighborhood in E. By assumption there are countably many
hn ∈ AH with 0 ∈

⋂
n Z(hn) ⊆ U ∩ H. As before π∗(gn) ∈ AE and there exist

h̃n ∈ AE with h̃n ◦ ι = hn. The common kernel of the functions in the sequences
(h̃n) and (π∗(gn)) contains 0 and is contained in π−1(π(0)) = H and hence in
U ∩H ⊆ U .

Now the remaining two statements:
Let ϕ ∈ Homω AE . Then ϕ ◦ π∗ : AF → R is a ω-evaluating homomorphism, and
hence given by the evaluation at a point y ∈ F by (iv). By (ii) there is a sequence
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(gn) in AF which isolates y. Since ϕ is ω-evaluating there exists a point x ∈ E,
such that gn(y) = ϕ(π∗(gn)) = π∗(gn)(x) = gn(π(x)) for all n. Hence y = π(x).
Similarly ϕ evaluates each countable set in AE at a point in π−1(y) ∼= H. So ϕ
induces a ω-evaluating homomorphism ϕH : AH → R by ϕH(ι∗(f)) := ϕ(f( −x))
for f ∈ A0. In fact let f , f̄ ∈ A0 with ι∗(f) = ι∗(f̄). Then ϕ evaluates f( −x),
f̄( −x) and all π∗(gn) at some common point x̄. So π(x̄) = y = π(x), hence
x̄− x ∈ H and f(x̄− x) = f̄(x̄− x).
By (iv), ϕH is given by the evaluation at a point z ∈ H.

( 3 ) Here we have that AH = ι∗(A0), and hence

ϕ(f) = ϕH(ι∗(f( +x)) = ι∗(f( +x)(z)) = f(ι(z) + x)

for all f ∈ A0. So ϕ is evaluating on A0.

( 4 ) We show that ϕ = evι(z)+x on AE . Indeed, by the special assumption there
is a sequence (hn) in AH which isolates z. By (i) and (iii), we may find fn ∈ AE
such that hn = ι∗(fn( +x)). The sequences (π∗(gn)) and (fn) isolate ι(z) +x. So
let f ∈ AE be arbitrary. Then there exists a point z1 ∈ E, such that ϕ = evz1 for
all these functions, hence z1 = ι(z) + x. �

19.14. Corollary. [Adam et al., 1999, 6.3]. Let 0→ H −ι→ E −π→ F be an exact
sequence of locally convex spaces and let AF and AE ⊇ E∗ be algebras on F and

E, respectively, that satisfy all the assumptions (i-iv) of 19.13 not involving AH .
Let furthermore ϕ : AE → R be ω-evaluating and ϕ◦π∗ be evaluating on AF . Then
we have

(1) The homomorphism ϕ is AE-evaluating if (H,σ(H,H∗)) is realcompact and
admits ω-small Pf -zerosets.

(2) The homomorphism ϕ is A0-evaluating if (H,σ(H, ι∗(A0))) is Lindelöf and
A0 ⊆ AE is some subalgebra.

(3) The homomorphism ϕ is E′-evaluating if (H,σ(H,H∗)) is realcompact.

Proof. We will apply 19.13.3 . For this we choose appropriate subalgebras A0 ⊆
AE and put AH := ι∗(A0). Then (i-iii) of 19.13 is satisfied. Remains to show for
(iv) that Homω(AH) = H in the three cases:

( 1 ) Let A0 := AE . Then we have Homω(AH) = H by 19.9.1 using 18.27 .

( 2 ) If HAH = (H,σ(H,AH)) is Lindelöf, then H = Homω(AH), by 18.24 .

( 3 ) Let A0 := Pf (E). Then AH := ι∗(A0) = Pf (H) by Hahn-Banach. If H is

σ(H,H∗)-realcompact, then H = Homω(AH), by 18.27 . �

19.15. Theorem. [Adam et al., 1999, 6.4 and 6.5]. Let c0(Γ)−ι→ E −π→ F be a
short exact sequence of locally convex spaces where AE is translation invariant and
contains (π∗(AF ) ∪ E∗)∞lfs, and where F is AF -regular.

Then ι∗(AE) contains the algebra Ac0(Γ) which is generated by all functions x 7→∏
γ∈Γ η(xγ), where η ∈ C∞(R,R) is 1 near 0.

If AF is ω-isolating on F then AE is ω-isolating on E. If in addition F = Homω AF
and Γ is non-measurable then E = Homω AE.



19.15 19. Stability of Smoothly Realcompact Spaces 221

Proof. Let us show that the function x 7→
∏
γ∈Γ η(xγ) can be extended to a

function in AE .
Remark that this product is locally finite, since x ∈ c0(Γ) and η = 1 locally around
0. Let p be an extension of the supremum norm ‖ ‖∞ on c0(Γ) to a continuous
seminorm on E, and let p̃ be the corresponding quotient seminorm on F defined by
p̃(y) := inf{p(x) : π(x) = y}. Let furthermore `γ be a continuous linear extensions
of prγ : c0(Γ) → R which satisfy |`γ(x)| ≤ p(x) for all x ∈ E. Finally let ε > 0 be
such that η(t) = 1 for |t| ≤ ε.
We show first, that for the open subset {x ∈ E : p̃(π(x)) < ε} the product∏
γ∈Γ η(`γ(x)) is locally finite as well. So let p̃(π(x)) < ε and 3 δ := ε − p̃(π(x)).

We claim that

Γx := {γ : |`γ(x)| ≥ p̃(π(x)) + 2δ}
is finite. In fact by definition of the quotient seminorm p̃(π(x)) := inf{p(x + y) :
y ∈ c0(Γ)} there is a y ∈ c0(Γ) such that p(x + y) ≤ p̃(π(x)) + δ. Since y ∈ c0(Γ)
the set Γ0 := {γ : |yγ | ≥ δ} is finite. For all γ /∈ Γ0 we have

|`γ(x)| ≤ |`γ(x+ y)|+ |`γ(y)| ≤ p(x+ y) + |yγ | < p̃(π(x)) + 2 δ,

hence Γx ⊆ Γ0 is finite.
For any z ∈ E with p(z − x) ≤ δ and γ /∈ Γx we have

|`γ(z)| ≤ |`γ(x)|+ |`γ(z − x)| < p̃(π(x)) + 2 δ + p(z − x) ≤ p̃(π(x)) + 3 δ = ε,

hence η(`γ(z)) = 1 and the product is locally finite.

In order to obtain the required extension to all of E, we choose 0 < ε′ < ε and a
function g ∈ AF with carrier contained inside {z : p̃(z) ≤ ε′} and with g(0) = 1.
Then f : E → R defined by

f(x) := g(π(x))
∏
γ∈Γ

η(`γ(x))

is an extension belonging to 〈π∗(AF ) ∪ (E∗)∞lfs〉Alg ⊆ (π∗(AF ) ∪ E∗)∞lfs ⊆ AE .

Let us now show that we can find such an extension with arbitrary small carrier,
and hence that E is AE-regular.
So let an arbitrary seminorm p on E be given. Then there exists a δ > 0 such
that δ p|c0(Γ) ≤ ‖ ‖∞. Let q be an extension of ‖ ‖∞ to a continuous seminorm
on E. By replacing p with max{q, δ p} we may assume that p|c0(Γ) = ‖ ‖∞ and
the unit ball of the original p contains the δ-ball of the new p. Let again p̃ be the
corresponding quotient norm on F .

Then the construction above with some 0 < ε′ < ε < ε′′ ≤ δ/3, for η ∈ C∞(R,R)
with η(t) = 1 for |t| ≤ ε and η(t) = 0 for |t| > ε′′ > ε and g ∈ C∞(F,R) with
carr(g) ⊆ {y ∈ F : p̃(y) ≤ ε′ < ε} gives us a function f ∈ AE and it remains to
show that the carrier of f is contained in the δ-ball of p. So let x ∈ E be such
that f(x) 6= 0. Then on one hand g(π(x)) 6= 0 and hence p̃(π(x)) ≤ ε′ and on
the other hand η(`γ(x)) 6= 0 for all γ ∈ Γ and hence |`γ(x)| ≤ ε′′. We have a
unique continuous linear mapping T : `1(Γ) → E∗, which maps prγ to `γ , and

satisfies |T (y∗)(z)| ≤ ‖y∗‖ p(z) for all z ∈ E since the unit ball of `1(Γ) is the
closed absolutely convex hull of {prγ : γ ∈ Γ}. By Hahn-Banach there is some
` ∈ E∗ such that |`(z)| ≤ p(z) for all z and `(x) = p(x). Hence ι∗(`) = `|c0(Γ) is in
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the unit ball of `1(Γ), and hence |T (ι∗(`))(x)| ≤ ε′′, since |`γ(x)| ≤ ε′′. Moreover
|T (ι∗(`))(z)| ≤ p(z). Then `0 := (T ◦ ι∗ − 1)(`) = T (`|c0(Γ)) − ` ∈ E∗ vanishes
on c0(Γ) and |`0(z)| ≤ 2 p(z) for all z. Hence |`0(x)| ≤ 2 p̃(π(x)) ≤ 2 ε′. So
p(x) = |`(x)| ≤ |T (ι∗(`))(x)|+ |`0(x)| ≤ ε′′ + 2 ε′ < δ.

Because of the extension property Ac0(Γ) ⊆ ι∗(AE) and since c0(Γ) is Ac0(Γ)-regular

and hence by 19.10.1 and 19.10.3 ω-isolated, we can apply 19.13.1 to obtain the

statement on ω-isolatedness. The evaluating property now follows from 19.13.4

using that Homω Ac0(Γ) = c0(Γ) by 18.30.1 . �

19.16. The class c0-ext. We shall show in 19.18 that in the short exact sequence

of 19.15 we can in fact replace c0(Γ) by spaces from a huge class which we now
define.

Definition. Let c0-ext be the class of spaces H, for which there are short exact
sequences c0(Γj)→ Hj → Hj+1 for j = 1, ..., n, with |Γj | non-measurable, Hn+1 =
{0} and T : H → H1 an operator whose kernel is weakly realcompact and has

ω-small Pf -zerosets (By 18.18.1 and 19.2 these two conditions are satisfied, if it
has for example a weak∗-separable dual).

Of course all spaces which admit a continuous linear injection into some c0(Γ) with
non-measurable Γ belong to c0-ext. Besides these there are other natural spaces
in c0-ext. For example let K be a compact space with |K| non-measurable and
K(ω0) = ∅, where ω0 is the first infinite ordinal and K(ω0) the corresponding ω0-th
derived set. Then the Banach space C(K) belongs to c0-ext, but is in general not
even injectable into some c0(Γ), see [Godefroy et al., 1988]. In fact, from K(ω) = ∅
and the compactness of K, we conclude that K(n) = ∅ for some integer n. We have
the short exact sequence

c0(K \K(1)) ∼= E −ι→ C(K)−π→ C(K)/E ∼= C(K(1)),

where E := {f ∈ C(K) : f |K(1) = 0}. By using 19.15 inductively the space C(K)
is C∞lfs -regular. Again this is an example of a Banach space E with E = HomC∞(E)

that we are able to obtain without using the quite complicated result 16.20.1 that
it admits C∞-partition of unity.

19.17. Lemma. Pushout. [Adam et al., 1999, 6.6]. Let a closed subspace
ι : H ↪→ E and a continuous linear mapping T : H → H1 of locally convex spaces
be given.

Then the pushout of ι and T is the locally convex space E1 := H1 × E/{(Tz,−z) :
z ∈ H}. The natural mapping ι1 : H → E1, given by u 7→ [(u, 0)] is a closed
embedding and the natural mapping T1 : E → E1 given by T1(x) := [(0, x)] is
continuous and linear. Moreover, if T is a quotient mapping then so is T1.

Given a short exact sequence H −ι→ E −π→ F of locally convex vector spaces and
a continuous linear map T : H → H1 then we obtain by this construction a short
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exact sequence H1 −ι1→ E1 −π1→ F and a (unique) extension T1 : E → E1 of T ,
with kerT = kerT1, such that the following diagram commutes

kerT� _

��

kerT1� _

��

// // 0 � _

��
H �
� ι //

T

��

E

T1

��

π // // F

H1
� � ι1 // E1

π1 // // F

Proof. Since H is closed in E the space E1 is a Hausdorff locally convex space.
The mappings ι1 and T1 are clearly continuous and linear. And ι1 is injective, since
(u, 0) ∈ {(T (z),−z) : z ∈ H} implies 0 = z and u = T (z) = T (0) = 0. In order to
see that ι1 is a topological embedding let U be an absolutely convex 0-neighborhood
in H1. Since ι is a topological embedding there is a 0-neighborhood W in E with
W ∩H = T−1(U). Now consider the image of U ×W ⊆ H1×E under the quotient
map H1 ×E → E1. This is a 0-neighborhood in E1 and its inverse image under ι1
is contained in 2U . Indeed, if [(u, 0)] = [(x, z)] with u ∈ H1, x ∈ U and z ∈ W ,
then x− u = T (z) and z ∈ H ∩W , by which u = x− T (z) ∈ U − U = 2U . Hence
ι1 embeds H1 topologically into E1.

We have the universal property of a pushout, since for any two continuous linear
mappings α : E → G and β : H1 → G with β ◦ T = α ◦ ι, there exists a unique
linear mapping γ : E1 → G, given by [(u, x)] 7→ α(x) − β(u) with γ ◦ T1 = α and
γ ◦ ι1 = β. Since H1 ⊕ E → E1 is a quotient mapping γ is continuous as well.

Let now π : E → F be a continuous linear mapping with kernel H, e.g. π the
natural quotient mapping E → F := E/H. Then by the universal property we get
a unique continuous linear π1 : E1 → F with π1 ◦ T1 = π and π1 ◦ ι1 = 0. We have
ι1(H1) = ker(π1), since 0 = π1[(u, z)] = π(z) if and only if z ∈ H, i.e. if and only if
[(u, z)] = [(u+ Tz, 0)] lies in the image of ι1. If π is a quotient map then clearly so
is π1. In particular the image of ι1 is closed.

Since T (x) = 0 if and only if [(0, x)] = [(0, 0)], we have that kerT = kerT1. Assume
now, in addition, that T is a quotient map. Given any [(y, x)] ∈ E1, there is then
some z ∈ H with T (z) = y. Thus T1(x + z) = [(0, x + z)] = [(T (z), x)] = [(y, x)]
and T1 is onto. Remains to prove that T1 is final, which follows by categorical
reasoning. In fact let g : E1 → G be a mapping with g ◦ T1 continuous and linear.
Then g ◦ ι1 : H1 → G is a mapping with (g ◦ ι1)◦T = g ◦T1 ◦ ι continuous and linear
and since T is final also g ◦ ι1 is continuous. Thus g composed with the quotient
mapping H1 ⊕ E → E1 is continuous and linear and thus also g itself. �

19.18. Theorem. [Adam et al., 1999, 6.7]. Let H −ι→ E −π→ F be a short exact
sequence of locally convex spaces, let F be C∞lfs -regular and let H be of class c0-ext,

see 19.16 .

If C∞lfs (F ) is ω-isolating on F then C∞lfs (E) is ω-isolating on E. If, in addition,
F = Homω C

∞
lfs (F ) then E = Homω C

∞
lfs (E).
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Proof. Since H is of class c0-ext there are short exact sequences c0(Γj) → Hj →
Hj+1 for j = 1, ..., n such that |Γj | is non-measurable, Hn+1 = {0}, and T : H → H1

is an operator whose kernel is weakly realcompact and has ω-small Pf -zerosets. We
proceed by induction on the length of the resolution

H0 := H → H1 � · · ·� Hn+1 = {0}.

According to 19.17 we have for every continuous linear T : Hj → Hj+1 the
following diagram

kerT� _

��

kerT1� _

��

// // 0� _

��
Hj
� � ιj //

T

��

Ej

T1

��

pj // // F

Hj+1
� � ιj+1 // Ej+1

πj+1 // // F

For j > 0 we have that kerT = c0(Γ) for some non-measurable Γ, and T and T1 are
quotient mappings. So let as assume that we have already shown for the bottom
row, that Ej+1 has the required properties and is in addition C∞lfs -regular. Then by

the exactness of the middle column we get the same properties for Ej using 19.15 .
If j = 0, then the kernel is by assumption weakly paracompact and admits ω-small

Pf -zerosets. Thus applying 19.14.1 and 19.13.1 to the left exact middle column
we get the required properties for E = E0. �

A Class of C∞lfs-Realcompact Locally Convex Spaces

19.19. Definition. Following [Adam et al., 1999] let RZ denote the class of all
locally convex spaces E which admit ω-small C∞lfs -zerosets and have the property
that E = Homω A for each translation invariant algebra A with C∞lfs (E) ⊆ A ⊆
C(E). In particular this applies to the algebras C, C∞ and C∞ ∩ C.

Note that for every continuous linear T : E → F we have T ∗ : C∞lfs (F ) → C∞lfs (E).
In fact we have T ∗(F ∗) ⊆ E∗, hence T ∗ : (F ∗)∞ → (E∗)∞ and T ∗(

∑
i fi) is again

locally finite, if T is continuous and
∑
i fi is it.

A locally convex space E with ω-small C∞lfs -zerosets belongs to RZ if and only if

E = Homω C
∞
lfs (E) = HomC∞lfs (E). In fact by 18.11 we have Homω C

∞
lfs (E) =

HomC∞lfs (E). Now let A ⊇ C∞lfs (E) and let ϕ ∈ Homω A be countably evaluating.

Then by 19.8.2 applied to X = Y = E, AX := A and AY := C∞lfs (E) the
homomorphism ϕ is evaluating on A.

Note that by 19.10.3 for metrizable E the condition of having ω-small C∞lfs -zerosets

can be replaced by C∞lfs being ω-isolating. Moreover, by 19.10.1 it is enough to
assume that E is C∞lfs -regular in order that E belongs to RZ.

19.20. Proposition. The class RZ is closed under formation of arbitrary products
and closed subspaces.
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Proof. This is a direct corollary of 19.11 . �

19.21. Proposition. [Adam et al., 1999]. Every locally convex space that admits
a linear continuous injection into a metrizable space of class RZ is itself of class
RZ.

Proof. Use 19.1.2 and 19.10.3 . �

19.22. Corollary. [Adam et al., 1999]. The countable locally convex direct sum
of a sequence of metrizable spaces in RZ belongs to RZ.

The class of Banach spaces in RZ is closed under forming countable c0-sums and
`p-sums with 1 ≤ p ≤ ∞.

Proof. By 19.20 the class RZ is stable under (countable) products. And 19.21
applies since a countable product of metrizable is again metrizable. �

19.23. Corollary. [Adam et al., 1999]. Among the complete locally convex spaces
the following belong to the class RZ:

(1) All trans-separable (i.e. subspaces of products of separable Banach spaces) lo-
cally convex spaces;

(2) All Hilbertizable locally convex spaces;
(3) All non-measurable WCG locally convex spaces;
(4) All non-measurable reflexive Fréchet spaces;
(5) All non-measurable infra-Schwarz locally convex spaces.

Proof. By 19.20 , 19.5 , and 19.21 we see that every complete locally convex
space E belongs to RZ, if it admits a zero-neighborhood basis U such that each

Banach space Ê(U) for U ∈ U injects into some c0(ΓU ) with non-measurable ΓU .

Apply this to the examples 19.12.1 - 19.12.5 . �

19.24. Proposition. [Adam et al., 1999]. Let 0 → H ↪→ E → F be an exact
sequence. Let F be in RZ and let C∞lfs be ω-isolating on F .

Then E is in RZ under any of the following assumptions.

(1) The sequence 0 → H → E → F → 0 is exact, H is in c0-ext and F is
C∞lfs -regular; Here it follows also that C∞lfs is ω-isolating on E.

(2) The sequence 0 → H → E → F → 0 is exact, H = c0(Γ) for some non-
measurable Γ and F is C∞lfs -regular; Here it follows also that E is C∞lfs -regular.

(3) The weak topology on H is realcompact and H admits ω-small Pf -zerosets.

In particular we have:

(4) The class c0-ext is a subclass of RZ.

Proof. ( 1 ) This is 19.18 .

( 2 ) follows directly from 19.15 applied to the algebra A = C∞lfs .
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( 3 ) By 19.13.2 the space E has ω-small C∞lfs -zerosets. By 19.14.1 we have

assumption (iv) in 19.13 , and then by 19.13.4 we have E = Homω(C∞lfs (E)).
Thus E belongs to RZ.

( 4 ) Since every space E in c0-ext is obtained by applying finitely many construc-

tions as in ( 2 ) and a last one as in ( 3 ) we get it for E. �

19.25. Remark. [Adam et al., 1999]. The class RZ is ‘quite big’. By 19.24.4
we have that c0-ext is a subclass of RZ. Also the following spaces are in RZ:

The space C(K) where K is the one-point compactification of the topological

disjoint union of a sequence of compact spaces Kn with K
(ω)
n = ∅. In fact we

have a continuous injection given by the countable product of the restriction maps

C(K) → C(Kn). Hence the result follows from 19.24.4 using also the remark in

19.16 for the C(Kn), followed by 19.20 for the product and by 19.21 for C(K).

Remark that in such a situation we might have K(ω) = {∞} 6= ∅.
The space D[0, 1] of all functions f : [0, 1]→ R which are right continuous and have
left limits and endowed with the sup norm is in RZ. Indeed it contains C[0, 1] as a

subspace and D[0, 1]/C[0, 1] ∼= c0[0, 1] according to [Corson, 1961]. By 18.27 we
have that C[0, 1] is weakly Lindelöf and Pf is ω-isolating, since {evt : t ∈ Q∩ [0, 1]}
are point-separating. Now we use 19.24.3 .

Open Problem. Is `∞(Γ) in RZ for |Γ| non-measurable, i.e. is C∞lfs (`∞(Γ)) ω-
isolating on `∞(Γ) and is Homω C

∞
lfs (`∞(Γ)) = `∞(Γ)?

If this is true, then every complete locally convex space E of non-measurable cardi-
nality would be in RZ, since every Banach space E is a closed subspace of `∞(Γ),
where Γ is the closed unit-ball of E∗.
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20. Sets on which all Functions are Bounded

In this last section the relationship of evaluation properties and bounding sets, i.e.
sets on which every function of the algebra is bounded, are studied.

20.1. Proposition. [Kriegl and Nel, 1990, 2.2]. Let A be a convenient algebra,
and B ⊆ X be A-bounding. Then pB : f 7→ sup{|f(x)| : x ∈ B} is a bounded
seminorm on A.

A subset B ⊆ X is called A-bounding if f(B) ⊆ R is bounded for all f ∈ A .

Proof. Since B is bounding, we have that pB(f) < ∞. Now assume there is
some bounded set F ⊆ A, for which pB(F) is not bounded. Then we may choose

fn ∈ F , such that pB(fn) ≥
√
n2n. Note that {f2 : f ∈ F} is bounded, since

multiplication is assumed to be bounded. Furthermore pB(f2) = sup{|f(x)|2 :
x ∈ B} = sup{|f(x)| : x ∈ B}2 = pB(f)2, since t 7→ t2 is a monotone bijection
R+ → R+, hence pB(f2

n) ≥ n2n. Now consider the series
∑∞
n=0

1
2n f

2
n. This series is

Mackey-Cauchy, since (2−n)n ∈ `1 and {f2
n : n ∈ N} is bounded. SinceA is assumed

to be convenient, we have that this series is Mackey convergent. Let f ∈ A be its
limit. Since all summands are non-negative we have

pB(f) = pB

( ∞∑
n=0

1

2n
f2
n

)
≥ pB(

1

2n
f2
n) =

1

2n
pB(fn)2 ≥ n,

for all n ∈ N, a contradiction. �

20.2. Proposition. [Kriegl and Nel, 1990, 2.3] for A-paracompact, [Biström et al.,
1993, Prop.2]. If X is A-realcompact then the A-bounding subsets of X are exactly
the relatively compact subsets of XA.

Proof. Relative compact subsets or bounding, since every f ∈ A is continuous
with respect to XA. Conversely, consider the diagram

XA
� � ∼= // Hom(A)

� � // ∏
A R

and let B ⊆ X be A-bounding. Then its image in
∏
AR is relatively compact by

Tychonoff’s theorem. Since Hom(A) ⊆
∏
AR is closed, we have that B is relatively

compact in XA . �

20.3. Proposition. [Biström et al., 1995, Prop.7]. Every function f =
∑∞
n=0 pn ∈

Cωconv(`∞) converges uniformly on the bounded sets in c0. In particular, each boun-
ded set in c0 is Cωconv-bounding in l∞.

Proof. Take f =
∑∞
n=0 pn ∈ Cωconv(`∞). According to 7.14 , the function f may

be extended to a holomorphic function f̃ ∈ H(`∞ ⊗ C) on the complexification.
[Josefson, 1978] showed that each holomorphic function on `∞ ⊗ C is bounded on

every bounded set in c0⊗C. Hence, the restriction f̃ |c0⊗C is a holomorphic function

on c0⊗C which is bounded on bounded subsets. By 7.15 its Taylor series at zero∑∞
n=0 p̃n converges uniformly on each bounded subset of c0 ⊗ C. The statement

then follows by restricting to the bounded subsets of the real space c0. �
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20.4. Result. [Biström et al., 1995, Corr.8]. Every weakly compact set in c0, in
particular the set {en : n ∈ N} ∪ {0} with en the unit vectors, is RCωconv-bounding
in l∞.

20.5. Result. [Biström et al., 1995, Thm.5]. Let A be a functorial algebra on the
category of continuous linear maps between Banach spaces with RP ⊆ A. Then,
for every Banach space E, the A-bounding sets are relatively compact in E if there
is a function in A(`∞) that is unbounded on the set of unit vectors in `∞.

20.6. Result.

(1) [Biström and Jaramillo, 1994, Thm.2] & [Biström, 1993, p.73, Thm.5.23]. In
all Banach spaces the C∞lfcs-bounding sets are relatively compact.

(2) [Biström and Jaramillo, 1994, p.5] & [Biström, 1993, p.74,Cor.5.24]. Any C∞lfcs-
bounding set in a locally convex space E is precompact and therefore relatively
compact if E, in addition, is quasi-complete.

(3) [Biström and Jaramillo, 1994, Cor.4] & [Biström, 1993, p.74, 5.25]. Let E
be a quasi-complete locally convex space. Then E and EC∞lfcs have the same
compact sets. Furthermore xn → x in E if and only if f(xn) → f(x) for all
f ∈ C∞lfcs(E).
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In this chapter we will consider various extension and lifting problems. In the
first section we state the problems and give several counter-examples: We consider
the subspace F of all functions which vanish of infinite order at 0 in the nuclear
Fréchet space E := C∞(R,R), and we construct a smooth function on F that
has no smooth extension to E, and a smooth curve R → F ′ that has not even
locally a smooth lifting along E′ → F ′. These results are based on E. Borel’s
theorem which tells us that RN is isomorphic to the quotient E/F and the fact
that this quotient map E → RN has no continuous right inverse. Also the result

16.8 of [Seeley, 1964] is used which says that, in contrast to F , the subspace
{f ∈ C∞(R,R) : f(t) = 0 for t ≤ 0} of E is complemented.

In section 22 we characterize in terms of a simple boundedness condition on the
difference quotients those functions f : A→ R on an arbitrary subset A ⊆ R which
admit a smooth extension f̃ : R → R as well as those which admit an m-times
differentiable extension f̃ having locally Lipschitzian derivatives. This results are
due to [Frölicher and Kriegl, 1993] and are much stronger than Whitney’s extension
theorem, which holds for closed subsets only and needs the whole jet and conditions
on it. There is, however, up to now no analog in higher dimensions, since difference
quotients are defined only on lattices.

Section 23 gives an introduction to smooth spaces in the sense of Frölicher. These
are sets together with curves and functions which compose into C∞(R,R) and
determine each other by this. They are very useful for chasing smoothness of
mappings which sometimes leave the realm of manifolds.

In section 23 it is shown that there exist free convenient vector spaces over
Frölicher spaces, this means that to every such space X one can associate a con-
venient vector space λX together with a smooth map ιX : X → λX such that
for any convenient vector space E the map (ιX)∗ : L(λX,E) → C∞(X,E) is a
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bornological isomorphism. The space λX can be obtained as the c∞-closure of the
linear subspace spanned by the image of the canonical map X → C∞(X,R)′. In
the case where X is a finite dimensional smooth manifold we prove that the linear
subspace generated by {` ◦ evx : x ∈ X, ` ∈ E′} is c∞-dense in C∞(X,E)′. From
this we conclude that the free convenient vector space over a manifold X is the
space of distributions with compact support on X.

In the last 3 sections we discuss germs of smooth, holomorphic, and real analytic
functions on convex sets with non-empty interior, following [Kriegl, 1997]. Let us
recall the finite dimensional situation for smooth maps, so let first E = F = R
and X be a non-trivial closed interval. Then a map f : X → R is usually called
smooth, if it is infinite often differentiable on the interior of X and the one-sided
derivatives of all orders exist. The later condition is equivalent to the condition,
that all derivatives extend continuously from the interior of X to X. Furthermore,
by Whitney’s extension theorem these maps turn out to be the restrictions to X of
smooth functions on (some open neighborhood of X in) R. In case where X ⊆ R
is more general, these conditions fall apart. Now what happens if one changes
to X ⊆ Rn. For closed convex sets with non-empty interior the corresponding
conditions to the one dimensional situation still agree. In case of holomorphic and
real analytic maps the germ on such a subset is already defined by the values on
the subset. Hence, we are actually speaking about germs in this situation. In
infinite dimensions we will consider maps on just those convex subsets. So we do
not claim greatest achievable generality, but rather restrict to a situation which is
quite manageable. We will show that even in infinite dimensions the conditions
above often coincide, and that real analytic and holomorphic maps on such sets
are often germs of that class. Furthermore, we have exponential laws for all three
classes, more precisely, the maps on a product correspond uniquely to maps from
the first factor into the corresponding function space on the second.

21. Extension and Lifting Properties

21.1. Remark. The extension property. The general extension problem is to
find an arrow f̃ making a diagram of the following form commutative:

X
i //

f
%%

Y

f̃yy
Z

We will consider problems of this type for smooth, for real-analytic and for holo-
morphic mappings between appropriate spaces, e.g., Frölicher spaces as treated in

section 23 .

Let us first sketch a step by step approach to the general problem for the smooth
mappings at hand.

If for a given mapping i : X → Y an extension f̃ : Y → Z exists for all f ∈
C∞(X,Z), then this says that the restriction operator i∗ : C∞(Y,Z)→ C∞(X,Z)
is surjective.
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Note that a mapping i : X → Y has the extension property for all f : X → Z
with values in an arbitrary space Z if and only if i is a section, i.e. there exists a

mapping ĨdX : Y → X with ĨdX ◦ i = IdX . (Then f̃ := f ◦ ĨdX is the extension of
a general mapping f).

A particularly interesting case is Z = R. A mapping i : X → Y with the exten-
sion property for all f : X → R is said to have the scalar valued extension
property. Such a mapping is necessarily initial: In fact let g : Z → X be a
mapping with i ◦ g : X → Y being smooth. Then f ◦ g = f̃ ◦ i ◦ g is smooth for all
f ∈ C∞(X,R) and hence g is smooth, since the functions f ∈ C∞(X,R) generate
the smooth structure on the Frölicher space X.

More generally, we consider the same question for any convenient vector space
Z = E. Let us call this the vector valued extension property. Assume that
we have already shown the scalar valued extension property for i : X → Y , and
thus we have an operator S : C∞(X,R) → C∞(Y,R) between convenient vector
spaces, which is a right inverse to i∗ : C∞(Y,R) → C∞(X,R). It is reasonable to
hope that S will be linear (which can be easily checked). So the next thing would be
to check, whether it is bounded. By the uniform boundedness theorem it is enough
to show that evy ◦S : C∞(X,R) → C∞(Y,R) → Y given by f 7→ f̃(y) is smooth,
and usually this is again easily checked. By dualization we get a bounded linear
operator S∗ : C∞(Y,R)′ → C∞(X,R)′ which is a left inverse to i∗∗ : C∞(X,R)′ →
C∞(Y,R)′. Now in order to solve the vector valued extension problem we use the

free convenient vector space λX over a smooth space X given in 23.6 . Thus any

f ∈ C∞(X,E) corresponds to a bounded linear f̃ : λX → E. It is enough to extend

f̃ to a bounded linear operator λY → E given by f̃ ◦S∗. So we only need that S∗|λY
has values in λX, or equivalently, that S∗◦δY : Y → C∞(Y,R)′ → C∞(X,R)′, given

by y 7→ (f 7→ f̃(y)), has values in λX. In the important cases (e.g. finite dimensional
manifolds X), where λX = C∞(X,R)′, this is automatically satisfied. Otherwise it
is by the uniform boundedness principle enough to find for given y ∈ Y a bounding
sequence (xk)k in X (i.e. every f ∈ C∞(X,R) is bounded on {xk : k ∈ N}) and

an absolutely summable sequence (ak)k ∈ `1 such that f̃(y) =
∑
k akf(xk) for all

f ∈ C∞(X,R). Again we can hope that this can be achieved in many cases.

21.2. Proposition. Let i : X → Y be a smooth mapping, which satisfies the vector
valued extension property. Then there exists a bounded linear extension operator
C∞(X,E)→ C∞(Y,E).

Proof. Since i is smooth, the mapping i∗ : C∞(Y,E) → C∞(X,E) is a bounded
linear operator between convenient vector spaces. Its kernel is ker(i∗) = {f ∈
C∞(Y,E) : f ◦ i = 0}. And we have to show that the sequence

0 // ker(i∗) �
� // C∞(Y,E)

i∗ // C∞(X,E) // 0

splits via a bounded linear operator σ : C∞(X,E) 3 f 7→ f̃ ∈ C∞(Y,E), i.e. a
bounded linear extension operator.

By the exponential law 3.13 a mapping σ ∈ L(C∞(X,E), C∞(Y,E)) would cor-

respond to σ̃ ∈ C∞(Y,L(C∞(X,E), E)) and σ ◦ i∗ = Id translates to σ̃ ◦ i = Ĩd =
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δ : X → L(C∞(X,E), E), given by x 7→ (f 7→ f(x)), i.e. σ̃ must be a solution of
the following vector valued extension problem:

X
i //

δ

''

Y

σ̃ww
L(C∞(X,E), E)

By the vector valued extension property such a σ̃ exists. �

21.3. The lifting property. Dual to the extension problem, we have the lifting
problem, i.e. we want to find an arrow f̃ making a diagram of the following form
commutative:

X Y
poo

Z

f

ee

f̃

99

Note that in this situation it is too restrictive to search for a bounded linear or even
just a smooth lifting operator T : C∞(Z,X) → C∞(Z, Y ). If such an operator
exists for some Z 6= ∅, then p : Y → X has a smooth right inverse namely the
dashed arrow in the following diagram:

X
Id //

const∗

��

((

X

Y

p

66

C∞(Z, Y )

p∗ ''

evz

OO

C∞(Z,X)

T

77

Id // C∞(Z,X)

evz

OO

Again the first important case is, when Z = R. If X and Y are even convenient
vector spaces, then we know that the image of a convergent sequence tn → t under
a smooth curve c : R → Y is Mackey convergent. And since one can find by
the general curve lemma a smooth curve passing through sufficiently fast falling
subsequences of a Mackey convergent sequence, the first step could be to check
whether such sequences can be lifted. If bounded sets (or at least sequences) can
be lifted, then the same is true for Mackey convergent sequences. However, this is

not always true as we will show in 21.9 .

21.4. Remarks. The scalar valued extension property for bounded linear map-
pings on a c∞-dense linear subspace is true if and only if the embedding represents

the c∞-completion by 4.30 . In this case it even has the vector valued extension

property by 4.29 .
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That in general bounded linear functionals on a (dense or c∞-closed subspace) may
not be extended to bounded (equivalently, smooth) linear functionals on the whole

space was shown in 4.36.6 .

The scalar valued extension problem is true for the c∞-closed subspace of an un-

countable product formed by all points with countable support, see 4.27 (and

4.12 ). As a consequence this subspace is not smoothly real compact, see 17.5 .

Let E be not smoothly regular and U be a corresponding 0-neighborhood. Then
the closed subset X := {0}∪(E\U) ⊆ Y := E does not have the extension property
for the smooth mapping f = χ{0} : X → R.

Let E be not smoothly normal and A0, A1 be the corresponding closed subsets.
Then the closed subset X := A1 ∪ A2 ⊆ Y := E does not have the extension
property for the smooth mapping f = χA1

: X → R.

If q : E → F is a quotient map of convenient vector spaces one might expect that
for every smooth curve c : R → F there exists (at least locally) a smooth lifting,
i.e. a smooth curve c : R→ E with q ◦ c = c. And if ι : F → E is an embedding of
a convenient subspace one might expect that for every smooth function f : F → R
there exists a smooth extension to E. In this section we give examples showing
that both properties fail. As convenient vector spaces we choose spaces of smooth
real functions and their duals. We start with some lemmas.

21.5. Lemma. Let E := C∞(R,R), let q : E → RN be the infinite jet mapping at
0, given by q(f) := (f (n)(0))n∈N, and let F −ι→ be the kernel of q, consisting of all
smooth functions which are flat of infinite order at 0.

Then the following sequence is exact:

0→ F −ι→ E −q→ RN → 0.

Moreover, ι∗ : E′ → F ′ is a quotient mapping between the strong duals. Every
bounded linear mapping s : RN → E the composite q◦s factors over prN : RN → RN
for some N ∈ N, and so the sequence does not split.

Proof. The mapping q : E → RN is a quotient mapping by the open mapping

theorem 52.11 & 52.12 , since both spaces are Fréchet and q is surjective by

Borel’s theorem 15.4 . The inclusion ι is an embedding of Fréchet spaces, so the

adjoint ι∗ is a quotient mapping for the strong duals 52.28 . Note that these duals

are bornological by 52.29 .

Let s : RN → E be an arbitrary bounded linear mapping. Since RN is bornological
s has to be continuous. The set U := {g ∈ E : |g(t)| ≤ 1 for |t| ≤ 1} is a 0-
neighborhood in the locally convex topology of E. So there has to exist an N ∈ N
such that s(V ) ⊆ U with V := {x ∈ RN : |xn| < 1

N for all n ≤ N}. We show that

q ◦ s factors over RN . So let x ∈ RN with xn = 0 for all n ≤ N . Then k · x ∈ V
for all k ∈ N, hence k · s(x) ∈ U , i.e. |s(x)(t)| ≤ 1

k for all |t| ≤ 1 and k ∈ N. Hence
s(x)(t) = 0 for |t| ≤ 1 and therefore q(s(x)) = 0.

Suppose now that there exists a bounded linear mapping ρ : E → F with ρ◦ι = IdF .
Define s(q(x)) := x − ιρx. This definition makes sense, since q is surjective and
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q(x) = q(x′) implies x − x′ ∈ F and thus x − x′ = ρ(x − x′). Moreover s is a
bounded linear mapping, since q is a quotient map, as surjective continuous map
between Fréchet spaces; and (q ◦ s)(q(x)) = q(x)− q(ι(ρ(x))) = q(x)− 0. �

21.6. Proposition. [Frölicher and Kriegl, 1988, 7.1.5] Let ι∗ : E′ → F ′ the

quotient map of 21.5 . The curve c : R → F ′ defined by c(t) := evt for t ≥ 0 and
c(t) = 0 for t < 0 is smooth but has no smooth lifting locally around 0. In contrast,
bounded sets and Mackey convergent sequences are liftable.

Proof. By the uniform boundedness principle 5.18 c is smooth provided evf ◦c :
R→ R is smooth for all f ∈ F . Since (evf ◦c)(t) = f(t) for t ≥ 0 an (evf ◦c)(t) = 0
for t ≤ 0 this obviously holds.

Assume first that there exists a global smooth lifting of c, i.e. a smooth curve
e : R → E′ with ι∗ ◦ e = c. By exchanging the variables, c corresponds to a
bounded linear mapping c̃ : F → E and e corresponds to a bounded linear mapping
ẽ : E → E with ẽ ◦ ι = c̃. The curve c was chosen in such a way that c̃(f)(t) = f(t)
for t ≥ 0 and c̃(f)(t) = 0 for t ≤ 0.

We show now that such an extension ẽ of c̃ cannot exist. In 16.8 we have shown the
existence of a retraction s to the embedding of the subspace F+ := {f ∈ F : f(t) = 0
for t ≤ 0} of E. For f ∈ F one has s(ẽ(f)) = s(c̃(f)) = c̃(f) since c̃(E) ⊆ F+.
Now let Ψ : E → E, Ψ(f)(t) := f(−t) be the reflection at 0. Then Ψ(F ) ⊆ F and
f = c̃(f) + Ψ(c̃(Ψ(f))) for f ∈ F . We claim that ρ := s ◦ ẽ+ Ψ ◦ s ◦ ẽ ◦Ψ : E → F

is a retraction to the inclusion, and this is a contradiction with 21.5 . In fact

ρ(f) = (s ◦ ẽ)(f) + (Ψ ◦ s ◦ ẽ ◦Ψ)(f) = c̃(f) + Ψ(c̃(Ψ(f))) = f

for all f ∈ F . So we have proved that c has no global smooth lifting.

Assume now that c|I has a smooth lifting e0 : U → E′ for some open neighborhood
I of 0. Trivially c|Rr{0} has a smooth lifting e1 defined by the same formula as c.
Take now a smooth partition {f0, f1} of the unity subordinated to the open covering{

(−ε, ε),Rr {0}
}

of R, i.e. f0 + f1 = 1 with supp(f0) ⊆ (−ε, ε) and 0 /∈ supp(f1).
Then f0e0 + f1e1 gives a global smooth lifting of c, in contradiction with the case
treated above.

Let now B ⊆ F ′ be bounded. Without loss of generality we may assume that
B = Uo for some 0-neighborhood U in F . Since F is a subspace of the Fréchet
space E, the set U can be written as U = F ∩ V for some absolutely convex 0-
neighborhood V in E. Then the bounded set V o ⊆ E′ is mapped onto B = Uo by
the Hahn-Banach theorem. �

21.7. Proposition. [Frölicher and Kriegl, 1988, 7.1.7] Let ι : F → E be as in

21.5 . The function ϕ : F → R defined by ϕ(f) := f(f(1)) for f(1) ≥ 0 and
ϕ(f) := 0 for f(1) < 0 is smooth but has no smooth extension to E and not even
to a neighborhood of F in E.

Proof. We first show that ϕ is smooth. Using the bounded linear c̃ : F → E

associated to the smooth curve c : R→ F ′ of 21.6 we can write ϕ as the composite
ev ◦(c̃, ev1) of smooth maps.
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Assume now that a smooth global extension ψ : E → R of ϕ exists. Using a fixed
smooth function h : R → [0, 1] with h(t) = 0 for t ≤ 0 and h(t) = 1 for t ≥ 1, we
then define a map σ : E → E as follows:

(σg)(t) := ψ
(
g +

(
t− g(1)

)
h
)
−
(
t− g(1)

)
h(t).

Obviously σg ∈ E for any g ∈ E, and using cartesian closedness 3.12 one easily

verifies that σ is a smooth map. For f ∈ F one has, using that
(
f+
(
t−f(1)

)
h
)
(1) =

t, the equations

(σf)(t) =
(
f +

(
t− f(1)

)
h
)
(t)−

(
t− f(1)

)
h(t) = f(t)

for t ≥ 0 and (σf)(t) = 0 − (t − f(1))h(t) = 0 for t ≤ 0. This means σf = c̃f for
f ∈ F . So one has c̃ = σ◦ι with σ smooth. Differentiation gives c̃ = c̃′(0) = σ′(0)◦ι,
and σ′(0) is a bounded linear mapping E → E. But in the proof of 21.6 it was
shown that such an extension of c̃ does not exist.

Let us now assume that a local extension to some neighborhood of F in E exists.
This extension could then be multiplied with a smooth function E → R being 1
on F and having support inside the neighborhood (E as nuclear Fréchet space has

smooth partitions of unity see 16.10 ) to obtain a global extension. �

21.8. Remark. As a corollary it is shown in [Frölicher and Kriegl, 1988, 7.1.6]
that the category of smooth spaces is not locally cartesian closed, since pullbacks
do not commute with coequalizers.

Furthermore, this examples shows that the structure curves of a quotient of a
Frölicher space need not be liftable as structure curves and the structure functions
on a subspace of a Frölicher space need not be extendable as structure functions.

In fact, since Mackey-convergent sequences are liftable in the example, one can
show that every f : F ′ → R is smooth, provided f ◦ ι∗ is smooth, see [Frölicher and
Kriegl, 1988, 7.1.8].

21.9. Example. In [Jarchow, 1981, 11.6.4] a Fréchet Montel space is given, which
has `1 as quotient. The standard basis in `1 cannot have a bounded lift, since in
a Montel space every bounded set is by definition relatively compact, hence the
standard basis would be relatively compact.

21.10. Result. [Jarchow, 1981, remark after 9.4.5]. Let q : E → F be a quotient
map between Fréchet spaces. Then (Mackey) convergent sequences lift along q.

This is not true for general spaces. In [Frölicher and Kriegl, 1988, 7.2.10] it is
shown that the quotient map

∐
densA=0 RA → E := {x ∈ RN : dens(carr(x)) = 0}

does not lift Mackey-converging sequences. Note, however, that this space is not
convenient. We do not know whether smooth curves can be lifted over quotient
mappings, even in the case of Banach spaces.

21.11. Example. There exists a short exact sequence `2−ι→ E → `2, which does

not split, see 13.18.6 . The square of the norm on the subspace `2 does not extend
to a smooth function on E.
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Proof. Assume indirectly that a smooth extension of the square of the norm exists.
Let 2b be the second derivative of this extension at 0, then b(x, y) = 〈x, y〉 for all
x, y ∈ `2, and hence the following diagram commutes

`2
� � ι //

]∼=
��

E

b∨

��
(`2)∗ E∗

ι∗oooo

giving a retraction to ι. �

22. Whitney’s Extension Theorem Revisited

Whitney’s extension theorem [Whitney, 1934] concerns extensions of jets and not
of functions. In particular it says, that a real-valued function f from a closed
subset A ⊆ R has a smooth extension if and only if there exists a (not uniquely
determined) sequence fn : A → R, such that the formal Taylor series satisfies the

appropriate remainder conditions, see 22.1 . Following [Frölicher and Kriegl, 1993],
we will characterize in terms of a simple boundedness condition on the difference
quotients those functions f : A → R on an arbitrary subset A ⊆ R which admit a
smooth extension f̃ : R→ R as well as those which admit an m-times differentiable
extension f̃ having locally Lipschitzian derivatives.

We shall use Whitney’s extension theorem in the formulation given in [Stein, 1970].
In order to formulate it we recall some definitions.

22.1. Notation on jets. An m-jet on A is a family F = (F k)k≤m of continuous
functions on A. With Jm(A,R) one denotes the vector space of all m-jets on A.

The canonical map jm : C∞(R,R)→ Jm(A,R) is given by f 7→ (f (k)|A)k≤m.

For k ≤ m one has the ‘differentiation operator’ Dk : Jm(A,R) → Jm−k(A,R)
given by Dk : (F i)i≤m 7→ (F i+k)i≤m−k.

For a ∈ A the Taylor-expansion operator Tma : Jm(A,R) → C∞(R,R) of order m

at a is defined by Tma ((F i)i≤m) : x 7→
∑
k≤m

(x−a)k

k! F k(a).

Finally the remainder operator Rma : Jm(A,R)→ Jm(A,R) at a of order m is given
by F 7→ F − jm(Tma F ).

In [Stein, 1970, p.176] the space Lip(m + 1, A) denotes all m-jets on A for which
there exists a constant M > 0 such that

|F j(a)| ≤M and
∣∣(Rma F )j(b)

∣∣ ≤M |a− b|m+1−j

for all a, b ∈ A and all j ≤ m.

The smallest constant M defines a norm on Lip(m+ 1, A).
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22.2. Whitney’s Extension. The construction of Whitney for finite order m
goes as follows, see [Malgrange, 1966], [Tougeron, 1972] or [Stein, 1970]:

First one picks a special partition of unity Φ for Rn \ A satisfying in particular
diam(suppϕ) ≤ 2 d(suppϕ,A) for ϕ ∈ Φ. For every ϕ ∈ Φ one chooses a nearest

point aϕ ∈ A, i.e. a point aϕ with d(suppϕ,A) = d(suppϕ, aϕ). The extension F̃
of the jet F is then defined by

F̃ (x) :=

{
F 0(x) for x ∈ A∑
ϕ∈Φ′ ϕ(x)TmaϕF (x) otherwise,

where the set Φ′ consists of all ϕ ∈ Φ such that d(suppϕ,A) ≤ 1.

The version of [Stein, 1970, , theorem 4, p. 177] of Whitney’s extension theorem is:

Whitney’s Extension Theorem. Let m be an integer and A a compact subset
of R. Then the assignment F 7→ F̃ defines a bounded linear mapping Em : Lip(m+
1, A)→ Lip(m+ 1,R) such that Em(F )|A = F 0.

In order that Em makes sense, one has to identify Lip(m + 1,R) with a space of
functions (and not jets), namely those functions on R which are m-times differen-
tiable on R and the m-th derivative is Lipschitzian. In this way Lip(m + 1,R) is

identified with the space Lipm(R,R) in 1.2 (see also 12.10 ).

Remark. The original condition of [Whitney, 1934] which guarantees a Cm-exten-
sion is:

(Rma F )k(b) = o(|a− b|m−k) for a, b ∈ A with |a− b| → 0 and k ≤ m.

In the following A will be an arbitrary subset of R.

22.3. Difference Quotients. The definition of difference quotients δkf given in

12.4 works also for functions f : A→ R defined on arbitrary subsets A ⊆ R. The

natural domain of definition of δkf is the subset A<k> of Ak+1 of pairwise distinct
points, i.e.

A<k> :=
{

(t0, . . . , tk) ∈ Ak+1 : ti 6= tj for all i 6= j
}
.

The following product rule can be found for example in [Verde-Star, 1988] or
[Frölicher and Kriegl, 1993, 3.3].

22.4. The Leibniz product rule for difference quotients.

δk(f · g) (t0, . . . , tk) =

k∑
i=0

(
k

i

)
δif(t0, . . . , ti) · δk−ig(ti, . . . , tk)

Proof. This is easily proved by induction on k. �

We will make strong use of interpolation polynomials as they have been already

used in the proof of lemma 12.4 . The following descriptions are valid for them:

22.5. Lemma. Interpolation polynomial. Let f : A→ E be a function with
values in a vector space E and let (t0, . . . , tm) ∈ A<m>. Then there exists a unique
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polynomial Pm(t0,...,tm)f of degree at most m which takes the values f(tj) on tj for

all j = 0, . . . ,m. It can be written in the following ways:

Pm(t0,...,tm)f : t 7→
m∑
k=0

1

k!
δkf(t0, . . . , tk)

k−1∏
j=0

(t− tj) (Newton)

t 7→
m∑
k=0

f(tk)
∏
j 6=k

t− tj
tk − tj

(Lagrange).

See, for example, [Frölicher and Kriegl, 1988, 1.3.7] for a proof of the first descrip-
tion. The second one is obvious.

22.6. Lemma. For pairwise distinct points a, b, t1, . . . , tm and k ≤ m one has:(
Pm(a,t1,...,tm)f − P

m
(b,t1,...,tm)f

)(k)

(t) =

= (a− b) 1
(m+1)! δ

m+1f(a, b, t1, . . . , tm)·

· k!
∑

i1<···<ik

(t− t1) · · · · · ̂(t− ti1) · · · · · ̂(t− tik) · · · · · (t− tm).

Proof. For the interpolation polynomial we have

Pm(a,t1,...,tm)f(t) = Pm(t1,...,tm,a)f(t) =

= f(t1) + · · ·+ (t− t1) · · · · · (t− tm−1) 1
(m−1)! δ

m−1f (t1, . . . , tm)

+ (t− t1) · · · · · (t− tm) 1
m! δ

mf (t1, . . . , tm, a).

Thus we obtain

Pm(a,t1,...,tm)f(t)− Pm(b,t1,...,tm)f(t) =

= 0 + · · ·+ 0 + (t− t1) · · · · · (t− tm) 1
m! δ

mf (t1, . . . , tm, a)

− (t− t1) · · · · · (t− tm) 1
m! δ

mf (t1, . . . , tm, b)

= (t− t1) · · · · · (t− tm) 1
m!

a−b
m+1 δ

m+1f (t1, . . . , tm, a, b)

= (a− b) · (t− t1) · · · · · (t− tm) 1
(m+1)! δ

m+1f (a, b, t1, . . . , tm).

Differentiation using the product rule 22.4 gives the result. �

22.7. Proposition. Let f : A → R be a function, whose difference quotient of
order m + 1 is bounded on A<m+1>. Then the approximation polynomial Pma f
converges to some polynomial denoted by Pmx f of degree at most m if the point
a ∈ A<m> converges to x ∈ Am+1.

Proof. We claim that Pma f is a Cauchy net for A<m> 3 a → x. Since Pma f is
symmetric in the entries of a we may assume without loss of generality that the
entries xj of x satisfy x0 ≤ x1 ≤ · · · ≤ xm. For a point a ∈ A<m> which is close
to x and any two coordinates i and j with xi < xj we have ai < aj . Let a and b
be two points close to x. Let J be a set of indices on which x is constant. If the
set {aj : j ∈ J} differs from the set {bj : j ∈ J}, then we may order them as in

the proof of lemma 12.4 in such a way that ai 6= bj for i ≤ j in J . If the two sets



22.9 22. Whitney’s Extension Theorem Revisited 239

are equal we order both strictly increasing and thus have ai < aj = bj for i < j
in J . Since x is constant on J the distance |ai − bj | ≤ |ai − xi|+ |xj − bj | goes to
zero as a and b approach x. Altogether we obtained that ai 6= bj for all i < j and

applying now 22.6 for k = 0 inductively one obtains:

Pm(a0,...,am)f(t)− Pm(b0,...,bm)f(t) =

=

m∑
j=0

(
Pm(a0,...,aj−1,bj ,...,bm)f(t)− Pm(a0,...,aj ,bj+1,...,bm)f(t)

)

=

m∑
j=0

(aj − bj)(t− a0) . . . (t− aj−1)(t− bj+1) . . . (t− bm)·

· 1
(m+1)!δ

m+1f(a0, . . . , aj , bj , . . . , bm).

Where those summands with aj = bj have to be defined as 0. Since aj − bj → 0
the claim is proved and thus also the convergence of Pma f . �

22.8. Definition of Lipk function spaces. Let E be a convenient vector space,
let A be a subset of R and k a natural number or 0. Then we denote with
Lipkext(A,E) the vector space of all maps f : A → E for which the difference

quotient of order k+1 is bounded on bounded subsets of A<k>. As in 12.10 – but
now for arbitrary subsets A ⊆ R – we put on this space the initial locally convex
topology induced by f 7→ δjf ∈ `∞(A〈j〉, E) for 0 ≤ j ≤ k + 1, where the spaces
`∞ carry the topology of uniform convergence on bounded subsets of A〈j〉 ⊆ Rj+1.

In case where A = R the elements of Lipkext(A,R) are exactly the k-times differ-
entiable functions on R having a locally Lipschitzian derivative of order k + 1 and
the locally convex space Lipkext(A,R) coincides with the convenient vector space

Lipk(R,R) studied in section 12 .

If k is infinite, then Lip∞ext(A,E) or alternatively C∞ext(A,E) denotes the intersection

of Lipjext(A,E) for all finite j.

If A = R then the elements of C∞ext(R,R) are exactly the smooth functions on R
and the space C∞ext(R,R) coincides with the usual Fréchet space C∞(R,R) of all
smooth functions.

22.9. Proposition. Uniform boundedness principle for Lipkext. For any

finite or infinite k and any convenient vector space E the space Lipkext(A,E) is also
convenient. It carries the initial structure with respect to

`∗ : Lipkext(A,E)→ Lipkext(A,R) for ` ∈ E′.

Moreover, it satisfies the {evx : x ∈ A}-uniform boundedness principle. If E is

Fréchet then so is Lipkext(A,E).
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Proof. We consider the commutative diagram

Lipmext(A,E)
`∗ //

δj

��

Lipmext(A,R)

δj

��
`∞(A<j>, E)

`∗ // `∞(A<j>,R)

Obviously the bornology is initial with respect to the bottom arrows for ` ∈ E′

and by definition also with respect to the vertical arrows for j ≤ k + 1. Thus also

the top arrows form an initial source. By 2.15 the spaces in the bottom row are
c∞-complete and are metrizable if E is metrizable. Since the boundedness of the
difference quotient of order k+ 1 implies that of order j ≤ k+ 1, also Lipmext(A,E)
is convenient, and it is Fréchet provided E is. The uniform boundedness principle

follows also from this diagram, using the stability property 5.25 and that the

Fréchet and hence webbed space `∞(A<j>,R) has it by 5.24 . �

22.10. Proposition. For a convenient vector space E the following operators are
well-defined bounded linear mappings:

(1) The restriction operator Lipmext(A1, E) → Lipmext(A2, E) defined by f 7→ f |A2

for A2 ⊆ A1.
(2) For g ∈ Lipmext(A,R) the multiplication operator

Lipmext(A,E)→ Lipmext(A,E)

f 7→ g · f.

(3) The gluing operator

Lipmext(A1, E)×A1∩A2 Lipmext(A2, E)→ Lipmext(A,E)

defined by (f1, f2) 7→ f1 ∪ f2 for any covering of A by relatively open subsets
A1 ⊆ A and A2 ⊆ A.

The fibered product (pull back) Lipmext(A1, E)×A1∩A2
Lipmext(A2, E)→ Lipmext(A,E)

is the subspace of Lipmext(A1, E)×Lipmext(A2, E) formed by all (f1, f2) with f1 = f2

on A0 := A1 ∩A2.

Proof. It is enough to consider the particular case where E = R. The general case
follows easily by composing with `∗ for each ` ∈ E′.
( 1 ) is obvious.

( 2 ) follows from the Leibniz formula 22.4 .

( 3 ) First we show that the gluing operator has values in Lipmext(A,R). Suppose

the difference quotient δjf is not bounded for some j ≤ m + 1, which we assume
to be minimal. So there exists a bounded sequence xn ∈ A<j> such that (δjf)(xn)
converges towards infinity. Since A is compact we may assume that xn converges to
some point x∞ ∈ A(j+1). If x∞ does not lie on the diagonal, there are two indices
i1 6= i2 and some δ > 0, such that |xni1 − xni2 | ≥ δ. But then

δjf(xn)(xni1 − xni2) = 1
j

(
δj−1f(. . . , x̂ni2 , . . . )− δj−1f(. . . , x̂ni1 , . . . )

)
.
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Which is a contradiction to the boundedness of δj−1f and hence the minimality of
j. So x∞ = (x∞, . . . , x∞) and since the covering {A1, A2} of A is open x∞ lies in
Ai for i = 1 or i = 2. Thus we have that xn ∈ Ai<j> for almost all n, and hence
δjf(xn) = δjfi(x

n), which is bounded by assumption on fi.

Because of the uniform boundedness principle 22.9 it only remains to show that
(f1, f2) 7→ f(a) is bounded, which is obvious since f(a) = fi(a) for some i depending
on the location of a. �

22.11. Remark. If A is finite, we define an extension f̃ : R → E of the given
function f : A → E as the interpolation polynomial of f at all points in A. For

infinite compact sets A ⊂ R we will use Whitney’s extension theorem 22.2 , where

we will replace the Taylor polynomial in the definition 22.2 of the extension by
the interpolation polynomial at appropriately chosen points near aϕ. For this we
associate to each point a ∈ A a sequence a = (a0, a1, . . . ) of points in A starting
from the given point a0 = a.

22.12. Definition of a 7→ a. Let A be a closed infinite subset of R, and let a ∈ A.
Our aim is to define a sequence a = (a0, a1, a2, . . . ) in a certain sense close to a.
The construction is by induction and goes as follows: a0 := a. For the induction
step we choose for every non-empty finite subset F ⊂ A a point aF in the closure of
A \ F having minimal distance to F . In case F does not contain an accumulation
point the set A\F is closed and hence aF /∈ F , otherwise the distance of A\F to F
is 0 and aF is an accumulation point in F . In both cases we have for the distances
d(aF , F ) = d(A \ F, F ). Now suppose (a0, . . . , aj−1) is already constructed. Then
let F := {a0, . . . , aj−1} and define aj := aF .

Lemma. Let a = (a0, . . . ) and b = (b0, . . . ) be constructed as above.

If {a0, . . . , ak} 6= {b0, . . . , bk} then we have for all i, j ≤ k the estimates

|ai − bj | ≤ (i+ j + 1) |a0 − b0|
|ai − aj | ≤ max{i, j} |a0 − b0|
|bi − bj | ≤ max{i, j} |a0 − b0|.

Proof. First remark that if {a0, . . . , ai} = {b0, . . . , bi} for some i, then the same
is true for all larger i, since the construction of ai+1 depends only on the set
{a0, . . . , ai}. Furthermore the set {a0, . . . , ai} contains at most one accumulation
point, since for an accumulation point aj with minimal index j we have by con-
struction that aj = aj+1 = · · · = ai.

We now show by induction on i ∈ {1, . . . , k} that

d(ai+1, {a0, . . . , ai}) ≤ |a0 − b0|,
d(bi+1, {b0, . . . , bi}) ≤ |a0 − b0|.

We proof this statement for ai+1, it then follows for bi+1 by symmetry.
In case where {a0, . . . , ai} ⊇ {b0, . . . , bi} we have that {a0, . . . , ai} ⊃ {b0, . . . , bi} by
assumption. Thus some of the elements of {b0, . . . , bi} have to be equal and hence
are accumulation points. So {a0, . . . , ai} contains an accumulation point, and hence
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ai+1 ∈ {a0, . . . , ai} and the claimed inequality is trivially satisfied.
In the other case there exist some j ≤ i such that bj /∈ {a0, . . . , ai}. We choose the
minimal j with this property and obtain

d(ai+1, {a0, . . . , ai}) := d(A \ {a0, . . . , ai}, {a0, . . . , ai}) ≤ d(bj , {a0, . . . , ai}).
If j = 0, then this can be further estimated as follows

d(bj , {a0, . . . , ai}) ≤ |a0 − b0|.
Otherwise {b0, . . . , bj−1} ⊆ {a0, . . . , aj} and hence we have

d(bj , {a0, . . . , ai}) ≤ d(bj , {b0, . . . , bj−1}) ≤ |a0 − b0|
by induction hypothesis. Thus the induction is completed.

From the proven inequalities we deduce by induction on k := max{i, j} that

|ai − aj | ≤ max{i, j} |a0 − b0|
and similarly for |bj − bi|:
For k = 0 this is trivial. Now for k > 0. We may assume that i > j. Let i′ < i be
such that |ai−ai′ | = d(ai, {a0, . . . , ai−1}) ≤ |a0−b0|. Thus by induction hypothesis
|ai′ − aj | ≤ (k − 1) |a0 − b0| and hence

|ai − aj | ≤ |ai − ai′ |+ |ai′ − aj | ≤ k |a0 − b0|.

By the triangle inequality we finally obtain

|ai − bj | ≤ |ai − a0|+ |a0 − b0|+ |b0 − bj | ≤ (i+ 1 + j) |a0 − b0|. �

22.13. Finite Order Extension Theorem. Let E be a convenient vector space,
A a subset of R and m be a natural number or 0. A function f : A → E admits
an extension to R which is m-times differentiable with locally Lipschitzian m-th
derivative if and only if its difference quotient of order m+1 is bounded on bounded
sets.

Proof. Without loss of generality we may assume that A is infinite. We consider
first the case that A is compact and E = R.

So let f : A → R be in Lipmext. We want to apply Whitney’s extension theorem

22.2 . So we have to find an m-jet F on A. For this we define

F k(a) := (Pma f)(k)(a),

where a denotes the sequence obtained by this construction starting with the point
aand where Pma f denotes the interpolation polynomial of f at the first m + 1
points of a if these are all different; if not, at least one of these m+ 1 points is an
accumulation point of A and then Pma f is taken as limit of interpolation polynomials

according to 22.7 .

Let Φ be the partition of unity mentioned in 22.2 and Φ′ the subset specified there.

Then we define f̃ analogously to 22.2 where aϕ denotes the sequence obtained by

construction 22.12 starting with the point aϕ chosen in 22.2 :

f̃(x) :=

{
f(x) for x ∈ A∑
ϕ∈Φ′ ϕ(x)Pmaϕf(x) otherwise.
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In order to verify that F belongs to Lip(m+ 1, A) we need the Taylor polynomial

Tma F (x) :=

m∑
k=0

(x− a)k

k!
F k(a) =

m∑
k=0

(x− a)k

k!
(Pma f)(k)(a) = Pma f(x),

where the last equation holds since Pma f is a polynomial of degree at most m. This

shows that our extension f̃ coincides with the classical extension F̃ given in 22.2
of the m-jet F constructed from f .

The remainder term Rma F := F − jm(Tma F ) is given by:

(Rma F )k(b) = F k(b)− (Tma F )(k)(b) = (Pmb f)(k)(b)− (Pma f)(k)(b)

We have to show that for some constant M one has
∣∣(Rma F )k(b)

∣∣ ≤M |a− b|m+1−k

for all a, b ∈ A and all k ≤ m.

In order to estimate this difference we write it as a telescoping sum of terms which

can written by 22.6 as(
Pm(a0,...,ai−1,bi,bi+1,...,bm)f − P

m
(a0,...,ai−1,ai,bi+1,...,bm)f

)(k)

(t) =

=
k!

(m+ 1)!
δm+1f(a0, . . . , ai, bi, . . . , bm)·

· (bi − ai)
∑

i1<···<ik

(t− a0) . . . ̂(t− ai1) . . . ̂(t− bik) . . . (t− bm).

Note that this formula remains valid also in case where the points are not pairwise

different. This follows immediately by passing to the limit with the help of 22.7 .

We have estimates for the distance of points in {a0, . . . , am; b0, . . . , bm} by 22.12
and so we obtain the required constant M as follows

|(Rma F )k(b)| ≤ k!

(m+ 1)!

m∑
i=0

(2i+ 1) |b− a|m+1−k

∑
i1<···<ik

1 · 2 · · · · · ̂(1 + i1) . . . îk · · · ·m·

· max{|δm+1f({a0, . . . , am, b0, . . . , bm}<m+1>)|}.

In case, where E is an arbitrary convenient vector space we define an extension f̃
for f ∈ Lipmext(A,E) by the same formula as before. Since Φ′ is locally finite, this

defines a function f̃ : R → E. In order to show that f̃ ∈ Lipm(R, E) we compose

with an arbitrary ` ∈ E′. Then ` ◦ f̃ is just the extension of ` ◦ f given above, thus
belongs to Lipm(R,R).

Let now A be a closed subset of R. Then let the compact subsets An ⊂ R be
defined by A1 := A ∩ [−2, 2] and An := [−n + 1, n − 1] ∪ (A ∩ [−n − 1, n + 1]) for
n > 1. We define recursively functions fn ∈ Lipmext(An, E) as follows: Let f1 be
a Lipm-extension of f |A1

. Let fn : An → R be a Lipm-extension of the function
which equals fn−1 on [−n + 1, n − 1] and which equals f on A ∩ [−n − 1, n + 1].
This definition makes sense, since the two sets

An \ [−n+ 1, n− 1] = A ∩
(
[−n− 1, n+ 1] \ [−n+ 1, n− 1]

)
,
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An \
(
[−n− 1,−n] ∪ [n, n+ 1]

)
= [−n+ 1, n− 1] ∪

(
A ∩ [−n, n]

)
form an open cover of An, and their intersection is contained in the set A∩ [−n, n]

on which f and fn−1 coincide. Now we apply 22.10 . The sequence fn converges

uniformly on bounded subsets of R to a function f̃ : R → E, since fj = fn on

[−n, n] for all j > n. Since each fn is Lipm, so is f̃ . Furthermore, f̃ is an extension

of f , since f̃ = fn on [−n, n] and hence on A ∩ [−n+ 1, n− 1] equal to f .

Finally the case, where A ⊆ R is completely arbitrary. Let Ā denote the closure of
A in R. Since the first difference quotient is bounded on bounded subsets of A one
concludes that f is Lipschitzian and hence uniformly continuous on bounded subsets
of A, moreover, the values f(a) form a Mackey Cauchy net for A 3 a→ ā ∈ R. Thus

f has a unique continuous extension f̃ to Ā, since the limit f̃(ā) := lima→ā f(a)
exists in E, because E is convenient. Boundedness of the difference quotients of
order j of f̃ can be tested by composition with linear continuous functionals, so we
may assume E = R. Its value at (t̃0, . . . , t̃j) ∈ Ā<j> is the limit of δjf(t0, . . . , tj),
where A<j> 3 (t0, . . . , tj) converges to (t̃0, . . . , t̃j), since in the explicit formula for

δj the factors f(ti) converge to f̃(t̃i). Now we may apply the result for closed A to
obtain the required extension. �

22.14. Extension Operator Theorem. Let E be a convenient vector space and
let m be finite. Then the space Lipmext(A,E) of functions having an extension in

the sense of 22.13 is a convenient vector space and there exists a bounded linear
extension operator from Lipmext(A,E) to Lipm(R, E).

Proof. This follows from 21.2 .

Explicitly the proof runs as follows: For any convenient vector space E we have
to construct a bounded linear operator

T : Lipmext(A,E)→ Lipm(R, E)

satisfying T (f)|A = f for all f ∈ Lipmext(A,E). Since Lipmext(A,E) is a convenient

vector space, this is by 12.12 via a flip of variables equivalent to the existence of
a Lipm-curve

T̃ : R→ L(Lipmext(A,E), E)

satisfying T̃ (a)(f) = T (f)(a) = f(a). Thus T̃ should be a Lipm-extension of the
map e : A→ L(Lipmext(A,E), E) defined by e(a)(f) := f(a) = eva(f).

By the vector valued finite order extension theorem 22.13 it suffices to show that
this map e belongs to Lipmext(A,L(Lipmext(A,E), E)). So consider the difference

quotient δm+1e of e. Since, by the linear uniform boundedness principle 5.18 ,
boundedness in L(F,E) can be tested pointwise, we consider

δm+1e(a0, . . . , am+1)(f) = δm+1(evf ◦e)(a0, . . . , am+1)

= δm+1f(a0, . . . , am+1).

This expression is bounded for (a0, . . . , am+1) varying in bounded sets, since f ∈
Lipmext(A,E). �
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In order to obtain a extension theorem for smooth mappings, we use a modification
of the original construction of [Whitney, 1934]. In particular we need the following
result.

22.15. Result. [Malgrange, 1966, lemma 4.2], also [Tougeron, 1972, lemme 3.3].
There exist constants ck, such that for any compact set K ⊂ R and any δ > 0 there
exists a smooth function hδ on R which satisfies

(1) hδ = 1 locally around K and hδ(x) = 0 for d(x,K) ≥ δ;
(2) for all x ∈ R and k ≥ 0 one has:

∣∣∣h(k)
δ (x)

∣∣∣ ≤ ck
δk

.

22.16. Lemma. Let A be compact and Aacc be the compact set of accumulation
points of A. We denote by C∞A (R,R) the set of smooth functions on R which vanish
on A. For finite m we denote by CmA (R,R) the set of Cm-functions on R, which
vanish on A, are m-flat on Aacc and are smooth on the complement of Aacc. Then
C∞A (R,R) is dense in Cm+1

A (R,R) with respect to the structure of Cm(R,R).

Proof. Let ε > 0 and let g ∈ Cm+1
A (R,R) be the function which we want to

approximate. By Taylor’s theorem we have for f ∈ Cm+1(R,R) the equation

f(x)−
k∑
i=0

f (i)(a)

i!
(x− a)i = (x− a)k+1 f

(k+1)(ξ)

(k + 1)!

for some ξ between a and x. If we apply this equation for j ≤ m and k = m− j to
g(j) for some point a ∈ Aacc we obtain∣∣∣g(j)(x)− 0

∣∣∣ ≤ |x− a|m+1−j
∣∣∣∣ g(m+1)

(m+ 1− j)!
(ξ)

∣∣∣∣
Taking the infimum over all a ∈ Aacc we obtain a constant

K := sup

{∣∣∣ g(m+1)

(m+ 1− j)!
(ξ)
∣∣∣ : d(ξ, Aacc) ≤ 1

}
satisfying

∣∣∣g(j)(x)
∣∣∣ ≤ K · d(x,Aacc)

m+1−j

for all x with d(x,A) ≤ 1.

We choose 0 < δ < 1 depending on ε such that δ ·max{ci : i ≤ m} ·K · 2m ≤ ε, and

let hδ be the function given in 22.15 for K := Aacc. The function (1 − hδ) · g is
smooth, since on R \Aacc both factors are smooth and on a neighborhood of Aacc
one has hδ = 1. The function (1− hδ) · g equals g on {x : d(x,Aacc) ≥ δ}, since hδ
vanishes on this set. So it remains to show that the derivatives of hδ · g up to order
m are bounded by ε on {x : d(x,Aacc) ≤ δ}. By the Leibniz rule we have:

(hδ · g)(j) =

j∑
i=0

(
j

i

)
h

(i)
δ g(j−i).

The i-th summand can be estimated as follows:∣∣∣h(i)
δ (x)g(j−i)(x)

∣∣∣ ≤ ci
δi
K d(x,Aacc)

m+1+i−j ≤ ciK δm+1−j
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An estimate for the derivative now is∣∣∣(hδ · g)(j)(x)
∣∣∣ ≤ j∑

i=0

(
j

i

)
ciK δm+1−j

≤ 2j K δm+1−j max{ci : 0 ≤ i ≤ j} ≤ ε. �

22.17. Smooth Extension Theorem. Let E be a Fréchet space (or, slightly
more general, a convenient vector space satisfying Mackey’s countability condition)
A function f : A → E admits a smooth extension to R if and only if each of its
difference quotients is bounded on bounded sets.

A convenient vector space is said to satisfy Mackey’s countability condition
if for every sequence of bounded sets Bn ⊆ E there exists a sequence λn > 0 such
that

⋃
n∈N λnBn is bounded in E.

Proof. We consider first the case, where E = R. For k ≥ 0 let f̃k be a Lipk-

extension of f according to 22.13 . The difference f̃k+1 − f̃k is an element of

CkA(R,R): It is by construction Ck and on R\A smooth. At an accumulation point a

of A the Taylor expansion of f̃k of order j ≤ k is just the approximation polynomial

P j(a,...,a)f by 22.13 . Thus the derivatives up to order k of f̃k+1 and f̃k are equal

in a, and hence the difference is k-flat at a. Locally around any isolated point of A,
i.e. a point a ∈ A\Aacc, the extension f̃k is just the approximation polynomial P ka
and hence smooth. In order to see this, use that for x with |x− a| < 1

4d(a,A \ {a})
the point aϕ has as first entry a for every ϕ with x ∈ suppϕ: Let b ∈ A \ {a} and
y ∈ suppϕ be arbitrary, then

|b− x| ≥ |b− a| − |a− x| ≥ d(a,A \ {a})− |a− x| > (4− 1) |a− x|
|b− y| ≥ |b− x| − |x− y| > 3 |a− x| − diam(suppϕ)

≥ 3 d(a, suppϕ)− 2 d(a, suppϕ) = d(a, suppϕ)

⇒ d(b, suppϕ) > d(a, suppϕ) ⇒ aϕ = a.

By lemma 22.16 there exists an hk ∈ C∞A (R,R) such that∣∣(f̃k+1 − f̃k − hk)(j)(x)
∣∣ ≤ 1

2k
for all j ≤ k − 1.

Now we consider the function f̃ := f̃0 +
∑
k≥0(f̃k+1 − f̃k − hk). It is the required

smooth extension of f , since the summands f̃k+1 − f̃k − hk vanish on A, and since
for any n it can be rewritten as f̃ = f̃n +

∑
k<n hk +

∑
k≥n(f̃k+1− f̃k−hk), where

the first summand is Cn, the first sum is C∞, and the derivatives up to order n− 1
of the terms of the second sum are uniformly summable.

Now we prove the vector valued case, where E satisfies Mackey’s countability con-
dition. It is enough to show the result for compact subsets A ⊂ R, since the

generalization arguments given in the proof of 22.13 can be applied equally in

the smooth case. First one has to give a vector valued version of 22.16 : Let a
function g ∈ Lipm(R, E) with compact support be given, which vanishes on A, is
m-flat on Aacc and smooth on the complement of Aacc. Then for every ε > 0 there
exists a h ∈ C∞(R,R), which equals 1 on a neighborhood of Aacc and such that
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δm(h · g)(Rm+1) is contained in ε times the absolutely convex hull of the image of
δm+1g.

The proof of this assertion is along the lines of that of 22.16 . One only has to

define K as the absolutely convex hull of the image of δm+1g and choose 0 < δ < 1
such that δ ·max{ci : i ≤ m} · 2m ≤ ε.
Now one proceeds as in scalar valued part: Let f̃k be the Lipk-extension of f

according to 22.13 . Then gk := f̃k+1 − f̃k satisfies the assumption of the vector

valued version of 22.16 . LetKk be the absolutely convex hull of the bounded image

of δk+1gk. By assumption on E there exist λn > 0 such that K :=
⋃
k∈N λk ·Kk is

bounded. Hence we may choose an hk ∈ C∞A (R,R) such that δk(hk · gk)(R〈k+1〉) ⊆
λk
2k
Kk. Now the extension f̃ is given by

f̃ = f̃0 +
∑
k≥0

hk · gk = f̃n +
∑
k<n

(1− hk) · gk +
∑
k≥n

hk · gk

and the result follows as above using convergence in the Banach space EK . �

22.18. Remark. The restriction operator Lipm(R, E) → Lipmext(A,E) is a quo-
tient mapping. We constructed a section for it, which is bounded and linear in the
finite order case. It is unclear, whether it is possible to obtain a bounded linear
section also in the smooth case, even if E = R.

If the smooth extension theorem were true for any arbitrary convenient vector space
E, then it would also give the extension operator theorem for the smooth case. Thus
in order to obtain a counter-example to the latter one, the first step might be to
find a counter-example to the vector valued extension theorem. In the particular
cases, where the values lie in a Fréchet space E the vector valued smooth extension
theorem is however true.

22.19. Proposition. Let A be the image of a strictly monotone bounded sequence
{an : n ∈ N}. Then a map f : A → R has a Lipm-extension to R if and only
if the sequence δkf(an, an+1, . . . , an+k) is bounded for k = m + 1 if m is finite,
respectively for all k if m =∞.

Proof. By [Frölicher and Kriegl, 1988, lemma 1.3.10], the difference quotient
δkf(ai0 , . . . , aik) is contained in the convex hull of the δkf(an, . . . , an+k) for all
min{i0, . . . , ik} ≤ n ≤ n + k ≤ max{i0, . . . , ik}. So the result follows from the

extension theorems 22.13 and 22.17 . �

For explicit descriptions of the boundedness condition for Lipk-mappings defined
on certain sequences and low k see [Frölicher and Kriegl, 1993, Sect. 6].

23. Frölicher Spaces and Free Convenient Vector Spaces

The central theme of this book is ‘infinite dimensional manifolds’. But many natural
examples suggest that this is a quite restricted notion, and it will be very helpful to
have at hand a much more general and also easily useable concept, namely smooth
spaces as they were introduced by [Frölicher, 1980, 1981]. We follow his line of
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development, replacing technical arguments by simple use of cartesian closedness
of smooth calculus on convenient vector spaces, and we call them Frölicher spaces.

23.1. The category of Frölicher spaces. A Frölicher space or a space with
smooth structure is a triple (X, CX ,FX) consisting of a set X, a subset CX of
the set of all mappings R→ X, and a subset FX of the set of all functions X → R,
with the following two properties:

(1) A function f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for all
c ∈ CX .

(2) A curve c : R → X belongs to CX if and only if f ◦ c ∈ C∞(R,R) for all
f ∈ FX .

Note that a set X together with any subset F of the set of functions X → R
generates a unique Frölicher space (X, CX ,FX), where we put in turn:

CX := {c : R→ X : f ◦ c ∈ C∞(R,R) for all f ∈ F},
FX := {f : X → R : f ◦ c ∈ C∞(R,R) for all c ∈ CX},

so that F ⊆ FX . The set F will be called a generating set of functions for
the Frölicher space. Similarly a set X together with any subset C of the set
of curves R→ X generates a Frölicher space. A locally convex space is convenient
if and only if it is a Frölicher space with the smooth curves and smooth functions

from section 1 by 2.14 . Furthermore, c∞-open subsets U of convenient vector
spaces E are Frölicher spaces, where CU = C∞(R, U) and FU = C∞(U,R). Here
we can use as generating set F of functions the restrictions of any set of bounded

linear functionals which generates the bornology of E, see 2.14.4 .

A mapping ϕ : X → Y between two Frölicher spaces is called smooth if the
following three equivalent conditions hold

(3) For each c ∈ CX the composite ϕ ◦ c is in CY .
(4) For each f ∈ FY the composite f ◦ ϕ is in FX .
(5) For each c ∈ CX and for each f ∈ FY the composite f ◦ ϕ ◦ c is in C∞(R,R).

Note that FY can be replaced by any generating set of functions. The set of all
smooth mappings from X to Y will be denoted by C∞(X,Y ). Then we have
C∞(R, X) = CX and C∞(X,R) = FX . Frölicher spaces and smooth mappings
form a category.

23.2. Theorem. The category of Frölicher spaces and smooth mappings has the
following properties:

(1) Complete, i.e., arbitrary limits exist. The underlying set is formed as in the
category of sets as a certain subset of the cartesian product, and the smooth
structure is generated by the smooth functions on the factors.

(2) Cocomplete, i.e., arbitrary colimits exist. The underlying set is formed as in
the category of set as a certain quotient of the disjoint union, and the smooth
functions are exactly those which induce smooth functions on the cofactors.
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(3) Cartesian closed, which means: The set C∞(X,Y ) carries a canonical smooth
structure described by

C∞(X,Y )−C
∞(c,f)→ C∞(R,R)−λ→ R

where c ∈ C∞(R, X), where f is in C∞(Y,R) or in a generating set of func-
tions, and where λ ∈ C∞(R,R)′. With this structure the exponential law
holds:

C∞(X × Y,Z) ∼= C∞(X,C∞(Y, Z)).

Proof. Obviously, the limits and colimits described above have all required uni-
versal properties.

We have the following implications:

(1) ”” ϕ∨ : X → C∞(Y, Z) is smooth.
(2) ”⇔” ϕ∨◦cX : R→ C∞(Y,Z) is smooth for all smooth curves cX ∈ C∞(R, X),

by definition.
(3) ”⇔” C∞(cY , fZ) ◦ ϕ∨ ◦ cX : R → C∞(R,R) is smooth for all smooth curves

cX ∈ C∞(R, X), cY ∈ C∞(R, Y ), and smooth functions fZ ∈ C∞(Z,R), by
definition.

(4) ”⇔” fZ ◦ ϕ ◦ (cX × cY ) = fZ ◦ (c∗Y ◦ ϕ∨ ◦ cX)∧ : R2 → R is smooth for
all smooth curves cX , cY , and smooth functions fZ , by the simplest case of

cartesian closedness of smooth calculus 3.10 .
(5) ”⇒” ϕ : X × Y → Z is smooth, since each curve into X × Y is of the form

(cX , cY ) = (cX × cY ) ◦∆, where ∆ is the diagonal mapping.
(6) ”⇒” ϕ ◦ (cX × cY ) : R2 → Z is smooth for all smooth curves cX and cY , since

the product and the composite of smooth mappings is smooth.

As in the proof of 3.13 it follows in a formal way that the exponential law is a
diffeomorphism for the smooth structures on the mapping spaces. �

23.3. Remark. By [Frölicher and Kriegl, 1988, 2.4.4] the convenient vector spaces
are exactly the linear Frölicher spaces for which the smooth linear functionals gen-
erate the smooth structure, and which are separated and ‘complete’. On a locally
convex space which is not convenient, one has to saturate to the scalarwise smooth
curves and the associated functions in order to get a Frölicher space.

23.4 Proposition. Let X be a Frölicher space and E a convenient vector space.
Then C∞(X,E) is a convenient vector space with the smooth structure described

in 23.2.3 .

Proof. We consider the locally convex topology on C∞(X,E) induced by c∗ :

C∞(X,E) → C∞(R, E) for all c ∈ C∞(R, X). As in 3.11 one shows that this
describes C∞(X,E) as inverse limit of spaces C∞(R, E), which are convenient by

3.7 . Thus also C∞(X,E) is convenient by 2.15 . By 2.14.4 , 3.8 , 3.9 and

3.7 its smooth curves are exactly those γ : R→ C∞(X,E), for which

R−γ→ C∞(X,E)−c
∗
→ C∞(R, E)−f∗→ C∞(R,R)−λ→ R
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is smooth for all c ∈ C∞(R, X), for all f in the generating set E′ of functions, and

all λ ∈ C∞(R,R). This is the smooth structure described in 23.2.3 . �

23.5. Related concepts: Holomorphic Frölicher spaces. They can be defined

in a way similar as smooth Frölicher spaces in 23.1 , with the following changes:
As curves one has to take mappings from the complex unit disk. Then the results

analogous to 23.2 hold, where for the proof one has to use the holomorphic ex-

ponential law 7.22 instead of the smooth one 3.10 , see [Siegl, 1995] and [Siegl,
1997].

The concept of holomorphic Frölicher spaces is not without problems: Namely
finite dimensional complex manifolds are holomorphic Frölicher spaces if they are
Stein, and compact complex manifolds are never holomorphic Frölicher spaces.
But arbitrary subsets A of complex convenient vector spaces E are holomorphic
Frölicher spaces with the initial structure, again generated by the restrictions of
bounded complex linear functionals. Note that analytic subsets of complex
convenient spaces, i.e., locally zero sets of holomorphic mappings, are holomorphic
spaces. But usually, as analytic sets, holomorphic functions on them are restrictions
of holomorphic functions defined on neighborhoods, whereas as holomorphic spaces
they admit more holomorphic functions, as the following example shows:

Example. Neil’s parabola P := {z2
1 − z3

2 = 0} ⊂ C2 has the holomorphic curves
a : D → P ⊂ C2 of the form a = (b3, b2) for holomorphic b : D → C: If a(z) =
(zka1(z), zla2(z)) with a(0) = 0 and ai(0) 6= 0, then k = 3n and l = 2n for some
n > 0 and (a1, a2) is still a holomorphic curve in P \ 0, so (a1, a2) = (c3, c2) by the
implicit function theorem, then b(z) = znc(z) is the solution. Thus, z 7→ (z3, z2)
is biholomorphic C → P . So z is a holomorphic function on P which cannot be
extended to a holomorphic function on a neighborhood of 0 in C2, since this would
have infinite differential at 0.

23.6. Theorem. Free Convenient Vector Space. [Frölicher and Kriegl, 1988,
5.1.1] For every Frölicher space X there exists a free convenient vector space λX,
i.e. a convenient vector space λX together with a smooth mapping δX : X → λX,
such that for every smooth mapping f : X → G with values in a a convenient
vector space G there exists a unique linear bounded mapping f̃ : λX → G with
f̃ ◦δX = f . Moreover δ∗ : L(λX,G) ∼= C∞(X,G) is an isomorphisms of convenient
vector spaces and δ is an initial morphism.

Proof. In order to obtain a candidate for λX, we put G := R and thus should have
(λX)′ = L(λX,R) ∼= C∞(X,R) and hence λX should be describable as subspace of
(λX)′′ ∼= C∞(X,R)′. In fact every f ∈ C∞(E,R) acts as bounded linear functional
evf : C∞(X,R)′ → R and if we define δX : X → C∞(X,R)′ to be δX : x 7→ evx
then evf ◦δX = f and δX is smooth, since by the uniform boundedness principle

5.18 it is sufficient to check that evf ◦δX = f : X → C∞(X,R)′ → R is smooth for

all f ∈ C∞(X,R). In order to obtain uniqueness of the extension f̃ := evf , we have
to restrict it to the c∞-closure of the linear span of δX(X). So let λX be this closure
and let f : X → G be an arbitrary smooth mapping with values in some convenient
vector space. Since δ belongs to C∞ we have that δ∗ : L(λX,G) → C∞(X,G) is
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well defined and it is injective since the linear subspace generated by the image of
δ is c∞-dense in λX by construction. To show surjectivity consider the following
diagram:

X
δ //

f

��

λX

(3)

f̃

��

� � //

(2)

��

C∞(X)′

evλ◦f

��

(1)
tt∏

G′ R
prλ

**G
( �

δ

55

λ // R
Note that (2) has values in δ(G), since this is true on the evx, which generate by
definition a c∞-dense subspace of λX.

Remains to show that this bijection is a bornological isomorphism. In order to
show that the linear mapping C∞(X,G)→ L(λX,G) is bounded we can reformu-

late this equivalently using 3.12 , the universal property of λX and the uniform

boundedness principle 5.18 in turn:

C∞(X,G)→ L(λX,G) is L

⇐⇒ λX → L(C∞(X,G), G) is L

⇐⇒ X → L(C∞(X,G), G) is C∞

⇐⇒ X → L(C∞(X,G), G)
evf→ G is C∞

and since the composition is just f we are done.

Conversely we have to show that L(λX,G)→ C∞(X,G) belongs to L. Composed
with evx : C∞(X,G)→ G this yields the bounded linear map evδ(x) : L(λX,G)→
G. Thus this follows from the uniform boundedness principle 5.26 .

That δX is initial follows immediately from the fact that the structure of X is initial
with respect to family {f = evo ◦δX : f ∈ C∞(X,R)}. �

Remark. The corresponding result with the analogous proof is true for holomor-
phic Frölicher spaces, Lipk-spaces, and `∞-spaces. For the first see [Siegl, 1997] for
the last two see [Frölicher and Kriegl, 1988].

23.7. Corollary. Let X be a Frölicher space such that the functions in C∞(X,R)
separate points on X. Then X is diffeomorphic as Frölicher space to a subspace
of the convenient vector space λ(X) ⊆ C∞(X,R)′ with the initial smooth structure
(generated by the restrictions of linear bounded functionals, among other possibili-
ties). �

We have constructed the free convenient vector space λX as the c∞-closure of the
linear subspace generated by the point evaluations in C∞(X,R)′. This is not very
constructive, in particular since adding Mackey-limits of sequences (or even nets)
of a subspace does not always give its Mackey-closure. In important cases (like
when X is a finite dimensional smooth manifold) one can show however that not
only λX = C∞(X,R)′, but even that every element of λX is the Mackey-limit of
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a sequence of linear combinations of point evaluations, and that C∞(X,R)′ is the
space of distributions of compact support.

23.8. Proposition. Let E be a convenient vector space and X a finite dimen-
sional smooth separable manifold. Then for every ` ∈ C∞(X,E)′ there exists a
compact set K ⊆ X such that `(f) = 0 for all f ∈ C∞(X,E) with f |K = 0.

Proof. Since X is separable its compact bornology has a countable basis {Kn : n ∈
N} of compact sets. Assume now that no compact set has the claimed property.
Then for every n ∈ N there has to exist a function fn ∈ C∞(X,E) with fn|Kn = 0
but `(fn) 6= 0. By multiplying fn with n

`(fn) we may assume that `(fn) = n. Since

every compact subset of X is contained in some Kn one has that {fn : n ∈ N} is
bounded in C∞(X,E), but `({fn : n ∈ N} is not; this contradicts the assumption
that ` is bounded. �

23.9. Remark. The proposition above remains true if X is a finite dimensional
smooth paracompact manifold with non-measurably many components. In order
to show this generalization one uses that for the partition {Xj : j ∈ J} by the
non-measurably many components one has C∞(X,E) ∼=

∏
j∈J C

∞(Xj , E), and the
fact that an ` belongs to the dual of such a product if it is a finite sum of elements

of the duals of the factors. Now the result follows from 23.8 since the components
of a paracompact manifold are paracompact and hence separable.

For such manifolds X the dual C∞(X,R)′ is the space of distributions with compact
support. In fact, in case X is connected, C∞(X,R)′ is the space of all linear func-
tionals which are continuous for the classically considered topology on C∞(X,R)

by 6.1 ; and in case of an arbitrary X this result follows using the isomorphism
C∞(X,R) ∼=

∏
j C
∞(Xj ,R) where the Xj denote the connected components of X.

23.10. Theorem. [Frölicher and Kriegl, 1988, 5.1.7] Let E be a convenient vector
space and X a finite dimensional separable smooth manifold. Then the Mackey-
adherence of the linear subspace generated by {`◦evx : x ∈ X, ` ∈ E′} is C∞(X,E)′.

Proof. The proof is in several steps.

(Step 1) There exist gn ∈ C∞(R,R) with supp(gn) ⊆ [− 2
n ,

2
n ] such that for every

f ∈ C∞(R, E) the set {n ·
(
f−
∑
k∈Z f(rn,k)gn,k

)
: n ∈ N} is bounded in C∞(R, E),

where rn,k := k
2n and gn,k(t) := gn(t− rn,k).

We choose a smooth h : R → [0, 1] with supp(h) ⊆ [−1, 1] and
∑
k∈Z h(t − k) = 1

for all t ∈ R and we define Qn : C∞(R, E)→ C∞(R, E) by setting

Qn(f)(t) :=
∑
k

f( kn )h(tn− k).

Let K ⊆ R be compact. Then

n(Qn(f)− f)(t) =
∑
k

(f( kn )− f(t)) · n · h(tn− k) ∈ B1(f,K + 1
n supp(h))

for t ∈ K, where Bn(f,K1) denotes the absolutely convex hull of the bounded set

δnf(K
〈n〉
1 ).
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To get similar estimates for the derivatives we use convolution. Let h1 : R→ R be
a smooth function with support in [−1, 1] and

∫
R h1(s)ds = 1. Then for t ∈ K one

has

(f ∗ h1)(t) :=

∫
R
f(t− s)h1(s)ds ∈ B0(f,K + supp(h1)) · ‖h1‖1,

where ‖h1‖1 :=
∫
R |h1(s)|ds. For smooth functions f, h : R→ R one has (f ∗h)(k) =

f ∗h(k); one immediately deduces that the same holds for smooth functions f : R→
E and one obtains (f ∗h1)(t)−f(t) =

∫
R(f(t−s)−f(t))h1(s)ds ∈ diam(supp(h1)) ·

‖h1‖1 · B1(f,K + supp(h1)) for t ∈ K, where diam(S) := sup{|s| : s ∈ S}. Using
now hn(t) := n · h1(nt) we obtain for t ∈ K:

(Qm(f) ∗ hn − f)(k)(t) = (Qm(f) ∗ h(k)
n − f ∗ h(k)

n )(t) + (f (k) ∗ hn − f (k))(t)

= (Qm(f)− f) ∗ h(k)
n (t) + (f (k) ∗ hn − f (k))(t)

∈ B0(Qm(f)− f,K + supp(hn)) · ‖h(k)
n ‖1+

+B1(f (k),K + supp(hn)) · diam(supp(hn)) · ‖hn‖1
⊆ 1

mn
k ·B1(f,K + supp(hn) + 1

m supp(h)) · ‖h(k)
1 ‖1

+ n ·B1(f (k),K + supp(hn)) · ‖hn‖1.

Let now m := 2n and Pn(f) := Qm(f) ∗ hn. Then

n ·
(
Pn(f)− f

)(k)
(t) ∈ nk+12−n ·B1(f,K + (

1

n
+

1

2n
)[−1, 1])‖h(k)

1 ‖1

+B1(f (k),K + 1
n [−1, 1])‖h1‖1

for t ∈ K and the right hand side is uniformly bounded for n ∈ N.

With gn(t) :=
∫
R h(s2n − k)hn(t+ k2−n − s)ds =

∫
R h(s2n)hn(t− s)ds we obtain

Pn(f)(t) = (Q2n(f) ∗ hn)(t) =
∑
k

f(k2−n)h(t2n − k) ∗ hn

=
∑
k

f(k2−n)

∫
R
h(s2n − k)hn(t− s)ds

=
∑
k

f(k2−n)gn(t− k2−n).

Thus rn,k := k2−n and the gn have all the claimed properties.

(Step 2) For every m ∈ N and every f ∈ C∞(Rm, E) the set{
n ·
(
f −

∑
k1∈Z,...,km∈Z

f(rn;k1,...,km)gn;k1,...,km

)
: n ∈ N

}
is bounded in C∞(Rm, E), where rn;k1,...,km := (rn,k1 , . . . , rn,km) and

gn;k1,...,km(x1, . . . , xm) := gn,k1(x1) · · · · · gn,km(xm).

We prove this statement by induction on m. For m = 1 it was shown in step 1.
Now assume that it holds for m and C∞(R, E) instead of E. Then by induction
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hypothesis applied to f∨ : C∞(Rm, C∞(R, E)) we conclude that{
n ·
(
f −

∑
k1∈Z,...,km∈Z

f(rn;k1,...,km , )gn;k1,...,km

)
: n ∈ N

}
is bounded in C∞(Rm+1, E). Thus it remains to show that{
n
∑

k1,...,km

gn;k1,...,km

(
f(rn;k1,...,km , )−

∑
km+1

f(rn;k1,...,km , rkm+1)gn,km+1

)
: n ∈ N

}
is bounded in C∞(Rm+1, E). Since the support of the gn;k1,...,km is locally finite
only finitely many summands of the outer sum are non-zero on a given compact set.
Thus it is enough to consider each summand separately. By step (1) we know that
the linear operators h 7→ n

(
h −

∑
k h(rn,k)gn,k

)
, n ∈ N, are pointwise bounded.

So they are bounded on bounded sets, by the linear uniform boundedness principle

5.18 . Hence{
n ·
(
f(rn;k1,...,km , )−

∑
km+1

f(rn;k1,...,km , rkm+1
)gn,km+1

)
: n ∈ N

}
is bounded in C∞(Rm+1, E). Using that the multiplication R×E → E is bounded
one concludes immediately that also the multiplication with a map g ∈ C∞(X,R)
is bounded from C∞(X,E)→ C∞(X,E) for any Frölicher space X. Thus the proof
of step (2) is complete.

(Step 3) For every ` ∈ C∞(X,E)′ there exist xn,k ∈ X and `n,k ∈ E′ such that
{n(`−

∑
k `n,k ◦ evxn,k) : n ∈ N} is bounded in C∞(X,E)′, where in the sum only

finitely many terms are non-zero. In particular the subspace generated by `E ◦ evx
for `E ∈ E′ and x ∈ X is c∞-dense.

By 23.8 there exists a compact set K with f |K = 0 implying `(f) = 0. One
can cover K by finitely many relatively compact Uj ∼= Rm (j = 1 . . . N). Let
{hj : j = 0 . . . N} be a partition of unity subordinated to {X r K,U1, . . . , UN}.
Then `(f) =

∑N
j=1 `(hj · f) for every f . By step (2) the set{
n(hjf −

∑
hjf(rn,k1,...,km)gn,k1,...,km : n ∈ N

}
is bounded in C∞(Uj , E). Since supp(hj) is compact in Uj this is even bounded in
C∞(X,E) and for fixed n only finitely many rn,k1,...,km belong to supp(hj). Thus
the above sum is actually finite and the supports of all functions in the bounded
subset of C∞(Uj , E) are included in a common compact subset. Applying ` to this
subset yields that

{
n
(
(`(hjf)−

∑
`n,k1,...,km ◦ ev(rn,k1,...,km)

)
: n ∈ N

}
is bounded

in R, where `n,k1,...,km(x) := `
(
hj(rn,k1,...,km)gn;k1,...,km · x

)
.

To complete the proof one only has to take as xn,k all the rn,k1,...,km for the finitely
many charts Uj ∼= Rm and as `n,k the corresponding functionals `n,k1,...,km ∈ E′. �

23.11. Corollary. [Frölicher and Kriegl, 1988, 5.1.8] Let X be a finite dimensional
separable smooth manifold. Then the free convenient vector space λX over X is
equal to C∞(X,R)′. �



23.13 23. Frölicher Spaces and Free Convenient Vector Spaces 255

23.12. Remark. In [Kriegl and Nel, 1990] it was shown that the free convenient
vector space over the long line L is not C∞(L,R)′ and the same for the space E of
points with countable support in an uncountable product of R.

In [Adam, 1995, 2.2.6] it is shown that the isomorphism δ∗ : L(C∞(X,R)′, G) ∼=
C∞(X,G) is even a topological isomorphism for (the) natural topologies on all
spaces under consideration provided X is a finite dimensional separable smooth
manifold. Furthermore, the corresponding statement holds for holomorphic map-
pings, provided X is a separable complex manifold modeled on polycylinders. For
Riemannian surfaces X it is shown in [Siegl, 1997, 2.11] that the free convenient
vector space for holomorphic mappings is the Mackey adherence of the linear sub-
space of H(X,C)′ generated by the point evaluations evx for x ∈ X. In [Siegl, 1997,
2.52] the same is shown for pseudo-convex subsets of X ⊆ Cn. Reflexivity of the
space of scalar valued functions implies that the linear space generated by the point
evaluations is dense in the dual of the function space with respect to its bornolo-
gical topology by [Siegl, 1997, 3.3]. And conversely if Λ(X) is this dual, then the
function space is reflexive. Thus Λ(E) 6= C∞(E,R)′ for non-reflexive convenient
vector spaces E. Partial positive results for infinite dimensional spaces have been
obtained in [Siegl, 1997, section 3] .

23.13. Remark. On can define convenient co-algebras dually to convenient
algebras, as a convenient vector space E together with a compatible co-algebra
structure, i.e. two bounded linear mappings

µ : E → E⊗̃βE, called co-multiplication, into the c∞-completion 4.29 of the

bornological tensor product 5.9 ;
and ε : E → R, called co-unit,

such that one has the following commutative diagrams:

E⊗̃βE
µ⊗̃β Id //

µ

��

(E⊗̃βE)⊗̃βE
∼= // E⊗̃β(E⊗̃βE)

Id ⊗̃βµ
��

E
µ // E⊗̃βE

E⊗̃βE
ε⊗̃ Id

''
E

∼= //

µ
88

R⊗̃βE
In words, the co-multiplication has to be co-associative and ε has to be a co-unit
with respect to µ.

If, in addition, the following diagram commutes

E⊗̃βE
∼= // E⊗̃βE

E

µ
ff

µ
88
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then the co-algebra is called co-commutative.

Morphisms g : E → F between convenient co-algebras E and F are bounded linear
mappings for which the following diagrams commute:

E⊗̃βE
g⊗̃g // F ⊗̃βF R Id // R

E

µE

OO

g // F

µF

OO

E
g //

εE

OO

F

εF

OO

A co-idempotent in a convenient co-algebra E, is an element x ∈ E satisfying
ε(x) = 1 and µ(x) = x ⊗ x. They correspond bijectively to convenient co-algebra
morphisms R→ E, see [Frölicher and Kriegl, 1988, 5.2.7].

In [Frölicher and Kriegl, 1988, 5.2.4] it was shown that λ(X × Y ) ∼= λ(X)⊗̃λ(Y )
using only the universal property of the free convenient vector space. Thus λ(∆) :
λ(X) → λ(X × X) ∼= λ(X)⊗̃λ(X) of the diagonal mapping ∆ : X → X × X
defines a co-multiplication on λ(X) with co-unit λ(const) : λ(X) → λ({∗}) ∼= R.
In this way λ becomes a functor from the category of Frölicher spaces into that of
convenient co-algebras, see [Frölicher and Kriegl, 1988, 5.2.5]. In fact this functor
is left-adjoint to the functor I, which associates to each convenient co-algebra the
Frölicher space of co-idempotents with the initial structure inherited from the co-
algebra, see [Frölicher and Kriegl, 1988, 5.2.9].

Furthermore, it was shown in [Frölicher and Kriegl, 1988, 5.2.18] that any co-idem-
potent element e of λ(X) defines an algebra-homomorphism C∞(X,R) ∼= λ(X)′ −

eve→ R. Thus the equality I(λ(X)) = X, i.e. every co-idempotent e ∈ λ(X) is given
by evx for some x ∈ X, is thus satisfied for smoothly realcompact spaces X, as
they are treated in chapter IV.

24. Smooth Mappings on Non-Open Domains

In this section we will discuss smooth maps f : E ⊇ X → F , where E and F
are convenient vector spaces and X are certain not necessarily open subsets of E.
We consider arbitrary subsets X ⊆ E as Frölicher spaces with the initial smooth
structure induced by the inclusion into E, i.e., a map f : E ⊇ X → F is smooth if
and only if for all smooth curves c : R→ X ⊆ E the composite f ◦ c : R→ F is a
smooth curve.

24.1. Lemma. Convex sets with non-void interior.
Let K ⊆ E be a convex set with non-void c∞-interior Ko. Then the segment
(x, y] := {x+ t(y−x) : 0 < t ≤ 1} is contained in Ko for every x ∈ K and y ∈ K0.
The interior Ko is convex and open even in the locally convex topology. And K is
closed if and only if it is c∞-closed.

Proof. Let y0 := x + t0(y − x) be an arbitrary point on the segment (x, y], i.e.,
0 < t0 ≤ 1. Then x+t0(Ko−x) is an c∞-open neighborhood of y0, since homotheties
are c∞-continuous. It is contained in K, since K is convex.

In particular, the c∞-interior Ko is convex, hence it is not only c∞-open but open

in the locally convex topology 4.5 .
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Without loss of generality we now assume that 0 ∈ Ko. We claim that the closure of
K is the set {x : tx ∈ Ko for 0 < t < 1}. This implies the statement on closedness.
Let U := Ko and consider the Minkowski-functional pU (x) := inf{t > 0 : x ∈ tU}.
Since U is convex, the function pU is convex, see 52.2 . Using that U is c∞-open

it can easily be shown that U = {x : pU (x) < 1}. From 13.2 we conclude that pU
is c∞-continuous, and furthermore that it is even continuous for the locally convex
topology. Hence, the set {x : tx ∈ Ko for 0 < t < 1} = {x : pU (x) ≤ 1} = {x :

pK(x) ≤ 1} is the closure of K in the locally convex topology by 52.3 . �

24.2. Theorem. Derivative of smooth maps.
Let K ⊆ E be a convex subset with non-void interior Ko, and let f : K → R be a
smooth map. Then f |Ko : Ko → F is smooth, and its derivative (f |Ko)′ extends
(uniquely) to a smooth map K → L(E,F ).

Proof. Only the extension property is to be shown. Let us first try to find a
candidate for f ′(x)(v) for x ∈ K and v ∈ E with x + v ∈ Ko. By convexity the
smooth curve cx,v : t 7→ x + t2v has for 0 < |t| < 1 values in Ko and cx,v(0) =
x ∈ K, hence f ◦ cx,v is smooth. In the special case where x ∈ Ko we have by
the chain rule that (f ◦ cx,v)′(t) = f ′(x)(cx,v(t))(c

′
x,v(t)), hence (f ◦ cx,v)′′(t) =

f ′′(cx,v(t))(c
′
x,v(t), c

′
x,v(t)) + f ′(cx,v(t))(c

′′
x,v(t)), and for t = 0 in particular (f ◦

cx,v)
′′(0) = 2 f ′(x)(v). Thus we define

2 f ′(x)(v) := (f ◦ cx,v)′′(0) for x ∈ K and v ∈ Ko − x.
Note that for 0 < ε < 1 we have f ′(x)(ε v) = ε f ′(x)(v), since cx,ε v(t) = cx,v(

√
ε t).

Let us show next that f ′( )(v) : {x ∈ K : x + v ∈ Ko} → R is smooth. So let
s 7→ x(s) be a smooth curve in K, and let v ∈ K0 − x(0). Then x(s) + v ∈ Ko for
all sufficiently small s. And thus the map (s, t) 7→ cx(s),v(t) is smooth from some
neighborhood of (0, 0) into K. Hence (s, t) 7→ f(cx(s),v(t)) is smooth and also its
second derivative s 7→ (f ◦ cx(s),v)

′′(0) = 2 f ′(x(s))(v).

In particular, let x0 ∈ K and v0 ∈ Ko − x0 and x(s) := x0 + s2v0. Then

2f ′(x0)(v) := (f ◦ cx0,v)
′′(0) = lim

s→0
(f ◦ cx(s),v)

′′(0) = lim
s→0

2 f ′(x(s))(v),

with x(s) ∈ Ko for 0 < |s| < 1. Obviously this shows that the given definition of
f ′(x0)(v) is the only possible smooth extension of f ′( )(v) to {x0} ∪Ko.

Now let v ∈ E be arbitrary. Choose a v0 ∈ Ko − x0. Since the set Ko − x0 − v0 is
a c∞-open neighborhood of 0, hence absorbing, there exists some ε > 0 such that
v0 + εv ∈ Ko − x0. Thus

f ′(x)(v) = 1
εf
′(x)(εv) = 1

ε

(
f ′(x)(v0 + εv)− f ′(x)(v0)

)
for all x ∈ K0. By what we have shown above the right side extends smoothly to
{x0} ∪ Ko, hence the same is true for the left side. I.e. we define f ′(x0)(v) :=
lims→0 f

′(x(s))(v) for some smooth curve x : (−1, 1) → K with x(s) ∈ Ko for
0 < |s| < 1. Then f ′(x) is linear as pointwise limit of f ′(x(s)) ∈ L(E,R) and is
bounded by the Banach-Steinhaus theorem (applied to EB). This shows at the
same time, that the definition does not depend on the smooth curve x, since for
v ∈ x0 +Ko it is the unique extension.
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In order to show that f ′ : K → L(E,F ) is smooth it is by 5.18 enough to show
that

s 7→ f ′(x(s))(v), R x→ K
f ′→ L(E,F )

evx→ F

is smooth for all v ∈ E and all smooth curves x : R → K. For v ∈ x0 + Ko

this was shown above. For general v ∈ E, this follows since f ′(x(s))(v) is a linear
combination of f ′(x(s))(v0) for two v0 ∈ x0 +Ko not depending on s locally. �

By 24.2 the following lemma applies in particular to smooth maps.

24.3. Lemma. Chain rule. Let K ⊆ E be a convex subset with non-void interior
Ko, let f : K → R be smooth on Ko and let f ′ : K → L(E,F ) be an extension of
(f |Ko)′, which is continuous for the c∞-topology of K, and let c : R→ K ⊆ E be a
smooth curve. Then (f ◦ c)′(t) = f ′(c(t))(c′(t)).

Proof.

Claim Let g : K → L(E,F ) be continuous along smooth curves in K, then ĝ :
K × E → F is also continuous along smooth curves in K × E.
In order to show this let t 7→ (x(t), v(t)) be a smooth curve in K × E. Then
g ◦ x : R→ L(E,F ) is by assumption continuous (for the bornological topology on

L(E,F )) and v∗ : L(E,F ) → C∞(R, F ) is bounded and linear 3.13 and 3.17 .
Hence, the composite v∗ ◦ g ◦ x : R → C∞(R, F ) → C(R, F ) is continuous. Thus,
(v∗ ◦ g ◦ x)∧ : R2 → F is continuous, and in particular when restricted to the
diagonal in R2. But this restriction is just g ◦ (x, v).

Now choose a y ∈ Ko. And let cs(t) := c(t) + s2(y− c(t)). Then cs(t) ∈ Ko for 0 <
|s| ≤ 1 and c0 = c. Furthermore, (s, t) 7→ cs(t) is smooth and c′s(t) = (1− s2)c′(t).
And for s 6= 0

f(cs(t))− f(cs(0))

t
=

∫ 1

0

(f ◦ cs)′(tτ)dτ = (1− s2)

∫ 1

0

f ′(cs(tτ))(c′(tτ))dτ .

Now consider the specific case where c(t) := x + tv with x, x + v ∈ K. Since
f is continuous along (t, s) 7→ cs(t), the left side of the above equation converges

to f(c(t))−f(c(0))
t for s → 0. And since f ′(·)(v) is continuous along (t, τ, s) 7→

cs(tτ) we have that f ′(cs(tτ))(v) converges to f ′(c(tτ))(v) uniformly with respect
to 0 ≤ τ ≤ 1 for s → 0. Thus, the right side of the above equation converges to∫ 1

0
f ′(c(tτ))(v)dτ . Hence, we have

f(c(t))− f(c(0))

t
=

∫ 1

0

f ′(c(tτ))(v)dτ →
∫ 1

0

f ′(c(0))(v)dτ = f ′(c(0))(c′(0))

for t→ 0.

Now let c : R→ K be an arbitrary smooth curve. Then (s, t) 7→ c(0)+s(c(t)−c(0))
is smooth and has values in K for 0 ≤ s ≤ 1. By the above consideration we have
for x = c(0) and v = (c(t)− c(0))/t that

f(c(t))− f(c(0))

t
=

∫ 1

0

f ′
(
c(0) + τ(c(t)− c(0))

)(c(t)− c(0)

t

)
which converges to f ′(c(0))(c′(0)) for t → 0, since f ′ is continuous along smooth
curves in K and thus f ′(c(0)+ τ(c(t)− c(0)))→ f ′(c(0)) uniformly on the bounded
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set { c(t)−c(0)
t : t near 0}. Thus, f ◦ c is differentiable with derivative (f ◦ c)′(t) =

f ′(c(t))(c′(t)). �

Since f ′ can be considered as a map df : E × E ⊇ K × E → F it is important to
study sets A× B ⊆ E × F . Clearly, A× B is convex provided A ⊆ E and B ⊆ F
are. Remains to consider the openness condition. In the locally convex topology
(A × B)o = Ao × Bo, which would be enough to know in our situation. However,
we are also interested in the corresponding statement for the c∞-topology. This
topology on E × F is in general not the product topology c∞E × c∞F . Thus, we
cannot conclude that A×B has non-void interior with respect to the c∞-topology
on E × F , even if A ⊆ E and B ⊆ F have it. However, in case where B = F
everything is fine.

24.4. Lemma. Interior of a product.
Let X ⊆ E. Then the interior (X × F )o of X × F with respect to the c∞-topology
on E × F is just Xo × F , where Xo denotes the interior of X with respect to the
c∞-topology on E.

Proof. Let W be the saturated hull of (X × F )o with respect to the projection
pr1 : E×F → E, i.e. the c∞-open set (X ×F )o + {0}×F ⊆ X ×F . Its projection
to E is c∞-open, since it agrees with the intersection with E × {0}. Hence, it is
contained in Xo, and (X × F )o ⊆ Xo × F . The converse inclusion is obvious since
pr1 is continuous. �

24.5. Theorem. Smooth maps on convex sets.
Let K ⊆ E be a convex subset with non-void interior Ko, and let f : K → F be
a map. Then f is smooth if and only if f is smooth on Ko and all derivatives
(f |Ko)(n) extend continuously to K with respect to the c∞-topology of K.

Proof. (⇒) It follows by induction using 24.2 that f (n) has a smooth extension
K → Ln(E;F ).

(⇐) By 24.3 we conclude that for every c : R → K the composite f ◦ c : R → F
is differentiable with derivative (f ◦ c)′(t) = f ′(c(t))(c′(t)) =: df(c(t), c′(t)).

The map df is smooth on the interior Ko × E, linear in the second variable, and
its derivatives (df)(p)(x,w)(y1, w1; . . . , yp, wp) are universal linear combinations of

f (p+1)(x)(y1, . . . , yp;w) and of f (k+1)(x)(yi1 , . . . , yik ;wi0) for k ≤ p.
These summands have unique extensions to K × E. The first one is continuous
along smooth curves in K × E, because for such a curve (t 7→ (x(t), w(t)) the
extension f (k+1) : K → L(Ek, L(E,F )) is continuous along the smooth curve x,
and w∗ : L(E,F ) → C∞(R, F ) is continuous and linear, so the mapping t 7→
(s 7→ f (k+1)(x(t))(yi1 , . . . , yik ;w(s))) is continuous from R → C∞(R, F ) and thus
as map from R2 → F it is continuous, and in particular if restricted to the diagonal.
And the other summands only depend on x, hence have a continuous extension by
assumption.

So we can apply 24.3 inductively using 24.4 , to conclude that f ◦ c : R → F is
smooth. �
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In view of the preceding theorem 24.5 it is important to know the c∞-topology
c∞X of X, i.e. the final topology generated by all the smooth curves c : R →
X ⊆ E. So the first question is whether this is the trace topology c∞E|X of the
c∞-topology of E.

24.6. Lemma. The c∞-topology is the trace topology.
In the following cases of subsets X ⊆ E the trace topology c∞E|X equals the topol-
ogy c∞X:

(1) X is c∞E-open.
(2) X is convex and locally c∞-closed.
(3) The topology c∞E is sequential and X ⊆ E is convex and has non-void inte-

rior.

( 3 ) applies in particular to the case where E is metrizable, see 4.11 . A topology
is called sequential if and only if the closure of any subset equals its adherence,

i.e. the set of all accumulation points of sequences in it. By 2.13 and 2.8 the
adherence of a set X with respect to the c∞-topology, is formed by the limits of all
Mackey-converging sequences in X.

Proof. Note that the inclusion X → E is by definition smooth, hence the identity
c∞X → c∞E|X is always continuous.

( 1 ) Let U ⊆ X be c∞X-open and let c : R→ E be a smooth curve with c(0) ∈ U .
Since X is c∞E-open, c(t) ∈ X for all small t. By composing with a smooth
map h : R → R which satisfies h(t) = t for all small t, we obtain a smooth curve
c ◦ h : R → X, which coincides with c locally around 0. Since U is c∞X-open we
conclude that c(t) = (c ◦ h)(t) ∈ U for small t. Thus, U is c∞E-open.

( 2 ) Let A ⊆ X be c∞X-closed. And let Ā be the c∞E-closure of A. We have to

show that Ā ∩ X ⊆ A. So let x ∈ Ā ∩ X. Since X is locally c∞E-closed, there
exists a c∞E-neighborhood U of x ∈ X with U ∩ X c∞-closed in U . For every
c∞E-neighborhood U of x we have that x is in the closure of A ∩ U in U with
respect to the c∞E-topology (otherwise some open neighborhood of x in U does
not meet A∩U , hence also not A). Let an ∈ A∩U be Mackey converging to a ∈ U .
Then an ∈ X ∩ U which is closed in U thus a ∈ X. Since X is convex the infinite
polygon through the an lies in X and can be smoothly parameterized by the special

curve lemma 2.8 . Using that A is c∞X-closed, we conclude that a ∈ A. Thus,
A ∩ U is c∞U -closed and x ∈ A.

( 3 ) Let A ⊆ X be c∞X-closed. And let Ā denote the closure of A in c∞E. We

have to show that Ā ∩ X ⊆ A. So let x ∈ Ā ∩ X. Since c∞E is sequential there

is a Mackey converging sequence A 3 an → x. By the special curve lemma 2.8
the infinite polygon through the an can be smoothly parameterized. Since X is
convex this curve gives a smooth curve c : R→ X and thus c(0) = x ∈ A, since A
is c∞X-closed. �

24.7. Example. The c∞-topology is not trace topology.
Let A ⊆ E be such that the c∞-adherence Adh(A) of A is not the whole c∞-closure
Ā of A. So let a ∈ Ā\Adh(A). Then consider the convex subset K ⊆ E×R defined
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by K := {(x, t) ∈ E × R : t ≥ 0 and (t = 0 ⇒ x ∈ A ∪ {a})} which has non-empty
interior E×R+. However, the topology c∞K is not the trace topology of c∞(E×R)

which equals c∞(E)× R by 4.15 .

Note that this situation occurs quite often, see 4.13 and 4.36 where A is even a
linear subspace.

Proof. Consider A = A × {0} ⊆ K. This set is closed in c∞K, since E ∩ K is
closed in c∞K and the only point in (K ∩E) \A is a, which cannot be reached by
a Mackey converging sequence in A, since a /∈ Adh(A).

It is however not the trace of a closed subset in c∞(E)×R. Since such a set has to
contain A and hence Ā 3 a. �

24.8. Theorem. Smooth maps on subsets with collar.
Let M ⊆ E have a smooth collar, i.e., the boundary ∂M of M is a smooth sub-
manifold of E and there exists a neighborhood U of ∂M and a diffeomorphism
ψ : ∂M × R → U which is the identity on ∂M and such that ψ(M × {t ∈ R :
t ≥ 0}) = M ∩ U . Then every smooth map f : M → F extends to a smooth map

f̃ : M ∪ U → F . Moreover, one can choose a bounded linear extension operator
C∞(M,F )→ C∞(M ∪ U,F ), f 7→ f̃ .

Proof. By 16.8 there is a continuous linear right inverse S to the restriction
map C∞(R,R) → C∞(I,R), where I := {t ∈ R : t ≥ 0}. Now let x ∈ U and
(px, tx) := ψ−1(x). Then f(ψ(px, ·)) : I → F is smooth, since ψ(px, t) ∈ M
for t ≥ 0. Thus, we have a smooth map S(f(ψ(px, ·))) : R → F and we define

f̃(x) := S(f(ψ(px, ·)))(tx). Then f̃(x) = f(x) for all x ∈ M ∩ U , since for such

an x we have tx ≥ 0. Now we extend the definition by f̃(x) = f(x) for x ∈ Mo.

Remains to show that f̃ is smooth (on U). So let s 7→ x(s) be a smooth curve
in U . Then s 7→ (ps, ts) := ψ−1(x(s)) is smooth. Hence, s 7→ (t 7→ f(ψ(ps, t))
is a smooth curve R → C∞(I, F ). Since S is continuous and linear the composite
s 7→ (t 7→ S(fψ(ps, ·))(t)) is a smooth curve R→ C∞(R, F ) and thus the associated

map R2 → F is smooth, and also the composite f̃(xs) of it with s 7→ (s, ts).

The existence of a bounded linear extension operator follows now from 21.2 . �

In particular, the previous theorem applies to the following convex sets:

24.9. Proposition. Convex sets with smooth boundary have a collar.
Let K ⊆ E be a closed convex subset with non-empty interior and smooth boundary

∂K. Then K has a smooth collar as defined in 24.8 .

Proof. Without loss of generality let 0 ∈ Ko.

In order to show that the set U := {x ∈ E : tx /∈ K for some t > 0} is c∞-open let
s 7→ x(s) be a smooth curve R → E and assume that t0x(0) /∈ K for some t0 > 0.
Since K is closed we have that t0x(s) /∈ K for all small |s|.
For x ∈ U let r(x) := sup{t ≥ 0 : tx ∈ Ko} > 0, i.e. r = 1

pKo
as defined in the

proof of 24.1 and r(x)x is the unique intersection point of ∂K ∩ (0,+∞)x. We
claim that r : U → R+ is smooth. So let s 7→ x(s) be a smooth curve in U and
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x0 := r(x(0))x(0) ∈ ∂K. Choose a local diffeomorphism ψ : (E, x0)→ (E, 0) which
maps ∂K locally to some closed hyperplane F ⊆ E. Any such hyperplane is the
kernel of a continuous linear functional ` : E → R, hence E ∼= F × R.

We claim that v := ψ′(x0)(x0) /∈ F . If this were not the case, then we consider the
smooth curve c : R→ ∂K defined by c(t) = ψ−1(−tv). Since ψ′(x0) is injective its

derivative is c′(0) = −x0 and c(0) = x0. Since 0 ∈ Ko, we have that x0 + c(t)−c(0)
t ∈

Ko for all small |t|. By convexity c(t) = x0 + t c(t)−c(0)
t ∈ Ko for small t > 0, a

contradiction.

So we may assume that `(ψ′(x)(x)) 6= 0 for all x in a neighborhood of x0.

For s small r(x(s)) is given by the implicit equation `(ψ(r(x(s))x(s))) = 0. So let
g : R2 → R be the locally defined smooth map g(t, s) := `(ψ(tx(s))). For t 6= 0
its first partial derivative is ∂1g(t, s) = `(ψ′(tx(s))(x(s))) 6= 0. So by the classical
implicit function theorem the solution s 7→ r(x(s)) is smooth.

Now let Ψ : U×R→ U be the smooth map defined by (x, t) 7→ e−tr(x)x. Restricted
to ∂K × R → U is injective, since tx = t′x′ with x,x′ ∈ ∂K and t, t′ > 0 implies
x = x′ and hence t = t′. Furthermore, it is surjective, since the inverse mapping is
given by x 7→ (r(x)x, ln(r(x))). Use that r(λx) = 1

λr(x). Since this inverse is also
smooth, we have the required diffeomorphism Ψ. In fact, Ψ(x, t) ∈ K if and only if
e−tr(x) ≤ r(x), i.e. t ≤ 0. �

That 24.8 is far from being best possible shows the

24.10. Proposition. Let K ⊆ Rn be the quadrant K := {x = (x1, . . . , xn) ∈
Rn : x1 ≥ 0, . . . , xn ≥ 0}. Then there exists a bounded linear extension operator
C∞(K,F )→ C∞(Rn, F ) for each convenient vector space F .

This can be used to obtain the same result for submanifolds with convex corners
sitting in smooth finite dimensional manifolds.

Proof. Since K = (R+)n ⊆ Rn and the inclusion is the product of inclusions

ι : R+ ↪→ R we can use the exponential law 23.2.3 to obtain C∞(K,F ) ∼=
C∞((R+)n−1, C∞(R+, F )). By Seeley’s theorem 16.8 we have a bounded lin-
ear extension operator S : C∞(R+, F )→ C∞(R, F ). We now proceed by induction
on n. So we have an extension operator Sn−1 : C∞((R+)n−1, G) → C∞(Rn−1, G)
for the convenient vector space G := C∞(R, F ) by induction hypothesis. The
composite gives up to natural isomorphisms the required extension operator

C∞(K,F ) ∼= C∞((R+)n−1, C∞(R+, F ))−S∗→ C∞((R+)n−1, C∞(R, F ))→

−Sn−1→ C∞(Rn−1, C∞(R, F )) ∼= C∞(Rn, F ). �

25. Real Analytic Mappings on Non-Open Domains

In this section we will consider real analytic mappings defined on the same type of
convex subsets as in the previous section.

25.1. Theorem. Power series in Fréchet spaces. Let E be a Fréchet space and
(F, F ′) be a dual pair. Assume that a Baire vector space topology on E′ exists for
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which the point evaluations are continuous. Let fk be k-linear symmetric bounded
functionals from E to F , for each k ∈ N. Assume that for every ` ∈ F ′ and every x
in some open subset W ⊆ E the power series

∑∞
k=0 `(fk(xk))tk has positive radius of

convergence. Then there exists a 0-neighborhood U in E, such that {fk(x1, . . . , xk) :
k ∈ N, xj ∈ U} is bounded and thus the power series x 7→

∑∞
k=0 fk(xk) converges

Mackey on some 0-neighborhood in E.

Proof. Choose a fixed but arbitrary ` ∈ F ′. Then ` ◦ fk satisfy the assumptions

of 7.14 for an absorbing subset in a closed cone C with non-empty interior. Since

this cone is also complete metrizable we can proceed with the proof as in 7.14
to obtain a set AK,r ⊆ C whose interior in C is non-void. But this interior has

to contain a non-void open set of E and as in the proof of 7.14 there exists
some ρ` > 0 such that for the ball Uρ` in E with radius ρ` and center 0 the set
{`(fk(x1, . . . , xk)) : k ∈ N, xj ∈ Uρ`} is bounded.

Now let similarly to 9.6

AK,r,ρ :=
⋂
k∈N

⋂
x1,...xn∈Uρ

{` ∈ F ′ : |`(fk(x1, . . . , xk))| ≤ Krk}

for K, r, ρ > 0. These sets AK,r,ρ are closed in the Baire topology, since evaluation
at fk(x1, . . . , xk) is assumed to be continuous.

By the first part of the proof the union of these sets is F ′. So by the Baire property,
there exist K, r, ρ > 0 such that the interior U of AK,r,ρ is non-empty. As in the

proof of 9.6 we choose an `0 ∈ U . Then for every ` ∈ F ′ there exists some ε > 0

such that `ε := ε` ∈ U − `0. So |`(y)| ≤ 1
ε (|`ε(y) + `0(y)| + |`0(y)|) ≤ 2

εKr
n for

every y = fk(x1, . . . , xk) with xi ∈ Uρ. Thus, {fk(x1, . . . , xk) : k ∈ N, xi ∈ Uρ
r
} is

bounded.

On every smaller ball we have therefore that the power series with terms fk con-
verges Mackey. �

Note that if the vector spaces are real and the assumption above hold, then the

conclusion is even true for the complexified terms by 7.14 .

25.2. Theorem. Real analytic maps I → R are germs.
Let f : I := {t ∈ R : t ≥ 0} → R be a map. Suppose t 7→ f(t2) is real analytic

R → R. Then f extends to a real analytic map f̃ : Ĩ → R, where Ĩ is an open
neighborhood of I in R.

Proof. We show first that f is smooth. Consider g(t) := f(t2). Since g : R → R
is assumed to be real analytic it is smooth and clearly even. We claim that there
exists a smooth map h : R→ R with g(t) = h(t2) (this is due to [Whitney, 1943]).
In fact, by h(t2) := g(t) a continuosu map h : {t :∈ R : t ≥ 0} → R is uniquely
determined. Obviously, h|{t∈R:t>0} is smooth. Differentiating for t 6= 0 the defining

equation gives h′(t2) = g′(t)
2t =: g1(t). Since g is smooth and even, g′ is smooth and

odd, so g′(0) = 0. Thus

t 7→ g1(t) =
g′(t)− g′(0)

2t
=

1

2

∫ 1

0

g′′(ts) ds
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is smooth. Hence, we may define h′ on {t ∈ R : t ≥ 0} by the equation h′(t2) = g1(t)
with even smooth g1. By induction we obtain continuous extensions of h(n) : {t ∈
R : t > 0} → R to {t ∈ R : t ≥ 0}, and hence h is smooth on {t ∈ R : t ≥ 0} and so
can be extended to a smooth map h : R→ R.

From this we get f(t2) = g(t) = h(t2) for all t. Thus, h : R → R is a smooth
extension of f .

Composing with the exponential map exp : R → R+ shows that f is real analytic

on {t : t > 0}, and has derivatives f (n) which extend by 24.5 continuously to maps

I → R. It is enough to show that an := 1
n!f

(n)(0) are the coefficients of a power
series p with positive radius of convergence and for t ∈ I this map p coincides with
f .

Claim. We show that a smooth map f : I → R, which has a real analytic composite
with t 7→ t2, is the germ of a real analytic mapping.
Consider the real analytic curve c : R → I defined by c(t) = t2. Thus, f ◦ c is
real analytic. By the chain rule the derivative (f ◦ c)(p)(t) is for t 6= 0 a universal
linear combination of terms f (k)(c(t))c(p1)(t) · · · c(pk)(t), where 1 ≤ k ≤ p and
p1 + . . . + pk = p. Taking the limit for t → 0 and using that c(n)(0) = 0 for
all n 6= 2 and c′′(0) = 2 shows that there is a universal constant cp satisfying

(f ◦ c)(2p)(0) = cp · f (p)(0). Take as f(x) = xp to conclude that (2p)! = cp · p!.
Now we use 9.2 to show that the power series

∑∞
k=0

1
k!f

(k)(0)tk converges locally.

So choose a sequence (rk) with rkt
k → 0 for all t > 0. Define a sequence (r̄k) by

r̄2n = r̄2n+1 := rn and let t̄ > 0. Then r̄k t̄
k = rnt

n for 2n = k and r̄k t̄
k = rnt

nt̄
for 2n+ 1 = k, where t := t̄2 > 0, hence (r̄k) satisfies the same assumptions as (rk)

and thus by 9.3 (1⇒ 3) the sequence 1
k! (f ◦ c)

(k)(0)r̄k is bounded. In particular,
this is true for the subsequence

1
(2p)! (f ◦ c)

(2p)(0)r̄2p =
cp

(2p)!f
(p)(0)rp = 1

p!f
(p)(0)rp.

Thus, by 9.3 (1⇐ 3) the power series with coefficients 1
p!f

(p)(0) converges locally

to a real analytic function f̃ .

Remains to show that f̃ = f on J . But since f̃ ◦ c and f ◦ c are both real analytic
near 0, and have the same Taylor series at 0, they have to coincide locally, i.e.
f̃(t2) = f(t2) for small t. �

Note however that the more straight forward attempt of a proof of the first step,
namely to show that f ◦ c is smooth for all c : R→ {t ∈ R : t ≥ 0} by showing that
for such c there is a smooth map h : R → R, satisfying c(t) = h(t)2, is doomed to
fail as the following example shows.

25.3. Example. A smooth function without smooth square root.

Let c : R → {t ∈ R : t ≥ 0} be defined by the general curve lemma 12.2 using
pieces of parabolas ]FK2.5

cn : t 7→ 2n
2n t

2 + 1
4n . Then there is no smooth square root of c.

Proof. The curve c constructed in 12.2 has the property that there exists a
converging sequence tn such that c(t + tn) = cn(t) for small t. Assume there were
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a smooth map h : R→ R satisfying c(t) = h(t)2 for all t. At points where c(t) 6= 0
we have in turn:

c′(t) = 2h(t)h′(t)

c′′(t) = 2h(t)h′′(t) + 2h′(t)2

2c(t)c′′(t) = 4h(t)3h′′(t) + c′(t)2.

Choosing tn for t in the last equation gives h′′(tn) = 2n, which is unbounded in n.
Thus h cannot be C2. �

25.4. Definition. (Real analytic maps I → F )
Let I ⊆ R be a non-trivial interval. Then a map f : I → F is called real analytic
if and only if the composites ` ◦ f ◦ c : R→ R are real analytic for all real analytic
c : R→ I ⊆ R and all ` ∈ F ′. If I is an open interval then this definition coincides

with 10.3 .

25.5. Lemma. Bornological description of real analyticity.
Let I ⊆ R be a compact interval. A curve c : I → E is real analytic if and only if c
is smooth and the set { 1

k! c
(k)(a) rk : a ∈ I, k ∈ N} is bounded for all sequences (rk)

with rk t
k → 0 for all t > 0.

Proof. We use 9.3 . Since both sides can be tested with ` ∈ E′ we may assume
that E = R.

(⇒) By 25.2 we may assume that c : Ĩ → R is real analytic for some open

neighborhood Ĩ of I. Thus, the required boundedness condition follows from 9.3 .

(⇐) By 25.2 we only have to show that f : t 7→ c(t2) is real analytic. For

this we use again 9.3 . So let K ⊆ R be compact. Then the Taylor series of f

is obtained by that of c composed with t2. Thus, the composite f satisfies the
required boundedness condition, and hence is real analytic. �

This characterization of real analyticity can not be weakened by assuming the

boundedness conditions only for single pointed K as the map c(t) := e−1/t2 for
t 6= 0 and c(0) = 0 shows. It is real analytic on R \ {0} thus the condition is
satisfied at all points there, and at 0 the power series has all coefficients equal to
0, hence the condition is satisfied there as well.

25.6. Corollary. Real analytic maps into inductive limits.
Let Tα : E → Eα be a family of bounded linear maps that generates the bornology
on E. Then a map c : I → F is real analytic if and only if all the composites
Tα ◦ c : I → Fα are real analytic.

Proof. This follows either directly from 25.5 or from 25.2 by using the corre-

sponding statement for maps R→ E, see 9.9 . �
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25.7. Definition. (Real analytic maps K → F )
For an arbitrary subset K ⊆ E let us call a map f : E ⊇ K → F real analytic if
and only if λ ◦ f ◦ c : I → R is a real analytic (resp. smooth) for all λ ∈ F ′ and
all real analytic (resp. smooth) maps c : I → K, where I ⊂ R is some compact
non-trivial interval. Note however that it is enough to use all real analytic (resp.

smooth) curves c : R→ K by 25.2 .

With Cω(K,F ) we denote the vector space of all real analytic mapsK → F . And we
topologize this space with the initial structure induced by the cone c∗ : Cω(K,F )→
Cω(R, F ) (for all real analytic c : R→ K) and the cone c∗ : Cω(K,F )→ C∞(R, F )
(for all smooth c : R → K). The space Cω(R, F ) should carry the structure of

11.2 and the space C∞(R, F ) that of 3.6 .

For an open K ⊆ E the definition for Cω(K,F ) given here coincides with that of

10.3 .

25.8. Proposition. Cω(K,F ) is convenient. Let K ⊆ E and F be arbitrary.
Then the space Cω(K,F ) is a convenient vector space and satisfies the S-uniform

boundedness principle 5.22 , where S := {evx : x ∈ K}.

Proof. Since both spaces Cω(R,R) and C∞(R,R) are c∞-complete and satisfy the
uniform boundedness principle for the set of point evaluations the same is true for

Cω(K,F ), by 5.25 . �

25.9. Theorem. Real analytic maps K → F are often germs.
Let K ⊆ E be a convex subset with non-empty interior of a Fréchet space and let
(F, F ′) be a complete dual pair for which a Baire topology on F ′ exists, as required

in 25.1 . Let f : K → F be a real analytic map. Then there exists an open

neighborhood U ⊆ EC of K and a holomorphic map f̃ : U → FC such that f̃ |K = f .

Proof. By 24.5 the map f : K → F is smooth, i.e. the derivatives f (k) exist on

the interior K0 and extend continuously (with respect to the c∞-topology of K)
to the whole of K. So let x ∈ K be arbitrary and consider the power series with

coefficients fk = 1
k!f

(k)(x). This power series has the required properties of 25.1 ,

since for every ` ∈ F ′ and v ∈ Ko − x the series
∑
k `(fk(vk))tk has positive radius

of convergence. In fact, `(f(x+ tv)) is by assumption a real analytic germ I → R,

by 24.8 hence locally around any point in I it is represented by its converging
Taylor series at that point. Since (x, v − x] ⊆ Ko and f is smooth on this set,
( ddt )

k(`(f(x + tv)) = `(f (k)(x + tv)(vk) for t > 0. Now take the limit for t → 0
to conclude that the Taylor coefficients of t 7→ `(f(x + tv)) at t = 0 are exactly

k!`(fk). Thus, by 25.1 the power series converges locally and hence represents a
holomorphic map in a neighborhood of x. Let y ∈ Ko be an arbitrary point in this
neighborhood. Then t 7→ `(f(x + t(y − x))) is real analytic I → R and hence the
series converges at y− x towards f(y). So the restriction of the power series to the
interior of K coincides with f .

We have to show that the extensions fx of f : K ∩ Ũx → FC to star shaped
neighborhoods Ũx of x in EC fit together to give an extension f̃ : Ũ → FC. So let
Ũx be such a domain for the extension and let Ux := Ũx ∩ E.
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For this we claim that we may assume that Ux has the following additional property:
y ∈ Ux ⇒ [0, 1]y ⊆ Ko ∪ Ux. In fact, let U0 := {y ∈ Ux : [0, 1]y ⊆ Ko ∪ Ux}. Then
U0 is open, since f : (t, s) 7→ ty(s) being smooth, and f(t, 0) ∈ Ko ∪ Ux for
t ∈ [0, 1], implies that a δ > 0 exists such that f(t, s) ∈ Ko ∪ Ux for all |s| < δ
and −δ < t < 1 + δ. The set U0 is star shaped, since y ∈ U0 and s ∈ [0, 1] implies
that t(x+ s(y− x)) ∈ [x, t′y] for some t′ ∈ [0, 1], hence lies in Ko ∪Ux. The set U0

contains x, since [0, 1]x = {x} ∪ [0, 1)x ⊆ {x} ∪Ko. Finally, U0 has the required
property, since z ∈ [0, 1]y for y ∈ U0 implies that [0, 1]z ⊆ [0, 1]y ⊆ Ko ∪ Ux, i.e.
z ∈ U0.

Furthermore, we may assume that for x + iy ∈ Ũx and t ∈ [0, 1] also x + ity ∈ Ũx
(replace Ũx by {x+ iy : x+ ity ∈ Ũx for all t ∈ [0, 1]}).
Now let Ũ1 and Ũ2 be two such domains around x1 and x2, with corresponding
extensions f1 and f2. Let x+ iy ∈ Ũ1∩ Ũ2. Then x ∈ U1∩U2 and [0, 1]x ⊆ Ko∪Ui
for i = 1, 2. If x ∈ Ko we are done, so let x /∈ Ko. Let t0 := inf{t > 0 : tx /∈ Ko}.
Then t0x ∈ Ui for i = 1, 2 and by taking t0 a little smaller we may assume that
x0 := t0x ∈ Ko ∩ U1 ∩ U2. Thus, fi = f on [x0, xi] and the fi are real analytic on
[x0, x] for i = 1, 2. Hence, f1 = f2 on [x0, x] and thus f1 = f2 on [x, x+ iy] by the
1-dimensional uniqueness theorem. �

That the result corresponding to 24.8 is not true for manifolds with real analytic
boundary shows the following

25.10. Example. No real analytic extension exists.
Let I := {t ∈ R : t ≥ 0}, E := Cω(I,R), and let ev : E × R ⊇ E × I → R be the
real analytic map (f, t) 7→ f(t). Then there is no real analytic extension of ev to a
neighborhood of E × I.

Proof. Suppose there is some open set U ⊆ E × R containing {(0, t) : t ≥ 0} and
a Cω-extension ϕ : U → R. Then there exists a c∞-open neighborhood V of 0
and some δ > 0 such that U contains V × (−δ, δ). Since V is absorbing in E, we
have for every f ∈ E that there exists some ε > 0 such that εf ∈ V and hence
1
εϕ(εf, ·) : (−δ, δ)→ R is a real analytic extension of f . This cannot be true, since
there are f ∈ E having a singularity inside (−δ, δ). �

The following theorem generalizes 11.17 .

25.11. Theorem. Mixing of C∞ and Cω.
Let (E,E′) be a complete dual pair, let X ⊆ E, let f : R×X → R be a mapping that
extends for every B locally around every point in R×(X∩EB) to a holomorphic map
C×(EB)C → C, and let c ∈ C∞(R, X). Then c∗ ◦f∨ : R→ Cω(X,R)→ C∞(R,R)
is real analytic.

Proof. Let I ⊆ R be open and relatively compact, let t ∈ R and k ∈ N. Now
choose an open and relatively compact J ⊆ R containing the closure Ī of I. By

1.8 there is a bounded subset B ⊆ E such that c|J : J → EB is a Lipk-curve in the
Banach space EB generated by B. Let XB denote the subset X∩EB of the Banach
space EB . By assumption on f there is a holomorphic extension f : V ×W → C
of f to an open set V ×W ⊆ C× (EB)C containing the compact set {t}× c(Ī). By
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cartesian closedness of the category of holomorphic mappings f∨ : V → H(W,C) is
holomorphic. Now recall that the bornological structure of H(W,C) is induced by

that of C∞(W,C) := C∞(W,R2). Furthermore, c∗ : C∞(W,C) → Lipk(I,C) is a

bounded C-linear map (see tyhe proof of 11.17 ). Thus, c∗ ◦ f∨ : V → Lipk(I,C)

is holomorphic, and hence its restriction to R ∩ V , which has values in Lipk(I,R),

is (even topologically) real analytic by 9.5 . Since t ∈ R was arbitrary we conclude

that c∗ ◦ f∨ : R → Lipk(I,R) is real analytic. But the bornology of C∞(R,R) is

generated by the inclusions into Lipk(I,R), by the uniform boundedness principles

5.26 for C∞(R,R) and 12.9 for Lipk(R,R), and hence c∗ ◦ f∨ : R → C∞(R,R)
is real analytic. �

This can now be used to show cartesian closedness with the same proof as in 11.18
for certain non-open subsets of convenient vector spaces. In particular, the previous
theorem applies to real analytic mappings f : R×X → R, where X ⊆ E is convex
with non-void interior. Since for such a set the intersection XB with EB has the
same property and since EB is a Banach space, the real analytic mapping is the
germ of a holomorphic mapping.

25.12. Theorem. Exponential law for real analytic germs.
Let K and L be two convex subsets with non-empty interior in convenient vector
spaces. A map f : K → Cω(L,F ) is real analytic if and only if the associated

mapping f̂ : K × L→ F is real analytic.

Proof. (⇒) Let c = (c1, c2) : R → K × L be Cα (for α ∈ {∞, ω}) and let ` ∈ F ′.
We have to show that ` ◦ f̂ ◦ c : R → R is Cα. By cartesian closedness of Cα it is

enough to show that the map ` ◦ f̂ ◦ (c1× c2) : R2 → R is Cα. This map however is
associated to `∗ ◦ (c2)∗ ◦ f ◦ c1 : R → K → Cω(L,F ) → Cα(R,R), hence is Cα by
assumption on f and the structure of Cω(L,F ).

(⇐) Let conversely f : K × L → F be real analytic. Then obviously f(x, ·) :
L → F is real analytic, hence f∨ : K → Cω(L,F ) makes sense. Now take an
arbitrary Cα-map c1 : R → K. We have to show that f∨ ◦ c1 : R → Cω(L,F )
is Cα. Since the structure of Cω(L,F ) is generated by Cβ(c1, `) for Cβ-curves

c2 : R → L (for β ∈ {∞, ω}) and ` ∈ F ′, it is by 9.3 enough to show that

Cβ(c2, `) ◦ f∨ ◦ c1 : R→ Cβ(R,R) is Cα. For α = β it is by cartesian closedness of
Cα maps enough to show that the associate map R2 → R is Cα. Since this map is
just ` ◦ f ◦ (c1 × c2), this is clear. In fact, take for γ ≤ α, γ ∈ {∞, ω} an arbitrary
Cγ-curve d = (d1, d2) : R→ R2. Then (c1 × c2) ◦ (d1, d2) = (c1 ◦ d1, c2 ◦ d2) is Cγ ,
and so the composite with ` ◦ f has the same property.

It remains to show the mixing case, where c1 is real analytic and c2 is smooth or
conversely. First the case c1 real analytic, c2 smooth. Then ` ◦ f ◦ (c1 × Id) :

R×L→ R is real analytic, hence extends to some holomorphic map by 25.9 , and

by 25.11 the map

C∞(c2, `) ◦ f∨ ◦ c1 = c∗2 ◦ (` ◦ f ◦ (c1 × Id))∨ : R→ C∞(R,R)

is real analytic. Now the case c1 smooth and c2 real analytic. Then `◦f ◦ (Id×c2) :

K × R → R is real analytic, so by the same reasoning as just before applied to f̃
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defined by f̃(x, y) := f(y, x), the map

C∞(c1, `) ◦ (f̃)∨ ◦ c2 = c∗1 ◦ (` ◦ f̃ ◦ (Id×c2))∨ : R→ C∞(R,R)

is real analytic. By 11.16 the associated mapping

(c∗1 ◦ (` ◦ f̃ ◦ (Id×c2))∨)∼ = Cω(c2, `) ◦ f̃ ◦ c1 : R→ Cω(R,R)

is smooth. �

The following example shows that theorem 25.12 does not extend to arbitrary
domains.

25.13. Example. The exponential law for general domains is false.

Let X ⊆ R2 be the graph of the map h : R → R defined by h(t) := e−t
−2

for
t 6= 0 and h(0) = 0. Let, furthermore, f : R × X → R be the mapping defined by
f(t, s, r) := r

t2+s2 for (t, s) 6= (0, 0) and f(0, 0, r) := 0. Then f : R×X → R is real

analytic, however the associated mapping f∨ : R→ Cω(X,R) is not.

Proof. Obviously, f is real analytic on R3 \ {(0, 0)} × R. If u 7→ (t(u), s(u), r(u))
is real analytic R → R × X, then r(u) = h(s(u)). Suppose s is not constant and
t(0) = s(0) = 0, then we have that r(u) = h(uns0(u)) cannot be real analytic, since
it is not constant but the Taylor series at 0 is identical 0, a contradiction. Thus,
s = 0 and r = h ◦ s = 0, therefore u 7→ f(t(u), s(u), r(u)) = 0 is real analytic.

Remains to show that u 7→ f(t(u), s(u), r(u)) is smooth for all smooth curves

(t, s, r) : R → R × X. Since f(t(u), s(u), r(u)) = h(s(u))
t(u)2+s(u)2 it is enough to show

that ϕ : R2 → R defined by ϕ(t, s) = h(s)
t2+s2 is smooth. This is obviously the case,

since each of its partial derivatives is of the form h(s) multiplied by some rational
function of t and s, hence extends continuously to {(0, 0)}.

Now we show that f∨ : R→ Cω(X,R) is not real analytic. Take the smooth curve
c : u 7→ (u, h(u)) into X and consider c∗◦f∨ : R→ C∞(R,R), which is given by t 7→
(s 7→ f(t, c(s)) = h(s)

t2+s2 ). Suppose it is real analytic into C([−1,+1],R). Then it has

to be locally representable by a converging power series
∑
ant

n ∈ C([−1,+1],R).

So there has to exist a δ > 0 such that
∑
an(s)zn = h(s)

s2

∑∞
k=0(−1)k( zs )2k converges

for all |z| < δ and |s| < 1. This is impossible, since at z = si there is a pole. �

26. Holomorphic Mappings on Non-Open Domains

In this section we will consider holomorphic maps defined on two types of convex
subsets. First the case where the set is contained in some real part of the vector
space and has non-empty interior there. Recall that for a subset X ⊆ R ⊆ C the
space of germs of holomorphic maps X → C is the complexification of that of germs

of real analytic maps X → R, 11.2 . Thus, we give the following
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26.1. Definition. (Holomorphic maps K → F )
LetK ⊆ E be a convex set with non-empty interior in a real convenient vector space.
And let F be a complex convenient vector space. We call a map f : EC ⊇ K → F
holomorphic if and only if f : E ⊇ K → F is real analytic.

26.2. Lemma. Holomorphic maps can be tested by functionals.
Let K ⊆ E be a convex set with non-empty interior in a real convenient vector
space. And let F be a complex convenient vector space. Then a map f : K → F
is holomorphic if and only if the composites ` ◦ f : K → C are holomorphic for all
` ∈ LC(E,C), where LC(E,C) denotes the space of C-linear maps.

Proof. (⇒) Let ` ∈ LC(F,C). Then the real and imaginary part Re `, Im ` ∈
LR(F,R) and since by assumption f : K → F is real analytic so are the composites
Re ` ◦ f and Im ` ◦ f , hence ` ◦ f : K → R2 is real analytic, i.e. ` ◦ f : K → C is
holomorphic.

(⇐) We have to show that ` ◦ f : K → R is real analytic for every ` ∈ LR(F,R).

So let ˜̀ : F → C be defined by ˜̀(x) = i`(x) + `(ix). Then ˜̀ ∈ LC(F,C), since

i˜̀(x) = −`(x) + i`(ix) = ˜̀(ix). Note that ` = Im ◦˜̀. By assumption, ˜̀◦ f : K → C
is holomorphic, hence its imaginary part ` ◦ f : K → R is real analytic. �

26.3. Theorem. Holomorphic maps K → F are often germs.
Let K ⊆ E be a convex subset with non-empty interior in a real Fréchet space E
and let F be a complex convenient vector space such that F ′ carries a Baire topology

as required in 25.1 . Then a map f : EC ⊇ K → F is holomorphic if and only if

it extends to a holomorphic map f̃ : K̃ → F for some neighborhood K̃ of K in EC.

Proof. Using 25.9 we conclude that f extends to a holomorphic map f̃ : K̃ → FC

for some neighborhood K̃ of K in EC. The map pr : FC → F , given by pr(x, y) =
x+ iy ∈ F for (x, y) ∈ F 2 = F ⊗R C, is C-linear and restricted to F × {0} = F it

is the identity. Thus, pr ◦f̃ : K̃ → FC → F is a holomorphic extension of f .

Conversely, let f̃ : K̃ → F be a holomorphic extension to a neighborhood K̃ of K.

So it is enough to show that the holomorphic map f̃ is real analytic. By 7.19 it
is smooth. So it remains to show that it is real analytic. For this it is enough to

consider a topological real analytic curve in K̃ by 10.4 . Such a curve is extendable

to a holomorphic curve c̃ by 9.5 , hence the composite f̃ ◦ c̃ is holomorphic and its

restriction f̃ ◦ c to R is real analytic. �

26.4. Definition. (Holomorphic maps on complex vector spaces)
Let K ⊆ E be a convex subset with non-empty interior in a complex convenient
vector space. And map f : E ⊇ K → F is called holomorphic iff it is real analytic
and the derivative f ′(x) is C-linear for all x ∈ Ko.

26.5. Theorem. Holomorphic maps are germs.
Let K ⊆ E be a convex subset with non-empty interior in a complex convenient
vector space. Then a map f : E ⊇ K → F into a complex convenient vector space
F is holomorphic if and only if it extends to a holomorphic map defined on some
neighborhood of K in E.
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Proof. Since f : K → F is real analytic, it extends by 25.9 to a real analytic map

f̃ : E ⊇ U → F , where we may assume that U is connected with K by straight
line segments. We claim that f̃ is in fact holomorphic. For this it is enough to
show that f ′(x) is C-linear for all x ∈ U . So consider the real analytic mapping
g : U → F given by g(x) := if ′(x)(v) − f ′(x)(iv). Since it is zero on Ko it has to
be zero everywhere by the uniqueness theorem. �

26.6. Remark. (There is no definition for holomorphy analogous to 25.7 )
In order for a map K → F to be holomorphic it is not enough to assume that all
composites f ◦ c for holomorphic c : D→ K are holomorphic, where D is the open
unit disk. Take as K the closed unit disk, then c(D) ∩ ∂K = φ. In fact let z0 ∈ D
then c(z) = (z − z0)n(cn + (z − z0)

∑
k>n ck(z − z0)k−n−1) for z close to z0, which

covers a neighborhood of c(z0). So the boundary values of such a map would be
completely arbitrary.

26.7. Lemma. Holomorphy is a bornological concept.
Let Tα : E → Eα be a family of bounded linear maps that generates the bornology
on E. Then a map c : K → F is holomorphic if and only if all the composites
Tα ◦ c : I → Fα are holomorphic.

Proof. It follows from 25.6 that f is real analytic. And the C-linearity of f ′(x)
can certainly be tested by point separating linear functionals. �

26.8. Theorem. Exponential law for holomorphic maps.
Let K and L be convex subsets with non-empty interior in complex convenient vector
spaces. Then a map f : K × L → F is holomorphic if and only if the associated
map f∨ : K → H(L,F ) is holomorphic.

Proof. This follows immediately from the real analytic result 25.12 , since the
C-linearity of the involved derivatives translates to each other, since we obviously
have f ′(x1, x2)(v1, v2) = evx2

((f∨)′(x1)(v1)) + (f∨(x1))′(x2)(v2) for x1 ∈ K and
x2 ∈ L. �
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This chapter is devoted to the foundations of infinite dimensional manifolds. We
treat here only manifolds described by charts onto c∞-open subsets of convenient
vector spaces.

Note that this limits cartesian closedness of the category of manifolds. For finite
dimensional manifolds M,N,P we will show later that C∞(N,P ) is not locally con-
tractible (not even locally pathwise connected) for the compact-open C∞-topology
if N is not compact, so one has to use a finer structure to make it a manifold

C∞(N,P ), see 42.1 . But then C∞(M,C∞(N,P )) ∼= C∞(M ×N,P ) if and only if

N is compact see 42.14 . Unfortunately, C∞(N,P ) cannot be generalized to infi-
nite dimensional N , since this structure becomes discrete. Let us mention, however,
that there exists a theory of manifolds and vector bundles, where the structure of
charts is replaced by the set of smooth curves supplemented by other requirements,
where one gets a cartesian closed category of manifolds and has the compact-open
C∞-topology on C∞(N,P ) for finite dimensional N , P , see [Seip, 1981], [Kriegl,
1980], [Michor, 1984a].

We start by treating the basic concept of manifolds, existence of smooth bump
functions and smooth partitions of unity. Then we investigate tangent vectors
seen as derivations or kinematically (via curves): these concepts differ, and we

show in 28.4 that even on Hilbert spaces there exist derivations which are not
tangent to any smooth curve. In particular, we have different kinds of tangent
bundles, the most important ones are the kinematic and the operational one. We
treat smooth, real analytic, and holomorphic vector bundles and spaces of sections
of vector bundles, we give them structures of convenient vector spaces; they will
become important as modeling spaces for manifolds of mappings in chapter IX.

Finally, we discuss Weil functors (certain product preserving functors of manifolds)
as generalized tangent bundles. This last section is due to [Kriegl and Michor,
1997].
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27. Differentiable Manifolds

27.1. Manifolds. A chart (U, u) on a set M is a bijection u : U → u(U) ⊆ EU
from a subset U ⊆M onto a c∞-open subset of a convenient vector space EU .

For two charts (Uα, uα) and (Uβ , uβ) on M the mapping uαβ := uα ◦ u−1
β :

uβ(Uαβ) → uα(Uαβ) for α, β ∈ A is called the chart changing, where Uαβ :=
Uα ∩Uβ . A family (Uα, uα)α∈A of charts on M is called an atlas for M , if the Uα
form a cover of M and all chart changings uαβ are defined on c∞-open subsets.

An atlas (Uα, uα)α∈A for M is said to be a C∞-atlas, if all chart changings uαβ :
uβ(Uαβ) → uα(Uαβ) are smooth. Two C∞-atlas are called C∞-equivalent, if
their union is again a C∞-atlas for M . An equivalence class of C∞-atlas is some-
times called a C∞-structure on M . The union of all atlas in an equivalence class
is again an atlas, the maximal atlas for this C∞-structure. A C∞-manifold M
is a set together with a C∞-structure on it.

Atlas, structures, and manifolds are called real analytic or holomorphic, if
all chart changings are real analytic or holomorphic, respectively. They are called
topological, if the chart changings are only continuous in the c∞-topology.

A holomorphic manifold is real analytic, and a real analytic one is smooth. By a
manifold we will henceforth mean a smooth one.

27.2. A mapping f : M → N between manifolds is called smooth if for each x ∈M
and each chart (V, v) on N with f(x) ∈ V there is a chart (U, u) on M with x ∈ U ,
f(U) ⊆ V , such that v ◦ f ◦ u−1 is smooth. This is the case if and only if f ◦ c is
smooth for each smooth curve c : R→M .

We will denote by C∞(M,N) the space of all C∞-mappings from M to N .

Likewise, we have the spaces Cω(M,N) of real analytic mappings and H(M,N) of
holomorphic mappings between manifolds of the corresponding type. This can be
also tested by composing with the relevant types of curves.

A smooth mapping f : M → N is called a diffeomorphism if f is bijective and its in-
verse is also smooth. Two manifolds are called diffeomorphic if there exists a dif-
feomorphism between them. Likewise, we have real analytic and holomorphic
diffeomorphisms. The latter ones are also called biholomorphic mappings.

27.3. Products. Let M and N be smooth manifolds described by smooth atlas
(Uα, uα)α∈A and (Vβ , vβ)β∈B , respectively. Then the family (Uα × Vβ , uα × vβ :
Uα× Vβ → Eα×Fβ)(α,β)∈A×B is a smooth atlas for the cartesian product M ×N .

Beware, however, the manifold topology 27.4 of M × N may be finer than the

product topology, see 4.22 . If M and N are metrizable, then it coincides with the

product topology, by 4.19 . Clearly, the projections

M ←pr1−M ×N −pr2→ N

are also smooth. The product (M ×N, pr1, pr2) has the following universal prop-
erty:
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For any smooth manifold P and smooth mappings f : P → M and g : P → N
the mapping (f, g) : P → M × N , (f, g)(x) = (f(x), g(x)), is the unique smooth
mapping with pr1 ◦(f, g) = f , pr2 ◦(f, g) = g.

Clearly, we can form products of finitely many manifolds. The reader may now
wonder why we do not consider infinite products of manifolds. These have charts
which are open for the so called ‘box topology’. But then we get ‘box products’
without the universal property of products. The ‘box products’, however, have the
universal product property for families of mappings such that locally almost all
members are constant.

27.4. The topology of a manifold. The natural topology on a manifold
M is the identification topology with respect to some (smooth) atlas (uα : M ⊇
Uα → uα(Uα) ⊆ Eα), where a subset W ⊆ M is open if and only if uα(Uα ∩W )
is c∞-open in Eα for all α. This topology depends only on the structure, since
diffeomorphisms are homeomorphisms for the c∞-topologies. It is also the final
topology with respect to all inverses of chart mappings in one atlas. It is also
the final topology with respect to all smooth curves. For a (smooth) manifold
we will require certain properties for the natural topology, which will be specified

when needed, like smoothly regular 14.1 , smoothly normal 16.1 , or smoothly

paracompact 16.1 .

Let us now discuss the relevant notions of Hausdorff.

(1) M is (topologically) Hausdorff, equivalently the diagonal is closed in the prod-
uct topology on M ×M .

(2) The diagonal is closed in the manifold M ×M .
(3) The smooth functions in C∞(M,R) separate points in M . Let us call M

smoothly Hausdorff if this property holds.

We have the obvious implications ( 3 )⇒( 1 )⇒( 2 ). We have no counterexamples
for the converse implications.

The three separation conditions just discussed do not depend on properties of
the modeling convenient vector spaces, whereas properties like smoothly regu-
lar, smoothly normal, or smoothly paracompact do. Smoothly Hausdorff is the
strongest of the three. But it is not so clear which separation property should be
required for a manifold. In order to make some decision, from now on we re-
quire that manifolds are smoothly Hausdorff. Each convenient vector space
has this property. But we will have difficulties with permanence of the property
‘smoothly Hausdorff’, in particular with quotient manifolds, see for example the

discussion 27.14 on covering spaces below. For important examples (manifolds of
mappings, diffeomorphism groups, etc.) we will prove that they are even smoothly
paracompact.

The isomorphism type of the modeling convenient vector spaces Eα is con-
stant on the connected components of the manifold M , since the derivatives of
the chart changings are linear isomorphisms. A manifold M is called pure if this
isomorphism type is constant on the whole of M .
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Corollary. If a smooth manifold (which is smoothly Hausdorff) is Lindelöf, and if
all modeling vector spaces are smoothly regular, then it is smoothly paracompact.

If a smooth manifold is metrizable and smoothly normal then it is smoothly para-
compact.

Proof. See 16.10 for the first statement and 16.15 for the second one. �

27.5. Lemma. Let M be a smoothly regular manifold. Then for any manifold N
a mapping f : N → M is smooth if and only if g ◦ f : N → R is smooth for all
g ∈ C∞(M,R). This means that (M,C∞(R,M), C∞(M,R)) is a Frölicher space,

see 23.1 .

Proof. Let x ∈ N and let (U, u : U → E) be a chart of M with f(x) ∈ U .
Choose some smooth bump function g : M → R with supp(g) ⊂ U and g = 1 in a
neighborhood V of f(x). Then f−1(carr(g)) = carr(g ◦ f) is an open neighborhood
of x in N . Thus f is continuous, so f−1(V ) is open. Moreover, (g.(` ◦ u)) ◦ f
is smooth for all ` ∈ E′ and on f−1(V ) this equals ` ◦ u ◦ (f |f−1(V )). Thus

u ◦ (f |f−1(V )) is smooth since E is convenient, by 2.14.4 , so f is smooth near
x. �

27.6. Non-regular manifold. [Margalef Roig and Outerelo Dominguez, 1982]
Let 0 6= λ ∈ (`2)∗, let X be {x ∈ `2 : λ(x) ≥ 0} with the Moore topology, i.e. for
x ∈ X we take {y ∈ `2 \ kerλ : ‖y− x‖ < ε} ∪ {x} for ε > 0 as neighborhood-basis.
We set X+ := {x ∈ `2 : λ(x) > 0} ⊆ `2.

Then obviously X is Hausdorff (its topology is finer than that of `2) but not regular:
In fact the closed subspace kerλ \ {0} cannot be separated by open sets from {0}.
It remains to show that X is a C∞-manifold. We use the following diffeomorphisms

(1) S := {x ∈ `2 : ‖x‖ = 1} ∼=C∞ kerλ.
(2) ϕ : `2 \ {0} ∼=C∞ kerλ× R+.
(3) S ∩X+ ∼=C∞ kerλ.
(4) ψ : X+ → kerλ× R+.

( 1 ) This is due to [Bessaga, 1966].

( 2 ) Let f : S → kerλ be the diffeomorphism of ( 1 ) and define the required

diffeomorphism to be ϕ(x) := (f(x/‖x‖), ‖x‖) with inverse ϕ−1(y, t) := t f−1(y).

( 3 ) Take an a ∈ (kerλ)⊥ with λ(a) = 1. Then the orthogonal projection `2 →
kerλ is given by x 7→ x−λ(x)a. This is a diffeomorphism of S ∩X+ → {x ∈ kerλ :
‖x‖ < 1}, which in turn is diffeomorphic to kerλ.

( 4 ) Let g : S ∩ X+ → kerλ be the diffeomorphism of ( 3 ) then the desired
diffeomorphism is ψ : x 7→ (g(x/‖x‖), ‖x‖).
We now show that there is a homeomorphism of h : X+ ∪ {0} → `2, such that
h(0) = 0 and h|X+ : X+ → `2 \ {0} is a diffeomorphism. We take

h(x) :=

{
(ϕ−1 ◦ ψ)(x) for x ∈ X+

0 for x = 0
.
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X+
� _

��

kerλ× R+
∼=

ψ−1

oo `2 \ {0}∼=

ϕoo
� _

��
X+ ∪ {0} E

hoo

{0}
?�

OO

{0}_?oo
?�

OO

Now we use translates of h as charts `2 → X+ ∪ {x}. The chart changes are
then diffeomorphisms of `2 \ {0} and we thus obtained a smooth atlas for X :=⋃
x∈kerλ(X+ ∪ {x}). The topology described by this atlas is obviously the Moore

topology.

If we use instead of X the union
⋃
x∈D(X+ ∪ {x}), where D ⊆ kerλ is dense and

countable. Then the same results are valid, but X is now even second countable.

Note however that a regular space which is locally metrizable is completely regular.

27.7. Proposition. Let M be a manifold modeled on smoothly regular convenient
vector spaces. Then M admits an atlas of charts defined globally on convenient
vector spaces.

Proof. That a convenient vector space is smoothly regular means that the c∞-

topology has a base of carrier sets of smooth functions, see 14.1 . These functions

satisfy the assumptions of theorem 16.21 , and hence the stars of these sets with
respect to arbitrary points in the sets are diffeomorphic to the whole vector space
and still form a base of the c∞-topology. �

27.8. Lemma. A manifold M is metrizable if and only if it is paracompact and
modeled on Fréchet spaces.

Proof. A topological space is metrizable if and only if it is paracompact and locally
metrizable. c∞-open subsets of the modeling vector spaces are metrizable if and

only if the spaces are Fréchet, by 4.19 . �

27.9. Lemma. Let M and N be smoothly paracompact metrizable manifolds.
Then M ×N is smoothly paracompact.

Proof. By 16.15 there are embeddings into c0(Γ) and c0(Λ) for some sets Γ and
Λ which pull back the coordinate projections to smooth functions. Then M × N
embeds into c0(Γ)× c0(Λ) ∼= c0(ΓtΛ) in the same way and hence again by 16.15
the manifold M ×N is smoothly paracompact. �

27.10. Facts on finite dimensional manifolds. A manifold M is called finite
dimensional if it has finite dimensional modeling vector spaces. By 4.19 , this is
the case if and only if M is locally compact. Then the dimensions of the modeling
spaces give a locally constant function on M .
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If the manifold M is finite dimensional, then Hausdorff implies smoothly regular.
We require then that the natural topology is in addition to Hausdorff also paracom-

pact. It is then smoothly paracompact by 27.7 , since all connected components
are Lindelöf if M is paracompact.

Let us finally add some remarks on finite dimensional separable topological man-
ifolds M : From differential topology we know that if M has a C1-structure, then
it also has a C1-equivalent C∞-structure and even a C1-equivalent Cω-structure.
But there are manifolds which do not admit differentiable structures. For example,
every 4-dimensional manifold is smooth off some point, but there are some which
are not smooth, see [Quinn, 1982], [Freedman, 1982]. Note, finally, that any such
manifold M admits a finite atlas consisting of dimM+1 (not necessarily connected)
charts. This is a consequence of topological dimension theory, a proof may be found
in [Greub et al., 1972, 1973, 1976].

If there is a C1-diffeomorphism between M and N , then there is also a C∞-
diffeomorphism. There are manifolds which are homeomorphic but not diffeomor-
phic: on R4 there are uncountably many pairwise non-diffeomorphic differentiable
structures; on every other Rn the differentiable structure is unique. There are
finitely many different differentiable structures on the spheres Sn for n ≥ 7. See
[Kervaire and Milnor, 1963].

27.11. Submanifolds. A subset N of a manifold M is called a submanifold, if
for each x ∈ N there is a chart (U, u) of M such that u(U ∩N) = u(U)∩FU , where
FU is a closed linear subspace of the convenient model space EU . Then clearly N
is itself a manifold with (U ∩N, u | U ∩N) as charts, where (U, u) runs through all
these submanifold charts from above.

A submanifold N of M is called a splitting submanifold if there is a cover of N
by submanifold charts (U, u) as above such that the FU ⊂ EU are complemented
(i.e. splitting) linear subspaces. Then every submanifold chart is splitting.

Note that a closed submanifold of a smoothly paracompact manifold is again
smoothly paracompact. Namely, the trace topology is the intrinsic topology on
the submanifold since this is true for closed linear subspaces of convenient vector

spaces, 4.28 .

A mapping f : N → M between manifolds is called initial if it has the following
property:

A mapping g : P → N from a manifold P (R suffices) into N is smooth
if and only if f ◦ g : P →M is smooth.

Clearly, an initial mapping is smooth and injective. The embedding of a submani-
fold is always initial. The notion of initial smooth mappings will play an important
role in this book whereas that of immersions will be used in finite dimensions only.

In a similar way we shall use the (now obvious) notion of initial real analytic
mappings between real analytic manifolds and also initial holomorphic map-
pings between complex manifolds.
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If h : R→ R is a function such that hp and hq are smooth for some p, q which are
relatively prime in N, then h itself turns out to be smooth, see [Joris, 1982]. So the
mapping f : t 7→ (tp, tq), R→ R2, is initial, but f is not an immersion at 0.

Smooth mappings f : N → M which admit local smooth retracts are initial. By
this we mean that for each x ∈ N there are an open neighborhood U of f(x) in M
and a smooth mapping rx : U → N such that r ◦ f |(f−1(U)) = Idf−1U . We shall

meet this class of initial mappings in 43.19 .

27.12. Example. We now give an example of a smooth mapping f with the
following properties:

(1) f is a topological embedding and the derivative at each point is an embedding
of a closed linear subspace.

(2) The image of f is not a submanifold.
(3) The image of f cannot be described locally by a regular smooth equation.

This shows that the notion of an embedding is quite subtle in infinite dimensions.

Proof. For this let `2 −ι→ E → `2 be a short exact sequence, which does not

split, see 13.18.6 Then the square of the norm on `2 does not extend to a smooth

function on E by 21.11 .

Choose a 0 6= λ ∈ E∗ with λ ◦ ι = 0 and choose a v with λ(v) = 1. Now consider
f : `2 → E given by x 7→ ι(x) + ‖x‖2 v.

( 1 ) Since f is polynomial it is smooth. We have (λ◦f)(x) = ‖x‖2, hence g ◦f = ι,
where g : E → E is given by g(y) := y − λ(y) v. Note however that g is no
diffeomorphism, hence we don’t have automatically a submanifold. Thus f is a
topological embedding and also the differential at every point. Moreover the image
is closed, since f(xn) → y implies ι(xn) = g(f(xn)) → g(y), hence xn → x∞ for
some x∞ and thus f(xn)→ f(x∞) = y. Finally f is initial. Namely, let h : G→ `2

be such that f ◦ h is smooth, then g ◦ f ◦ h = ι ◦ h is smooth. As a closed linear
embedding ι is initial, so h is smooth. Note that λ is an extension of ‖ ‖2 along
f : `2 → E.

( 2 ) Suppose there were a local diffeomorphism Φ around f(0) = 0 and a closed

subspace F < E such that locally Φ maps F onto f(`2). Then Φ factors as follows

`2
� � f // E

F �
� incl //

ϕ

OO

E

∼= Φ

OO

In fact since Φ(F ) ⊆ f(`2), and f is injective, we have ϕ as mapping, and since f
is initial ϕ is smooth. By using that incl : F → E is initial, we could deduce that
ϕ is a local diffeomorphism. However we only need that ϕ′(0) : F → `2 is a linear
isomorphism. Since f ′(0) ◦ ϕ′(0) = Φ′(0)|F is a closed embedding, we have that
ϕ′(0) is a closed embedding. In order to see that ϕ′(0) is onto, pick v ∈ `2 and
consider the curve t 7→ tv. Then w : t 7→ Φ−1(f(tv)) ∈ F is smooth, and

f ′(0)(ϕ′(0)(w′(0))) =
d

dt
|t=0(f ◦ ϕ)(w(t))
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=
d

dt
|t=0Φ(w(t)) =

d

dt
|t=0f(tv) = f ′(0)(v)

and since f ′(0) = ι is injective, we have ϕ′(0)(w′(0)) = v.

`2
� � f // E

R

t7→tv
55

w ))
F

ϕ

OO

� � incl // E

∼= Φ

OO

Now consider the diagram

R

`2 ��
f //

‖ ‖2
99

E

λ

ee

F �
� incl //

ϕ′(0)∼=
��

ϕ

OO

E

Φ ∼=

OO

∼=Φ′(0)

��
`2 �
� ι=f ′(0) //

ϕ◦ϕ′(0)−1 k

55

E

Φ◦Φ′(0)−1

ii

i.e.,

(λ ◦ Φ ◦ Φ′(0)−1) ◦ ι ◦ ϕ′(0) = λ ◦ Φ ◦ Φ′(0)−1 ◦ f ′(0) ◦ ϕ′(0)

= λ ◦ Φ ◦ Φ′(0)−1 ◦ Φ′(0) ◦ incl

= λ ◦ Φ ◦ incl = λ ◦ f ◦ ϕ = ‖ ‖2 ◦ ϕ.

By composing with ϕ′(0)−1 : `2 → F we get an extension q̃ of q := ‖ ‖2 ◦ k to
E, where the locally defined mapping k := ϕ ◦ ϕ′(0)−1 : `2 → `2 is smooth and
k′(0) = Id. Now q̃′′(0) : E ×E → R is an extension of q′′(0) : `2 × `2 → R given by
(v, w) 7→ 2〈k′(0)v, k′(0)w〉. Hence the associated q̃′′(0)∨ : E → E∗ fits into

`2
k′(0)

∼=
//

]∼=
��

`2 �
� ι // E

q̃′′(0)∨

��
`2 `2

k′(0)∗

∼=oo E∗
ι∗

oo

and in this way we get a retraction for ι : `2 → E. This is a contradiction.

( 3 ) Let us show now the even stronger statement that there is no local regular

equation ρ : E  G with f(`2) = ρ−1(0) locally and ker ρ′(0) = ι(`2). Otherwise
we have ρ′(0)(v) 6= 0 and hence there is a µ ∈ G′ with µ(ρ′(0)(v)) = 1. Thus
µ ◦ ρ : E  R is smooth µ ◦ ρ ◦ f = 0 and (µ ◦ ρ)′(0)(v) = 1. Moreover

0 = ( ddt )
2|t=0(µ ◦ ρ ◦ f)(tx)

=
d

dt
|t=0(µ ◦ ρ)′(f(tx)) · f ′(tx) · x

= (µ ◦ ρ)′′(0)(f ′(0)x, f ′(0)x) + (µ ◦ ρ)′(0) · f ′′(0)(x, x)
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= (µ ◦ ρ)′′(0)(ι(x), ι(x)) + 2‖x‖2 (µ ◦ ρ)′(0) · v,

hence −(µ◦ρ)′′(0)/2 is an extension of ‖ ‖2 along ι, which is a contradiction. �

27.13. Theorem. Embedding of smooth manifolds. If M is a smooth
manifold modeled on a C∞-regular convenient vector space E, which is Lindelöf.
Then there exists a smooth embedding onto a splitting submanifold of s×E(N) where
s is the space of rapidly decreasing real sequences.

Proof. We choose a countable atlas (Un, un) and a subordinated smooth partition

(hn) of unity which exists by 16.10 . Then the embedding is given by

x 7→ ((hn(x))n, (hn(x).un(x))n) ∈ s× E(N).

Local smooth retracts to this embedding are given by ((tn), (xn)) 7→ u−1
k ( 1

tk
xk)

defined for tk 6= 0. �

27.14. Coverings. A surjective smooth mapping p : N → M between smooth

manifolds is called a covering if it is the projection of a fiber bundle (see 37.1 )
with discrete fiber. Note that on a product of a discrete space with a manifold the
product topology equals the manifold topology. A product of two coverings is again
a covering.

A smooth manifold M is locally contractible since we may choose charts with star-
shaped images, and since the c∞-topology on a product with R is the product of the
c∞-topologies. Hence the universal covering space M̃ of a connected smooth
manifold M exists as a topological space. By pulling up charts it turns out to be a
smooth manifold also, whose topology is the one of M̃ . Since M̃×M̃ is the universal

covering of M ×M , the manifold M̃ is Hausdorff even in the sense of 27.4.2 . If

M is smoothly regular then M̃ is also smoothly regular, thus smoothly Hausdorff.
As usual, the fundamental group π(M,x0) acts free and strictly discontinuously

on M̃ in the sense that each x ∈ M̃ admits an open neighborhood U such that
g.U ∩ U = ∅ for all g 6= e in π(M,x0).

Note that the universal covering space M̃ of a connected smooth manifold M

can be viewed as the Frölicher space (see 23.1 , 24.10 ) C∞((I, 0), (M,x0)) of
all smooth curves c : [0, 1] = I → M , such that c(0) = x0 for a base point
x0 ∈ M modulo smooth homotopies fixing endpoints. This can be shown by
the usual topological proof, where one uses only smooth curves and homotopies,
and smoothes by reparameterization those which are pieced together. Note that

ev1 : C∞((I, 0), (M,x0)) → M is a final 27.15 smooth mapping since we may
construct local smooth sections near any point in M : choose a chart u : U → u(U)
on M with u(U) a radial open set in the modeling space of M . Then let ϕ(x) be
the smooth curve which follows a smooth curve from x0 to u−1(0) during the time
from 0 to 1

2 and stops infinitely flat at 1
2 , so the curve t 7→ u−1(ψ(t).u(x)) where

ψ : [ 1
2 , 1] → [0, 1] is smooth, flat at 1

2 , ψ( 1
2 ) = 0, and with ψ(1) = 1. These local

smooth sections lift to smooth sections of C∞((I, 0), (M,x0))→ M̃ , thus the final

smooth structure on M̃ coincides with that induced from the manifold structure.
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If conversely a group G acts strictly discontinuously on a smooth manifold M , then
the orbit space M/G turns out to be a smooth manifold (with G.U ’s as above as
charts), but it might be not Hausdorff, as the following example shows: M = R2\0,

G = Z acting by FlXz where X = x∂x − y∂y.

The orbit space is Hausdorff if and only if R := {(g.x, x) : g ∈ G, x ∈ M} is
closed in M ×M with the product topology: M →M/G is an open mapping, thus
the product M ×M → M/G ×M/G is also open for the product topologies, and
(M ×M) \R is mapped onto the complement of the diagonal in M/G×M/G.

The orbit space has property 27.4.2 if and only if R := {(g.x, x) : g ∈ G, x ∈ M}
is closed in M ×M with the manifold topology: the same proof as above works,
where M ×M → M/G ×M/G is also open for the manifold topologies since we
may lift smooth curves.

We were unable to find a condition on the action which would ensure that M/G is
smoothly Hausdorff or inherits a stronger separation property from M . Classical
results always use locally compact M .

27.15. Final smooth mappings. A mapping f : M → N between smooth
manifolds is called final if:

A mapping g : N → P into a manifold P is smooth if and only if
g ◦ f : M → P is smooth.

Clearly, a final mapping f : M → N is smooth, and surjective if N is connected.

Coverings 27.14 are always final, as are projections of fiber bundles 37.1 . Be-
tween finite dimensional separable manifolds without isolated points the final map-
pings are exactly the surjective submersions. We will use the notion submersion in
finite dimensions only.

27.16. Foliations. Let F be a c∞-closed linear subspace of a convenient vector
space E. Let EF be the smooth manifold modeled on F , which is the disjoint union
of all affine subspaces of E which are translates of F . A diffeomorphism f : U → V
between c∞-open subsets of E is called F -foliated if it is also a homeomorphism
(equivalently diffeomorphism) between the open subsets U and V of EF .

Let M be a smooth manifold modeled on the convenient vector space E. A fo-
liation on M is then given by a c∞-closed linear subspace F in E and a smooth
(maximal) atlas of M such that all chart changings are F -foliated. Each chart of
this maximal atlas is called a distinguished chart. A connected component of
the inverse image under a distinguished chart of an affine translate of F is called a
plaque.

A foliation on M induces on the set M another structure of a smooth manifold,
sometimes denoted by MF , modeled on F , where we take as charts the restrictions
of distinguished charts to plaques (with the image translated into F ). The identity
on M induces a smooth bijective mapping MF → M . Clearly, MF is smoothly
Hausdorff (if M is it). A leaf of the foliation is then a connected component
of MF .

The notion of foliation will be used in 39.2 below.
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27.17. Lemma. For a convenient vector space E and any smooth manifold M
the set C∞(M,E) of smooth E-valued functions on M is also a convenient vector
space in any of the following isomorphic descriptions, and it satisfies the uniform
boundedness principle for the point evaluations.

(1) The initial structure with respect to the cone

C∞(M,E)−c
∗
→ C∞(R, E)

for all c ∈ C∞(R,M).
(2) The initial structure with respect to the cone

C∞(M,E)−(u−1
α )∗→ C∞(uα(Uα), E),

where (Uα, uα) is a smooth atlas with uα(Uα) ⊂ Eα.

Moreover, with this structure, for two manifolds M , N , the exponential law holds:

C∞(M,C∞(N,E)) ∼= C∞(M ×N,E).

For a real analytic manifold M the set Cω(M,E) of real analytic E-valued functions
on M is also a convenient vector space in any of the following isomorphic descrip-
tions, and it satisfies the uniform boundedness principle for the point evaluations.

( 1 ) The initial structure with respect to the cone

Cω(M,E)−c
∗
→ C∞(R, E) for all c ∈ C∞(R,M)

Cω(M,E)−c
∗
→ Cω(R, E) for all c ∈ Cω(R,M).

( 2 ) The initial structure with respect to the cone

Cω(M,E)−(u−1
α )∗→ Cω(uα(Uα), E),

where (Uα, uα) is a real analytic atlas with uα(Uα) ⊂ Eα.

Moreover, with this structure, for two real analytic manifolds M , N , the exponential
law holds:

Cω(M,Cω(N,E)) ∼= Cω(M ×N,E).

For a complex convenient vector space E and any complex holomorphic manifold
M the set H(M,E) of holomorphic E-valued functions on M is also a convenient
vector space in any of the following isomorphic descriptions, and it satisfies the
uniform boundedness principle for the point evaluations.

( 1 ) The initial structure with respect to the cone

H(M,E)−c
∗
→ H(D, E)

for all c ∈ H(D,M).

( 2 ) The initial structure with respect to the cone

H(M,E)−(u−1
α )∗→ H(uα(Uα), E),

where (Uα, uα) is a holomorphic atlas with uα(Uα) ⊂ Eα.
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Moreover, with this structure, for two manifolds M , N , the exponential law holds:

H(M,H(N,E)) ∼= H(M ×N,E).

Proof. For all descriptions the initial locally convex topology is convenient, since
the spaces are closed linear subspaces in the relevant products of the right hand
sides. Thus, the uniform boundedness principle for the point evaluations holds for
all structures since it holds for all right hand sides. So the identity is bibounded
between all respective structures.

The exponential laws now follow from the corresponding ones: use 3.12 for c∞-

open subsets of convenient vector spaces and description ( 2 ), for the real analytic

case use 11.18 , and for the holomorphic case use 7.22 . �

27.18. Germs. Let M and N be manifolds, and let A ⊂M be a closed subset. We
consider all smooth mappings f : Uf → N , where Uf is some open neighborhood
of A in M , and we put f ∼

A
g if there is some open neighborhood V of A with

f | V = g | V . This is an equivalence relation on the set of functions considered.
The equivalence class of a function f is called the germ of f along A, sometimes

denoted by germA f . As in 8.3 we will denote the space of all these germs by
C∞(M ⊃ A,N).

If we consider functions on M , i.e. if N = R, we may add and multiply germs, so
we get the real commutative algebra of germs of smooth functions. If A = {x},
this algebra C∞(M ⊃ {x},R) is sometimes also denoted by C∞x (M,R). We may
consider the inductive locally convex vector space topology with respect to the cone

C∞(M ⊇ {x},R)← C∞(U,R),

where U runs through some neighborhood basis of x consisting of charts, so that

each C∞(U,R) carries a convenient vector space topology by 2.15 .

This inductive topology is Hausdorff only if x is isolated in M , since the restriction
to some one dimensional linear subspace of a modeling space is a projection on a

direct summand which is not Hausdorff, by 27.19 . Nevertheless, multiplication is
a bounded bilinear operation on C∞(M ⊇ {x},R), so the closure of 0 is an ideal.
The quotient by this ideal is thus an algebra with bounded multiplication, denoted
by Tayx(M,R).

27.19. Lemma. Let M be a smooth manifold modeled on Banach spaces which

admit bump functions of class C∞b (see 15.1 ). Then the closure of 0 in C∞(M ⊇
{x},R) is the ideal of all germs which are flat at x of infinite order.

Proof. This is a local question, so let x = 0 in a modeling Banach space E. Let f
be a representative in some open neighborhood U of 0 of a flat germ. This means
that all iterated derivatives of f at 0 vanish. Let ρ ∈ C∞b (E, [0, 1]) be 0 on a
neighborhood of 0 and ρ(x) = 1 for ‖x‖ > 1. For fn(x) := f(x)ρ(n.x) we have
germ0(fn) = 0, and it remains to show that n(f −fn) is bounded in C∞(U,R). For
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this we fix a derivative dk and choose N such that ‖dk+1f(x)‖ ≤ 1 for ‖x‖ ≤ 1
N .

Then for n ≥ N we have the following estimate:

‖ndk(f − fn)(x)‖ ≤
k∑
l=0

(
k

l

)
n‖dk−lf(x)‖nl‖dl(1− ρ)(nx)‖

≤
k∑
l=0

(
k

l

)
n

∫ 1

0

(1− t)l+1

(l + 1)!
‖dk+1f(tx)‖ dt ‖x‖l+1nl‖dl(1− ρ)(nx)‖

≤

{
0 for ‖nx‖ > 1∑k
l=0

(
k
l

)
1
l!‖d

l(1− ρ)‖∞ for ‖nx‖ ≤ 1. �

27.20. Corollary. For any C∞b -regular Banach space E and a ∈ E the canonical
mapping

Taya(E,R)→
∞∏
k=0

Lksym(E,R)

is a bornological isomorphism.

Proof. For every open neighborhood U of a in E we have a continuous linear
mapping C∞(U,R) →

∏∞
k=0 L

k
sym(E,R) into the space of formal power series,

hence also C∞(E ⊇ {a},R) →
∏∞
k=0 L

k
sym(E,R), and finally from Taya(E,R) →∏∞

k=0 L
k
sym(E,R). Since E is Banach, the space of formal power series is a Fréchet

space and since E is C∞b (E,R)-regular the last mapping is injective by 27.19 . By

E. Borel’s theorem 15.4 every bounded subset of the space of formal power series is
the image of a bounded subset of C∞(E,R). Hence this mapping is a bornological
isomorphism and the inductive limit C∞(E ⊇ {a},R) is regular. �

27.21. Lemma. If M is smoothly regular then each germ at a point of a smooth
function has a representative which is defined on the whole of M .

If M is smoothly paracompact then this is true for germs along closed subsets. �

For germs of real analytic or holomorphic functions this is not true.

If M is as in the lemma, C∞(M ⊇ {x},R) is the quotient of the algebra C∞(M,R)
by the ideal of all smooth functions f : M → R which vanish on some neighborhood
(depending on f) of x.

The assumption in the lemma is not necessary as is shown by the following example:

By 14.9 the Banach space E := C([0, 1],R) is not C∞-regular, in fact not even

C1-regular. For h ∈ C∞(R,R) the push forward h∗ : C∞(R,R) → C∞(R,R) is
smooth, thus continuous, so (h∗)∗ : C([0, 1], C∞(R,R)) → C([0, 1], C∞(R,R)) is

continuous. The arguments in the proof of theorem 3.2 show that

C([0, 1], C∞(R,R)) ∼= C∞(R, C([0, 1],R)),

thus h∗ : E → E is smooth. Let h(t) := t for |t| ≤ 1
2 and |h(t)| ≤ 1 for all t ∈ R.

In particular h∗ is the identity on {f ∈ E : ‖f‖ ≤ 1
2}. Let U be a neighborhood

of 0 in E. Choose ε > 0 such that the closed ball with radius ε > 0 is contained
in U . Then hε := ε h∗

1
ε : E → E has values in U and is the identity near 0.
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Thus (hε)
∗ : C∞(U,R) → C∞(E,R) is a bounded algebra homomorphism, which

respects the corresponding germs at 0.

28. Tangent Vectors

28.1. The tangent spaces of a convenient vector space E. Let a ∈ E. A
kinematic tangent vector with foot point a is simply a pair (a,X) with X ∈ E.
Let TaE = E be the space of all kinematic tangent vectors with foot point a. It
consists of all derivatives c′(0) at 0 of smooth curves c : R → E with c(0) = a,
which explains the choice of the name kinematic.

For each open neighborhood U of a in E (a,X) induces a linear mapping Xa :
C∞(U,R)→ R by Xa(f) := df(a)(X), which is continuous for the convenient vector
space topology on C∞(U,R) and satisfies Xa(f · g) = Xa(f) · g(a) + f(a) ·Xa(g),
so it is a continuous derivation over eva. The value Xa(f) depends only on
the germ of f at a.

An operational tangent vector of E with foot point a is a bounded derivation
∂ : C∞(E ⊇ {a},R) → R over eva. Let DaE be the vector space of all these
derivations. Any ∂ ∈ DaE induces a bounded derivation C∞(U,R) → R over
eva for each open neighborhood U of a in E. Moreover any family of bounded
derivations ∂U : C∞(U,R) → R over eva, which is coherent with respect to the
restriction maps, defines an ∂ ∈ DaE. So the vector space DaE is a closed linear
subspace of the convenient vector space

∏
U L(C∞(U,R),R). We equip DaE with

the induced convenient vector space structure. Note that the spaces DaE are
isomorphic for all a ∈ E.

Taylor expansion induces the dashed arrows in the following diagram.

C∞(E,R)

��

Lksym(E,R)

{0} ))

))

��

��

C∞(U,R)

��

dk|0
44 44

**

// // ∏d
k=1 L

k
sym(E,R)

prk

OOOO

{∞-flat} // //
��

��

C∞(E ⊇ {a},R)

** **

//

44 44

∏∞
k=1 L

k
sym(E,R)

pr

OOOO

{d-flat}
55

55

C∞(E ⊇ {a},R)/{0}

OO

Note that all spaces in the right two columns except the top right corner are
algebras, the finite product with truncated multiplication. The mappings are
algebra-homomorphisms. And the spaces in the left column are the respective

kernels. If E is a C∞b (E,R)-regular Banach space, then by 27.20 the vertical
dashed arrow is bibounded. Since R is Hausdorff every ∂ ∈ DaE factors over
Taya(E,R) := C∞(E ⊇ {a},R)/{0}, so in this case we can view ∂ as derivation on
the algebra of formal power series. Any continuous linear functional on a countable
product is a sum of continuous linear functionals on finitely many factors.
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28.2. Degrees of operational tangent vectors. A derivation ∂ is said to have

order at most d, if it factors over the space
∏d
k=0 L

k
sym(E,R) of polynomials of

degree at most d, i.e. it vanishes on all d-flat germs. If no such d exists, then it will
be called of infinite order; this may happen only if ∂ does not factor over the space
of formal power series, since if it factors to a bounded linear functional on the latter
space it depends only on finitely many factors. If ∂ factors it must vanish first on
the ideal of all flat germs, and secondly the resulting linear functional on Taya(E,R)
must extend to a bounded linear functional on the space of formal power series.

For a results and examples in this direction see 28.3 , 28.4 , and 28.5 . An open
question is to find operational tangent vectors of infinite order.

An operational tangent vector is said to be homogeneous of order d if it factors
over Ldsym(E,R), i.e. it corresponds to a continuous linear functional ` ∈ Ldsym(E,R)′

via ∂(f) = `( f
(d)(0)
d! ). In order that such a functional defines a derivation, we need

exactly that

`
(

Sym
(d−1∑
j=1

Ljsym(E,R)⊗ Ld−jsym(E,R)
))

= {0},

i.e. that ` vanishes on on the subspace

j−1∑
i=1

Lisym(E;R) ∨ Lj−isym(E;R)

of decomposable elements of Ljsym(E;R). Here Lisym(E;R) ∨ Lj−isym(E;R) denotes
the linear subspace generated by all symmetric products Φ∨Ψ of the corresponding
elements. Any such ` defines an operational tangent vector ∂j` |a ∈ DaE of order j
by

∂j` |a(f) := `( 1
j!d

jf(a)).

Since ` vanishes on decomposable elements we see from the Leibniz rule that ∂j`
is a derivation, and it is obviously of order j. The inverse bijection is given by
∂ 7→ (Φ 7→ ∂((Φ ◦ diag)( −a))), since the complete polarization of a homogeneous
polynomial p of degree j is given by 1

j!d
jp(0)(v1, . . . , vj), and since the remainder

of the Taylor expansion is flat of order j − 1 at a.

Obviously every derivation of order at most d is a unique sum of homogeneous

derivations of order j for 1 ≤ j ≤ d. For d > 0 we denote by D
[d]
a E the lin-

ear subspace of DaE of operational tangent vectors of homogeneous order d and

by D
(d)
a E :=

⊕d
j=1D

[j] the subspace of (non homogeneous) operational tangent
vectors of order at most d.

In more detail any operational tangent vector ∂ ∈ DaE has a decomposition

∂ =

k−1∑
i=1

∂[i] + ∂[k,∞],
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which we obtain by applying ∂ to the Taylor formula with remainder of order k,

see 5.12 ,

f(a+ y) =

k−1∑
i=0

1

i!
dif(a)yi +

∫ 1

0

(1− t)k−1

(k − 1)!
dkf(a+ ty)yk dt.

Thus, we have

∂[i](f) := ∂

(
x 7→ 1

i!
dif(a)(x− a)i

)
,

∂[k,∞](f) := ∂

(
x 7→

∫ 1

0

(1− t)(k−1)

k − 1!
dkf(a+ t(x− a))(x− a)k dt

)
.

A simple computation shows that all ∂[i] are derivations. In fact

∂[k](f · g) = ∂

(
1

k!

k∑
j=0

(
k

j

)
(f (j)(0) ◦∆) · (g(k−j)(0) ◦∆)

)

=
k∑
j=0

∂

(
f (j)(0) ◦∆

j!

)
· g

(k−j)(0)(0(k−j))

(k − j)!

+

k∑
j=0

f (j)(0)(0j)

j!
· ∂
(
g(k−j)(0) ◦∆

(k − j)!

)
= g(0) · ∂[k](f) + 0 + · · ·+ 0 + f(0) · ∂[k](g).

Hence also ∂[k,∞] is a derivation. Obviously, ∂[i] is of order i, and hence we get a
decomposition

DaE =

d⊕
j=1

D[j]
a ⊕D[d+1,∞]

a ,

where D
[d+1,∞]
a denotes the linear subspace of derivations which vanish on polyno-

mials of degree at most d.

28.3. Examples. Queer operational tangent vectors. Let Y ∈ E′′ be an
element in the bidual of E. Then for each a ∈ E we have an operational tangent
vector Ya ∈ DaE, given by Ya(f) := Y (df(a)). So we have a canonical injection
E′′ → DaE.

Let ` : L2(E;R)→ R be a bounded linear functional which vanishes on the subset

E′ ⊗E′. Then for each a ∈ E we have an operational tangent vector ∂
[2]
` |a ∈ DaE

given by ∂
[2]
` |a(f) := `(d2f(a)), since

`(d2(fg)(a)) = `
(
d2f(a)g(a) + df(a)⊗ dg(a) + dg(a)⊗ df(a) + f(a)d2g(a)

)
= `(d2f(a))g(a) + 0 + f(a)`(d2g(a)).

Let E = (`2)N be a countable product of copies of an infinite dimensional Hilbert
space. A smooth function on E depends locally only on finitely many Hilbert space

variables. Thus, f 7→
∑
n ∂

[kn]
Xn

(f ◦ injn) is a well defined operational tangent vector
in D0E for arbitrary operational tangent vectors Xn of order kn. If (kn) is an
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unbounded sequence and if Xn 6= 0 for all n it is not of finite order. But only for

k = 1, 2, 3 we know that nonzero tangent vectors of order k exist, see 28.4 below.

28.4. Lemma. If E is an infinite dimensional Hilbert space, there exist nonzero
operational tangent vectors of order 2, 3.

Proof. We may assume that E = `2. For k = 2 one knows that the closure of
L(`2,R)∨L(`2,R) in L2

sym(`2,R) consists of all symmetric compact operators, and
the identity is not compact.

For k = 3 we show that for any A in the closure of L(`2,R) ∨ L2
sym(`2,R) the

following condition holds:

(1) A(ei, ej , ek)→ 0 for i, j, k →∞.
Since this condition is invariant under symmetrization it suffices to consider A ∈
`2⊗L(`2, `2), which we may view as a finite dimensional and thus compact operator
`2 → L(`2, `2). Then ‖A(ei)‖ → 0 for i → ∞, since this holds for each continuous
linear functional on `2. The trilinear form A(x, y, z) :=

∑
i xiyizi is in L3

sym(`2,R)

and obviously does not satisfy ( 1 ). �

28.5. Proposition. Let E be a convenient vector space with the following two
properties:

(1) The closure of 0 in C∞(E ⊇ {0},R) consists of all flat germs.

(2) The quotient Tay0(E,R) = C∞(E ⊇ {0},R)/{0} with the bornological topol-
ogy embeds as topological linear subspace into the space

∏
k L

k
sym(E;R) of for-

mal power series.

Then each operational tangent vector on E is of finite order.

Any C∞b -regular Banach space, in particular any Hilbert space has these properties.

Proof. Let ∂ ∈ D0E be an operational tangent vector. By property ( 1 ) it factors
to a bounded linear mapping on Tay0(E,R), it is continuous in the bornological

topology, and by property ( 2 ) and the theorem of Hahn-Banach ∂ extends to a
continuous linear functional on the space of all formal power series and thus depends
only on finitely many factors.

A C∞b -regular Banach space E has property ( 1 ) by 27.19 , and it has property

( 2 ) by E. Borel’s theorem 15.4 . Hilbert spaces are C∞b -regular by 15.5 . �

28.6. Definition. A convenient vector space is said to have the (bornological)
approximation property if E′⊗E is dense in L(E,E) in the bornological locally
convex topology.

For a list of spaces which have the bornological approximation property see 6.6 –

6.14 .

28.7. Theorem. Let E be a convenient vector space which has the approxima-
tion property. Then we have DaE ∼= E′′. So if E is in addition reflexive, each
operational tangent vector is a kinematic one.
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Proof. We may suppose that a = 0. Let ∂ : C∞(E ⊇ {0},R)→ R be a derivation
at 0, so it is bounded linear and satisfies ∂(f · g) = ∂(f) · g(0) + f(0) · ∂(g). Then
we have ∂(1) = ∂(1 · 1) = 2∂(1), so ∂ is zero on constant functions.

Since E′ = L(E,R) is continuously embedded into C∞(E,R), ∂|E′ is an element
of the bidual E′′. Obviously, ∂ − (∂|E′)0 is a derivation which vanishes on affine
functions. We have to show that it is zero. We call this difference again ∂. For
f ∈ C∞(U,R) where U is some radial open neighborhood of 0 we have

f(x) = f(0) +
∫ 1

0
df(tx)(x)dt,

thus ∂(f) = ∂(g), where g(x) :=
∫ 1

0
df(tx)(x)dt. By assumption, there is a net

`α ∈ E′ ⊗E ⊂ L(E,E) of bounded linear operators with finite dimensional image,
which converges to IdE in the bornological topology of L(E,E). We consider gα ∈
C∞(U,R), given by gα(x) :=

∫ 1

0
df(tx)(`αx)dt.

Claim. gα → g in C∞(U,R).

We have g(x) = h(x, x) where h ∈ C∞(U×E,R) is just h(x, y) =
∫ 1

0
df(tx)(y)dt. By

cartesian closedness, the associated mapping h∨ : U → E′ ⊂ C∞(E,R)) is smooth.
Since ′ : L(E,E) → L(E′, E′) is bounded linear, the net `′α converges to IdE′ in
L(E′, E′). The mapping (h∨)∗ : L(E′, E′) ⊂ C∞(E′, E′)→ C∞(U,E′) is bounded
linear, thus (h∨)∗(`′α) converges to h∨ in C∞(U,E′). By cartesian closedness, the
net ((h∨)∗(`′α))∧ converges to h in C∞(U × E,R). Since the diagonal mapping
δ : U → U × E is smooth, the mapping δ∗ : C∞(U × E,R) → C∞(U,R) is
continuous and linear, so finally gα = δ∗(((h∨)∗(`′α))∧) converges to δ∗(h) = g.

Claim. ∂(gα) = 0 for all α. This finishes the proof.

Let `α =
∑n
i=1 ϕi ⊗ xi ∈ E′ ⊗ E ⊂ L(E,E). We have

gα(x) =

∫ 1

0

df(tx)
(∑

i

ϕi(x)xi

)
dt

=
∑
i

ϕi(x)

∫ 1

0

df(tx)(xi)dt =:
∑
i

ϕi(x)hi(x),

∂(gα) = ∂
(∑

i

ϕi · hi
)

=
∑
i

(
∂(ϕi)hi(0) + ϕi(0)∂(hi)

)
= 0. �

28.8. Remark. There are no nonzero operational tangent vectors of order 2 on
E if and only if E′ ∨ E′ ⊂ L2

sym(E;R) is dense in the bornological topology. This
seems to be rather near the bornological approximation property, and one may

suspect that theorem 28.7 remains true under this weaker assumption.

28.9. Let U ⊆ E be an open subset of a convenient vector space E. The operational
tangent bundle DU of U is simply the disjoint union

⊔
a∈U DaE. Then DU is in

bijection to the open subset U×D0E of E×D0(E) via ∂a 7→ (a, ∂◦( −a)∗). We use
this bijection to put a smooth structure on DU . Let now g : E ⊃ U → V ⊂ F be
a smooth mapping, then g∗ : C∞(W,R) → C∞(g−1(W ),R) is bounded and linear
for all open W ⊂ V . The adjoints of these mappings uniquely define a mapping
Dg : DU → DV by (Dg.∂)(f) := ∂(f ◦ g).
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Lemma. Dg : DU → DV is smooth.

Proof. Via the canonical bijections DU ∼= U × D0E and DV ∼= V × D0F the
mapping Dg corresponds to

U ×D0E → V ×D0F

(a, ∂) 7→
(
g(a), ∂ ◦ ( +a)∗ ◦ g∗ ◦ ( −g(a))∗

)
=
(
g(a), ∂ ◦ (g( +a)− g(a))∗

)
.

In order to show that this is smooth, its enough to consider the second component
and we compose it with the embedding D0F ↪→

∏
W30 C

∞(W,R)′. The associated
mapping U ×D0E × C∞(W,R)→ R is given by

(1) (a, ∂, f) 7→ ∂
(
f ◦ (g( +a)− g(a))

)
,

where f ◦ (g( +a)− g(a)) is smooth on the open 0-neighborhood Wa := {y ∈ E :
g(y + a)− g(a) ∈ W} = g−1(g(a) +W )− a in E. Now let a : R→ U be a smooth
curve and I a bounded interval in R. Then there exists an open neighborhood UI,W
of 0 in E such that UI,W ⊆Wa(t) for all t ∈ I. Then the mapping ( 1 ), composed
with a : I → U , factors as

I ×D0E × C∞(W,R)→ C∞(UI,W ,R)′ × C∞(UI,W ,R)→ R,
given by

(t, ∂, f) 7→
(
∂UI,W , f ◦

(
g( +a(t))−g(a(t))

))
7→ ∂UI,W (f ◦(g( +a(t))−g(a(t))))),

which is smooth by cartesian closedness. �

28.10. Let E be a convenient vector space. Recall from 28.2 that D
(k)
a E is the

space of all operational tangent vectors of order ≤ k. For an open subset U in a
convenient vector space E and k > 0 we consider the disjoint union

D(k)U :=
⊔
a∈U

D(k)
a E ∼= U ×D(k)

0 E ⊆ E ×D(k)
0 E.

Lemma. For a smooth mapping f : E ⊃ U → V ⊂ F the smooth mapping

Df : DU → DV from 28.9 induces smooth mappings D(k)f : D(k)U → D(k)V .

Proof. We only have to show that Daf maps D
(k)
a E into D

(k)
f(a)F , because smooth-

ness follows then by restriction.

The pullback f∗ : C∞(V,R)→ C∞(U,R) maps functions which are flat of order k
at f(a) to functions which are flat of the same order at a. Thus, Daf maps the

corresponding annihilator D
(k)
a U into the annihilator D

(k)
f(a)V . �

28.11. Lemma.

(1) The chain rule holds in general: D(f ◦ g) = Df ◦ Dg and D(k)(f ◦ g) =
D(k)f ◦D(k)g.

(2) If g : E → F is a bounded affine mapping then Dxg commutes with the restric-
tion and the projection to the subspaces of derivations which are homogeneous
of degree k > 1.
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(3) If g : E → F is a bounded affine mapping with linear part ` = g−g(0) : E → F

then Dxg : D
[k]
x E → D

[k]
g(x)F is induced by the linear mappings (Lksym(`;R))∗ :

Lksym(E,R)∗ → Lksym(F,R)∗.

(4) If g : E → R is bounded linear we have Dg.Xx = D(1)g.X
[1]
x .

Remark that if g is not affine then in general Dg does not respect the subspaces of
derivations which are homogeneous of degree k > 1:

In fact let g : E → R be a homogeneous polynomial of degree k on which ∂ ∈ D[k]
0 E

does not vanish. Then by ( 4 ) we have that 0 6= ∂(g) = Dg(∂) ∈ R ∼= D
[1]
0 R = D0R.

Proof. ( 1 ) is obvious.

For ( 2 ) let Xx ∈ DxE and f ∈ C∞(F,R). Then we have

(Dg.Xx)[k](f) = (Dg.Xx)( 1
k!d

kf(g(x))( −g(x))k)

= 1
k!Xx(dkf(g(x))(g( )− g(x))k)

(Dg.X [k]
x )(f) = X [k]

x (f ◦ g)

= Xx( 1
k!d

k(f ◦ g)(x)( −x)k)

= 1
k!Xx(dkf(g(x))(`( −x))k).

These expressions are equal.

DxE // //

Dg

��

D
[k]
x E

� � //

Dg

��

DxE

Dg

��
Dg(x)F // // D[k]

g(x)F
� � // DxF

For ( 3 ) we take ϕ ∈ Lksym(E;R)′ which vanishes on all decomposable forms, and

let Xx = ∂kϕ|x ∈ D
[k]
x E be the corresponding homogeneous derivation. Then

(Dg.∂kϕ|x)(f) = ∂kϕ|x(f ◦ g) = ϕ( 1
k!d

k(f ◦ g)(x))

= ϕ( 1
k!d

kf(g(x)) ◦ `k) = (Lksym(`;R)∗ϕ)( 1
k!d

kf(g(x)))

= ∂
[k]

Lksym(`;R)∗ϕ
|g(x)(f).

D
[k]
x E �

� //

D[k]g

��

LkSym(E,R)′

LkSym(`,R)∗

��
D

[k]
g(x)F

� � // LkSym(F,R)′

( 4 ) is a special case of ( 2 ). �
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28.12. The operational and the kinematic tangent bundles. Let M be a
manifold with a smooth atlas (M ⊃ Uα −uα→ Eα)α∈A. We consider the following
equivalence relation on the disjoint union⊔

α∈A
D(uα(Uα)) :=

⋃
α∈A

D(uα(Uα))× {α},

(∂, α) ∼ (∂′, β) ⇐⇒ D(uαβ)∂′ = ∂.

We denote the quotient set by DM and call it the operational tangent bundle
of M . Let πM : DM → M be the obvious foot point projection, let DUα =
π−1
M (Uα) ⊂ DM , and let Duα : DUα → D(uα(Uα)) be given by Duα([∂, α]) = ∂.

So Duα([∂′, β]) = D(uαβ)∂′.

The charts (DUα, Duα) form a smooth atlas for DM , since the chart changings are
given by

Duα ◦ (Duβ)−1 = D(uαβ) : D(uβ(Uαβ))→ D(uα(Uαβ)).

This chart changing formula also implies that the smooth structure on DM depends
only on the equivalence class of the smooth atlas for M .

The mapping πM : DM → M is obviously smooth. The natural topology is
automatically Hausdorff: X, Y ∈ DM can be separated by open sets of the form
π−1
M (V ) for V ⊂M , if πM (X) 6= πM (Y ), since M is Hausdorff, and by open subsets

of the form (Tuα)−1(Eα ×W ) for W open in Eα, if πM (X) = πM (Y ) ∈ Uα.

For x ∈M the set DxM := π−1
M (x) is called the operational tangent space at x or the

fiber over x of the operational tangent bundle. It carries a canonical convenient
vector space structure induced by Dx(uα) := Duα|DxM : Duα(x)Eα ∼= D0(Eα) for
some (equivalently any) α with x ∈ Uα.

Let us construct now the kinematic tangent bundle. We consider the following
equivalence relation on the disjoint union⋃

α∈A
Uα × Eα × {α},

(x, v, α) ∼ (y, w, β) ⇐⇒ x = y and d(uαβ)(uβ(x))w = v

and denote the quotient set by TM , the kinematic tangent bundle of M . Let
πM : TM → M be given by πM ([x, v, α]) = x, let TUα = π−1

M (Uα) ⊂ TM ,
and let Tuα : TUα → uα(Uα) × Eα be given by Tuα([x, v, α]) = (uα(x), v). So
Tuα([x,w, β]) = (uα(x), d(uαβ)(uβ(x))w).

The charts (TUα, Tuα) form a smooth atlas for TM , since the chart changings are
given by

Tuα ◦ (Tuβ)−1 : uβ(Uαβ)× Eβ → uα(Uαβ)× Eα,
(x, v) 7→ (uαβ(x), d(uαβ)(x)v).

This chart changing formula also implies that the smooth structure on TM depends
only on the equivalence class of the smooth atlas for M .

The mapping πM : TM → M is obviously smooth. It is called the (foot point)
projection of M . The natural topology is automatically Hausdorff; this follows
from the bundle property and the proof is the same as for DM above.
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For x ∈ M the set TxM := π−1
M (x) is called the kinematic tangent space at x or

the fiber over x of the tangent bundle. It carries a canonical convenient vector
space structure induced by Tx(uα) := Tuα|TxM : TxM → {x} × Eα ∼= Eα for some
(equivalently any) α with x ∈ Uα.

Note that the kinematic tangent bundle TM embeds as a subbundle into DM ; also
for each k ∈ N the same construction as above gives us tangent bundles D(k)M
which are subbundles of DM .

28.13. Let us now give an obvious description of TM as the space of all velocity
vectors of curves, which explains the name ‘kinematic tangent bundle’: We put
on C∞(R,M) the equivalence relation : c ∼ e if and only if c(0) = e(0) and in
one (equivalently each) chart (U, u) with c(0) = e(0) ∈ U we have d

dt |0(u ◦ c)(t) =
d
dt |0(u ◦ e)(t). We have the following diagram

C∞(R,M)/ ∼

δ∼=
��

C∞(R,M)oo

ev0

��

δ

tt
TM

πM
// M

where to c ∈ C∞(R,M) we associate the tangent vector δ(c) := [c(0), ∂
∂t

∣∣
0

(uα ◦
c)(t), α]. It factors to a bijection C∞(R,M)/ ∼→ TM , whose inverse associates to
[x, v, α] the equivalence class of t 7→ u−1

α (uα(x) +h(t)v) for h a small function with
h(t) = t near 0.

Since the c∞-topology on R × Eα is the product topology by corollary 4.15 , we
can choose h uniformly for (x, v) in a piece of a smooth curve. Thus, a mapping g :
TM → N into another manifold is smooth if and only if g◦δ : C∞(R,M)→ N maps
‘smooth curves’ to smooth curves, by which we mean C∞(R2,M) to C∞(R, N).

28.14. Lemma. If a smooth manifold M and the squares of its model spaces
are smoothly paracompact, then also the kinematic tangent bundle TM is smoothly
paracompact.

If a smooth manifold M and V ×D0V for any of its model spaces V are smoothly
paracompact, then also the operational tangent bundle DM is smoothly paracom-
pact.

Proof. This is a particular case of 29.7 below. �

28.15. Tangent mappings. Let f : M → N be a smooth mapping between
manifolds. Then f induces a linear mapping Dxf : DxM → Df(x)N for each
x ∈ M by (Dxf.∂x)(h) = ∂x(h ◦ f) for h ∈ C∞(N ⊇ {f(x)},R). These give a
mapping Df : DM → DN . If (U, u) is a chart around x and (V, v) is one around

f(x), then Dv ◦ Df ◦ (Du)−1 = D(v ◦ f ◦ u−1) is smooth by lemma 28.9 . So
Df : DM → DN is smooth.

By lemma 28.10 , Df restricts to smooth mappings D(k)f : D(k)M → D(k)N
and to Tf : TM → TN . We check the last statement for open subsets M and
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N of convenient vector spaces. (Df.Xa)(g) = Xa(g ◦ f) = d(g ◦ f)(a)(X) =
dg(f(a))df(a)X = (df(a)X)f(a)(g).

If f ∈ C∞(M,E) for a convenient vector space E, then Df : DM → DE =
E×D0E. We then define the differential of f by df := pr2 ◦Df : DM → D0E.

It restricts to smooth fiberwise linear mappingsD(k)M → D
(k)
0 E and df : TM → E.

If f ∈ C∞(M,R), then df : DM → R. Let Id denote the identity function on R,
then (Tf.∂x)(Id) = ∂x(Id ◦f) = ∂x(f), so we have df(∂x) = ∂x(f).

The mapping f 7→ df is bounded linear C∞(M,R)→ C∞(DM,R). That it is linear
and has values in this space is obvious. So by the smooth uniform boundedness

principle 5.26 it is enough to show that f 7→ df.Xx = Xx(f) is bounded for all
Xx ∈ DM , which is true by definition of DM .

28.16. Remark. From the construction of the tangent bundle in 28.12 it is
immediately clear that

TM −T (pr1)→ T (M ×N)−T (pr2)→ TN

is also a product, so that T (M ×N) = TM × TN in a canonical way.

We investigate D0(E×F ) for convenient vector spaces. Since D0 is a functor for 0
preserving maps, we obtain linear sections D0(injk) : D0(Ek) → D0(E1 × E2) and
hence a section D0(inj1)+D0(inj2) : D0(E1)⊕D0(E2)→ D0(E1⊕E2). The comple-
ment of the image is given by the kernel of the linear mapping (D0(pr1), D0(pr2)) :
D0(E1 ⊕ E2)→ D0(E1)⊕D0(E2).

D0(E1)
_�

injD0(E1)

��

D0(injE1
)

**

Id // D0(E1)

D0(E0)⊕D0(E1) // D0(E1 ⊕ E2)

D0(prE2
) **

D0(prE1
)

44

// D0(E0)⊕D0(E1)

prD0(E1
)

OOOO

prD0(E2
)

����
D0(E2)
?�

injD0(E2)

OO

D0(injE2
)

44

// D0(E2)

Lemma. In the case E1 = `2 = E2 this mapping is not injective.

Proof. The space L2(E1 × E2, E1 × E2;R) can be viewed as L2(E1, E1;R) ×
L2(E1, E2;R) × L2(E2, E1;R) × L2(E2, E2;R) and the subspace formed by those
forms whose (2,1) and (1,2) components with respect to this decomposition are
compact considered as operators in L(`2, `2) ∼= L2(`2, `2;R) is a closed subspace.
So, by Hahn-Banach, there is a non-trivial continuous linear functional ` : L2(`2 ×
`2, `2 × `2;R) → R vanishing on this subspace. We claim that the linear mapping
∂ : C∞(`2× `2,R) 3 f 7→ `(f ′′(0, 0)) ∈ R is an operational tangent vector of `2× `2
but not a direct sum of two operational tangent vectors on `2. In fact, the second
derivative of a product h of two functions f and g is given by

d2h(0, 0)(w1, w2) = d2f(0, 0)(w1, w2) g(0, 0)

+ df(0, 0)(w1) dg(0, 0)(w2)
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+ df(0, 0)(w2) dg(0, 0)(w1)

+ f(0, 0) d2g(0, 0)(w1, w2).

Thus ∂ is a derivation since the middle terms give finite dimensional operators in
L2(`2, `2;R). It is not a direct sum of two operational tangent vectors on `2 since
functions f depending only on the j-th factor have as second derivative forms with
nonzero (j,j) entry only. Hence D0(prj)(∂)(f) = ∂(f ◦ prj) = `((f ◦ prj)

′′(0)) = 0,
but ∂ 6= 0. �

29. Vector Bundles

29.1. Vector bundles. Let p : E →M be a smooth mapping between manifolds.
By a vector bundle chart on (E, p,M) we mean a pair (U,ψ), where U is
an open subset in M , and where ψ is a fiber respecting diffeomorphism as in the
following diagram:

E | U := p−1(U)
ψ //

p

((

U × V

pr1
xx

U.

Here V is a fixed convenient vector space, called the standard fiber or the typ-
ical fiber, real for the moment.

Two vector bundle charts (U1, ψ1) and (U2, ψ2) are called compatible, if ψ1 ◦ψ−1
2

is a fiber linear isomorphism, i.e., (ψ1 ◦ψ−1
2 )(x, v) = (x, ψ1,2(x)v) for some mapping

ψ1,2 : U1,2 := U1∩U2 → GL(V ). The mapping ψ1,2 is then unique and smooth into
L(V, V ), and it is called the transition function between the two vector bundle
charts.

A vector bundle atlas (Uα, ψα)α∈A for p : E → M is a set of pairwise com-
patible vector bundle charts (Uα, ψα) such that (Uα)α∈A is an open cover of M .
Two vector bundle atlas are called equivalent, if their union is again a vector bundle
atlas.

A (smooth) vector bundle p : E → M consists of manifolds E (the total
space), M (the base), and a smooth mapping p : E → M (the projection)
together with an equivalence class of vector bundle atlas: We must know at least
one vector bundle atlas. The projection p turns out to be a surjective smooth
mapping which has the 0-section as global smooth right inverse. Hence it is a final

smooth mapping, see 27.15 .

If all mappings mentioned above are real analytic we call p : E → M a real
analytic vector bundle. If all mappings are holomorphic and V is a complex
vector space we speak of a holomorphic vector bundle.

29.2. Remark. Let p : E →M be a finite dimensional real analytic vector bundle.

If we extend the transition functions ψαβ to ψ̃αβ : Ũαβ → GL(VC) = GL(V )C, we
see that there is a holomorphic vector bundle (EC, pC,MC) over a complex (even
Stein) manifold MC such that E is isomorphic to a real part of EC|M , compare
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11.1 . The germ of it along M is unique. Real analytic sections s : M → E
coincide with certain germs along M of holomorphic sections W → EC for open
neighborhoods W of M in MC.

Note that every smooth finite dimensional vector bundle admits a compatible real
analytic structure, see [Hirsch, 1976, p. 101].

29.3. We will now give a formal description of the set vector bundles with fixed
base M and fixed standard fiber V , up to equivalence. We only treat smooth vector
bundles; similar descriptions are possible for real analytic and holomorphic vector
bundles.

Let us first fix an open cover (Uα)α∈A of M . If p : E → M is a vector bundle
which admits a vector bundle atlas (Uα, ψα) with the given open cover, then we
have ψα ◦ψ−1

β (x, v) = (x, ψαβ(x)v) for transition functions ψαβ : Uαβ = Uα∩Uβ →
GL(V ) ⊂ L(V, V ), which are smooth. This family of transition functions satisfies

(1)

{
ψαβ(x) · ψβγ(x) = ψαγ(x) for each x ∈ Uαβγ = Uα ∩ Uβ ∩ Uγ ,
ψαα(x) = e for all x ∈ Uα.

Condition ( 1 ) is called a cocycle condition, and thus we call the family (ψαβ)
the cocycle of transition functions for the vector bundle atlas (Uα, ψα).

Let us now suppose that the same vector bundle p : E → M is described by an
equivalent vector bundle atlas (Uα, ϕα) with the same open cover (Uα). Then the
vector bundle charts (Uα, ψα) and (Uα, ϕα) are compatible for each α, so ϕα ◦
ψ−1
α (x, v) = (x, τα(x)v) for some τα : Uα → GL(V ). But then we have

(x, τα(x)ψαβ(x)v) = (ϕα ◦ ψ−1
α )(x, ψαβ(x)v)

= (ϕα ◦ ψ−1
α ◦ ψα ◦ ψ−1

β )(x, v) = (ϕα ◦ ψ−1
β )(x, v)

= (ϕα ◦ ϕ−1
β ◦ ϕβ ◦ ψ

−1
β )(x, v) = (x, ϕαβ(x)τβ(x)v).

So we get

(2) τα(x)ψαβ(x) = ϕαβ(x)τβ(x) for all x ∈ Uαβ .

We say that the two cocycles (ψαβ) and (ϕαβ) of transition functions over the cover
(Uα) are cohomologous. The cohomology classes of cocycles (ψαβ) over the

open cover (Uα) (where we identify cohomologous ones) form a set Ȟ1((Uα), GL(V ))
the first Čech cohomology set of the open cover (Uα) with values in the sheaf
C∞( , GL(V )) =: GL(V ).

Now let (Wi)i∈I be an open cover of M refining (Uα) with Wi ⊂ Uε(i), where
ε : I → A is some refinement mapping. Then for any cocycle (ψαβ) over (Uα)
we define the cocycle ε∗(ψαβ) =: (ϕij) by the prescription ϕij := ψε(i),ε(j) | Wij .
The mapping ε∗ respects the cohomology relations and thus induces a mapping
ε] : Ȟ1((Uα), GL(V )) → Ȟ1((Wi), GL(V )). One can show that the mapping ε∗

depends on the choice of the refinement mapping ε only up to cohomology (use
τi = ψε(i),η(i) | Wi if ε and η are two refinement mappings), so we may form the

inductive limit lim−→ Ȟ1(U , GL(V )) =: Ȟ1(M,GL(V )) over all open covers of M
directed by refinement.
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Theorem. Ȟ1(M,GL(V )) is bijective to the set of all isomorphism classes of
vector bundles over M with typical fiber V .

Proof. Let (ψαβ) be a cocycle of transition functions ψαβ : Uαβ → GL(V ) over
some open cover (Uα) of M . We consider the disjoint union

⊔
α∈A{α} × Uα × V

and the following relation on it: (α, x, v) ∼ (β, y, w) if and only if x = y and
ψβα(x)v = w.

By the cocycle property ( 1 ) of (ψαβ), this is an equivalence relation. The space
of all equivalence classes is denoted by E = V B(ψαβ), and it is equipped with
the quotient topology. We put p : E → M , p[(α, x, v)] = x, and we define the
vector bundle charts (Uα, ψα) by ψα[(α, x, v)] = (x, v), ψα : p−1(Uα) =: E | Uα →
Uα × V . Then the mapping ψα ◦ ψ−1

β (x, v) = ψα[(β, x, v)] = ψα[(α, x, ψαβ(x)v)] =

(x, ψαβ(x)v) is smooth, so E becomes a smooth manifold. E is Hausdorff: let u 6= v
in E; if p(u) 6= p(v) we can separate them in M and take the inverse image under
p; if p(u) = p(v), we can separate them in one chart. Hence p : E →M is a vector
bundle.

Now suppose that we have two cocycles (ψαβ) over (Uα), and (ϕij) over (Vi).
Then there is a common refinement (Wγ) for the two covers (Uα) and (Vi). The
construction described a moment ago gives isomorphic vector bundles if we restrict
the cocycle to a finer open cover. So we may assume that (ψαβ) and (ϕαβ) are
cocycles over the same open cover (Uα). If the two cocycles are cohomologous, i.e.,
τα · ψαβ = ϕαβ · τβ on Uαβ , then a fiber linear diffeomorphism τ : V B(ψαβ) →
V B(ϕαβ) is given by τ [(α, x, v)] = [(α, x, τα(x)v)]. By relation ( 2 ), this is well
defined, so the vector bundles V B(ψαβ) and V B(ϕαβ) are isomorphic.

Most of the converse direction has already been shown above, and the argument
given can easily be refined to show that isomorphic vector bundles give cohomolo-
gous cocycles. �

Remark. IfGL(V ) is an abelian group (if V is real or complex 1-dimensional), then
Ȟ1(M,GL(V )) is a usual cohomology group with coefficients in the sheaf GL(V ),
and it can be computed with the methods of algebraic topology. If GL(V ) is not
abelian, then the situation is rather mysterious: there is no accepted definition
for Ȟ2(M,GL(V )) for example. So Ȟ1(M,GL(V )) is more a notation than a
mathematical concept.

A coarser relation on vector bundles (stable equivalence) leads to the concept of
topological K-theory, which can be handled much better, but is only a quotient of
the true situation.

29.4. Let p : E → M and q : F → N be vector bundles. A vector bundle
homomorphism ϕ : E → F is a fiber respecting, fiber linear smooth mapping

E
ϕ //

p

��

F

q

��
M

ϕ
// N
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i.e., we require that ϕx : Ex → Fϕ(x) is linear. We say that ϕ covers ϕ, which turns

out to be smooth. If ϕ is invertible, it is called a vector bundle isomorphism.

29.5. Constructions with vector bundles. Let F be a covariant functor from
the category of convenient vector spaces and bounded linear mappings into itself,
such that F : L(V,W ) → L(F(V ),F(W )) is smooth. Then F will be called a
smooth functor for shortness’ sake. Well known examples of smooth functors

are F (V ) =
⊗̃

β
kV , the k-th iterated convenient tensor product, F(V ) = Λk(V )

(the k-th exterior product, the skew symmetric elements in
⊗̃

β
kV ), or F(V ) =

Lksym(V ′;R), in particular F(V ) = V ′′, also F(V ) = D0V (see the proof of lemma

28.9 ), and similar ones.

If p : E → M is a vector bundle, described by a vector bundle atlas with cocycle
of transition functions ϕαβ : Uαβ → GL(V ), where (Uα) is an open cover of M ,
then we may consider the functions F(ϕαβ) : x 7→ F(ϕαβ(x)), Uαβ → GL(F(V )),
which are smooth into L(F(V ),F(V )). Since F is a covariant functor, F(ϕαβ)

satisfies again the cocycle condition 29.3.1 , and cohomology of cocycles 29.3.2 is
respected, so there exists a unique vector bundle F(E) := V B(F(ϕαβ)−p→M , the
value at the vector bundle p : E → M of the canonical extension of the functor F
to the category of vector bundles and their homomorphisms.

If F is a contravariant smooth functor like the duality functor F(V ) = V ′, then we
have to consider the new cocycle F(ϕ−1

αβ) = F(ϕβα) instead.

If F is a contra-covariant smooth bifunctor like L(V,W ), then the rule

F(V B(ψαβ), V B(ϕαβ)) := V B(F(ψ−1
αβ , ϕαβ))

describes the induced canonical vector bundle construction.

So for vector bundles p : E → M and q : F → M we have the following vector
bundles with base M : ΛkE, E ⊕ F , E∗, ΛE :=

⊕
k≥0 ΛkE, E⊗̃βF , L(E,F ), and

so on.

29.6. Pullback of vector bundles. Let p : E → M be a vector bundle, and let
f : N → M be smooth. Then the pullback vector bundle f∗p : f∗E → N
with the same typical fiber and a vector bundle homomorphism

f∗E
p∗f //

f∗p

��

E

p

��
N

f // M

is defined as follows. Let E be described by a cocycle (ψαβ) of transition functions
over an open cover (Uα) of M , E = V B(ψαβ). Then (ψαβ ◦ f) is a cocycle of
transition functions over the open cover (f−1(Uα)) of N , and the bundle is given
by f∗E := V B(ψαβ ◦ f). As a manifold we have f∗E = N ×

(f,M,p)
E.

The vector bundle f∗E has the following universal property: For any vector bundle
q : F → P , vector bundle homomorphism ϕ : F → E, and smooth g : P → N such
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that f ◦ g = ϕ, there is a unique vector bundle homomorphism ψ : F → f∗E with
ψ = g and p∗f ◦ ψ = ϕ.

F
ψ //

q

��

f∗E
p∗f //

f∗p

��

E

p

��
P

g // N
f // M

29.7. Proposition. Let p : E → M be a smooth vector bundle with standard
fiber V , and suppose that M and the product of the model space of M and V are
smoothly paracompact. In particular this holds if M and V are metrizable and
smoothly paracompact.

Then the total space E is smoothly paracompact.

Proof. If M and V are metrizable and smoothly paracompact then by 27.9 the
product M × V is smoothly paracompact. Let M be modeled on the convenient
vector space F . Let (Uα) be an open cover of E. We choose Wβ ⊂ Wβ ⊂ W ′β in

M such that the (Wβ) are an open cover of M and the W ′β are open, trivializing
for the vector bundle E, and domains of charts for M . We choose a partition
of unity (fβ) on M which is subordinated to (Wβ). Then E|W ′β ∼= W ′β × V is
diffeomorphic to an open subset of the smoothly paracompact convenient vector
space F × V . We consider the open cover of F × V consisting of (Uα ∩ E|Wβ)α
and (F \ supp(fβ)) × V and choose a subordinated partition of unity consisting
of (gαβ)α and one irrelevant function. Since the gαβ have support with respect to
E|W ′β in Uα ∩ E|Wβ they extend to smooth functions on the whole of E. Then

(
∑
β gαβ(fβ ◦ p))α is a partition of unity which is subordinated to Uα. �

29.8. Theorem. For any vector bundle p : E → M with M smoothly regular
there is a smooth vector bundle embedding into a trivial vector bundle over M with
locally (over M) splitting image. If the fibers are Banach spaces, and M is smoothly
paracompact then the fiber of the trivial bundle can be chosen as Banach space as
well.

A fiberwise short exact sequence of vector bundles over a smoothly paracompact
manifold M which is locally splitting is even globally splitting.

Proof. We choose first a vector bundle atlas, then smooth bump functions with
supports in the base sets of the atlas such that the carriers still cover M , then we
refine the atlas such that in the end we have an atlas (Uα, ψα : E|Uα → Uα × Eα)
and functions fα ∈ C∞(M,R) with Uα ⊃ supp(fα) such that (carr(fα)) is an open
cover of M .

Then we define a smooth vector bundle homomorphism

Φ : E →M ×
∏
α

Eα

Φ(u) = (p(u), (fα(p(u)) · ψα(u))α).
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This gives a locally splitting embedding with the following inverse

(x, (vβ)β) 7→ 1

fα(x)
ψ−1
α (x, vα)

over carr(fα).

If the fibers are Banach spaces and M is smoothly paracompact, we may assume
that the family (fα)α is a smooth partition of unity. Then we may take as fiber
of the trivial bundle the space {(xα)α ∈

∏
αEα : (‖xα‖)α ∈ c0} supplied with the

supremum norm of the norms of the coordinates.

The second assertion follows since we may glue the local splittings with the help of
a partition of unity. �

29.9. The kinematic tangent bundle of a vector bundle. Let p : E →M be a
vector bundle with fiber addition +E : E×M E → E and fiber scalar multiplication
mE
t : E → E. Then πE : TE → E, the tangent bundle of the manifold E, is itself

a vector bundle, with fiber addition +TE and scalar multiplication mTE
t

If (Uα, ψα : E | Uα → Uα×V )α∈A is a vector bundle atlas for E, and if (uα : Uα →
uα(Uα) ⊂ F ) is a manifold atlas for M , then (E | Uα, ψ′α)α∈A is an atlas for the
manifold E, where

ψ′α := (uα × IdV ) ◦ ψα : E | Uα → Uα × V → uα(Uα)× V ⊂ F × V.
Hence, the family (T (E | Uα), Tψ′α : T (E | Uα) → T (uα(Uα) × V ) = (uα(Uα) ×
V × F × V )α∈A is the atlas describing the canonical vector bundle structure of
πE : TE → E. The transition functions are:

(ψα ◦ ψ−1
β )(x, v) = (x, ψαβ(x)v)

(uα ◦ u−1
β )(x) = uαβ(x)

(ψ′α ◦ (ψ′β)−1)(x, v) = (uαβ(x), ψαβ(u−1
β (x))v)

(Tψ′α ◦ T (ψ′β)−1)(x, v; ξ, w) =

=
(
uαβ(x), ψαβ(u−1

β (x))v; d(uαβ)(x)ξ, (d(ψαβ ◦ u−1
β )(x)ξ)v + ψαβ(u−1

β (x))w
)
.

So we see that for fixed (x, v) the transition functions are linear in (ξ, w) ∈ F × V .
This describes the vector bundle structure of the tangent bundle πE : TE → E.

For fixed (x, ξ) the transition functions of TE are also linear in (v, w) ∈ V × V .
This gives a vector bundle structure on Tp : TE → TM . Its fiber addition will
be denoted by T (+E) : T (E ×M E) = TE ×TM TE → TE, since it is the tangent
mapping of +E . Likewise, its scalar multiplication will be denoted by T (mE

t ). One
might say that the vector bundle structure on Tp : TE → TM is the derivative of
the original one on E.

The subbundle {Ξ ∈ TE : Tp.Ξ = 0 in TM} = (Tp)−1(0) ⊆ TE is denoted by V E
and is called the vertical bundle over E. The local form of a vertical vector Ξ
is Tψ′α.Ξ = (x, v; 0, w), so the transition functions look like

(Tψ′α ◦ T (ψ′β)−1)(x, v; 0, w) = (uαβ(x), ψαβ(u−1
β (x)v; 0, ψαβ(u−1

β (x)w).

They are linear in (v, w) ∈ V × V for fixed x, so V E is a vector bundle over
M . It coincides with 0∗M (TE, Tp, TM), the pullback of the bundle TE → TM
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over the zero section. We have a canonical isomorphism vlE : E ×M E → V E,
called the vertical lift, given by vlE(ux, vx) := d

dt |0(ux + tvx), which is fiber
linear over M . The local representation of the vertical lift is (Tψα ◦ vlE ◦ (ψα ×
ψα)−1)((x, u), (x, v)) = (x, u; 0, v).

If (and only if) ϕ : (E, p,M) → (F, q,N) is a vector bundle homomorphism, then
we have vlF ◦ (ϕ ×M ϕ) = Tϕ ◦ vlE : E ×M E → V F ⊂ TF . So vl is a natural
transformation between certain functors on the category of vector bundles and their
homomorphisms.

The mapping vprE := pr2 ◦ vl−1
E : V E → E is called the vertical projection.

Note also the relation pr1 ◦vl−1
E = πE | V E.

29.10. The second kinematic tangent bundle of a manifold. All of 29.9 is

valid for the second tangent bundle T 2M = TTM of a manifold, but here we have
one more natural structure at our disposal. The canonical flip or involution
κM : T 2M → T 2M is defined locally by

(T 2u ◦ κM ◦ T 2u−1)(x, ξ; η, ζ) = (x, η; ξ, ζ),

where (U, u) is a chart on M . Clearly, this definition is invariant under changes of
charts.

The flip κM has the following properties:

(1) κN ◦ T 2f = T 2f ◦ κM for each f ∈ C∞(M,N).
(2) T (πM ) ◦ κM = πTM .
(3) πTM ◦ κM = T (πM ).
(4) κ−1

M = κM .
(5) κM is a linear isomorphism from T (πM ) : TTM → TM to πTM : TTM →

TM , so it interchanges the two vector bundle structures on TTM .
(6) κM is the unique smooth mapping TTM → TTM satisfying ∂

∂t
∂
∂sc(t, s) =

κM
∂
∂s

∂
∂tc(t, s) for each c : R2 →M .

All this follows from the local formula given above.

29.11. Remark. In 28.16 we saw that in general D0(E ×F ) 6= D0E ×D0F . So

the constructions of 29.9 and 29.10 do not carry over to the operational tangent
bundles.

30. Spaces of Sections of Vector Bundles

30.1. Let us fix a vector bundle p : E → M for the moment. On each fiber
Ex := p−1(x) (for x ∈M) there is a unique structure of a convenient vector space,
induced by any vector bundle chart (Uα, ψα) with x ∈ Uα. So 0x ∈ Ex is a special
element, and 0 : M → E, 0(x) = 0x, is a smooth mapping, the zero section.

A section u of p : E → M is a smooth mapping u : M → E with p ◦ u = IdM .
The support of the section u is the closure of the set {x ∈ M : u(x) 6= 0x} in M .
The space of all smooth sections of the bundle p : E →M will be denoted by either
C∞(M ← E) = C∞(E, p,M) = C∞(E). Also the notation Γ(E → M) = Γ(p) =
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Γ(E) is used in the literature. Clearly, it is a vector space with fiber wise addition
and scalar multiplication.

If (Uα, ψα)α∈A is a vector bundle atlas for p : E → M , then any smooth mapping
fα : Uα → V (the standard fiber) defines a local section x 7→ ψ−1

α (x, fα(x)) on Uα.
If (gα)α∈A is a partition of unity subordinated to (Uα), then a global section can be
formed by x 7→

∑
α gα(x) · ψ−1

α (x, fα(x)). So a smooth vector bundle has ”many”
smooth sections if M admits enough smooth partitions of unity.

We equip the space C∞(M ← E) with the structure of a convenient vector space
given by the closed embedding

C∞(M ← E)→
∏
α

C∞(Uα, V )

s 7→ pr2 ◦ψα ◦ (s | Uα),

where C∞(Uα, V ) carries the natural structure described in 27.17 , see also 3.11 .
This structure is independent of the choice of the vector bundle atlas, because
C∞(Uα, V ) →

∏
β C
∞(Uαβ , V ) is a closed linear embedding for any other atlas

(Uβ)β .

Proposition. The space C∞(M ← E) of sections of the vector bundle (E, p,M)
with this structure satisfies the uniform boundedness principle with respect to the
point evaluations evx : C∞(M ← E)→ Ex for all x ∈M .

If M is a separable manifold modeled on duals of nuclear Fréchet spaces, and if
each fiber Ex is a nuclear Fréchet space then C∞(M ← E) is a nuclear Fréchet
space and thus smoothly paracompact.

Proof. By definition of the structure on C∞(M ← E) the uniform boundedness

principle follows from 5.26 via 5.25 .

For the statement about nuclearity note that by 6.1 the spaces C∞(Uα, V ) are
nuclear since we may assume that the Uα form a countable cover of M by charts
which are diffeomorphic to c∞-open subsets of duals of nuclear Fréchet spaces, and
closed subspaces of countable products of nuclear Fréchet spaces are again nuclear

Fréchet. By 16.10 nuclear Fréchet spaces are smoothly paracompact. �

30.2. Lemma. Let M be a smooth manifold and let f : M → L(E,F ) be smooth,
where E and F are convenient vector spaces.

Then f∗(h)(x) := f(x)(h(x)) is a linear bounded C∞(M,E)→ C∞(M,F ) with the

natural structure of convenient vector spaces described in 27.17 . The correspond-

ing statements in the real analytic and holomorphic cases are also true.

Proof. This follows from the uniform boundedness principle of 27.17 . �

30.3. Lemma. Under additional assumptions we have alternative descriptions of
the convenient structure on the vector space of sections C∞(M ← E):
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(1) If M is smoothly regular, choose a smooth closed embedding E →M ×F into

a trivial vector bundle with fiber a convenient vector space F by 29.8 . Then
C∞(M ← E) can be considered as a closed linear subspace of C∞(M,F ), with

the natural structure from 27.17 .

(2) If there exists a smooth linear covariant derivative ∇ with unique parallel
transport on p : E → M , see , then we equip C∞(M ← E) with the initial
structure with respect to the cone:

C∞(M ← E)−Pt(c, )∗→ C∞(R, Ec(0)),

s 7→ (t 7→ Pt(c, t)−1s(c(t))),

where c ∈ C∞(R,M) and Pt denotes the parallel transport.

The space C∞(M ← E) of sections of the vector bundle p : E →M with this struc-
ture satisfies the uniform boundedness principle with respect to the point evaluations
evx : C∞(M ← E)→ Ex for all x ∈M .

If M is a separable manifold modeled on duals of nuclear Fréchet spaces, and if
each fiber Ex is a nuclear Fréchet space then C∞(M ← E) is a nuclear Fréchet
space and thus smoothly paracompact.

If in ( 1 ) M is even smoothly paracompact we may choose a ‘complementary’
smooth vector bundle p′ : E′ →M such that the Whitney sum is trivial E⊕M E′ ∼=
M × F , see also 29.8 .

For a linear covariant derivative ∇ : X(M) × C∞(M ← E) → C∞(M ← E) with
unique parallel transport we require that the parallel transport Pt(c, t)v ∈ Ec(t)
along each smooth curve c : R → M for all v ∈ Ec(0) and t ∈ R is the unique

solution of the differential equation ∇∂t Pt(c, t)v = 0. See 32.12 till 32.16 .

Proof. This structure is independent of the choice of the vector bundle atlas,
because C∞(Uα, V )→

∏
β C
∞(Uαβ , V ) is a closed linear embedding for any other

atlas (Uβ).

The structures from 30.1 and ( 1 ) give even the same locally convex topology if
we equip C∞(M,F ) with the initial topology given by the following diagram.

C∞(M ← E)
inj∗ //

(pr2 ◦ψα)∗

��

C∞(M,F )

��
C∞(Uα, V ) // C∞(Uα, F )

where the bottom arrow is a push forward with the vector bundle embedding h :
Uα → L(V, F ) of trivial bundles, given by h∧ := pr2 ◦ inj ◦ψ−1

α : Uα×V → F , which

is bounded by 30.2 .

We now show that the identity from description ( 2 ) to description 30.1 is boun-
ded. The restriction mapping C∞(M ← E) → C∞(Uα ← E|Uα) is obviously

bounded for description ( 2 ) on both sides. Hence, it suffices to check for a trivial

bundle E = M × V , that the identity from description ( 2 ) to description 30.1
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is bounded. For the constant parallel transport Ptconst the result follows from

proposition 27.17 .

The change to an arbitrary parallel transport is done as follows: For each C∞-curve
c : R→M the diagram

C∞(M,V )
Pt∇(c, )∗ //

Ptconst(c, )∗=c∗ **

C∞(R, V )

h∗

��
C∞(R, V )

commutes, where h : R → GL(V ) is given by h(t)(v) = Pt(c, t)v with inverse
h−1(t)(w) = Pt(c, t)−1w = Pt(c( +t),−t)w, and its push forward is bibounded

by 30.2 .

Finally, we show that the identity from description 30.1 to description ( 2 ) is
bounded. The structure on C∞(R, Ec(0)) is initial with respect to the restriction

maps to a covering by intervals I which is subordinated to the cover c−1(Uα) of R.

Thus, it suffices to show that the map C∞(M ← E) −Pt(c, )∗→ C∞(I, Ec(0)) is

bounded for the structure 30.1 on C∞(M ← E). This map factors as

C∞(M ← E)
(pr2 ◦ψα)∗ //

Pt(c, )∗

��

C∞(Uα, V )

(c|I)∗

��

C∞(R, Ec(0))

��
C∞(I, Ec(0)) C∞(I, V )

h∗oo

where

h(t)(v) := Pt(c, t)−1(ψ−1
α (c(t), v)) = Pt(c( +t),−t)(ψ−1

α (c(t), v))

is again a smooth map I → L(V,Ec(0))). �

30.4. Spaces of smooth sections with compact supports. For a smooth
vector bundle p : E →M with finite dimensional second countable base M and
standard fiber V we denote by C∞c (M ← E) the vector space of all smooth sections
with compact supports in M .

Lemma. The following structures of a convenient vector space on C∞c (M ← E)
are all equivalent:

(1) Let C∞K (M ← E) be the space of all smooth sections of E → M with sup-
ports contained in the fixed compact subset K ⊂ M , a closed linear subspace
of C∞(M ← E). Consider the final convenient vector space structure on
C∞c (M ← E) induced by the cone

C∞K (M ← E)→ C∞c (M ← E)
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where K runs through a basis for the compact subsets of M . Then C∞c (M ←
E) is even the strict and regular inductive limit of spaces C∞K (M ← E) where
K runs through a countable base of compact sets.

(2) Choose a second smooth vector bundle q : E′ →M such that the Whitney sum

is trivial 29.8 : E ⊕ E′ ∼= M × F . Then C∞c (M ← E) can be considered as
a closed direct summand of C∞c (M,F ).

The space C∞c (M ← E) satisfies the uniform boundedness principle with respect to
the point evaluations. Moreover, if the standard fiber V is a nuclear Fréchet space
and the base M is in addition separable then C∞c (M ← E) is smoothly paracompact.

Proof. Since C∞K (M ← E) is closed in C∞(M ← E) the inductive limit C∞K (M ←
E)→ C∞c (M ← E) is strict. So the limit is regular 52.8 and hence C∞c (M ← E)

is convenient with the structure in ( 1 ). The direct sum property C∞K (M ← E) ⊂
C∞K (M,F ) from 30.3.1 passes through the direct limits, so the equivalence of

statements ( 1 ) and ( 2 ) follows.

We now show that C∞c (M ← E) satisfies the uniform boundedness principle for the

point evaluations. Using description ( 2 ) and 5.25 for a direct sum we may assume
that the bundle is trivial, hence we only have to consider C∞c (M,V ) for a convenient
vector space V . Now let F be a Banach space, and let f : F → C∞c (M,V ) be a
linear mapping, such that evx ◦f : F → V is bounded for each x ∈ M . Then by

the uniform boundedness principle 27.17 it is bounded into C∞(M,V ). We claim
that f has values even in C∞K (M,V ) for some K, so it is bounded therein, and
hence in C∞c (M,V ), as required.

If not we can recursively construct the following data: a discrete sequence (xn) in
M , a bounded sequence (yn) in the Banach space F , and linear functionals `n ∈ V ′
such that

|`k(f(yn)(xk))|


= 0 if n < k,

= 1 if n = k,

< 1 if n > k.

Namely, we choose yn ∈ F and xn ∈M such that f(yn)(xn) 6= 0 in V , and xn has
distance 1 to

⋃
m<n supp(f(ym)) (in a complete Riemannian metric, where closed

bounded subsets are compact). By shrinking yn we may get |`m(f(yn)(xm))| < 1
for m < n. Then we choose `n ∈ V ′ such that `n(f(yn)(xn)) = 1.

Then y :=
∑
n

1
2n yn ∈ F , and f(y)(xk) 6= 0 for all k since |`k(f(y)(xk))| > 0. So

f(y) /∈ C∞c (M,V ).

For the last assertion, if the standard fiber V is a nuclear Fréchet space and the
base M is separable then C∞(M ← E) is a nuclear Fréchet space by the propo-

sition in 30.1 , so each closed linear subspace C∞K (M ← E) is a nuclear Fréchet

space, and by 16.10 the countable strict inductive limit C∞c (M ← E) is smoothly
paracompact. �

30.5. Spaces of holomorphic sections. Let q : F → N be a holomorphic
vector bundle over a complex (i.e., holomorphic) manifold N with standard fiber
V , a complex convenient vector space. We denote by H(N ← F ) the vector space
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of all holomorphic sections s : N → F , equipped with the topology which is initial
with respect to the cone

H(N ← F )→ H(Uα ← F |Uα)−(pr2 ◦ψα)∗→ H(Uα, V )

where the convenient structure on the right hand side is described in 27.17 , see

also 7.21 .

By 5.25 and 8.10 the space H(N ← F ) of sections satisfies the uniform bound-
edness principle for the point evaluations.

For a finite dimensional holomorphic vector bundle the topology on H(N ← F )

turns out to be nuclear and Fréchet by 8.2 , so by 16.10 H(N ← F ) is smoothly
paracompact.

30.6. Spaces of real analytic sections. Let p : E →M be a real analytic vector
bundle with standard fiber V . We denote by Cω(M ← E) the vector space of all
real analytic sections. We will equip it with one of the equivalent structures of a
convenient vector space described in the next lemma.

Lemma. The following structures of a convenient vector space on the space of
sections Cω(M ← E) are all equivalent:

(1) Choose a vector bundle atlas (Uα, ψα), and consider the initial structure with
respect to the cone

Cω(M ← E)→ Cω(Uα ← E|Uα)−(pr2 ◦ψα)∗→ Cω(Uα, V ),

where the spaces Cω(Uα, V ) are equipped with the structure of 27.17 .

(2) If M is smoothly regular, choose a smooth closed embedding E →M×F into a
trivial vector bundle with fiber a convenient vector space F . Then Cω(M ← E)
can be considered as a closed linear subspace of Cω(M,F ).

The space Cω(M ← E) satisfies the uniform boundedness principle for the point
evaluations evx : Cω(M ← E)→ Ex.

If the base manifold is compact finite dimensional real analytic, and if the standard
fiber is a finite dimensional vector space, then Cω(M ← E) is smoothly paracom-
pact.

Proof. We use the following diagram

Cω(M ← E)
inj∗ //

(pr2 ◦ψα)∗

��

Cω(M,F )

��
Cω(Uα, V ) // Cω(Uα, F ),

where the bottom arrow is a push forward with the vector bundle embedding h :
Uα → L(V, F ) of trivial bundles, given by h∧ := pr2 ◦ inj ◦ψ−1

α : Uα×V → F , which

is bounded by 30.2 . The uniform boundedness principle follows from 11.12 .

For proving that Cω(M ← E) is smoothly paracompact we use the second descrip-
tion. Then Cω(M ← E) is a direct summand in a space Cω(M,V ), where M is
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a compact real analytic manifold and V is a finite dimensional real vector space.

The function space Cω(M,V ) is smoothly paracompact by 11.4 . �

30.7. C∞,ω-mappings. Let M and N be real analytic manifolds. A mapping
f : R ×M → N is said to be of class C∞,ω if for each (t, x) ∈ R ×M and each
real analytic chart (V, v) of N with f(t, x) ∈ V there are a real analytic chart
(U, u) of M with x ∈ U , an open interval t ∈ I ⊂ R such that f(I × U) ⊂ V , and

v ◦ f ◦ (I × u−1) : I × u(U)→ v(V ) is of class C∞,ω in the sense of 11.20 , i.e., the

canonical associate is a smooth mapping (v ◦ f ◦ (I×u−1))∨ : I → Cω(u(U), v(V )).

The mapping is said to be Cω,∞ if the canonical associate is a real analytic mapping

(v ◦ f ◦ (I × u−1))∨ : I → C∞(u(U), v(V )), see 11.20.2 .

These notions are well defined by the composition theorem for C∞,ω-mappings

11.22 , and the obvious generalization of 11.21 is true.

We choose one factor to be R because we need the c∞-topology of the product to

be the product of the c∞-topologies, see 4.15 and 4.22 .

30.8. Lemma. Curves in spaces of sections.

(1) For a smooth vector bundle p : E → M a curve c : R → C∞(M ← E) is
smooth if and only if c∧ : R×M → E is smooth.

(2) For a holomorphic vector bundle p : E → M a curve c : D → H(M ← E) is
holomorphic if and only if c∧ : D×M → E is holomorphic.

(3) For a real analytic vector bundle p : E → M a curve c : R → Cω(M ← E)
is real analytic if and only if the associated mapping c∧ : R ×M → E is real
analytic.

(4) For a real analytic vector bundle p : E → M a curve c : R → Cω(M ← E)

is smooth if and only if c∧ : R × M → E is C∞,ω, see 30.7 . A curve

c : R→ C∞(M ← E) is real analytic if and only if c∧ : R×M → E is Cω,∞,

see 11.20 .

Proof. By the descriptions of the structures ( 30.1 for the smooth case, 30.5 for

the holomorphic case, and 30.6 for the real analytic case) we may assume that M
is open in a convenient vector space F , and we may consider functions with values
in the standard fiber instead of sections. The statements then follow from the
respective exponential laws ( 3.12 for the smooth case, 7.22 for the holomorphic

case, 11.18 for the real analytic case, and the definition in 11.20 for the C∞,ω

and Cω,∞ cases). �

30.9. Lemma (Curves in spaces of sections with compact support).

(1) For a smooth vector bundle p : E →M with finite dimensional base manifold
M a curve c : R→ C∞c (M ← E) is smooth if and only if c∧ : R×M → E is
smooth and satisfies the following condition:

For each compact interval [a, b] ⊂ R there is a compact subset K ⊂
M such that c∧(t, x) is constant in t ∈ [a, b] for all x ∈M \K.
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(2) For a real analytic finite dimensional vector bundle p : E → M a curve c :
R → C∞c (M ← E) is real analytic if and only if c∧ satisfies the condition of

( 1 ) above and c∧ : R×M → E is Cω,∞, see 30.7 .

Compare this with 42.5 and 42.12 .

Proof. By lemma 30.4.1 a curve c : R → C∞c (M ← E) is smooth if it factors
locally as a smooth curve into some step C∞K (M ← E) for some compact K in M ,

and this is by 30.8.1 equivalent to smoothness of c∧ and to condition ( 1 ). An
analogous proof applies to the real analytic case. �

30.10. Corollary. Let p : E → M and p′ : E′ → M be smooth vector bundles
with finite dimensional base manifold. Let W ⊆ E be an open subset, and let
f : W → E′ be a fiber respecting smooth (nonlinear) mapping. Then C∞c (M ←
W ) := {s ∈ C∞c (M ← E) : s(M) ⊆ W} is open in the convenient vector space
C∞c (M ← E). The mapping f∗ : C∞c (M ← W ) → C∞c (M ← E′) is smooth with
derivative (dvf)∗ : C∞c (M ← W ) × C∞c (M ← E) → C∞c (M ← E′), where the
vertical derivative dvf : W ×M E → E′ is given by dvf(u,w) := d

dt |0f(u+ tw).

If the vector bundles and f are real analytic then f∗ : C∞c (M ← W ) → C∞c (M ←
E′) is real analytic with derivative (dvf)∗.

If M is compact and the vector bundles and f are real analytic then Cω(M ←
W ) := {s ∈ Cω(M ← E) : s(M) ⊆ W} is open in the convenient vector space
Cω(M ← E), and the mapping f∗ : Cω(M ← W )→ Cω(M ← E′) is real analytic
with derivative (dvf)∗.

Proof. The set C∞c (M ← W ) is open in C∞c (M ← E) since its intersection with

each C∞K (M ← E) is open therein, see corollary 4.16 , and the colimit is strict

and regular by 30.4 . Then f∗ has all the stated properties, since it preserves (by

30.7 for C∞,ω) the respective classes of curves which are described in 30.8 and

30.9 . The derivative can be computed pointwise on M . �

30.11. Relation between spaces of real analytic and holomorphic sections
in finite dimensions. Now let us assume that p : F → N is a finite dimensional
holomorphic vector bundle over a finite dimensional complex manifold N . For a
subset A ⊆ N let H(M ⊇ A← F |A) be the space of germs along A of holomorphic
sections W → F |W for open sets W in N containing A. We equip H(M ⊇ A ←
F |A) with the locally convex topology induced by the inductive cone H(M ⊇
W ← F |W ) → H(M ⊇ A ← F |A) for all such W . This is Hausdorff since jet
prolongations at points in A separate germs.

For a real analytic finite dimensional vector bundle p : E →M let Cω(M ← E) be
the space of real analytic sections s : M → E. Furthermore, let Cω(M ⊇ A← E|A)
denote the space of germs at a subset A ⊆ M of real analytic sections defined
near A. The complexification of this real vector space is the complex vector space
H(M ⊇ A ← EC|A), because germs of real analytic sections s : A → E extend
uniquely to germs along A of holomorphic sections W → EC for open sets W in

MC containing A, compare 11.2 .
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We topologize Cω(M ⊇ A← E|A) as subspace of H(M ⊇ A← EC|A).

Theorem. Structure on spaces of germs of sections. If p : E → M is a
real analytic finite dimensional vector bundle and A a closed subset of M , then the
space Cω(M ⊇ A← E|A) is convenient. Its bornology is generated by the cone

Cω(M ⊇ A← E|A)−(ψα)∗→ Cω(Uα ⊇ Uα ∩A,R)k,

where (Uα, ψα)α is an arbitrary real analytic vector bundle atlas of E. If A is
compact, the space Cω(M ⊇ A← E|A) is nuclear.

The uniform boundedness principle for all point-evaluations holds if these separate

points. This follows from 11.6 .

Proof. We show the corresponding result for holomorphic germs. By taking real
parts the theorem then follows. So let q : F → N be a holomorphic finite dimen-
sional vector bundle, and let A be a closed subset of N . Then H(M ⊇ A ← F |A)
is a bornological locally convex space, since it is an inductive limit of the spaces
H(W ← F |W ) for open sets W containing A, which are nuclear and Fréchet by

30.5 . If A is compact, H(M ⊇ A← F |A) is nuclear as countable inductive limit.

Let (Uα, ψα)α be a holomorphic vector bundle atlas for F . Then we consider the
cone

H(M ⊇ A← F |A)−(ψα)∗→ H(Uα ⊇ Uα ∩A,Ck) = H(Uα ⊇ Uα ∩A,C)k.

Obviously, each mapping is continuous, so the cone induces a bornology which is

coarser than the given one, and which is complete by 11.4 .

It remains to show that every subset B ⊆ H(M ⊇ A← F |A), such that (psα)∗(B)
is bounded in every H(Uα ⊇ Uα ∩ A,C)k, is bounded in H(F |W ) for some open
neighborhood W of A in N .

Since all restriction mappings to smaller subsets are continuous, it suffices to show
the assertions of the theorem for some refinement of the atlas (Uα). Let us pass
first to a relatively compact refinement. By topological dimension theory, there is a
further refinement such that any dimRN + 2 different sets have empty intersection.
We call the resulting atlas again (Uα). Let (Kα) be a cover of N consisting of
compact subsets Kα ⊆ Uα for all α.

For any finite set A of indices let us now consider all non empty intersections

UA :=
⋂
α∈A Uα and KA :=

⋂
α∈AKα. Since by 8.4 (or 8.6 ) the space H(UA ⊇

A ∩KA,C) is a regular inductive limit, there are open sets WA ⊆ UA containing
A∩KA, such that B|(A∩KA) (more precisely (ψA)∗(B|(A∩KA)) for some suitable
vector bundle chart mapping ψA) is contained and bounded in H(WA,C)k. By
passing to smaller open sets, we may assume that WA1 ⊆ WA2 for A1 ⊇ A2. Now
we define the subset

W :=
⋃
A
ŴA, where ŴA := WA \

⋃
α/∈A

Kα.

The set W is open since (Kα) is a locally finite cover. For x ∈ A let A := {α : x ∈
Kα}, then x ∈ ŴA.
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Now we show that every germ s ∈ B has a unique extension to W . For every A
the germ of s along A ∩KA has a unique extension sA to a section over WA and

for A1 ⊆ A2 we have sA1
|WA2

= sA2
. We define the extension sW by sW |ŴA =

sA|ŴA. This is well defined since one may check that ŴA1
∩ ŴA2

⊆ ŴA1∩A2
.

B is bounded in H(M ⊇ W ← F |W ) if it is uniformly bounded on each compact
subset K of W . This is true since each K is covered by finitely many Wα and
B|A ∩Kα is bounded in H(Wα,C). �

30.12. Real analytic sections are dense. Let p : E → M be a real analytic
finite dimensional vector bundle. Then there is another real analytic vector bundle
p′ : E′ →M such that the Whitney sum E⊕E′ →M is real analytically isomorphic
to a trivial bundleM×Rk →M . This is seen as follows: By [Grauert, 1958, theorem
3] there is a closed real analytic embedding i : E → Rk for some k. Now the fiber
derivative along the zero section gives a fiberwise linear and injective real analytic
mapping E → Rk, which induces a real analytic embedding j of the vector bundle
p : E →M into the trivial bundle M×Rk →M . The standard inner product on Rk
gives rise to the real analytic orthogonal complementary vector bundle E′ := E⊥

and a real analytic Riemannian metric on the vector bundle E.

Now we can easily show that the space Cω(M ← E) of real analytic sections of the
vector bundle E → M is dense in the space of smooth sections, in the Whitney
C∞-topology: A smooth section corresponds to a smooth function M → Rk, which
we may approximate by a real analytic function in the Whitney C∞-topology, using
[Grauert, 1958, Proposition 8]. The latter one can be projected to a real analytic
approximating section of E.

Clearly, an embedding of the real analytic vector bundle into another one induces
a linear embedding of the spaces of real analytic sections onto a direct summand.
In this situation the orthogonal projection onto the vertical bundle V E within
T (M × Rk) gives rise to a real analytic linear connection (covariant derivative)
∇ : Cω(M ← TM) × Cω(M ← E) → Cω(M ← E). If c : R → M is a smooth
or real analytic curve in M then the parallel transport Pt(c, t)v ∈ Ec(t) along c
is smooth or real analytic, respectively, in (t, v) ∈ R × Ec(0). It is given by the
differential equation ∇∂t Pt(c, t)v = 0.

More generally, for fiber bundles we get a similar result.

Lemma. Let p : E → M be a locally trivial real analytic finite dimensional fiber
bundle. Then the set Cω(M ← E) of real analytic sections is dense in the space
C∞(M ← E) of smooth sections, in the Whitney C∞-topology.

The Whitney topology, even in infinite dimensions, will be explained in 41.10 .

Proof. By the results of Grauert cited above, we choose a real analytic embedding
i : E → Rk onto a closed submanifold. Let ix : Ex → Rk be the restriction to
the fiber over x ∈ M . Using the standard inner product on Rk and the affine
structure, we consider the orthogonal tubular neighborhood T (ix(Ex))⊥ ⊃ Vx ∼=
Ux ⊂ Rk, with projection qx : Ux → ix(Ex), where we choose Vx so small that
U :=

⋃
x∈M{x} × Ux is open in M × Rk. Then q : U → (p, i)(E) ⊂M × Rk is real

analytic.
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Now a smooth section of E corresponds to a smooth function f : M → Rk with
f(x) ∈ ix(Ex). We may approximate f by a real analytic function g : M → Rk such
that g(x) ∈ Ux for each x. Then h(x) = qx(g(x)) corresponds to a real analytic
approximating section. �

By looking at the trivial fiber bundle pr1 : N ×N → M this lemma says that for
finite dimensional real analytic manifolds M and N the space Cω(M,N) of real
analytic mappings is dense in C∞(M,N), in the Whitney C∞-topology. Moreover,
for a smooth finite dimensional vector bundle p : E → M there is a smoothly
isomorphic structure of a real analytic vector bundle. Namely, as smooth vector
bundle E is the pullback f∗E(k, n) of the universal bundle E(k, n)→ G(k, n) over
the Grassmann manifold G(k, n) for n high enough via a suitable smooth mapping
f : M → G(k, n). Choose a smoothly compatible real analytic structure on M and
choose a real analytic mapping g : M → G(k, n) which is near enough to f in the
Whitney C∞-topology to be smoothly homotopic to it. Then g∗E(k, n) is a real
analytic vector bundle and is smoothly isomorphic to E = f∗E(k, n).

30.13. Corollary. Let ∇ be a real analytic linear connection on a finite dimen-

sional vector bundle p : E → M , which exists by 30.12 . Then the following cone
generates the bornology on Cω(M ← E).

Cω(M ← E)−Pt(c, )∗→ Cα(R, Ec(0)),

s 7→ (t 7→ Pt(c, t)−1s(c(t))),

for all c ∈ Cα(R,M) and α = ω,∞.

Proof. The bornology induced by the cone is coarser that the given one by 30.6 .
A still coarser bornology is induced by all curves subordinated to some vector

bundle atlas. Hence, by theorem 30.6 it suffices to check for a trivial bundle that
this bornology coincides with the given one. So we assume that E is trivial. For

the constant parallel transport the result follows from lemma 11.9 .

The change to an arbitrary real analytic parallel transport is done as follows: For
each Cα-curve c : R→M the diagram

Cω(M ← E)

c∗

��

Pt∇(c, )∗ // Cα(R, Ec(0))

Cα(c∗E)
Ptc
∗∇(Id, )∗ // Cα(R× Ec(0))

∼=

OO

commutes and the the bottom arrow is an isomorphism by 30.10 , so the structure
induced by the cone does not depend on the choice of the connection. �

30.14. Lemma. Curves in spaces of sections.

(1) For a real analytic finite dimensional vector bundle p : E → M a curve c :
R → Cω(M ← E) is smooth if and only if c∧ : R ×M → E satisfies the
following condition:
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For each n there is an open neighborhood Un of R ×M in R ×MC
and a (unique) Cn-extension c̃ : Un → EC 29.2 such that c̃(t, )
is holomorphic for all t ∈ R.

(2) For a smooth finite dimensional vector bundle p : E → M a curve c : R →
C∞(M ← E) is real analytic if and only if c∧ satisfies the following condition:

For each n there is an open neighborhood Un of R ×M in C ×M
and a (unique) Cn-extension c̃ : Un → E ⊗ C such that c̃( , x) :
Un ∩ (C× {x})→ Ex ⊗ C is holomorphic for all x ∈M .

Proof. ( 1 ) By theorem 30.6 we may assume that M is open in Rn, and we
consider C∞(M,R) instead of C∞(M ← E). We note that Cω(M,R) is the real

part of H(Cm ⊇ M,C) by 11.2 , which is a regular inductive limit of spaces

H(W,C) for open neighborhoods W of M in Cm by 8.6 . By 1.8 the curve c is
smooth if and only if for each n and each bounded interval J ⊂ R it factors to a
Cn-curve J → H(W,C), which sits continuously embedded in C∞(W,R2). So the
associated mapping R ×MC ⊇ J ×W → C is Cn and holomorphic in the second
variable, and conversely.

( 2 ) By 30.1 we may assume that M is open in Rm, and again we consider
C∞(M,R) instead of C∞(M ← E). We note that C∞(M,R) is the projective limit
of the Banach spaces Cn(Mi,R), where Mi is a covering of M by compact cubes. By

9.9 the curve c is real analytic if and only if it is real analytic into each Cn(Mi,R).

By 9.6 and 9.5 it extends locally to a holomorphic curve C → Cn(Mi,C). Its
associated mappings fit together to the Cn-extension c̃ we were looking for. �

30.15. Lemma (Curves in spaces of sections with compact support).
For a smooth finite dimensional vector bundle p : E → M a curve c : R →
C∞c (M ← E) is real analytic if and only if c∧ satisfies the following two condi-
tions:

(1) For each compact interval [a, b] ⊂ R there is a compact subset K ⊂ M such
that c∧(t, x) is constant in t ∈ [a, b] for all x ∈M \K.

(2) For each n there is an open neighborhood Un of R×M in C×M and a (unique)
Cn-extension c̃ : Un → E ⊗ C such that c̃( , x) : Un ∩ (C × {×}) → Ex ⊗ C
is holomorphic for all x ∈M .

Proof. By lemma 30.4.1 a curve c : R→ C∞c (M ← E) is real analytic if it factors
locally as a real analytic curve into some step C∞K (M ← E) for some compact K in

M (this is equivalent to ( 1 )), and real analyticity is equivalent to ( 2 ), by lemma

30.14.2 . �

31. Product Preserving Functors on Manifolds

In this section, we discuss Weil functors as generalized tangent bundles, namely
those product preserving functors of manifolds which can be described in some
detail. The name Weil functor derives from the fundamental paper [Weil, 1953]

who gave the construction in 31.5 in finite dimensions for the first time.
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31.1. A real commutative algebra A with unit 1 6= 0 is called formally real
if for any a1, . . . , an ∈ A the element 1 + a2

1 + · · · + a2
n is invertible in A. Let

E = {e ∈ A : e2 = e, e 6= 0} ⊂ A be the set of all nonzero idempotent elements in
A. It is not empty since 1 ∈ E. An idempotent e ∈ E is said to be minimal if for
any e′ ∈ E we have ee′ = e or ee′ = 0.

Lemma. Let A be a real commutative algebra with unit which is formally real and
finite dimensional as a real vector space.

Then there is a decomposition 1 = e1 + · · · + ek into all minimal idempotents.
Furthermore, A decomposes as a sum of ideals A = A1 ⊕ · · · ⊕ Ak where Ai =
eiA = R · ei ⊕Ni, as vector spaces, and Ni is a nilpotent ideal.

Proof. First we remark that every system of nonzero idempotents e1, . . . , er sat-
isfying eiej = 0 for i 6= j is linearly independent over R. Indeed, if we multiply
a linear combination k1e1 + · · · + krer = 0 by ei we obtain ki = 0. Consider a
non minimal idempotent e 6= 0. Then there exists e′ ∈ E with e 6= ee′ =: ē 6= 0.
Then both ē and e − ē are nonzero idempotents, and ē(e − ē) = 0. To deduce
the required decomposition of 1 we proceed by recurrence. Assume that we have a
decomposition 1 = e1 + · · · + er into nonzero idempotents satisfying eiej = 0 for
i 6= j. If ei is not minimal, we decompose it as ei = ēi+(ei− ēi) as above. The new
decomposition of 1 into r + 1 idempotents is of the same type as the original one.
Since A is finite dimensional this procedure stabilizes. This yields 1 = e1 + · · ·+ ek
with minimal idempotents. Multiplying this relation by a minimal idempotent e,
we find that e appears exactly once in the right hand side. Then we may decompose
A as A = A1 ⊕ · · · ⊕Ak, where Ai := eiA.

Now each Ai has only one nonzero idempotent, namely ei, and it suffices to investi-
gate each Ai separately. To simplify the notation, we suppose that A = Ai, so that
now 1 is the only nonzero idempotent of A. Let N := {n ∈ A : nk = 0 for some k}
be the ideal of all nilpotent elements in A.

We claim that any x ∈ A \ N is invertible. Since A is finite dimensional the
decreasing sequence

A ⊃ xA ⊃ x2A ⊃ · · ·
of ideals must become stationary. If xkA = 0 then x ∈ N , thus there is a k such
that xk+`A = xkA 6= 0 for all ` > 0. Then x2kA = xkA, and there is some y ∈ A
with xk = x2ky. So we have (xky)2 = xky 6= 0, and since 1 is the only nontrivial
idempotent of A we have xky = 1. So xk−1y is an inverse of x as required.

Thus, the quotient algebra A/N is a finite dimensional field, so A/N equals R or
C. If A/N = C, let x ∈ A be such that x + N =

√
−1 ∈ C = A/N . Then

1 + x2 + N = N = 0 in C, so 1 + x2 is nilpotent, and A cannot be formally real.
Thus A/N = R, and A = R · 1⊕N as required. �

31.2. Definition. A Weil algebra A is a real commutative algebra with unit
which is of the form A = R ·1⊕N , where N is a finite dimensional ideal of nilpotent
elements.

So by lemma 31.1 , a formally real and finite dimensional unital commutative
algebra is the direct sum of finitely many Weil algebras.
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31.3. Remark. The evaluation mapping ev : M → Hom(C∞(M,R),R), given by

ev(x)(f) := f(x), is bijective if and only if M is smoothly realcompact, see 17.1 .

31.4. Corollary. For two manifolds M1 and M2, with M2 smoothly real compact
and smoothly regular, the mapping

C∞(M1,M2)→ Hom(C∞(M2,R), C∞(M1,R))

f 7→ (f∗ : g 7→ g ◦ f)

is bijective.

Proof. Let x1 ∈ M1 and ϕ ∈ Hom(C∞(M2,R), C∞(M1,R)). Then evx1 ◦ϕ is in

Hom(C∞(M2,R),R), so by 17.1 there is a unique x2 ∈ M2 such that evx1
◦ϕ =

evx2
. If we write x2 = f(x1), then f : M1 → M2 and ϕ(g) = g ◦ f for all

g ∈ C∞(M2,R). This implies that f is smooth, since M2 is smoothly regular, by

27.5 . �

31.5. Chart description of Weil functors. Let A = R ·1⊕N be a Weil algebra.
We want to associate to it a functor TA :Mf →Mf from the category Mf of all
smooth manifolds modeled on convenient vector spaces into itself.

Step 1. If f ∈ C∞(R,R) and λ1 + n ∈ R · 1 ⊕ N = A, we consider the Taylor

expansion j∞f(λ)(t) =
∑∞
j=0

f(j)(λ)
j! tj of f at λ, and we put

TA(f)(λ1 + n) := f(λ)1 +

∞∑
j=1

f (j)(λ)

j!
nj ,

which is a finite sum, since n is nilpotent. Then TA(f) : A→ A is smooth, and we
get TA(f ◦ g) = TA(f) ◦ TA(g) and TA(IdR) = IdA.

Step 2. If f ∈ C∞(R, F ) for a convenient vector space F and λ1+n ∈ R·1⊕N = A,

we consider the Taylor expansion j∞f(λ)(t) =
∑∞
j=0

f(j)(λ)
j! tj of f at λ, and we put

TA(f)(λ1 + n) := 1⊗ f(λ) +

∞∑
j=1

nj ⊗ f (j)(λ)

j!
,

which is a finite sum, since n is nilpotent. Then TA(f) : A → A ⊗ F =: TAF is
smooth.

Step 3. For f ∈ C∞(E,F ), where E, F are convenient vector spaces, we want to
define the value of TA(f) at an element of the convenient vector space TAE = A⊗E.
Such an element may be uniquely written as 1⊗ x1 +

∑
j nj ⊗ xj , where 1 and the

nj ∈ N form a fixed finite linear basis of A, and where the xi ∈ E. Let again
j∞f(x1)(y) =

∑
k≥0

1
k!d

kf(x1)(yk) be the Taylor expansion of f at x1 ∈ E for
y ∈ E. Then we put

TA(f)(1⊗ x1 +
∑
j

nj ⊗ xj) :=
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= 1⊗ f(x1) +
∑
k≥0

1

k!

∑
j1,...,jk

nj1 . . . njk ⊗ dkf(x1)(xj1 , . . . , xjk),

which also is a finite sum. A change of basis in N induces the transposed change
in the xi, namely

∑
i(
∑
j a

j
inj) ⊗ x̄i =

∑
j nj ⊗ (

∑
i a
j
i x̄i), so the value of TA(f)

is independent of the choice of the basis of N . Since the Taylor expansion of
a composition is the composition of the Taylor expansions we have TA(f ◦ g) =
TA(f) ◦ TA(g) and TA(IdE) = IdTAE .

If ϕ : A→ B is a homomorphism between two Weil algebras we have (ϕ⊗F )◦TAf =
TBf ◦ (ϕ⊗ E) for f ∈ C∞(E,F ).

Step 4. Let π = πA : A → A/N = R be the projection onto the quotient field of
the Weil algebra A. This is a surjective algebra homomorphism, so by step 3 the
following diagram commutes for f ∈ C∞(E,F ):

A⊗ E
TAf //

π⊗E
��

A⊗ F

π⊗F
��

E
f // F

If U ⊂ E is a c∞-open subset we put TA(U) := (π⊗E)−1(U) = (1⊗U)× (N ⊗E),
which is a c∞-open subset in TA(E) := A⊗ E. If f : U → V is a smooth mapping
between c∞-open subsets U and V of E and F , respectively, then the construction
of step 3 applied to the Taylor expansion of f at points in U , produces a smooth
mapping TAf : TAU → TAV , which fits into the following commutative diagram:

U × (N ⊗ E)

pr1
((

TAU
TAf //

π⊗E
��

TAV

π⊗F
��

V × (N ⊗ F )

pr1
vv

U
f // V

We have TA(f ◦ g) = TAf ◦ TAg and TA(IdU ) = IdTAU , so TA is now a covariant
functor on the category of c∞-open subsets of convenient vector spaces and smooth
mappings between them.

Step 5. Let M be a smooth manifold, let (Uα, uα : Uα → uα(Uα) ⊂ Eα) be a
smooth atlas of M with chart changings uαβ := uα ◦ u−1

β : uβ(Uαβ) → uα(Uαβ).
Then the smooth mappings

TA(uβ(Uαβ))
TA(uαβ) //

π⊗Eβ
��

TA(uα(Uαβ))

π⊗Eα
��

uβ(Uαβ)
uαβ // uα(Uαβ)

form likewise a cocycle of chart changings, and we may use them to glue the c∞-
open sets TA(uα(Uα)) = uα(Uα) × (N ⊗ Eα) ⊂ TAEα together in order to obtain
a smooth manifold which we denote by TAM . By the diagram above, we see that
TAM will be the total space of a fiber bundle T (πA,M) = πA,M : TAM →M , since
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the atlas (TA(Uα), TA(uα)) constructed just now is already a fiber bundle atlas, see

37.1 below. So if M is Hausdorff then also TAM is Hausdorff, since two points xi
can be separated in one chart if they are in the same fiber, or they can be separated
by inverse images under πA,M of open sets in M separating their projections. This
construction does not depend on the choice of the atlas, because two atlas have a
common refinement and one may pass to this.

If f ∈ C∞(M,M ′) for two manifolds M , M ′, we apply the functor TA to the local
representatives of f with respect to suitable atlas. This gives local representatives
which fit together to form a smooth mapping TAf : TAM → TAM

′. Clearly, we
again have TA(f ◦ g) = TAf ◦TAg and TA(IdM ) = IdTAM , so that TA :Mf →Mf
is a covariant functor.

31.6. Remark. If we apply the construction of 31.5 , step 5 to the algebra A = 0,
which we did not allow (1 6= 0 ∈ A), then T0M depends on the choice of the atlas. If
each chart is connected, then T0M = π0(M), computing the connected components
of M . If each chart meets each connected component of M , then T0M is one point.

31.7. Theorem. Main properties of Weil functors. Let A = R · 1 ⊕N be a
Weil algebra, where N is the maximal ideal of nilpotents. Then we have:

(1) The construction of 31.5 defines a covariant functor TA :Mf →Mf such
that πA:TAM→M ,M is a smooth fiber bundle with standard fiber N ⊗ E if M
is modeled on the convenient space E. For any f ∈ C∞(M,M ′) we have a
commutative diagram

TAM
TAf //

πA,M

��

TAM
′

πA,M′

��
M

f // M ′.

So (TA, πA) is a bundle functor on Mf , which gives a vector bundle functor
on Mf if and only if N is nilpotent of order 2.

(2) The functor TA : Mf → Mf is multiplicative: it respects products. It maps
the following classes of mappings into itself: embeddings of (splitting) subman-
ifolds, surjective smooth mappings admitting local smooth sections, fiber bundle
projections. For fixed manifolds M and M ′ the mapping TA : C∞(M,M ′)→
C∞(TAM,TAM

′) is smooth, so it maps smoothly parameterized families to
smoothly parameterized families.

(3) If (Uα) is an open cover of M then TA(Uα) is an open cover of TAM .
(4) Any algebra homomorphism ϕ : A → B between Weil algebras induces a

natural transformation T (ϕ, ) = Tϕ : TA → TB. If ϕ is injective, then
T (ϕ,M) : TAM → TBM is a closed embedding for each manifold M . If ϕ is
surjective, then T (ϕ,M) is a fiber bundle projection for each M . So we may
view T as a co-covariant bifunctor from the category of Weil algebras times
Mf to Mf .

Proof. ( 1 ) The main assertion is clear from 31.5 . The fiber bundle πA,M :
TAM → M is a vector bundle if and only if the transition functions TA(uαβ) are
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fiber linear N ⊗ Eα → N ⊗ Eβ . So only the first derivatives of uαβ should act on
N , hence any product of two elements in N must be 0, thus N has to be nilpotent
of order 2.

( 2 ) The functor TA respects finite products in the category of c∞-open subsets of

convenient vector spaces by 31.5 , step 3 and 5. All the other assertions follow by
looking again at the chart structure of TAM and by taking into account that f is
part of TAf (as the base mapping).

( 3 ) This is obvious from the chart structure.

( 4 ) We define T (ϕ,E) := ϕ⊗E : A⊗E → B⊗E. By 31.5 , step 3, this restricts to
a natural transformation TA → TB on the category of c∞-open subsets of convenient
vector spaces, and – by gluing – also on the category Mf . Obviously, T is a co-
covariant bifunctor on the indicated categories. Since πB ◦ ϕ = πA (ϕ respects the
identity), we have T (πB ,M) ◦ T (ϕ,M) = T (πA,M), so T (ϕ,M) : TAM → TBM is
fiber respecting for each manifold M . In each fiber chart it is a linear mapping on
the typical fiber NA ⊗ E → NB ⊗ E.

So if ϕ is injective, T (ϕ,M) is fiberwise injective and linear in each canonical fiber
chart, so it is a closed embedding.

If ϕ is surjective, let N1 := kerϕ ⊆ NA, and let V ⊂ NA be a linear complement
to N1. Then if M is modeled on convenient vector spaces Eα and for the canonical
charts we have the commutative diagram:

TAM
T (ϕ,M) // TBM

TA(Uα)
T (ϕ,Uα) //

OO

TA(uα)

��

TB(Uα)

OO

TB(uα)

��
uα(Uα)× (NA ⊗ Eα)

Id×((ϕ|NA)⊗Eα) // uα(Uα)× (NB ⊗ Eα)

uα(Uα)× (N1 ⊗ Eα)× (V ⊗ Eα)
Id×0×iso // uα(Uα)× 0× (NB ⊗ Eα)

Hence T (ϕ,M) is a fiber bundle projection with standard fiber Eα ⊗ kerϕ. �

31.8. Theorem. Let A and B be Weil algebras. Then we have:

(1) We get the algebra A back from the Weil functor TA by TA(R) = A with ad-
dition +A = TA(+R), multiplication mA = TA(mR) and scalar multiplication
mt = TA(mt) : A→ A.

(2) The natural transformations TA → TB correspond exactly to the algebra ho-
momorphisms A→ B.

Proof. ( 1 ) is obvious. ( 2 ) For a natural transformation ϕ : TA → TB its value
ϕR : TA(R) = A → TB(R) = B is an algebra homomorphisms. The inverse of this

mapping has already been described in theorem 31.7.4 . �
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31.9. Remark. If M is a smoothly real compact and smoothly regular manifold
we consider the set DA(M) := Hom(C∞(M,R), A) of all bounded homomorphisms
from the convenient algebra of smooth functions on M into a Weil algebra A.
Obviously we have a natural mapping TAM → DAM which is given by X 7→ (f 7→
TA(f).X), using 3.5 and 3.6 .

Let D be the algebra of Study numbers R.1⊕R.δ with δ2 = 0. Then TDM = TM ,
the tangent bundle, and DD(M) is the smooth bundle of all operational tangent
vectors, i.e. bounded derivations at a point x of the algebra of germs C∞(M ⊇
{x},R) see 28.12 .

It would be nice if DA(M) were a smooth manifold not only for A = D. We do
not know whether this is true. The obvious method of proof hits severe obstacles,
which we now explain.

Let A = R.1 ⊕ N be a Weil algebra and let π : A → R be the corresponding
projection. Then for ϕ ∈ DA(M) = Hom(C∞(M,R), A) the character π ◦ϕ equals
evx for a unique x ∈ M , since M is smoothly real compact. Moreover, X :=
ϕ− evx .1 : C∞(M,R)→ N satisfies the expansion property at x:

(1) X(fg) = X(f).g(x) + f(x).X(g) +X(f).X(g).

Conversely, a bounded linear mapping X : C∞(M,R) → N with property ( 1 )
is called an expansion at x. Clearly each expansion at x defines a bounded
homomorphism ϕ with π◦ϕ = evx. So we view DA(M)x as the set of all expansions
at x. Note first that for an expansion X ∈ DA(M)x the value X(f) depends only
on the germ of f at x: If f |U = 0 for a neighborhood U of x, choose a smooth
function h with h = 1 off U and h(x) = 0. Then hkf = f and X(f) = X(hkf) =
0 + 0 +X(hk)X(f) = · · · = X(h)kX(f), which is 0 for k larger than the nilpotence
index of N .

Suppose now that M = U is a c∞-open subset of a convenient vector space E. We
can ask whether DA(U)x is a smooth manifold. Let us sketch the difficulty. A
natural way to proceed would be to apply by induction on the nilpotence index of
N . Let N0 := {n ∈ N : n.N = 0}, which is an ideal in A. Consider the short exact
sequence

0→ N0 → N −p→ N/N0 → 0

and a linear section s : N/N0 → N . For X : C∞(U,R)→ N we consider X̄ := p◦X
and X0 := X − s ◦ X̄. Then X is an expansion at x ∈ U if and only if

(2) X̄ is an expansion at x with values in N/N0, and X0 satisfies

X0(fg) = X0(f)g(x) + f(x)X0(g) + s(X̄(f)).s(X̄(g))− s(X̄(f).X̄(g)).

Note that ( 2 ) is an affine equation in X0 for fixed X̄. By induction, the X̄ ∈
DA/N0

(U)x form a smooth manifold, and the fiber over a fixed X̄ consists of all

X = X0 + s ◦ X̄ with X0 in the closed affine subspace described by ( 2 ), whose
model vector space is the space of all derivations at x. If we were able to find
a (local) section DA/N0

(U) → DA(U) and if these sections fitted together nicely
we could then conclude that DA(U) was the total space of a smooth affine bundle
over DA/N0

(U), so it would be smooth. But this translates to a lifting problem as
follows: A homomorphism C∞(U,R)→ A/N0 has to be lifted in a ‘natural way’ to
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C∞(U,R) → A. But we know that in general C∞(U,R) is not a free C∞-algebra,

see 31.16 for comparison.

31.10. The basic facts from the theory of Weil functors are completed by the
following assertion.

Proposition. Given two Weil algebras A and B, the composed functor TA ◦ TB is
a Weil functor generated by the tensor product A⊗B.

Proof. For a convenient vector space E we have TA(TBE) = A⊗B ⊗E, and this

is compatible with the action of smooth mappings, by 31.5 . �

Corollary. There is a canonical natural equivalence TA ◦ TB ∼= TB ◦ TA generated
by the exchange algebra isomorphism A⊗B ∼= B ⊗A.

31.11. Examples. Let A be the algebra R.1+R.δ with δ2 = 0. Then TAM = TM ,
the tangent bundle, and consequently we get TA⊗AM = T 2M , the second tangent
bundle.

31.12. Weil functors and Lie groups. We have (compare 38.10 ) that the
tangent bundle TG of a Lie group G is again a Lie group, the semidirect product
gnG of G with its Lie algebra g.

Now let A be a Weil algebra, and let TA be its Weil functor. Then in the notation of

36.1 the space TA(G) is also a Lie group with multiplication TA(µ) and inversion

TA(ν). By the properties 31.7 , of the Weil functor TA we have a surjective homo-
morphism πA : TAG → G of Lie groups. Following the analogy with the tangent
bundle, for a ∈ G we will denote its fiber over a by (TA)aG ⊂ TAG, likewise for
mappings. With this notation we have the following commutative diagram, where

we assume that G is a regular Lie group 38.4 :

g⊗N // g⊗A

0 // (TA)0g //

(TA)0 expG

��

TAg //

TA expG

��

g //

expG

��

0

e // (TA)eG // TAG
πA // G // e

The structural mappings (Lie bracket, exponential mapping, evolution operator,
adjoint action) are determined by multiplication and inversion. Thus, their images
under the Weil functor TA are the same structural mappings. But note that the
canonical flip mappings have to be inserted like follows. So for example

g⊗A ∼= TAg = TA(TeG)−κ→ Te(TAG)

is the Lie algebra of TAG, and the Lie bracket is just TA([ , ]). Since the bracket

is bilinear, the description of 31.5 implies that [X ⊗ a, Y ⊗ b]TAg = [X,Y ]g ⊗
ab. Also TA expG = expTAG. If expG is a diffeomorphism near 0, (TA)0(expG) :
(TA)0g → (TA)eG is also a diffeomorphism near 0, since TA is local. The natural
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transformation 0G : G → TAG is a homomorphism which splits the bottom row
of the diagram, so TAG is the semidirect product (TA)0g n G via the mapping

TAρ : (u, g) 7→ TA(ρg)(u). So from 38.9 we may conclude that TAG is also a

regular Lie group, if G is regular. If ωG : TG→ TeG is the Maurer Cartan form of
G (i.e., the left logarithmic derivative of IdG) then

κ0 ◦ TAωG ◦ κ : TTAG ∼= TATG→ TATeG ∼= TeTAG

is the Maurer Cartan form of TAG.

Product preserving functors from finite dimensional manifolds to infinite dimensional ones

31.13. Product preserving functors. Let Mffin denote the category of all
finite dimensional separable Hausdorff smooth manifolds, with smooth mappings
as morphisms. Let F :Mffin →Mf be a functor which preserves products in the
following sense: The diagram

F (M1)←F (pr1)− F (M1 ×M2)−F (pr2)→ F (M2)

is always a product diagram.

Then F (point) = point, by the following argument:

F (point) F (point× point)∼=

F (pr1)oo F (pr2)

∼=
// F (point)

point

f1

jj

f

OO

f2

44

Each of f1, f , and f2 determines each other uniquely, thus there is only one mapping
f1 : point→ F (point), so the space F (point) is a single point.

We also require that F has the following two properties:

(1) The map on morphisms F : C∞(Rn,R)→ C∞(F (Rn), F (R)) is smooth, where

we regard C∞(F (Rn), F (R)) as Frölicher space, see section 23 . Equivalently,
the associated map C∞(Rn,R)× F (Rn)→ F (R) is smooth.

(2) There is a natural transformation π : F → Id such that for each M the
mapping πM : F (M) → M is a fiber bundle, and for an open submanifold
U ⊂M the mapping F (incl) : F (U)→ F (M) is a pullback.

31.14. C∞-algebras. An R-algebra is a commutative ring A with unit together
with a ring homomorphism R → A. Then every map p : Rn → Rm which is given
by an m-tuple of real polynomials (p1, . . . , pm) can be interpreted as a mapping
A(p) : An → Am in such a way that projections, composition, and identity are
preserved, by just evaluating each polynomial pi on an n-tuple (a1, . . . , an) ∈ An.

Compare with 17.1 .

A C∞-algebra A is a real algebra in which we can moreover interpret all smooth
mappings f : Rn → Rm. There is a corresponding map A(f) : An → Am, and
again projections, composition, and the identity mapping are preserved.

More precisely, a C∞-algebra A is a product preserving functor from the category
C∞ to the category of sets, where C∞ has as objects all spaces Rn, n ≥ 0, and all
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smooth mappings between them as arrows. Morphisms between C∞-algebras are
then natural transformations: they correspond to those algebra homomorphisms
which preserve the interpretation of smooth mappings.

Let us explain how one gets the algebra structure from this interpretation. Since A
is product preserving, we have A(point) = point. All the laws for a commutative
ring with unit can be formulated by commutative diagrams of mappings between
products of the ring and the point. We do this for the ring R and apply the product
preserving functor A to all these diagrams, so we get the laws for the commutative
ring A(R) with unit A(1) with the exception of A(0) 6= A(1) which we will check
later for the case A(R) 6= point. Addition is given by A(+) and multiplication by
A(m). For λ ∈ R the mapping A(mλ) : A(R) → A(R) equals multiplication with
the element A(λ) ∈ A(R), since the following diagram commutes:

A(R)

∼=
��

A(mλ)

++
A(R)× point

Id×A(λ) //

∼=
��

A(R)×A(R) // A(R)

A(R× point)
A(Id×λ) // A(R× R)

A(m)

88

We may investigate now the difference between A(R) = point and A(R) 6= point.
In the latter case for λ 6= 0 we have A(λ) 6= A(0) since multiplication by A(λ)
equals A(mλ) which is a diffeomorphism for λ 6= 0 and factors over a one pointed
space for λ = 0. So for A(R) 6= point which we assume from now on, the group
homomorphism λ 7→ A(λ) from R into A(R) is actually injective.

This definition of C∞-algebras is due to [Lawvere, 1979], for a thorough account
see [Moerdijk and Reyes, 1991], for a discussion from the point of view of functional
analysis see [Kainz et al., 1987]. In particular there on a C∞-algebra A the natural
topology is defined as the finest locally convex topology on A such that for all a =
(a1, . . . , an) ∈ An the evaluation mappings εa : C∞(Rn,R)→ A are continuous. In
[Kainz et al., 1987, 6.6] one finds a method to recognize C∞-algebras among locally-
m-convex algebras. In [Michor and Vanžura, 1996] one finds a characterization of
the algebras of smooth functions on finite dimensional algebras among all C∞-
algebras.

31.15. Theorem. Let F : Mffin → Mf be a product preserving functor. Then
either F (R) is a point or F (R) is a C∞-algebra. If ϕ : F1 → F2 is a natural
transformation between two such functors, then ϕR : F1(R) → F2(R) is an algebra
homomorphism.

If F has property ( 31.13.1 ) then the natural topology on F (R) is finer than the
given manifold topology and thus is Hausdorff if the latter is it.

If F has property ( 31.13.2 ) then F (R) is a local algebra with an algebra homo-
morphism π = πR : F (R)→ R whose kernel is the maximal ideal.

Proof. By definition F restricts to a product preserving functor from the category
of all Rn’s and smooth mappings between them, thus it is a C∞-algebra.
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If F has property ( 31.13.1 ) then for all a = (a1, . . . , an) ∈ F (R)n the evaluation
mappings are given by

εa = eva ◦F : C∞(Rn,R)→ C∞(F (R)n, F (R))→ F (R)

and thus are even smooth.

If F has property ( 31.13.2 ) then obviously πR = π : F (R) → R is an algebra
homomorphism. It remains to show that the kernel of π is the largest ideal. So if
a ∈ A has π(a) 6= 0 ∈ R then we have to show that a is invertible in A. Since the
following diagram is a pullback,

F (R \ {0})
F (i) //

π

��

F (R)

π

��
R \ {0} i // R

we may assume that a = F (i)(b) for a unique b ∈ F (R \ {0}). But then 1/i : R \
{0} → R is smooth, and F (1/i)(b) = a−1, since F (1/i)(b).a = F (1/i)(b).F (i)(b) =

F (m)F (1/i, i)(b) = F (1)(b) = 1, compare 31.14 . �

31.16. Examples. Let A be an augmented local C∞-algebra with maximal ideal
N . Then A is quotient of a free C∞-algebra C∞fin(RΛ) of smooth functions on
some large product RΛ, which depend globally only on finitely many coordinates,
see [Moerdijk and Reyes, 1991] or [Kainz et al., 1987]. So we have a short exact
sequence

0→ I → C∞fin(RΛ)−ϕ→ A→ 0.

Then I is contained in the codimension 1 maximal ideal ϕ−1(N), which is easily
seen to be {f ∈ C∞fin(Rλ) : f(x0) = 0} for some x0 ∈ RΛ. Then clearly ϕ factors
over the quotient of germs at x0. If A has Hausdorff natural topology, then ϕ even
factors over the Taylor expansion mapping, by the argument in [Kainz et al., 1987,
6.1], as follows. Let f ∈ C∞fin(RΛ) be infinitely flat at x0. We shall show that f is in
the closure of the set of all functions with germ 0 at x0. Let x0 = 0 without loss.
Note first that f factors over some quotient RΛ → RN , and we may replace RΛ by
RN without loss. Define g : RN × RN → RN ,

g(x, y) =

{
0 if |x| ≤ |y|,
(1− |y|/|x|)x if |x| > |y|.

Since f is flat at 0, the mapping y 7→ (x 7→ fy(x) := f(g(x, y)) is a continuous
mapping RN → C∞(RN ,R) with the property that f0 = f and fy has germ 0 at 0
for all y 6= 0.

Thus the augmented local C∞-algebras whose natural topology is Hausdorff are
exactly the quotients of algebras of Taylor series at 0 of functions in C∞fin(RΛ).

It seems that local implies augmented: one has to show that a C∞-algebra which
is a field is 1-dimensional. Is this true?
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31.17. Chart description of functors induced by C∞-algebras. Let A =
R ·1⊕N be an augmented local C∞-algebra which carries a compatible convenient
structure, i.e. A is a convenient vector space and each mapping A : C∞(Rn,Rm)→
C∞(An, Am) is a well defined smooth mapping. As in the proof of 31.15 one sees
that the natural topology on A is then finer than the given convenient one, thus is
Hausdorff. Let us call this an augmented local convenient C∞-algebra.

We want to associate to A a functor TA : Mffin → Mf from the category Mffin

of all finite dimensional separable smooth manifolds to the category of smooth
manifolds modeled on convenient vector spaces.

Step 1. Let π = πA : A → A/N = R be the augmentation mapping. This is a
surjective homomorphism of C∞-algebras, so the following diagram commutes for
f ∈ C∞(Rn,Rm):

An
TAf //

πn

��

Am

πm

��
Rn

f // Rm

If U ⊂ Rn is an open subset we put TA(U) := (πn)−1(U) = U ×Nn, which is open
subset in TA(Rn) := An.

Step 2. Now suppose that f : Rn → Rm vanishes on some open set V ⊂ Rn. We
claim that then TAf vanishes on the open set TA(V ) = (πn)−1(V ). To see this let
x ∈ V , and choose a smooth function g ∈ C∞(Rn,R) with g(x) = 1 and support
in V . Then g.f = 0 thus we have also 0 = A(g.f) = A(m) ◦ A(g, f) = A(g).A(f),
where the last multiplication is pointwise diagonal multiplication between A and
Am. For a ∈ An with (πn)(a) = x we get π(A(g)(a)) = g(π(a)) = g(x) = 1,
thus A(g)(a) is invertible in the algebra A, and from A(g)(a).A(f)(a) = 0 we may
conclude that A(f)(a) = 0 ∈ Am.

Step 3. Now let f : U → W be a smooth mapping between open sets U ⊆ Rn
and W ⊆ Rm . Then we can define TA(f) : TA(U)→ TA(W ) in the following way.
For x ∈ U let fx : Rn → Rm be a smooth mapping which coincides with f in a
neighborhood V of x in U . Then by step 2 the restriction of A(fx) to TA(V ) does
not depend on the choice of the extension fx, and by a standard argument one can
uniquely define a smooth mapping TA(f) : TA(U) → TA(V ). Clearly this gives us
an extension of the functor A from the category of all Rn’s and smooth mappings
into convenient vector spaces to a functor from open subsets of Rn’s and smooth
mappings into the category of c∞-open (indeed open) subsets of convenient vector
spaces.

Step 4. Let M be a smooth finite dimensional manifold, let (Uα, uα : Uα →
uα(Uα) ⊂ Rm) be a smooth atlas of M with chart changings uαβ := uα ◦ u−1

β :

uβ(Uαβ) → uα(Uαβ). Then by step 3 we get smooth mappings between c∞-open
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subsets of convenient vector spaces

TA(uβ(Uαβ))
TA(uαβ) //

π

��

TA(uα(Uαβ))

π

��
uβ(Uαβ)

uαβ // uα(Uαβ)

form again a cocycle of chart changings and we may use them to glue the c∞-open
sets TA(uα(Uα)) = π−1

Rm(uα(Uα)) ⊂ Am in order to obtain a smooth manifold which
we denote by TAM . By the diagram above we see that TAM will be the total space
of a fiber bundle T (πA,M) = πA,M : TAM →M , since the atlas (TA(Uα), TA(uα))
constructed just now is already a fiber bundle atlas. So if M is Hausdorff then also
TAM is Hausdorff, since two points xi can be separated in one chart if they are in
the same fiber, or they can be separated by inverse images under πA,M of open sets
in M separating their projections.

This construction does not depend on the choice of the atlas. For two atlas have a
common refinement and one may pass to this.

If f ∈ C∞(M,M ′) for two manifolds M , M ′, we apply the functor TA to the local
representatives of f with respect to suitable atlas. This gives local representatives
which fit together to form a smooth mapping TAf : TAM → TAM

′. Clearly we
again have TA(f ◦g) = TAf ◦TAg and TA(IdM ) = IdTAM , so that TA :Mffin →Mf
is a covariant functor.

31.18. Theorem. Main properties. Let A = R · 1 ⊕ N be a local augmented
convenient C∞-algebra. Then we have:

(1) The construction of 31.17 defines a covariant functor TA : Mffin → Mf

such that πA : TAM → M is a smooth fiber bundle with standard fiber Nm if
dimM = m. For any f ∈ C∞(M,M ′) we have a commutative diagram

TAM
TAf //

πA,M

��

TAM
′

πA,M′

��
M

f // M ′.

Thus, (TA, πA) is a bundle functor on Mffin whose fibers may be infinite
dimensional. It gives a vector bundle functor on Mf if and only if N is
nilpotent of order 2.

(2) The functor TA : Mf → Mf is multiplicative: It respects products and pre-

serves the same classes of smooth mappings as in 31.7.2 : Embeddings of

(splitting) submanifolds, surjective smooth mappings admitting local smooth
sections, fiber bundle projections. For fixed manifolds M and M ′ the mapping
TA : C∞(M,M ′)→ C∞(TAM,TAM

′) is smooth.
(3) Any bounded algebra homomorphism ϕ : A → B between augmented conve-

nient C∞-algebras induces a natural transformation T (ϕ, ) = Tϕ : TA →
TB. If ϕ is split injective, then T (ϕ,M) : TAM → TBM is a split embedding
for each manifold M . If ϕ is split surjective, then T (ϕ,M) is a fiber bundle
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projection for each M . So we may view T as a co-covariant bifunctor from the
category of augmented convenient C∞-algebras algebras times Mffin to Mf .

Proof. ( 1 ) is clear from 31.17 . The fiber bundle πA,M : TAM →M is a vector
bundle if and only if the transition functions TA(uαβ) are fiber linear N ⊗ Eα →
N ⊗ Eβ . So only the first derivatives of uαβ should act on N , so any product of
two elements in N must be 0, thus N has to be nilpotent of order 2.

( 2 ) The functor TA respects finite products in the category of c∞-open subsets of

convenient vector spaces by 31.5 , step 3 and 5. All the other assertions follow by
looking again at the chart structure of TAM and by taking into account that f is
part of TAf (as the base mapping).

( 3 ) We define T (ϕ,Rn) := ϕn : An → Bn. By 31.17 , step 3, this restricts to a
natural transformation TA → TB on the category of open subsets of Rn’s, and by
gluing we may extend it to a functor on the category Mf . Obviously T is a co-
covariant bifunctor on the indicated categories. Since πB ◦ ϕ = πA (ϕ respects the
identity), we have T (πB ,M) ◦ T (ϕ,M) = T (πA,M), so T (ϕ,M) : TAM → TBM is
fiber respecting for each manifold M . In each fiber chart it is a linear mapping on
the typical fiber Nm

A → Nm
B .

So if ϕ is split injective, T (ϕ,M) is fiberwise split injective and linear in each
canonical fiber chart, so it is a splitting embedding.

If ϕ is split surjective, let N1 := kerϕ ⊆ NA, and let V ⊂ NA be a topological
linear complement to N1. Then for m = dimM and for the canonical charts we
have the commutative diagram:

TAM
T (ϕ,M) // TBM

TA(Uα)
T (ϕ,Uα) //

OO

TA(uα)

��

TB(Uα)

OO

TB(uα)

��
uα(Uα)×Nm

A

Id×ϕ|NmA // uα(Uα)×Nm
B

uα(Uα)×Nm
1 × V m

Id×0×iso // uα(Uα)× 0×Nm
B

So T (ϕ,M) is a fiber bundle projection with standard fiber Eα ⊗ kerϕ. �

31.19. Theorem. Let A and B be augmented convenient C∞-algebras. Then we
have:

(1) We get the convenient C∞-algebra A back from the functor TA by restricting
to the subcategory of Rn’s.

(2) The natural transformations TA → TB correspond exactly to the bounded C∞-
algebra homomorphisms A→ B.
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Proof. ( 1 ) is obvious. ( 2 ) For a natural transformation ϕ : TA → TB (which is
smooth) its value ϕR : TA(R) = A → TB(R) = B is a C∞-algebra homomorphism
which is smooth and thus bounded. The inverse of this mapping is already described

in theorem 31.18.3 . �

31.20. Proposition. Let A = R · 1 ⊕ N be a local augmented convenient C∞-
algebra and let M be a smooth finite dimensional manifold.

Then there exists a bijection

ε : TA(M)→ Hom(C∞(M,R), A)

onto the space of bounded algebra homomorphisms, which is natural in A and M .
Via ε the expression Hom(C∞( ,R), A) describes the functor TA in a coordinate
free manner.

Proof. Step 1. Let M = Rn, so TA(Rn) = An. Then for a = (a1, . . . , an) ∈ An
we have ε(a)(f) = A(f)(a1, . . . , an), which gives a bounded algebra homomor-
phism C∞(Rn,R) → A. Conversely, for ϕ ∈ Hom(C∞(Rn,R), A) consider a =
(ϕ(pr1), . . . , ϕ(prn)) ∈ An. Since polynomials are dense in C∞(Rn,R), ϕ is boun-
ded, and A is Hausdorff, ϕ is uniquely determined by its values on the coordinate
functions pri (compare [Kainz et al., 1987, 2.4.(3)], thus ϕ(f) = A(f)(a) and ε is
bijective. Obviously ε is natural in A and Rn.

Step 2. Now let i : U ⊂ Rn be an embedding of an open subset. Then the image
of the mapping

Hom(C∞(U,R), A)−(i∗)∗→ Hom(C∞(Rn,R), A)−ε
−1
Rn,A→ An

is the set π−1
A,Rn(U) = TA(U) ⊂ An, and (i∗)∗ is injective.

To see this let ϕ ∈ Hom(C∞(U,R), A). Then ϕ−1(N) is the maximal ideal in
C∞(U,R) consisting of all smooth functions vanishing at a point x ∈ U , and
x = π(ε−1(ϕ ◦ i∗)) = π(ϕ(pr1 ◦i), . . . , ϕ(prn ◦i)), so that ε−1((i∗)∗(ϕ)) ∈ TA(U) =
π−1(U) ⊂ An.

Conversely for a ∈ TA(U) the homomorphism εa : C∞(Rn,R) → A factors over

i∗ : C∞(Rn,R)→ C∞(U,R), by steps 2 and 3 of 31.17 .

Step 3. The two functors Hom(C∞( ,R), A) and TA : Mf → Set coincide on
all open subsets of Rn’s, so they have to coincide on all manifolds, since smooth
manifolds are exactly the retracts of open subsets of Rn’s see e.g. [Federer, 1969]
or [Kolář et al., 1993, 1.14.1]. Alternatively one may check that the gluing process

described in 31.17 , step 4, works also for the functor Hom(C∞( ,R), A) and gives
a unique manifold structure on it, which is compatible to TAM . �
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In chapter VI we have found that some of the classically equivalent definitions of
tangent vectors differ in infinite dimensions, and accordingly we have different kinds
of tangent bundles and vector fields. Since this is the central topic of any treatment
of calculus on manifolds we investigate in detail Lie brackets for all these notions
of vector fields. Only kinematic vector fields can have local flows, and we show

that the latter are unique if they exist 32.16 . Note also theorem 32.18 that
any bracket expression of length k of kinematic vector fields is given as the k-th
derivative of the corresponding commutator expression of the flows, which is not
well known even in finite dimensions.

We also have different kinds of differential forms, which we treat in a systematic
way, and we investigate how far the usual natural operations of differential forms

generalize. In the end 33.21 the most common type of kinematic differential forms
turns out to be the right ones for calculus on manifolds; for them the theorem of
De Rham is proved.

We also include a version of the Frölicher-Nijenhuis bracket in infinite dimensions.
The Frölicher-Nijenhuis bracket is a natural extension of the Lie bracket for vector
fields to a natural graded Lie bracket for tangent bundle valued differential forms

(later called vector valued). Every treatment of curvature later in 37.3 and 37.20
is initially based on the Frölicher-Nijenhuis bracket.

32. Vector Fields

32.1. Vector fields. Let M be a smooth manifold. A kinematic vector field
X on M is just a smooth section of the kinematic tangent bundle TM →M . The
space of all kinematic vector fields will be denoted by X(M) = C∞(M ← TM).

By an operational vector field X on M we mean a bounded derivation of
the sheaf C∞( ,R), i.e. for the open U ⊂ M we are given bounded derivations
XU : C∞(U,R)→ C∞(U,R) commuting with the restriction mappings.
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We shall denote by Der(C∞(M,R)) the space of all operational vector
fields on M . We shall equip Der(C∞(M,R)) with the convenient vector space
structure induced by the closed linear embedding

Der(C∞(M,R)) ↪→
∏
U

L(C∞(U,R), C∞(U,R)).

Convention. In 32.4 below we will show that for a smoothly regular manifold the
space of derivations on the algebra C∞(M,R) of globally defined smooth functions
coincides with the derivations of the sheaf. Thus we shall follow the convention,
that either the manifolds in question are smoothly regular, or that (as defined
above) Der means the space of derivations of the corresponding sheaf also denoted
by C∞(M,R).

32.2. Lemma. On any manifold M the operational vector fields correspond exactly
to the smooth sections of the operational tangent bundle. Moreover we have an
isomorphism of convenient vector spaces Der(C∞(M,R)) ∼= C∞(M ← DM).

Proof. Every smooth section X ∈ C∞(M ← DM) defines an operational vector
field by ∂U (f)(x) := X(x)(germx f) = pr2(Df(X(x))) for f ∈ C∞(U,R) and x ∈ U .

We have that ∂U (f) = pr2 ◦Df ◦ X = df ◦ X ∈ C∞(U,R) by 28.15 . Then ∂U

is obviously a derivation, since df(Xx) = Xx(f) by 28.15 . The linear mapping
∂U : C∞(U,R) → C∞(U,R) is bounded if and only if evx ◦∂U : C∞(U,R) → R is

bounded, by the smooth uniform boundedness principle 5.26 , and this is true by

28.15 , since (evx ◦X)(f) = df(Xx).

Moreover, the mapping

C∞(M ← DM)→ Der(C∞(M,R)) ↪→
∏
U

L(C∞(U,R), C∞(U,R))

given by X 7→ (∂U )U is linear and bounded, since by the uniform boundedness

principle 5.26 this is equivalent to the boundedness of X 7→ ∂U (f)(x) = df(Xx)
for all open U ⊆M , f ∈ C∞(U,R) and x ∈ X.

Now let conversely ∂ be an operational vector field on M . Then the family evx ◦∂U :
C∞(U,R)→ R, where U runs through all open neighborhoods of x, defines a unique
bounded derivation Xx : C∞(M ⊇ {x},R)→ R, i.e. an element of DxM . We have
to show that x 7→ Xx is smooth, which is a local question, so we assume that M is
a c∞-open subset of a convenient vector space E. The mapping

M −X→ DM ∼= M ×D0E ⊆M ×
∏
U

L(C∞(U,R),R)

is smooth if and only if for every neighborhood U of 0 in E the component M →
L(C∞(U,R),R), given by ∂ 7→ Xx(f( −x)) = ∂Ux(f( −x))(x) is smooth, where

Ux := U + x. By the smooth uniform boundedness principle 5.18 this is the case
if and only if its composition with evf is smooth for all f ∈ C∞(U,R). If t 7→ x(t)
is a smooth curve in M ⊆ E, then there is a δ > 0 and an open neighborhood W
of x(0) in M such that W ⊆ U +x(t) for all |t| < δ and hence Xx(t)(f( −x(t))) =
∂W (f( −x(t)))(x(t)), which is by the exponential law smooth in t.
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Moreover, the mapping Der(C∞(M,R)) → C∞(M ← DM) given by ∂ 7→ X is
linear and bounded, since by the uniform boundedness principle in proposition

30.1 this is equivalent to the boundedness of ∂ 7→ Xx ∈ DxM ↪→
∏
U C

∞(U,R)′

for all x ∈ M , i.e. to that of ∂ 7→ Xx(f) = ∂U (f)(x) for all open neighborhoods U
of x and f ∈ C∞(U,R), which is obviously true. �

32.3. Lemma. There is a natural embedding of convenient vector spaces

X(M) = C∞(M ← TM)→ C∞(M ← DM) ∼= Der(C∞(M,R)).

Proof. Since TM is a closed subbundle of DM this is obviously true. �

32.4. Lemma. Let M be a smoothly regular manifold.

Then each bounded derivation X : C∞(M,R) → C∞(M,R) is already an opera-
tional vector field. Moreover, we have an isomorphism

C∞(M ← DM) ∼= Der(C∞(M,R), C∞(M,R))

of convenient vector spaces.

Proof. Let ∂ be a bounded derivation of the algebra C∞(M,R). If f ∈ C∞(M,R)
vanishes on an open subset U ⊂ M then also ∂(f): For x ∈ U we take a bump
function gx,U ∈ C∞(M,R) at x, i.e. gx,U = 1 near x and supp(gx,U ) ⊂ U . Then
∂(f) = ∂((1 − gx,U )f) = ∂(1 − gx,U )f + (1 − gx,U )∂(f), and both summands are
zero near x. So ∂(f) | U = 0.

Now let f ∈ C∞(U,R) for a c∞-open subset U of M . We have to show that we can
define ∂U (f) ∈ C∞(U,R) in a unique manner. For x ∈ U let gx,U ∈ C∞(M,R) be
a bump function as before. Then gx,Uf ∈ C∞(M,R), and ∂(gx,Uf) makes sense.
By the argument above, ∂(gf) near x is independent of the choice of g. So let
∂U (f)(x) := ∂(gx,Uf)(x). It has all the required properties since the topology on
C∞(U,R) is initial with respect to all mappings f 7→ gx,Uf for x ∈ U .

This mapping ∂ 7→ ∂U is bounded, since by the uniform boundedness principles

5.18 and 5.26 this is equivalent with the boundedness of ∂ 7→ ∂U (f)(x) :=
∂(gx,Uf)(x) for all f ∈ C∞(U,R) and all x ∈ U �

32.5. The operational Lie bracket. Recall that operational vector fields are

the bounded derivations of the sheaf C∞( ,R), see 32.1 . This is a convenient

vector space by 32.2 and 30.1 .

If X, Y are two operational vector fields on M , then the mapping f 7→ X(Y (f))−
Y (X(f)) is also a bounded derivation of the sheaf C∞( ,R), as a simple compu-
tation shows. We denote it by [X,Y ] ∈ Der(C∞( ,R)) ∼= C∞(M ← DM).

The R-bilinear mapping

[ , ] : C∞(M ← DM)× C∞(M ← DM)→ C∞(M ← DM)

is called the Lie bracket. Note also that C∞(M ← DM) is a module over the
algebra C∞(M,R) by pointwise multiplication (f,X) 7→ fX, which is bounded.
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Theorem. The Lie bracket [ , ] : C∞(M ← DM) × C∞(M ← DM) →
C∞(M ← DM) has the following properties:

[X,Y ] = −[Y,X],

[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]], the Jacobi identity,

[fX, Y ] = f [X,Y ]− (Y f)X,

[X, fY ] = f [X,Y ] + (Xf)Y.

The form of the Jacobi identity we have chosen says that ad(X) = [X, ] is a
derivation for the Lie algebra (C∞(M ← DM), [ , ]).

Proof. All these properties can be checked easily for the commutator [X,Y ] =
X ◦ Y − Y ◦X in the space of bounded derivations of the algebra C∞(U,R). �

32.6. Lemma. Let b : E1 × . . .× Ek → R be a bounded multilinear mapping on a
product of convenient vector spaces. Let f ∈ C∞(E,R), let fi : E → Ei be smooth

mappings, and let Xx ∈ E′′ = D
(1)
x E.

Then we have

Xx(f) = 〈Xx, df(x)〉E′ = df(x)∗∗.Xx

Xx(b◦(f1, . . . , fk)) = d(b ◦ (f1, . . . , fk))(x)∗∗.Xx

=
∑

1≤i≤k

b(f1(x), . . . , fi−1(x), , fi+1(x), . . . , fk(x))∗∗.dfi(x)∗∗.Xx

=
∑

1≤i≤k

〈dfi(x)∗∗.Xx, b(f1(x), . . . , fi−1(x), , fi+1(x), . . . , fk(x))〉E′i .

If B : E1 × . . . × Ek → F is a vector valued bounded multilinear mapping, and if
g : E → F is a smooth mapping, then we have

D(1)
x g.Xx = dg(x)∗∗.Xx ∈ F ′′

D(1)
x (B ◦ (f1, . . . , fk)).Xx =

=
∑

1≤i≤k

B(. . . , fi−1(x), , fi+1(x), . . . )∗∗.dfi(x)∗∗.Xx ∈ D(1)
B(f1(x),...,fk(x))F.

Here 〈 , 〉H : H ′×H → R is the duality pairing for any convenient vector space
H. We will further denote by ιH : H → H ′′ the canonical embedding into the
bidual space.

Proof. The first equation is immediate.

We have

d(b ◦ (f1, . . . , fk))(x) =

k∑
j=1

b(f1(x), . . . , fj−1(x), , fj+1(x), . . . , fk(x)) ◦ dfj(x)

=

k∑
j=1

dfj(x)∗
(
b(f1(x), . . . , fj−1(x), , fj+1(x), . . . , fk(x))

)
.
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Thus for Xx ∈ D(1)
x E we have

Xx(b◦(f1, . . . , fk)) = Xx

(
d(b ◦ (f1, . . . , fk))(x)

)
= Xx

( k∑
j=1

dfj(x)∗
(
b(f1(x), . . . , fj−1(x), , fj+1(x), . . . , fk(x))

))

=

k∑
j=1

Xx

(
dfj(x)∗

(
b(f1(x), . . . , fj−1(x), , fj+1(x), . . . , fk(x))

))

=

k∑
j=1

dfj(x)∗∗(Xx)
(
b(f1(x), . . . , fj−1(x), , fj+1(x), . . . , fk(x))

)
.

For the second assertion we choose a test germ

h ∈ C∞(F ⊇ {B(f1(x), . . . , fk(x))},R)

and proceed as follows:

(D(1)
x g.Xx)(h) = Xx(h ◦ g) = 〈Xx, d(h ◦ g)(x)〉E′

= 〈Xx, dh(g(x)) ◦ dg(x)〉E′ = 〈Xx, dg(x)∗.dh(g(x))〉E′
= 〈dg(x)∗∗.Xx, dh(g(x))〉E′ = (dg(x)∗∗.Xx)(h).

(D(1)
x (B ◦ (f1, . . . , fk))Xx)(h) = Xx(h ◦B ◦ (f1, . . . , fk))

= d(h ◦B ◦ (f1, . . . , fk))(x)∗∗.Xx

=

(
dh(B(f1(x), . . . )) ◦

k∑
i=1

B(. . . , fi−1(x), , fi+1(x), . . . ) ◦ dfi(x)

)∗∗
.Xx

= dh(B(f1(x), . . . ))∗∗.

k∑
i=1

B(. . . , fi−1(x), , fi+1(x), . . . )∗∗.dfi(x)∗∗.Xx

=

(
k∑
i=1

B(. . . , fi−1(x), , fi+1(x), . . . )∗∗.dfi(x)∗∗.Xx

)∣∣∣∣∣
B(f1(x),... )

(h). �

32.7. The Lie bracket of operational vector fields of order 1. One could
hope that the Lie bracket restricts to a Lie bracket on C∞(D(1)M). But this is
not the case. We will see that for a c∞-open set U in a convenient vector space E
and for X,Y ∈ C∞(U,E′′) the bracket [X,Y ] has also components of order 2, in
general.

For a bounded linear mapping ` : F → G′ the transposed mapping `t : G→ F ′

is given by `t := `∗ ◦ ιG, where ιG : G → G′′ is the canonical embedding into the
bidual. If 〈 , 〉H : H ′ × H → R is the duality pairing, then this may also be
described by 〈`(x), y〉G = 〈`t(y), x〉F .

For X,Y ∈ C∞(U,E′′), for f ∈ C∞(U,E) and for x ∈ U we get:

X(f)(x) = Xx(f) = Xx(df(x))
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X(f) = ev ◦(X, df)

Y (X(f))(x) = Yx(X(f)) = Yx(ev ◦(X, df))

= Yx

(
dX(x)∗

(
ev( , df(x))

)
+ d(df)(x)∗

(
ev(X(x), )

))
= Yx

(
dX(x)∗

(
ι(df(x))

)
+ d(df)(x)∗(Xx)

)
= Yx

(
ι(df(x)) ◦ dX(x) +Xx ◦ d(df)(x)

)
= Yx

(
dX(x)t

(
df(x)

)
+Xx ◦ d(df)(x)

)
=
(
Yx ◦ dX(x)t

)(
df(x)

)
+ Yx

(
Xx ◦ d(df)(x)

)
.

Here we used the equation:

ι(y) ◦ T = T t(y) for y ∈ F, T ∈ L(E,F ′),

which is true since(
ι(y) ◦ T

)
(x) = ι(y)(T (x)) = T (x)(y) = T t(y)(x).

Note that for the symmetric bilinear form b := d(df)(x)∧ : E ×E → R a canonical

extension to a bilinear form b̃ on E′′ is given by

b̃(Xx, Yx) := Xx(Yx ◦ b∨)

However, this extension is not symmetric as the following remark shows: Let b :=
ev : E′ × E → R. Then b̃ : E′′′ × E′′ → R is given by

b̃(X,Y ) := X(Y ◦ b∨) = X(Y ◦ Id) = X(Y ) = ιE′′(Y )(X)

For b := ev ◦ flip : E × E′ → R we have that b̃ : E′′ × E′′′ → R is given by

b̃(Y,X) := Y (X ◦ b∨) = Y (X ◦ ιE) = Y (ι∗E(X)) = (Y ◦ ι∗E)(X) = (ιE)∗∗(Y )(X).

Thus, b̃ is not symmetric in general, since ker(ι∗∗E − ιE′′) = ιE(E), at least for
Banach spaces, see [Cigler et al., 1979, 1.15], applied to ιE .

Lemma. For X ∈ C∞(TM) and Y ∈ C∞(D(1)M) we have [X,Y ] ∈ C∞(D(1)M),
and the bracket is given by the following local formula for M = U , a c∞-open subset
in a convenient vector space E:

[X,Y ](x) = Y (x) ◦ dX(x)∗ − dY (x).X(x) ∈ E′′.

Proof. From the computation above we get:

Y (X(f))(x) = 〈(d(ιE ◦X)(x)t)∗.Y (x), df(x)〉E′ + 〈d(df)(x)∗∗.Y (x), ιE .X(x)〉E′′
= 〈Y (x), (ιE ◦ dX(x))t.df(x)〉E′ + 〈Y (x), d(df)(x)∗.ιE .X(x)〉E′
= 〈Y (x), dX(x)∗.df(x)〉E′ + 〈Y (x), d(df)(x)t.X(x)〉E′
= 〈Y (x) ◦ dX(x)∗, df(x)〉E′ + 〈Y (x), d(df)(x)t.X(x)〉E′

X(Y (f))(x) = 〈(dY (x)t)∗.ιE .X(x), df(x)〉E′ + 〈d(df)(x)∗∗.ιE .X(x), Y (x)〉E′′



32.8 32. Vector Fields 335

= 〈ιE .X(x), dY (x)t.df(x)〉E′ + 〈ιE .X(x), d(df)(x)∗.Y (x)〉E′
= 〈dY (x)t.df(x), X(x)〉E + 〈d(df)(x)∗.Y (x), X(x)〉E
= 〈dY (x).X(x), df(x)〉E′ + 〈Y (x), d(df)(x).X(x)〉E′

Since d(df)(x) : E → E′ is symmetric in the sense that d(df)(x)t = d(df)(x), the
result follows. �

32.8. Theorem. The Lie bracket restricts to the following mappings between
splitting subspaces

[ , ] : C∞(M ← D(k)M)× C∞(M ← D(`)M)→ C∞(M ← D(k+`)M).

The spaces X(M) = C∞(M ← TM) and C∞(D[1,∞)M) :=
⋃

1≤i<∞ C∞(M ←
D(i)M) are sub Lie algebras of C∞(M ← DM).

If X ∈ X(M) is a kinematic vector field, then [X, ] maps C∞(M ← D(`)M) into
itself.

This suggests to introduce the notation D(0) := T , but here it does not indicate
the order of differentiation present in the tangent vector.

Proof. All assertions can be checked locally, so we may assume that M = U is
open in a convenient vector space E.

We prove first that the kinematic vector fields form a Lie subalgebra. For X,
Y ∈ C∞(U,E) we have then for the vector field ∂X |x(f) = df(x)(X(x)), compare

the notation set up in 28.2

[∂X , ∂Y ](f) = ∂X(∂Y (f))− ∂Y (∂X(f))

= d(df.Y ).X − d(df.X).Y

= d2f.(X,Y ) + df.(dY.X)− d2f.(Y,X)− df.(dX.Y )

= ∂dY.X−dX.Y f.

Let ∂X ∈ C∞(U ← D(k)U) for X =
∑k
i=1X

[i], where X [i] ∈ C∞(U,Lisym(E;R)′)

vanishes on decomposable forms. Similarly, let ∂Y ∈ C∞(U ← D(`)U), and
suppose that f : (U, x) → R is a (k + `)-flat germ at x. Since ∂Y (f)(y) =∑`
i=1 Y

[i](y)( 1
i!d

if(y)) the germ ∂Y (f) is still k-flat at x, so ∂X(∂Y (f))(x) = 0.
Thus, [∂X , ∂Y ](f)(x) = ∂X(∂Y (f))(x) − ∂Y (∂X(f))(x) = 0, and we conclude that
[∂X , ∂Y ] ∈ C∞(U ← D(k+`)U).

Now we suppose that X ∈ C∞(U,E) and Y ∈ C∞(U,L`sym(E;R)′). Let f :
(U, x)→ R be an `-flat germ at x. Then we have

∂Y (∂X(f))(x) = Y (x)
(

1
`!d

`〈df,X〉E(x)
)

= Y (x)

(
1
`!

∑̀
k=0

(
`

k

)
sym〈dk(df)(x), d`−kX(x)〉E

)
= Y (x)

(
1
`! 〈d

`(df)(x), X(x)〉E
)

+ 0

= 〈Y (x), 1
`!d

1+`f(x)( , X(x))〉L`sym(E;R)

∂X(∂Y (f))(x) = ∂X(x)〈Y, 1
`!d

`f〉L`sym(E;R)
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= d〈Y, 1
`!d

`f〉L`sym(E;R)(x).X(x)

= 〈dY (x).X(x), 1
`!d

`f(x)〉L`sym(E;R) + 〈Y (x), 1
`!d(d`f)(x).X(x)〉L`sym(E;R)

= 0 + 〈Y (x), 1
`!d

`+1f(x)(X(x), )〉L`sym(E;R)

So [∂X , ∂Y ](f)(x) = 0. �

Remark. In the notation of 28.2 we have shown that on a convenient vector
space we have

[ , ] : C∞(E ← D[k]E)× C∞(E ← D[`]E)→
k+∑̀

i=min(k,`)

C∞(E ← D[i]E).

Thus, the space C∞(E ← D[k,∞)E) :=
∑
k≤i<∞ C∞(E ← D[i]E) for k ≥ 1 is a sub

Lie algebra. The (possibly larger) space C∞(D[k,∞]E) of all operational tangent
fields which vanish on all polynomials of degree less than k is obviously a sub Lie
algebra. But beware, none of these spaces of vector fields is invariant under the
action of diffeomorphisms.

32.9. f-related vector fields. Let Dα be one of the following functors D, D(k),
T . If f : M → M is a diffeomorphism, then for any vector field X ∈ C∞(M ←
DαM) the mapping Dαf−1 ◦X ◦ f is also a vector field, which we will denote by
f∗X. Analogously, we put f∗X := Dαf ◦X ◦ f−1 = (f−1)∗X.

But if f : M → N is a smooth mapping and Y ∈ C∞(N ← DαN) is a vector
field there may or may not exist a vector field X ∈ C∞(M ← DαM) such that the
following diagram commutes:

(1) DαM
Dαf // DαN

M
f //

X

OO

N.

Y

OO

Definition. Let f : M → N be a smooth mapping. Two vector fields X ∈
C∞(M ← DαM) and Y ∈ C∞(N ← DαN) are called f-related, if Dαf ◦X =

Y ◦ f holds, i.e. if diagram ( 1 ) commutes.

32.10. Lemma. Let Xi ∈ C∞(M ← DM) and Yi ∈ C∞(N ← DN) be vector
fields for i = 1, 2, and let f : M → N be smooth. If Xi and Yi are f -related for
i = 1, 2, then also λ1X1 + λ2X2 and λ1Y1 + λ2Y2 are f -related, and also [X1, X2]
and [Y1, Y2] are f -related.

Proof. The first assertion is immediate. To prove the second we choose h ∈
C∞(N,R), and we view each vector field as operational. Then by assumption we
have Df ◦Xi = Yi ◦ f , thus:

(Xi(h ◦ f))(x) = Xi(x)(h ◦ f) = (Dxf.Xi(x))(h) =

= (Df ◦Xi)(x)(h) = (Yi ◦ f)(x)(h) = Yi(f(x))(h) = (Yi(h))(f(x)),



32.12 32. Vector Fields 337

so Xi(h ◦ f) = (Yi(h)) ◦ f , and we may continue:

[X1, X2](h ◦ f) = X1(X2(h ◦ f))−X2(X1(h ◦ f)) =

= X1(Y2(h) ◦ f)−X2(Y1(h) ◦ f) =

= Y1(Y2(h)) ◦ f − Y2(Y1(h)) ◦ f = [Y1, Y2](h) ◦ f.
But this means Df ◦ [X1, X2] = [Y1, Y2] ◦ f . �

32.11. Corollary. Let Dα be one of the following functors D, D(k), T . Let
f : M → N be a local diffeomorphism so that (Txf)−1 makes sense for each x ∈M .

Then for Y ∈ C∞(N ← DαN) a vector field f∗Y ∈ C∞(M ← DαM) is defined
by (f∗Y )(x) = (Txf)−1.Y (f(x)), and the linear mapping f∗ : C∞(N ← DβN) →
C∞(M ← DβM) is a Lie algebra homomorphism, i.e. f∗[Y1, Y2] = [f∗Y1, f

∗Y2],
where Dβ is one of D, T , D[1,∞).

32.12. Integral curves. Let c : J → M be a smooth curve in a manifold M
defined on an interval J . It will be called an integral curve or flow line of a
kinematic vector field X ∈ X(M) if c′(t) = X(c(t)) holds for all t ∈ J .

For a given kinematic vector field integral curves need not exist locally, and if they
exist they need not be unique for a given initial value. This is due to the fact that
the classical results on existence and uniqueness of solutions of equations like the
inverse function theorem, the implicit function theorem, and the Picard-Lindelöf
theorem on ordinary differential equations can be deduced essentially from one
another, and all depend on Banach’s fixed point theorem. Beyond Banach spaces
these proofs do not work any more, since the reduction does no longer lead to a
contraction on a metrizable space. We are now going to give examples, which show
that almost everything that might fail indeed fails.

Example 1. Let E := s be the Fréchet space of rapidly decreasing sequences.
Note that s = C∞(S1,R) by the theory of Fourier series. Consider the continuous
linear operator T : E → E given by T (x0, x1, x2, . . . ) := (0, 12x1, 2

2x2, 3
2x3, . . . ).

The ordinary linear differential equation x′(t) = T (x(t)) with constant coefficients
and initial value x(0) := (1, 0, 0, . . . ) has no solution, since the coordinates would
have to satisfy the recursive relation x′n(t) = n2xn−1(t) with x′1(t) = 0, and hence
we must have xn(t) = n!tn. But the so defined curve t 7→ x(t) has only for t = 0
values in E. Thus, no local solution exists. By recursion one sees that the solution
for an arbitrary initial value x(0) should be given by

xn(t) =

n∑
i=0

(
n!
i!

)2
xi(0)

tn−i

(n− i)!
.

If the initial value is a finite sequence, say xn(0) = 0 for n > N and xN (0) 6= 0,
then

xn(t) =

N∑
i=0

(
n!
i!

)2
xi(0)

tn−i

(n− i)!

=
(n!)2

(n−N)!
tn−N

N∑
i=0

(
1
i!

)2
xi(0) (n−N)!

(n−i)! t
N−i
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|xn(t)| ≥ (n!)2

(n−N)!
|t|n−N

(
|xN (0)|

(
1
N !

)2 − N−1∑
i=0

(
1
i!

)2 |xi(0)| (n−N)!
(n−i)! |t|

N−i

)

≥ (n!)2

(n−N)!
|t|n−N

(
|xN (0)|

(
1
N !

)2 − N−1∑
i=0

(
1
i!

)2 |xi(0)||t|N−i
)
,

where the first factor does not lie in the space s of rapidly decreasing sequences,
and where the second factor is larger than ε > 0 for t small enough. So at least for
a dense set of initial values this differential equation has no local solution.

This also shows that the theorem of Frobenius is wrong in the following sense: The
vector field x 7→ T (x) generates a 1-dimensional subbundle E of the tangent bundle
on the open subset s \ {0}. It is involutive since it is 1-dimensional. But through
points representing finite sequences there exist no local integral submanifolds (M
with TM = E|M). Namely, if c were a smooth non-constant curve with c′(t) =
f(t).T (c(t)) for some smooth function f , then x(t) := c(h(t)) would satisfy x′(t) =
T (x(t)), where h is a solution of h′(t) = 1/f(h(t)).

Example 2. Next consider E := RN and the continuous linear operator T : E → E
given by T (x0, x1, . . . ) := (x1, x2, . . . ). The corresponding differential equation
has solutions for every initial value x(0), since the coordinates must satisfy the
recursive relation xk+1(t) = x′k(t), and hence any smooth function x0 : R → R
gives rise to a solution x(t) := (x

(k)
0 (t))k with initial value x(0) = (x

(k)
0 (0))k. So

by Borel’s theorem there exist solutions to this equation for all initial values and
the difference of any two functions with same initial value is an arbitrary infinite
flat function. Thus, the solutions are far from being unique. Note that RN is
a topological direct summand in C∞(R,R) via the projection f 7→ (f(n))n, and
hence the same situation occurs in C∞(R,R).

Note that it is not possible to choose the solution depending smoothly on the initial
value: suppose that x is a local smooth mapping R×E ⊃ I×U → E with x(0, y) = y
and ∂tx(t, y) = T (x(t, y)), where I is an open interval containing 0 and U is open
in E. Then x0 : I × U → R induces a smooth local mapping x0

∨ : U → C∞(I,R),
which is a right inverse to the linear infinite jet mapping j∞0 : C∞(I,R)→ RN = E.
Then the derivative of x0

∨ at any point in U would be a continuous linear right
inverse to j∞0 , which does not exist (since RN does not admit a continuous norm,
whereas C∞(I,R) does for compact I, see also [Tougeron, 1972, IV.3.9]).

Also in this example the theorem of Frobenius is wrong, now in the following
sense: On the complement of T−1(0) = R× 0 we consider again the 1-dimensional
subbundle generated by the vector field T . For every smooth function f ∈ C∞(R,R)
the infinite jet t 7→ j∞t (f) is an integral curve of T . We show that integral curves
through a fixed point sweep out arbitrarily high dimensional submanifolds of RN:
Let ϕ : R → [0, 1] be smooth, ϕ(t) = 0 near t = 0, and ϕ(t) = 1 near t = 1. For
each (s2, . . . , sN ) we get an integral curve

t 7→ jt

(
t+

s2

2!
ϕ(t)(t− 1)2 +

s3

3!
ϕ(t)(t− 1)3 + · · ·+ sN

N !
ϕ(t)(t− 1)N

)
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connecting (0, 1, 0, . . . ) with (1, 1, s2, s3, . . . , sN , 0, . . . ), and for small s this integral
curve lies in RN \ 0.

Problem: Can any two points be joined by an integral curve in RN \ 0: One has to
find a smooth function on [0, 1] with prescribed jets at 0 and 1 which is nowhere
flat in between.

Example 3. Let now E := C∞(R,R), and consider the continuous linear operator
T : E → E given by T (x) := x′. Let x : R → C∞(R,R) be a solution of the
equation x′(t) = T (x(t)). In terms of x̂ : R2 → R this says ∂

∂t x̂(t, s) = ∂
∂s x̂(t, s).

Hence, r 7→ x̂(t− r, s+ r) has vanishing derivative everywhere, and so this function
is constant, and in particular x(t)(s) = x̂(t, s) = x̂(0, s+ t) = x(0)(s+ t). Thus, we
have a smooth solution x uniquely determined by the initial value x(0) ∈ C∞(R,R),

which even describes a flow for the vector field T in the sense of 32.13 below. In
general however, this solution is not real-analytic, since for any x(0) ∈ C∞(R,R)
which is not real-analytic in a neighborhood of a point s the composite evs ◦x =
x(s+ ) is not real-analytic around 0.

32.13. The flow of a vector field. Let X ∈ X(M) be a kinematic vector field.

A local flow FlX for X is a smooth mapping M × R ⊃ U −FlX→ M defined on
a c∞-open neighborhood U of M × 0 such that

(1) U ∩ ({x} × R) is a connected open interval.

(2) If FlXs (x) exists then FlXt+s(x) exists if and only if FlXt (FlXs (x)) exists, and we
have equality.

(3) FlX0 (x) = x for all x ∈M .

(4) d
dt FlXt (x) = X(FlXt (x)).

In formulas similar to ( 4 ) we will often omit the point x for sake of brevity,
without signalizing some differentiation in a space of mappings. The latter will be

done whenever possible in section 42 .

32.14. Lemma. Let X ∈ X(M) be a kinematic vector field which admits a local

flow FlXt . Then for each integral curve c of X we have c(t) = FlXt (c(0)), thus

there exists a unique maximal flow. Furthermore, X is FlXt -related to itself, i.e.,

T (FlXt ) ◦X = X ◦ FlXt .

Proof. We compute

d
dt FlX(−t, c(t)) = − d

ds |s=−t FlX(s, c(t)) + d
ds |s=t FlX(−t, c(s))

= − d
ds |s=0 FlX−t FlX(s, c(t)) + T (FlX−t).c

′(t)

= −T (FlX−t).X(c(t)) + T (FlX−t).X(c(t)) = 0.

Thus, FlX−t(c(t)) = c(0) is constant, so c(t) = FlXt (c(0)). For the second assertion

we have X ◦ FlXt = d
dt FlXt = d

ds |0 FlXt+s = d
ds |0(FlXt ◦FlXs ) = T (FlXt ) ◦ d

ds |0 FlXs =

T (FlXt ) ◦X, where we omit the point x ∈M for the sake of brevity. �
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32.15. The Lie derivative. For a vector field X ∈ X(M) which has a local

flow FlXt and f ∈ C∞(M,R) we have d
dt (FlXt )∗f = d

dtf ◦ FlXt = df ◦ X ◦ FlXt =

X(f) ◦ FlXt = (FlXt )∗X(f).

We will meet situations (in 37.19 , e.g.) where we do not know that the flow of X
exists but where we will be able to produce the following assumption: Suppose that
ϕ : R ×M ⊃ U → M is a smooth mapping such that (t, x) 7→ (t, ϕ(t, x) = ϕt(x))
is a diffeomorphism U → V , where U and V are open neighborhoods of {0} ×M
in R ×M , and such that ϕ0 = IdM and ∂

∂t

∣∣
0
ϕt = X ∈ X(M). Then we have

∂
∂t

∣∣
0
ϕ−1
t = −X, and still we get d

dt |0(ϕt)
∗f = d

dt |0(f ◦ ϕt) = df ◦ X = X(f) and

similarly ∂
∂t

∣∣
0

(ϕ−1
t )∗f = −X(f).

Lemma. In this situation we have for Y ∈ C∞(M ← DM):

d
dt |0(ϕt)

∗Y = [X,Y ],

d
dt |0(FlXt )∗Y = [X,Y ],

d
dt (FlXt )∗Y = (FlXt )∗[X,Y ].

Proof. Let f ∈ C∞(M,R) be a function, and let α(t, s) := Y (ϕ(t, x))(f ◦ ϕ−1
s ),

which is locally defined near 0. It satisfies

α(t, 0) = Y (ϕ(t, x))(f),

α(0, s) = Y (x)(f ◦ ϕ−1
s ),

∂
∂tα(0, 0) = ∂

∂t

∣∣
0
Y (ϕ(t, x))(f) = ∂

∂t

∣∣
0

(Y f)(ϕ(t, x)) = X(x)(Y f),

∂
∂sα(0, 0) = ∂

∂s |0Y (x)(f ◦ ϕ−1
s ) = Y (x) ∂∂s |0(f ◦ ϕ−1

s ) = −Y (x)(Xf).

Hence, ∂
∂u |0α(u, u) = [X,Y ]x(f). But on the other hand we have

∂
∂u |0α(u, u) = ∂

∂u |0Y (ϕ(u, x))(f ◦ ϕ−1
u ) =

= ∂
∂u |0

(
D(ϕ−1

u ) ◦ Y ◦ ϕu
)
x

(f)

= ( ∂
∂u |0(ϕu)∗Y )x(f),

so the first two assertions follow. For the third claim we compute as follows:

∂
∂t (FlXt )∗Y = ∂

∂s |0
(
D(FlX−t) ◦D(FlX−s) ◦ Y ◦ FlXs ◦FlXt

)
= D(FlX−t) ◦ ∂

∂s |0
(
D(FlX−s) ◦ Y ◦ FlXs

)
◦ FlXt

= D(FlX−t) ◦ [X,Y ] ◦ FlXt = (FlXt )∗[X,Y ]. �

32.16. Lemma. Let X ∈ X(M) and Y ∈ X(N) be f -related vector fields for a

smooth mapping f : M → N which have local flows FlX and FlY . Then we have
f ◦ FlXt = FlYt ◦f , whenever both sides are defined.

Moreover, if f is a diffeomorphism we have Flf
∗Y
t = f−1 ◦ FlYt ◦f in the following

sense: If one side exists then also the other and they are equal.

For f = IdM this again implies that if there exists a flow then there exists a unique
maximal flow FlXt .
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Proof. We have Y ◦ f = Tf ◦X, and thus for small t we get, using 32.13.1 ,

d
dt (FlYt ◦f ◦ FlX−t) = Y ◦ FlYt ◦f ◦ FlX−t−T (FlYt ) ◦ Tf ◦X ◦ FlX−t

= T (FlYt ) ◦ Y ◦ f ◦ FlX−t−T (FlYt ) ◦ Tf ◦X ◦ FlX−t = 0.

So (FlYt ◦f◦FlX−t)(x) = f(x) or f(FlXt (x)) = FlYt (f(x)) for small t. By the flow prop-

erties 32.13.2 , we get the result by a connectedness argument as follows: In the

common interval of definition we consider the closed subset Jx := {t : f(FlXt (x)) =

FlYt (f(x))}. This set is open since for t ∈ Jx and small |s| we have f(FlXt+s(x)) =

f(FlXs (FlXt (x))) = FlYs (f(FlXt (x))) = FlYs (FlYt (f(x))) = FlYt+s(f(x)).

The existence of the unique maximal flow now follows since two local flows have to
agree on their common domain of definition. �

32.17. Corollary. Take X ∈ X(M) be a vector field with local flow, and let
Y ∈ C∞(M ← DM). Then the following assertions are equivalent

(1) [X,Y ] = 0.

(2) (FlXt )∗Y = Y , wherever defined.

If also Y is kinematic and has a local flow then these are also equivalent to

(3) FlXt ◦FlYs = FlYs ◦FlXt , wherever defined.

Proof. ( 1 ) ⇔ ( 2 ) is immediate from lemma 32.15 . To see ( 2 ) ⇔ ( 3 ) we

note that FlXt ◦FlYs = FlYs ◦FlXt if and only if FlYs = FlX−t ◦FlYs ◦FlXt = Fl(FlXt )∗Y
s

by lemma 32.16 , and this in turn is equivalent to Y = (FlXt )∗Y , by the uniqueness
of flows. �

32.18. Theorem. [Mauhart and Michor, 1992] Let M be a manifold, and let
ϕi : R ×M ⊃ Uϕi → M be smooth mappings for i = 1, . . . , k such that (t, x) 7→
(t, ϕi(t, x) = ϕit(x)) is a diffeomorphism Uϕi → Vϕi . Here the Uϕi and Vϕi are open

neighborhoods of {0}×M in R×M such that ϕi0 = IdM and ∂
∂t

∣∣
0
ϕit = Xi ∈ X(M).

We put [ϕi, ϕj ]t = [ϕit, ϕ
j
t ] := (ϕjt )

−1 ◦(ϕit)
−1 ◦ϕjt ◦ϕit. Then for each formal bracket

expression P of length k we have

0 = ∂`

∂t`
|0P (ϕ1

t , . . . , ϕ
k
t ) for 1 ≤ ` < k,

P (X1, . . . , Xk) = 1
k!

∂k

∂tk
|0P (ϕ1

t , . . . , ϕ
k
t ) ∈ X(M)

as first non-vanishing derivative in the sense explained in step ( 2 ) of the proof.
In particular, we have for vector fields X,Y ∈ X(M) admitting local flows

0 = ∂
∂t

∣∣
0

(FlY−t ◦FlX−t ◦FlYt ◦FlXt ),

[X,Y ] = 1
2
∂2

∂t2 |0(FlY−t ◦FlX−t ◦FlYt ◦FlXt ).

Proof. Step 1. Let c : R → M be a smooth curve. If c(0) = x ∈ M , c′(0) =
0, . . . , c(k−1)(0) = 0, then c(k)(0) is a well defined tangent vector in TxM , which is
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given by the derivation f 7→ (f ◦ c)(k)(0) at x. Namely, we have

((f.g) ◦ c)(k)(0) = ((f ◦ c).(g ◦ c))(k)(0) =

k∑
j=0

(
k
j

)
(f ◦ c)(j)(0)(g ◦ c)(k−j)(0)

= (f ◦ c)(k)(0)g(x) + f(x)(g ◦ c)(k)(0),

since all other summands vanish: (f ◦ c)(j)(0) = 0 for 1 ≤ j < k. That c(k)(0) is a
kinematic tangent vector follows from the chain rule in a local chart.

Step 2. Let (pr1, ϕ) : R×M ⊃ Uϕ → Vϕ ⊂ R×M be a diffeomorphism between
open neighborhoods of {0} ×M in R×M , such that ϕ0 = IdM . We say that ϕt is
a curve of local diffeomorphisms though IdM . Note that a local flow of a kinematic
vector field is always such a curve of local diffeomorphisms.

From step 1 we see that if ∂j

∂tj |0ϕt = 0 for all 1 ≤ j < k, then X := 1
k!

∂k

∂tk
|0ϕt

is a well defined vector field on M . We say that X is the first non-vanishing
derivative at 0 of the curve ϕt of local diffeomorphisms. We may paraphrase this
as (∂kt |0ϕ∗t )f = k!LXf .

Claim 3. Let ϕt, ψt be curves of local diffeomorphisms through IdM , and let
f ∈ C∞(M,R). Then we have

∂kt |0(ϕt ◦ ψt)∗f = ∂kt |0(ψ∗t ◦ ϕ∗t )f =

k∑
j=0

(
k
j

)
(∂jt |0ψ∗t )(∂k−jt |0ϕ∗t )f.

The multinomial version of this formula holds also:

∂kt |0(ϕ1
t ◦ . . . ◦ ϕ`t)∗f =

∑
j1+···+j`=k

k!

j1! . . . j`!
(∂j1t |0(ϕ`t)

∗) . . . (∂j1t |0(ϕ1
t )
∗)f.

We only show the binomial version. For a function h(t, s) of two variables we have

∂kt h(t, t) =

k∑
j=0

(
k
j

)
∂jt ∂

k−j
s h(t, s)|s=t,

since for h(t, s) = f(t)g(s) this is just a consequence of the Leibniz rule, and linear
combinations of such decomposable tensors are dense in the space of all functions of

two variables in the compact C∞-topology 41.9 , so that by continuity the formula
holds for all functions. In the following form it implies the claim:

∂kt |0f(ϕ(t, ψ(t, x))) =

k∑
j=0

(
k
j

)
∂jt ∂

k−j
s f(ϕ(t, ψ(s, x)))|t=s=0.

Claim 4. Let ϕt be a curve of local diffeomorphisms through IdM with first non-
vanishing derivative k!X = ∂kt |0ϕt. Then the inverse curve of local diffeomorphisms
ϕ−1
t has first non-vanishing derivative −k!X = ∂kt |0ϕ−1

t .

Since we have ϕ−1
t ◦ ϕt = Id, by claim 3 we get for 1 ≤ j ≤ k

0 = ∂jt |0(ϕ−1
t ◦ ϕt)∗f =

j∑
i=0

(
j
i

)
(∂it |0ϕ∗t )(∂

j−i
t (ϕ−1

t )∗)f =

= ∂jt |0ϕ∗t (ϕ−1
0 )∗f + ϕ∗0∂

j
t |0(ϕ−1

t )∗f, which says
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∂jt |0ϕ∗t f = −∂jt |0(ϕ−1
t )∗f, as required.

Claim 5. Let ϕt be a curve of local diffeomorphisms through IdM with first non-
vanishing derivative m!X = ∂mt |0ϕt, and let ψt be a curve of local diffeomorphisms
through IdM with first non-vanishing derivative n!Y = ∂nt |0ψt. Then the curve of
local diffeomorphisms [ϕt, ψt] = ψ−1

t ◦ϕ−1
t ◦ψt◦ϕt has first non-vanishing derivative

(m+ n)![X,Y ] = ∂m+n
t |0[ϕt, ψt].

From this claim the theorem follows.

By the multinomial version of claim 3 , we have

ANf := ∂Nt |0(ψ−1
t ◦ ϕ−1

t ◦ ψt ◦ ϕt)∗f

=
∑

i+j+k+`=N

N !

i!j!k!`!
(∂it |0ϕ∗t )(∂

j
t |0ψ∗t )(∂kt |0(ϕ−1

t )∗)(∂`t |0(ψ−1
t )∗)f.

Let us suppose that 1 ≤ n ≤ m; the case m ≤ n is similar. If N < n all summands

are 0. If N = n we have by claim 4

ANf = (∂nt |0ϕ∗t )f + (∂nt |0ψ∗t )f + (∂nt |0(ϕ−1
t )∗)f + (∂nt |0(ψ−1

t )∗)f = 0.

If n < N ≤ m we have, using again claim 4 :

ANf =
∑

j+`=N

N !

j!`!
(∂jt |0ψ∗t )(∂`t |0(ψ−1

t )∗)f + δmN
(
(∂mt |0ϕ∗t )f + (∂mt |0(ϕ−1

t )∗)f
)

= (∂Nt |0(ψ−1
t ◦ ψt)∗)f + 0 = 0.

Now we come to the difficult case m,n < N ≤ m+ n.

ANf = ∂Nt |0(ψ−1
t ◦ ϕ−1

t ◦ ψt)∗f +
(
N
m

)
(∂mt |0ϕ∗t )(∂N−mt |0(ψ−1

t ◦ ϕ−1
t ◦ ψt)∗)f

+ (∂Nt |0ϕ∗t )f,(6)

by claim 3 , since all other terms vanish, see ( 8 ) below. Again by claim 3 we
get:

∂Nt |0(ψ−1
t ◦ ϕ−1

t ◦ ψt)∗f =
∑

j+k+`=N

N !

j!k!`!
(∂jt |0ψ∗t )(∂kt |0(ϕ−1

t )∗)(∂`t |0(ψ−1
t )∗)f

=
∑

j+`=N

(
N
j

)
(∂jt |0ψ∗t )(∂`t |0(ψ−1

t )∗)f +
(
N
m

)
(∂N−mt |0ψ∗t )(∂mt |0(ϕ−1

t )∗)f(7)

+
(
N
m

)
(∂mt |0(ϕ−1

t )∗)(∂N−mt |0(ψ−1
t )∗)f + (∂Nt |0(ϕ−1

t )∗)f

= 0 +
(
N
m

)
(∂N−mt |0ψ∗t )m!L−Xf +

(
N
m

)
m!L−X(∂N−mt |0(ψ−1

t )∗)f

+ (∂Nt |0(ϕ−1
t )∗)f

= δNm+n(m+ n)!(LXLY − LY LX)f + (∂Nt |0(ϕ−1
t )∗)f

= δNm+n(m+ n)!L[X,Y ]f + (∂Nt |0(ϕ−1
t )∗)f

From the second expression in ( 7 ) one can also read off that

(8) ∂N−mt |0(ψ−1
t ◦ ϕ−1

t ◦ ψt)∗f = ∂N−mt |0(ϕ−1
t )∗f.
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If we put ( 7 ) and ( 8 ) into ( 6 ) we get, using claims 3 and 4 again, the final

result which proves claim 5 and the theorem:

ANf = δNm+n(m+ n)!L[X,Y ]f + (∂Nt |0(ϕ−1
t )∗)f

+
(
N
m

)
(∂mt |0ϕ∗t )(∂N−mt |0(ϕ−1

t )∗)f + (∂Nt |0ϕ∗t )f
= δNm+n(m+ n)!L[X,Y ]f + ∂Nt |0(ϕ−1

t ◦ ϕt)∗f
= δNm+n(m+ n)!L[X,Y ]f + 0. �

33. Differential Forms

This section is devoted to the search for the right notion of differential forms which
are stable under Lie derivatives LX , exterior derivative d, and pullback f∗. Here
chaos breaks out (as one referee has put it) since the classically equivalent descrip-

tions of differential forms give rise to many different classes; in the table 33.21 we

shall have 12 classes. But fortunately it will turn out in 33.22 that there is only
one suitable class satisfying all requirements, namely

Ωk(M) := C∞(Lkalt(TM,M × R)).

33.1. Cotangent bundles. We consider the contravariant smooth functor which
associates to each convenient vector space E its dual E′ of bounded linear function-

als, and we apply it to the kinematic tangent bundle TM described in 28.12 of a

smooth manifold M (see 29.5 ) to get the kinematic cotangent bundle T ′M .
A smooth atlas (Uα, uα : Uα → Eα) of M gives the cocycle of transition functions

Uαβ 3 x 7→ d(uβ ◦ u−1
α )(uα(x))∗ ∈ GL(E′β , E

′
α).

If we apply the same duality functor to the operational tangent bundle DM de-

scribed in 28.12 we get the operational cotangent bundle D′M . A smooth
atlas (Uα, uα : Uα → Eα) of M now gives rise to the following cocycle of transition
functions

Uαβ 3 x 7→ D(uβ ◦ u−1
α )(uα(x))∗ ∈ GL((D0Eβ)′, (D0Eα)′),

see 28.9 and 28.12 .

For each k ∈ N we get the operational cotangent bundle (D(k))′M of or-
der ≤ k, which is described by the same cocycle of transition functions but now

restricted to have values in GL((D
(k)
0 Eβ)′, (D

(k)
0 Eα)′), see 28.10 .

33.2. 1-forms. Let M be a smooth manifold. A kinematic 1-form is just
a smooth section of the kinematic cotangent bundle T ′M . So C∞(M ← T ′M)

denotes the convenient vector space (with the structure from 30.1 ) of all kinematic
1-forms on M .

An operational 1-form is just a smooth section of the operational cotangent
bundle D′M . So C∞(M ← D′M) denotes the convenient vector space (with the

structure from 30.1 ) of all operational 1-forms on M .
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For each k ∈ N we get the convenient vector space C∞(M ← (D(k))′(M)) of all
operational 1-forms of order ≤ k, a closed linear subspace of C∞(M ←
D′M).

A modular 1-form is a bounded linear sheaf homomorphism

ω : Der(C∞( ,R))→ C∞( ,R)

which satisfies ωU (f.X) = f.ωU (X) for X ∈ Der(C∞(U,R)) = C∞(U ← DU) and
f ∈ C∞(U,R) for each open U ⊂ M . We denote the space of all modular 1-forms
by

HomC∞(M,R)(C
∞(M ← DM), C∞(M,R))

and we equip it with the initial structure of a convenient vector space induced by
the closed linear embedding

HomC∞(M,R)(C
∞(M ← DM), C∞(M,R)) ↪→

∏
U

L(C∞(U ← DU), C∞(U,R)).

Convention. Similarly as in 32.1 , we shall follow the convention that either the
manifolds in question are smoothly regular or that Hom means the space of sheaf
homomorphisms (as defined above) between the sheafs of sections like C∞(M ←
DM) of the respective vector bundles. This is justified by 33.3 below.

33.3. Lemma. If M is smoothly regular, the bounded C∞(M,R)-module homo-
morphisms ω : C∞(M ← DM)→ C∞(M,R) are exactly the modular 1-forms and
this identification is an isomorphism of the convenient vector spaces.

Proof. If X ∈ C∞(M ← DM) vanishes on an open subset U ⊂M then also ω(X):
For x ∈ U we take a bump function g ∈ C∞(M,R) at x, i.e. g = 1 near x and
supp(g) ⊂ U . Then ω(X) = ω((1 − g)X) = (1 − g)ω(X) which is zero near x. So
ω(X) | U = 0.

Now let X ∈ C∞(U ← DU) for a c∞-open subset U of M . We have to show that
we can define ωU (X) ∈ C∞(U,R) in a unique manner. For x ∈ U let g ∈ C∞(M,R)
be a bump function at x, i.e. g = 1 near x and supp(g) ⊂ U . Then gX ∈ C∞(M ←
DM), and ω(gX) makes sense. By the argument above, ω(gX)(x) is independent
of the choice of g. So let ωU (X)(x) := ω(gX)(x). It has all required properties since
the topology on C∞(U ← DU) is initial with respect to all mappings X 7→ gX,
where g runs through all bump functions as above.

That this identification furnishes an isomorphism of convenient vector spaces can

be seen as in 32.4 . �

33.4. Lemma. On any manifold M the space C∞(M ← D′M) of operational
1-forms is a closed linear subspace of the space of modular 1-forms

HomC∞(M,R)(C
∞(M ← DM), C∞(M,R)) .

The closed vector bundle embedding TM → DM induces a bounded linear mapping
C∞(M ← D′M)→ C∞(M ← T ′M).

We do not know whether C∞(M ← D′M)→ C∞(M ← T ′M) is surjective or even
final.
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Proof. A smooth section ω ∈ C∞(M ← D′M) defines a modular 1-form which

assigns ωU (X)(x) := ω(x)(X(x)) to X ∈ C∞(U ← DU) and x ∈ U , by 32.2 , since
this gives a bounded sheaf homomorphism which is C∞( ,R)-linear.

To show that this gives an embedding onto a c∞-closed linear subspace we consider
the following diagram, where (Uα) runs through an open cover of charts of M . Then

the vertical mappings are closed linear embeddings by 30.1 , 33.1 , and 32.2 .

C∞(M ← D′M) //

��

HomC∞(M,R)(C
∞(M ← DM), C∞(M,R))

��∏
α C
∞(Uα, (D0Eα)′)

��

// ∏
α L(C∞(Uα ← DUα), C∞(Uα,R))

��∏
α C
∞(Uα ×D0Eα,R) // ∏

α C
∞(C∞(Uα, D0Eα)× Uα,R)

The horizontal bottom arrow is the mapping f 7→ ((X,x) 7→ f(x,X(x))), which is
an embedding since (X,x) 7→ (x,X(x)) has (x, Y ) 7→ (const(Y ), x) as smooth right
inverse. �

33.5. Lemma. Let M be a smooth manifold such that for all model spaces E the

convenient vector space D0E has the bornological approximation property 28.6 .
Then

C∞(M ← D′M) ∼= HomC∞(M,R)(C
∞(M ← DM), C∞(M,R)).

If all model spaces E have the bornological approximation property then D0E = E′′,
and the space E′′ also has the bornological approximation property. So in this case,

HomC∞(M,R)(C
∞(M ← DM), C∞(M,R)) ∼= C∞(M ← T ′′′M).

If, moreover, all E are reflexive, we have

HomC∞(M,R)(C
∞(M ← DM), C∞(M,R)) ∼= C∞(M ← T ′M),

as in finite dimensions.

Proof. By lemma 33.4 the space C∞(M ← D′M) is a closed linear subspace of
the convenient vector space HomC∞(M,R)(C

∞(M ← DM), C∞(M,R)). We have to
show that any sheaf homomorphism ω ∈ HomC∞(M,R)(C

∞(M ← DM), C∞(M,R))
lies in C∞(M ← D′M). This is a local question, hence we may assume that M is
a c∞-open subset of E.

We have to show that for each X ∈ C∞(U,D0E) the value ωU (X)(x) depends only
on X(x) ∈ D0E. So let X(x) = 0, and we have to show that ωU (X)(x) = 0.

By assumption, there is a net `α ∈ (D0E)′ ⊗ D0E ⊂ L(D0E,D0E) of bounded
linear operators with finite dimensional images, which converges to IdD0E in the
bornological topology of L(D0E,D0E). Then Xα := `α ◦ X converges to X in
C∞(U,D0E) since X∗ : L(D0E,D0E) → C∞(U,D0E) is continuous linear. It
remains to show that ωU (Xα)(x) = 0 for each α.

We have `α =
∑n
i=1 ϕi ⊗ ∂i ∈ (D0E)′ ⊗ D0E, hence Xα =

∑
(ϕi ◦ X).∂i and

ωU (Xα)(x) =
∑
ϕi(X(x)).ωU (∂i)(x) = 0 since X(x) = 0.
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So we get a fiber linear mapping ω : DM → M × R which is given by ω(Xx) =
(x, ωU (X)(x)) for any X ∈ C∞(U ← DU) with X(x) = Xx. Obviously, ω : DM →
M × R is smooth and gives rise to a smooth section of D′M .

If E has the bornological approximation property, then by 28.7 we have D0E =
E′′. If `α is a net of finite dimensional bounded operators which converges to IdE
in L(E,E), then the finite dimensional operators `∗∗α converge to Id′′E = IdE′′ in

L(E′′, E′′), in the bornological topology. The rest follows from theorem 28.7 �

33.6. Queer 1-forms. Let E be a convenient vector space without the borno-
logical approximation property, for example an infinite dimensional Hilbert space.
Then there exists a bounded linear functional α ∈ L(E,E)′ which vanishes on
E′ ⊗ E such that α(IdE) = 1. Then ωU : C∞(U,E) → C∞(U,R), given by
ωU (X)(x) := α(dX(x)), is a bounded sheaf homomorphism which is a module ho-
momorphism, since ωU (f.X)(x) = α(df(x)⊗X(x)+f(x).dX(x)) = f(x)ωU (X)(x).
Note that ωU (X)(x) does not depend only on X(x). So there are many ‘kinematic
modular 1-forms’ which are not kinematic 1-forms.

This process can be iterated to involve higher derivatives like for derivations, see

28.2 , but we resist the temptation to pursue this task. It would be more interesting
to produce queer modular 1-forms which are not operational 1-forms.

33.7. k-forms. For a smooth manifold M there are at least eight interesting
spaces of k-forms, see the diagram below where A := C∞(M,R), and where C∞(E)
denotes the space of smooth sections of the vector bundle E →M :

C∞(Λk(D′M)) //

��

%%

C∞(Lkalt(DM,M × R))

��

##
C∞(Λk(T ′M)) //

��

C∞(Lkalt(TM,M × R))

��

ΛkA HomA(C∞(DM), A) //

""

Homk, alt
A (C∞(DM), A)

$$
ΛkA HomA(C∞(TM), A) // Homk, alt

A (C∞(TM), A)

Here Λk is the bornological exterior product which was treated in 5.9 . One could

also start from other tensor products. By ΛkA = ΛkC∞(M,R) we mean the convenient

module exterior product, the subspace of all skew symmetric elements in the k-fold

bornological tensor product over A, see 5.21 . By Homk
C∞(M,R),alt = Homk, alt

C∞(M,R)

we mean the convenient space of all bounded homomorphism between the respective
sheaves of convenient modules over the sheaf of smooth functions.

33.8. Wedge product. For differential forms ϕ of degree k and ψ of degree ` and
for (local) vector fields Xi (or tangent vectors) we put

(ϕ ∧ ψ)(X1, . . . , Xk+`) =
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= 1
k! `!

∑
σ∈Sk+`

signσ · ϕ(Xσ1, . . . , Xσk).ψ(Xσ(k+1), . . . , Xσ(k+`)).

This is well defined for differential forms in each of the spaces in 33.7 and others

(see 33.12 below) and gives a differential form of the same type of degree k+`. The
wedge product is associative, i.e (ϕ∧ψ)∧τ = ϕ∧ (ψ∧τ), and graded commutative,
i. e. ϕ ∧ ψ = (−1)k`ψ ∧ ϕ. These properties are proved in multilinear algebra.
There arise several kinds of algebras of differential forms.

33.9. Pullback of differential forms. Let f : N → M be a smooth mapping
between smooth manifolds, and let ϕ be a differential form on M of degree k in
any of the following spaces: C∞(Lkalt(D

αM,M × R)) for Dα = D,D(k), D[1,∞), T .
In this situation the pullback f∗ϕ is defined for tangent vectors Xi ∈ Dα

xN by

(1) (f∗ϕ)x(X1, . . . , Xk) := ϕf(x)(D
α
xf.X1, . . . , D

α
xf.Xk).

Then we have f∗(ϕ ∧ ψ) = f∗ϕ ∧ f∗ψ, so the linear mapping f∗ is an algebra
homomorphism. Moreover, we have (g◦f)∗ = f∗◦g∗ if g : M → P , and (IdM )∗ = Id,
and (f, ϕ) 7→ f∗ϕ is smooth in all these cases.

If f : N →M is a local diffeomorphism, then we may define the pullback f∗ϕ also

for a modular differential form ϕ ∈ Homk, alt
C∞(M,R)(C

∞(M ← DαM), C∞(M,R)), by

(2) (f∗ϕ)|U (X1, . . . , Xk) := ϕ|f(U)(D
αf◦X1◦(f |U)−1, . . . , Dαf◦Xk◦(f |U)−1)◦f.

These two definitions are intertwined by the canonical mappings between different
spaces of differential forms.

33.10. Insertion operator. For a vector field X ∈ C∞(M ← DαM) where
Dα = D,D(k), D[1,∞), T we define the insertion operator

iX = i(X) : Homk, alt
C∞(M,R)(C

∞(M ← DαM), C∞(M,R))→

→ Homk−1, alt
C∞(M,R)(C

∞(M ← DαM), C∞(M,R))

(iXϕ)(Y1, . . . , Yk−1) := ϕ(X,Y1, . . . , Yk−1).

It restricts to operators

iX = i(X) : C∞(Lkalt(D
αM,M × R))→ C∞(Lk−1

alt (DαM,M × R)).

33.11. Lemma. iX is a graded derivation of degree −1, so we have iX(ϕ ∧ ψ) =
iXϕ ∧ ψ + (−1)degϕϕ ∧ iXψ.

Proof. We have

(iX1
(ϕ ∧ ψ))(X2, . . . , Xk+`) = (ϕ ∧ ψ)(X1, . . . , Xk+`)

= 1
k! `!

∑
σ

sign(σ)ϕ(Xσ1, . . . , Xσk)ψ(Xσ(k+1), . . . , Xσ(k+`)).

(iX1ϕ ∧ ψ + (−1)kϕ ∧ iX1ψ)(X2, . . . , Xk+`)

= 1
(k−1)! `!

∑
σ

sign(σ)ϕ(X1, Xσ2, . . . , Xσk)ψ(Xσ(k+1), . . . , Xσ(k+`))
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+
(−1)k

k! (`− 1)!

∑
σ

sign(σ)ϕ(Xσ2, . . . , Xσ(k+1))ψ(X1, Xσ(k+2), . . .).

Using the skew symmetry of ϕ and ψ we may distribute X1 to each position by
adding an appropriate sign. These are k+ ` summands. Since 1

(k−1)! `! + 1
k! (`−1)! =

k+`
k! `! , and since we can generate each permutation in Sk+` in this way, the result
follows. �

33.12. Exterior derivative. Let U ⊂ E be c∞-open in a convenient vector
space E, and let ω ∈ C∞(U,Lkalt(E;R)) be a kinematic k-form on U . We define

the exterior derivative dω ∈ C∞(U,Lk+1
alt (E;R)) as the skew symmetrization of the

derivative dω(x) : E → Lkalt(E;R) (sorry for the two notions of d, it’s only local);
i.e.

(dω)(x)(X0, . . . , Xk) =

k∑
i=0

(−1)idω(x)(Xi)(X0, . . . , X̂i, . . . , Xk)(1)

=

k∑
i=0

(−1)id(ω( )(X0, . . . , X̂i, . . . , Xk))(x)(Xi)

where Xi ∈ E. Next we view the Xi as ‘constant vector fields’ on U and try to
replace them by kinematic vector fields. Let us compute first for Xj ∈ C∞(U,E),
where we suppress obvious evaluations at x ∈ U :∑
i

(−1)iXi(ω ◦ (X0, . . . , X̂i, . . . , Xk))(x) =

=
∑
i

(−1)i(dω(x).Xi)(X0, . . . , X̂i, . . . , Xk)+

+
∑
j<i

(−1)iω ◦ (X0, . . . , dXj(x).Xi, . . . , X̂i, . . . , Xk)+

+
∑
i<j

(−1)iω ◦ (X0, . . . , X̂i, . . . , dXj(x).Xi, . . . , Xk) =(2)

=
∑
i

(−1)i(dω(x).Xi)(X0, . . . , X̂i, . . . , Xk)+

+
∑
j<i

(−1)i+jω ◦ (dXj(x).Xi − dXi(x).Xj , X0, . . . , X̂j , . . . , X̂i, . . . , Xk)

=
∑
i

(−1)i(dω(x).Xi)(X0, . . . , X̂i, . . . , Xk)+

+
∑
j<i

(−1)i+jω ◦ ([Xi, Xj ], X0, . . . , X̂j , . . . , X̂i, . . . , Xk).

Combining ( 2 ) and ( 1 ) gives the global formula for the exterior deriv-
ative

(dω)(x)(X0, . . . , Xk) =

k∑
i=0

(−1)iXi(ω ◦ (X0, . . . , X̂i, . . . , Xk))+(3)
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+
∑
i<j

(−1)i+jω ◦ ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

Formula ( 3 ) defines the exterior derivative for modular forms on X(M), C∞(M ←
DM), and C∞(M ← D[1,∞)M), since it gives multilinear module homomorphisms

by the Lie module properties of the Lie bracket, see 32.5 and 32.8 .

The local formula ( 1 ) gives the exterior derivative on C∞(Lkalt(TM,M × R)):

Local expressions ( 1 ) for two different charts describe the same differential form

since both can be written in the global form ( 3 ), and the canonical mapping

C∞(Lkalt(TM,M × R)) → Homk, alt
C∞(M,R)(X(M), C∞(M,R)) is injective, since we

use sheaves on the right hand side.

The first line of the local formula ( 1 ) gives an exterior derivative dloc also on the

space C∞(Lkalt(DU,R)), where U is an open subset in a convenient vector space
E, if we replace dω(x) by Dxω : D0E → D0(Lkalt(D0E,R)) composed with the
canonical mapping

D0(Lkalt(D0E,R))−( )[1]→ D0(Lkalt(D0E,R))−(∂[1])−1

→ Lkalt(D0E,R)′′ =

= (Λk(D0E))′′′ −ι
∗
→ (Λk(D0E))′ = Lkalt(D0E,R).

Here ι : ΛkD0E → (ΛkD0E)′′ is the canonical embedding into the bidual. If we

replace d by D in the second expression of the local formula ( 1 ) we get the same

expression. For ω ∈ C∞(U,Lkalt(D0E,R)) we have

(dlocω)(x)(X0, . . . , Xk) =

k∑
i=0

(−1)iDx(ω( )(X0, . . . , X̂i, . . . , Xk))(Xi)

=

k∑
i=0

(−1)iDx(ev
(X0,...,X̂i,...,Xk)

◦ω)(Xi)

=

k∑
i=0

(−1)iDω(x)(ev
(X0,...,X̂i,...,Xk)

).Dxω.Xi

=

k∑
i=0

(−1)i(D
(1)
ω(x) ev

(X0,...,X̂i,...,Xk)
.(Dxω.Xi)

[1] by 28.11.4

=

k∑
i=0

(−1)i(ev
(X0∧...X̂i···∧Xk)

)∗∗.(∂[1])−1.(Dxω.Xi)
[1] by 28.11.3

=

k∑
i=0

(−1)i ev
(X0∧...X̂i···∧Xk)

.ι∗.(∂[1])−1.(Dxω.Xi)
[1]

=

k∑
i=0

(−1)i
(
ι∗ ◦ (∂[1])−1 ◦ ( )[1] ◦Dxω

)
(Xi)(X0, . . . , X̂i, . . . , Xk),
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since the following diagram commutes:

(ΛkD0E)′
ev

(X0∧...X̂i···∧Xk) // R

(ΛkD0E)′′′
(ev

(X0∧...X̂i···∧Xk)
)∗∗

//

ι∗

OO

R

The local formula ( 1 ) describes by a similar procedure the local exterior derivative

dloc also on C∞(Lkalt(D
[1,∞)M,R)).

For the forms of tensorial type (involving Λk) there is no exterior derivative in
general, since the derivative is not tensorial in general.

For a manifold M let us now consider the following diagram of certain spaces of
differential forms.

C∞(Lkalt(DM,M × R)) //

��

Homk,alt
C∞(M,R)(C

∞(M ← DM), C∞(M,R))

��
C∞(Lkalt(D

[1,∞)M,M × R)) //

��

Homk,alt
C∞(M,R)(C

∞(D[1,∞)M), C∞(M,R))

��
C∞(Lkalt(TM,M × R) // Homk,alt

C∞(M,R)(X(M), C∞(M,R))

If M is a c∞-open subset in a convenient vector space E, on the two upper left

spaces there exists only the local (from formula ( 1 )) exterior derivative dloc. On all

other spaces the global (from formula ( 3 )) exterior derivative d makes sense. All
canonical mappings in this diagram commute with the exterior derivatives except

the dashed ones. The following example 33.13 shows that

(1) The dashed arrows do not commute with the respective exterior derivatives.
(2) The (global) exterior derivative does not respect the spaces on the left hand

side of the diagram except the bottom one.
(3) The dashed arrows are not surjective.

The example 33.14 shows that the local exterior derivative on the two upper
left spaces does not commute with pullbacks of smooth mappings, not even of
diffeomorphisms, in general. So it does not even exist on manifolds. Furthermore,

dloc ◦ dloc is more interesting than 0, see example 33.16 .

33.13. Example. Let U be c∞-open in a convenient vector space E. If ω ∈
C∞(U,E′′′) = C∞(U,L(D

(1)
0 E,R)) then in general the exterior derivative

dω ∈ Hom2, alt
C∞(U,R)(C

∞(U ← DU), C∞(U,R))

is not contained in C∞(U ← L2
alt(DU,U × R)).
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Proof. Let X,Y ∈ C∞(U,E′′). The Lie bracket [X,Y ] is given in 32.7 , and ω

depends only on the D(1)-part of the bracket. Thus, we have

dω(X,Y )(x) = X(ω(Y ))(x)− Y (ω(X))(x)− ω([X,Y ])(x)

= 〈X(x), d〈ω, Y 〉E′′(x)〉E′ − 〈Y (x), d〈ω,X〉E′′(x)〉E′
− 〈ω(x), (dY (x)t)∗.X(x)− (dX(x)t)∗.Y (x)〉E′′

= 〈X(x), 〈dω(x), Y (x)〉E′′〉E′ + 〈X(x), 〈ω(x), dY (x)〉E′′〉E′−
− 〈Y (x), 〈dω(x), X(x)〉E′′〉E′ − 〈Y (x), 〈ω(x), dX(x)〉E′′〉E′
− 〈ω(x), (dY (x)∗ ◦ ιE′)∗.X(x)〉E′′ + 〈ω(x), (dX(x)∗ ◦ ιE′)∗.Y (x)〉E′′ .

Let us treat the terms separately which contain derivatives of X or Y . Choosing
X constant (but arbitrary) we have to consider only the following expression:

〈X(x), 〈ω(x), dY (x)〉E′′〉E′ − 〈ω(x), (dY (x)∗ ◦ ιE′)∗.X(x)〉E′′ =

= 〈X(x), ω(x) ◦ dY (x)〉E′ − 〈ω(x), ι∗E′ .dY (x)∗∗.X(x)〉E′′
= 〈X(x), dY (x)∗.ω(x)〉E′ − 〈ι∗∗E′ .ω(x), dY (x)∗∗.X(x)〉E′′′′
= 〈ιE′′′ .ω(x), dY (x)∗∗.X(x)〉E′′′′ − 〈ι∗∗E′ .ω(x), dY (x)∗∗.X(x)〉E′′′′
= 〈(ιE′′′ − ι∗∗E′).ω(x), dY (x)∗∗.X(x)〉E′′′′ ,

which is not 0 in general since ker(ιE′′′ − ι∗∗E′) = ιE′(E
′) at least for Banach

spaces, see [Cigler et al., 1979, 1.15], applied to ιE′ . So we may assume that
(ιE′′′ − ι∗∗E′).ω(x) 6= 0 ∈ E′′′′′. We choose a non-reflexive Banach space which is
isomorphic to its bidual ([James, 1951]) and we choose as dY (x) this isomorphism,
then dY (x)∗∗ is also an isomorphism, and a suitable X(x) makes the expression
nonzero. �

Note that this also shows that for general convenient vector spaces E the exterior

derivative dω is in C∞(U,L2
alt(D

(1)
0 E,R)) only if ω ∈ C∞(M ← T ′M). Note that

even for ω : U → E′′′ a constant 1-form of order 1 we need not have dω = 0.

33.14. Example. There exist c∞-open subsets U and V in a Banach space E, a
diffeomorphism f : U → V , and a 1-form ω ∈ C∞(U,L(E′′,R)) such that dlocf∗ω 6=
f∗dlocω.

Proof. We start in a more general situation. Let f : U → V ⊂ F be a smooth

mapping, and let Xx, Yx ∈ D(1)
x U = E′′. Then we have

dloc(f∗ω)x(Xx, Yx) = Dx(f∗ω( ).Yx).Xx −Dx(f∗ω( ).Xx).Yx

= Dx(ω(f( )).D( )f.Yx).Xx − . . .
= Xx〈ω ◦ f,D( )f.Yx〉F ′′ − . . .

= d〈ω ◦ f, df( )∗∗.Yx〉F ′′(x)∗∗.Xx − . . . by 32.6

= d〈ω(f( )), df(x)∗∗.Yx〉F ′′(x)∗∗.Xx+

+ d〈ω(f(x)), df( )∗∗.Yx〉F ′′(x)∗∗.Xx − . . . by 32.6

f∗(dlocω)x(Xx, Yx) = (dlocω)f(x)(Dxf.Xx, Dxf.Yx)

= Df(x)(ω( ).Dxf.Yx).Dxf.Xx −Df(x)(ω( ).Dxf.Xx).Dxf.Yx
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= d〈ω( ), df(x)∗∗.Yx〉F ′′(f(x))∗∗.df(x)∗∗.Xx − . . .

Recall that for ` ∈ H ′ = L(H,R) the bidual mapping satisfies L(H ′′,R) 3 `∗∗ =
ιH′(`) ∈ H ′′′. Then for the difference we get

dloc(f∗ω)x(Xx, Yx)− f∗(dlocω)x(Xx, Yx)

= d〈ω(f(x)), df( )∗∗.Yx〉F ′′(x)∗∗.Xx − d〈ω(f(x)), df( )∗∗.Xx〉F ′′(x)∗∗.Yx

= 〈iF ′′′ω(f(x)), d(df( )∗∗.Yx)(x)∗∗.Xx − d(df( )∗∗.Xx)(x)∗∗.Yx〉F ′′′′ .

This expression does not vanish in general, e.g., when the following choices are
made: We put ω(f(x)) = ιF ′ .` = `∗∗ for ` ∈ F ′, and we have

d(d(` ◦ f)( )∗∗Yx)(x)∗∗.Xx = d(d〈`, f〉F ( )∗∗Yx)(x)∗∗.Xx

= d〈ιF ′`, df( )∗∗Yx〉F ′′(x)∗∗.Xx

= 〈ιF ′′′`∗∗, d(df( )∗∗Yx)(x)∗∗.Xx〉F ′′′′ ,

which is not symmetric in general for ` ◦ f = ev : G′ × G → R (for a non reflex-

ive Banach space G) by the argument in 32.7 . It remains to show that such a
factorization of ev over a diffeomorphism f and ` ∈ (G′ × G)′ is possible. Choose
(α, x) ∈ G′ ×G such that 〈α, x〉 = 1, and consider

G′ ×G = G′ × kerα× R.x−f→ G′ × kerα× R.x−`→ R
(β, y, tx) 7→ (β, y, 〈β, y + tx〉G.x) 7→ 〈β, y + tx〉G

(β, y, t−〈β,y〉〈β,x〉 .x)←− (β, y, tx). �

33.15. Proposition. Let f : M → N be a smooth mapping between smooth
manifolds. Then we have

f∗ ◦ d = d ◦ f∗ : C∞(Lkalt(TN,N × R))→ C∞(Lk+1
alt (TM,M × R)).

Proof. Since by 33.12 the local and global formula for the exterior derivative

coincide on spaces C∞(Lkalt(D
αM,M × R)) we shall prove the result with help of

the local formula. So we may assume that f : U → V is smooth between c∞-open
sets in convenient vector spaces E and F , respectively. Note that we may use the

global formula only if f is a local diffeomorphism, see 33.9 .

For ω ∈ C∞(V,Lkalt(F,R)), x ∈ U , and Xi ∈ E we have

(f∗ω)(x)(X1, . . . , Xk) = ω(f(x))(df(x).X1, . . . , df(x).Xk),

so by 33.12.1 we may compute

(df∗ω)(x)(X0, . . . , Xk) =

k∑
i=0

(−1)id(f∗ω)(x)(Xi)(X0, . . . , X̂i, . . . , Xk)

=

k∑
i=0

(−1)i (dω(f(x)).df(x).Xi)(df(x).X0, . . . , î, . . . , df(x).Xk)
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+

k∑
i=0

(−1)i
∑
j<i

ω(f(x))(df(x).X0, . . . , d
2f(x).(Xi, Xj), . . . , î, . . . , df(x).Xk)

+

k∑
i=0

(−1)i
∑
j>i

ω(f(x))(df(x).X0, . . . , î, . . . , d
2f(x).(Xi, Xj), . . . , df(x).Xk)

=

k∑
i=0

(−1)i dω(f(x))(df(x).X0, . . . , df(x).Xk)

+
∑
j<i

(−1)i+jω(f(x))(d2f(x).(Xi, Xj)− d2f(x).(Xj , Xi),

df(x).X0, . . . , ĵ , . . . , î, . . . , df(x).Xk)

= (f∗dω)(x)(X0, . . . , Xk) + 0. �

33.16. Example. There exists a smooth function

f ∈ C∞(E,R) = C∞(E,L0
alt(D

(1)E,R))

such that
0 6= dlocdlocf ∈ C∞(E,L2

alt(D
(1)E,R)).

Proof. Let f ∈ C∞(E,R), Xx, Yx ∈ D(1)
x E = E′′. Then we have

(dlocf)x(Xx) = df(x)∗∗.Xx = 〈ιF ′ .df(x), Xx〉E′′
= 〈Xx, df(x)〉E′

(dlocdlocf)x(Xx, Yx) =

= d〈Yx, df( )〉E′(x)∗∗.Xx − d〈Xx, df( )〉E′(x)∗∗.Yx

= 〈ιE′′ .Yx, d(df)(x)∗∗.Xx〉E′′′ − 〈ιE′′ .Xx, d(df)(x)∗∗.Yx〉E′′′
= 〈d(df)(x)∗∗.Xx, Yx〉E′′ − 〈d(df)(x)∗∗.Yx, Xx〉E′′ ,

which does not vanish in general by the argument in 32.7 . �

33.17. Lie derivatives. Let Dα denote one of T , D, or D[1,∞). For a vector

field X ∈ C∞(M ← DαM) and ω ∈ Homk, alt
C∞(M,R)(C

∞(M ← DαM), C∞(M,R))

we define the Lie derivative LXω of ω along X by

(LXω)|U (Y1, . . . , Yk) = X(ω(Y1, . . . , Yk))−
k∑
i=1

ω|U (Y1, . . . , [X,Yi], . . . , Yk),

for Y1, . . . , Yk ∈ C∞(U ← DαU). From 32.5 it follows that

LXω ∈ Homk, alt
C∞(M,R)(C

∞(M ← DαM), C∞(M,R)).

33.18. Theorem. The following formulas hold for C∞(Lkalt(TM,M × R)) and

for the spaces Homk, alt
C∞(M,R)(C

∞(M ← DαM), C∞(M,R)) where Dα is any of D,

D[1,∞), or T .

iX(ϕ ∧ ψ) = iXϕ ∧ ψ + (−1)degϕϕ ∧ iXψ .(1)
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LX(ϕ ∧ ψ) = LXϕ ∧ ψ + ϕ ∧ LXψ .(2)

d(ϕ ∧ ψ) = dϕ ∧ ψ + (−1)degϕϕ ∧ dψ .(3)

d2 = d ◦ d = 1
2 [d, d] = 0 .(4)

[LX , d] = LX ◦ d− d ◦ LX = 0 .(5)

[iX , d] = iX ◦ d+ d ◦ iX = LX .(6)

[LX ,LY ] = LX ◦ LY − LY ◦ LX = L[X,Y ] .(7)

[LX , iY ] = LX iY − iY LX = i[X,Y ] .(8)

[iX , iY ] = iX iY + iY iX = 0 .(9)

Lf.Xϕ = f.LXϕ+ df ∧ iXϕ .(10)

Remark. In this theorem we used the graded commutator for graded derivations
[D1, D2] := D1 ◦D2 − (−1)deg(D1) deg(D2)D2 ◦D1. We will elaborate this notion in

35.1 below.

The left hand side of ( 6 ) maps the subspace C∞(Lkalt(TM,M × R)) of the space

of modular differential forms Homk, alt
C∞(M,R)(X(M), C∞(M,R)) into itself, thus the

Lie derivative LX also does. We do not know whether this is true for the other
spaces on the left hand side of the diagram in 33.12 .

Proof. All results will be proved in Homk, alt
C∞(M,R)(C

∞(M ← DαM), C∞(M,R)),

so they also hold in the subspace C∞(M ← Lkalt(TM,M × R)).

( 9 ) is obvious and ( 1 ) was shown in 33.11 .

( 8 ) Take the difference of the following two expressions:

(LX iY ω)(Z1, . . . , Zk) = X((iY ω)(Z1, . . . , Zk))−
k∑
i=1

(iY ω)(Z1, . . . , [X,Zi], . . . , Zk)

= X(ω(Y,Z1, . . . , Zk))−
k∑
i=1

ω(Y, Z1, . . . , [X,Zi], . . . , Zk)

(iY LXω)(Z1, . . . , Zk) = LXω(Y,Z1, . . . , Zk)

= X(ω(Y,Z1, . . . , Zk))− ω([X,Y ], Z1, . . . , Zk)−

−
k∑
i=1

ω(Y, Z1, . . . , [X,Zi], . . . , Zk).

( 2 ) Let ϕ be of degree p and ψ of degree q. We prove the result by induction on

p+ q. Suppose that ( 2 ) is true for p+ q < k. Then for X we have by part ( 8 ),

by 1 , and by induction

(iY LX)(ϕ ∧ ψ) = (LX iY )(ϕ ∧ ψ)− i[X,Y ](ϕ ∧ ψ)

= LX(iY ϕ ∧ ψ + (−1)pϕ ∧ iY ψ)− i[X,Y ]ϕ ∧ ψ − (−1)pϕ ∧ i[X,Y ]ψ

= LX iY ϕ ∧ ψ + iY ϕ ∧ LXψ + (−1)pLXϕ ∧ iY ψ+
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+ (−1)pϕ ∧ LX iY ψ − i[X,Y ]ϕ ∧ ψ − (−1)pϕ ∧ i[X,Y ]ψ

iY (LXϕ ∧ ψ + ϕ ∧ LXψ) = iY LXϕ ∧ ψ + (−1)pLXϕ ∧ iY ψ+

+ iY ϕ ∧ LXψ + (−1)pϕ ∧ iY LXψ.

Using again ( 8 ), we get the result since the iY for all local vector fields Y to-
gether act point separating on each space of differential forms, in both cases of the

convention 33.2 .

( 6 ) follows by summing up the following parts.

(LX0
ϕ)(X1, . . . , Xk) = X0(ϕ(X1, . . . , Xk))+

+

k∑
j=1

(−1)0+jϕ([X0, Xj ], X1, . . . , X̂j , . . . , Xk)

(iX0dϕ)(X1, . . . , Xk) = dϕ(X0, . . . , Xk)

=

k∑
i=0

(−1)iXi(ϕ(X0, . . . , X̂i, . . . , Xk)) +

+
∑

0≤i<j

(−1)i+jϕ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

(diX0
ϕ)(X1, . . . , Xk) =

k∑
i=1

(−1)i−1Xi((iX0
ϕ)(X1, . . . , X̂i, . . . , Xk)) +

+
∑

1≤i<j

(−1)i+j−2(iX0ϕ)([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk)

= −
k∑
i=1

(−1)iXi(ϕ(X0, X1, . . . , X̂i, . . . , Xk))−

−
∑

1≤i<j

(−1)i+jϕ([Xi, Xj ], X0, X1, . . . , X̂i, . . . , X̂j , . . . , Xk).

( 3 ) We prove the result again by induction on p + q. Suppose that ( 3 ) is true

for p + q < k. Then for each local vector field X we have by ( 6 ), ( 2 ), 1 , and
by induction

iX d(ϕ ∧ ψ) = LX(ϕ ∧ ψ)− d iX(ϕ ∧ ψ)

= LXϕ ∧ ψ + ϕ ∧ LXψ − d(iXϕ ∧ ψ + (−1)pϕ ∧ iXψ)

= iXdϕ ∧ ψ + diXϕ ∧ ψ + ϕ ∧ iXdψ + ϕ ∧ diXψ − diXϕ ∧ ψ
− (−1)p−1iXϕ ∧ dψ − (−1)pdϕ ∧ iXψ − ϕ ∧ diXψ

= iX(dϕ ∧ ψ + (−1)pϕ ∧ dψ).

Since X is arbitrary, the result follows.

( 4 ) This follows by a long but straightforward computation directly from the the

global formula 33.12.3 , using only the definition of the Lie bracket as a commu-
tator, the Jacobi identity, and cancellation.

( 5 ) dLX = d iX d+ ddiX = diXd+ iXdd = LXd.
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( 7 ) By the (graded) Jacobi identity, by ( 5 ), by ( 6 ), and by ( 8 ) we have
[LX ,LY ] = [LX , [iY , d]] = [[LX , iY ], d] + [iY , [LX , d]] = [i[X,Y ], d] + 0 = L[X,Y ].

( 10 ) Lf.Xϕ = [if.X , d]ϕ = [f.iX , d]ϕ = fiXdϕ + d(fiXϕ) = fiXdϕ + df ∧ iXϕ +
fdiXϕ = fLXϕ+ df ∧ iXϕ. �

33.19. Lemma. Let X ∈ X(M) be a kinematic vector field which has a local flow

FlXt . Or more generally, let us suppose that ϕ : R ×M ⊃ U → M is a smooth
mapping such that (t, x) 7→ (t, ϕ(t, x) = ϕt(x)) is a diffeomorphism U → V , where
U and V are open neighborhoods of {0} ×M in R ×M , and such that ϕ0 = IdM
and ∂

∂t

∣∣
0
ϕt = X ∈ X(M).

Then for ω any k-form in Homk, alt
C∞(M,R)(C

∞(M ← DM), C∞(M,R)) we have

∂
∂t |0(ϕt)

∗ω = LXω,
∂
∂t |0(FlXt )∗ω = LXω,
∂
∂t (FlXt )∗ω = (FlXt )∗LXω = LX(FlXt )∗ω.

In particular, for a vector field X with a local flow the Lie derivative LX maps the
spaces C∞(Lkalt(D

αM,M × R)) into themselves, for Dα = T , D, and D(p).

Proof. For Yi ∈ C∞(M ← DαM) we have

( ∂∂t |0(ϕt)
∗ω)(Y1, . . . , Yk) = ∂

∂t |0(ω((ϕ−1
t )∗Y1, . . . , (ϕ

−1
t )∗Yk) ◦ ϕt)

=

k∑
i=1

ω(Y1, . . . ,
∂
∂t |0(ϕ−1

t )∗Yi, . . . , Yk) + ∂
∂t |0(ϕt)

∗(ω(Y1, . . . , Yp))

= X(ω(Y1, . . . , Yk))−
k∑
i=1

ω|U (Y1, . . . , [X,Yi], . . . , Yk),

where at the end we used 32.15 . This proves the first two assertions.

For the third assertion we proceed as follows:

d
dt (FlXt )∗ω = d

ds |0(FlXt )∗(FlXs )∗ω = (FlXt )∗ dds |0(FlXs )∗ω = (FlXt )∗LXω
d
dt (FlXt )∗ω = d

ds |0(FlXs )∗(FlXt )∗ω = LX(FlXt )∗ω.

We may commute d
ds |0 with the bounded linear mapping (FlXt )∗ from the space

of differential forms on U to that of forms on V , where V is open in U such that
FlXr (V ) ⊂ U for all r ∈ [0, t]. We may find such open U and V because the

c∞-topology on R×M is the product of the c∞-topologies, by corollary 4.15 . �

33.20. Lemma of Poincaré. Let ω ∈ C∞(U,Lk+1
alt (Dα

0E;F )) be a closed form
where U is a star-shaped c∞-open subset of a convenient vector space E, with values
in a convenient vector space F . Here Dα may be any of T , D, D(k), etc.

Then ω is exact, i.e., ω = dϕ where ϕ(x)(v1, . . . , vk) =
∫ 1

0
tkω(tx)(x, v1, . . . , vk)dt

is a differential form ϕ ∈ C∞(U,Lkalt(D
α
0E,F )).
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Proof. We consider µ : R× E → E, given by µ(t, x) = µt(x) = tx. Let I ∈ X(E)

be the vector field I(x) = x, then µ(et, x) = FlIt (x). So for (x, t) in a neighborhood

of U × (0, 1], in Homk, alt
C∞(U,R)(C

∞(U ← DαU), C∞(U,R)) we have

d
dtµ
∗
tω = d

dt (FlIlog t)
∗ω = 1

t (FlIlog t)
∗LIω by 33.19

= 1
tµ
∗
t (iIdω + diIω) = 1

t dµ
∗
t iIω.

For X1, . . . , Xk ∈ D0E we may compute

( 1
tµ
∗
t iIω)x(X1, . . . , Xk) = 1

t (iIω)tx(Dxµt.X1, . . . , Dxµt.Xk)

= 1
tωtx(tx,Dxµt.X1, . . . , Dxµt.Xk) = ωtx(x,Dxµt.X1, . . . , Dxµt.Xk).

Since Tx(µt) = t. IdE and D(1)µt = µ∗∗t = t. IdE′′ we can make the last com-
putation more explicit if all Xi ∈ E or E′′. So if k ≥ 0, the k-form 1

tµ
∗
t iIω

is defined and smooth in (t, x) for all t ∈ [0, 1] and describes a smooth curve in
C∞(U,Lkalt(D

α
0E,F )). Clearly, µ∗1ω = ω and µ∗0ω = 0, thus

ω = µ∗1ω − µ∗0ω =

∫ 1

0

d
dtµ
∗
tωdt =

∫ 1

0

d( 1
tµ
∗
t iIω)dt = d

(∫ 1

0

1
tµ
∗
t iIωdt

)
= dϕ. �

Remark. We were unable to prove the Lemma of Poincaré for modular forms
which are given by module homomorphisms, because µ∗tω does not make sense in
a differentiable way for t = 0. One may ask whether a closed modular differen-

tial form ω ∈ Homk, alt
C∞(M,R)(C

∞(M ← DαM), C∞(M,R)) already has to be in

C∞(Lkalt(D
αM,M × R)).

33.21. Review of operations on differential forms. In the table

Space LX d f∗

C∞(M ← Λ∗(D′M)) – – +
C∞(M ← Λ∗(T ′M)) – – +

Λ∗C∞(M,R) HomC∞(M,R)(C
∞(M ← DM), C∞(M,R)) – – diff

Λ∗C∞(M,R)C
∞(M ← T ′M) – – +

C∞(L∗alt(DM,M × R)) flow – +

Hom∗, alt
C∞(M,R)(C

∞(M ← DM), C∞(M,R)) + + diff

C∞(L∗alt(D
[1,∞)M,M × R)) flow – +

Hom∗, alt
C∞(M,R)(C

∞(D[1,∞)M), C∞(M,R)) + + diff

C∞(M ← L∗alt(D
(1)M,M × R)) flow – +

Hom∗, alt
C∞(M,R)(C

∞(M ← D(1)M), C∞(M,R)) flow ? diff

C∞(M ← L∗alt(TM,M × R)) + + +

Hom∗, alt
C∞(M,R)(X(M), C∞(M,R)) + + diff

a ‘–’ means that the space is not invariant under the operation on top of the column,
a ‘+’ means that it is invariant, ‘diff’ means that it is invariant under f∗ only for
diffeomorphisms f , and ‘flow’ means that it is invariant under LX for all kinematic
vector fields X which admit local flows.
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33.22. Remark. From the table 33.21 we see that for many purposes only one
space of differential forms is fully suited. We will denote from now on by

Ωk(M) := C∞(M ← Lkalt(TM,M × R))

the space of differential forms, for a smooth manifold M . By 30.1 it carries
the structure of a convenient vector space induced by the closed embedding

Ωk(M)→
∏
α

C∞(Uα, L
k
alt(E,R))

s 7→ pr2 ◦ ψα ◦ (s | Uα),

where (Uα, uα : Uα → E) is a smooth atlas for the manifold M , and where ψα :=
Lkalt(Tu

−1
α ,R)) is the induced vector bundle chart.

Similarly, we denote by

Ωk(M,V ) := C∞(M ← Lkalt(TM,M × V ))

the space of differential forms with values in a convenient vector
space V , and by

Ωk(M ;E) := C∞(M ← Lkalt(TM,E))

the space of differential forms with values in a vector bundle p : E →
M .

Lemma. The space Ωk(M) is isomorphic as convenient vector space to the closed
linear subspace of C∞(TM ×M . . . ×M TM,R) consisting of all fiberwise k-linear
alternating smooth functions in the vector bundle structure TM ⊕ · · · ⊕ TM from

29.5 .

Proof. By 27.17 , the space C∞(TM×M . . .×MTM,R) carries the initial structure
with respect to the closed linear embedding

C∞(TM ×M . . .×M TM,R)→
∏
α

C∞(uα(Uα)× E × . . .× E,R),

and C∞(uα(Uα)×E×. . .×E,R) contains an isomorphic copy of C∞(Uα, L
k
alt(E,R))

as closed linear subspace by cartesian closedness. �

Corollary. All the important mappings are smooth:

d : Ωk(M)→ Ωk+1(M)

i : X(M)× Ωk(M)→ Ωk−1(M)

L : X(M)× Ωk(M)→ Ωk(M)

f∗ : Ωk(M)→ Ωk(N)

where f : N →M is a smooth mapping. The last mappings is even smooth consid-
ered as mapping (f, ω) 7→ f∗ω, C∞(N,M)× Ωk(M)→ Ωk(N).
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Recall once more the formulas for ω ∈ Ωk(M) and Xi ∈ X(M), from 33.12.3 ,

33.10 , 33.17 :

(dω)(x)(X0, . . . , Xk) =

k∑
i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk))+

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

(iXϕ)(X1, . . . , Xk−1) = ϕ(X,X1, . . . , Xk−1),

(LXω)(X1, . . . , Xk) = X(ω(X1, . . . , Xk))−
k∑
i=1

ω(X1, . . . , [X,Xi], . . . , Xk).

Proof. For d we use the local formula 33.12.1 , smoothness of i is obvious, and

for the Lie derivative we may use formula 33.18.6 . The pullback mapping f∗ is
induced from Tf × . . .× Tf . �

34. De Rham Cohomology

Section 33 provides us with several graded commutative differential algebras con-
sisting of various kinds of differential forms for which we can define De Rham

cohomology, namely all those from the list 33.21 which have + in the d-column.
But among these only C∞(L∗alt(TM,M × R)) behaves functorially for all smooth
mappings; the others are only functors over categories of manifolds where the mor-
phisms are just the local diffeomorphisms. So we treat here cohomology only for
these differential forms.

34.1. De Rham cohomology. Recall that for a smooth manifold M we have
denoted

Ωk(M) := C∞(Lkalt(TM,M × R)).

We now consider the graded algebra Ω(M) =
⊕

k≥0 Ωk(M) of all differential forms

on M . Then the space Z(M) := M) := {ω ∈ Ω(M) : dω = 0} of closed forms is
a graded subalgebra of Ω (i. e. it is a subalgebra, and Ωk(M) ∩ Z(M) = Zk(M)),
and the space B(M) := {dϕ : ϕ ∈ Ω(M)} of exact forms is a graded ideal in
Z(M). This follows directly from d2 = 0 and the derivation property d(ϕ ∧ ψ) =
dϕ ∧ ψ + (−1)degϕϕ ∧ dψ of the exterior derivative.

Definition. The algebra

H∗(M) :=
Z(M)

B(M)
=
{ω ∈ Ω(M) : dω = 0}
{dϕ : ϕ ∈ Ω(M)}

is called the De Rham cohomology algebra of the manifold M . It is graded
by

H∗(M) =
⊕
k≥0

Hk(M) =
⊕
k≥0

ker(d : Ωk(M)→ Ωk+1(M))

im(d : Ωk−1(M)→ Ωk(M))
.
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If f : M → N is a smooth mapping between manifolds then f∗ : Ω(N) → Ω(M)

is a homomorphism of graded algebras by 33.9 , which satisfies d ◦ f∗ = f∗ ◦ d
by 33.15 . Thus, f∗ induces an algebra homomorphism which we also call f∗ :

H∗(N)→ H∗(M). Obviously, each Hk is a contravariant functor from the category
of smooth manifolds and smooth mappings into the category of real vector spaces.

34.2. Lemma. Let f , g : M → N be smooth mappings between manifolds which
are C∞-homotopic, i.e., there exists h ∈ C∞(R ×M,N) with h(0, x) = f(x) and
h(1, x) = g(x). Then f and g induce the same mapping in cohomology f∗ = g∗ :
H∗(N)→ H∗(M).

Remark. f , g ∈ C∞(M,N) are called homotopic if there exists a continuous
mapping h : [0, 1] ×M → N with h(0, x) = f(x) and h(1, x) = g(x). For finite
dimensional manifolds this apparently looser relation in fact coincides with the
relation of C∞-homotopy. We sketch a proof of this statement: let ϕ : R → [0, 1]
be a smooth function with ϕ(t) = 0 for t ≤ 1/4, ϕ(t) = 1 for t ≥ 3/4, and ϕ
monotone in between. Then consider h̄ : R×M → N , given by h̄(t, x) = h(ϕ(t), x).

Now we may approximate h̄ by smooth functions h̃ : R×M → N without changing
it on (−∞, 1/8) ×M where it equals f , and on (7/8,∞) ×M , where it equals g.
This is done chartwise by convolution with a smooth function with small support on
Rm. See [Bröcker and Jänich, 1973] for a careful presentation of the approximation.
It is an open problem to extend this to some infinite dimensional manifolds.

The lemma of Poincaré 33.20 is an immediate consequence of this result.

Proof. For ω ∈ Ωk(M) we have h∗ω ∈ Ωk(R ×M). We consider the insertion
operator inst : M → R×M , given by inst(x) = (t, x). For ϕ ∈ Ωk(R×M) we then
have a smooth curve t 7→ ins∗tϕ in Ωk(M).

Consider the integral operator I1
0 : Ωk(R × M) → Ωk(M) given by I1

0 (ϕ) :=∫ 1

0
ins∗tϕdt. Let T := ∂

∂t ∈ C∞(R × M ← T (R × M)) be the unit vector field
in direction R.

We have inst+s = FlTt ◦ inss for s, t ∈ R, so

∂
∂s ins∗sϕ = ∂

∂t

∣∣
0

(FlTt ◦ inss)
∗ϕ = ∂

∂t

∣∣
0

ins∗s(FlTt )∗ϕ

= ins∗s
∂
∂t

∣∣
0

(FlTt )∗ϕ = (inss)
∗LTϕ by 33.19 .

We have used that (inss)
∗ : Ωk(R×M)→ Ωk(M) is linear and continuous, and so

one may differentiate through it by the chain rule. Then we have in turn

d I1
0 ϕ = d

∫ 1

0

ins∗tϕdt =

∫ 1

0

d ins∗tϕdt

=

∫ 1

0

ins∗t dϕ dt = I1
0 dϕ by 33.15 .

(ins∗1 − ins∗0)ϕ =

∫ 1

0

∂
∂t ins∗tϕdt =

∫ 1

0

ins∗tLTϕdt

= I1
0 LTϕ = I1

0 (d iT + iT d)ϕ by 33.18.6 .
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Now we define the homotopy operator h̄ := I1
0 ◦ iT ◦ h∗ : Ωk(M) → Ωk−1(M).

Then we get

g∗ − f∗ = (h ◦ ins1)∗ − (h ◦ ins0)∗ = (ins∗1 − ins∗0) ◦ h∗

= (d ◦ I1
0 ◦ iT + I1

0 ◦ iT ◦ d) ◦ h∗ = d ◦ h̄− h̄ ◦ d,

which implies the desired result since for ω ∈ Ωk(M) with dω = 0 we have g∗ω −
f∗ω = dh̄ω − h̄dω = dh̄ω. �

34.3. Lemma. If a manifold is decomposed into a disjoint union M =
⊔
αMα of

open submanifolds, then Hk(M) =
∏
αH

k(Mα) for all k.

Proof. Ωk(M) is isomorphic to
∏
α Ωk(Mα) via ϕ 7→ (ϕ|Mα)α. This isomorphism

commutes with the exterior derivative d and induces the result. �

34.4. The setting for the Mayer-Vietoris Sequence. Let M be a smooth
manifold, let U , V ⊂M be open subsets which cover M and admit a subordinated
smooth partition of unity {fU , fV } with supp(fU ) ⊂ U and supp(fV ) ⊂ V . We
consider the following embeddings:

U ∩ VG gjU

tt

� w jV

**U w�

iU **

VgG
iVtt

M.

Lemma. In this situation, the sequence

0→ Ω(M)−α→ Ω(U)⊕ Ω(V )−β→ Ω(U ∩ V )→ 0

is exact, where α(ω) := (i∗Uω, i
∗
V ω) and β(ϕ,ψ) = j∗Uϕ − j∗V ψ. We also have

(d⊕ d) ◦ α = α ◦ d and d ◦ β = β ◦ (d⊕ d).

Proof. We have to show that α is injective, kerβ = imα, and that β is surjective.
The first two assertions are obvious. For ϕ ∈ Ω(U∩V ) we consider fV ϕ ∈ Ω(U∩V ).
Note that supp(fV ϕ) is closed in the closed subset supp(fV )∩U of U and contained
in the open subset U ∩ V of U , so we may extend fV ϕ by 0 to a smooth form
ϕU ∈ Ω(U). Likewise, we extend −fUϕ by 0 to ϕV ∈ Ω(V ). Then we have
β(ϕU , ϕV ) = (fU + fV )ϕ = ϕ. �

34.5. Theorem. Mayer-Vietoris sequence. Let U and V be open subsets in
a smooth manifold M modeled on convenient vector spaces. Suppose that U and V
cover M and admit a subordinated smooth partition of unity.

Then there is an exact sequence

· · · → Hk(M)−α∗→ Hk(U)⊕Hk(V )−β∗→ Hk(U ∩ V )−δ→ Hk+1(M)→ · · ·

It is natural in the triple (M,U, V ). The homomorphisms α∗ and β∗ are algebra
homomorphisms, but δ is not.

Proof. This follows from 34.4 and standard homological algebra. �
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Since we shall need it later we will now give a detailed description of the connecting
homomorphism δ. Let {fU , fV } be a partition of unity with supp fU ⊂ U and
supp fV ⊂ V . Let ω ∈ Ωk(U ∩ V ) with dω = 0 so that [ω] ∈ Hk(U ∩ V ). Then
(fV .ω,−fU .ω) ∈ Ωk(U)⊕ Ωk(V ) is mapped to ω by β, and we have

δ[ω] = [α−1 (d⊕ d)(fV .ω,−fU .ω)]

= [α−1(dfV ∧ ω,−dfU ∧ ω)]

= [dfV ∧ ω] = −[dfU ∧ ω)],

where we have used the following fact: fU + fV = 1 implies that on U ∩ V we have
dfV = −dfU , thus dfV ∧ ω = −dfU ∧ ω, and off U ∩ V both are 0.

34.6. Theorem. Let M be a smooth manifold which is smoothly paracompact.
Then the De Rham cohomology of M coincides with the sheaf cohomology of M
with coefficients in the constant sheaf R on M .

Proof. Since M is smoothly paracompact it is also paracompact, and thus the
usual theory of sheaf cohomology using the notion of fine sheafs is applicable. For
each k we consider the sheaf ΩkM on M which associates to each c∞-open set U ⊂M
the convenient vector space Ωk(U). Then the following sequence of sheaves

R→ Ω0
M −d→ Ω1

M −d→ . . .

is a resolution of the constant sheaf R by the lemma of Poincaré 33.20 . Since

we have smooth partitions of unity on M , each sheaf ΩkM is a fine sheaf, so this
resolution is acyclic [Godement, 1958], [Hirzebruch, 1962, 2.11.1], and the sequence
of global sections may be used to compute the sheaf cohomology of the constant
sheaf R. But this is the De Rham cohomology. �

34.7. Theorem. Let M be a smooth manifold which is smoothly paracompact.
Then the De Rham cohomology of M coincides with the singular cohomology with
coefficients in R via a canonical isomorphism which is induced by integration of
p-forms over smooth singular simplices.

Proof. Denote by Sk∞ the sheaf which is generated by the presheaf of singular
smooth cochains with real coefficients. In more detail: let us put Sk∞(U,R) =∏
σ R = RC∞(∆k,U), where σ : ∆k → U is any mapping which extends to a smooth

mapping from a neighborhood of the standard k-simplex ∆k ⊂ Rk+1 into U , where
U is c∞-open in M . This defines a presheaf. The associated sheaf is denoted by
Sk∞. The sequence

R→ S0
∞ −δ

∗
→ S1

∞ −δ
∗
→ S2

∞ → . . .

of sheafs is a resolution, because if U is a small open set, say diffeomorphic to
a radial neighborhood of 0 in the modeling convenient vector space, then U is
smoothly contractible to a point. Smooth mappings induce mappings in the S∗∞-
cohomology, thus Hk(S∗∞(U,R), ∂) = 0 for k > 0. This implies that the associated
sequence of stalks is exact, so the sequence above is a resolution. A standard
argument of sheaf theory shows that each sheaf Sk∞ is a fine sheaf, so they form an
acyclic resolution, and Hk(S∗∞(M,R), ∂) coincides with the sheaf cohomology with
coefficients in the constant sheaf R.
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Furthermore, integration of p-forms over smooth singular p-simplices defines a map-
ping of resolutions

Ω0 //

��

Ω1 //

��

Ω2 //

��

· · ·
R

33

++ S0
∞

// S1
∞

// S2
∞

// · · ·

which induces an isomorphism from the De Rham cohomology of M to the coho-
mology H∗(S∗∞(M,R), ∂).

Now we consider the resolution

R→ S0 −δ
∗
→ S1 −δ

∗
→ S2 → . . .

of the constant sheaf R, where Sk is the usual sheaf induced by the singular contin-
uous cochains. Since M is (even smoothly) paracompact and locally contractible,
this is an acyclic resolution, and the embedding of smooth singular chains into
continuous singular chains defines a mapping of resolutions

S0 //

��

S1 //

��

S2 //

��

· · ·
R

33

++ S0
∞

// S1
∞

// S2
∞

// · · ·

which induces an isomorphism from the singular cohomology of M to the cohomol-
ogy H∗(S∗∞(M,R), ∂). �

35. Derivations on Differential Forms and the Frölicher-Nijenhuis
Bracket

35.1. In this section let M be a smooth manifold. We consider the graded com-
mutative algebra

Ω(M) =
⊕
k≥0

Ωk(M) =

∞⊕
k=0

C∞(M ← Lkalt(TM,M × R)) =

∞⊕
k=−∞

Ωk(M)

of differential forms on M , see 33.22 , where Ω0(M) = C∞(M,R), and where we

put Ωk(M) = 0 for k < 0. We denote by Derk Ω(M) the space of all (graded)
derivations of degree k, i.e., all bounded linear mappings D : Ω(M)→ Ω(M) with
D(Ωl(M)) ⊂ Ωk+l(M) and D(ϕ∧ψ) = D(ϕ)∧ψ+ (−1)klϕ∧D(ψ) for ϕ ∈ Ωl(M).

Convention. In general, derivations need not be of local nature. Thus, we consider

each derivation and homomorphism to be a sheaf morphism (compare 32.1 and

the definition of modular 1-forms in 33.2 ), or we assume that all manifolds in
question are again smoothly regular. This is justified by the obvious extension of

32.4 and 33.3 .

Lemma. Then the space Der Ω(M) =
⊕

k Derk Ω(M) is a graded Lie algebra with
the graded commutator [D1, D2] := D1 ◦ D2 − (−1)k1k2D2 ◦ D1 as bracket. This
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means that the bracket is graded anticommutative and satisfies the graded Jacobi
identity:

[D1, D2] = −(−1)k1k2 [D2, D1],

[D1, [D2, D3]] = [[D1, D2], D3] + (−1)k1k2 [D2, [D1, D3]]

(so that ad(D1) = [D1, ] is itself a derivation of degree k1).

Proof. Plug in the definition of the graded commutator and compute. �

In section 33 we have already met some graded derivations: for a vector field X on

M the derivation iX is of degree−1, LX is of degree 0, and d is of degree 1. In 33.18
we already met some some graded commutators like LX = d iX + iX d = [iX , d].

35.2. A derivation D ∈ Derk Ω(M) is called algebraic if D | Ω0(M) = 0. Then
D(f.ω) = f.D(ω) for f ∈ C∞(M,R) and ω ∈ Ω(M).

If the spaces Lkalt(TxM ;R) are all reflexive and have the bornological approximation
property, then an algebraic derivation D induces for each x ∈ M a derivation

Dx ∈ Derk(L∗alt(TxM ;R)), by a method used in 33.5 . It is not clear whether it
suffices to assume that just the model spaces of M are all reflexive and have the
bornological approximation property.

In the sequel, we will consider the space of all vector valued kinematic dif-
ferential forms, which we will define by

Ω(M ;TM) =
⊕
k≥0

Ωk(M ;TM) =
⊕
k≥0

C∞(M ← Lkalt(TM ;TM))

Note that Ω0(M ;TM) = X(M) = C∞(M ← TM). For simplicity’s sake, we will
not treat other kinds of vector valued differential forms.

Theorem. (1) For K ∈ Ωk+1(M ;TM) the formula

(iKω)(X1, . . . , Xk+l) =

= 1
(k+1)! (l−1)!

∑
σ∈Sk+l

signσ .ω(K(Xσ1, . . . , Xσ(k+1)), Xσ(k+2), . . .)

=
∑

i1<···<ik+1

(−1)i1+···+ik+1− (k+1)(k+2)
2 ω(K(Xi1 , . . . , Xik+1

), X1, . . . , X̂i1 , . . . ),

iKf = 0 for f ∈ C∞(M,R) = Ω0(M),

for ω ∈ Ωl(M), Xi ∈ X(M) defines an algebraic graded derivation iK = i(K) ∈
Derk Ω(M).

(2) We define a bracket [ , ]∧ on Ω∗+1(M ;TM) for K ∈ Ωk+1(M ;TM), L ∈
Ωl+1(M ;TM) by

[K,L]∧ := iKL− (−1)kliLK,

where iK(L) is given by the same formula as in ( 1 ). This defines a graded Lie
algebra structure with the grading as indicated, and we have i([K,L]∧) = [iK , iL] ∈
Der Ω(M). Thus, i : Ω∗+1(M ;TM) → Der∗Ω(M) is a homomorphism of graded

Lie algebras, which is injective under the assumptions of 35.1 .
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The concomitant [ , ]∧ is called the algebraic bracket or the Nijenhuis-
Richardson bracket, compare [Nijenhuis and Richardson, 1967].

Proof. ( 1 ) We know that iX is a derivation of degree −1 for a vector field

X ∈ X(M) = Ω0(M ;TM) by 33.11 . By direct evaluation, one gets

(3) [iX , iK ] = i(iXK).

Using this and induction on the sum of the degrees of K ∈ Ωk(M ;TM), ϕ ∈ Ω(M),
and ψ ∈ Ω(M), one can then show that

iX iK(ϕ ∧ ψ) = iX(iKϕ ∧ ψ + (−1)k degϕϕ ∧ iKψ)

holds, which implies that iK is a derivation of degree k.

( 2 ) By induction on the sum of k = degK − 1, l = degL− 1, and p = degϕ, and

by ( 3 ) we have

[iX , [iK , iL]]ϕ = [[iX , iK ], iL]ϕ+ (−1)k[iK , [iX , iL]]ϕ

= [i(iXK), iL]ϕ+ (−1)k[iK , i(iXL)]ϕ

= i
(
i(iXK)L− (−1)(k−1)liLiXK

)
ϕ

+ (−1)ki
(
iKiXL− (−1)k(l−1)i(iXL)K

)
ϕ

= i
(
iX iKL− (−1)kliX iLK

)
ϕ = i (iX [K,L]∧)ϕ,

iX [iK , iL]ϕ = [iX , [iK , iL]]ϕ+ (−1)k+l[iK , iL]iXϕ

= i (iX [K,L]∧)ϕ+ (−1)k+li([K,L]∧)iXϕ

= i (iX [K,L]∧)ϕ− i(iX [K,L]∧)ϕ+ iX i([K,L]∧)ϕ

= iX i([K,L]∧)ϕ.

This implies i([K,L]∧) = [iK , iL] since the iX for X ∈ TM separate points, in both

cases of the convention 35.1 . From iKdf = df ◦ K it follows that the mapping

i : Ω(M ;TM) → Der(Ω(M)) is injective, so (Ω∗+1(M ;TM), [ , ]∧) is a graded
Lie algebra. �

35.3. The exterior derivative d is an element of Der1 Ω(M). In view of the formula

LX = [iX , d] = iX d + d iX for vector fields X (see 33.18.6 ), we define for K ∈
Ωk(M ;TM) the Lie derivative LK = L(K) ∈ Derk Ω(M) by

LK := [iK , d] = iK d− (−1)k−1d iK .

Since the 1-forms df for all local functions on M separate points on each TxM , the
mapping L : Ω(M ;TM) → Der Ω(M) is injective, because LKf = iKdf = df ◦K
for f ∈ C∞(M,R).

From 35.2.1 it follows that i(IdTM )ω = kω for ω ∈ Ωk(M). Hence, L(IdTM )ω =
i(IdTM )dω − d i(IdTM )ω = (k + 1)dω − kdω = dω, and thus L(IdTM ) = d.

35.4. Proposition. For K ∈ Ωk(M ;TM) and ω ∈ Ωl(M) the Lie derivative of ω
along K is given by the following formula, where the Xi are (local) vector fields on
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M .

(LKω)(X1, . . . , Xk+l) =

= 1
k! l!

∑
σ

signσ LK(Xσ1,...,Xσk)(ω(Xσ(k+1), . . . , Xσ(k+l)))

+ (−1)k
(

1
k! (l−1)!

∑
σ

signσ ω([Xσ1,K(Xσ2, . . . , Xσ(k+1))], Xσ(k+2), . . .)

− 1
(k−1)! (l−1)! 2!

∑
σ

signσ ω(K([Xσ1, Xσ2], Xσ3, . . .), Xσ(k+2), . . .)

)

Proof. Consider LKω = [iK , d]ω = iKdω − (−1)k−1diKω, and plug into this the

definitions 35.2.1 , second version, and 33.12.3 . After computing some signs the
expression above follows. �

35.5. Definition and theorem. For K ∈ Ωk(M ;TM) and L ∈ Ωl(M ;TM) we
define the Frölicher-Nijenhuis bracket [K,L] by the following formula, where
the Xi are vector fields on M .

(1) [K,L](X1, . . . , Xk+l) =

= 1
k! l!

∑
σ

signσ [K(Xσ1, . . . , Xσk), L(Xσ(k+1), . . . , Xσ(k+l))]

+ (−1)k
(

1
k! (l−1)!

∑
σ

signσ L([Xσ1,K(Xσ2, . . . , Xσ(k+1))], Xσ(k+2), . . .)

− 1
(k−1)! (l−1)! 2!

∑
σ

signσ L(K([Xσ1, Xσ2], Xσ3, . . .), Xσ(k+2), . . .)

)
− (−1)kl+l

(
1

(k−1)! l!

∑
σ

signσ K([Xσ1, L(Xσ2, . . . , Xσ(l+1))], Xσ(l+2), . . .)

− 1
(k−1)! (l−1)! 2!

∑
σ

signσ K(L([Xσ1, Xσ2], Xσ3, . . .), Xσ(l+2), . . .)

)
.

Then [K,L] ∈ Ωk+l(M ;TM), and we have

[L(K),L(L)] = L([K,L]) ∈ Der Ω(M).

Therefore, the space Ω(M ;TM) =
⊕dimM

k=0 Ωk(M ;TM) with its usual grading is a
graded Lie algebra for the Frölicher-Nijenhuis bracket. So we have

[K,L] = −(−1)kl[L,K]

[K1, [K2,K3]] = [[K1,K2],K3] + (−1)k1k2 [K2, [K1,K3]]

IdTM ∈ Ω1(M ;TM) is in the center, i.e., [K, IdTM ] = 0 for all K.

For vector fields the Frölicher-Nijenhuis bracket coincides with the Lie bracket. The
mapping L : Ω∗(M ;TM) → Der∗ Ω(M) is an injective homomorphism of graded
Lie algebras.

Proof. We first show that [K,L] ∈ Ωk+l(M ;TM). By convention 35.1 , this
is a local question in M , thus we may assume that M is a c∞-open subset of a
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convenient vector space E, that Xi : M → E, that K : M → Lkalt(E;E), and that
L : M → Llalt(E;E). Then each expression in the formula is a kinematic vector
field, and for such fields Y1, Y2 the Lie bracket is given by [Y1, Y2] = dY2.Y1−dY1.Y2,

as shown in the beginning of the proof of 32.8 . If we rewrite the formula in this
way, all terms containing the derivative of one Xi cancel, and the following local
expression for [K,L] remains, which is obviously an element of Ωk+l(M ;TM).

[K,L](X1, . . . , Xk+l) =

= 1
k! l!

∑
σ

signσ

(
(dL.K(Xσ1, . . . , Xσk))(Xσ(k+1), . . . )

− (dK.L(Xσ(k+1), . . . ))(Xσ1, . . . , Xσk)

+ l L((dK.Xσ(k+1))(Xσ1, . . . , Xσk), Xσ(k+2), . . . )

− kK((dL.Xσ1)(Xσ(k+1), . . . , Xσ(k+l)), Xσ2, . . . , Xσk)

)
.

Next we show that L([K,L]) = [LK ,LL] holds, by the following purely algebraic
method, which is adapted from [Dubois-Violette and Michor, 1997]. The Chevalley
coboundary operator for the adjoint representation of the Lie algebra X(M) is given
by [Koszul, 1950], see also [Cartan and Eilenberg, 1956]

∂K(X1, . . . , Xk+1) = 1
k!

∑
σ

signσ [Xσ1,K(Xσ2, . . . , Xσ(k+1))]

− 1
(k−1)! 2!

∑
σ

signσ K([Xσ1, Xσ2], Xσ3, . . . , Xσ(k+1)),

∂K(X0, . . . , Xk) =
∑

0≤i≤k

(−1)i[Xi,K(X0, . . . , X̂i, . . . , Xk)]

+
∑

0≤i<j≤k

(−1)i+jK([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

and it is well known that ∂∂ = 0. The following computation and close relatives
will appear several times in the remainder of this proof, so we include it once.

(i∂Kω)(X1, . . . , Xk+l) =

= 1
(k+1)! (l−1)!

∑
σ∈Sk+l

sign(σ)ω(∂K(Xσ1, . . . ), Xσ(k+2), . . .)

= 1
(k+1)! (l−1)!

∑
σ

sign(σ)

(k+1∑
i=1

(−1)i−1ω([Xσi,K(Xσ1, . . . , X̂σi, . . . )], Xσ(k+2), . . .)

+
∑

1≤i<j≤k+1

(−1)i+jω(K([Xσi, Xσj ], Xσ1, . . . , X̂σi, . . . , X̂σj , . . . ), Xσ(k+2), . . . )

)

= 1
(k+1)! (l−1)!

∑
τ

sign(τ)

(
(k + 1)ω([Xτ1,K(Xτ2, . . . )], Xτ(k+2), . . . )

− k(k+1)
2 ω(K([Xτ1, Xτ2], Xτ3, . . . ), Xτ(k+2), . . . )

)
= 1

k! (l−1)!

∑
σ

sign(σ)ω([Xσ1,K(Xσ2, . . . , Xσ(k+1))], Xσ(k+2), . . . )
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− 1
(k−1)! (l−1)! 2!

∑
σ

sign(σ)ω(K([Xσ1, Xσ2], Xσ3, . . . ), Xσ(k+2), . . . ).

Then the Frölicher-Nijenhuis bracket ( 1 ) is given by

(2) [K,L] = [K,L]∧ + (−1)ki(∂K)L− (−1)kl+li(∂L)K,

where we have put

(3) [K,L]∧(X1, . . . , Xk+l) :=

= 1
k! l!

∑
σ

sign(σ)[K(Xσ1, . . . , Xσk), L(Xσ(k+1), . . . , Xσ(k+l))].

Formula ( 2 ) is the same as in [Nijenhuis, 1969, p. 100], where it is also stated
that from this formula ‘one can show (with a good deal of effort) that this bracket
defines a graded Lie algebra structure’. Similarly, we can write the Lie derivative

35.4 as

(4) LK = L∧(K) + (−1)ki(∂K),

where the action L of X(M) on C∞(M,R) is extended to L∧ : Ω(M ;TM)×Ω(M)→
Ω(M) by

(5) (L∧(K)ω)(X1, . . . , Xq+k) =

= 1
k! q!

∑
σ

sign(σ)L(K(Xσ1, . . . , Xσk))(ω(Xσ(k+1), . . . , Xσ(k+q))).

Using ( 4 ), we see that

[LK ,LL] = L∧(K)L∧(L)− (−1)klL∧(L)L∧(K)(6)

+ (−1)ki(∂K)L∧(L)− (−1)kl+kL∧(L)i(∂K)

− (−1)kl+li(∂L)L∧(K) + (−1)lL∧(K)i(∂L)

+ (−1)k+li(∂K)i(∂L)− (−1)kl+k+li(∂L)i(∂K),

and from ( 2 ) and ( 4 ) we get

L[K,L] = L[K,L]∧ + (−1)kLi(∂K)L − (−1)kl+lLi(∂L)K(7)

= L∧([K,L]∧) + (−1)k+li(∂[K,L]∧)

+ (−1)kL∧(i(∂K)L) + (−1)ki(∂i(∂K)L)

− (−1)kl+lL∧(i(∂L)K)− (−1)kl+ki(∂i(∂L)K).

By a straightforward direct computation, one checks that

(8) L∧(K)L∧(L)− (−1)klL∧(L)L∧(K) = L∧([K,L]∧).

The derivation iK of degree k is seeing the expression L∧(L)ω as a ‘wedge product’

L ∧L ω, as in 33.8 . So we may apply theorem 35.2.1 and get

(9) iKL∧(L)ω = L∧(iKL)ω + (−1)(k−1)lL∧(L)iKω.
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By a long but straightforward combinatorial computation, one can check directly
from the definitions that the following formula holds:

(10) ∂(iKL) = i∂KL+ (−1)k−1iK∂L+ (−1)k[K,L]∧.

Moreover, it is well-known (and easy to check) that

(11) ∂[K,L]∧ = [∂K,L]∧ + (−1)k[K, ∂L]∧.

We have to show that ( 6 ) equals ( 7 ). This follows by using ( 8 ), twice ( 9 ),

then the first three lines in ( 6 ) correspond to the first terms in the first three lines

in ( 7 ). For the remaining terms use twice ( 10 ), ( 11 ), and ∂∂ = 0.

That the Frölicher-Nijenhuis bracket defines a graded Lie bracket now follows from

the fact that L : Ω(M ;TM)→ Der(Ω(M)) is injective, by convention 35.1 .

Since we have [d, d] = 2d2 = 0, by the graded Jacobi identity we obtain 0 =
[iK , [d, d]] = [[iK , d], d] + (−1)k−1[d, [iK , d]] = 2[LK , d] = 2L([K, IdTM ]). �

35.6. Lemma. Moreover, the Chevalley coboundary operator is a homomorphism
from the Frölicher-Nijenhuis bracket to the Nijenhuis-Richardson bracket:

∂[K,L] = [∂K, ∂L]∧.

Proof. This follows directly from 35.5.2 , 35.5.11 , and twice 35.5.10 , and from

35.2.2 :

∂[K,L] = ∂[K,L]∧ + (−1)k∂i(∂K)L− (−1)kl+l∂i(∂L)K

= [∂K,L]∧ + (−1)k[K, ∂L]∧ + 0 + i(∂K)∂L− [∂K,L]∧

− 0− (−1)kli(∂L)∂K + (−1)kl[∂L,K]∧

= [∂K, ∂L]∧. �

35.7. Lemma. For K ∈ Ωk(M ;TM) and L ∈ Ωl+1(M ;TM) we have

[LK , iL] = i([K,L])− (−1)klL(iLK), or

[iL,LK ] = L(iLK) + (−1)k i([L,K]).

Proof. The two equations are obviously equivalent by graded skew symmetry, and

the second one follows by expanding the left hand side using 35.5.4 , 35.5.9 , and

35.2.2 , and by expanding the right hand side using 35.5.4 , 35.5.2 , and then

35.5.10 :

[iL,LK ] = [iL,L∧(K)] + (−1)k[iL, i∂K ]

= L∧(iLK) + (−1)k i(iL∂K − (−1)(l−1)ki∂KL),

L(iLK) + (−1)k i([L,K]) = L∧(iLK)− (−1)k+li(∂iLK)

+ (−1)k i([L,K]∧ + (−1)li∂LK − (−1)kl+ki∂KL). �
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35.8. The space Der Ω(M) is a graded module over the graded algebra Ω(M) with
the action (ω ∧D)ϕ = ω ∧D(ϕ), because Ω(M) is graded commutative.

Theorem. Let the degrees of ω be q, of ϕ be k, and of ψ be l. Let the other degrees
be given by the corresponding lower case letters. Then we have:

[ω ∧D1, D2] = ω ∧ [D1, D2]− (−1)(q+k1)k2D2(ω) ∧D1.(1)

i(ω ∧ L) = ω ∧ i(L)(2)

ω ∧ LK = L(ω ∧K) + (−1)q+k−1i(dω ∧K).(3)

[ω ∧ L1, L2]∧ = ω ∧ [L1, L2]∧−(4)

− (−1)(q+l1−1)(l2−1)i(L2)ω ∧ L1.

[ω ∧K1,K2] = ω ∧ [K1,K2]− (−1)(q+k1)k2L(K2)ω ∧K1(5)

+ (−1)q+k1dω ∧ i(K1)K2.

[ϕ⊗X,ψ ⊗ Y ] = ϕ ∧ ψ ⊗ [X,Y ](6)

−
(
iY dϕ ∧ ψ ⊗X − (−1)kliXdψ ∧ ϕ⊗ Y

)
−
(
d(iY ϕ ∧ ψ)⊗X − (−1)kld(iXψ ∧ ϕ)⊗ Y

)
= ϕ ∧ ψ ⊗ [X,Y ] + ϕ ∧ LXψ ⊗ Y − LY ϕ ∧ ψ ⊗X

+ (−1)k (dϕ ∧ iXψ ⊗ Y + iY ϕ ∧ dψ ⊗X) .

Proof. For (1), ( 2 ), ( 3 ) write out the definitions. For (4) compute i([ω ∧
L1, L2]∧). For ( 5 ) compute L([ω ∧K1,K2]). For ( 6 ) use ( 5 ). �

35.9. Theorem. For Ki ∈ Ωki(M ;TM) and Li ∈ Ωki+1(M ;TM) we have

[LK1
+ iL1

,LK2
+ iL2

] =(1)

= L
(
[K1,K2] + iL1

K2 − (−1)k1k2iL2
K1

)
+ i
(
[L1, L2]∧ + [K1, L2]− (−1)k1k2 [K2, L1]

)
.

Each summand of this formula looks like a semidirect product of graded Lie algebras,
but the mappings

i : Ω(M ;TM)→ End(Ω(M ;TM), [ , ])

ad : Ω(M ;TM)→ End(Ω(M ;TM), [ , ]∧)

do not take values in the subspaces of graded derivations. Instead we have for
K ∈ Ωk(M ;TM) and L ∈ Ωl+1(M ;TM) the following relations:

iL[K1,K2] = [iLK1,K2] + (−1)k1l[K1, iLK2](2)

−
(

(−1)k1li([K1, L])K2 − (−1)(k1+l)k2i([K2, L])K1

)
.

[K, [L1, L2]∧] = [[K,L1], L2]∧ + (−1)kk1 [L1, [K,L2]]∧−(3)

−
(

(−1)kk1 [i(L1)K,L2]− (−1)(k+k1)k2 [i(L2)K,L1]
)
.
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The algebraic meaning of these relations and its consequences in group theory have
been investigated in [Michor, 1989]. The corresponding product of groups is well
known to algebraists under the name ‘Zappa-Szep’-product.

Proof. Equation ( 1 ) is an immediate consequence of 35.7 . Equations ( 2 ) and

( 3 ) follow from ( 1 ) by writing out the graded Jacobi identity. �

35.10. Corollary of 28.6 . For K, L ∈ Ω1(M ;TM) we have

[K,L](X,Y ) = [KX,LY ]− [KY,LX]− L([KX,Y ]− [KY,X])

−K([LX, Y ]− [LY,X]) + (LK +KL)([X,Y ]).

35.11. Curvature. Let P ∈ Ω1(M ;TM) satisfy P ◦P = P , i.e., P is a projection
in each fiber of TM . This is the most general case of a (first order) connection.
We call kerP the horizontal space and imP the vertical space of the con-
nection. If imP is some fixed sub vector bundle or (tangent bundle of) a foliation,

P can be called a connection for it. The following result is immediate from 35.10 .

Lemma. We have
[P, P ] = 2R+ 2R̄,

where R, R̄ ∈ Ω2(M ;TM) are given by R(X,Y ) = P [(Id−P )X, (Id−P )Y ] and
R̄(X,Y ) = (Id−P )[PX,PY ].

If im(P ) is a sub vector bundle, then R is an obstruction against integrability of
the horizontal bundle kerP , and R̄ is an obstruction against integrability of the
vertical bundle imP . Thus, we call R the curvature and R̄ the cocurvature of
the connection P .

35.12. Lemma. Bianchi identity. If P ∈ Ω1(M ;TM) is a connection (fiber
projection) with curvature R and cocurvature R̄, then we have

[P,R+ R̄] = 0

[R, P ] = iRR̄+ iR̄R.

Proof. We have [P, P ] = 2R + 2R̄ by 35.11 , and [P, [P, P ]] = 0 by the graded
Jacobi identity. So the first formula follows. We have 2R = P ◦ [P, P ] = i[P,P ]P .

By 35.9.2 we get i[P,P ][P, P ] = 2[i[P,P ]P, P ] − 0 = 4[R, P ]. Therefore, [R, P ] =
1
4 i[P,P ][P, P ] = i(R+ R̄)(R+ R̄) = iRR̄+ iR̄R since R has vertical values and kills

vertical vectors, so iRR = 0; likewise for R̄. �

35.13. f-relatedness of the Frölicher-Nijenhuis bracket. Let f : M → N be
a smooth mapping between manifolds. Two vector valued forms K ∈ Ωk(M ;TM)
and K ′ ∈ Ωk(N ;TN) are called f-related or f -dependent, if for all Xi ∈ TxM
we have

(1) K ′f(x)(Txf ·X1, . . . , Txf ·Xk) = Txf ·Kx(X1, . . . , Xk).

Theorem.
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(2) If K and K ′ as above are f -related then iK ◦ f∗ = f∗ ◦ iK′ : Ω(N)→ Ω(M).
(3) If iK ◦ f∗ | B1(N) = f∗ ◦ iK′ | B1(N), then K and K ′ are f -related, where

B1 denotes the space of exact 1-forms.
(4) If Kj and K ′j are f -related for j = 1, 2, then iK1K2 and iK′1K

′
2 are f -related,

and also [K1,K2]∧ and [K ′1,K
′
2]∧ are f -related.

(5) If K and K ′ are f -related then LK ◦ f∗ = f∗ ◦ LK′ : Ω(N)→ Ω(M).
(6) If LK ◦ f∗ | Ω0(N) = f∗ ◦ LK′ | Ω0(N), then K and K ′ are f -related.
(7) If Kj and K ′j are f -related for j = 1, 2, then their Frölicher-Nijenhuis brackets

[K1,K2] and [K ′1,K
′
2] are also f -related.

Proof. ( 2 ) By 35.2 , we have for ω ∈ Ωq(N) and Xi ∈ TxM :

(iKf
∗ω)x(X1, . . . , Xq+k−1) =

= 1
k! (q−1)!

∑
σ

signσ (f∗ω)x(Kx(Xσ1, . . . , Xσk), Xσ(k+1), . . .)

= 1
k! (q−1)!

∑
σ

signσ ωf(x)(Txf ·Kx(Xσ1, . . .), Txf ·Xσ(k+1), . . .)

= 1
k! (q−1)!

∑
σ

signσ ωf(x)(K
′
f(x)(Txf ·Xσ1, . . .), Txf ·Xσ(k+1), . . .)

= (f∗iK′ω)x(X1, . . . , Xq+k−1).

( 3 ) follows from this computation, since the dg, g ∈ C∞(M,R) separate points,

by convention 35.1 .

( 4 ) follows from the same computation for K2 instead of ω, the result for the

bracket then follows by 35.2.2 .

( 5 ) The algebra homomorphism f∗ intertwines the operators iK and iK′ by ( 2 ),
and f∗ commutes with the exterior derivative d. Thus, f∗ intertwines the commu-
tators [iK , d] = LK and [iK′ , d] = LK′ .

( 6 ) For g ∈ Ω0(N) we have LK f∗ g = iK d f
∗ g = iK f

∗ dg, and on the other hand

f∗ LK′ g = f∗ iK′ dg. By ( 3 ) the result follows.

( 7 ) The algebra homomorphism f∗ intertwines LKj and LK′j , thus also their

graded commutators, which are equal to L([K1,K2]) and L([K ′1,K
′
2]), respectively.

Then use ( 6 ). �

35.14. Let f : M → N be a local diffeomorphism. Then we can consider the
pullback operator f∗ : Ω(N ;TN)→ Ω(M ;TM), given by

(1) (f∗K)x(X1, . . . , Xk) = (Txf)−1Kf(x)(Txf ·X1, . . . , Txf ·Xk).

This is a special case of the pullback operator for sections of natural vector bundles.
Clearly, K and f∗K are then f -related.

Theorem. In this situation we have:

(2) f∗ [K,L] = [f∗K, f∗L].
(3) f∗ iKL = if∗Kf

∗L.
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(4) f∗ [K,L]∧ = [f∗K, f∗L]∧.

(5) For a vector field X ∈ X(M) admitting a local flow FlXt and K ∈ Ω(M ;TM)

the Lie derivative LXK = ∂
∂t

∣∣
0

(FlXt )∗K is defined. Then we have LXK =

[X,K], the Frölicher-Nijenhuis-bracket.

This is sometimes expressed by saying that the Frölicher-Nijenhuis bracket, the
bracket [ , ]∧, etc., are natural bilinear concomitants.

Proof. ( 2 ) – ( 4 ) are obvious from 35.13 . They also follow directly from the
geometrical constructions of the operators in question.

( 5 ) By inserting Yi ∈ X(M) we get from ( 1 ) the following expression which we

can differentiate using 32.15 repeatedly.

(FlX−t)
∗(K(Y1, . . . , Yk)) = ((FlXt )∗K)((FlX−t)

∗Y1, . . . , (FlX−t)
∗Yk)

[X,K(Y1, . . . , Yk)] = ∂
∂t

∣∣
0

(FlX−t)
∗(K(Y1, . . . , Yk))

= ∂
∂t

∣∣
0

((FlXt )∗K)((FlX−t)
∗Y1, . . . , (FlX−t)

∗Yk)

= ( ∂
∂t

∣∣
0

(FlXt )∗K)(Y1, . . . , Yk)−
∑

1≤i≤k

K(Y1, . . . ,
∂
∂t

∣∣
0

(FlX−t)
∗Yi, . . . , Yk)

= ( ∂
∂t

∣∣
0

(FlXt )∗K)(Y1, . . . , Yk)−
∑

1≤i≤k

K(Y1, . . . , [X,Yi], . . . , Yk).

This leads to

( ∂
∂t

∣∣
0

(FlXt )∗K)(Y1, . . . , Yk) = [X,K(Y1, . . . , Yk)]

+
∑

1≤i≤k

K([X,Yi], Y1, . . . Ŷi . . . , Yk)

= [X,K](Y1, . . . , Yk), by 35.5.1 . �

35.15. Remark. Finally, we mention the best known application of the Frölicher-
Nijenhuis bracket, which also led to its discovery. A vector valued 1-form J ∈
Ω1(M ;TM) with J ◦ J = − Id is called an almost complex structure. If it

exists, J can be viewed as a fiber multiplication with
√
−1 on TM . By 35.10 we

have
[J, J ](X,Y ) = 2([JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ]).

The vector valued form 1
2 [J, J ] is also called the Nijenhuis tensor of J . In finite

dimensions an almost complex structure J comes from a complex structure on the
manifold if and only if the Nijenhuis tensor vanishes.
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The theory of infinite dimensional Lie groups can be pushed surprisingly far: Ex-
ponential mappings are unique if they exist. In general, they are neither locally
surjective nor locally injective. A stronger requirement (leading to regular Lie
groups) is to assume that smooth curves in the Lie algebra integrate to smooth
curves in the group in a smooth way (an ‘evolution operator’ exists). This is due
to [Milnor, 1984] who weakened the concept of [Omori et al., 1982]. It turns out
that regular Lie groups have strong permanence properties. In fact, up to now
all known Lie groups are regular. Connections on smooth principal bundles with

a regular Lie group as structure group have parallel transport 39.1 , and for flat

connections the horizontal distribution is integrable 39.2 . So some (equivariant)
partial differential equations in infinite dimensions are very well behaved, although
in general there are counter-examples in every possible direction (some can be found

in 32.12 ).

The actual development is quite involved. We start with general infinite dimensional

Lie groups in section 36 , but for a detailed study of the evolution operator of

regular Lie groups 38.4 we need in 38.10 the Maurer-Cartan equation for right

(or left) logarithmic derivatives of mappings with values in the Lie group 38.1 ,
and this we can only get by looking at principal connections. Thus, in the second

section 37 bundles, connections, principal bundles, curvature, associated bundles,
and all results of principal bundle geometry which do not involve parallel transport
are developed. Finally, we then prove the strong existence results mentioned above

and treat regular Lie groups in section 38 , and principal bundles with regular

structure groups in section 39 . The material in this chapter is an extended version
of [Kriegl and Michor, 1997].
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36. Lie Groups

36.1. Definition. A Lie group G is a smooth manifold and a group such that
the multiplication µ : G×G→ G and the inversion ν : G→ G are smooth. If not
stated otherwise, G may be infinite dimensional. If an implicit function theorem is
available, then smoothness of ν follows from smoothness of µ.

We shall use the following notation:
µ : G×G→ G, multiplication, µ(x, y) = x.y.
µa : G→ G, left translation, µa(x) = a.x.
µa : G→ G, right translation, µa(x) = x.a.
ν : G→ G, inversion, ν(x) = x−1.
e ∈ G, the unit element.

36.2. Lemma. The kinematic tangent mapping T(a,b)µ : TaG × TbG → TabG is
given by

T(a,b)µ.(Xa, Yb) = Ta(µb).Xa + Tb(µa).Yb,

and Taν : TaG→ Ta−1G is given by

Taν = −Te(µa
−1

).Ta(µa−1) = −Te(µa−1).Ta(µa
−1

).

Proof. Let insa : G → G × G, insa(x) = (a, x) be the right insertion, and let

insb : G→ G×G, insb(x) = (x, b) be the left insertion. Then we have

T(a,b)µ.(Xa, Yb) = T(a,b)µ.(Ta(insb).Xa + Tb(insa).Yb) =

= Ta(µ ◦ insb).Xa + Tb(µ ◦ insa).Yb = Ta(µb).Xa + Tb(µa).Yb.

Now we differentiate the equation µ(a, ν(a)) = e; this gives in turn

0e = T(a,a−1)µ.(Xa, Taν.Xa) = Ta(µa
−1

).Xa + Ta−1(µa).Taν.Xa,

Taν.Xa = −Te(µa)−1.Ta(µa
−1

).Xa = −Te(µa−1).Ta(µa
−1

).Xa. �

36.3. Invariant vector fields and Lie algebras. Let G be a (real) Lie group.
A (kinematic) vector field ξ on G is called left invariant, if µ∗aξ = ξ for all

a ∈ G, where µ∗aξ = T (µa−1) ◦ ξ ◦ µa as in 32.9 . Since by 32.11 we have
µ∗a[ξ, η] = [µ∗aξ, µ

∗
aη], the space XL(G) of all left invariant vector fields on G is

closed under the Lie bracket, so it is a sub Lie algebra of X(G). Any left invariant
vector field ξ is uniquely determined by ξ(e) ∈ TeG, since ξ(a) = Te(µa).ξ(e).
Thus, the Lie algebra XL(G) of left invariant vector fields is linearly isomorphic to
TeG, and the Lie bracket on XL(G) induces a Lie algebra structure on TeG, whose
bracket is again denoted by [ , ]. This Lie algebra will be denoted as usual by
g, sometimes by Lie(G).

We will also give a name to the isomorphism with the space of left invariant vector
fields: L : g → XL(G), X 7→ LX , where LX(a) = Teµa.X. Thus, [X,Y ] =
[LX , LY ](e).

A vector field η on G is called right invariant, if (µa)∗η = η for all a ∈ G. If
ξ is left invariant, then ν∗ξ is right invariant, since ν ◦ µa = µa−1 ◦ ν implies that
(µa)∗ν∗ξ = (ν◦µa)∗ξ = (µa−1◦ν)∗ξ = ν∗(µa−1)∗ξ = ν∗ξ. The right invariant vector
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fields form a sub Lie algebra XR(G) of X(G), which also is linearly isomorphic to
TeG and induces a Lie algebra structure on TeG. Since ν∗ : XL(G)→ XR(G) is an

isomorphism of Lie algebras by 32.11 , Teν = − Id : TeG→ TeG is an isomorphism
between the two Lie algebra structures. We will denote by R : g = TeG → XR(G)
the isomorphism discussed, which is given by RX(a) = Te(µ

a).X.

36.4. Remark. It would be tempting to apply also other kinds of tangent bundle
functors like D and D[1,∞), where one gets Lie algebras of smooth sections, see

32.8 . Some results will stay true like 36.3 , 36.5 . In general, one gets strictly

larger Lie algebras for Lie groups, see 28.4 . But the functors D and D[1,∞) do not

respect products in general, see 28.16 , so e.g. 36.2 is wrong for these functors.

36.5. Lemma. If LX is a left invariant vector field and RY is a right invariant
one, then [LX , RY ] = 0. So if the flows of LX and RY exist, they commute.

Proof. We consider the vector field 0×LX ∈ X(G×G), given by (0×LX)(a, b) =
(0a, LX(b)). Then T(a,b)µ.(0a, LX(b)) = Taµ

b.0a+Tbµa.LX(b) = LX(ab), so 0×LX
is µ-related to LX . Likewise, RY × 0 is µ-related to RY . But then 0 = [0 ×
LX , RY × 0] is µ-related to [LX , RY ] by 32.10 . Since µ is surjective, [LX , RY ] = 0
follows. �

36.6. Lemma. Let ϕ : G → H be a smooth homomorphism of Lie groups. Then
ϕ′ := Teϕ : g = TeG→ h = TeH is a Lie algebra homomorphism.

Proof. For X ∈ g and x ∈ G we have

Txϕ.LX(x) = Txϕ.Teµx.X = Te(ϕ ◦ µx).X

= Te(µϕ(x) ◦ ϕ).X = Te(µϕ(x)).Teϕ.X = Lϕ′(X)(ϕ(x)).

So LX is ϕ-related to Lϕ′(X). By 32.10 , the field [LX , LY ] = L[X,Y ] is ϕ-related
to [Lϕ′(X), Lϕ′(Y )] = L[ϕ′(X),ϕ′(Y )]. So we have Tϕ ◦ L[X,Y ] = L[ϕ′(X),ϕ′(Y )] ◦ ϕ. If
we evaluate this at e the result follows. �

36.7. One parameter subgroups. Let G be a Lie group with Lie algebra g. A
one parameter subgroup of G is a Lie group homomorphism α : (R,+) → G,
i.e. a smooth curve α in G with α(s+ t) = α(s).α(t), and hence α(0) = e.

Note that a smooth mapping β : (−ε, ε) → G satisfying β(t)β(s) = β(t + s) for
|t|, |s|, |t + s| < ε is the restriction of a one parameter subgroup. Namely, choose
0 < t0 < ε/2. Any t ∈ R can be uniquely written as t = N.t0 + t′ for 0 ≤ t′ < t0
and N ∈ Z. Put α(t) = β(t0)Nβ(t′). The required properties are easy to check.

Lemma. Let α : R → G be a smooth curve with α(0) = e. Let X ∈ g. Then the
following assertions are equivalent.

(1) α is a one parameter subgroup with X = ∂
∂t

∣∣
0
α(t).

(2) α(t) is an integral curve of the left invariant vector field LX and also an
integral curve of the right invariant vector field RX .

(3) FlLX (t, x) := x.α(t) (or FlLXt = µα(t)) is the (unique by 32.16 ) global flow

of LX in the sense of 32.13 .
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(4) FlRX (t, x) := α(t).x (or FlRXt = µα(t)) is the (unique) global flow of RX .

Moreover, each of these properties determines α uniquely.

Proof. ( 1 ) ⇒ ( 3 ) We have

d
dtx.α(t) = d

ds |0x.α(t+ s) = d
ds |0x.α(t).α(s)

= d
ds |0µx.α(t)α(s) = Te(µx.α(t)).

d
ds |0α(s) = LX(x.α(t)).

Since it is obviously a flow, we have ( 3 ).

( 3 )⇔ ( 4 ) We have Flν
∗ξ
t = ν−1 ◦Flξt ◦ν by 32.16 . Therefore, we have by 36.3

(FlRXt (x−1))−1 = (ν ◦ FlRXt ◦ν)(x) = Flν
∗RX
t (x)

= Fl−LXt (x) = FlLX−t (x) = x.α(−t).

So FlRXt (x−1) = α(t).x−1, and FlRXt (y) = α(t).y.

( 3 ) and ( 4 ) together clearly imply ( 2 ).

( 2 ) ⇒ ( 1 ) This is a consequence of the following result.
Claim. Consider two smooth curves α, β : R → G with α(0) = e = β(0) which
satisfy the two differential equations

d
dtα(t) = LX(α(t))

d
dtβ(t) = RX(β(t)).

Then α = β, and it is a 1-parameter subgroup.

We have α = β since

d
dt (α(t)β(−t)) = Tµβ(−t).LX(α(t))− Tµα(t).RX(β(−t))

= Tµβ(−t).Tµα(t).X − Tµα(t).Tµ
β(−t).X = 0.

Next we calculate for fixed s

d
dt (β(t− s)β(s)) = Tµβ(s).RX(β(t− s)) = RX(β(t− s)β(s)).

Hence, by the first part of the proof β(t− s)β(s) = α(t) = β(t).

The statement about uniqueness follows from 32.16 , or from the claim. �

36.8. Definition. Let G be a Lie group with Lie algebra g. We say that G admits
an exponential mapping if there exists a smooth mapping exp : g→ G such that

t 7→ exp(tX) is the (unique by 36.7 ) 1-parameter subgroup with tangent vector

X at 0. Then we have by 36.7

(1) FlLX (t, x) = x. exp(tX).

(2) FlRX (t, x) = exp(tX).x.
(3) exp(0) = e and T0 exp = Id : T0g = g → TeG = g since T0 exp .X =

d
dt |0 exp(0 + t.X) = d

dt |0 FlLX (t, e) = X.
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(4) Let ϕ : G → H be a smooth homomorphism between Lie groups admitting
exponential mappings. Then the diagram

g
ϕ′ //

expG

��

h

expH

��
G

ϕ // H

commutes, since t 7→ ϕ(expG(tX)) is a one parameter subgroup of H, and
d
dt |0ϕ(expG tX) = ϕ′(X), so ϕ(expG tX) = expH(tϕ′(X)).

36.9. Remarks. [Omori et al., 1982, 1983a] gave conditions under which a smooth
Lie group modeled on Fréchet spaces admits an exponential mapping. We shall

elaborate on this notion in 38.4 below. They called such groups ‘regular Fréchet
Lie groups’. We do not know any smooth Fréchet Lie group which does not admit
an exponential mapping.

If G admits an exponential mapping, it follows from 36.8.3 that exp is a diffeo-
morphism from a neighborhood of 0 in g onto a neighborhood of e in G, if a suitable
inverse function theorem is applicable. This is true, for example, for smooth Banach

Lie groups, also for gauge groups, see 42.21 but it is wrong for diffeomorphism

groups, see 43.3 .

If E is a Banach space, then in the Banach Lie group GL(E) of all bounded linear
automorphisms of E the exponential mapping is given by the series exp(X) =∑∞
i=0

1
i!X

i.

If G is connected with exponential mapping and U ⊂ g is open with 0 ∈ U , then
one may ask whether the group generated by exp(U) equals G. Note that this is a
normal subgroup. So if G is simple, the answer is yes. This is true for connected
components of diffeomorphism groups and many of their important subgroups, see
[Epstein, 1970], [Thurston, 1974], [Mather, 1974, 1975, 1984, 1985], [Banyaga, 1978].

Results on weakened versions of the Baker-Campbell-Hausdorff formula can be
found in [Wojtyński, 1994].

36.10. The adjoint representation. Let G be a Lie group with Lie algebra
g. For a ∈ G we define conja : G → G by conja(x) = axa−1. It is called the
conjugation or the inner automorphism by a ∈ G. This defines a smooth
action of G on itself by automorphisms.

The adjoint representation Ad : G → GL(g) ⊂ L(g, g) is given by Ad(a) =

(conja)′ = Te(conja) : g → g for a ∈ G. By 36.6 , Ad(a) is a Lie algebra ho-
momorphism, moreover

Ad(a) = Te(conja) = Ta(µa
−1

).Te(µa) = Ta−1(µa).Te(µ
a−1

).

Finally, we define the (lower case) adjoint representation of the Lie algebra g,
ad : g→ gl(g) := L(g, g) by ad := Ad′ = TeAd.

We shall also use the right Maurer-Cartan form κr ∈ Ω1(G, g), given by κrg =

Tg(µ
g−1

) : TgG → g; similarly the left Maurer-Cartan form κl ∈ Ω1(G, g) is given
by κlg = Tg(µg−1) : TgG→ g.



380 Chapter VIII . Infinite Dimensional Differential Geometry 36.10

Lemma.

(1) LX(a) = RAd(a)X(a) for X ∈ g and a ∈ G.
(2) ad(X)Y = [X,Y ] for X,Y ∈ g.
(3) dAd = (ad ◦ κr).Ad = Ad.(ad ◦ κl) : TG→ L(g, g).
(4) The right Maurer-Cartan form κr satisfies the left Maurer-Cartan equa-

tion dκr − 1
2 [κr, κr]∧g = 0.

(5) The left Maurer-Cartan form κl satisfies the right Maurer-Cartan equation
dκl + 1

2 [κl, κl]∧g = 0.

Proof. ( 1 ) LX(a) = Te(µa).X = Te(µ
a).Te(µ

a−1 ◦ µa).X = RAd(a)X(a).

Proof of ( 2 ). We need some preparation. Let V be a convenient vector space. For
f ∈ C∞(G,V ) we define the left trivialized derivative Dlf ∈ C∞(G,L(g, V ))
by

(6) Dlf(x).X := df(x).Teµx.X = (LXf)(x).

For f ∈ C∞(G,R) and g ∈ C∞(G,V ) we have

Dl(f.g)(x).X = d(f.g)(Teµx.X)(7)

= df(Teµx.X).g(x) + f(x).dg(Teµx.X)

= (f.Dlg +Dlf ⊗ g)(x).X.

From the formula

DlDlf(x)(X)(Y ) = Dl(Dlf( ).Y )(x).X

= Dl(LY f)(x).X = LXLY f(x)

follows

(8) DlDlf(x)(X)(Y )−DlDlf(x)(Y )(X) = L[X,Y ]f(x) = Dlf(x).[X,Y ].

We consider now the linear isomorphism L : C∞(G, g) → X(G) given by Lf (x) =
Teµx.f(x) = Lf(x)(x) for f ∈ C∞(G, g). If h ∈ C∞(G,V ) we get (Lfh)(x) =

Dlh(x).f(x). For f, g ∈ C∞(G, g) and h ∈ C∞(G,R) we get in turn, using ( 8 )

and ( 7 ), generalized to the bilinear pairing L(g,R)× g→ R,

(LfLgh)(x) = Dl(Dlh( ).g( ))(x).f(x)

= DlDlh(x)(f(x))(g(x)) +Dlh(x).Dlg(x).f(x)

([Lf , Lg]h)(x) = D2
l h(x).(f(x), g(x)) +Dlh(x).Dlg(x).f(x)−
−D2

l h(x).(g(x), f(x))−Dlh(x).Dlf(x).g(x)

= Dlh(x).
(

[f(x), g(x)]g +Dlg(x).f(x)−Dlf(x).g(x)
)

[Lf , Lg] = L
(

[f, g]g +Dlg.f −Dlf.g
)
.(9)

Now we are able to prove the second assertion of the lemma. For X,Y ∈ g we will

apply ( 9 ) to f(x) = X and g(x) = Ad(x−1).Y . We have Lg = RY by ( 1 ), and

[Lf , Lg] = [LX , RY ] = 0 by 36.5 . So

0 = [LX , RY ](x) = [Lf , Lg](x)
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= L([X, (Ad ◦ ν)Y ]g +Dl((Ad ◦ ν)( ).X).Y − 0)(x)

[X,Y ] = [X,Ad(e)Y ] = −Dl((Ad ◦ ν)( ).X)(e).Y

= d(Ad( ).X)(e).Y = ad(X)Y.

Proof of ( 3 ). Let X,Y ∈ g and g ∈ G, and let c : R→ G be a smooth curve with
c(0) = e and c′(0) = X. Then we have

(dAd(RX(g))).Y = ∂
∂t |0Ad(c(t).g).Y = ∂

∂t |0Ad(c(t)).Ad(g).Y

= ad(X)Ad(g)Y = (ad ◦ κr)(RX(g)).Ad(g).Y,

and similarly for the second formula.

Proof of ( 4 ). We evaluate dκr on right invariant vector fields RX , RY for X,Y ∈ g.

(dκr)(RX , RY ) = RX(κr(RY ))−RY (κr(RX))− κr([RX , RY ])

= RX(Y )−RY (X) + [X,Y ] = 0− 0 + [κr(RX), κr(RY )].

( 5 ) can be proved similarly. �

36.11. Let ` : G×M →M be a smooth left action of a Lie group G, so `∨ : G→
Diff(M) is a group homomorphism. Then we have partial mappings `a : M → M
and `x : G→M , given by `a(x) = `x(a) = `(a, x) = a.x.

For any X ∈ g we define the fundamental vector field ζX = ζMX ∈ X(M) by
ζX(x) = Te(`

x).X = T(e,x)`.(X, 0x).

Lemma. In this situation, the following assertions hold:

(1) ζ : g→ X(M) is a linear mapping.
(2) Tx(`a).ζX(x) = ζAd(a)X(a.x).
(3) RX × 0M ∈ X(G×M) is `-related to ζX ∈ X(M).
(4) [ζX , ζY ] = −ζ[X,Y ].

Proof. ( 1 ) is clear.

( 2 ) We have `a`
x(b) = abx = aba−1ax = `ax conja(b), so

Tx(`a).ζX(x) = Tx(`a).Te(`
x).X = Te(`a ◦ `x).X

= Te(`
ax).Ad(a).X = ζAd(a)X(ax).

( 3 ) We have ` ◦ (Id×`a) = ` ◦ (µa × Id) : G×M →M , so

ζX(`(a, x)) = T(e,ax)`.(X, 0ax) = T`.(Id×T (`a)).(X, 0x)

= T`.(T (µa)× Id).(X, 0x) = T`.(RX × 0M )(a, x).

( 4 ) [RX ×0M , RY ×0M ] = [RX , RY ]×0M = −R[X,Y ]×0M is `-related to [ζX , ζY ]

by ( 3 ) and by 32.10 . On the other hand, −R[X,Y ] × 0M is `-related to −ζ[X,Y ]

by ( 3 ) again. Since ` is surjective we get [ζX , ζY ] = −ζ[X,Y ]. �
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36.12. Let r : M ×G→M be a right action, so r∨ : G→ Diff(M) is a group anti
homomorphism. We will use the following notation: ra : M →M and rx : G→M ,
given by rx(a) = ra(x) = r(x, a) = x.a.

For any X ∈ g we define the fundamental vector field ζX = ζMX ∈ X(M) by
ζX(x) = Te(rx).X = T(x,e)r.(0x, X).

Lemma. In this situation the following assertions hold:

(1) ζ : g→ X(M) is a linear mapping.
(2) Tx(ra).ζX(x) = ζAd(a−1)X(x.a).
(3) 0M × LX ∈ X(M ×G) is r-related to ζX ∈ X(M).
(4) [ζX , ζY ] = ζ[X,Y ]. �

37. Bundles and Connections

37.1. Definition. A (fiber) bundle (p : E → M,S) = (E, p,M, S) consists of
smooth manifolds E, M , S, and a smooth mapping p : E →M . Furthermore, each
x ∈M has an open neighborhood U such that E | U := p−1(U) is diffeomorphic to
U × S via a fiber respecting diffeomorphism:

E | U
ψ //

p
((

U × S

pr1vv
U

E is called total space, M is called base space or basis, p is a final surjective
smooth mapping, called projection, and S is called standard fiber. (U,ψ) as
above is called a fiber chart.

A collection of fiber charts (Uα, ψα) such that (Uα) is an open cover of M , is called
a fiber bundle atlas. If we fix such an atlas, then ψα ◦ ψβ−1(x, s) = (x, ψαβ(x, s)),
where ψαβ : (Uα ∩ Uβ) × S → S is smooth, and where ψαβ(x, ) is a diffeo-
morphism of S for each x ∈ Uαβ := Uα ∩ Uβ . These mappings ψαβ are called
transition functions of the bundle. They satisfy the cocycle condition:
ψαβ(x) ◦ ψβγ(x) = ψαγ(x) for x ∈ Uαβγ and ψαα(x) = IdS for x ∈ Uα. Therefore,
the collection (ψαβ) is called a cocycle of transition functions.

Given an open cover (Uα) of a manifold M and a cocycle of transition functions
(ψαβ) we may construct a fiber bundle (p : E →M,S), as in finite dimensions.

37.2. Let (p : E → M,S) be a fiber bundle. We consider the fiber linear tan-
gent mapping Tp : TE → TM and its kernel ker Tp =: V E, which is called the
vertical bundle of E. It is a locally splitting vector subbundle of the tangent
bundle TE, by the following argument: E looks locally like UM × US , where UM
is c∞-open in a modeling space WM of M and US in a modeling space WS of S.
Then TE looks locally like UM ×WM ×US×WS , and the mapping Tp corresponds
to (x, v, y, w) 7→ (x, v), so that V E looks locally like UM × 0× US ×WS .

Definition. A connection on the fiber bundle (p : E →M,S) is a vector valued
1-form Φ ∈ Ω1(E;V E) with values in the vertical bundle V E such that Φ ◦Φ = Φ
and imΦ = V E; so Φ is just a projection TE → V E.
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The kernel ker Φ is a sub vector bundle of TE, it is called the space of horizontal
vectors or the horizontal bundle, and it is denoted by HE. Clearly, TE =
HE ⊕ V E and TuE = HuE ⊕ VuE for u ∈ E.

Now we consider the mapping (Tp, πE) : TE → TM ×M E. Then by definition
(Tp, πE)−1(0p(u), u) = VuE, so (Tp, πE) | HE : HE → TM ×M E is a fiber linear
isomorphism, which may be checked in a chart. Its inverse is denoted by

C := ((Tp, πE) | HE)−1 : TM ×M E → HE ↪→ TE.

So C : TM ×M E → TE is fiber linear over E and a right inverse for (Tp, πE). C
is called the horizontal lift associated to the connection Φ.

Note the formula Φ(ξu) = ξu − C(Tp.ξu, u) for ξu ∈ TuE. So we can equally well
describe a connection Φ by specifying C. Then we call Φ vertical projection
and χ := idTE − Φ = C ◦ (Tp, πE) will be called horizontal projection.

37.3. Curvature. If Φ : TE → V E is a connection on the bundle (p : E →M,S),

then as in 35.11 the curvature R of Φ is given by

2R = [Φ,Φ] = [Id−Φ, Id−Φ] ∈ Ω2(E;V E).

The cocurvature R̄ vanishes since the vertical bundle V E is integrable. We have

R(X,Y ) = 1
2 [Φ,Φ](X,Y ) = Φ[χX,χY ] by 35.11 , so R is an obstruction against

involutivity of the horizontal subbundle in the following sense: If the curvature
R vanishes, then horizontal kinematic vector fields on E also have a horizontal
Lie bracket. Note that for vector fields ξ, η ∈ X(M) and their horizontal lifts
Cξ,Cη ∈ X(E) we have R(Cξ,Cη) = [Cξ,Cη]−C([ξ, η]). Since the vertical bundle

V E is even integrable, by 35.12 we have the Bianchi identity [Φ,R] = 0.

37.4. Pullback. Let (p : E → M,S) be a fiber bundle, and consider a smooth
mapping f : N → M . Let us consider the pullback N ×(f,M,p) E := {(n, e) ∈
N × E : f(n) = p(e)}; we will denote it by f∗E. The following diagram sets up
some further notation for it:

f∗E
p∗f //

f∗p

��

E

p

��
N

f // M.

Proposition. In the situation above we have:

(1) (f∗E, f∗p,N, S) is a fiber bundle, and p∗f is a fiberwise diffeomorphism.
(2) If Φ ∈ Ω1(E;TE) is a connection on the bundle E, then the vector valued

form f∗Φ, given by (f∗Φ)u(X) := Tu(p∗f)−1.Φ.Tu(p∗f).X for X ∈ TuE, is a
connection on the bundle f∗E. The forms f∗Φ and Φ are p∗f -related in the

sense of 35.13 .
(3) The curvatures of f∗Φ and Φ are also p∗f -related.
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Proof. ( 1 ) If (Uα, ψα) is a fiber bundle atlas of (p : E → M,S) in the sense of

37.1 , then (f−1(Uα), (f∗p,pr2 ◦ψα ◦ p∗f)) is visibly a fiber bundle atlas for the

pullback bundle (f∗E, f∗p,N, S). ( 2 ) is obvious. ( 3 ) follows from ( 2 ) and

35.13.7 . �

37.5. Local description. Let Φ be a connection on (p : E → M,S). Let us fix
a fiber bundle atlas (Uα) with transition functions (ψαβ), and let us consider the
connection ((ψα)−1)∗Φ ∈ Ω1(Uα × S;Uα × TS), which may be written in the form

(((ψα)−1)∗Φ)(ξx, ηy) =: −Γα(ξx, y) + ηy for ξx ∈ TxUα and ηy ∈ TyS,
since it reproduces vertical vectors. The Γα are given by

(0x,Γ
α(ξx, y)) := −T (ψα).Φ.T (ψα)−1.(ξx, 0y).

We consider Γα as an element of the space Ω1(Uα;X(S)), a 1-form on Uα with
values in the Lie algebra X(S) of all kinematic vector fields on the standard fiber.
The Γα are called the Christoffel forms of the connection Φ with respect to
the bundle atlas (Uα, ψα).

Lemma. The transformation law for the Christoffel forms is

Ty(ψαβ(x, )).Γβ(ξx, y) = Γα(ξx, ψαβ(x, y))− Tx(ψαβ( , y)).ξx.

The curvature R of Φ satisfies

(ψ−1
α )∗R = dΓα + 1

2 [Γα,Γα]∧X(S).

Here dΓα is the exterior derivative of the 1-form Γα ∈ Ω1(Uα,X(S)) with values in
the convenient vector space X(S).

The formula for the curvature is the Maurer-Cartan formula which in this
general setting appears only on the level of local description.

Proof. From (ψα ◦ (ψβ)−1)(x, y) = (x, ψαβ(x, y)) we get that
T (ψα ◦ (ψβ)−1).(ξx, ηy) = (ξx, T(x,y)(ψαβ).(ξx, ηy)), and thus

T (ψ−1
β ).(0x,Γ

β(ξx, y)) = −Φ(T (ψ−1
β )(ξx, 0y)) =

= −Φ(T (ψ−1
α ).T (ψα ◦ ψ−1

β ).(ξx, 0y)) =

= −Φ(T (ψ−1
α )(ξx, T(x,y)(ψαβ)(ξx, 0y))) =

= −Φ(T (ψ−1
α )(ξx, 0ψαβ(x,y)))− Φ(T (ψ−1

α )(0x, T(x,y)ψαβ(ξx, 0y))) =

= T (ψ−1
α ).(0x,Γ

α(ξx, ψαβ(x, y)))− T (ψ−1
α )(0x, Tx(ψαβ( , y)).ξx).

This implies the transformation law.

For the curvature R of Φ we have by 37.3 and 37.4.3

(ψ−1
α )∗R ((ξ1, η1), (ξ2, η2)) =

= (ψ−1
α )∗Φ [(Id−(ψ−1

α )∗Φ)(ξ1, η1), (Id−(ψ−1
α )∗Φ)(ξ2, η2)] =

= (ψ−1
α )∗Φ[(ξ1,Γα(ξ1)), (ξ2,Γα(ξ2))] =

= (ψ−1
α )∗Φ

(
[ξ1, ξ2], ξ1Γα(ξ2)− ξ2Γα(ξ1) + [Γα(ξ1),Γα(ξ2)]

)
=
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= −Γα([ξ1, ξ2]) + ξ1Γα(ξ2)− ξ2Γα(ξ1) + [Γα(ξ1),Γα(ξ2)] =

= dΓα(ξ1, ξ2) + [Γα(ξ1),Γα(ξ2)]X(S). �

37.6. Parallel transport. Let Φ be a connection on a bundle (p : E → M,S),
and let c : (a, b)→M be a smooth curve with 0 ∈ (a, b), c(0) = x. The parallel
transport along c is a smooth mapping Ptc : U → E, where U is a neighborhood
of Diag(a, b) ×(c◦pr2,M,p) E in (a, b) × (a, b) ×(c◦pr2,M,p) E, such that the following
properties hold:

(1) U∩((a, b)×{s}×{uc(s)}) is connected for each s ∈ (a, b) and each uc(s) ∈ Ec(s).
(2) p(Pt(c, t, s, uc(s))) = c(t) if defined, and Pt(c, s, s, uc(s)) = uc(s).

(3) Φ( ddt Pt(c, t, s, uc(s))) = 0 if defined.
(4) If Pt(c, t, s, uc(s)) exists then Pt(c, r, s, uc(s)) = Pt(c, r, t,Pt(c, t, s, uc(s))) in

the sense that existence of both sides is equivalent and we have equality.

(5) U is maximal for properties ( 1 ) to ( 4 ).

(6) Pt also depends smoothly on c in the Frölicher space C∞((a, b),M), see 23.1 ,
in the following sense: For any smooth mapping c : R× (a, b)→ M we have:
For each s ∈ (a, b), each r ∈ R, and each u ∈ Ec(r,s) there are a neighborhood
Uc,r,s,u of (r, s, s, u) in R×(a, b)×(a, b)×(c◦pr1,3,M,p)E ⊂ R×(a, b)×(a, b)×E
such that Uc,r,s,u 3 (r′, t, s′, u′) 7→ Pt(c(r′, ), t, s′, u′) is defined and smooth.

(7) Reparameterization invariance: If f : (a′, b′)→ (a, b) is smooth, then we have
Pt(c, f(t), f(s), uc(f(s))) = Pt(c ◦ f, t, s, uc(f(s)))

Requirements ( 1 ) – ( 5 ) are essential. ( 6 ) is a further requirement which is

not necessary for the uniqueness result below, and ( 7 ) is a consequence of this
uniqueness result.

Proposition. The parallel transport along c is unique if it exists.

Proof. Consider the pullback bundle (c∗E, c∗p, (a, b), S) and the pullback con-
nection c∗Φ on it. We shall need the horizontal lift C : T (a, b) ×(a,b) c

∗E →
T (c∗E) = (Tc)∗(TE) associated to c∗Φ, from 37.2 . Consider the constant vec-
tor field ∂ ∈ X((a, b)) and its horizontal lift C(∂) ∈ X(c∗E) which is given by
C(∂)(us) = C(∂|s, us) ∈ Tus(c∗E). Now from the properties of the parallel trans-
port we see that t 7→ Pt(c(s+ ), t, s, us) is a flow line of the horizontal vector

field C(∂) with initial value us = (s, uc(s)) ∈ (c∗E)s ∼= {s} × Ec(s). ( 3 ) says

that it has the flow property, so that by uniqueness of the flow 32.16 we see that

Pt(c, t) = Fl
C(∂)
t is unique if it exists. �

At this place one could consider complete connections (those whose parallel trans-
port exists globally), which then give rise to holonomy groups, even for fiber bundles
without structure groups. In finite dimensions some deep results are available, see
[Kolář et al., 1993, pp81].



386 Chapter VIII . Infinite Dimensional Differential Geometry 37.8

37.7. Definition. Let G be a Lie group, and let (p : E →M,S) be a fiber bundle

as in 37.1 . A G-bundle structure on the fiber bundle consists of the following
data:

(1) A left action ` : G× S → S of the Lie group on the standard fiber.
(2) A fiber bundle atlas (Uα, ψα) whose transition functions (ψαβ) act on S via

the G-action: There is a family of smooth mappings (ϕαβ : Uαβ → G) which
satisfies the cocycle condition ϕαβ(x)ϕβγ(x) = ϕαγ(x) for x ∈ Uαβγ and
ϕαα(x) = e, the unit in the group, such that ψαβ(x, s) = `(ϕαβ(x), s) =
ϕαβ(x).s.

A fiber bundle with a G-bundle structure is called a G-bundle. A fiber bundle
atlas as in ( 2 ) is called a G-atlas, and the family (ϕαβ) is also called a cocycle
of transition functions, but now for the G-bundle.

To be more precise, two G-atlas are said to be equivalent (to describe the same
G-bundle), if their union is also a G-atlas. This translates to the two cocycles
of transition functions as follows, where we assume that the two coverings of M
are the same (by passing to the common refinement, if necessary): (ϕαβ) and
(ϕ′αβ) are called cohomologous if there is a family (τα : Uα → G) such that

ϕαβ(x) = τα(x)−1.ϕ′αβ(x).τβ(x) holds for all x ∈ Uαβ .

In ( 2 ) one should specify only an equivalence class of G-bundle structures or only
a cohomology class of cocycles of G-valued transition functions. From any open
cover (Uα) of M , some cocycle of transition functions (ϕαβ : Uαβ → G) for it,
and a left G-action on a manifold S, we may construct a G-bundle, which depends
only on the cohomology class of the cocycle. By some abuse of notation, we write
(p : E →M,S,G) for a fiber bundle with specified G-bundle structure.

37.8. Definition. A principal (fiber) bundle (p : P → M,G) is a G-bundle
with typical fiber a Lie group G, where the left action of G on G is just the left
translation.

So by 37.7 we are given a bundle atlas (Uα, ϕα : P |Uα → Uα × G) such that

we have (ϕα ◦ ϕ−1
β )(x, a) = (x, ϕαβ(x).a) for the cocycle of transition functions

(ϕαβ : Uαβ → G). This is now called a principal bundle atlas. Clearly, the
principal bundle is uniquely determined by the cohomology class of its cocycle of
transition functions.

Each principal bundle admits a unique right action r : P × G → P , called the
principal right action, given by ϕα(r(ϕ−1

α (x, a), g)) = (x, ag). Since left and
right translation on G commute, this is well defined. We write r(u, g) = u.g when
the meaning is clear. The principal right action is obviously free and for any
ux ∈ Px the partial mapping rux = r(ux, ) : G → Px is a diffeomorphism
onto the fiber through ux, whose inverse is denoted by τux : Px → G. These
inverses together give a smooth mapping τ : P ×M P → G, whose local expres-
sion is τ(ϕ−1

α (x, a), ϕ−1
α (x, b)) = a−1.b. This mapping is uniquely determined by

the implicit equation r(ux, τ(ux, vx)) = vx, thus we also have τ(ux.g, u
′
x.g
′) =

g−1.τ(ux, u
′
x).g′ and τ(ux, ux) = e.
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37.9. Lemma. Let p : P → M be a surjective smooth mapping admitting local
smooth sections near each point in M , and let G be a Lie group which acts freely
on P such that the orbits of the action are exactly the fibers p−1(x) of p. If the
unique mapping τ : P ×M P → G satisfying ux.τ(ux, vx) = vx is smooth, then
(p : P →M,G) is a principal fiber bundle.

Proof.Let the action be a right action by using the group inversion if neces-
sary. Let sα : Uα → P be local sections (right inverses) for p : P → M such
that (Uα) is an open cover of M . Let ϕ−1

α : Uα × G → P |Uα be given by
ϕ−1
α (x, a) = sα(x).a, with smooth inverse ϕα(ux) = (x, τ(sα(x), ux)), a fiber re-

specting diffeomorphism ϕα : P |Uα → Uα×G. So (Uα, ϕα) is already a fiber bundle
atlas. Clearly, we have τ(ux, u

′
x.g) = τ(ux, u

′
x).g and ϕα(ux) = (x, τ(sα(x), ux)),

so ϕαϕ
−1
β (x, g) = ϕα(sβ(x).g) = (x, τ(sα(x), sβ(x).g)) = (x, τ(sα(x), sβ(x)).g), and

(Uα, ϕα) is a principal bundle atlas. �

37.10. Remarks. In the proof of Lemma 37.9 we have seen that a principal
bundle atlas of a principal fiber bundle (p : P → M,G) is already determined
if we specify a family of smooth sections of P whose domains of definition cover

the base M . Lemma 37.9 could serve as an equivalent definition for a principal
bundle. From the lemma follows, that the pullback f∗P over a smooth mapping
f : M ′ →M is also a principal fiber bundle.

37.11. Homomorphisms. Let χ : (p : P → M,G) → (p′ : P ′ → M ′, G) be a
principal fiber bundle homomorphism, i.e., a smooth G-equivariant mapping
χ : P → P ′. Then, obviously, the diagram

(a) P
χ //

p

��

P ′

p′

��
M

χ̄
// M ′

commutes for a uniquely determined smooth mapping χ̄ : M → M ′. For each
x ∈ M the mapping χx := χ|Px : Px → P ′χ̄(x) is G-equivariant and therefore a

diffeomorphism, so diagram (a) is a pullback diagram.

But the most general notion of a homomorphism of principal bundles is the follow-
ing. Let Φ : G → G′ be a homomorphism of Lie groups. χ : (p : P → M,G) →
(p′ : P ′ →M ′, G′) is called a homomorphism over Φ of principal bundles, if
χ : P → P ′ is smooth and χ(u.g) = χ(u).Φ(g) holds. Then χ is fiber respecting, so
diagram (a) again makes sense, but it is not a pullback diagram in general.

If χ covers the identity on the base, it is called a reduction of the structure
group G′ to G for the principal bundle (p′ : P ′ →M ′, G′) — the name comes from
the case, when Φ is the embedding of a subgroup.

By the universal property of the pullback any general homomorphism χ of principal
fiber bundles over a group homomorphism can be written as the composition of a
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reduction of structure groups and a pullback homomorphism as follows, where we
also indicate the structure groups:

(b) (P,G) //

p

((

(χ̄∗P ′, G′) //

��

(P ′, G′)

p′

��
M

χ̄ // M ′.

37.12. Associated bundles. Let (p : P → M,G) be a principal bundle, and let
` : G×S → S be a left action of the structure group G on a manifold S. We consider
the right action R : (P × S)×G→ P × S, given by R((u, s), g) = (u.g, g−1.s).

Theorem.In this situation we have:

(1) The space P ×G S of orbits of the action R carries a unique smooth manifold
structure such that the quotient map q : P × S → P ×G S is a final smooth
mapping.

(2) (P ×G S, p̄,M, S,G) is a G-bundle in a canonical way, where p̄ : P ×G S →M
is given by

(a) P × S
q //

pr1

��

P ×G S

p̄

��
P

p // M.

In this diagram qu : {u} × S → (P ×G S)p(u) is a diffeomorphism for each
u ∈ P .

(3) (P × S, q, P ×G S,G) is a principal fiber bundle with principal action R.
(4) If (Uα, ϕα : P |Uα → Uα × G) is a principal bundle atlas with cocycle of

transition functions (ϕαβ : Uαβ → G), then together with the left action ` :
G× S → S this is also a cocycle for the G-bundle (P ×G S, p̄,M, S,G).

Notation. (P ×G S, p̄,M, S,G) is called the associated bundle for the action
` : G × S → S. We will also denote it by P [S, `] or simply P [S], and we will
write p for p̄ if no confusion is possible. We also define the smooth mapping τ =
τS : P ×M P [S, `] → S by τ(ux, vx) := q−1

ux (vx). It satisfies τ(u, q(u, s)) = s,

q(ux, τ(ux, vx)) = vx, and τ(ux.g, vx) = g−1.τ(ux, vx). In the special situation,
where S = G and the action is left translation, so that P [G] = P , this mapping

coincides with τ considered in 37.8 .

Proof. In the setting of diagram (a) the mapping p ◦ pr1 is constant on the R-
orbits, so p̄ exists as a mapping. Let (Uα, ϕα : P |Uα → Uα × G) be a principal
bundle atlas with transition functions (ϕαβ : Uαβ → G). We define ψ−1

α : Uα×S →
p̄−1(Uα) ⊂ P ×G S by ψ−1

α (x, s) = q(ϕ−1
α (x, e), s), which is fiber respecting. For

each orbit in p̄−1(x) ⊂ P ×GS there is exactly one s ∈ S such that this orbit passes
through (ϕ−1

α (x, e), s), namely s = τG(ux, ϕ
−1
α (x, e))−1.s′ if (ux, s

′) is the orbit,
since the principal right action is free. Thus, ψ−1

α (x, ) : S → p̄−1(x) is bijective.
Furthermore,

ψ−1
β (x, s) = q(ϕ−1

β (x, e), s)
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= q(ϕ−1
α (x, ϕαβ(x).e), s) = q(ϕ−1

α (x, e).ϕαβ(x), s)

= q(ϕ−1
α (x, e), ϕαβ(x).s) = ψ−1

α (x, ϕαβ(x).s),

so ψαψ
−1
β (x, s) = (x, ϕαβ(x).s). Therefore, (Uα, ψα) is a G-atlas for P ×G S and

makes it a smooth manifold and a G-bundle. The defining equation for ψα shows
that q is smooth and admits local smooth sections, so it is final, consequently the
smooth structure on P ×GS is uniquely defined, and p̄ is smooth. By the definition
of ψα, the diagram

(b) p−1(Uα)× S
ϕα×Id //

q

��

Uα ×G× S

Id×`
��

p̄−1(Uα)
ψα // Uα × S

commutes; since its horizontal arrows are diffeomorphisms we conclude that qu :

{u} × S → p̄−1(p(u)) is a diffeomorphism. So ( 1 ), ( 2 ), and ( 4 ) are checked.

( 3 ) follows directly from lemma 37.9 . We give below an explicit chart construc-
tion. We rewrite diagram (b) in the following form:

(c) p−1(Uα)× S = // q−1(Vα)
λα //

q

��

Vα ×G

pr1

��
p̄−1(Uα)

= // Vα

Here Vα := p̄−1(Uα) ⊂ P ×GS, and the diffeomorphism λα is defined by stipulating
λ−1
α (ψ−1

α (x, s), g) := (ϕ−1
α (x, g), g−1.s). Then we have

λ−1
β (ψ−1

α (x, s), g) = λ−1
β (ψ−1

β (x, ϕβα(x).s), g)

= (ϕ−1
β (x, g), g−1.ϕβα(x).s)

= (ϕ−1
α (x, ϕαβ(x).g), g−1.ϕαβ(x)−1.s)

= λ−1
α (ψ−1

α (x, s), ϕαβ(x).g),

so λαλ
−1
β (ψ−1

α (x, s), g) = (ψ−1
α (x, s), ϕαβ(x).g), and (q : P × S → P ×G S,G) is

a principal bundle with structure group G and the same cocycle (ϕαβ) we started
with. �

37.13. Corollary. Let (p : E → M,S,G) be a G-bundle, specified by a cocycle of
transition functions (ϕαβ) with values in G and a left action ` of G on S. Then
from the cocycle of transition functions we may glue a unique principal bundle
(p : P →M,G) such that E = P [S, `]. �

37.14. Equivariant mappings and associated bundles. (1) Let (p : P →
M,G) be a principal fiber bundle, and consider two left actions of G, ` : G×S → S
and `′ : G × S′ → S′. Let furthermore f : S → S′ be a G-equivariant smooth
mapping, so f(g.s) = g.f(s) or f ◦ `g = `′g ◦ f . Then IdP ×f : P × S → P × S′ is
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equivariant for the actions R : (P ×S)×G→ P ×S and R′ : (P ×S′)×G→ P ×S′
and is thus a homomorphism of principal bundles, so there is an induced mapping

(a) P × S
Id×f //

q

��

P × S′

q′

��
P ×G S

Id×Gf // P ×G S′,

which is fiber respecting over M and a homomorphism of G-bundles in the sense

of the definition 37.15 below.

(2) Let χ : (p : P → M,G) → (p′ : P ′ → M ′, G) be a principal fiber bundle

homomorphism as in 37.11 . Furthermore, we consider a smooth left action ` :
G × S → S. Then χ × IdS : P × S → P ′ × S is G-equivariant and induces a
mapping χ×G IdS : P ×G S → P ′×G S, which is fiber respecting over M , fiberwise
a diffeomorphism, and a homomorphism of G-bundles in the sense of definition

37.15 below.

(3) Now we consider the situations of ( 1 ) and ( 2 ) at the same time. We have
two associated bundles P [S, `] and P ′[S′, `′]. Let χ : (p : P → M,G) → (p′ :
P ′ → M ′, G) be a principal fiber bundle homomorphism, and let f : S → S′ be a
G-equivariant mapping. Then χ × f : P × S → P ′ × S′ is clearly G-equivariant
and therefore induces a mapping χ ×G f : P [S, `] → P ′[S′, `′] which also is a
homomorphism of G-bundles.

(4) Let S be a point. Then P [S] = P ×G S = M . Furthermore, let y ∈ S′ be
a fixpoint of the action `′ : G × S′ → S′, then the inclusion i : {y} ↪→ S′ is G-
equivariant, thus IdP ×i induces IdP ×Gi : M = P [{y}]→ P [S′], which is a global
section of the associated bundle P [S′].

If the action of G on S is trivial, i.e., g.s = s for all s ∈ S, then the associated
bundle is trivial: P [S] = M ×S. For a trivial principal fiber bundle any associated
bundle is trivial.

37.15. Definition. In the situation of 37.14 , a smooth fiber respecting map-
ping γ : P [S, `] → P ′[S′, `′] covering a smooth mapping γ̄ : M → M ′ of the bases
is called a homomorphism of G-bundles, if the following conditions are satis-
fied: P is isomorphic to the pullback γ̄∗P ′, and the local representations of γ in
pullback-related fiber bundle atlas belonging to the two G-bundles are fiberwise
G-equivariant.

Let us describe this in more detail now. Let (U ′α, ψ
′
α) be a G-atlas for P ′[S′, `′] with

cocycle of transition functions (ϕ′αβ), belonging to the principal fiber bundle atlas

(U ′α, ϕ
′
α) of (p′ : P ′ → M ′, G). Then the pullback-related principal fiber bundle

atlas (Uα = γ̄−1(U ′α), ϕα) for P = γ̄∗P ′, as described in the proof of 37.4 , has the
cocycle of transition functions (ϕαβ = ϕ′αβ ◦ γ̄). It induces the G-atlas (Uα, ψα)

for P [S, `]. Then (ψ′α ◦ γ ◦ ψ−1
α )(x, s) = (γ̄(x), γα(x, s)), and γα(x, ) : S → S′ is

required to be G-equivariant for all α and all x ∈ Uα.

Lemma. Let γ : P [S, `] → P ′[S′, `′] be a homomorphism of G-bundles as defined
above. Then there is a homomorphism χ : (p : P → M,G)→ (p′ : P ′ → M ′, G) of
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principal bundles and a G-equivariant mapping f : S → S′ such that γ = χ×G f :
P [S, `]→ P ′[S′, `′].

Proof. The homomorphism χ : (p : P → M,G) → (p′ : P ′ → M ′, G) of principal
fiber bundles is already determined by the requirement that P = γ̄∗P ′, and we
have γ̄ = χ̄. The G-equivariant mapping f : S → S′ can be read off the following
diagram

(a) P ×M P [S]
τS //

χ×Mγ
��

S

f

��
P ′ ×M ′ P ′[S′]

τS
′

// S′,

which by the assumptions is well defined in the right column. �

So a homomorphism of G-bundles is described by the whole triple (χ : P → P ′, f :
S → S′ (G-equivariant), γ : P [S]→ P ′[S′]), such that diagram (a) commutes.

37.16. Sections of associated bundles. Let (p : P → M,G) be a principal
fiber bundle and ` : G × S → S a left action. Let C∞(P, S)G denote the space
of all smooth mappings f : P → S which are G-equivariant in the sense that
f(u.g) = g−1.f(u) holds for g ∈ G and u ∈ P .

Theorem. The sections of the associated bundle P [S, `] correspond exactly to the
G-equivariant mappings P → S; we have a bijection C∞(P, S)G ∼= C∞(M ← P [S]).

This result follows from 37.14 and 37.15 . Since it is very important we include a
direct proof. That this is in general not an isomorphism of smooth structures will

become clear in the proof of 42.21 below.

Proof. If f ∈ C∞(P, S)G we construct sf ∈ C∞(M ← P [S]) in the following way.
graph(f) = (Id, f) : P → P × S is G-equivariant, since we have (Id, f)(u.g) =
(u.g, f(u.g)) = (u.g, g−1.f(u)) = ((Id, f)(u)).g. So it induces a smooth section

sf ∈ C∞(M ← P [S]) as seen from 37.14 and the diagram:

(a) P × {point} P
(Id,f) //

p

��

P × S

q

��
M

sf // P [S].

If, conversely, s ∈ C∞(M ← P [S]) we define fs ∈ C∞(P, S)G by fs := τS ◦
(IdP ×Ms) : P = P ×M M → P ×M P [S] → S. This is G-equivariant since

fs(ux.g) = τS(ux.g, s(x)) = g−1.τS(ux, s(x)) = g−1.fs(ux) by 37.12 . The two
constructions are inverse to each other since we have

fs(f)(u) = τS(u, sf (p(u))) = τS(u, q(u, f(u))) = f(u),

sf(s)(p(u)) = q(u, fs(u)) = q(u, τS(u, s(p(u)))) = s(p(u)). �
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37.17. The bundle of gauges. If (p : P → M,G) is a principal fiber bundle we
denote by Aut(P ) the group of all G-equivariant diffeomorphisms χ : P → P . Then
p◦χ = χ̄◦p for a unique diffeomorphism χ̄ of M , so there is a group homomorphism
from Aut(P ) into the group Diff(M) of all diffeomorphisms of M . The kernel of
this homomorphism is called Gau(P ), the group of gauge transformations. So
Gau(P ) is the space of all diffeomorphisms χ : P → P which satisfy p ◦ χ = p and
χ(u.g) = χ(u).g.

Theorem. The group Gau(P ) of gauge transformations is equal to the space of
sections C∞(P, (G, conj))G ∼= C∞(M ← P [G, conj]).

If (p : P → M,G) is a finite dimensional principal bundle then there exists a
structure of a Lie group on Gau(P ) = C∞(M ← P [G, conj]), modeled on C∞c (M ←
P [g,Ad]). This will be proved in 42.21 below.

Proof. We again use the mapping τ : P×MP → G from 37.8 . For χ ∈ Gau(P ) we

define fχ ∈ C∞(P, (G, conj))G by fχ := τ ◦(Id, χ). Then fχ(u.g) = τ(u.g, χ(u.g)) =
g−1.τ(u, χ(u)).g = conjg−1 fχ(u), so fχ is indeed G-equivariant.

If conversely f ∈ C∞(P, (G, conj))G is given, we define χf : P → P by χf (u) :=
u.f(u). It is easy to check that χf is indeed in Gau(P ) and that the two construc-
tions are inverse to each other, namely

χf (ug) = ugf(ug) = ugg−1f(u)g = χf (u)g,

fχf (u) = τ(u, χf (u)) = τ(u, u.f(u)) = τ(u, u)f(u) = f(u),

χfχ(u) = ufχ(u) = uτ(u, χ(u)) = χ(u). �

37.18. Tangent bundles and vertical bundles. Let (p : E →M,S) be a fiber
bundle. Recall the vertical subbundle πE : V E = {ξ ∈ TE : Tp.ξ = 0} → E of TE

from 37.2 .

Theorem. Let (p : P → M,G) be a principal fiber bundle with principal right
action r : P × G → P . Let ` : G × S → S be a left action. Then the following
assertions hold:

(1) (Tp : TP → TM, TG) is a principal fiber bundle with principal right action
Tr : TP × TG → TP , where the structure group TG is the tangent group of

G, see 38.10 .
(2) The vertical bundle (π : V P → P, g) of the principal bundle is trivial as a

vector bundle over P : V P ∼= P × g.
(3) The vertical bundle of the principal bundle as bundle over M is a principal

bundle: (p ◦ π : V P →M,TG).
(4) The tangent bundle of the associated bundle P [S, `] is given by

T (P [S, `]) = TP [TS, T`].
(5) The vertical bundle of the associated bundle P [S, `] is given by

V (P [S, `]) = P [TS, T2`] = P ×G TS.
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Proof. Let (Uα, ϕα : P |Uα → Uα × G) be a principal fiber bundle atlas with
cocycle of transition functions (ϕαβ : Uαβ → G). Since T is a functor which
respects products, (TUα, Tϕα : TP |TUα → TUα × TG) is a principal fiber bundle
atlas with cocycle of transition functions (Tϕαβ : TUαβ → TG), describing the
principal fiber bundle (Tp : TP → TM, TG). The assertion about the principal

action is obvious. So ( 1 ) follows. For completeness’ sake, we include here the
transition formula for this atlas in the right trivialization of TG:

T (ϕα ◦ ϕ−1
β )(ξx, Te(µ

g).X) = (ξx, Te(µ
ϕαβ(x).g).(δrϕαβ(ξx) + Ad(ϕαβ(x))X)),

where δrϕαβ ∈ Ω1(Uαβ , g) is the right logarithmic derivative of ϕαβ , see 38.1
below.

( 2 ) The mapping (u,X) 7→ Te(ru).X = T(u,e)r.(0u, X) is a vector bundle isomor-
phism P × g→ V P over P .

( 3 ) Obviously, Tr : TP × TG→ TP is a free right action which acts transitively

on the fibers of Tp : TP → TM . Since V P = (Tp)−1(0M ), the bundle V P →M is
isomorphic to TP |0M and Tr restricts to a free right action, which is transitive on

the fibers, so by lemma 37.9 the result follows.

( 4 ) The transition functions of the fiber bundle P [S, `] are given by the expression
`◦ (ϕαβ× IdS) : Uαβ×S → G×S → S. Then the transition functions of T (P [S, `])
are T (` ◦ (ϕαβ × IdS)) = T` ◦ (Tϕαβ × IdTS) : TUαβ ×TS → TG×TS → TS, from
which the result follows.

( 5 ) Vertical vectors in T (P [S, `]) have local representations (0x, ηs) ∈ TUαβ ×
TS. Under the transition functions of T (P [S, `]) they transform as T (` ◦ (ϕαβ ×
IdS)).(0x, ηs) = T`.(0ϕαβ(x), ηs) = T (`ϕαβ(x)).ηs = T2`.(ϕαβ(x), ηs), and this im-
plies the result �

37.19. Principal connections. Let (p : P → M,G) be a principal fiber bundle.

Recall from 37.2 that a (general) connection on P is a fiber projection Φ : TP →
V P , viewed as a 1-form in Ω1(P ;V P ) ⊂ Ω1(P ;TP ). Such a connection Φ is
called a principal connection if it is G-equivariant for the principal right action
r : P × G → P , so that T (rg).Φ = Φ.T (rg) and Φ is rg-related to itself, or

(rg)∗Φ = Φ in the sense of 35.13 , for all g ∈ G. By theorem 35.13.7 , the

curvature R = 1
2 .[Φ,Φ] is then also rg-related to itself for all g ∈ G.

Recall from 37.18.2 that the vertical bundle of P is trivialized as a vector bundle

over P by the principal action. So ω(Xu) := Te(ru)−1.Φ(Xu) ∈ g, and in this way
we get a g-valued 1-form ω ∈ Ω1(P, g), which is called the (Lie algebra valued)

connection form of the connection Φ. Recall from 36.12 the fundamental vector
field mapping ζ : g → X(P ) for the principal right action. The defining equation
for ω can be written also as Φ(Xu) = ζω(Xu)(u).

Lemma. If Φ ∈ Ω1(P ;V P ) is a principal connection on the principal fiber bundle
(p : P →M,G) then the connection form has the following three properties:

(1) ω reproduces the generators of fundamental vector fields, so that we have
ω(ζX(u)) = X for all X ∈ g.
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(2) ω is G-equivariant, ((rg)∗ω)(Xu) = ω(Tu(rg).Xu) = Ad(g−1).ω(Xu) for all
g ∈ G and Xu ∈ TuP .

(3) We have for the Lie derivative LζXω = −ad(X).ω.

Conversely, a 1-form ω ∈ Ω1(P, g) satisfying ( 1 ) defines a connection Φ on P

by Φ(Xu) = Te(ru).ω(Xu), which is a principal connection if and only if ( 2 ) is
satisfied.

Proof. ( 1 ) Te(ru).ω(ζX(u)) = Φ(ζX(u)) = ζX(u) = Te(ru).X. Since Te(ru) : g→
VuP is an isomorphism, the result follows.

( 2 ) Both directions follow from

Te(rug).ω(Tu(rg).Xu) = ζω(Tu(rg).Xu)(ug) = Φ(Tu(rg).Xu)

Te(rug).Ad(g−1).ω(Xu) = ζAd(g−1).ω(Xu)(ug) = Tu(rg).ζω(Xu)(u)

= Tu(rg).Φ(Xu).

( 3 ) Let g(t) be a smooth curve in G with g(0) = e and ∂
∂t |0g(t) = X. Then

ϕt(u) = r(u, g(t)) is a smooth curve of diffeomorphisms on P with ∂
∂t |0ϕt = ζX ,

and by the first claim of lemma 33.19 we have

LζXω = ∂
∂t |0(rg(t))∗ω = ∂

∂t |0Ad(g(t)−1)ω = −ad(X)ω. �

37.20. Curvature. Let Φ be a principal connection on the principal fiber bundle
(p : P → M,G) with connection form ω ∈ Ω1(P, g). We have already noted in

37.19 that also the curvature R = 1
2 [Φ,Φ] is then G-equivariant, (rg)∗R = R for

all g ∈ G. Since R has vertical values we may define a g-valued 2-form Ω ∈ Ω2(P, g)
by Ω(Xu, Yu) := −Te(ru)−1.R(Xu, Yu), which is called the (Lie algebra-valued)
curvature form of the connection. We also have R(Xu, Yu) = −ζΩ(Xu,Yu)(u).
We take the negative sign here to get in finite dimensions the usual curvature form.

We equip the space Ω(P, g) of all g-valued forms on P in a canonical way with the
structure of a graded Lie algebra by

(1) [Ψ,Θ]g∧(X1, . . . , Xp+q) =

= 1
p! q!

∑
σ

signσ [Ψ(Xσ1, . . . , Xσp),Θ(Xσ(p+1), . . . , Xσ(p+q))]g

or equivalently by [ψ⊗X, θ⊗Y ]∧ := ψ∧θ⊗[X,Y ]g. From the latter description it is
clear that d[Ψ,Θ]∧ = [dΨ,Θ]∧ + (−1)deg Ψ[Ψ, dΘ]∧. In particular, for ω ∈ Ω1(P, g)
we have [ω, ω]∧(X,Y ) = 2[ω(X), ω(Y )]g.

Theorem. The curvature form Ω of a principal connection with connection form
ω has the following properties:

(2) Ω is horizontal, i.e., it kills vertical vectors.
(3) Ω is G-equivariant in the following sense: (rg)∗Ω = Ad(g−1).Ω. Consequently,
LζXΩ = −ad(X).Ω.

(4) The Maurer-Cartan formula holds: Ω = dω + 1
2 [ω, ω]∧.
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Proof. ( 2 ) is true for R by 37.3 . For ( 3 ) we compute as follows:

Te(rug).((r
g)∗Ω)(Xu, Yu) = Te(rug).Ω(Tu(rg).Xu, Tu(rg).Yu) =

= −Rug(Tu(rg).Xu, Tu(rg).Yu) = −Tu(rg).((rg)∗R)(Xu, Yu) =

= −Tu(rg).R(Xu, Yu) = Tu(rg).ζΩ(Xu,Yu)(u) =

= ζAd(g−1).Ω(Xu,Yu)(ug) = Te(rug).Ad(g−1).Ω(Xu, Yu), by 36.12.2 .

Proof of ( 4 ) For X ∈ g we have iζXR = 0 by ( 2 ), and using 37.19.3 we get

iζX (dω +
1

2
[ω, ω]∧) = iζXdω +

1

2
[iζXω, ω]∧ −

1

2
[ω, iζXω]∧ =

= LζXω + [X,ω]∧ = −ad(X)ω + ad(X)ω = 0.

So the formula holds if one vector is vertical, and for horizontal vector fields X,Y ∈
C∞(P ← H(P )) we have

R(X,Y ) = Φ[X − ΦX,Y − ΦY ] = Φ[X,Y ] = ζω([X,Y ]),

(dω +
1

2
[ω, ω]∧)(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]) + 0 = −ω([X,Y ]). �

37.21. Lemma. Any principal fiber bundle (p : P → M,G) with smoothly para-
compact basis M admits principal connections.

Proof. Let (Uα, ϕα : P |Uα → Uα × G)α be a principal fiber bundle atlas. Let us
define γα(Tϕ−1

α (ξx, Teµg.X)) := X for ξx ∈ TxUα and X ∈ g. An easy computation

involving lemma 36.12 shows that γα ∈ Ω1(P |Uα, g) satisfies the requirements of

lemma 37.19 and thus is a principal connection on P |Uα. Now let (fα) be a
smooth partition of unity on M which is subordinated to the open cover (Uα), and

let ω :=
∑
α(fα ◦ p)γα. Since both requirements of lemma 37.19 are invariant

under convex linear combinations, ω is a principal connection on P . �

37.22. Local descriptions of principal connections. We consider a principal
fiber bundle (p : P → M,G) with some principal fiber bundle atlas (Uα, ϕα :
P |Uα → Uα × G) and corresponding cocycle (ϕαβ : Uαβ → G) of transition
functions. We consider the sections sα ∈ C∞(Uα ← P |Uα) which are given by
ϕα(sα(x)) = (x, e) and satisfy sα.ϕαβ = sβ , since we have in turn:

ϕα(sβ(x)) = ϕαϕ
−1
β (x, e) = (x, ϕαβ(x))

sβ(x) = ϕ−1
α (x, eϕαβ(x)) = ϕ−1

α (x, e)ϕαβ(x) = sα(x)ϕαβ(x).

Let Φ = ζ ◦ ω ∈ Ω1(P ;V P ) be a principal connection with connection form ω ∈
Ω1(P, g). We may associate the following local data to the connection:

(1) ωα := sα
∗ω ∈ Ω1(Uα, g), the physicists’ version of the connection.

(2) The Christoffel forms Γα ∈ Ω1(Uα;X(G)) from 37.5 , which are given by

(0x,Γ
α(ξx, g)) = −T (ϕα).Φ.T (ϕα)−1(ξx, 0g).

Lemma. These local data have the following properties and are related by the
following formulas.
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(3) The forms ωα ∈ Ω1(Uα, g) satisfy the transition formulas

ωα = Ad(ϕ−1
βα)ωβ + (ϕβα)∗κl,

where κl ∈ Ω1(G, g) is the left Maurer-Cartan form from 36.10 . Any set of
such forms with this transition behavior determines a unique principal con-
nection.

(4) The local expression of ω is given by

(ϕ−1
α )∗ω(ξx, Tµg.X) = (ϕ−1

α )∗ω(ξx, 0g) +X = Ad(g−1)ωα(ξx) +X.

(5) The Christoffel form Γα and ωα are related by

Γα(ξx, g) = −Te(µg).Ad(g−1)ωα(ξx) = −Te(µg)ωα(ξx),

thus the Christoffel form is right invariant: Γα(ξx) = −Rωα(ξx) ∈ X(G).
(6) The local expression of Φ is given by

(((ϕα)−1)∗Φ)(ξx, ηg) = −Γα(ξx, g) + ηg = Te(µ
g).ωα(ξx) + ηg

= Rωα(ξx)(g) + ηg

for ξx ∈ TxUα and ηg ∈ TgG.
(7) The local expression of the curvature R is given by

((ϕα)−1)∗R = −R
dωα+

1
2 [ωα,ωα]∧g

so that R and Ω are indeed ‘tensorial’ 2-forms.

Proof. We start with ( 4 ).

(ϕ−1
α )∗ω(ξx, 0g) = (ϕ−1

α )∗ω(ξx, Te(µ
g)0e) = (ω ◦ T (ϕα)−1 ◦ T (IdUα ×µg))(ξx, 0e) =

= (ω ◦ T (rg ◦ ϕ−1
α ))(ξx, 0e) = Ad(g−1)ω(T (ϕ−1

α )(ξx, 0e))

= Ad(g−1)(sα
∗ω)(ξx) = Ad(g−1)ωα(ξx).

From this we get

(ϕ−1
α )∗ω(ξx, Tµg.X) = (ϕ−1

α )∗ω(ξx, 0g) + (ϕ−1
α )∗ω(0x, Tµg.X)

= Ad(g−1)ωα(ξx) + ω(T (ϕα)−1(0x, Tµg.X))

= Ad(g−1)ωα(ξx) + ω(ζX(ϕ−1
α (x, g)))

= Ad(g−1)ωα(ξx) +X.

( 5 ) From the definition of the Christoffel forms we have

(0x,Γ
α(ξx, g)) = −T (ϕα).Φ.T (ϕα)−1(ξx, 0g)

= −T (ϕα).Te(rϕ−1
α (x,g))ω.T (ϕα)−1(ξx, 0g)

= −Te(ϕα ◦ rϕ−1
α (x,g))ω.T (ϕα)−1(ξx, 0g)

= −(0x, Te(µg)ω.T (ϕα)−1(ξx, 0g))

= −(0x, Te(µg)Ad(g−1)ωα(ξx)) = −(0x, Te(µ
g)ωα(ξx)).
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( 3 ) Via ( 5 ) the transition formulas for the ωα are easily seen to be equivalent

to the transition formulas for the Christoffel forms in lemma 37.5 . A direct proof
goes as follows: We have sα(x) = sβ(x)ϕβα(x) = r(sβ(x), ϕβα(x)) and thus

ωα(ξx) = ω(Tx(sα).ξx)

= (ω ◦ T(sβ(x),ϕβα(x))r)((Txsβ .ξx, 0ϕβα(x))− (0sβ(x), Txϕβα.ξx))

= ω(Tsβ(x)(r
ϕβα(x)).Tx(sβ).ξx) + ω(Tϕβα(x)(rsβ(x)).Tx(ϕβα).ξx)

= Ad(ϕβα(x)−1)ω(Tx(sβ).ξx)

+ ω(Tϕβα(x)(rsβ(x)).T (µϕβα(x) ◦ µϕβα(x)−1)Tx(ϕβα).ξx)

= Ad(ϕβα(x)−1)ωβ(ξx) + ω(Te(rsβ(x)ϕβα(x)).(ϕβα)∗κl.ξx)

= Ad(ϕβα(x)−1)ωβ(ξx) + (ϕβα)∗κl(ξx).

( 6 ) This is clear from the definition of the Christoffel forms and from ( 5 ).

Second proof of ( 7 ) First note that the right trivialization or framing (κr, πG) :
TG → g × G induces the isomorphism R : C∞(G, g) → X(G), given by RX(x) =
Te(µ

x).X(x). For the Lie bracket we then have

[RX , RY ] = R−[X,Y ]g+dY.RX−dX.RY ,

R−1[RX , RY ] = −[X,Y ]g +RX(Y )−RY (X).

We write a vector field on Uα × G as (ξ,RX) where ξ : G → X(Uα) and X ∈
C∞(Uα ×G, g). Then the local expression of the curvature is given by

(ϕα
−1)∗R((ξ,RX), (η,RY )) = (ϕ−1

α )∗(R((ϕα)∗(ξ,RX), (ϕα)∗(η,RY )))

= (ϕ−1
α )∗(Φ[(ϕα)∗(ξ,RX)− Φ(ϕα)∗(ξ,RX), . . . ])

= (ϕ−1
α )∗(Φ[(ϕα)∗(ξ,RX)− (ϕα)∗(Rωα(ξ) +RX), . . . ])

= (ϕ−1
α )∗(Φ(ϕα)∗[(ξ,−Rωα(ξ)), (η,−Rωα(η))])

= ((ϕ−1
α )∗Φ)([ξ, η]X(Uα) −Rωα(ξ)(η) +Rωα(η)(ξ),

− ξ(Rωα(η)) + η(Rωα(ξ)) +R−[ωα(ξ),ωα(η)]+Rωα(ξ)(ωα(η))−Rωα(ξ)(ωα(η)))

= Rωα([ξ,η]X(Uα)−Rωα(ξ)(η)+Rωα(η)(ξ)) −Rξ(ωα(η)) +Rη(ωα(ξ))

+R−[ωα(ξ),ωα(η)]+Rωα(ξ)(ωα(η))−Rωα(ξ)(ωα(η))

= −R
(dωα+

1
2 [ωα,ωα]∧g )(ξ,η)

. �

37.23. The covariant derivative. Let (p : P → M,G) be a principal fiber
bundle with principal connection Φ = ζ ◦ ω. We consider the horizontal projection

χ = IdTP −Φ : TP → HP , cf. 37.2 , which satisfies χ ◦ χ = χ, imχ = HP ,
kerχ = V P , and χ ◦ T (rg) = T (rg) ◦ χ for all g ∈ G.

If W is a convenient vector space, we consider the mapping χ∗ : Ω(P,W ) →
Ω(P,W ) which is given by

(χ∗ϕ)u(X1, . . . , Xk) = ϕu(χ(X1), . . . , χ(Xk)).
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The mapping χ∗ is a projection onto the subspace of horizontal differential
forms, i.e. the space Ωhor(P,W ) := {ψ ∈ Ω(P,W ) : iXψ = 0 for X ∈ V P}. The
notion of horizontal form is independent of the choice of a connection.

The projection χ∗ has the following properties: χ∗(ϕ ∧ ψ) = χ∗ϕ ∧ χ∗ψ if one of
the two forms has real values, χ∗ ◦ χ∗ = χ∗, χ∗ ◦ (rg)∗ = (rg)∗ ◦ χ∗ for all g ∈ G,
χ∗ω = 0, and χ∗ ◦ L(ζX) = L(ζX) ◦ χ∗. All but the last easily follow from the
corresponding properties of χ. The last property uses that for a smooth curve g(t)

in G with g(0) = e and ∂
∂t

∣∣
0
g(t) = X by 33.19 we have LζX = ∂

∂t

∣∣
0
rg(t).

We define the covariant exterior derivative dω : Ωk(P,W ) → Ωk+1(P,W )
by the prescription dω := χ∗ ◦ d.

Theorem. The covariant exterior derivative dω has the following properties.

(1) dω(ϕ ∧ ψ) = dω(ϕ) ∧ χ∗ψ + (−1)degϕχ∗ϕ ∧ dω(ψ) if ϕ or ψ is real valued.
(2) L(ζX) ◦ dω = dω ◦ L(ζX) for each X ∈ g.
(3) (rg)∗ ◦ dω = dω ◦ (rg)∗ for each g ∈ G.
(4) dω ◦ p∗ = d ◦ p∗ = p∗ ◦ d : Ω(M,W )→ Ωhor(P,W ).
(5) dωω = Ω, the curvature form.
(6) dωΩ = 0, the Bianchi identity.
(7) dω ◦ χ∗ − dω = χ∗ ◦ i(R), where R is the curvature.
(8) dω ◦ dω = χ∗ ◦ i(R) ◦ d.
(9) Let Ωhor(P, g)G be the algebra of all horizontal G-equivariant g-valued forms,

i.e., (rg)∗ψ = Ad(g−1)ψ. Then for any ψ ∈ Ωhor(P, g)G we have dωψ =
dψ + [ω, ψ]∧.

(10) The mapping ψ 7→ ζψ, where ζψ(X1, . . . , Xk)(u) = ζψ(X1,...,Xk)(u)(u), is an

isomorphism between Ωhor(P, g)G and the algebra Ωhor(P, V P )G of all hori-
zontal G-equivariant forms with values in the vertical bundle V P . Then we
have ζdωψ = −[Φ, ζψ].

Proof. ( 1 ) through ( 4 ) follow from the properties of χ∗.

( 5 ) We have

(dωω)(ξ, η) = (χ∗dω)(ξ, η) = dω(χξ, χη)

= (χξ)ω(χη)− (χη)ω(χξ)− ω([χξ, χη])

= −ω([χξ, χη]) and

−ζ(Ω(ξ, η)) = R(ξ, η) = Φ[χξ, χη] = ζω([χξ,χη]).

( 6 ) Using 37.20 we have

dωΩ = dω(dω + 1
2 [ω, ω]∧)

= χ∗ddω + 1
2χ
∗d[ω, ω]∧

= 1
2χ
∗([dω, ω]∧ − [ω, dω]∧) = χ∗[dω, ω]∧

= [χ∗dω, χ∗ω]∧ = 0, since χ∗ω = 0.

( 7 ) For ϕ ∈ Ω(P,W ) we have

(dωχ
∗ϕ)(X0, . . . , Xk) = (dχ∗ϕ)(χ(X0), . . . , χ(Xk))
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=
∑

0≤i≤k

(−1)iχ(Xi)((χ
∗ϕ)(χ(X0), . . . , χ̂(Xi), . . . , χ(Xk)))

+
∑
i<j

(−1)i+j(χ∗ϕ)([χ(Xi), χ(Xj)],

χ(X0), . . . , χ̂(Xi), . . . , χ̂(Xj), . . . , χ(Xk))

=
∑

0≤i≤k

(−1)iχ(Xi)(ϕ(χ(X0), . . . , χ̂(Xi), . . . , χ(Xk)))

+
∑
i<j

(−1)i+jϕ([χ(Xi), χ(Xj)]− Φ[χ(Xi), χ(Xj)],

χ(X0), . . . , χ̂(Xi), . . . , χ̂(Xj), . . . , χ(Xk))

= (dϕ)(χ(X0), . . . , χ(Xk)) + (iRϕ)(χ(X0), . . . , χ(Xk))

= (dω + χ∗iR)(ϕ)(X0, . . . , Xk).

( 8 ) dωdω = dωχ
∗d = (χ∗iR + χ∗d)d = χ∗iRd holds by ( 7 ).

( 9 ) If we insert one vertical vector field, say ζX for X ∈ g, into dωψ, we get

0 by definition. For the right hand side we use iζXψ = 0, and that by 33.19

for a smooth curve g(t) in G with g(0) = e and ∂
∂t

∣∣
0
g(t) = X we have LζXψ =

∂
∂t

∣∣
0

(rg(t))∗ψ = ∂
∂t

∣∣
0

Ad(g(t)−1)ψ = −ad(X)ψ in the computation

iζX (dψ + [ω, ψ]∧) = iζXdψ + diζXψ + [iζXω, ψ]− [ω, iζXψ]

= LζXψ + [X,ψ] = −ad(X)ψ + [X,ψ] = 0.

Let now all vector fields ξi be horizontal. Then we get

(dωψ)(ξ0, . . . , ξk) = (χ∗dψ)(ξ0, . . . , ξk) = dψ(ξ0, . . . , ξk),

(dψ + [ω, ψ]∧)(ξ0, . . . , ξk) = dψ(ξ0, . . . , ξk).

( 10 ) We proceed in a similar manner. Let Ψ be in the space Ω`hor(P, V P )G of
all horizontal G-equivariant forms with vertical values. Then for each X ∈ g we
have iζXΨ = 0. Furthermore, the G-equivariance (rg)∗Ψ = Ψ implies that LζXΨ =

[ζX ,Ψ] = 0 by 35.14.5 . Using formula 35.9.2 we have

iζX [Φ,Ψ] = [iζXΦ,Ψ]− [Φ, iζXΨ] + i([Φ, ζX ])Ψ + i([Ψ, ζX ])Φ

= [ζX ,Ψ]− 0 + 0 + 0 = 0.

Let now all vector fields ξi again be horizontal, then from the huge formula 35.5.1
for the Frölicher-Nijenhuis bracket only the following terms in the fourth and fifth
line survive:

[Φ,Ψ](ξ1, . . . , ξ`+1) =

= (−1)`

`!

∑
σ

signσ Φ([Ψ(ξσ1, . . . , ξσ`), ξσ(`+1)])

+ 1
(`−1)! 2!

∑
σ

signσ Φ(Ψ([ξσ1, ξσ2], ξσ3, . . . , ξσ(`+1))).
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For f : P → g and horizontal ξ we have Φ[ξ, ζf ] = ζξ(f) = ζdf(ξ): It is C∞(P,R)-
linear in ξ; or imagine it in local coordinates. So the last expression becomes

−ζdψ(ξ0,...,ξk) = −ζ(dψ+[ω,ψ]∧)(ξ0,...,ξk),

as required. �

37.24. Inducing principal connections on associated bundles. Let (p : P →
M,G) be a principal bundle with principal right action r : P × G → P , and let
` : G × S → S be a left action of the structure group G on some manifold S.
Then we consider the associated bundle P [S] = P [S, `] = P ×G S, constructed

in 37.12 . Recall from 37.18 that its tangent and vertical bundles are given by
T (P [S, `]) = TP [TS, T`] = TP ×TG TS and V (P [S, `]) = P [TS, T2`] = P ×G TS.

Let Φ = ζ ◦ ω ∈ Ω1(P ;TP ) be a principal connection on the principal bundle P .
We construct the induced connection Φ̄ ∈ Ω1(P [S];T (P [S])) by factorizing as
in the following diagram:

TP × TS Φ×Id //

Tq=q′

��

TP × TS

q′

��

T (P × S)

Tq

��
TP ×TG TS

Φ̄ // TP ×TG TS T (P ×G S).

Let us first check that the top mapping Φ × Id is TG-equivariant. For g ∈ G and

X ∈ g the inverse of Te(µg)X in the Lie group TG from 38.10 is denoted by

(Te(µg)X)−1. Furthermore, by 36.12 we have

Tr(ξu, Te(µg)X) = Tu(rg)ξu + Tg(ru)(Te(µg)X) = Tu(rg)ξu + ζX(ug).

We compute

(Φ× Id)(Tr(ξu, Te(µg)X), T `((Te(µg)X)−1, ηs))

= (Φ(Tu(rg)ξu + ζX(ug)), T `((Te(µg)X)−1, ηs))

= (Φ(Tu(rg)ξu) + Φ(ζX(ug)), T `((Te(µg)X)−1, ηs))

= (Tu(rg)Φξu + ζX(ug), T `((Te(µg)X)−1, ηs))

= (Tr(Φ(ξu), Te(µg)X), T `((Te(µg)X)−1, ηs)).

So the mapping Φ × Id factors to Φ̄ as indicated in the diagram, and we have
Φ̄ ◦ Φ̄ = Φ̄ from (Φ × Id) ◦ (Φ × Id) = Φ × Id. The mapping Φ̄ is fiberwise linear,
since Φ× Id and q′ = Tq are. The image of Φ̄ is

q′(V P × TS) = q′(ker(Tp : TP × TS → TM))

= ker(Tp : TP ×TG TS → TM) = V (P [S, `]).

Thus, Φ̄ is a connection on the associated bundle P [S]. We call it the induced
connection.

From the diagram also follows that the vector valued forms Φ×Id ∈ Ω1(P×S;TP×
TS) and Φ̄ ∈ Ω1(P [S];T (P [S])) are (q : P × S → P [S])-related. So by 35.13 we
have for the curvatures

RΦ×Id = 1
2 [Φ× Id,Φ× Id] = 1

2 [Φ,Φ]× 0 = RΦ × 0,
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RΦ̄ = 1
2 [Φ̄, Φ̄]

that they are also q-related, i.e., Tq ◦ (RΦ × 0) = RΦ̄ ◦ (Tq ×M Tq).

37.25. Recognizing induced connections. Let (p : P → M,G) be a principal
fiber bundle, and let ` : G × S → S be a left action. We consider a connection
Ψ ∈ Ω1(P [S];T (P [S])) on the associated bundle P [S] = P [S, `]. Then the following
question arises: When is the connection Ψ induced by a principal connection on P?
If this is the case, we say that Ψ is compatible with the G-structure on P [S]. The
answer is given in the following

Theorem. Let Ψ be a (general) connection on the associated bundle P [S]. Let
us suppose that the action ` is infinitesimally effective, i.e. the fundamental vector
field mapping ζ : g→ X(S) is injective.

Then the connection Ψ is induced from a principal connection ω on P if and only
if the following condition is satisfied:

In some (equivalently any) fiber bundle atlas (Uα, ψα) of P [S] belonging to the
G-structure of the associated bundle the Christoffel forms Γα ∈ Ω1(Uα;X(S))
have values in the sub Lie algebra Xfund(S) of fundamental vector fields for
the action `.

Proof. Let (Uα, ϕα : P |Uα → Uα×G) be a principal fiber bundle atlas for P . Then

by the proof of theorem 37.12 the induced fiber bundle atlas (Uα, ψα : P [S]|Uα →
Uα × S) is given by

ψ−1
α (x, s) = q(ϕ−1

α (x, e), s),(1)

(ψα ◦ q)(ϕ−1
α (x, g), s) = (x, g.s).(2)

Let Φ = ζ ◦ω be a principal connection on P , and let Φ̄ be the induced connection

on the associated bundle P [S]. By 37.5 , its Christoffel symbols are given by

(0x,Γ
α
Φ̄(ξx, s)) = −(T (ψα) ◦ Φ̄ ◦ T (ψ−1

α ))(ξx, 0s)

= −(T (ψα) ◦ Φ̄ ◦ Tq ◦ (T (ϕ−1
α )× Id))(ξx, 0e, 0s) by ( 1 )

= −(T (ψα) ◦ Tq ◦ (Φ× Id))(T (ϕ−1
α )(ξx, 0e), 0s) by 37.24

= −(T (ψα) ◦ Tq)(Φ(T (ϕ−1
α )(ξx, 0e)), 0s)

= (T (ψα) ◦ Tq)(T (ϕ−1
α )(0x,Γ

α
Φ(ξx, e)), 0s) by 37.22.2

= −T (ψα ◦ q ◦ (ϕ−1
α × Id))(0x, ωα(ξx), 0s) by 37.22.5

= −Te(`s)ωα(ξx) by ( 2 )

= −ζωα(ξx)(s).

So the condition is necessary.

For the converse let us suppose that a connection Ψ on P [S] is given such that the
Christoffel forms ΓαΨ with respect to a fiber bundle atlas of the G-structure have
values in Xfund(S). Then unique g-valued forms ωα ∈ Ω1(Uα, g) are given by the
equation

ΓαΨ(ξx) = ζ(ωα(ξx)),
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since the action is infinitesimally effective. From the transition formulas 37.5 for

the ΓαΨ follow the transition formulas 37.22.3 for the ωα, so that they they combine
to a unique principal connection on P , which by the first part of the proof induces
the given connection Ψ on P [S]. �

37.26. Inducing principal connections on associated vector bundles. Let
(p : P →M,G) be a principal fiber bundle, and let ρ : G→ GL(W ) be a represen-
tation of the structure group G on a convenient vector space W . See the beginning

of section 49 for a discussion of such representations. We consider the associated

vector bundle (p : E := P [W,ρ]→M,W ), see 37.12 .

Recall from 29.9 that the tangent bundle TE = TP ×TG TW has two vector
bundle structures, with the projections

πE : TE = TP ×TG TW → P ×GW = E,

Tp ◦ pr1 : TE = TP ×TG TW → TM,

respectively. Recall the vertical bundle V E = ker(Tp) which is a vector subbundle
of πE : TE → E, and recall the vertical lift mapping vlE : E ×M E → V E, which
is an isomorphism, (pr1–πE)–fiberwise linear and also (p–Tp)–fiberwise linear.

Now let Φ = ζ ◦ ω ∈ Ω1(P ;TP ) be a principal connection on P . We consider

the induced connection Φ̄ ∈ Ω1(E;TE) on the associated bundle E from 37.24 .
A glance at the following diagram shows that the induced connection is linear in
both vector bundle structures. This property is expressed by calling it a linear

connection, see 37.27 , on the associated vector bundle.

TP × TW Φ×Id //

Tq

��

π
((

TP × TW

Tq

��

π
vv

TP ×W ×W

P ×W

q

��
P ×GW = E

TP ×TG TW

πE

66

Φ̄

//

Tp◦pr1 ((

TP ×TG TW

πE

hh

Tp◦pr1vv

TE

TM

Now we define the connector K of the linear connection Φ̄ by

K := pr2 ◦ (vlE)−1 ◦ Φ̄ : TE → V E → E ×M E → E.

Lemma. The connector K : TE → E is a vector bundle homomorphism for both
vector bundle structures on TE and satisfies K ◦ vlE = pr2 : E ×M E → TE → E.

So K is πE–p–fiberwise linear and Tp–p–fiberwise linear.
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Proof. This follows from the fiberwise linearity of the parts of K and from its
definition. �

37.27. Linear connections. If p : E → M is a vector bundle, a connection
Ψ ∈ Ω1(E;TE) such that Ψ : TE → V E → TE is additionally Tp–Tp–fiberwise
linear is called a linear connection.

Equivalently, a linear connection may be specified by a connector K : TE → E

with the three properties of lemma 37.26 . For then HE := {ξu : K(ξu) = 0p(u)}
is a complement to V E in TE which is Tp–fiberwise linearly chosen.

37.28. Covariant derivative on vector bundles. Let p : E → M be a vector
bundle with a linear connection, given by a connector K : TE → E with the

properties in lemma 37.26 .

For any manifold N , smooth mapping s : N → E, and kinematic vector field
X ∈ X(N) we define the covariant derivative of s along X by

(1) ∇Xs := K ◦ Ts ◦X : N → TN → TE → E.

If f : N → M is a fixed smooth mapping, let us denote by C∞f (N,E) the vector
space of all smooth mappings s : N → E with p ◦ s = f — they are called sections
of E along f . It follows from the universal property of the pullback that the vector
space C∞f (N,E) is canonically linearly isomorphic to the space C∞(N ← f∗E) of
sections of the pullback bundle. Then the covariant derivative may be viewed as a
bilinear mapping

(2) ∇ : X(N)× C∞f (N,E)→ C∞f (N,E).

In particular, for f = IdM we have

∇ : X(M)× C∞(M ← E)→ C∞(M ← E).

Lemma. This covariant derivative has the following properties:

(3) ∇Xs is C∞(N,R)-linear in X ∈ X(N). Moreover, for a tangent vector
Xx ∈ TxN the mapping ∇Xx : C∞f (N,E) → Ef(x) makes sense, and we

have (∇Xs)(x) = ∇X(x)s. Thus, ∇s ∈ Ω1(N ; f∗E).
(4) ∇Xs is R-linear in s ∈ C∞f (N,E).

(5) ∇X(h.s) = dh(X).s + h.∇Xs for h ∈ C∞(N,R), the derivation property of
∇X .

(6) For any manifold Q, smooth mapping g : Q → N , and Yy ∈ TyQ we have
∇Tg.Yys = ∇Yy (s ◦ g). If Y ∈ X(Q) and X ∈ X(N) are g-related, then we
have ∇Y (s ◦ g) = (∇Xs) ◦ g.

Proof. All these properties follow easily from definition ( 1 ). �

For vector fields X, Y ∈ X(M) and a section s ∈ C∞(M ← E) an easy computation
shows that

RE(X,Y )s := ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

= ([∇X ,∇Y ]−∇[X,Y ])s
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is C∞(M,R)-linear in X, Y , and s. By the method of 14.3 , it follows that RE is a

2-form on M with values in the vector bundle L(E,E), i.e. RE ∈ Ω2(M ;L(E,E)).
It is called the curvature of the covariant derivative.

For f : N → M , vector fields X, Y ∈ X(N), and a section s ∈ C∞f (N,E) along f
one can prove that

∇X∇Y s−∇Y∇Xs−∇[X,Y ]s = (f∗RE)(X,Y )s := RE(Tf.X, Tf.Y )s.

37.29. Covariant exterior derivative. Let p : E →M be a vector bundle with
a linear connection, given by a connector K : TE → E.

For a smooth mapping f : N → M let Ω(N ; f∗E) be the vector space of all forms
on N with values in the vector bundle f∗E. We can also view them as forms on N
with values along f in E, but we do not introduce an extra notation for this.

As in 32.1 , 33.2 , and 35.1 we have to assume the
Convention. We consider each derivation and homomorphism to be a sheaf mor-

phism (compare 32.1 and the definition of modular 1-forms in 33.2 ), or we assume
that all manifolds in question are smoothly regular.

The graded space Ω(N ; f∗E) is a graded Ω(N)-module via

(ϕ ∧ Φ)(X1, . . . , Xp+q) =

= 1
p! q!

∑
σ

sign(σ) ϕ(Xσ1, . . . , Xσp)Φ(Xσ(p+1), . . . , Xσ(p+q)).

Any A ∈ Ωp(N ; f∗L(E,E)) defines a graded module homomorphism

µ(A) : Ω(N ; f∗E)→ Ω(N ; f∗E),(1)

(µ(A)Φ)(X1, . . . , Xp+q) =

= 1
p! q!

∑
σ

sign(σ) A(Xσ1, . . . , Xσp)(Φ(Xσ(p+1), . . . , Xσ(p+q))),

µ(A)(ϕ ∧ Φ) = (−1)degA. degϕϕ ∧ µ(A)(Φ).

But in general not all graded module homomorphisms are of this form, recall the

distinction between modular differential forms and differential forms in 33.2 . This
is only true if the modeling spaces of N have the bornological approximation prop-

erty; the proof is as in 33.5 .

The covariant exterior derivative is given by

d∇ : Ωp(N ; f∗E)→ Ωp+1(N ; f∗E)(2)

(d∇Φ)(X0, . . . , Xp) =

p∑
i=0

(−1)i∇XiΦ(X0, . . . , X̂i, . . . , Xp)+

+
∑

0≤i<j≤p

(−1)i+jΦ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp),

where the Xi are vector fields on N . It will be shown below that it is indeed well
defined, i.e. that d∇Φ ∈ Ωp+1(N ; f∗E). Now we only see that it is a modular
differential form.
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The covariant Lie derivative along a vector field X ∈ X(N) is given by

L∇X : Ωp(N ; f∗E)→ Ωp(N ; f∗E)(3)

(L∇XΦ)(X1, . . . , Xp) = ∇X(Φ(X1, . . . , Xp))−

−
∑
i

Φ(X1, . . . , [X,Xi], . . . , Xp).

Again we will show below that it is well defined. Finally we recall the insertion
operator

iX : Ωp(N ; f∗E)→ Ωp−1(N ; f∗E)(4)

(L∇XΦ)(X1, . . . , Xp−1) = Φ(X,X1, . . . , Xp−1)

Theorem. The covariant exterior derivative d∇, and the covariant Lie derivative
are well defined and have the following properties.

(5) For s ∈ C∞(N ← f∗E) = Ω0(N ; f∗E) we have (d∇s)(X) = ∇Xs.
(6) d∇(ϕ ∧ Φ) = dϕ ∧ Φ + (−1)degϕϕ ∧ d∇Φ.
(7) For smooth g : Q→ N and Φ ∈ Ω(N ; f∗E) we have d∇(g∗Φ) = g∗(d∇Φ).
(8) d∇d∇Φ = µ(f∗RE)Φ.
(9) iX(ϕ ∧ Φ) = iXϕ ∧ Φ + (−1)degϕϕ ∧ iXΦ.

(10) L∇X(ϕ ∧ Φ) = LXϕ ∧ Φ + ϕ ∧ L∇XΦ.
(11) [L∇X , iY ] = L∇X ◦ iY − iY ◦ L∇X = i[X,Y ].

(12) [iX , d∇] = iX ◦ d∇ + d∇ ◦ iX = L∇X .

Proof. By the formula above d∇Φ is a priori defined as a modular differential form
and we have to show that it really lies in Ω(M ; f∗E). For that let s∗ ∈ C∞(N ←
f∗E′) be a local smooth section on U ⊆ N along f |U : U → M of the dual vector
bundle E′ →M . Then 〈Φ, s∗〉 ∈ Ωk(N), and for the canonical covariant derivative
on the dual bundle (write down its connector!) we have

d〈Φ, s∗〉 = 〈d∇Φ, s∗〉+ (−1)k〈Φ,∇E
′
s∗〉∧,

which shows that d∇Φ ∈ Ωk(N, f∗E) since d respects Ω∗(N) by 33.12 .

( 5 ) is just 33.11 . ( 7 ) follows from 37.28.6 .

( 11 ) Take the difference of the following two expressions:

(L∇X iY Φ)(Z1, . . . , Zk) = ∇X((iY Φ)(Z1, . . . , Zk))−

−
∑
i

(iY Φ)(Z1, . . . , [X,Zi], . . . , Zk)

= ∇X(Φ(Y,Z1, . . . , Zk))−
∑
i

Φ(Y,Z1, . . . , [X,Zi], . . . , Zk)

(iY L∇XΦ)(Z1, . . . , Zk) = L∇XΦ(Y, Z1, . . . , Zk)

= ∇X(Φ(Y,Z1, . . . , Zk))− Φ([X,Y ], Z1, . . . , Zk)−

−
∑
i

Φ(Y,Z1, . . . , [X,Zi], . . . , Zk).
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( 10 ) Let ϕ be of degree p and Φ of degree q. We prove the result by induction on

p + q. Suppose that ( 5 ) is true for p + q < k. Then for X we have by ( 9 ), by

( 11 ), and by induction

(iY L∇X)(ϕ ∧ Φ) = (L∇X iY )(ϕ ∧ Φ)− i[X,Y ](ϕ ∧ Φ)

= L∇X(iY ϕ ∧ Φ + (−1)pϕ ∧ iY Φ)− i[X,Y ]ϕ ∧ Φ− (−1)pϕ ∧ i[X,Y ]Φ

= LX iY ϕ ∧ Φ + iY ϕ ∧ L∇XΦ + (−1)pLXϕ ∧ iY Φ+

+ (−1)pϕ ∧ L∇X iY Φ− i[X,Y ]ϕ ∧ Φ− (−1)pϕ ∧ i[X,Y ]Φ

iY (LXϕ ∧ Φ + ϕ ∧ L∇XΦ) = iY LXϕ ∧ Φ + (−1)pLXϕ ∧ iY Φ+

+ iY ϕ ∧ L∇XΦ + (−1)pϕ ∧ iY L∇XΦ.

Using again ( 11 ), we get the result since the iY for all local vector fields Y to-
gether act point separating on each space of differential forms, in both cases of the
convention.

( 12 ) We write out all relevant expressions.

(L∇X0
Φ)(X1, . . . , Xk) = X0(Φ(X1, . . . , Xk))+

+

k∑
j=1

(−1)0+jΦ([X0, Xj ], X1, . . . , X̂j , . . . , Xk)

(iX0
d∇Φ)(X1, . . . , Xk) = d∇Φ(X0, . . . , Xk)

=

k∑
i=0

(−1)i∇Xi(Φ(X0, . . . , X̂i, . . . , Xk)) +

+
∑

0≤i<j

(−1)i+jΦ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

(d∇iX0
Φ)(X1, . . . , Xk) =

k∑
i=1

(−1)i−1∇Xi((iX0
Φ)(X1, . . . , X̂i, . . . , Xk)) +

+
∑

1≤i<j

(−1)i+j−2(iX0
Φ)([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk)

= −
k∑
i=1

(−1)i∇Xi(Φ(X0, X1, . . . , X̂i, . . . , Xk))−

−
∑

1≤i<j

(−1)i+jΦ([Xi, Xj ], X0, X1, . . . , X̂i, . . . , X̂j , . . . , Xk).

By summing up, the result follows.

( 6 ) We prove the result again by induction on p + q. Suppose that ( 6 ) is true

for p + q < k. Then for each local vector field X we have by ( 10 ), ( 9 ), ( 12 ),
and by induction

iX d∇(ϕ ∧ Φ) = L∇X(ϕ ∧ Φ)− d∇iX(ϕ ∧ Φ)

= L∇Xϕ ∧ Φ + ϕ ∧ L∇XΦ− d∇(iXϕ ∧ Φ + (−1)pϕ ∧ iXΦ)
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= iXdϕ ∧ Φ + d∇iXϕ ∧ Φ + ϕ ∧ iXdΦ + ϕ ∧ d∇iXΦ− d∇iXϕ ∧ Φ

− (−1)p−1iXϕ ∧ d∇Φ− (−1)pd∇ϕ ∧ iXΦ− ϕ ∧ d∇iXΦ

= iX(d∇ϕ ∧ Φ + (−1)pϕ ∧ d∇Φ).

Since X is arbitrary, the result follows.

( 8 ) follows from a direct computation. The usual fast proofs are not conclusive
in infinite dimensions. The computation is similar to the one for the proof of

33.18.4 , and only the definitions ( 2 ) of d∇ and 37.28 of RE , and the Jacobi
identity enter. �

37.30. Let (p : P → M,G) be a principal fiber bundle, and let ρ : G → GL(W )
be a representation of the structure group G on a convenient vector space W , as in

49.1 .

Theorem. There is a canonical isomorphism from the space of P [W,ρ]-valued
differential forms on M onto the space of horizontal G-equivariant W -valued
differential forms on P :

q] : Ω(M ;P [W,ρ])→ Ωhor(P,W )G := {ϕ ∈ Ω(P,W ) : iXϕ = 0

for all X ∈ V P, (rg)∗ϕ = ρ(g−1) ◦ ϕ for all g ∈ G},

In particular, for W = R with trivial representation we see that

p∗ : Ω(M)→ Ωhor(P )G = {ϕ ∈ Ωhor(P ) : (rg)∗ϕ = ϕ}

also is an isomorphism. We have q](ϕ ∧ Φ) = p∗ϕ ∧ q]Φ for ϕ ∈ Ω(M) and
Φ ∈ Ω(M ;P [W ]).

The isomorphism

q] : Ω0(M ;P [W ]) = C∞(M ← P [W ])→ Ω0
hor(P,W )G = C∞(P,W )G

is a special case of the one from 37.16 .

Proof. Let ϕ ∈ Ωkhor(P,W )G, X1, . . . , Xk ∈ TuP , and X ′1, . . . , X
′
k ∈ Tu′P such

that Tup.Xi = Tu′p.X
′
i for each i. Then there is a g ∈ G such that ug = u′:

q(u, ϕu(X1, . . . , Xk)) = q(ug, ρ(g−1)ϕu(X1, . . . , Xk))

= q(u′, ((rg)∗ϕ)u(X1, . . . , Xk))

= q(u′, ϕug(Tu(rg).X1, . . . , Tu(rg).Xk))

= q(u′, ϕu′(X
′
1, . . . , X

′
k)), since Tu(rg)Xi −X ′i ∈ Vu′P.

Thus, a vector bundle valued form Φ ∈ Ωk(M ;P [W ]) is uniquely determined by

Φp(u)(Tup.X1, . . . , Tup.Xk) := q(u, ϕu(X1, . . . , Xk)).

For the converse recall the smooth mapping τW : P ×M P [W,ρ]→W from 37.12 ,

which satisfies τW (u, q(u,w)) = w, q(ux, τ
W (ux, vx)) = vx, and τW (uxg, vx) =

ρ(g−1)τW (ux, vx).
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For Φ ∈ Ωk(M ;P [W ]) we define q]Φ ∈ Ωk(P,W ) as follows. For Xi ∈ TuP we put

(q]Φ)u(X1, . . . , Xk) := τW (u,Φp(u)(Tup.X1, . . . , Tup.Xk)).

Then q]Φ is smooth and horizontal. For g ∈ G we have

((rg)∗(q]Φ))u(X1, . . . , Xk) = (q]Φ)ug(Tu(rg).X1, . . . , Tu(rg).Xk)

= τW (ug,Φp(ug)(Tugp.Tu(rg).X1, . . . , Tugp.Tu(rg).Xk))

= ρ(g−1)τW (u,Φp(u)(Tup.X1, . . . , Tup.Xk))

= ρ(g−1)(q]Φ)u(X1, . . . , Xk).

Clearly, the two constructions are inverse to each other. �

37.31. Let (p : P →M,G) be a principal fiber bundle with a principal connection
Φ = ζ ◦ω, and let ρ : G→ GL(W ) be a representation of the structure group G on

a convenient vector space W , as in 49.1 . We consider the associated vector bundle

(p : E := P [W,ρ]→M,W ), the induced connection Φ̄ on it, and the corresponding
covariant derivative.

Theorem. The covariant exterior derivative dω from 37.23 on P and the covari-

ant exterior derivative for P [W ]-valued forms on M are connected by the mapping

q] from 37.30 , as follows:

q] ◦ d∇ = dω ◦ q] : Ω(M ;P [W ])→ Ωhor(P,W )G.

Proof. Let us consider first f ∈ Ω0
hor(P,W )G = C∞(P,W )G, then f = q]s for

s ∈ C∞(M ← P [W ]), and we have f(u) = τW (u, s(p(u))) and s(p(u)) = q(u, f(u))

by 37.30 and 37.16 . Therefore, we have Ts.Tp.Xu = Tq(Xu, Tf.Xu), where
Tf.Xu = (f(u), df(Xu)) ∈ TW = W × W . If χ : TP → HP is the horizontal

projection as in 37.23 , we have Ts.Tp.Xu = Ts.Tp.χ.Xu = Tq(χ.Xu, T f.χ.Xu).
So we get

(q]d∇s)(Xu) = τW (u, (d∇s)(Tp.Xu))

= τW (u,∇Tp.Xus) by 37.29.5

= τW (u,K.Ts.Tp.Xu) by 37.28.1

= τW (u,K.Tq(χ.Xu, Tf.χ.Xu)) from above

= τW (u,pr2 .vl−1
P [W ].Φ̄.T q(χ.Xu, T f.χ.Xu)) by 37.26

= τW (u,pr2 .vl−1
P [W ].T q.(Φ× Id)(χ.Xu, Tf.χ.Xu)) by 37.24

= τW (u,pr2 .vl−1
P [W ].T q(0u, T f.χ.Xu)) since Φ.χ = 0

= τW (u, q. pr2 .vl−1
P×W .(0u, T f.χ.Xu)) since q is fiber linear

= τW (u, q(u, df.χ.Xu)) = (χ∗df)(Xu)

= (dωq
]s)(Xu).
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Now we turn to the general case. Let Yi for i = 0, . . . , k be local vector fields on M ,
and let CYi be their horizontal lifts to P . Then Tp.CYi = yi ◦ p, so Yi and CYi are
p-related. Since both q]d∇Φ and dωq

] are horizontal, it suffices to check that they
coincide on all local vector fields of the form CYi. Since C[Yi, Yj ] = χ[CYi, CYj ],
we get from the special case above and the definition of q]:

(dωq
]Φ)(CY0, . . . , CYk) =

∑
0≤i≤k

(−1)i(CYi)(q
]Φ)(CY0, . . . , ĈYi, . . . , CYk)

+
∑
i<j

(−1)i+j(q]Φ)([CYi, CYj ], CY0, . . . ĈYi . . . ĈYj . . . , CYk)

=
∑

0≤i≤k

(−1)i(CYi)(q
](Φ(Y0, . . . , Ŷi, . . . , Yk)

+
∑
i<j

(−1)i+j(q]Φ)(C[Yi, Yj ], CY0, . . . ĈYi . . . ĈYj . . . , CYk)

=
∑

0≤i≤k

(−1)iq](∇Yi(Φ(Y0, . . . , Ŷi, . . . , Yk)))

+
∑
i<j

(−1)i+jq](Φ([Yi, Yj ], Y0, . . . Ŷi . . . Ŷj . . . , Yk))

= q](d∇Φ(Y0, . . . , Yk)) = (q]d∇Φ)(CY0, . . . , CYk). �

37.32. Corollary. In the situation of theorem 37.31 , for the Lie algebra valued

curvature form Ω ∈ Ω2
hor(P, g) and the curvature RP [W ] ∈ Ω2(M ;L(P [W ], P [W ]))

we have the relation

q]L(P [W ],P [W ])R
P [W ] = ρ′ ◦ Ω,

where ρ′ = Teρ : g→ L(W,W ) is the derivative of the representation ρ.

Proof. We use the notation of the proof of theorem 37.31 , by which we have for
X, Y ∈ TuP

(dωdωq
]
P [W ]s)u(X,Y ) = (q]d∇d∇s)u(X,Y )

= (q]RP [W ]s)u(X,Y )

= τW (u,RP [W ](Tup.X, Tup.Y )s(p(u)))

= (q]L(P [W ],P [W ])R
P [W ])u(X,Y )(q]P [W ]s)(u).

On the other hand, let g(t) be a smooth curve in G with g(0) = e and ∂
∂t

∣∣
0
g(t) =

Ωu(X,Y ) ∈ g. Then we have by theorem 37.23.8

(dωdωq
]s)u(X,Y ) = (χ∗iRdq

]s)u(X,Y )

= (dq]s)u(R(X,Y )) since R is horizontal

= (dq]s)(−ζΩ(X,Y )(u)) by 37.20

= ∂
∂t

∣∣
0

(q]s)(rg(t)
−1

(u))
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= ∂
∂t

∣∣
0
τW
(
u.g(t)−1, s(p(u.g(t)−1))

)
= ∂

∂t

∣∣
0
τW (u.g(t)−1, s(p(u)))

= ∂
∂t

∣∣
0
ρ(g(t))τW (u, s(p(u))) by 37.12

= ρ′(Ωu(X,Y ))(q]s)(u). �

38. Regular Lie Groups

38.1. The right and left logarithmic derivatives. Let M be a manifold, and
let f : M → G be a smooth mapping into a Lie group G with Lie algebra g. We
define the mapping δrf : TM → g by the formula

δrf(ξx) := Tf(x)(µ
f(x)−1

).Txf.ξx = (f∗κr)(ξx) for ξx ∈ TxM,

where κr is the right Maurer-Cartan form from 36.10 . Then δrf is a g-valued

1-form on M , δrf ∈ Ω1(M, g). We call δrf the right logarithmic derivative

of f , since for f : R→ (R+, ·) we have δrf(x).1 = f ′(x)
f(x) = (log ◦f)′(x).

Similarly, the left logarithmic derivative δlf ∈ Ω1(M, g) of a smooth mapping
f : M → G is given by

δlf.ξx := Tf(x)(µf(x)−1).Txf.ξx = (F ∗κl)(ξx).

Lemma. Let f, g : M → G be smooth. Then we have

δr(f.g)(x) = δrf(x) + Ad(f(x)).δrg(x).

Moreover, the differential form δrf ∈ Ω1(M, g) satisfies the ‘left Maurer-Cartan
equation’ (left because it stems from the left action of G on itself)

dδrf(ξ, η)− [δrf(ξ), δrf(η)]g = 0

or dδrf − 1

2
[δrf, δrf ]g∧ = 0,

where ξ, η ∈ TxM , and where the graded Lie bracket [ , ]g∧ was defined in

37.20.1 .

The left logarithmic derivative also satisfies a ‘Leibniz rule’ and the ‘right Maurer
Cartan equation’:

δl(fg)(x) = δlg(x) +Ad(g(x)−1).δlf(x),

dδlf +
1

2
[δlf, δlf ]g∧ = 0.

For ‘regular Lie groups’ we will prove a converse to this statement later in 40.2 .

Proof. We treat only the right logarithmic derivative, the proof for the left one is
similar.

δr(f.g)(x) = T (µg(x)−1.f(x)−1

).Tx(f.g)

= T (µf(x)−1

).T (µg(x)−1

).T(f(x),g(x))µ.(Txf, Txg)
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= T (µf(x)−1

).T (µg(x)−1

).
(
T (µg(x)).Txf + T (µf(x)).Txg

)
= δrf(x) + Ad(f(x)).δrg(x).

We shall now use principal bundle geometry from section 37 . We consider the
trivial principal bundle pr1 : M × G → M with right principal action. Then
the submanifolds {(x, f(x).g) : x ∈ M} for g ∈ G form a foliation of M × G,
whose tangent distribution is complementary to the vertical bundle M × TG ⊂
T (M×G) and is invariant under the principal right G-action. So it is the horizontal
distribution of a principal connection on M × G → M . For a tangent vector
(ξx, Yg) ∈ TxM × TgG the horizontal part is the right translate to the foot point
(x, g) of (ξx, Txf.ξx). The decomposition in horizontal and vertical parts according
to this distribution is

(ξx, Yg) = (ξx, T (µg).T (µf(x)−1

).Txf.ξx) + (0x, Yg − T (µg).T (µf(x)−1

).Txf.ξx).

Since the fundamental vector fields for the right action on G are the left invariant
vector fields, the corresponding connection form is given by

ωr(ξx, Yg) = T (µg−1).(Yg − T (µg).T (µf(x)−1

).Txf.ξx),

ωr(x,g) = T (µg−1)−Ad(g−1).δrfx,

ωr = κl − (Ad ◦ ν).δrf,(1)

where κl : TG → g is the left Maurer-Cartan form on G (the left trivializa-
tion), given by κlg = T (µg−1). Note that κl is the principal connection form for the
(unique) principal connection p : G→ {point} with right principal action, which is
flat so that the right (from right action) Maurer-Cartan equation holds in the form

(2) dκl + 1
2 [κl, κl]∧ = 0.

For a direct priif of this see ( 36.10.5 ).

The principal connection ωr is flat since we got it via the horizontal leaves, so the
principal curvature form vanishes:

0 = dωr + 1
2 [ωr, ωr]∧(3)

= dκl + 1
2 [κl, κl]∧ − d(Ad ◦ ν) ∧ δrf − (Ad ◦ ν).dδrf

− [κl, (Ad ◦ ν).δrf ]∧ + 1
2 [(Ad ◦ ν).δrf, (Ad ◦ ν).δrf ]∧

= −(Ad ◦ ν).(dδrf − 1
2 [δrf, δrf ]∧),

where we used ( 2 ) and the fact that for ξ ∈ g and a smooth curve c : R→ G with
c(0) = e and c′(0) = ξ we have

d(Ad ◦ ν)(T (µg)ξ) = ∂
∂t

∣∣
0

Ad(c(t)−1.g−1) = −ad(ξ)Ad(g−1)

= −ad
(
κl(T (µg)ξ)

)
(Ad ◦ ν)(g),

d(Ad ◦ ν) = −(ad ◦ κl).(Ad ◦ ν).(4)

So we have dδrf − 1
2 [δrf, δrf ]∧ as asserted.

For the left logarithmic derivative δlf the proof is similar, and we discuss only the
essential deviations. First note that on the trivial principal bundle pr1 : M×G→M
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with left principal action of G the fundamental vector fields are the right invariant
vector fields on G, and that for a principal connection form ωl the curvature form

is given by dωl − 1
2 [ωl, ωl]∧. Look at the proof of theorem 37.20 to see this. The

connection form is then given by

( 1 ) ωl = κr −Ad.δlf,′

where the right Maurer-Cartan form (κr)g = T (µg
−1

) : TgG → g satisfies the left
Maurer-Cartan equation

( 2 ) dκr − 1

2
[κr, κr]∧ = 0.′

Flatness of ωl now leads to the computation

0 = dωl − 1
2 [ωl, ωl]′∧( 3 )

= dκr − 1
2 [κr, κr]∧ − dAd ∧ δlf −Ad.dδlf

+ [κr,Ad.δlf ]∧ − 1
2 [Ad.δlf,Ad.δlf ]∧

= −Ad.(dδlf + 1
2 [δlf, δlf ]∧),

where we have used dAd = (ad ◦ κr)Ad from 36.10.3 directly. �

Remark. The second half of the proof of lemma 38.1 can be shortened consider-

ably. Namely, as soon as we know (see ( 36.10.4 ) for a short proof) that κr satisfies

the Maurer-Cartan equation dκr− 1
2 [κr, κr]∧ we get it also for the right logarithmic

derivative δrf = f∗κr. But the computations in this proof will be used again in

the proof of the converse, theorem 40.2 below.

38.2. Theorem. [Grabowski, 1993] Let G be a Lie group with exponential mapping
exp : g→ G. Then for all X,Y ∈ g we have

TX exp .Y = TeµexpX .

∫ 1

0

Ad(exp(−tX))Y dt

= Teµ
expX .

∫ 1

0

Ad(exp(tX))Y dt.

Remark. If G is a Banach Lie group then we have from 36.8.4 and 36.9 the

series Ad(exp(tX)) =
∑∞
i=0

ti

i! ad(X)i, so that we get the usual formula

TX exp = Teµ
expX .

∞∑
i=0

1
(i+1)!ad(X)i.

Proof. We consider the smooth mapping

f : R2 → G, f(s, t) := exp(s(X + tY )). exp(−sX).

Then f(s, 0) = e and

∂0f(s, 0) = sTexp(sX)µ
exp(−sX).TsX exp .Y,

TX exp .Y = Teµ
exp(X).∂tf(1, 0).(1)
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Moreover we get

δrf(s, t).∂s = Tf(s,t)µ
f(s,t)−1

(
Tµexp(−sX).∂s exp(s(X + tY ))

+ Tµexp(s(X+tY )).∂s exp(−sX)

)
= Tf(s,t)µ

f(s,t)−1

(
Tµexp(−sX).RX+tY (exp(s(X + tY )))

− Tµexp(s(X+tY )).LX exp(−sX)

)
= X + tY −Ad(f(s, t))X.

(2) ∂t|0δrf(s, t).∂s = Y − ad(∂tf(s, 0)).X

Now we use 38.1 to get

0 = d(δrf)(∂s, ∂t)− [δrf(∂s), δ
rf(∂t)]

= ∂s(δ
rf)(∂t)− ∂t(δrf)(∂s)− (δrf)([∂s, ∂t])− [δrf(∂s), δ

rf(∂t)].

Since (δrf)(∂s)|t=0 = 0 we get ∂s(δ
rf)(s, 0)(∂t) = ∂t(δ

rf)(s, 0)(∂s), and from ( 2 )
we then conclude that the curve

(3) c(s) = (δrf)(s, 0)(∂t) = ∂t|0f(s, 0) = sδr exp(sX).Y ∈ g

is a solution of the ordinary differential equation

(4) c′(s) = Y + [X, c(s)] = Y + ad(X).c(s), c(0) = 0.

The unique solution for the homogeneous equation with c(0) = c0 is

c(s) = Ad(exp(sX)).c0, since

c′(s) = ∂t|t=0Ad(exp(tX))Ad(exp(sX))c0 = [X, c(s)],

∂s(Ad(exp(−sX))C(s)) = −Ad(exp(−sX)).ad(X).C(s)+

+ Ad(exp(−sX))[X,C(s)] = 0

for every other solution C(t). Using the variation of constant ansatz we get the
solution

c(s) = Ad(exp(sX))

∫ s

0

Ad(exp(−tX))Y dt

of the inhomogeneous equation ( 4 ), which is unique for c(0) = 0 since 0 is the
unique solution of the homogeneous equation with initial value 0. Finally, we have

from ( 1 )

TX exp .Y = Teµ
exp(X).c(1)

= Teµ
exp(X).Ad(exp(X))

∫ 1

0

Ad(exp(−tX))Y dt

= Teµexp(X).

∫ 1

0

Ad(exp(−tX))Y dt

TX exp .Y = Teµ
exp(X).Ad(exp(X))

∫ 1

0

Ad(exp(−tX))Y dt
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= Teµ
exp(X)

∫ 1

0

Ad(exp((1− t)X))Y dt

= Teµ
exp(X)

∫ 1

0

Ad(exp(rX))Y dr. �

38.3. Let G be a Lie group with Lie algebra g. For a closed interval I ⊂ R and for
X ∈ C∞(I, g) we consider the ordinary differential equation

(1)

{
g(t0) = e
∂
∂tg(t) = Te(µ

g(t))X(t) = RX(t)(g(t)), or κr( ∂∂tg(t)) = X(t),

for local smooth curves g in G, where t0 ∈ I.

Lemma.

(2) Local solutions g of the differential equation ( 1 ) are uniquely determined.

(3) If for fixed X the differential equation ( 1 ) has a local solution near each
t0 ∈ I, then it has also a global solution g ∈ C∞(I,G).

(4) If for all X ∈ C∞(I, g) the differential equation ( 1 ) has a local solution near
one fixed t0 ∈ I, then it has also a global solution g ∈ C∞(I,G) for each X.
Moreover, if the local solutions near t0 depend smoothly on the vector fields X
(see the proof for the exact formulation), then so does the global solution.

(5) The curve t 7→ g(t)−1 is the unique local smooth curve h in G which satisfies{
h(t0) = e
∂
∂th(t) = Te(µh(t))(−X(t)) = L−X(t)(h(t)), or κl( ∂∂th(t)) = −X(t).

Proof. ( 2 ) Suppose that g(t) and g1(t) both satisfy ( 1 ). Then on the intersection
of their intervals of definition we have

∂
∂t (g(t)−1 g1(t)) = −T (µg1(t)).T (µg(t)−1).T (µg(t)

−1

).T (µg(t)).X(t)

+ T (µg(t)−1).T (µg1(t)).X(t) = 0,

so that g = g1.

Proof of ( 3 ) It suffices to prove the claim for every compact subinterval of I, so

let I be compact. If g is a local solution of ( 1 ) then t 7→ g(t).x is a local solution
of the same differential equation with initial value x. By assumption, for each s ∈ I
there is a unique solution gs of the differential equation with gs(s) = e; so there
exists δs > 0 such that gs(s + t) is defined for |t| < δs. Since I is compact there
exist s0 < s1 < · · · < sk such that I = [s0, sk] and si+1 − si < δsi . Then we put

g(t) :=



gs0(t) for s0 ≤ t ≤ s1

gs1(t).gs0(s1) for s1 ≤ t ≤ s2

. . .

gsi(t).gsi−1
(si) . . . gs0(s1) for si ≤ t ≤ si+1

. . .

which is smooth by the first case and solves the problem.
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Proof of ( 4 ) Given X : I → g we first extend X to a smooth curve R → g, using

24.10 . For t1 ∈ I, by assumption, there exists a local solution g near t0 of the
translated vector field t 7→ X(t1 − t0 + t), thus t 7→ g(t0 − t1 + t) is a solution near

t1 of X. So by ( 3 ) the differential equation has a global solution for X on I.

Now we assume that the local solutions near t0 depend smoothly on the vector
field. So for any smooth curve X : R→ C∞(I, g) we have:

For every compact interval K ⊂ R there is a neighborhood UX,K of t0 in
I and a smooth mapping g : K × UX,K → G with{

g(k, t0) = e
∂
∂tg(k, t) = Te(µ

g(k,t)).X(k)(t) for all k ∈ K, t ∈ UX,K .

Given a smooth curve X : R→ C∞(I, g) we extend (or lift) it smoothly to X : R→
C∞(R, g) by 24.10 . Then the smooth parameter k from the compact interval K
passes smoothly through the proofs given above to give a smooth global solution
g : K × I → G. So the ‘solving operation’ respects smooth curves and thus is
‘smooth’.

Proof of ( 5 ) One can show in a similar way that h is the unique solution of ( 5 ) by

differentiating h1(t).h(t)−1. Moreover, the curve t 7→ g(t)−1 = h(t) satisfies ( 5 ),
since

∂
∂t (g(t)−1) = −T (µg(t)−1).T (µg(t)

−1

).T (µg(t)).X(t) = T (µg(t)−1).(−X(t)). �

38.4. Definition. Regular Lie groups. If for each X ∈ C∞(R, g) there exists
g ∈ C∞(R, G) satisfying

(1)


g(0) = e
∂
∂tg(t) = Te(µ

g(t))X(t) = RX(t)(g(t)),

or κr( ∂∂tg(t)) = δrg(∂t) = X(t)

then we write

evolrG(X) = evolG(X) := g(1),

EvolrG(X)(t) := evolG(s 7→ tX(ts)) = g(t),

and call them the right evolution of the curve X in G. By lemma 38.3 , the

solution of the differential equation ( 1 ) is unique, and for global existence it is
sufficient that it has a local solution. Then

EvolrG : C∞(R, g)→ {g ∈ C∞(R, G) : g(0) = e}

is bijective with inverse δr. The Lie group G is called a regular Lie group if
evolr : C∞(R, g)→ G exists and is smooth. We also write

evollG(X) = evolG(X) := h(1),

EvollG(X)(t) := evollG(s 7→ tX(ts)) = h(t),
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if h is the (unique) solution of

(2)


h(0) = e
∂
∂th(t) = Te(µh(t))(X(t)) = LX(t)(h(t)),

or κl( ∂∂th(t)) = δlh(∂t) = X(t).

Clearly, evoll : C∞(R, g)→ G exists and is also smooth if evolr does, since we have

evoll(X) = evolr(−X)−1 by lemma 38.3 .

Let us collect some easily seen properties of the evolution mappings. If f ∈
C∞(R,R) then we have

Evolr(X)(f(t)) = Evolr(f ′.(X ◦ f))(t).Evolr(X)(f(0)),

Evoll(X)(f(t)) = Evoll(X)(f(0)).Evoll(f ′.(X ◦ f))(t).

If ϕ : G → H is a smooth homomorphism between regular Lie groups then the
diagrams

(3) C∞(R, g)
ϕ′∗ //

evolG

��

C∞(R, h)

evolH

��

C∞(R, g)
ϕ′∗ //

EvolG

��

C∞(R, h)

EvolH

��
G

ϕ // H C∞(R, G)
ϕ∗ // C∞(R, H)

commutes, since ∂
∂tϕ(g(t)) = Tϕ.T (µg(t)).X(t) = T (µϕ(g(t))).ϕ′.X(t). Note that

each regular Lie group admits an exponential mapping, namely the restriction of
evolr to the constant curves R→ g. A Lie group is regular if and only if its universal
covering group is regular.

This notion of regularity is a weakening of the same notion of [Omori et al., 1982,
1983a], who considered a sort of product integration property on a smooth Lie
group modeled on Fréchet spaces. Our notion here is due to [Milnor, 1984]. Up to
now the following statement holds:

All known Lie groups are regular.

Any Banach Lie group is regular since we may consider the time dependent right
invariant vector field RX(t) on G and its integral curve g(t) starting at e, which
exists and depends smoothly on (a further parameter in) X. In particular, finite
dimensional Lie groups are regular. For diffeomorphism groups the evolution oper-
ator is just integration of time dependent vector fields with compact support, see

section 43 below.

38.5. Some abelian regular Lie groups. For (E,+), where E is a convenient

vector space, we have evol(X) =
∫ 1

0
X(t)dt, so convenient vector spaces are regular

abelian Lie groups. We shall need ‘discrete’ subgroups, which is not an obvious
notion since (E,+) is not a topological group: the addition is continuous only as a
mapping c∞(E×E)→ c∞E and not for the cartesian product of the c∞-topologies.

Next let Z be a ‘discrete’ subgroup of a convenient vector space E in the sense that
there exists a c∞-open neighborhood U of zero in E such that U ∩ (z + U) = ∅ for
all 0 6= z ∈ Z (equivalently (U − U) ∩ (Z \ 0) = ∅). For that it suffices e.g., that Z
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is discrete in the bornological topology on E. Then E/Z is an abelian but possibly
non Hausdorff Lie group. It does not suffice to take Z discrete in the c∞-topology:

Take as Z the subgroup generated by A in RN×c0 in the proof of 4.26 .(iv).

Let us assume that Z fulfills the stronger condition: there exists a symmetric c∞-
open neighborhood W of 0 such that (W +W )∩ (z+W +W ) = ∅ for all 0 6= z ∈ Z
(equivalently (W +W +W +W )∩(Z \0) = ∅). Then E/Z is Hausdorff and thus an
abelian regular Lie group, since its universal cover E is regular. Namely, for x /∈ Z,
we have to find neighborhoods U and V of 0 such that (Z +U)∩ (x+Z + V ) = ∅.
There are two cases. If x ∈ Z + W + W then there is a unique z ∈ Z with
x ∈ z + W + W , and we may choose U, V ⊂ W such that (z + U) ∩ (x + V ) = ∅;
then (Z + U) ∩ (x + Z + V ) = ∅. In the other case, if x /∈ Z + W + W , then we
have (Z +W ) ∩ (x+ Z +W ) = ∅.

Notice that the two conditions above and their consequences also hold for gen-
eral (non-abelian) (regular) Lie groups instead of E and their ‘discrete’ normal
subgroups (which turn out to be central if G is connected).

It would be nice if any regular abelian Lie group would be of the form E/Z described
above. A first result in this direction is that for an abelian Lie group G with Lie
algebra g which admits a smooth exponential mapping exp : g→ G one can easily

check by using 38.2 that ∂
∂t (exp(−tX). exp(tX+Y )) = 0, so that exp is a smooth

homomorphism of Lie groups.

Let us consider some examples. More examples can be found in [Banaszczyk, 1984,
1986, 1991]. For the first one we consider a discrete subgroup Z ⊂ RN. There
exists a neighborhood of 0, without loss of generality of the form U × RN\n for
U ⊂ Rn, with U ∩ (Z \0) = ∅. Then we consider the following diagram of Lie group
homomorphisms

0 //

��

RN\n //

��

RN\n

��
Z //

∼=
��

RN //

π

��

RN/Z

��

(S1)k × RN\(n−k)

��
π(Z) // Rn // Rn/π(Z) (S1)k × Rn−k

which has exact lines and columns. For the right hand column we use a diagram
chase to see this. Choose a global linear section of π inverting π|Z. This factors to
a global homomorphism of the right hand side column.

As next example we consider Z(N) ⊂ R(N). Then, obviously, R(N)/Z(N) = (S1)(N),
which is a real analytic manifold modeled on R(N), similar to the ones which are

treated in section 47 . The reader may convince himself that any Lie group covered

by R(N) is isomorphic to (S1)(A) × R(N\A) for A ⊆ N.

As another example, one may check easily that `∞/(ZN ∩ `∞) = (S1)N, equipped

with the ‘uniform box topology’; compare with the remark at the end of 27.3 .
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38.6. Extensions of Lie groups. Let H and K be Lie groups. A Lie group G is
called a smooth extension of H with kernel K if we have a short exact sequence
of groups

(1) {e} → K −i→ G−p→ H → {e},

such that i and p are smooth, and one of the following two equivalent conditions is
satisfied:

(2) p admits a local smooth section s near e (equivalently near any point), and i

is initial 27.11 .
(3) i admits a local smooth retraction r near e (equivalently near any point), and

p is final 27.15 .

Of course, by s(p(x))i(r(x)) = x the two conditions are equivalent, and then G is
locally diffeomorphic to K ×H via (r, p) with local inverse (i ◦ pr1).(s ◦ pr2).

Not every smooth exact sequence of Lie groups admits local sections as required in

( 2 ). Let, for example, K be a closed linear subspace in a convenient vector space
G which is not a direct summand, and let H be G/K. Then the tangent mapping
at 0 of a local smooth splitting would make K a direct summand.

Theorem. Let {e} → K−i→ G−p→ H → {e} be a smooth extension of Lie groups.
Then G is regular if and only if both K and H are regular.

Proof. Clearly, the induced sequence of Lie algebras also is exact,

0→ k−i
′
→ g−p

′
→ h→ 0,

with a bounded linear section Tes of p′. Thus, g is isomorphic to k×h as convenient
vector space.

Let us suppose that K and H are regular. Given X ∈ C∞(R, g), we consider
Y (t) := p′(X(t)) ∈ h with evolution curve h satisfying ∂

∂th(t) = T (µh(t)).Y (t) and

h(0) = e. By lemma 38.3 it suffices to find smooth local solutions g near 0 of
∂
∂tg(t) = T (µg(t)).X(t) with g(0) = e, depending smoothly on X. We look for
solutions of the form g(t) = s(h(t)).i(k(t)), where k is a local evolution curve in K
of a suitable curve t 7→ Z(t) in k, i.e., ∂

∂tk(t) = T (µk(t)).Z(t), and k(0) = e. For
this ansatz we have

∂
∂tg(t) = ∂

∂t

(
s(h(t)).i(k(t))

)
= T (µs(h(t))).T i.

∂
∂tk(t) + T (µi(k(t))).T s. ∂∂th(t)

= T (µs(h(t))).T i.T (µk(t)).Z(t) + T (µi(k(t))).T s.T (µh(t)).Y (t),

and we want this to be

T (µg(t)).X(t) = T (µs(h(t)).i(k(t))).X(t) = T (µi(k(t))).T (µs(h(t))).X(t).

Using i ◦ µk = µi(k) ◦ i, one quickly sees that

i′.Z(t) := Ad
(
s(h(t))−1

)
.
(
X(t)− T (µs(h(t))−1

).T s.T (µh(t)).Y (t)
)
∈ ker p′

solves the problem, so G is regular.
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Let now G be regular. If Y ∈ C∞(R, h), then p ◦ EvolrG(s′ ◦ Y ) = EvolH(Y ), by

the diagram in 38.4.3 . If U ∈ C∞(R, k) then p ◦EvolG(i′ ◦U) = EvolH(0) = e, so
that EvolG(i′ ◦ U)(t) ∈ i(K) for all t and thus equals i(EvolK(U)(t)). �

38.7. Subgroups of regular Lie groups. Let G and K be Lie groups, let G

be regular, and let i : K → G be a smooth homomorphism which is initial 27.11
with Tei = i′ : k→ g injective. We suspect that K is then regular, but we are only
able to prove this under the following assumption.

There are an open neighborhood U ⊂ G of e and a smooth mapping
p : U → E into a convenient vector space E such that p−1(0) = K ∩ U
and p is constant on left cosets Kg ∩ U .

Proof. For Z ∈ C∞(R, k) we consider g(t) = EvolG(i′ ◦ Z)(t) ∈ G. Then we have
∂
∂t (p(g(t))) = Tp.T (µg(t)).i′(Z(t)) = 0 by the assumption, so p(g(t)) is constant
p(e) = 0, thus g(t) = i(h(t)) for a smooth curve h in H, since i is initial. Then
h = EvolH(Y ) since Tei is injective, and h depends smoothly on Z since i is
initial. �

38.8. Abelian and central extensions. From theorem 38.6 , it is clear that
any smooth extension G of a regular Lie group H with an abelian regular Lie group
(K,+) is regular. We shall describe EvolG in terms of EvolG, EvolK , and in terms
of the action of H on K and the cocycle c : H ×H → K if the latter exists.

Let us first recall these notions. If we have a smooth extension with abelian normal
subgroup K,

{e} → K −i→ G−p→ H → {e},
then a unique smooth action α : H × K → K by automorphisms is given by
i(αh(k)) = s(h)i(k)s(h)−1, where s is any smooth local section of p defined near h.
If moreover p admits a global smooth section s : H → G, which we assume without
loss of generality to satisfy s(e) = e, then we consider the smooth mapping c :
H ×H → K given by ic(h1, h2) := s(h1).s(h2).s(h1.h2)−1. Via the diffeomorphism
K × H → G given by (k, h) 7→ i(k).s(h) the identity corresponds to (0, e), the
multiplication and the inverse in G look as follows:

(k1, h1).(k2, h2) = (k1 + αh1
k2 + c(h1, h2), h1h2),(1)

(k, h)−1 = (−αh−1(k)− c(h−1, h), h−1).

Associativity and (0, e)2 = (0, e) correspond to the fact that c satisfies the following
cocycle condition and normalization

αh1
(c(h2, h3))− c(h1h2, h3) + c(h1, h2h3)− c(h1, h2) = 0,(2)

c(e, e) = 0.

These imply that c(e, h) = 0 = c(h, e) and αh(c(h−1, h)) = c(h, h−1). For a central
extension the action is trivial, αh = IdK for all h ∈ H.

If conversely H acts smoothly by automorphisms on an abelian Lie group K and

if c : H ×H → K satisfies ( 2 ), then ( 1 ) describes a smooth Lie group structure
on K ×H, which is a smooth extension of H over K with a global smooth section.
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For later purposes, let us compute

(0, h1).(0, h2)−1 = (−αh1(c(h−1
2 , h2)) + c(h1, h

−1
2 ), h1h

−1
2 ),

T(0,h1)(µ
(0,h2)−1

).(0, Yh1
) = (−T (αc(h

−1
2 ,h2)).Yh1

+ T (c( , h−1
2 )).Yh1

, T (µh
−1
2 ).Yh1

).

Let us now assume that K and H are moreover regular Lie groups. We consider
a curve t 7→ X(t) = (U(t), Y (t)) in the Lie algebra g which as convenient vector

space equals k× h. From the proof of 38.6 we get that

g(t) := EvolG(U, Y )(t) = (0, h(t)).(k(t), e) = (αh(t)(k(t)), h(t)), where

h(t) := EvolH(Y )(t) ∈ H,

(Z(t), 0) := AdG(0, h(t))−1
(

(U(t), Y (t))− Tµ(0,h(t))−1

.(0, ∂∂th(t))
)
,

Z(t) = T0(αh(t)−1).
(
U(t) +

(
T (αc(h(t)−1,h(t)))− T (c( , h(t)−1))

)
. ∂∂th(t)

)
,

k(t) := EvolK(Z)(t) ∈ K.

38.9. Semidirect products. From theorem 38.6 we see immediately that the
semidirect product of regular Lie groups is regular. Since we shall need explicit

formulas later we specialize the proof of 38.6 to this case.

Let H and K be regular Lie groups with Lie algebras h and k, respectively. Let
α : H×K → K be smooth such that α∨ : H → Aut(K) is a group homomorphism.
Then the semidirect product K o H is the Lie group K × H with multiplication
(k, h).(k′, h′) = (k.αh(k′), h.h′) and inverse (k, h)−1 = (αh−1(k)−1, h−1). We have

then T(e,e)(µ
(k′,h′)).(U, Y ) = (T (µk

′
).U + T (αk

′
).Y, T (µh

′
).Y ).

Now we consider a curve t 7→ X(t) = (U(t), Y (t)) in the Lie algebra k o h. Since

s : h 7→ (e, h) is a smooth homomorphism of Lie groups, from the proof of 38.6
we get that

g(t) := EvolKoH(U, Y )(t) = (e, h(t)).(k(t), e) = (αh(t)(k(t)), h(t)), where

h(t) := EvolH(Y )(t) ∈ H,
(Z(t), 0) := AdKoH(e, h(t)−1)(U(t), 0) = (Te(αh(t)−1).U(t), 0),

k(t) := EvolK(Z)(t) ∈ K.

38.10. Corollary. Let G be a Lie group. Then via right trivialization (κr, πG) :
TG→ g×G the tangent group TG is isomorphic to the semidirect product goG,
where G acts by Ad : G→ Aut(g).

Therefore, if G is a regular Lie group, then TG ∼= goG also is regular, and T evolrG
corresponds to evolrTG. In particular, for (Y,X) ∈ C∞(R, g × g) = TC∞(R, g),
where X is the footpoint, we have

evolrgoG(Y,X) =
(

Ad(evolrG(X))

∫ 1

0

Ad(EvolrG(X)(s)−1).Y (s) ds, evolrG(X)
)
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TXevolrG.Y = T (µevolrG(X)).

∫ 1

0

Ad(EvolrG(X)(s)−1).Y (s) ds,

TX(EvolrG( )(t)).Y = T (µEvolrG(X)(t)).

∫ t

0

Ad(EvolrG(X)(s)−1).Y (s) ds.

The expression in 38.2 for the derivative of the exponential mapping is a special
case of the expression for T evolG, for constant curves in g. Note that in the semidi-
rect product representation TG ∼= g o G the footpoint appears in the right factor
G, contrary to our usual convention. We followed this also in Tg = go g.

Proof. Via right trivialization the tangent group TG is the semidirect product

g o G, where G acts on the Lie algebra g by Ad : G → Aut(g), because by 36.2
we have for g, h ∈ G and X,Y ∈ g, where µ = µG is the multiplication on G:

T(g,h)µ.(RX(g), RY (h)) = T (µh).RX(g) + T (µg).RY (h)

= T (µh).T (µg).X + T (µg).T (µh).Y

= RX(gh) +RAd(g)Y (gh),

Tgν.RX(g) = −T (µg
−1

).T (µg−1).T (µg).X

= −RAd(g−1)X(g−1),

so that µTG and νTG are given by

µgoG((X, g), (Y, h)) = (X + Ad(g)Y, gh)(1)

νgoG(X, g) = (−Ad(g−1)X, g−1).

Now we shall prove that the following diagram commutes and that the equations
of the corollary follow. The lower triangle commutes by definition.

TC∞(R, g)

T evolG

��

∼= // C∞(R, go g)

evolTG
uu

evolgoG

��
TG ∼=

// goG

For that we choose X,Y ∈ C∞(R, g). Let us first consider the evolution operator
of the tangent group TG in the picture goG. On (g,+) the evolution mapping is

the definite integral, so going through the prescription 38.9 for evolgoG we have
the following data:

evolgoG(Y,X) = (h(1), g(1)), where(2)

g(t) := EvolG(X)(t) ∈ G,
Z(t) := Ad(g(t)−1).Y (t) ∈ g,

h0(t) := Evol(g,+)(Z)(t) =

∫ t

0

Ad(g(u)−1).Y (u) du ∈ g,

h(t) := Ad(g(t))h0(t) = Ad(g(t))

∫ t

0

Ad(g(u)−1).Y (u) du ∈ g.



422 Chapter VIII . Infinite Dimensional Differential Geometry 38.10

This shows the first equation in the corollary. The differential equation for the

curve (h(t), g(t)), which by lemma 38.3 has a unique solution starting at (0, e),

looks as follows, using ( 1 ):(
(h′(t), h(t)), g′(t)

)
= T(0,e)(µ

(h(t),g(t))
goG ).

(
(Y (t), 0), X(t)

)
=
((
Y (t) + dAd(X(t)).h(t), 0 + Ad(e).h(t)

)
, T (µ

g(t)
G ).X(t)

)
,

h′(t) = Y (t) + ad(X(t))h(t),(3)

g′(t) = T (µ
g(t)
G ).X(t).

For the computation of T evolG we let

g(t, s) := evolG

(
u 7→ t(X(tu) + sY (tu))

)
= EvolG(X + sY )(t),

satisfying δrg(∂t(t, s)) = X(t) + sY (t).

Then T evolG(Y,X) = ∂s|0g(1, s), and the derivative ∂s|0g(t, s) in TG corresponds
to the element

(T (µg(t,0)−1

).∂s|0g(t, s), g(t, 0)) = (δrg(∂s(t, 0)), g(t, 0)) ∈ goG

via right trivialization. For the right hand side we have g(t, 0) = g(t), so it remains
to show that δrg(∂s(t, 0)) = h(t). We will show that δrg(∂s(t, 0)) is the unique

solution of the differential equation ( 3 ) for h(t). Using the Maurer Cartan equation

dδrg − 1
2 [δrg, δrg]∧ = 0 from lemma 38.1 we get

∂tδ
rg(∂s) = ∂sδ

rg(∂t) + d(δrg)(∂t, ∂s) + δrg([∂t, ∂s])

= ∂sδ
rg(∂t) + [δrg(∂t), δ

rg(∂s)]g + 0

= ∂s(X(t) + sY (t)) + [X(t) + sY (t), δrg(∂s)]g,

so that for s = 0 we get

∂tδ
rg(∂s(t, 0)) = Y (t) + [X(t), δrg(∂s(t, 0))]g

= Y (t) + ad(X(t))δrg(∂s(t, 0)).

Thus, δrg(∂s(t, 0)) is a solution of the inhomogeneous linear ordinary differential

equation ( 3 ), as required.

It remains to check the last formula. Note that X 7→ tX(t ) is a bounded linear
operator. So we have

EvolrG(X)(t) = evolrG(s 7→ tX(ts)),

TX(EvolrG( )(t)).Y = TtX(t )evolrG.(tY (t ))

= T (µevolrG(tX(t ))).

∫ 1

0

AdG

(
EvolrG(tX(t ))(s)−1

)
.tY (ts) ds

= T (µEvolrG(X)(t)).

∫ 1

0

AdG

(
evolrG(stX(st ))−1

)
.tY (ts) ds

= T (µEvolrG(X)(t)).

∫ t

0

AdG

(
EvolrG(X)(s)−1

)
.Y (s) ds. �
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38.11. Current groups. We have another stability result: If G is regular and M
is a finite dimensional manifold then also the space of all smooth mappings M → G
is a a regular Lie group, denoted by C∞(M,G), with evolC∞(M,G) = C∞(M, evolG),

see 42.21 below.

38.12. Theorem. For a regular Lie group G we have

evolr(X).evolr(Y ) = evolr
(
t 7→ X(t) + AdG(Evolr(X)(t)).Y (t)

)
,

evolr(X)−1 = evolr
(
t 7→ −AdG(Evolr(X)(t)−1).X(t)

)
,

so that evolr : C∞(R, g)→ G is a surjective smooth homomorphism of Lie groups,
where on C∞(R, g) we consider the operations

(X ∗ Y )(t) = X(t) + AdG(Evolr(X)(t)).Y (t),

X−1(t) = −AdG(Evolr(X)(t)−1).X(t).

With this operations and with 0 as unit element (C∞(R, g), ∗) becomes a regular
Lie group. Its Lie algebra is C∞(R, g) with bracket

[X,Y ]C∞(R,g)(t) =
[∫ t

0

X(s) ds, Y (t)
]
g

+
[
X(t),

∫ t

0

Y (s) ds
]
g

= ∂
∂t

[∫ t

0

X(s) ds,

∫ t

0

Y (s) ds
]
g
.

Its evolution operator is given by

evol(C∞(R,g),∗)(X) := AdG(evolG(Y s)).

∫ 1

0

AdG(EvolG(Y s)(v)−1).X(v)(s) dv,

Y s(t) :=

∫ s

0

X(t)(u)du.

Proof. For X,Y ∈ C∞(R, g) we compute

∂
∂t

(
Evolr(X)(t).Evolr(Y )(t)

)
=

= T (µEvolr(Y )(t)).T (µEvolr(X)(t)).X(t) + T (µEvolr(X)(t)).T (µEvolr(Y )(t)).Y (t)

= T (µEvolr(X)(t).Evolr(Y )(t)).(X(t) + AdG(Evolr(X)(t))Y (t)),

which implies also

Evolr(X).Evolr(Y ) = Evolr(X ∗ Y ), Evolr(X)−1 = Evolr(X−1).

Thus, Evolr : C∞(R, g) → C∞(R, G) is a group isomorphism onto the subgroup
{c ∈ C∞(R, G) : c(0) = e} of C∞(R, G) with the pointwise product, which, how-

ever, is only a Frölicher space, see 23.1 Nevertheless, it follows that the product
on C∞(R, g) is associative. It is clear that these operations are smooth, hence the
convenient vector space C∞(R, g) becomes a Lie group and C∞(R, G) becomes a
manifold.

Now we aim for the Lie bracket. We have

(X ∗ Y ∗X−1)(t) =

((
X + Ad(Evolr(X)).Y

)
∗
(
−Ad(Evolr(X)−1).X

))
(t)
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= X(t) + Ad(Evolr(X)(t)).Y (t)−

−Ad
(

Evolr(X ∗ Y )(t)
)
.Ad
(

Evolr(X)(t)−1
)
.X(t)

= X(t) + Ad
(

Evolr(X)(t)
)
.Y (t)−

−Ad
(

Evolr(X)(t)
)
.Ad
(

Evolr(Y )(t)
)
.Ad
(

Evolr(X)(t)−1
)
.X(t).

We shall need

T0

(
AdG(Evolr( )(t))

)
.Y = TeAdG.T0(Evolr( )(t)).Y

= adg

(∫ t

0

Y (s) ds
)
, by 38.10 .

Using this, we can differentiate the conjugation,

(AdC∞(R,g)(X).Y )(t) = (T0(X ∗ ( ) ∗X−1).Y )(t)

= 0 + Ad(Evolr(X)(t)).Y (t)−

−Ad(Evolr(X)(t)).
(
T0(Ad(Evolr( )(t))).Y

)
.Ad(Evolr(X)(t)−1).X(t)

= Ad(Evolr(X)(t)).Y (t)−

−Ad(Evolr(X)(t)).adg

(∫ t

0

Y (s) ds
)
.Ad(Evolr(X)(t)−1).X(t)

= Ad(Evolr(X)(t)).Y (t)− adg.
(

Ad(Evolr(X)(t)).

∫ t

0

Y (s) ds
)
.X(t).

Now we can compute the Lie bracket

[X,Y ]C∞(R,g)(t) =
(
T0(AdC∞(R,g)( ).Y ).X

)
(t)

=
(
T0

(
Ad(Evolr( )(t))

)
.X
)
.Y (t)− 0−

[
Ad(Evolr(0)(t)).

∫ t

0

Y (s) ds,X(t)
]
g

=
[∫ t

0

X(s) ds, Y (t)
]
g
−
[∫ t

0

Y (s) ds,X(t)
]
g

=
[∫ t

0

X(s) ds, Y (t)
]
g

+
[
X(t),

∫ t

0

Y (s) ds
]
g

= ∂
∂t

[∫ t

0

X(s) ds,

∫ t

0

Y (s) ds
]
g
.

We show that the Lie group (C∞(R, g), ∗) is regular. Let X∨ ∈ C∞(R, C∞(R, g))
correspond to X ∈ C∞(R2, g). We look for g ∈ C∞(R2, g) which satisfies the

equation 38.4.1 :

µg(t, )(Y )(s) = (Y ∗ g(t, ))(s) = Y (s) + AdG(EvolG(Y )(s)).g(t, s)

∂
∂tg(t, s) =

(
T0(µg(t, )).X(t, )

)
(s)
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= X(t, s) +
(
T0

(
AdG(EvolG( )(s))

)
.X(t, )

)
.g(t, s)

= X(t, s) + adg

(∫ s

0

X(t, u)du
)
.g(t, s)

= X(t, s) +
[∫ s

0

X(t, u)du, g(t, s)
]
g
.

This is the differential equation 38.10.3 for h(t), depending smoothly on a further

parameter s, which has the following unique solution given by 38.10.2

g(t, s) := AdG(EvolG(Y s)(t)).

∫ t

0

AdG(EvolG(Y s)(v)−1).X(v, s) dv

Y s(t) :=

∫ s

0

X(t, u)du.

Since this solution is obviously smooth in X, the Lie group C∞(R, g) is regular.
For convenience (yours, not ours) we show now (once more) that this, in fact, is a

solution. Putting Y s(t) :=
∫ s

0
X(t, u)du we have by 36.10.3

∂
∂tg(t, s) =

= dAd( ∂∂tEvol(Y s)(t)).

∫ t

0

Ad(Evol(Y s)(v)−1).X(v, s) dv

+ Ad(Evol(Y s)(t)).Ad(Evol(Y s)(t)−1).X(t, s)

= ((ad ◦ κr).Ad)
(
T (µEvol(Y s)(t)).Y s(t)

)
.

∫ t

0

Ad(Evol(Y s)(v)−1).X(v, s) dv

+X(t, s)

= ad(Y s(t)).Ad(Evol(Y s)(t)).

∫ t

0

Ad(Evol(Y s)(v)−1).X(v, s) dv +X(t, s)

=
[∫ s

0

X(t, u)du, g(t, s)
]
g

+X(t, s). �

38.13. Corollary. Let G be a regular Lie group. Then as Frölicher spaces and
groups we have the following isomorphisms

(C∞(R, g), ∗) oG ∼= {f ∈ C∞(R, G) : f(0) = e}oG ∼= C∞(R, G),

where g ∈ G acts on f by (αg(f))(t) = g.f(t).g−1, and on X ∈ C∞(R, g) by
αg(X)(t) = AdG(g)(X(t)). The leftmost space is a smooth manifold, thus all spaces
are regular Lie groups.

For the Lie algebras we have an isomorphism

C∞(R, g) o g ∼= C∞(R, g),

(X, η) 7→
(
t 7→ η +

∫ t

0

X(s)ds
)

(Y ′, Y (0))← Y,

where on the left hand side the Lie bracket is given by
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[(X1, η1), (X2, η2)] =

=
(
t 7→ [

∫ t
0
X1(s) ds,X2(t)]g + [X1(t),

∫ t
0
X2(s) ds]g + [η1, X2(t)]g − [η2, X1(t)]g,

[η1, η2]g

)
,

and where on the right hand side the bracket is given by

[X,Y ](t) = [X(t), Y (t)]g.

On the right hand sides the evolution operator is

EvolrC∞(R,G) = C∞(R,EvolrG).

38.14. Remarks. Let G be a connected regular Lie group. The smooth homo-
morphism evolrG : C∞(R, g) → G admits local smooth sections. Namely, using a
smooth chart near e of G we can choose a smooth curve cg : R→ G with cg(0) = e
and cg(1) = g, depending smoothly on g for g near e. Then s(g) := δrcg is a local
smooth section. We have an extension of groups

0→ K → C∞(R, g)−evolrG→ G→ {e}

where K = ker(evolrG) is isomorphic to the smooth group {f ∈ C∞(R, G) : f(0) =
e, f(1) = e} via the mapping EvolrG. We do not know whether K is a submanifold.

Next we consider the smooth group C∞((S1, 1), (G, e)) of all smooth mappings f :
S1 → G with f(1) = e. With pointwise multiplication this is a splitting closed nor-
mal subgroup of the regular Lie group C∞(S1, G) with the manifold structure given

in 42.21 . Moreover, C∞(S1, G) is the semidirect product C∞((S1, 1), (G, e))oG,

where G acts by conjugation on C∞((S1, 1), (G, e)). So by theorem 38.6 the

subgroup C∞((S1, 1), (G, e)) is also regular.

The right logarithmic derivative for smooth loops δr : C∞(S1, G) → C∞(S1, g)
restricts to a diffeomorphism C∞((S1, 1), (G, e)) → ker(evolG) ⊂ C∞(S1, g), thus
the kernel ker(evolG : C∞(S1, g) → G) is a regular Lie group which is isomorphic
to C∞((S1, 1), (G, e)). It is also a subgroup (via pullback by the covering mapping
e2πit : R→ S1) of the regular Lie group (C∞(R, g), ∗). Note that C∞(S1, g) is not
a subgroup, since it is not closed under the product ∗ if G is not abelian.

39. Bundles with Regular Structure Groups

39.1. Theorem. Let (p : P → M,G) be a smooth (locally trivial) principal
bundle with a regular Lie group as structure group. Let ω ∈ Ω1(P, g) be a principal
connection form.

Then the parallel transport for the principal connection exists, is globally defined,
and is G-equivariant. In detail: For each smooth curve c : R→M there is a unique
smooth mapping Ptc : R× Pc(0) → P such that the following holds:

(1) Pt(c, t, u) ∈ Pc(t), Pt(c, 0) = IdPc(0) , and ω( ddt Pt(c, t, u)) = 0.

It has the following further properties:
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(2) Pt(c, t) : Pc(0) → Pc(t) is G-equivariant, i.e. Pt(c, t, u.g) = Pt(c, t, u).g holds
for all g ∈ G and u ∈ P . Moreover, we have Pt(c, t)∗(ζX |Pc(t)) = ζX |Pc(0) for
all X ∈ g.

(3) For any smooth function f : R→ R we have
Pt(c, f(t), u) = Pt(c ◦ f, t,Pt(c, f(0), u)).

(4) The parallel transport is smooth as a mapping

Pt : C∞(R,M)×(ev0,M,p◦pr2) (R× P )→ P,

where C∞(R,M) is considered as a smooth space, see 23.1 . If M is a smooth

manifold with a local addition (see 42.4 below), then this holds for C∞(R,M)

replaced by the smooth manifold C∞(R,M).

Proof. For a principal bundle chart (Uα, ϕα) we have the data from 37.22

sα(x) := ϕ−1
α (x, e),

ωα := s∗αω,

ω ◦ T (ϕ−1
α ) = (ϕ−1

α )∗ω ∈ Ω1(Uα ×G, g),

(ϕ−1
α )∗ω(ξx, Tµg.X) = (ϕ−1

α )∗ω(ξx, 0g) +X = Ad(g−1)ωα(ξx) +X.

For a smooth curve c : R → M the horizontal lift Pt(c, , u) through u ∈
Pc(0) is given among all smooth lifts of c by the ordinary differential equation

ω( ddt Pt(c, t, u)) = 0 with initial condition Pt(c, 0, u) = u. Locally, we have

ϕα(Pt(c, t, u)) = (c(t), γ(t)),

so that

0 = Ad(γ(t))ω( ddt Pt(c, t, u)) = Ad(γ(t))(ω ◦ T (ϕ−1
α ))(c′(t), γ′(t))

= Ad(γ(t))((ϕ−1
α )∗ω)(c′(t), γ′(t)) = ωα(c′(t)) + T (µγ(t)−1

)γ′(t),

i.e., γ′(t) = −T (µγ(t)).ωα(c′(t)). Thus, γ(t) is given by

γ(t) = EvolG(−ωα(c′))(t).γ(0) = evolG(s 7→ −tωα(c′(ts))).γ(0).

By lemma 38.3 , we may glue the local solutions over different bundle charts Uα,
so Pt exists globally.

Properties ( 1 ) and ( 3 ) are now clear, and ( 2 ) can be checked as follows: The

condition ω( ddt Pt(c, t, u).g) = Ad(g−1)ω( ddt Pt(c, t, u)) = 0 implies Pt(c, t, u).g =
Pt(c, t, u.g). For the second assertion we compute for u ∈ Pc(0):

Pt(c, t)∗(ζX |Pc(t))(u) = T Pt(c, t)−1ζX(Pt(c, t, u))

= T Pt(c, t)−1 d
ds |0 Pt(c, t, u). exp(sX)

= T Pt(c, t)−1 d
ds |0 Pt(c, t, u. exp(sX))

= d
ds |0 Pt(c, t)−1 Pt(c, t, u. exp(sX))

= d
ds |0u. exp(sX) = ζX(u).

Proof of ( 4 ) It suffices to check that Pt respects smooth curves. So let (f, g) : R→
C∞(R,M) ×M P ⊂ C∞(R,M) × P be a smooth curve. By cartesian closedness
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23.2.3 , the smooth curve f : R → C∞(R,M) corresponds to a smooth map-

ping f∧ ∈ C∞(R2,M). For a principal bundle chart (Uα, ϕα) as above we have
ϕα(Pt(f(s), t, g(s))) = (f(s)(t), γ(s, t)), where γ is the evolution curve

γ(s, t) = EvolG

(
−ωα( ∂∂tf

∧(s, ))
)

(t).ϕα(g(s)),

which is clearly smooth in (s, t).

If M admits a local addition then C∞(R,M) also carries the structure of a smooth

manifold by 42.4 , which is denoted by C∞(R,M) there. Since the identity is

smooth C∞(R,M)→ C∞(R,M) by lemma 42.5 , the result follows. �

39.2. Theorem. Let (p : P → M,G) be a smooth principal bundle with a regular
Lie group as structure group. Let ω ∈ Ω1(P, g) be a principal connection form.
If the connection is flat, then the horizontal subbundle Hω(P ) = ker(ω) ⊂ TP is

integrable and defines a foliation in the sense of 27.16 .

If M is connected then each leaf of this horizontal foliation is a covering of M . All
leaves are isomorphic via right translations. The principal bundle P is associated to
the universal covering of M , which is viewed as principal fiber bundle with structure
group the (discrete) fundamental group π1(M).

Proof. Let (Uα, uα : Uα → uα(Uα) ⊂ Eα) be a smooth chart of the manifold
M and let xα ∈ Uα be such that uα(xα) = 0 and the c∞-open subset uα(Uα) is
star-shaped in Eα. Let us also suppose that we have a principal fiber bundle chart
(Uα, ϕα : P |Uα → Uα ×G). We may cover M by such Uα.

We shall now construct for each wα ∈ Pxα a smooth section ψα : Uα → P whose
image is an integral submanifold for the horizontal subbundle ker(ω). Namely, for
x ∈ Uα let cx(t) := u−1

α (tuα(x)) for t ∈ [0, 1]. Then we put

ψα(x) := Pt(cx, 1, wα).

We have to show that the image of Tψα is contained in the horizontal bundle
ker(ω). Then we get Txψα = Tp|Hω(p)−1

ψα(x). This is a consequence of the following

notationally more suitable claim.

Let h : R2 → Uα be smooth with h(0, s) = xα for all s.
Claim: ∂

∂s Pt(h( , s), 1, wα) is horizontal.

Let ϕα(wα) = (xα, gα) ∈ Uα ×G. Then from the proof of theorem 39.1 we know
that

ϕα Pt(h( , s), 1, wα) = (h(1, s), γ(1, s)), where

γ(t, s) = γ̃(t, s).gα

γ̃(t, s) = evolG

(
u 7→ −tωα( ∂∂th(tu, s))

)
= EvolG

(
−(h∗ωα)(∂t( , s))

)
(t),

ωα = s∗αω, sα(x) = ϕ−1
α (x, e).

Since the curvature Ω = dω + 1
2 [ω, ω]∧ = 0 we have

∂s(h
∗ωα)(∂t) = ∂t(h

∗ωα)(∂s)− d(h∗ωα)(∂t, ∂s)− (h∗ωα)([∂t, ∂s])
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= ∂t(h
∗ωα)(∂s) + [(h∗ωα)(∂t), (h

∗ωα)(∂s)]g − 0.

Using this and the expression for T evolG from 38.10 , we have

∂
∂s γ̃(1, s) = T−(h∗ωα)(∂t)( ,s)evolG.

(
−∂s(h∗ωα)(∂t)( , s)

)
= −T (µγ̃(1,s)).

∫ 1

0

Ad(γ̃(t, s)−1)∂s(h
∗ωα)(∂t) dt

= −T (µγ̃(1,s)).

(∫ 1

0

Ad(γ̃(t, s)−1)∂t(h
∗ωα)(∂s) dt+

+

∫ 1

0

Ad(γ̃(t, s)−1).ad((h∗ωα)(∂t)).(h
∗ωα)(∂s) dt

)
.

Next we integrate by parts, use 36.10.3 , and use κl(∂tγ̃(t, s)−1) = (h∗ωα)(∂t)(t, s)

from 38.3 :∫ 1

0

Ad(γ̃(t, s)−1)∂t(h
∗ωα)(∂s) dt =

= −
∫ 1

0

(
∂tAd(γ̃(t, s)−1)

)
(h∗ωα)(∂s) dt+ Ad(γ̃(t, s)−1)(h∗ωα)(∂s)

∣∣∣∣t=1

t=0

= −
∫ 1

0

Ad(γ̃(t, s)−1).ad
(
κl∂t(γ̃(t, s)−1)

)
.(h∗ωα)(∂s) dt

+ Ad(γ̃(1, s)−1)(h∗ωα)(∂s)(1, s)− 0

= −
∫ 1

0

Ad(γ̃(t, s)−1).ad
(

(h∗ωα)(∂t)
)
.(h∗ωα)(∂s) dt

+ Ad(γ̃(1, s)−1)(h∗ωα)(∂s)(1, s),

so that finally

∂
∂s γ̃(1, s) = −T (µγ̃(1,s)).Ad(γ̃(1, s)−1)(h∗ωα)(∂s)(1, s)

= −T (µγ̃(1,s)).(h∗ωα)(∂s)(1, s),

∂
∂sγ(1, s) = T (µgα). ∂∂s γ̃(1, s)

= −T (µγ(1,s)).Ad(γ(1, s)−1)(h∗ωα)(∂s)(1, s)

ω
(
∂
∂s Pt(h( , s), 1, wα)

)
= ((ϕ−1

α )∗ω)
(
∂
∂sh(1, s), ∂∂sγ(1, s)

)
= Ad(γ(1, s)−1)ωα( ∂∂sh(1, s))−Ad(γ(1, s)−1)(h∗ωα)(∂s)(1, s) = 0,

where at the end we used 37.22.4 . Thus, the claim follows.

By the claim and by uniqueness of the parallel transport 39.1.1 for any smooth
curve c in Uα the horizontal curve ψα(c(t)) coincides with Pt(c, t, ψα(c(0))).

To finish the proof, we may now glue overlapping right translations of ψα(Uα) to
maximal integral manifolds of the horizontal subbundle. As subset such an integral
manifold consists of all endpoints of parallel transports of a fixed point. These are
diffeomorphic covering spaces of M . Let us fix base points x0 ∈ M and u0 ∈ Px0 .
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The parallel transport Pt(c, 1, u0) depends only on the homotopy class relative
to the ends of the curve c, by the claim above, so that a group homomorphism
ρ : π1(M) → G is given by Pt(γ, 1, u0) = u0.ρ([γ]). Now let M̃ → M be the
universal cover of M , a principal bundle with discrete structure group π1(M),
viewed as the space of homotopy classes relative to the ends of smooth curves
starting from x0. Then the mapping

M̃ ×G→ P,

([c], g) 7→ Pt(c, 1, u0).g

factors to a smooth mapping from the associated bundle M̃ [G] = M̃ ×π1(M) G to

P which is a diffeomorphism, since we can find local smooth sections P → M̃ ×G
in the following way: For u ∈ P choose a smooth curve cu from x0 to p(u), and

consider ([cu], τ(Pt(cu, 1, u0), u)) ∈ M̃ ×G. �

It is not clear, however, whether the integral submanifolds of the theorem are initial
submanifolds of P , or whether they intersect each fiber in a totally disconnected
subset, since M might have uncountable fundamental group.

39.3. Holonomy groups. Let (p : P → M,G) be a principal fiber bundle with
regular structure group G so that the parallel transport exists along all curves by

theorem 39.1 . Let Φ = ζ ◦ ω be a principal connection. We assume that M is
connected, and we fix x0 ∈M .

Now let us fix u0 ∈ Px0 . Consider the subgroup Hol(ω, u0) of the structure group
G which consists of all elements τ(u0,Pt(c, t, u0)) ∈ G for c any piecewise smooth
closed loop through x0. Reparameterizing c by a function which is flat at each
corner of c we may assume that any such c is smooth. We call Hol(ω, u0) the
holonomy group of the connection. If we consider only those curves c which
are null-homotopic, we obtain the restricted holonomy group Hol0(ω, u0), a
normal subgroup in Hol(ω, u0).

Theorem.

(1) We have Hol(ω, u0.g) = conj(g−1) Hol(ω, u0) and
Hol0(ω, u0.g) = conj(g−1) Hol0(ω, u0).

(2) For every curve c in M with c(0) = x0 we have Hol(ω,Pt(c, t, u0)) = Hol(ω, u0)
and Hol0(ω,Pt(c, t, u0)) = Hol0(ω, u0).

Proof. ( 1 ) This follows from the properties of the mapping τ from 37.8 and
from the G-equivariance of the parallel transport:

τ(u0.g,Pt(c, 1, u0.g)) = τ(u0.g,Pt(c, 1, u0).g) = g−1.τ(u0,Pt(c, 1, u0)).g.

( 2 ) By reparameterizing the curve c we may assume that t = 1, and we put
Pt(c, 1, u0) =: u1. Then by definition for an element g ∈ G we have g ∈ Hol(ω, u1)
if and only if g = τ(u1,Pt(e, 1, u1)) for some closed smooth loop e through x1 :=
c(1) = p(u1), that is,

Pt(c, 1)(rg(u0)) = rg(Pt(c, 1)(u0)) = u1g = Pt(e, 1)(Pt(c, 1)(u0))

u0g = Pt(c, 1)−1 Pt(e, 1) Pt(c, 1)(u0) = Pt(c.e.c−1, 3)(u0),
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where c.e.c−1 is the curve traveling along c(t) for 0 ≤ t ≤ 1, along e(t − 1) for
1 ≤ t ≤ 2, and along c(3 − t) for 2 ≤ t ≤ 3. This is equivalent to g ∈ Hol(ω, u0).
Furthermore, e is null-homotopic if and only if c.e.c−1 is null-homotopic, so we also
have Hol0(ω, u1) = Hol0(ω, u0). �

40. Rudiments of Lie Theory for Regular Lie Groups

40.1. From Lie algebras to Lie groups. It is not true in general that every
convenient Lie algebra is the Lie algebra of a convenient Lie group. This is also
wrong for Banach Lie algebras and Banach Lie groups; one of the first examples is
from [Van Est and Korthagen, 1964], see also [de la Harpe, 1972].

To Lie subalgebras in the Lie algebra of a Lie group, in general, do not correspond

Lie subgroups. We shall give easy examples in 43.6 .

In principle, one should be able to tell whether a given convenient Lie algebra is
the Lie algebra of a regular Lie group, but we have no idea how to do that.

40.2. The Cartan developing. Let G be a connected Lie group with Lie algebra

g. For a smooth mapping f : M → G we have considered in 38.1 the right

logarithmic derivative δrf ∈ Ω1(M, g) which is given by δrfx := T (µf(x)−1

) ◦ Txf :
TxM → Tf(x)G → g and which satisfies the left (from the left action) Maurer-
Cartan equation

dδrf − 1

2
[δrf, δrf ]g∧ = 0.

Similarly, the left logarithmic derivative δlf ∈ Ω1(M, g) of f ∈ C∞(M,G) is given
by δlfx := T (µf(x)−1) ◦ Txf : TxM → Tf(x)G → g and satisfies the right Maurer
Cartan equation

dδlf +
1

2
[δlf, δlf ]g∧ = 0.

For regular Lie groups we have the following converse, which for finite dimensional
Lie groups can be found in [Onishchik, 1961, 1964, 1967], or in [Griffiths, 1974]
(proved with moving frames); see also [Alekseevsky and Michor, 1995b, , 5.2].

Theorem. Let G be a connected regular Lie group with Lie algebra g.

If a 1-form ϕ ∈ Ω1(M, g) satisfies dϕ+ 1
2 [ϕ,ϕ]g∧ = 0 then for each simply connected

subset U ⊂M there exists a smooth mapping f : U → G with δlf = ϕ|U , and f is
uniquely determined up to a left translation in G.

If a 1-form ψ ∈ Ω1(M, g) satisfies dψ− 1
2 [ψ,ψ]g∧ = 0 then for each simply connected

subset U ⊂M there exists a smooth mapping f : U → G with δrf = ψ|U , and f is
uniquely determined up to a right translation in G.

The mapping f is called the left Cartan developing of ϕ, or the right Cartan
developing of ψ, respectively.

Proof. Let us treat the right logarithmic derivative since it leads to a principal
connection for a bundle with right principal action. For the left logarithmic deriva-
tive the proof is similar, with the changes described in the second part of the proof

of 38.1 .
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We put ourselves into the situation of the proof of 38.1 . If we are given a 1-form

ϕ ∈ Ω1(M, g) with dϕ− 1
2 [ϕ,ϕ]∧ = 0 then we consider the 1-form ωr ∈ Ω1(M×G, g),

given by the analogue of 38.1.1 (where ν : G→ G is the inversion),

(1) ωr = κl − (Ad ◦ ν).ϕ

Then ωr is a principal connection form on M×G, since it reproduces the generators
in g of the fundamental vector fields for the principal right action, i.e., the left
invariant vector fields, and ωr is G-equivariant:

((µg)∗ωr)h = ωrhg ◦ (Id×T (µg)) = T (µg−1.h−1).T (µg)−Ad(g−1.h−1).ϕ

= Ad(g−1).ωrh.

The computation in 38.1.3 for ϕ instead of δrf shows that this connection is flat.

Since the structure group G is regular, by theorem 39.2 the horizontal bundle is
integrable, and pr1 : M ×G→M , restricted to each horizontal leaf, is a covering.
Thus, it may be inverted over each simply connected subset U ⊂M , and the inverse
(Id, f) : U → M × G is unique up to the choice of the branch of the covering and
the choice of the leaf, i.e., f is unique up to a right translation by an element of G.

The beginning of the proof of 38.1 then shows that δrf = ϕ|U . �

40.3. Theorem. Let G and H be Lie groups with Lie algebras g and h, respectively.
Let f : g → h be a bounded homomorphism of Lie algebras. If H is regular and if
G is simply connected then there exists a unique homomorphism F : G→ H of Lie
groups with TeF = f .

Proof. We consider the 1-form

ψ ∈ Ω1(G; h), ψ := f ◦ κr, ψg(ξg) = f(T (µg
−1

).ξg),

where κr is the right Maurer-Cartan form from 38.1 . It satisfies the left Maurer-
Cartan equation

dψ − 1
2 [ψ,ψ]h∧ = d(f ◦ κr)− 1

2 [f ◦ κr, f ◦ κr]h∧
= f ◦ (dκr − 1

2 [κr, κr]g∧) = 0,

by 38.1 .(2’). But then we can use theorem 40.2 to conclude that there exists
a unique smooth mapping F : G → H with F (e) = e, whose right logarithmic
derivative satisfies δrF = ψ. For g ∈ G we have (µg)∗ψ = ψ, and thus

δr(F ◦ µg) = δrF ◦ T (µg) = (µg)∗ψ = ψ.

By uniqueness in theorem 40.2 , again, the mappings F ◦ µg and F : G → H
differ only by right translation in H by the element (F ◦ µg)(e) = F (g), so that
F ◦ µg = µF (g) ◦ F , or F (g.g1) = F (g).F (g1). This also implies F (g).F (g−1) =
F (g.g−1) = F (e) = e, hence that F is the unique homomorphism of Lie groups we
have been looking for. �



Chapter IX
Manifolds of Mappings

41. Jets and Whitney Topologies 436
42. Manifolds of Mappings 444
43. Diffeomorphism Groups 458
44. Principal Bundles with Structure Group a Diffeomorphism Group 478
45. Manifolds of Riemannian Metrics 500
46. The Korteweg – De Vries Equation as a Geodesic Equation 511
Complements to Manifolds of Mappings 523

Manifolds of smooth mappings between finite dimensional manifolds are the fore-
most examples of infinite dimensional manifolds, and in particular diffeomorphism
groups can only be treated in a satisfactory manner at the level of generality de-
veloped in this book: One knows from [Omori, 1978b] that a Banach Lie group
acting effectively on a finite dimensional compact manifold is necessarily finite di-
mensional. So there is no way to model the diffeomorphism group on Banach
spaces as a manifold.

The space of smooth mappings C∞(M,N) carries a natural atlas with charts in-

duced by any exponential mapping on N 42.1 , which permits us also to consider

certain infinite dimensional manifolds N in 42.4 . Unfortunately, for noncom-
pact M , the space C∞(M,N) is not locally contractible in the compact-open C∞-
topology, and the natural chart domains are quite small: Namely, the natural model
spaces turn out to be convenient vector spaces of sections with compact support

of vector bundles f∗TN , which have been treated in detail in section 30 . Thus,
the manifold topology on C∞(M,N) is finer than the Whitney C∞-topology, and
we denote by C∞(M,N) the resulting smooth manifold (otherwise, e.g. C∞(R,R)
would have two meanings).

With a careful description of the space of smooth curves 42.5 we can later often
avoid the explicit use of the atlas, for example when we show that the composition

mapping is smooth in 42.13 . Since we insist on charts the exponential law for

manifolds of mappings holds only for a compact source manifold M , 42.14 .

If we insist that the exponential law should hold for manifolds of mappings between
all (even only finite dimensional) manifolds, then one is quickly lead to a more
general notion of a manifold, where an atlas of charts is replaced by the system
of all smooth curves. One is lead to further requirements: tangent spaces should
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be convenient vector spaces, the tangent bundle should be trivial along smooth

curves via a kind of parallel transport, and a local addition as in 42.4 should
exist. In this way one obtains a cartesian closed category of smooth manifolds and
smooth mappings between them, where those manifolds with Banach tangent spaces
are exactly the classical smooth manifolds with charts. Theories along these lines
can be found in [Kriegl, 1980], [Michor, 1984a], and [Kriegl, 1984]. Unfortunately
they found no applications, and even the authors were not courageous enough to
pursue them further and to include them in this book. But we still think that
it is a valuable theory, since for instance the diffeomorphism group Diff(M) of a
non-compact finite dimensional smooth manifold M with the compact-open C∞-
topology is a Lie group in this sense with the space of all vector fields on M as Lie

algebra. Also, in section 45 results will appear which indicate that ultimately this
is a more natural setting.

Let us return (after discussing non-contents) to describing the contents of this
chapter. For the tangent space we have a natural diffeomorphism TC∞(M,N) ∼=
C∞c (M,TN) ⊂ C∞(M,TN), see 42.17 . In the same manner we also treat mani-
folds of real analytic mappings from a compact manifold M into N .

In section 43 on diffeomorphism groups we first show that the group Diff(M)

is a regular smooth Lie group 43.1 . The proof clearly shows the power of our
calculus: It is quite obvious that the inversion is smooth, whereas more traditional
treatments as in [Leslie, 1967], [Michor, 1980a], and [Michor, 1980c] needed specially
tailored inverse function theorems in infinite dimensions. The Lie algebra of the
diffeomorphism group is the space Xc(M) of all vector fields with compact support
on M , with the negative of the usual Lie bracket. The exponential mapping exp
is the flow mapping to time 1, but it is not surjective on any neighborhood of the

identity 43.2 , and Ad ◦ exp : Xc(M) → L(Xc(M),Xc(M)) is not real analytic,

43.3 . Real analytic diffeomorphisms on a real analytic compact manifold form a

regular real analytic Lie group 43.4 . Also regular Lie groups are the subgroups of

volume preserving 43.7 , symplectic 43.12 , exact symplectic 43.13 , or contact

diffeomorphisms 43.19 .

In section 44 we treat principal bundles with a diffeomorphism group as structure
group. The first example is the space of all embeddings between two manifolds

44.1 , a sort of nonlinear Grassmann manifold, in particular if the image space is
an infinite dimensional convenient vector space which leads to a smooth manifold
which is a classifying space for the diffeomorphism group of a compact manifold

44.24 . Another example is the nonlinear frame bundle of a fiber bundle with

compact fiber 44.5 , for which we investigate the action of the gauge group on the

space of generalized connections 44.14 and show that in the smooth case there

never exist slices 44.19 , 44.20 .

In section 45 we compute explicitly all geodesics for some natural (pseudo) Rie-

mannian metrics on the space of all Riemannian metrics. Section 46 is devoted
to the Korteweg–De Vrieß equation which is shown to be the geodesic equation of
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a certain right invariant Riemannian metric on the Virasoro group. Here we also

compute the curvature 46.13 and the Jacobi equation 46.14 .
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41. Jets and Whitney Topologies

Jet spaces or jet bundles consist of the invariant expressions of Taylor developments
up to a certain order of smooth mappings between manifolds. Their invention goes
back to Ehresmann [Ehresmann, 1951, ]

41.1. Jets between convenient vector spaces. Let E and F be convenient
vector spaces, and let U ⊆ E and V ⊆ F be c∞-open subsets. For 0 ≤ k ≤ ∞ the
space of k-jets from U to V is defined by

Jk(U, V ) := U × V × Polyk(E,F ), where Polyk(E,F ) =

k∏
j=1

Ljsym(E;F ).

We shall use the source and image projections α : Jk(U, V )→ U and β : Jk(U, V )→
V , and we shall consider Jk(U, V )→ U×V as a trivial bundle, with fibers Jkx (U, V )y
for (x, y) ∈ U×V . Moreover, we have obvious projections πkl : Jk(U, V )→ J l(U, V )
for k > l, given by truncation at order l. For a smooth mapping f : U → V the
k-jet extension is defined by

jkf(x) = jkxf := (x, f(x), df(x),
1

2!
d2f(x), . . . ,

1

j!
djf(x), . . . ),

the Taylor expansion of f at x of order k. If k <∞ then jk : C∞(U,F )→ Jk(U,F )

is smooth with a smooth right inverse (the polynomial), see 5.17 . If k =∞ then

jk need not be surjective for infinite dimensional E, see 15.4 . For later use, we
consider now the truncated composition

• : Polyk(F,G)× Polyk(E,F )→ Polyk(E,G),

where p•q is the composition p◦q of the polynomials p, q (formal power series in case
k =∞) without constant terms, and without all terms of order > k. Obviously, •
is polynomial for finite k and is real analytic for k =∞ since then each component
is polynomial. Now let U ⊂ E, V ⊂ F , and W ⊂ G be open subsets, and consider
the fibered product

Jk(U, V )×U Jk(W,U) = { (σ, τ) ∈ Jk(U, V )× Jk(W,U) : α(σ) = β(τ) }

= U × V ×W × Polyk(E,F )× Polyk(G,E).

Then the mapping

• : Jk(U, V )×U Jk(W,U)→ Jk(W,V ),

σ • τ = (α(σ), β(σ), σ̄) • (α(τ), β(τ), τ̄) := (α(τ), β(σ), σ̄ • τ̄),

is a real analytic mapping, called the fibered composition of jets.

Let U , U ′ ⊂ E and V ⊂ F be open subsets, and let g : U ′ → U be a smooth diffeo-
morphism. We define a mapping Jk(g, V ) : Jk(U, V )→ Jk(U ′, V ) by Jk(g, V )(σ) =
σ • jkg(g−1(x)), which also satisfies Jk(g, V )(jkf(x)) = jk(f ◦g)(g−1(α(σ))). If g′ :
U ′′ → U ′ is another diffeomorphism, then clearly Jk(g′, V )◦Jk(g, V ) = Jk(g◦g′, V ),
and Jk( , V ) is a contravariant functor acting on diffeomorphisms between open
subsets of E. Since the truncated composition σ̄ 7→ σ̄ • jkg−1(x)g is linear, the

mapping Jkx (g, F ) := Jk(g, F )|Jkx (U,F ) : Jkx (U,F )→ Jkg−1(x)(U
′, F ) is also linear.
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Now let U ⊂ E, V ⊂ F , and W ⊂ G be c∞-open subsets, and let h : V → W be a
smooth mapping. Then we define Jk(U, h) : Jk(U, V )→ Jk(U,W ) by Jk(U, h)σ =
jkh(β(σ)) • σ, which satisfies Jk(U, h)(jkf(x)) = jk(h ◦ f)(x). Clearly, Jk(U, )
is a covariant functor acting on smooth mappings between c∞-open subsets of
convenient vector spaces. The mapping Jkx (U, h)y : Jkx (U, V )y → Jkx (U,W )h(y) is
linear if and only if h is affine or k = 1 or U = ∅.

41.2. The differential group GLk(E). For a convenient vector space E, the
k-jets at 0 of germs at 0 of diffeomorphisms of E which map 0 to 0 form a group
under truncated composition, which will be denoted by GLk(E) and will be called
the differential group of order k. Clearly, an arbitrary 0-respecting k-jet
σ ∈ Polyk(E,E) is in GLk(E) if and only if its linear part is invertible. Thus

GLk(E) = GL(E)×
k∏
j=2

Ljsym(E;E) =: GL(E)× P k2 (E),

where we put P k2 (E) :=
∏k
j=2 L

j
sym(E;E) for the space of all polynomial mappings

of degree ≤ k (formal power series for k =∞) without constant and linear terms.

If the set GL(E) of all bibounded linear isomorphisms of E is a Lie group contained
in L(E,E) (e.g., for E a Banach space), then since the truncated composition is
real analytic, GLk(E) is also a Lie group. In general, GL(E) may be viewed as a

Frölicher space in the sense of 23.1 with the initial smooth structure with respect

to (Id, ( )−1) : GL(E) → L(E,E) × L(E,E), where multiplication and inversion
are now smooth: we call this a smooth group. Then GLk(E) is again a smooth
group.

In both cases, clearly, for k ≥ l the mapping πkl : GLk(E)→ GLl(E) is a homomor-

phism of smooth groups, thus its kernel ker(πkl ) = Polykl (E,E) := {IdE} × {0} ×∏k
j=l+1 L

j
sym(E;E) is a closed normal subgroup for all l, which is a Lie group for

l ≥ 1. The exact sequence of groups

{e} →
k∏

j=l+1

Ljsym(E;E)→ GLk(E)→ GLl(E)→ {e}

splits if and only if l = 1 for dimE > 1 or l ≤ 2 for E = R, see [Kolář et al., 1993,
13.8] for E = Rm; only in this case this sequence describes a semidirect product.

41.3. Jets between manifolds. Now let M and N be smooth manifolds with
smooth atlas (Uα, uα) and (Vβ , vβ), modeled on convenient vector spaces E and F ,
respectively. Then we may glue the open subsets Jk(uα(Uα), vβ(Vβ)) of convenient
vector spaces via the chart change mappings

Jk(uα′ ◦ u−1
α , vβ ◦ v−1

β′ ) : Jk(uα′(Uα ∩ Uα′), vβ′(Vβ ∩ Vβ′))→

→ Jk(uα(Uα ∩ Uα′), vβ(Vβ ∩ Vβ′)),

and we obtain a smooth fiber bundle Jk(M,N) → M × N with standard fiber

Polyk(E,F ). With the identification topology Jk(M,N) is Hausdorff, since it is
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a fiber bundle and the usual argument for gluing fiber bundles applies which was

given, e.g., in 28.12 .

Theorem. If M and N are smooth manifolds, modeled on convenient vector spaces
E and F , respectively. Let 0 ≤ k ≤ ∞. Then the following results hold.

(1) (Jk(M,N), (α, β),M × N,Polyk(E,F )) is a fiber bundle with standard fiber

Polyk(E,F ), with the smooth group GLk(E) × GLk(F ) as structure group,

where (γ, χ) ∈ GLk(E) × GLk(F ) acts on σ ∈ Polyk(E,F ) by (γ, χ).σ =
χ • σ • γ−1.

(2) If f : M → N is a smooth mapping then jkf : M → Jk(M,N) is also smooth,
called the k-jet extension of f . We have α ◦ jkf = IdM and β ◦ jkf = f .

(3) If g : M ′ →M is a diffeomorphism then also the induced mapping Jk(g,N) :
Jk(M,N)→ Jk(M ′, N) is a diffeomorphism.

(4) If h : N → N ′ is a smooth mapping then Jk(M,h) : Jk(M,N) → Jk(M,N ′)
is also smooth. Thus, Jk(M, ) is a covariant functor from the category of
smooth manifolds and smooth mappings into itself which respects each of the
following classes of mappings: initial mappings, embeddings, closed embed-
dings, splitting embeddings, fiber bundle projections. Furthermore, Jk( , )
is a contra-covariant bifunctor, where we have to restrict in the first variable
to the category of diffeomorphisms.

(5) For k ≥ l, the projections πkl : Jk(M,N)→ J l(M,N) are smooth and natural,

i.e., they commute with the mappings from ( 3 ) and ( 4 ).

(6) (Jk(M,N), πkl , J
l(M,N),

∏k
i=l+1 L

i
sym(E;F )) are fiber bundles for all l ≤ k.

For finite k the bundle (Jk(M,N), πkk−1, J
k−1(M,N), Lksym(E,F )) is an affine

bundle. The first jet space J1(M,N) → M ×N is a vector bundle. It is iso-

morphic to the bundle (L(TM, TN), (πM , πN ),M ×N), see 29.4 and 29.5 .

Moreover, we have J1
0 (R, N) = TN and J1(M,R)0 = T ∗M .

(7) Truncated composition is a smooth mapping

• : Jk(N,P )×N Jk(M,N)→ Jk(M,P ).

Proof. ( 1 ) is already proved. ( 2 ), ( 3 ), ( 5 ), and ( 7 ) are obvious from 41.1 ,

mainly by the functorial properties of Jk( , ).

( 4 ) It is clear from 41.1 that Jk(M,h) is a smooth mapping. The rest follows by
looking at special chart representations of h and the induced chart representations
for Jk(M,h).

It remains to show ( 6 ), and here we concentrate on the affine bundle. Let a1 +

a ∈ GL(E) ×
∏k
i=2 L

i
sym(F ;F ), σ + σk ∈ Polyk−1(E,F ) × Lksym(E;F ), and b1 +

b ∈ GL(E) ×
∏k
i=2 L

i
sym(E;E), then the only term of degree k containing σk in

(a1 +a)• (σ+σk)• (b1 + b) is a1 ◦σk ◦ bk1 , which depends linearly on σk. To this the
degree k-components of compositions of the lower order terms of σ with the higher
order terms of a and b are added, and these may be quite arbitrary. So an affine
bundle results.
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We have J1(M,N) = L(TM, TN) since both bundles have the same transition
functions. Finally,

J1
0 (R, N) = L(T0R, TN) = TN and J1(M,R)0 = L(TM, T0R) = T ∗M. �

41.4. Jets of sections of fiber bundles. If (p : E → M,S) is a fiber bun-
dle, let (Uα, uα) be a smooth atlas of M such that (Uα, ψα : E|Uα → Uα × S)
is a fiber bundle atlas. If we glue the smooth manifolds Jk(Uα, S) via (σ 7→
jk(ψαβ(α(σ), ))) • σ : Jk(Uα ∩ Uβ , S) → Jk(Uα ∩ Uβ , S), we obtain the smooth
manifold Jk(E), which for finite k is the space of all k-jets of local sections of E.

Theorem. In this situation we have:

(1) Jk(E) is a splitting closed submanifold of Jk(M,E), namely the set of all
σ ∈ Jkx (M,E) with Jk(M,p)(σ) = jk(IdM )(x).

(2) J1(E) of sections is an affine subbundle of the vector bundle J1(M,E) =
L(TM, TE). In fact, we have

J1(E) = {σ ∈ L(TM, TE) : Tp ◦ σ = IdTM }.

(3) For k finite (Jk(E), πkk−1, J
k−1(E)) is an affine bundle.

(4) If p : E → M is a vector bundle, then (Jk(E), α,M) is also a vector bundle.
If φ : E → E′ is a homomorphism of vector bundles covering the identity,
then Jk(ϕ) is of the same kind.

Proof. Locally Jk(E) in Jk(M,E) looks like uα(Uα)×Polyk(FM , FS) in uα(Uα)×
(uα(Uα)× vβ(Vβ))× Polyk(FM , FM × FS), where FM and FS are modeling spaces
of M and S, respectively, and where (Vβ , vβ) is a smooth atlas for S. The rest is
clear. �

41.5. The compact-open topology on spaces of continuous mappings.
Let M and N be Hausdorff topological spaces. The best known topology on the
space C(M,N) of all continuous mappings is the compact-open topology or
CO-topology. A subbasis for this topology consists of all sets of the form {f ∈
C(M,N) : f(K) ⊆ U}, where K runs through all compact subsets in M and U
through all open subsets of N . This is a Hausdorff topology, since it is finer than
the topology of pointwise convergence.

It is easy to see that if M has a countable basis of the compact sets and is compactly

generated ( 4.7 .(i), i.e., M carries the final topology with respect to the inclusions
of its compact subsets), and if N is a complete metric space, then there exists a
complete metric on (C(M,N), CO), so it is a Baire space.

41.6. The graph topology. For f ∈ C(M,N) let graphf : M →M×N be given
by graphf (x) = (x, f(x)), the graph mapping of f .

The WO-topology or wholly open topology on C(M,N) is given by the
basis {f ∈ C(M,N) : f(M) ⊂ U}, where U runs through all open sets in N . It is
not Hausdorff, since mappings with the same image cannot be separated.
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The graph topology or WO0-topology on C(M,N) is induced by the mapping

graph : C(M,N)→ (C(M,M ×N), WO-topology).

A basis for it is given by all sets of the form {f ∈ C(M,N) : graphf (M) ⊆ U},
where U runs through all open sets in M×N . This topology is Hausdorff since it is
finer than the compact-open topology. Note that a continuous mapping g : N → P
induces a continuous mapping g∗ : C(M,N) → C(M,P ) for the WO0-topology,
since graphg◦f = (Id×g) ◦ graphf .

If M is paracompact and (N, d) is a metric space, then for f ∈ C(M,N) the sets
{g ∈ C(M,N) : d(g(x), f(x)) < ε(x) for all x ∈M} form a basis of neighborhoods,
where ε runs through all positive continuous functions on M . This is easily seen.

41.7. Lemma. Let N be metrizable, and let M satisfy one of the following condi-
tions:

(1) M is locally compact with a countable basis of open sets.
(2) M = R(N).

Then for any sequence (fn) in C(M,N) the following holds: (fn) converges to f
in the WO0-topology if and only if there exists a compact set K ⊆M such that fn
equals f off K for all but finitely many n, and fn|K converges to f |K uniformly.

Note that in case ( 2 ) we get fn = f for all but finitely many n, since f differs
from fn on a c∞-open subset.

Proof. Clearly, the condition above implies convergence. Conversely, let (fn) and

f in C(M,N) be such that the condition does not hold. In case ( 1 ) let Kn ⊂ Ko
n+1

be a basis of the compact sets in M , and in case ( 2 ) let Kn := {x ∈ Rn ⊂ R(N) :

|xi| ≤ n for i ≤ n}. Then either fn does not converge to f in the compact-open
topology, or there exists xn /∈ Kn with d(fn(xn), f(xn)) =: εn > 0. Then (xn) is

without cluster point in M : This is obvious in case ( 1 ), and in case ( 2 ) this can
be seen by the following argument: Assume that there exists a cluster point y. Let
N be so large that supp(y) ⊂ {0, . . . , N} and |yi| ≤ N − 1 for all i. Then we define
kn ∈ N and δn > 0 by{
kn := n, δn := 1 for n ≤ N or supp(xn) ⊆ {1, . . . , n}
kn := min{i > n : xin 6= 0}, δn := |xknn | otherwise

Then xn − y /∈ U := {z : |zki | < δi for all i} for n > N , so y cannot be a cluster
point.

The set {(x, y) ∈ M × N : if x = xn for some n then d(f(xn), y) < εn} is an
open neighborhood of graphf (M) not containing any graphfn(M). So fn cannot

converge to f in the WO0-topology. �

41.8. Lemma. Let E be a convenient vector space, and suppose that M satisfies
the following condition:

(1) Each neighborhood of each point contains a sequence without cluster point in
M .
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Then for f ∈ C(M,E) we have tf → 0 in the WO0-topology for t→ 0 in R if and
only if f = 0.

Moreover, each open subset in an infinite dimensional locally convex space has prop-

erty ( 1 ).

Proof. The mapping f 7→ g ◦ f is continuous in the WO0-topologies, so by com-
posing with bounded linear functionals on E we may suppose that E = R.

Suppose that f 6= 0, say f(x) = 2 for some x. Then f(y) > 1 for y in some
neighborhood U of x, which contains a sequence xn without cluster point in M .
Then {(x, y) ∈ M × R : if x = xn then y < 1/n} is an open neighborhood of
graph0(M) not containing any graphtf (M) for t 6= 0. So tf cannot converge to 0

in the WO0-topology.

For the last assertion we have to show that the unit ball of each seminorm p in
an infinite dimensional locally convex vector space M contains a sequence without
cluster point. If the seminorm has non-trivial kernel p−1(0) then (n.x)n for 0 6=
x ∈ p−1(0) has this property. If p has trivial kernel, it is a norm, and the unit
ball in the normed space (M,p) contains a sequence without cluster point, since
otherwise the unit ball would be compact, and (M,p) would be finite dimensional.
This sequence has also no cluster point in M , since M has a finer topology. �

41.9. The COk-topology on spaces of smooth mappings. Let M and N be
smooth manifolds, possibly infinite dimensional. For 0 ≤ k ≤ ∞ the compact-
open Ck-topology or COk-topology on the space C∞(M,N) of all smooth

mappings M → N is induced by the k-jet extension 41.3 from the CO-topology

jk : C∞(M,N)→ (C(M,Jk(M,N)),CO).

We conclude with some remarks. If M is infinite dimensional it would be more
natural to replace the system of compact sets in M by the system of all subsets
on which each smooth real valued function is bounded. Since these topologies will
play only minor roles in this book we do not develop them here.

41.10. Whitney Ck-topology. Let M and N be smooth manifolds, possibly
infinite dimensional. For 0 ≤ k ≤ ∞ the Whitney Ck-topology or WOk-
topology on the space C∞(M,N) of all smooth mappings M → N is induced by

the k-jet extension 41.3 from the WO-topology

jk : C∞(M,N)→ (C(M,Jk(M,N)),WO).

A basis for the open sets is given by all sets of the form {f ∈ C∞(M,N) : jkf(M) ⊂
U}, where U runs through all open sets in the smooth manifold Jk(M,N). A
smooth mapping g : N → P induces a smooth mapping Jk(M, g) : Jk(M,N) →
Jk(M,P ) by 41.3.4 , and thus in turn a continuous mapping g∗ : C∞(M,N) →
C∞(M,P ) for the WOk-topologies for each k.

For a convenient vector space E and for a manifold M modeled on infinite di-
mensional Fréchet spaces (so that there the c∞-topology coincides with the locally

convex one) we see from 41.8 that for f ∈ C∞(M,E) we have t.f → 0 for t → 0



442 Chapter IX . Manifolds of Mappings 41.13

in the WOk-topology if and only if f = 0. So (C∞(M,E),WOk) does not contain
a non-trivial topological vector space if M is infinite dimensional.

If M is compact, then the WOk-topology and the COk-topology coincide on the
space C∞(M,N) for all k.

41.11. Lemma. Let M , N be smooth manifolds, where M is finite dimensional
and second countable, and where N is metrizable. Then J∞(M,N) is also a metriz-
able manifold. If, moreover, N is second countable then also J∞(M,N) is also
second countable.

Let Kn ⊂ Ko
n+1 ⊂ Kn+1 be a compact exhaustion of M . Then the following is a

basis of open sets for the Whitney C∞-topology:

M(U,m) := {f ∈ C∞(M,N) : jmnf(M \Ko
n) ⊂ Un},

where (mn) is any sequence in N and where Un ⊂ Jmn(M,N) is an open subset.

Proof. Looking at 41.3 we see that J∞(M,N) is a bundle over M × N with
Fréchet spaces as fibers, so it is metrizable. We can also write

M(U,m) := {f ∈ C∞(M,N) : j∞f(M \Ko
n) ⊂ (π∞mn)−1Un}.

By pulling up to higher jet bundles, we may assume that mn is strictly increasing. If
we put Vn = (π∞mn)−1Un, we may then replace Vn by V0∩· · ·∩Vn without changing
M(U,m). But then we may replace M \Ko

n by Kn+1 \Ko
n without changing the

set. Using that J∞(M,N) carries the initial topology with respect to all projections

π∞l : J∞(M,N) → J l(M,N) by 41.3.6 , we get an equivalent basis of open sets
given by

M(U) := {f ∈ C∞(M,N) : j∞f(Kn+1 \Ko
n) ⊂ Un},

where now Un ⊂ J∞(M,N) is a sequence of open sets. It is obvious that this
basis generates a topology which is finer than the WO∞-topology. To show the
converse let f ∈ M(U). Let d be a compatible metric on the metrizable manifold
J∞(M,N), and let 0 < εn be smaller than the distance between the compact set
j∞f(Kn+1 \ Ko

n) and the complement of its open neighborhood Un. Let ε be a
positive continuous function on M such that 0 < ε(x) < εn for x ∈ Kn+1 \ Ko

n,
and consider the open set W := {σ ∈ J∞(M,N) : d(σ, j∞f(α(σ))) < ε(α(σ))} in
J∞(M,N). Then f ∈ {g ∈ C∞(M,N) : j∞g(M) ⊂W} ⊆M(U). �

41.12. Corollary. Let M , N be smooth manifolds, where M is finite dimen-
sional and second countable, and where N is metrizable. Then the COk-topology is
metrizable. If N is also second countable then so is the COk-topology.

Proof. Use 41.11 and [Bourbaki, 1966, X, 3.3]. �

41.13. Comparison of topologies on C∞(M,E). Let p : E →M be a smooth
finite dimensional vector bundle over a finite dimensional second countable base
manifold M . We consider the space C∞c (M ← E) of all smooth sections of E with
compact support, equipped with the bornological locally convex topology from

30.4 ,
C∞c (M ← E) = lim−→

K

C∞K (M ← E),
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where K runs through all compact sets in M and each of the spaces C∞K (M ←
f∗TN) is equipped with the topology of uniform convergence (on K) in all deriva-

tives separately, as in 30.4 , reformulated for the bornological topologies. Consider
also the space C∞(M,E) of all smooth mappings M → E, equipped with the Whit-
ney C∞-topology, and the subspace C∞(M ← E) of all smooth sections, with the
induced topology.

Lemma. Then the canonical injection

C∞c (M ← E)→ C∞(M,E)

is a topological embedding. The subspace C∞(M ← E) of C∞(M,E) is a vector
space, but scalar multiplication is jointly continuous in the induced topology on it
if and only if M is compact or the fiber is 0. The maximal topological vector space
contained in C∞(M ← E) is just C∞c (M ← E).

Proof. That the injection is an embedding is clear by contemplating the descrip-

tion of the Whitney C∞-topology given in lemma 41.11 , which obviously is the

inductive limit topology lim−→C∞Kn(E). The rest follows from 41.7 since t.f → 0 for

t → 0 in in C∞(M,E) for WO∞ if and only if t.j∞f → 0 in C∞(M,J∞(E)) for
the WO0-topology. �

41.14. Tubular neighborhoods. Let M be an (embedded) submanifold of a
smooth finite dimensional manifold N . Then the normal bundle of M in N is
the vector bundle N (M) := (TN |M)/TM −π→ M with fiber TxN/TxM over a
point x ∈M . A tubular neighborhood of M in N consists of:

(1) A fiberwise radial open neighborhood Ũ ⊂ N (M) of the 0-section in the
normal bundle

(2) A diffeomorphism ϕ : Ũ → U ⊂ N onto an open neighborhood U of M in N ,
which on the 0-section coincides with the projection of the normal bundle.

It is well known that tubular neighborhoods exist.
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42. Manifolds of Mappings

42.1. Theorem. Manifold structure of C∞(M,N). Let M and N be smooth
finite dimensional manifolds. Then the space C∞(M,N) of all smooth mappings
from M to N is a smooth manifold, modeled on spaces C∞c (M ← f∗TN) of smooth
sections with compact support of pullback bundles along f : M → N over M .

Proof. Choose a smooth Riemannian metric on N . Let exp : TN ⊇ U → N be
the smooth exponential mapping of this Riemannian metric, defined on a suitable
open neighborhood of the zero section. We may assume that U is chosen in such
a way that (πN , exp) : U → N × N is a smooth diffeomorphism onto an open
neighborhood V of the diagonal.

For f ∈ C∞(M,N) we consider the pullback vector bundle

M ×N TN f∗TN
π∗Nf //

f∗πN
��

TN

πN

��
M

f // N.

For f , g ∈ C∞(M,N) we write f ∼ g if f and g agree off some compact subset in
M . Then C∞c (M ← f∗TN) is canonically isomorphic to the space

C∞c (M,TN)f := {h ∈ C∞(M,TN) : πN ◦ h = f, h ∼ 0 ◦ f}

via s 7→ (π∗Nf) ◦ s and (IdM , h)←p h. We consider the space C∞c (M ← f∗TN)
of all smooth sections with compact support and equip it with the locally convex
inductive limit topology

C∞c (M ← f∗TN) = inj lim
K

C∞K (M ← f∗TN),

where K runs through all compact sets in M and each of the spaces C∞K (M ←
f∗TN) is equipped with the topology of uniform convergence (on K) in all deriva-

tives separately, as in 30.4 , reformulated for the bornological topology; see also

6.1 . Now let

Uf := {g ∈ C∞(M,N) : (f(x), g(x)) ∈ V for all x ∈M, g ∼ f},
uf : Uf → C∞c (M ← f∗TN),

uf (g)(x) = (x, exp−1
f(x)(g(x))) = (x, ((πN , exp)−1 ◦ (f, g))(x)).

Then uf is a bijective mapping from Uf onto the set {s ∈ C∞c (M ← f∗TN) :

s(M) ⊆ f∗U = (π∗Nf)−1(U)}, whose inverse is given by u−1
f (s) = exp ◦(π∗Nf) ◦ s,

where we view U → N as fiber bundle. The set uf (Uf ) is open in C∞c (M ← f∗TN)

for the topology described above, see 30.10 .

Now we consider the atlas (Uf , uf )f∈C∞(M,N) for C∞(M,N). Its chart change
mappings are given for s ∈ ug(Uf ∩ Ug) ⊆ C∞c (M ← g∗TN) by

(uf ◦ u−1
g )(s) = (IdM , (πN , exp)−1 ◦ (f, exp ◦(π∗Ng) ◦ s))

= (τ−1
f ◦ τg)∗(s),
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where τg(x, Yg(x)) := (x, expg(x)(Yg(x))) is a smooth diffeomorphism τg : g∗TN ⊇
g∗U → (g × IdN )−1(V ) ⊆M ×N which is fiber respecting over M .

Smooth curves in C∞c (M ← f∗TN) are smooth sections of the bundle pr∗2 f
∗TN →

R×M , which have compact support in M locally in R. The chart change uf ◦u−1
g =

(τ−1
f ◦ τg)∗ is defined on an open subset and it is also smooth by 30.10 .

Finally, following 27.1 , the natural topology on C∞(M,N) is the identification
topology from this atlas (with the c∞-topologies on the modeling spaces), which is
obviously finer than the compact-open topology and thus Hausdorff.

The equation uf ◦ u−1
g = (τ−1

f ◦ τg)∗ shows that the smooth structure does not
depend on the choice of the smooth Riemannian metric on N . �

42.2. Remarks. We denote the manifold of all smooth mappings from M to N by
C∞(M,N) because otherwise the set C∞(M,Rn) would appear with two different

convenient structures, see 6.1 or 30.1 , where the other one was treated. From
the last sentence of the proof above it follows that for a compact smooth M the
manifold C∞(M,Rn) is diffeomorphic to the convenient vector space C∞(M,R)n.

We describe now another topology on C∞(M,N): Consider first the WO∞-topology

on C∞(M,N) from 41.10 and refine it such that each equivalence class (of smooth
mappings differing only on compact subsets) from the beginning of the proof above
becomes open. For this topology all chart mappings are homeomorphisms into open
subsets of C∞c (M ← f∗TN) with the bornological topology, and the chart changes

are also homeomorphisms, by 41.10 and 41.13 . With this topology C∞(M,N)
is also a topological manifold, modeled on locally convex spaces C∞c (M ← f∗TN),
which, however, do not carry the c∞-topologies. It is even a smooth manifold
in a stronger sense (all derivatives of chart changes are continuous), and this is
the structure used in [Michor, 1980c]. This smooth structure and the natural one

described above in 42.1 have the same smooth curves (use 30.9 and 42.5 below).
The natural topology is the final topology with respect to all these smooth curves.
It is strictly finer if M is not compact.

42.3. Proposition. For finite dimensional second countable manifolds M , N the
smooth manifold C∞(M,N) has separable connected components and is smoothly
paracompact and Lindelöf. If M is compact, it is metrizable.

Proof. Each connected component of a mapping f is contained in the open equiv-
alence class {g : g ∼ f} of f consisting of those smooth mappings which differ
from f only on compact subsets. This equivalence class is the countable inductive
limit in the category of topological spaces of the sets {g : g = f off K} of all map-
pings which differ from f only on members Kn of a countable exhaustion of M

with compact sets, see 30.9 , since a smooth curve locally has values in these steps

{g : g = f off Kn}. By 41.12 the steps are metrizable and second countable. Thus,
{g : g ∼ f} is Lindelöf and separable. Since its model spaces C∞c (M ← h∗TN)

are smoothly paracompact by 30.4 , by 16.10 the space {g : g ∼ f} is smoothly
paracompact, and since C∞(M,N) is the disjoint union of such open sets, it is
smoothly paracompact, too. �
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42.4. Manifolds of mappings with an infinite dimensional range space.

The method of proof of theorem 42.1 carries over to spaces C∞(M,N ), where
M is a finite dimensional smooth manifold, and where N is a possibly infinite
dimensional manifold which is required to admit an analogue of the exponential
mapping used above, i.e., a smooth mapping α : TN ⊃ U → N , defined on an
open neighborhood of the zero section in TN , which satisfies

(1) (πN , α) : TN ⊃ U → N×N is a diffeomorphism onto a c∞-open neighborhood
of the diagonal.

(2) α(0x) = x for all x ∈ N .

A smooth mapping α with these properties is called a local addition on N .

Each finite dimensional manifold M admits globally defined local additions. To
see this, let exp : TM ⊃ U → M be the exponential mapping with respect to
a Riemannian metric g, where U is an open neighborhood of the 0-section, such
that (πM , exp) : U → M ×M is a diffeomorphism onto an open neighborhood of
the diagonal. Thus, exp is a local addition. One can do better. We construct a
fiber respecting diffeomorphism h : TM → U with h|0M = IdM as follows. Let
ε : M → (0,∞) be a smooth positive function such that U ′ := {X ∈ TM :
g(X,X) < ε(πM (X))} ⊂ U . Let h : TM → U ′ be given by

h(X) :=
ε(πM (X))√
1 + g(X,X)

X, h−1(Y ) :=
1√

ε(πM (Y ))2 − g(Y, Y )
Y.

Then α = exp ◦h : TM →M is a local addition.

If M is a real analytic finite dimensional manifold, then there exists a real analytic
globally defined local addition TM →M constructed as above with a real analytic
Riemannian metric g and real analytic ε; these exist by [Grauert, 1958, Prop. 8] ,

see also 42.7 below.

The affine structure on each convenient vector space is a local addition, too.

Let G be a possibly infinite dimensional Lie group 36.1 . Then G admits a local
addition. Namely, let v : V →W ⊆ g be a chart defined on an open neighborhood
V of e with v(e) = 0 ∈ W where W is open in the Lie algebra g. Then put
TG ⊇ U :=

⋃
g∈G T (µg)V ∼= G × V and let α : U → G be given by α(ξ) :=

πG(ξ).v−1(T (µπ(ξ)−1).ξ) be the local addition.

If a manifoldN admits a local addition α, then it admits a ‘spray’, thus a torsionfree
covariant derivative on TN . Recall from [Ambrose et al., 1960] or [Lang, 1972]
that a spray is a vector field S on TM such that πTM ◦ S = IdTM , T (πM ) ◦ S =

IdTM , so that in induced local charts as in 29.9 and 29.10 we have S(x, y) =
(x, y; y,Γx(y)), where finally it is also required that y 7→ Γx(y) is quadratic. In
order to see this, let ϕ(X) := ∂

∂t

∣∣
0
α(tX). Then ϕ : TM → TM is a vector bundle

automorphism with inverse (in local charts) ϕ−1(x, y) = ∂
∂t

∣∣
0

(pr1, α)−1(x, x+ ty).

Then one checks easily that S(X) := d2

dt2 |t=0α(tϕ−1(X)) is a spray.

Theorem. Let M be a smooth finite dimensional manifold, and let N be a smooth
manifold, possibly infinite dimensional, which admits a smooth local addition α.



42.7 42. Manifolds of Mappings 447

Then the space C∞(M,N ) of all smooth mappings from M to N is a smooth mani-
fold, modeled on spaces C∞c (M ← f∗TN ) of smooth sections with compact support
of pullback bundles along f : M → N over M . �

Let us remark again that for a compact smooth manifold M and a convenient vector
space E the smooth manifold C∞(M,E) is diffeomorphic to the convenient vector

space C∞(M,E), which is a special case of 30.1 for a trivial bundle with finite
dimensional base.

42.5. Lemma. Smooth curves in C∞(M,N ). Let M and N be smooth
manifolds with M finite dimensional and N admitting a smooth local addition.
Then the smooth curves c in C∞(M,N ) correspond exactly to the smooth mappings
c∧ ∈ C∞(R×M,N ) which satisfy the following property:

(1) For each compact interval [a, b] ⊂ R there is a compact subset K ⊂ M such
that c∧(t, x) is constant in t ∈ [a, b] for all x ∈M \K.

In particular, the identity induces a smooth mapping C∞(M,N )→ C∞(M,N ) into

the Frölicher space C∞(M,N ) discussed in 23.2.3 , which is a diffeomorphism if
and only if M is compact or N is discrete.

Proof. Since R is locally compact, property ( 1 ) is equivalent to

(2) For each t ∈ R there is an open neighborhood U of t in R and a compact
K ⊂M such that the restriction has the property that c∧(t, x) is constant in
t ∈ U for all x ∈M \K.

Since this is a local condition on R, and since smooth curves in C∞(M,N ) locally

take values in charts as in the proof of theorem 42.1 , it suffices to describe the
smooth curves in the space C∞c (M ← E) of sections with compact support of a
vector bundle (p : E → M,V ) with finite dimensional base manifold M , with the

structure described in 30.4 . This was done in 30.9 . �

42.6. Theorem. Cω-manifold structure of Cω(M,N ). Let M and N be real
analytic manifolds, let M be compact, and let N be either finite dimensional, or let

us assume that N admits a real analytic local addition in the sense of 42.4 .

Then the space Cω(M,N ) of all real analytic mappings from M to N is a real
analytic manifold, modeled on spaces Cω(M ← f∗TN ) of real analytic sections of
pullback bundles along f : M → N over M .

Proof. The proof is a variant of the proof of 42.4 , using a real analytic Riemann-
ian metric if N is finite dimensional, and the given real analytic local addition
otherwise. For finite dimensional N a detailed proof can be found in [Kriegl and
Michor, 1990]. �

42.7. Lemma. Let M , N be real analytic finite dimensional manifolds. Then
the space Cω(M,N) of all real analytic mappings is dense in C∞(M,N), in the
Whitney C∞-topology.



448 Chapter IX . Manifolds of Mappings 42.10

This is not true in the manifold topology of C∞(M,N) used in 42.1 , if M is not
compact, because of the compact support condition used there.

Proof. By [Grauert, 1958, theorem 3], there is a real analytic embedding i : N →
Rk on a closed submanifold, for some k. We use the constant standard inner product
on Rk to obtain a real analytic tubular neighborhood U of i(N) with projection
p : U → i(N). By [Grauert, 1958, proposition 8] applied to each coordinate of
Rk, the space Cω(M,Rk) of real analytic Rk-valued functions is dense in the space
C∞(M,Rk) of smooth functions, in the Whitney C∞-topology. If f : M → N is
smooth we may approximate i ◦ f by real analytic mappings g in Cω(M,U), then
p ◦ g is real analytic M → i(N) and approximates i ◦ f . �

42.8. Theorem. Cω-manifold structure on C∞(M,N). Let M and N be real
analytic finite dimensional manifolds, with M compact. Then the smooth manifold

C∞(M,N) with the structure from 42.1 is even a real analytic manifold.

Proof. For a fixed real analytic exponential mapping on N the charts (Uf , uf )

from 42.1 for f ∈ Cω(M,N) form a smooth atlas for C∞(M,N), since Cω(M,N)

is dense in C∞(M,N) by 42.7

The chart changings uf ◦ u−1
g = (τ−1

f ◦ τg)∗ are real analytic by 30.10 . �

42.9. Corollary. Let Mi and Ni be smooth manifolds with Mi finite dimensional
for i = 1, 2 and Ni admitting smooth local additions. Then we have:

(1) If f : N1 → N2 is initial 27.11 then the mapping

C∞(M,f) : C∞(M,N1)→ C∞(M,N2)

is initial, too.

(2) If f : M2 → M1 is final 27.15 and proper then the mapping C∞(f,N ) :

C∞(M1,N )→ C∞(M2,N ) is initial.

Proof. ( 1 ) Let c : R → C∞(M,N1) be such that f∗ ◦ c : R → C∞(M,N2) is

smooth. By 42.5 , the associated mapping (f∗ ◦ c)∧ = f ◦ c∧ : R × M → N2

is smooth and satisfies 42.5.1 . Since f is initial, c∧ is smooth, and since f is

injective, c∧ satisfies 42.5.1 , hence c is smooth.

Proof of ( 2 ) Since f is final between finite dimensional manifolds, it is a surjective
submersion, so R× f is also a surjective submersion and thus final.

Let c : R → C∞(M1,N ) be such that f∗ ◦ c : R → C∞(M2,N ) is smooth. By

42.5 , the associated mapping (f∗ ◦ c)∧ = c∧ ◦ (R × f) : R ×M2 → N is smooth

and satisfies 42.5.1 . Since R× f is also final, c∧ is smooth. Since f and thus also

R× f is proper, c∧ satisfies 42.5.1 , and thus c is smooth. �

42.10. Lemma. Let M and N be real analytic finite dimensional manifolds with
M compact. Let (Uα, uα) be a real analytic atlas for M , and let i : N → Rn
be a closed real analytic embedding into some Rn. Let M be a possibly infinite
dimensional real analytic manifold.
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Then f :M→ Cω(M,N) is real analytic or smooth if and only if Cω(u−1
α , i) ◦ f :

M→ Cω(uα(Uα),Rn) is real analytic or smooth, respectively.

Furthermore, f : M → C∞(M,N) is real analytic or smooth if and only if the
mapping C∞(u−1

α , i) ◦ f :M→ C∞(uα(Uα),Rn) is real analytic or smooth, respec-
tively.

Proof. The statement that i∗ is initial is obvious. So we just have to treat
C∞(u−1

α , N). The corresponding statement for spaces of sections of vector bundles

are 30.6 for the real analytic case and 30.1 for the smooth case. So if f takes val-
ues in a chart domain Ug of C∞(M,N) for a real analytic g : M → N , the result fol-

lows. Recall from the proof of 42.1 that Ug = {h ∈ Cβ(M,N) : (g(x), h(x)) ∈ V }
where V is a fixed open neighborhood of the diagonal in N ×N , and where β =∞
or ω. Let f(z0) ∈ Ug for z0 ∈M. Since M is covered by finitely many of its charts
Uα, and since by assumption f(z)|Uα is near f(z0)|Uα for z near z0, so f(z) ∈ Ug
for z near z0 in M. So f takes values locally in charts, and the result follows. �

42.11. Corollary. Let M and N be finite dimensional real analytic manifolds with
M compact. Then the inclusion Cω(M,N)→ C∞(M,N) is real analytic.

Proof. Use the chart description and lemma 11.3 . �

42.12. Lemma. Curves in spaces of mappings. Let M and N be finite
dimensional real analytic manifolds with M compact.

(1) A curve c : R → Cω(M,N) is real analytic if and only if the associated
mapping c∧ : R×M → N is real analytic.
The curve c : R → Cω(M,N) is smooth if and only if c∧ : R × M → N
satisfies the following condition:

For each n there is an open neighborhood Un of R ×M in R ×MC
and a (unique) Cn-extension c̃ : Un → NC such that c̃(t, ) is
holomorphic for all t ∈ R.

(2) The curve c : R → C∞(M,N) is real analytic if and only if c∧ satisfies the
following condition:

For each n there is an open neighborhood Un of R ×M in C ×M
and a (unique) Cn-extension c̃ : Un → NC such that c̃( , x) is
holomorphic for all x ∈M .

Note that the two conditions are in fact local in R. We need N finite dimensional
since we need an extension NC of N to a complex manifold.

Proof. This follows from the corresponding statement 30.8 for spaces of sections
of vector bundles, and from the chart structure on Cω(M,N) and C∞(M,N). �

42.13. Theorem. Smoothness of composition. If M , N are smooth mani-
folds with M finite dimensional and N admitting a smooth local addition, then the
evaluation mapping ev : C∞(M,N )×M → N is smooth.

If P is another smooth finite dimensional manifold, then the composition mapping

comp : C∞(M,N)× C∞prop(P,M)→ C∞(P,N)
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is smooth, where C∞prop(P,M) denotes the space of all proper smooth mappings
P → M (i.e. compact sets have compact inverse images). This space is open in
C∞(P,M).

In particular, f∗ : C∞(M,N ) → C∞(M,N ′) and g∗ : C∞(M,N ) → C∞(P,N ) are
smooth for f ∈ C∞(N ,N ′) and g ∈ C∞prop(P,M).

The corresponding statement for real analytic mappings can be shown along similar

lines, using 42.12 . But we will give another proof in 42.15 below.

Proof. Using the description of smooth curves in C∞(M,N ) given in 42.5 ,
we immediately see that (ev ◦(c1, c2))(t) = c∧1 (t, c2(t)) is smooth for each smooth
(c1, c2) : R→ C∞(M,N )×M , so ev is smooth as claimed.

The space of proper mappings C∞prop(P,M) is open in the manifold C∞(P,M) since
changing a mapping only on a compact set does not change its property of being
proper. Let (c1, c2) : R → C∞(M,N ) × C∞prop(P,M) be a smooth curve. Then we
have (comp ◦(c1, c2))(t)(p) = c∧1 (t, c∧2 (t, p)), and one may check that this has again
property (44.5.1), so it is a smooth curve in C∞(P,N ). Thus, comp is smooth. �

42.14. Theorem. Exponential law. Let M, M , and N be smooth manifolds
with M finite dimensional and N admitting a smooth local addition.

Then we have a canonical injection

C∞(M,C∞(M,N )) ⊆ C∞(M×M,N ),

where the image in the right hand side consists of all smooth mappings f :M×M →
N which satisfy the following property

(1) If M is locally metrizable then for each point x ∈ M there is an open neigh-
borhood U and a compact set K ⊂ M such that f(x, y) is constant in x ∈ U
for all y ∈M \K.

(2) For general M: For each c ∈ C∞(R,M) and each t ∈ R there exists a
neighborhood U of t and a compact set K ⊂M such that f(c(s), y) is constant
in s ∈ U for each y ∈M \K.

Under the assumption that N admits smooth functions which separate points, we
have equality if and only if M is compact, or N is discrete, or each f ∈ C∞(M,R)
is constant along all smooth curves into M.

If M and N are real analytic manifolds with M compact we have

Cω(M, Cω(M,N )) = Cω(M×M,N )

for each real analytic (possibly infinite dimensional) manifold M.

Proof. The smooth case is simple: The equivalence for generalM follows directly

from the description of all smooth curves in C∞(M,N ) given in the proof of 42.5 .
It remains to show that for locally metrizable M a smooth mapping f : M →
C∞(M,N ) satisfies condition ( 1 ). Since f is smooth, locally it has values in a

chart, so we may assume that M is open in a Fréchet space by 4.19 , and that f
has values in C∞c (M ← E) for some vector bundle p : E →M .
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We claim that f locally factors into some C∞Kn(E) where (Kn) is an exhaustion
of M by compact subsets such that Kn is contained in the interior of Kn+1. If
not there exist a (fast) converging sequence (yn) in M and xn /∈ Kn such that
f(yn)(xn) 6= 0. One may find a proper smooth curve e : R → M with e(n) = xn
and a smooth curve g : R→M with g(1/n) = yn. Then by 30.4 , Pt(e, )∗ ◦f ◦g
is a smooth curve into C∞c (R, Ee(0)). Since the latter space is a strict inductive
limit of spaces C∞I (R, Ee(0)) for compact intervals I, the curve Pt(e, )∗ ◦ f ◦ g
locally factors into some C∞I (R, Ee(0)), but (e∗ ◦ f ◦ g)(1/n)(n) = f(yn)(xn) 6= 0, a
contradiction.

We check now the statement on equality: if M is compact, or if N is discrete then

( 2 ) is automatically satisfied. If each f ∈ C∞(M,R) is constant along all smooth

curves into M, we may check global constancy in ( 2 ) by composing with smooth
functions on N which separate points there.

For the converse, we may assume that there are a function f ∈ C∞(M,R), a curve
c ∈ C∞(R,M) such that f ◦c is not constant, and an injective smooth curve e : R→
N . Then M×M 3 (x, y) 7→ e(f(x)) is in C∞(M×M,N ) \ C∞(M,C∞(M,N ))

since condition ( 2 ) is violated for the curve c.

Now we treat the real analytic case. Let f∧ ∈ Cω(M×M,N ) ⊂ C∞(M×M,N ) =
C∞(M,C∞(M,N )). So we may restrict f to a neighborhood U inM, where it takes
values in a chart Ug of C∞(M,N ) for g ∈ Cω(M,N ). Then f(U) ⊂ Ug∩Cω(M,N ),
one of the canonical charts of Cω(M,N ). So we may assume that f : U → Cω(M ←
g∗TN ). For a real analytic vector bundle atlas (Uα, ψα) of g∗TN the composites
U → Cω(M ← g∗TN ) → Cω(Uα,Rn) are real analytic by applying cartesian

closedness 11.18 to the mapping (x, y) 7→ ψα(πN , exp)−1(g(y), f∧(x, y)). By the

description 30.6 of the structure on Cω(M ← g∗TN ), the chart representation of
f is real analytic, so f is it also.

Let conversely f :M→ Cω(M,N ) be real analytic. Then its chart representation is
real analytic and we may use cartesian closedness in the other direction to conclude
that f∧ is real analytic. �

42.15. Corollary. If M and N are real analytic manifolds with M compact
and N admitting a real analytic local addition, then the evaluation mapping ev :
Cω(M,N )×M → N is real analytic.

If P is another compact real analytic manifold, then the composition mapping
comp : Cω(M,N )× Cω(P,M)→ Cω(P,N ) is real analytic.

In particular, f∗ : Cω(M,N ) → Cω(M,N ′) and g∗ : Cω(M,N ) → Cω(P,N ) are
real analytic for real analytic f : N → N ′ and g ∈ Cω(P,M).

Proof. The mapping ev∨ = IdCω(M,N ) is real analytic, so ev too, by 42.14 .
The mapping comp∧ = ev ◦(IdCω(M,N )× ev) : Cω(M,N ) × Cω(P,M) × P →
Cω(M,N )×M → N is real analytic, thus comp too. �

42.16. Lemma. Let Mi and Ni be finite dimensional real analytic manifolds
with Mi compact. Then for f ∈ C∞(N1, N2) the push forward f∗ : C∞(M,N1) →
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C∞(M,N2) is real analytic if and only if f is real analytic. For f ∈ C∞(M2,M1)
the pullback f∗ : C∞(M1, N)→ C∞(M2, N) is, however, always real analytic.

Proof. If f is real analytic and if g ∈ Cω(M,N1), then the mapping uf◦g ◦f∗◦u−1
g :

C∞(M ← g∗TN1)→ C∞(M ← (f ◦g)∗TN2) is a push forward by the real analytic
mapping (pr1, (π, expN2)−1 ◦ (f ◦ g ◦ pr1, f ◦ expN1 ◦ pr2)) : g∗TN1 → (f ◦ g)∗TN2,

which is real analytic by 30.10 .

The canonical mapping evx : C∞(M,N2) → N2 is real analytic since evx |Ug =
expN2 ◦ evx ◦ug : Ug → C∞(M ← g∗TN2)→ Tg(x)N2 → N2, where the second evx
is linear and bounded. Furthermore, const : N1 → C∞(M,N1) is real analytic since
the mapping ug ◦ const : y 7→ (x 7→ (πN1

, expN1)−1(g(x), y)) is locally real analytic
into Cω(M ← g∗TN1) and hence into C∞(M ← g∗TN1).

If f∗ is real analytic, also f = evx ◦f∗ ◦ const is.

For the second statement choose real analytic atlas (U iα, u
i
α) of Mi such that

f(U2
α) ⊆ U1

α and a closed real analytic embedding j : N → Rn. Then the dia-
gram

C∞(M1, N)
f∗ //

C∞((u1
α)−1,j)

��

C∞(M2, N)

C∞((u2
α)−1,j)

��
C∞(u1

α(U1
α),Rn)

(u2
α◦f◦(u

1
α)−1)∗ // C∞(u2

α(U2
α),Rn)

commutes, the bottom arrow is a continuous and linear mapping, so it is real

analytic. Thus, by 42.10 , the mapping f∗ is real analytic. �

42.17. Theorem. Let M and N be smooth manifolds with M compact and N
admitting a local addition. Then the infinite dimensional smooth vector bundles
TC∞(M,N ) and C∞c (M,TN ) ⊂ C∞(M,TN ) over C∞(M,N ) are canonically iso-
morphic. The same assertion is true for Cω(M,N ) if M is compact.

Here by C∞c (M,TN ) we denote the space of all smooth mappings f : M → TN
such that f(x) = 0πMf(x) for x /∈ Kf , a suitable compact subset of M (equivalently,
such that the associated section of the pull back bundle (πM ◦ f)∗TN → M has
compact support).

One can check directly that the atlas from 42.1 for C∞(M,N ) induces an atlas for
TC∞(M,N ), which is equivalent to that for C∞(M,TN ) via some natural identi-
fications in TTN . This is carried out in great detail in [Michor, 1980c, 10.13]. We

shall give here a simpler proof, using 42.5 .

Proof. Recall from 28.13 the diagram

C∞(R,C∞(M,N ))/ ∼

δ∼=
��

C∞(R,C∞(M,N ))oo

ev0

��

δ

ss
TC∞(M,N )

πC∞(M,N)

// C∞(M,N ),

From 42.5 we see that C∞(R,C∞(M,N )) corresponds to the space C∞lc (R×M,N )
of all mappings g∧ ∈ C∞(R×M,N ) satisfying
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(1) For each compact interval [a, b] ⊂ R there is a compact subset K ⊂ M such
that g∧(t, x) is constant in t ∈ [a, b] for all x ∈M \K.

Now we consider the diagram

C∞(R,C∞(M,N ))

����

∼=
ϕ

// C∞lc (R×M,N )

∂
∂t

∣∣∣∣
0

��

� � // C∞(R×M,N )

∂
∂t

∣∣∣∣
0

��

C∞(R,C∞(M,N ))/ ∼

δ∼=
��

TC∞(M,N )
Φ
∼=

// C∞c (M,TN ) �
� // C∞(M,TN ).

The vertical mappings on the right hand side are ∂
∂t

∣∣
0
f = Tf ◦ (∂t× 0M )|(0×M).

The middle one is surjective since f(x) = ∂
∂t

∣∣
0

exp(h(t).f(x)) for suitable h, and h

can be chosen uniformly for f in a piece of a smooth curve into C∞(M,TN ). By
construction the top isomorphism factors to a bijection Φ.

The mapping Φ is smooth by 28.13 since Φ◦δ factors over ϕ, which maps the space

C∞(R2,C∞(M,N )) to C∞lc,c(R ×M,TN ) ∼= C∞(R,C∞c (M,TN )). The inverse of

Φ is smooth by a similar argument, using again 28.13 . �

42.18. Corollary. Some tangent mappings. For f ∈ C∞(M1,M2) and g ∈
C∞(N1,N2) we have

TC∞(M2,N )

TC∞(f,N )

��

∼= // C∞c (M2, TN )

C∞(f,TN )

��

TC∞(M,N1)

TC∞(M,g)

��

∼= // C∞c (M,TN1)

C∞(M,Tg)

��
TC∞(M1,N )

∼= // C∞c (M1, TN ) TC∞(M,N2)
∼= // C∞c (M,TN2).

The tangent mapping of the composition

comp : C∞(M,N )× C∞prop(P,M)→ C∞(P,N )

at (f, g) in direction of (X,Y ) ∈ C∞c (M ← f∗TN )× C∞c (P ← g∗TM) is given by

T(f,g) comp .(X,Y ) = Tf ◦ Y +X ◦ g ∈ C∞c (P ← (f ◦ g)∗TN ).

The tangent mapping of the evaluation ev : C∞(M,N ) × M → N at (f, x) in
direction of (X, ξ) ∈ C∞c (M ← f∗TN )×TxM is given by T(f,x) ev .(X, ξ) = Txf.ξ+
X(x) ∈ Tf(x)N .

Proof. By 42.17 , we may take a tangent vector X ∈ Tf(0, )C
∞(M,N1) of the

form X = ∂
∂t

∣∣
0
f(t, ) ∈ C∞c (M ← f∗TN1), where f ∈ C∞lc (R×M,N1). Then we

have (Tf(0, )(g∗).X)(x) = ∂
∂t

∣∣
0
g(f(t, x)) = Tg. ∂

∂t

∣∣
0
f(t, x) = Tg.X(x).

T (g∗) = g∗ is similar but easier, and the tangent mappings of the composition and
the evaluation can be computed either from the partial derivatives, or directly by
a variational computation as above. �
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42.19. The tangent mapping T : C∞(M,N ) → C∞(TM, TN ) is not smooth,

since the condition 42.5.1 is not preserved. But it is smooth as a mapping
T : C∞(M,N )→ C∞(M,L(TM, TN )), and its tangent mapping is given by

TC∞(M,N )

T (T )

��

∼= // C∞c (M,TN )

(κN )∗◦T
��

TC∞(M,L(TM, TN )) �
� ⊆ // C∞(TM, T 2N ),

where κN : T 2N → T 2N is the canonical flip mapping, compare with 29.10 .

For the tangent mapping of the tangent mapping we consider ξx = ∂
∂s |0c(s) ∈ TxM ,

and X ∈ Tf(0, )C
∞(M,N ) of the form X = ∂

∂t

∣∣
0
f(t, ) ∈ C∞c (M ← f∗TN ) as

in the beginning of the proof. Then we have

T (f(t, )).ξx = ∂
∂s |0f(t, c(s))

(Tf(0, )(T ).X)(ξx) =
(
∂
∂t

∣∣
0
T (f(t, ))

)
(ξx) = ∂

∂t

∣∣
0

(
T (f(t, )).ξx

)
= ∂

∂t

∣∣
0
∂
∂s |0f(t, c(s)) = κN

∂
∂s |0

∂
∂t

∣∣
0
f(t, c(s))

= κN
∂
∂s |0X(c(s)) = κN .TX.ξx.

42.20. Theorem. Let M and N be smooth finite dimensional manifolds, and
let q : N → M be smooth. Then the set C∞(q) of all smooth sections of q
is a splitting smooth submanifold of C∞(M,N), whose tangent space is given by
TC∞(q) = C∞c (M, ker(Tq)) ⊂ C∞c (M,TN). If q : E → M is a finite dimensional
vector bundle, the convenient vector space C∞c (M ← E) is a splitting smooth sub-
manifold of C∞(M,E).

Let now M and N be real analytic finite dimensional manifolds with M compact,
and let q : N → M be real analytic. Then the set Cω(q) of all real analytic sec-
tions of q is a splitting real analytic submanifold of Cω(M,N), and also C∞(q)
is a is a splitting real analytic submanifold of C∞(M,N). If q : E → M is a
real analytic finite dimensional vector bundle with M compact, the convenient vec-
tor space Cω(M ← E) is a splitting real analytic submanifold of Cω(M,E), and
C∞(M ← E) is a splitting real analytic submanifold of C∞(M,E).

It is possible to extend this result at least to the case of a fiber bundle p : E →M
with infinite dimensional standard fiber by requiring the existence of a smooth
‘vertical local addition’.

Proof. If a smooth section s : M → N of q exists, then q, restricted to an
open neighborhood of s(M), is a surjective submersion. Thus, there exists an
open neighborhood Ws of s(M) in N such that ps := s ◦ q|Ws : Ws → s(M) is a
surjective submersion, and we may assume that Ws is a tubular neighborhood, so
that ps : Ws → s(M) is a vector bundle. Since C∞(M,Ws) is open in C∞(M,N),
we may replace N by Ws or assume that q : N → M is a vector bundle, and that
s is the zero section.
Claim. There exists a local addition α : TN → N such that

(1) α restricts to a local addition T0(M)→ 0(M) on the zero section.
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(2) On each fiber Nx the local addition α restricts to the addition TNx ∼= Nx ×
Nx → Nx.

In fact, choose a second vector bundle E → M such that N ⊕ E = M × Rk is
trivial, choose a local addition αM on M , and let αk be the addition on Rk. Then
αM × αk restricts to a local addition on N with the required properties.

Now we consider the atlas for C∞(M,N) induced by α, as in 42.4 , i.e., we use the

formulas of 42.1 with exp replaced by α. In particular, for the zero section s = 0
and for g ∈ U0 ⊂ C∞(M,N) we have

u0(g) = (IdM , (πN , α)−1 ◦ (0, g)) ∈ C∞c (M ← 0∗TN) ∼=
∼= C∞c (M ← TM ⊕N) ∼= C∞c (M ← TM)× C∞c (M ← N),

so that u0(g) ∈ 0× C∞c (M ← N) if and only if g is a section of the vector bundle.
Moreover, C∞c (M ← N) ⊂ U0, so the second statement follows.

The statement about TC∞(q) follows from 42.17 by noting that the derivative
of smooth curves in C∞(q) are precisely sections s : M → ker(Tq) such that s =
0 ◦ πE ◦ s off some compact set in M .

This proof also works in the real analytic cases. �

42.21. Theorem. Let (p : P → M,G) be a principal fiber bundle with finite
dimensional base manifold M and a finite dimensional Lie group G as structure
group.

Then the gauge group Gau(P ) = C∞(M ← P [G, conj]) from 37.17 carries the

structure of a smooth Lie group modeled on C∞c (P [g,Ad]).

If G is a regular Lie group then Gau(P ) is regular, too. If G admits an exponen-
tial mapping then Gau(P ) also admits an exponential mapping. If G is compact
then Gau(P ) is diffeomorphic to the splitting submanifold C∞(P,G)G of all G-
equivariant smooth mappings in C∞(P,G).

If, moreover, M is compact and (p : P →M,G) is a real analytic principal bundle
with real analytic Lie group G, possibly infinite dimensional, then Gauω(P ) :=
Cω(M ← P [G, conj]) is a real analytic Lie group with the corresponding properties
as above.

Proof. The associated bundle P [G, conj] = P ×(G,conj) G is a group bundle over
M with typical fiber G. It admits transition functions with values in Aut(G).
Therefore, the multiplication in G induces a smooth fiberwise group multipli-
cation µ : P [G, conj] ×M P [G, conj] → P [G, conj], also the fiberwise inversion
ν : P [G, conj]→ P [G, conj] is smooth.

The associated bundle P [g,Ad] = P ×(G,Ad) g is a bundle of Lie algebras with
the same cocycle of transition functions. Thus, the bracket in g induces a smooth
fiberwise bilinear mapping [ , ] : P [g,Ad]×MP [g,Ad]→ P [g,Ad] and C∞c (M ←
P [gAd]) is a convenient Lie algebra.

We shall use the canonical mappings q : P × g→ P ×G g = p[g,Ad] from 37.12.1 ,

τG : P ×M P → G from 37.8 , and τg : P ×M P [g,Ad] → g from 37.12 . We
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also recall the the bijection C∞(P, g)G ∼= C∞(M ← P [g]) from 37.16 , denoted by
f 7→ sf and given by sf (p(u)) = q(u, f(u)), with inverse s 7→ fs = τg ◦ (IdP , s ◦ p).
Let u = (exp |V )−1 : U → V ⊆ g be the equivariant chart of G centered at e.

Uα := {χ ∈ Gau(P ) : τ(α(z), χ(z)) ∈ U for all z ∈ P
and p({x : α(x) 6= χ(x)}) has compact closure in M},

ūα : Uα → C∞(P, g)G,

ūα(χ) = u ◦ τ ◦ (α, χ),

uα : Uα → Ṽ := {s ∈ C∞c (M ← P [g,Ad]) : τg(z, s(p(z))) ∈ V for all z ∈ P}
⊆ C∞c (M ← P [g,Ad]),

uα(χ) = sūα(χ) = su◦τ◦(α,χ),

u−1
α (s)(z) = α(z).u−1(τg(z, s(p(z)))),

u−1
α (s) = α.(u−1.τg(IdP , s ◦ p)).

For the chart change we see that for s ∈ uβ(Uα ∩ Uβ) we have

(uα ◦ u−1
β )(s)(p(z)) = q

(
z, u(τP (α(z), β(z).u−1(τg(z, s(p(z))))))

)
.

By 30.9.1 , the space of smooth curves C∞(R, C∞c (M ← P [g,Ad])) consists of all
sections c such that c∧ : R×M → P [g,Ad] is smooth and the following condition
holds:

(1) For each compact interval [a, b] ⊂ R there is a compact subset K ⊂ M such
that c∧(t, x) is constant in t ∈ [a, b] for all x ∈M \K.

Obviously, the chart change respects the set of smooth curves and is smooth. Thus,
the atlas (Uα, uα) describes the structure of a smooth manifold which we denote by
Gau(P ) ∼= C∞(M ← P [G, conj]), and we also see that the space of smooth curves
C∞(R,C∞(M ← P [G, conj])) consists of all sections c such that the associated

mapping c∧ : R×M → P [G, conj] is smooth and condition ( 1 ) holds. Composition
and inversion are smooth on Gau(P ) since these correspond just to push forwards
of sections via the smooth fiberwise group multiplication and inversion described at
the beginning of the proof. The Lie algebra of C∞(M ← P [G, conj]) is C∞c (M ←
P [g,Ad]).

Let us now suppose that the Lie group G is regular with evolution operator evolG :
C∞(R, g)→ G. Since the smooth group bundle P [G, conj] is described by a cocycle
of transition functions with values in the group of (inner) automorphisms of G and

since by 38.4 we have evolG ◦ϕ′∗ = ϕ ◦ evolG for any automorphism ϕ of G, there
is an induced fiberwise evolution operator

evol : P [C∞(R, g),Ad∗] ∼= C∞(R, p[g,Ad])→ P [G, conj],

which, by push forward on sections, induces

evolGau(P ) : C∞(R, C∞c (M ← P [g,Ad]))→ C∞c (M ← P [G, conj]).

This maps smooth curves to smooth curves and is the evolution operator of Gau(P ).
The remaining assertions are easy to check. �
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42.22. Manifolds of holomorphic mappings. It is a natural question whether
the methods of this section carry over to spaces of holomorphic mappings between
complex manifolds. The situation is described in the following result.

Lemma.

(1) Each finite dimensional Stein manifold M admits holomorphic local additions

TM ⊃ U →M in the sense of 42.4 .

(2) Complex projective spaces do not admit holomorphic local additions.

Proof. ( 1 ) A Stein manifold M is biholomorphically embedded as a closed com-
plex submanifold of some Cn (where n = 2 dimCM + 2 suffices), see [Gunning
and Rossi, 1965, p. 224], and there exists a holomorphic tubular neighborhood
p : V → M in Cn, see [Gunning and Rossi, 1965, p. 257], by an application of
Cartan’s theorem B that a coherent sheaf on a Stein manifold is acyclic. The affine
addition ϕ : TCn → Cn, given by ϕ(z, Z) := z + Z then gives a local addition
p ◦ ϕ|TM : TM ⊃ U →M for a suitable open neighborhood U of 0 in TM .

( 2 ) First we show that CP1 does not admit a holomorphic local addition. The
usual affine charts u0[z0 : z1] = z1

z0
and u1[z0 : z1] = z0

z1
have as chart change

mapping z 7→ 1/z on C \ {0}. Its tangent mapping is (z, w) 7→ ( 1
z ,−

1
z2w). A local

addition would be given by two holomorphic mappings αi : TC ⊃ U → C on an
open neighborhood U of the zero section {(z, 0) : z ∈ C} with

α0( 1
z ,−

1
z2w) =

1

α1(z, w)
for z 6= 0,

αi(z, 0) = z, ∂
∂w |w=0αi(z, w) 6= 0 for all z.

The derivatives ∂
∂w |w=0 and ∂2

∂w2 |w=0 of 1 = α0( 1
z ,−

1
z2w)α1(z, w) are in turn

0 = 1
z (∂2α1(z, 0)− ∂2α0( 1

z , 0)),

0 = 1
z∂

2
2α1(z, 0)− 2

z2 ∂2α0( 1
z , 0).∂2α1(z, 0) + 1

z3 ∂
2
2α0( 1

z , 0)

= 1
z3 (z2∂2

2α1(z, 0)− z(∂2α1(z, 0))2 + ∂2
2α0( 1

z , 0)).

Hence, limz→0 ∂
2
2α0( 1

z , 0) = 0, and consequently ∂2
2α0(z, 0) = 0 for all z since

it is an entire function on C which vanishes at infinity. But then we get that
z 7→ ∂2

2α1(z, 0) = 1
z (∂2α1(z, 0))2 − 0 has a pole at 0, a contradiction.

Now we treat CPn. Suppose that a holomorphic local addition α : T (CPn) ⊃ U →
CPn exists. Let us consider CP1 ⊂ CPn, given by [z0 : z1] 7→ [z0 : z1 : 0 : · · · : 0].
Then we have a holomorphic retraction r : V → CP1 given by r[z0 : · · · : zn] = [z0 :
z1] for V = {[z0 : · · · : zn] : (z0, z1) 6= (0, 0)}. But then r ◦ α|(U ∩ T (CP1)) is a
holomorphic local addition on CP1, a contradiction. �

Results. From the argument given in 42.4 follows that a complex manifold ad-
mitting a holomorphic local addition also admits a holomorphic spray and thus a
holomorphic linear connection on TM . Existence of the latter has been investigated
in [Atiyah, 1957]. Let us sketch the relevant results. For a complex manifold M let
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TM be the complex tangent bundle, let GL(Cm, TM) be the linear frame bundle.

Then using the local description from 29.9 and 29.10 we get in turn:

GL(Cm, TM) (x, s) ∈ U ×GL(m,C),

T (GL(Cm, TM)) (x, s, ξ, σ) ∈ U ×GL(m,C)× Cm × gl(m,C),

T (GL(Cm, TM)) =
⋃

ξ∈TM

{f ∈ LC(Cm, T (πM )−1)(ξ) :

πTM ◦ f ∈ GL(Cm, TM)},
T (GL(Cm, TM))/GL(m,C) (x, Id, ξ, A) = (x, s ◦ s−1, ξ, σ ◦ s−1),

T (GL(Cm, TM))

GL(m,C)
=
⋃
x∈M

⋃
ξ∈TxM

{f ∈ LC(TxM,T (πM )−1)(ξ) :

πTM ◦ f = IdTxM},

which turns out to be a holomorphic vector bundle over M . Then we have the
following exact sequence of holomorphic vector bundles over M :

0→ L(TM, TM)−vlTM◦(Id, )→ T (GL(Cm, TM))/GL(m,C)−T (πM )→ TM → 0.

A holomorphic splitting of this sequence is exactly a holomorphic linear connection
on TM . This sequence defines an extension of the bundle TM by L(TM, TM), i.e.,
an element b(TM) in the sheaf cohomology H1(M ;T ∗M ⊗ L(TM, TM)). Thus:

[Atiyah, 1957, from theorems 2 and 5]. A complex manifold M admits a holomor-
phic linear connection if and only if b(TM) vanishes.

Note that via Cartan’s theorem B this again implies that Stein manifolds admit
holomorphic local additions. Moreover, Atiyah proved the following results:

Result. [Atiyah, 1957, theorem 6]. If M is a compact Kähler manifold, then the
k-th Chern class of TM is given by

ck(TM) = (−2π
√
−1)−kSk[b(TM)],

where Sk is the k characteristic coefficient gl(m,C)→ C.

Note that this also implies that CPn does not admit local additions.

[Atiyah, 1957, proposition 22]. Even if all characteristic classes of M vanish, M
need not admit a holomorphic connection.

43. Diffeomorphism Groups

43.1. Theorem. Diffeomorphism group. For a smooth manifold M the group
Diff(M) of all smooth diffeomorphisms of M is an open submanifold of C∞(M,M),
composition and inversion are smooth. It is a regular Lie group in the sense of

38.4 .

The Lie algebra of the smooth infinite dimensional Lie group Diff(M) is the conve-
nient vector space C∞c (M ← TM) of all smooth vector fields on M with compact
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support, equipped with the negative of the usual Lie bracket. The exponential map-
ping exp : C∞c (M ← TM) → Diff∞(M) is the flow mapping to time 1, and it is
smooth.

Proof. We first show that Diff(M) is open in C∞(M,M). Let c : R→ C∞(M,M)
be a smooth curve such that c(0) is a diffeomorphism. We have to show that then
c(t) also is a diffeomorphism for small t. The mapping c(t) stays in the WO1-open

(and thus open by 42.1 ) subset of immersions for t near 0, see 41.10 .

The mapping c(t) stays injective for t near 0: For |t| ≤ 1 we have c(t)|(M \
K1) = c(0)|(M \ K1) for a compact subset K1 ⊆ M , by 42.5 . Let K2 :=

c(0)−1(c∧([−1, 1] × K1)) ⊃ K1. If c(t) does not stay injective for t near 0 then
there are tn → 0 and xn 6= yn in M with c(tn)(xn) = c(tn)(yn). We claim that
xn, yn ∈ K2: If xn /∈ K2 then c(tn)(xn) = c(0)(xn), so yn ∈ K1, since other-
wise c(tn)(yn) = c(0)(yn) 6= c(0)(xn); but then c(tn)(yn) ∈ c∧([−1, 1] × K1) =
c(0)(K2) 63 c(0)(xn). Passing to subsequences we may assume that xn → x and
yn → y in K2. By continuity of c∧, we get c(0)(x) = c(0)(y), so x = y. The map-
ping (t, z) 7→ (t, c(t)(z)) is a diffeomorphism near (0, x), since it is an immersion.
But then c(tn)(xn) 6= c(tn)(yn) for large n.

The mapping c(t) stays surjective for t near 0: In the situation of the last paragraph
c(t)(M) = c(t)(K2)∪ c(0)(M \K interior

1 ) is closed in M for |t| ≤ 1 and also open for
t near 0, since c(t) is a local diffeomorphism. It meets each connected component
of M since c(t) is homotopic to c(0). Thus, c(t)(M) = M .

Therefore, Diff(M) is an open submanifold of C∞prop(M,M), so composition is

smooth by 42.13 . To show that the inversion inv is smooth, we consider a
smooth curve c : R → Diff(M) ⊂ C∞(M,M). Then the mapping c∧ : R ×M →
M satisfies 42.5.1 , and (inv ◦c)∧ fulfills the finite dimensional implicit equation
c∧(t, (inv ◦c)∧(t,m)) = m for all t ∈ R and m ∈ M . By the finite dimensional im-

plicit function theorem, (inv ◦c)∧ is smooth in (t,m). Property 42.5.1 is obvious.
Hence, inv maps smooth curves to smooth curves and is thus smooth. (This proof
is by far simpler than the original one, see [Michor, 1980c], and shows the power of
the Frölicher-Kriegl calculus.)

By the chart structure from 42.1 , or directly from theorem 42.17 , we see that the
tangent space Te Diff(M) equals the space C∞c (M ← TM) of all vector fields with
compact support. Likewise Tf Diff(M) = C∞c (M ← f∗TM), which we identify
with the space of all vector fields with compact support along the diffeomorphism
f . Right translation µf is given by µf (g) = f∗(g) = g ◦ f , thus T (µf ).X = X ◦ f ,

and for the flow FlXt of the vector field with compact support X we have d
dt FlXt =

X ◦ FlXt = T (µFlXt ).X. So the one parameter group t 7→ FlXt ∈ Diff(M) is the
integral curve of the right invariant vector field RX : f 7→ T (µf ).X = X ◦ f on
Diff(M). Thus, the exponential mapping of the diffeomorphism group is given by
exp = Fl1 : C∞c (M ← TM) → Diff(M). To show that is smooth we consider a
smooth curve in C∞c (M ← TM), i.e., a time dependent vector field with compact
support Xt. We may view it as a complete vector field (0t, Xt) on R ×M whose
smooth flow respects the level surfaces {t} ×M and is smooth. Thus, exp ◦X =
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(pr2 ◦Fl
(0,X)
1 )∨ maps smooth curves to smooth curves and is smooth itself. Again

one may compare this simple proof with the original one [Michor, 1983, section 4].

To see that Diff(M) is a regular Lie group note that the evolution is given by
integrating time dependent vector fields with compact support,

evol(t 7→ Xt) = ϕ(1, )

∂
∂tϕ(t, x) = X(t, ϕ(t, x)), ϕ(0, x) = x.

Let us finally compute the Lie bracket on C∞c (M ← TM) viewed as the Lie algebra
of Diff(M). For X ∈ C∞c (M ← TM) let LX denote the left invariant vector field

on Diff(M). Its flow is given by FlLXt (f) = f ◦ exp(tX) = f ◦ FlXt = (FlXt )∗(f).

From 32.15 we get [LX , LY ] = d
dt |0(FlLXt )∗LY , so for e = IdM we have

[LX , LY ](e) = ( ddt |0(FlLXt )∗LY )(e)

= d
dt |0(T (FlLX−t ) ◦ LY ◦ FlLXt )(e)

= d
dt |0T (FlLX−t )(LY (e ◦ FlXt ))

= d
dt |0T ((FlX−t)

∗)(T (FlXt ) ◦ Y )

= d
dt |0(T (FlXt ) ◦ Y ◦ FlX−t), by 42.18

= d
dt |0(FlX−t)

∗Y = −[X,Y ].

Another proof using 36.10 is as follows:

Ad(exp(sX))Y = ∂
∂t

∣∣
0

exp(sX) ◦ exp(tY ) ◦ exp(−sX)

= T (FlXs ) ◦ Y ◦ FlX−s = (FlX−s)
∗Y,

thus
∂
∂t

∣∣
0

Ad(exp(tX))Y = ∂
∂t

∣∣
0

(FlX−t)
∗Y = −[X,Y ]

is the negative of the usual Lie bracket on C∞c (M ← TM). �

It is well known that the space Diff(M) of all diffeomorphisms of M is open in

C∞(M,M) even for the Whitney C∞-topology, see 41.10 ; proofs can be found in
[Hirsch, 1976, p. 38] or [Michor, 1980c, section 5].

43.2. Example. The exponential mapping exp : C∞c (M ← TM)→ Diff(M) sat-
isfies T0 exp = Id, but it is not locally surjective near IdM : This is due to [Freifeld,
1967] and [Koppell, 1970]. The strongest result in this direction is [Grabowski,
1988], where it is shown, that Diff(M) contains a smooth curve through IdM whose
points (sauf IdM ) are free generators of an arcwise connected free subgroup which
meets the image of exp only at the identity.

We shall prove only a weak version of this for M = S1. For large n ∈ N we consider
the diffeomorphism

fn(θ) = θ + 2π
n + 1

2n sin2(
nθ

2
) mod 2π;

(the subgroup generated by) fn has just one periodic orbit and this is of period
n, namely { 2πk

n : k = 0, . . . , n − 1}. For even n the diffeomorphism fn cannot
be written as g ◦ g for a diffeomorphism g (so fn is not contained in a flow), by
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the following argument: If g has a periodic orbit of odd period, then this is also a
periodic orbit of the same period of g ◦ g, whereas a periodic orbit of g of period 2n
splits into two disjoint orbits of period n each, of g ◦ g. Clearly, a periodic orbit of
g ◦ g is a subset of a periodic orbit of g. So if g ◦ g has only finitely many periodic
orbits of some even order, there must be an even number of them.

Claim. Let f ∈ Diff(S1) be fixed point free and in the image of exp. Then f is
conjugate to some translation Rθ.
We have to construct a diffeomorphism g : S1 → S1 such that f = g−1 ◦ Rθ ◦ g.
Since p : R → R/2πZ = S1 is a covering map it induces an isomorphism Ttp :
R → Tp(t)S

1. In the picture S1 ⊆ C this isomorphism is given by s 7→ s p(t)⊥,

where p(t)⊥ is the normal vector obtained from p(t) ∈ S1 via rotation by π/2.
Thus, the vector fields on S1 can be identified with the smooth functions S1 → R
or, by composing with p : R → S1, with the 2π-periodic functions X : R → R.
Let us first remark that the constant vector field Xθ ∈ X(S1), s 7→ θ has the flow

FlX
θ

: (t, ϕ) 7→ ϕ+ t · θ. Hence, exp(Xθ) = FlX
θ

(1, ) = Rθ.

Let f = exp(X) and suppose g ◦ f = Rθ ◦ g. Then g ◦ FlX(t, ) = FlX
θ

(t, ) ◦ g
for t = 1. Let us assume that this is true for all t. Then differentiating at t = 0
yields Tg(Xx) = Xθ

g(x) for all x ∈ S1. If we consider g as diffeomorphism R → R
this means that g′(t) ·X(t) = θ for all t ∈ R. Since f was assumed to be fixed point
free the vector field X is nowhere vanishing, otherwise there would be a stationary

point x ∈ S1. So the condition on g is equivalent to g(t) = g(0) +
∫ t

0
θ

X(s) ds. We

take this as definition of g, where g(0) := 0, and where θ will be chosen such that

g factors to an (orientation preserving) diffeomorphism on S1, i.e. θ
∫ t+2π

t
ds
X(s) =

g(t+ 2π)− g(t) = 2π. Since X is 2π-periodic this is true for θ = 1/
∫ 2π

0
ds
X(s) . Since

the flow of a transformed vector field is nothing else but the transformed flow we

obtain that g(FlX(t, x)) = FlX
θ

(t, g(x)), and hence g ◦ f = Rθ ◦ g. �

Note that the formula from 38.2 for the tangent mapping of the exponential of a
Lie group in the case G = Diff(M) looks as follows:

(1) TX exp .Y =

∫ 1

0

(FlX−t)
∗Y dt ◦ FlX1 ,

by the formula for Ad ◦ exp in the proof of 43.1 , and by 42.17 .

The break-down of the inverse function theorem in this situation is explained by
the following

Claim. [Grabowski, 1993]For each finite dimensional manifold M of dimension
m > 1 and for M = S1 the mapping TX exp is not injective for some X arbitrarily
near to 0. So GL(Xc(M)) is not open in L(Xc(M),Xc(M)).

For M = R this seems to be wrong for vector fields with compact support.

Proof. Let us start with M = S1 and the vector fields Xn(θ) := 2π
n

∂
∂θ and

Yn := sin(nθ) ∂∂θ for θ mod 2π in X(S1). Then FlXnt (θ) = θ + 2π
n t mod 2π, and

hence we get
∫ 1

0
(FlXn−t )∗Yn dt = 0.
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For a manifold M of dimension m > 1 we now take an embedding S1×U →M for
an open ball U ⊂ Rm−1, functions g, h ∈ C∞c (U,R) with g.h = g. Then the vector

fields X̃n(θ, x) = h(x)Xn(θ) and Ỹn(θ, x) = g(x)Yn(θ) in Xc(S
1 × U) ⊂ Xc(M)

satisfy
∫ 1

0
(FlX̃n−t )∗Ỹn dt = 0, since h(x) = 1 if g(x) 6= 0, too. �

43.3. Remarks. The mapping

Ad ◦ exp : C∞c (M ← TM)→ Diff(M)→ L(C∞c (M ← TM), C∞c (M ← TM))

is not real analytic since Ad(exp(sX))Y (x) = (FlX−s)
∗Y (x) = Tx(FlXs )(Y (FlX−s(x)))

is not real analytic in s in general: choose Y constant in a chart and X not real
analytic.

For a real analytic compact manifold M the group Diff(M) is an open submanifold

of the real analytic (see 42.8 ) manifold C∞(M,M). The composition mapping is,

however, not real analytic by 42.16 .

For x ∈ M the mapping evx ◦ exp : C∞c (M ← TM) → Diff(M) → M is not real

analytic since (evx ◦ exp)(tX) = FlXt (x), which is not real analytic in t for general
smooth X.

In contrast to this, one knows from [Omori, 1978b] that a Banach Lie group acting
effectively on a finite dimensional manifold is necessarily finite dimensional. So
there is no way to model the diffeomorphism group on Banach spaces as a manifold.
There is, however, the possibility to view Diff(M) as an ILH-group (i.e. inverse limit
of Hilbert manifolds), which sometimes permits to use an implicit function theorem.
See [Omori, 1974] for this.

43.4. Theorem (Real analytic diffeomorphism group). For a compact real
analytic manifold M the group Diffω(M) of all real analytic diffeomorphisms of M
is an open submanifold of Cω(M,M), composition and inversion are real analytic.

Its Lie algebra is the space Cω(M ← TM) of all real analytic vector fields on M ,
equipped with the negative of the usual Lie bracket. The associated exponential
mapping exp : Cω(M ← TM)→ Diffω(M) is the flow mapping to time 1, and it is
real analytic.

The real analytic Lie group Diffω(M) is regular in the sense of 38.4 , evol is even

real analytic.

Proof. Diffω(M) is open in Cω(M,M) in the compact-open topology, thus also

in the finer manifold topology. The composition is real analytic by 42.15 , so it
remains to show that the inversion ν is real analytic.

Let c : R → Diffω(M) be a Cω-curve. Then the associated mapping c∧ : R ×
M → M is Cω by 42.14 , and (ν ◦ c)∧ is the solution of the implicit equation
c∧(t, (ν ◦c)∧(t, x)) = x and therefore real analytic by the finite dimensional implicit

function theorem. Hence, ν ◦ c : R→ Diffω(M) is real analytic, again by 42.14 .

Let c : R → Diffω(M) be a C∞-curve. Then by lemma 42.12 the associated
mapping c∧ : R ×M → M has a unique extension to a Cn-mapping R ×MC ⊇
J × W → MC which is holomorphic on W (has C-linear derivatives), for each
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n ≥ 1. The same assertion holds for the curve ν ◦ c by the finite dimensional
implicit function theorem for Cn-mappings.

The tangent space at IdM of Diffω(M) is the space Cω(M ← TM) of real analytic
vector fields on M . The one parameter subgroup of a tangent vector is the flow
t 7→ FlXt of the corresponding vector field X ∈ Cω(M ← TM), so exp(X) = FlX1
which exists since M is compact.

In order to show that exp : Cω(M ← TM) → Diffω(M) ⊆ Cω(M,M) is real

analytic, by the exponential law 42.14 it suffices to show that the associated
mapping exp∧ = Fl1 : Cω(M ← TM) ×M → M is real analytic. This follows
from the finite dimensional theory of ordinary real analytic and smooth differential
equations. The same is true for the evolution operator. �

43.5. Remark. The exponential mapping exp : Cω(S1 ← TS1) → Diffω(S1) is
not surjective on any neighborhood of the identity.

Proof. The proof of 43.2 for the group of smooth diffeomorphisms of S1 can

be adapted to the real analytic case: ϕn(θ) = θ + 2π
n + 1

2n sin2(nθ2 ) mod 2π is

Mackey convergent (in UId) to IdS1 in Diffω(S1), but ϕn is not in the image of the
exponential mapping. �

43.6. Example 1. Let g ⊂ Xc(R2) be the closed Lie subalgebra of all vector fields
with compact support on R2 of the form X(x, y) = f(x, y) ∂

∂x + g(x, y) ∂∂y where g

vanishes on the strip 0 ≤ x ≤ 1.
Claim. There is no Lie subgroup G of Diff(R2) corresponding to g.
If G exists there is a smooth curve t 7→ ft ∈ G ⊂ Diffc(R2). Then Xt := ( ∂∂tft)◦f

−1
t

is a smooth curve in g, and we may assume that X0 = f ∂
∂x where f = 1 on a large

ball. But then AdG(ft) = f∗t : g 6→ g, a contradiction.

So we see that on any manifold of dimension greater than 2 there are closed Lie
subalgebras of the Lie algebra of vector fields with compact support which do not
admit Lie subgroups.

Example 2. The space XK(M) of all vector fields with support in some open set
U is an ideal in Xc(M), the corresponding Lie group is the connected component
DiffU (M)0 of the group of all diffeomorphisms which equal Id off some compact in
U , but this is not a normal subgroup in the connected component Diffc(M)0, since
we may conjugate the support out of U .

Note that this examples do not work for the Lie group of real analytic diffeomor-
phisms on a compact manifold.

43.7. Theorem. [Ebin and Marsden, 1970] Let M be a compact orientable mani-
fold, let µ0 be a positive volume form on M with total mass 1. Then the regular
Lie group Diff+(M) of all orientation preserving diffeomorphisms splits smoothly
as Diff+(M) = Diff(M,µ0) × Vol(M), where Diff(M,µ0) is the regular Lie group
of all µ0-preserving diffeomorphisms, and Vol(M) is the space of all volume forms
of total mass 1.
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If (M,µ0) is real analytic, then Diffω+(M) splits real analytically as Diffω+(M) =
Diffω(M,µ0) × Volω(M), where Diffω(M,µ0) is the Lie group of all µ0-preserving
real analytic diffeomorphisms, and Volω(M) is the space of all real analytic volume
forms of total mass 1.

Proof. We show first that there exists a smooth mapping τ : Vol(M)→ Diff+(M)
such that τ(µ)∗µ0 = µ.

We put µt = µ0 + t(µ − µ0). We want a smooth curve t 7→ ft ∈ Diff+(M) with
f∗t µt = µ0. We have ∂

∂tft = Xt ◦ ft for a time dependent vector field Xt on M .

Then 0 = ∂
∂tf
∗
t µt = f∗t LXtµt + f∗t

∂
∂tµt = f∗t (LXtµt + (µ− µ0)), so LXtµt = µ0 − µ

and LXtµt = diXtµt + iXt0 = dω for some ω ∈ ΩdimM−1(M). Now we choose ω
such that dω = µ0 − µ, and we choose it smoothly and in the real analytic case
even real analytically depending on µ by the theorem of Hodge, as follows: For any
α ∈ Ω(M) we have α = Hα+dδGα+δGdα, where H is the projection on the space
of harmonic forms, δ = ∗d∗ is the codifferential, ∗ is the Hodge-star operator, and G
is the Green operator, see [Warner, 1971]. All these are bounded linear operators,
G is even compact. So we may choose ω = δG(µ0 − µ). Then the time dependent
vector field Xt is uniquely determined by iXtµt = ω since µt is nowhere 0. Let ft
be the evolution operator of Xt, and put τ(µ) = f−1

1 .

Now we may prove the theorem itself. We define a mapping Ψ : Diff+(M) →
Diff(M,µ0) × Vol(M) by Ψ(f) := (f ◦ τ(f∗µ0)−1, f∗µ0), which is smooth or real

analytic by 42.15 and 43.4 . An easy computation shows that the inverse is given

by the smooth (or real analytic) mapping Ψ−1(g, µ) = g ◦ τ(µ).

That Diff(M,µ0) is regular follows from 38.7 , where we use the mapping p :
Diff+(M)→ Ωmax(M), given by p(f) := f∗µ0 − µ0. �

We next treat the Lie group of symplectic diffeomorphisms.

43.8. Symplectic manifolds. Let M be a smooth manifold of dimension 2n ≥ 2.
A symplectic form on M is a closed 2-form σ such that σn = σ∧· · ·∧σ ∈ Ω2n(M)

is nowhere 0. The pair (M,σ) is called a symplectic manifold. See section 48
for a treatment of infinite dimensional symplectic manifolds.

A symplectic form can be put into the following (Darboux) normal form: For each
x ∈ M there is a chart M ⊃ U −u→ u(U) ⊂ R2n centered at x such that on U the
form σ is given by σ|U = u1 dun+1 + u2 dun+2 + · · · + un du2n. This follows from

proposition 43.11 below for N = {x}.
A diffeomorphism f ∈ Diff(M) with f∗σ = σ is called a symplectic diffeomor-
phism; some authors also write symplectomorphism. The group of all symplectic
diffeomorphisms will be denoted by Diff(M,σ).

A vector field X ∈ X(M) will be called a symplectic vector field if LXσ = 0;
some authors also write locally Hamiltonian vector field. The Lie algebra
of all symplectic vector fields will be denoted by X(M,σ).

For a finite dimensional symplectic manifold (M,σ) we have the following exact
sequence of Lie algebras:

0→ H0(M)→ C∞(M,R)−gradσ→ X(M,σ)−γ→ H1(M)→ 0
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Here H∗(M) is the real De Rham cohomology of M , gradσ f is the Hamiltonian
vector field for f ∈ C∞(M,R) given by i(gradσ f)σ = df , and γ(ξ) = [iξσ]. The
spaces H0(M) and H1(M) are equipped with the zero bracket, and the space
C∞(M,R) is equipped with the Poisson bracket

{f, g} := i(gradσ f)i(gradσ g)σ = σ(gradσ g, gradσ f) =

= (gradσ f)(g) = dg(gradσ f).

The image of gradσ is the Lie subalgebra of globally Hamiltonian vector

field. We shall prove this for infinite dimensional manifolds in section 48 below.

A submanifold L of a symplectic manifold (M2n, σ) is called a Lagrange sub-
manifold if it is of dimension n and incl∗ σ = 0 on L.

43.9. Canonical example. Let Q be an n-dimensional manifold. Let us consider
the natural 1-form θQ on the cotangent bundle T ∗Q which is given by θQ(Ξ) :=
〈πT∗Q(Ξ), T (π∗Q).Ξ〉TQ, where we used the projections π∗Q : T ∗Q→ Q and

T ∗Q←πT∗Q− T (T ∗Q)−T (π∗Q)→ TQ.

The canonical symplectic structure on T ∗Q is then given by σQ = −dθQ. If q : U →
Rn is a smooth chart on Q with induced chart T ∗q = (q, p) : T ∗U = (π∗Q)−1(U)→
Rn × Rn, we have θQ|T ∗U =

∑
pi dq

i and σQ|T ∗U =
∑
dqi ∧ dpi. The canonical

forms θQ and σQ on T ∗Q have the following universal property and are determined
by it: For any 1-form α ∈ Ω1(Q), viewed as a mapping Q→ T ∗Q, we have α∗θ = α
and α∗σ = −dα. Thus, the image α(Q) ⊂ T ∗Q is a Lagrange submanifold if and
only if dα = 0. Moreover, each fiber T ∗xQ is a Lagrange submanifold.

43.10. Relative Poincaré Lemma. Let M be a smooth finite dimensional mani-
fold, let N ⊂M be a closed submanifold, and let k ≥ 0. Let ω be a closed (k + 1)-
form on M which vanishes when pulled back to N . Then there exists a k-form ϕ
on an open neighborhood U of N in M such that dϕ = ω|U and ϕ = 0 along N . If
moreover ω = 0 along N , then we may choose ϕ such that the first derivatives of ϕ
vanish on N .

If all given data are real analytic then ϕ can be chosen real analytic, too.

Proof. By restricting to a tubular neighborhood of N in M , we may assume that
p : M =: E → N is a smooth vector bundle and that i : N → E is the zero section
of the bundle. We consider µ : R × E → E, given by µ(t, x) = µt(x) = tx, then
µ1 = IdE and µ0 = i ◦ p : E → N → E. Let V ∈ X(E) be the vertical vector field

V (x) = vl(x, x) = ∂
∂t

∣∣
0
x+ tx, then FlVt = µet . So locally for t near (0, 1] we have

d
dtµ
∗
tω = d

dt (FlVlog t)
∗ω = 1

t (FlVlog t)
∗LV ω by 33.19

= 1
tµ
∗
t (iV dω + diV ω) = 1

t dµ
∗
t iV ω.

For x ∈ E and X1, . . . , Xk ∈ TxE we may compute

( 1
tµ
∗
t iV ω)x(X1, . . . , Xk) = 1

t (iV ω)tx(Txµt.X1, . . . , Txµt.Xk)

= 1
tωtx(V (tx), Txµt.X1, . . . , Txµt.Xk)

= ωtx(vl(tx, x), Txµt.X1, . . . , Txµt.Xk).
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So if k ≥ 0, the k-form 1
tµ
∗
t iV ω is defined and smooth in (t, x) for all t ∈ [0, 1]

and describes a smooth curve in Ωk(E). Note that for x ∈ N = 0E we have
( 1
tµ
∗
t iV ω)x = 0, and if ω = 0 along N , then also all first derivatives of 1

tµ
∗
t iV ω

vanish along N . Since µ∗0ω = p∗i∗ω = 0 and µ∗1ω = ω, we have

ω = µ∗1ω − µ∗0ω =

∫ 1

0

d
dtµ
∗
tωdt

=

∫ 1

0

d( 1
tµ
∗
t iV ω)dt = d

(∫ 1

0

1
tµ
∗
t iV ωdt

)
=: dϕ.

If x ∈ N , we have ϕx = 0, and also the last claim is obvious from the explicit
form of ϕ. Finally, it is clear that this construction can be done in a real analytic
way. �

43.11. Lemma. Let M be a smooth finite dimensional manifold, let N ⊂ M be
a closed submanifold, and let σ0 and σ1 be symplectic forms on M which are equal
along N .

Then there exist: A diffeomorphism f : U → V between two open neighborhoods
U and V of N in M which satisfies f |N = IdN , Tf |(TM |N) = IdTM |N , and
f∗σ1 = σ0.

If all data are real analytic then the diffeomorphism can be chosen real analytic,
too.

Proof. Let σt = σ0 + t(σ1 − σ0) for t ∈ [0, 1]. Since the restrictions of σ0 and σ1

to Λ2TM |N are equal, there is an open neighborhood U1 of N in M such that σt
is a symplectic form on U1, for all t ∈ [0, 1]. If i : N →M is the inclusion, we also

have i∗(σ1−σ0) = 0, so by lemma 43.10 there is a smaller open neighborhood U2

of N such that σ1|U2 − σ0|U2 = dϕ for some ϕ ∈ Ω1(U2) with ϕx = 0 for x ∈ N ,
such that also all first derivatives of ϕ vanish along N .

Let us now consider the time dependent vector field Xt := −(σt
∨)−1 ◦ ϕ, which

vanishes together with all first derivatives along N . Let ft be the curve of local
diffeomorphisms with ∂

∂tft = Xt ◦ ft, then ft|N = IdN and Tft|(TM |N) = Id.
There is a smaller open neighborhood U of N such that ft is defined on U for all
t ∈ [0, 1]. Then we have

∂
∂t (f

∗
t σt) = f∗t LXtσt + f∗t

∂
∂tσt = f∗t (diXtσt + σ1 − σ0)

= f∗t (−dϕ+ σ1 − σ0) = 0,

so f∗t σt is constant in t, equals f∗0σ0 = σ0, and finally f∗1σ1 = σ0 as required. �

43.12. Theorem. Let (M,σ) be a finite dimensional symplectic manifold. Then
the group Diff(M,σ) of symplectic diffeomorphisms is a smooth regular Lie group
and a closed submanifold of Diff(M). The Lie algebra of Diff(M,σ) agrees with
Xc(M,σ).

If moreover (M,σ) is a compact real analytic symplectic manifold, then the group
Diffω(M,σ) of real analytic symplectic diffeomorphisms is a real analytic regular
Lie group and a closed submanifold of Diffω(M).
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Proof. The smooth and the real analytic cases will be proved simultaneously; only
once we will need an extra argument for the latter.

Consider a local addition α : TM → M in the sense of 42.4 , so that (πM , α) :
TM →M×M is a diffeomorphism onto an open neighborhood of the diagonal, and
α(0x) = x. Let us compose α from the right with a fiber respecting diffeomorphism
TM∗ → TM (coming from the symplectic structure or from a Riemannian metric)
and call the result again α : T ∗M →M . Then (πM , α) : T ∗M →M ×M also is a
diffeomorphism onto an open neighborhood of the diagonal, and α(0x) = x.

We consider now two symplectic structures on T ∗M , namely the canonical sym-
plectic structure σ0 = σM , and σ1 := (πM , α)∗(pr∗1 σ− pr∗2 σ). Both have vanishing
pullbacks on the zero section 0M ⊂ T ∗M .

Claim. In this situation, there exists a diffeomorphism ϕ : V0 → V1 between two
open neighborhoods V0 and V1 of the zero section in T ∗M which is the identity on
the zero section and satisfies ϕ∗σ1 = σ0.

First we solve the problem along the zero section, i.e., in T (T ∗M)|0M . There is
a vector bundle isomorphism γ : T (T ∗M)|0M → T (T ∗M)|0M over the identity
on 0M , which is the identity on T (0M ) and maps the symplectic structure σ0 on
each fiber to σ1. In the smooth case, by using a partition of unity it suffices
to construct γ locally. But locally σi can be described by choosing a Lagrange
subbundle Li ⊂ T (T ∗M)|0M which is a complement to T0M . Then σi is completely
determined by the duality between T0M and Wi induced by it, and a smooth γ is
then given by the resulting isomorphism W0 →W1.

In the real analytic case, in order to get a real analytic γ, we consider the principal
fiber bundle P → 0M consisting of all γx ∈ GL(T0x(T ∗M)) with γx|T0x(0M ) = Id
and γ∗xσ1 = (σ0)0x . The proof above shows that we may find a smooth section of

P . By lemma 30.12 , there also exist real analytic sections.

Next we choose a diffeomorphism h : V0 → V1 between open neighborhoods of
0M in T ∗M such that Th|0M = γ, which can be constructed as follows: Let u :
N (0M ) → V0 be a tubular neighborhood of the zero section, where N (0M ) =
(T (T ∗M)|0M )/T (0M ) is the normal bundle of the zero section. Clearly, γ induces
a vector bundle automorphism of this normal bundle, and h = u ◦ γ ◦ u−1 satisfies
all requirements.

Now σ0 and h∗σ1 agree along the zero section 0M , so we may apply lemma 43.11 ,
which implies the claim with possibly smaller Vi.

We consider the diffeomorphism ρ := (πM , α) ◦ ϕ : T ∗M ⊃ V0 → V2 ⊂ M ×M
from an open neighborhood of the zero section to an open neighborhood of the
diagonal, and we let U ⊆ Diff(M) be the open neighborhood of IdM consisting of
all f ∈ Diff(M) with compact support such that (IdM , f)(M) ⊂ V2, i.e. the graph
{(x, f(x)) : x ∈ M} of f is contained in V2, and πM : ρ−1({(x, f(x)) : x ∈ M}) →
M is still a diffeomorphism.

For f ∈ U the mapping (IdM , f) : M → graph(f) ⊂ M × M is the natural
diffeomorphism onto the graph of f , and the latter is a Lagrangian submanifold if
and only if

0 = (IdM , f)∗(pr∗1 σ − pr∗2 σ) = Id∗M σ − f∗σ.
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Therefore, f ∈ Diff(M,σ) if and only if the graph of f is a Lagrangian submanifold
of (M ×M,pr∗1 σ − pr∗2 σ). Since ρ∗(pr∗1 σ − pr∗2 σ) = σ0 this is the case if and only
if {ρ−1(x, f(x)) : x ∈M} is a Lagrange submanifold of (T ∗M,σ0).

We consider now the following smooth chart of Diff(M) which is centered at the
identity:

Diff(M) ⊃ U −u→ u(U) ⊂ C∞c (M ← T ∗M) = Ω1
c(M),

u(f) := ρ−1 ◦ (IdM , f) ◦ (πM ◦ ρ−1 ◦ (IdM , f))−1 : M → T ∗M.

Then f ∈ U ∩ Diff(M,σ) if and only if u(f) is a closed form, since u(f)(M) =
{ρ−1(x, f(x)) : x ∈ M} is a Lagrange submanifold if and only if f is symplec-
tic. Thus, (U, u) is a smooth chart of Diff(M) which is a submanifold chart for
Diff(M,σ). For arbitrary g ∈ Diff(M,σ) we consider the smooth submanifold
chart

Diff(M) ⊃ Ug := {f : f ◦ g−1 ∈ U} −ug→ ug(Ug) ⊂ C∞c (M ← T ∗M) = Ω1
c(M),

ug(f) := u(f ◦ g−1).

Hence, Diff(M,σ) is a closed smooth submanifold of Diff(M) and a smooth Lie
group, since composition and inversion are smooth by restriction. If M is compact
then the space of closed 1-forms is a direct summand in Ω1(M) by Hodge theory,

as in the proof of 43.7 , so in this case Diff(M,σ) is even a splitting submanifold
of Diff(M). The embedding Diff(M,σ) → Diff(M) is smooth, thus it induces a
bounded injective homomorphism of Lie algebras which is an embedding onto a
closed Lie subalgebra, which we shall soon identify with Xc(M,σ).

Suppose that X : R→ Xc(M,σ) is a smooth curve, and consider the evolution curve
f(t) = EvolrDiff(M)(X)(t), which is the solution of the differential equation ∂

∂tf(t) =

X(t) ◦ f(t) on M . Then f : R → Diff(M) actually has values in Diff(M,σ), since
∂
∂tf
∗
t σ = f∗t LXtσ = 0. So the restriction of evolrDiff(M) to Xc(M,σ) is smooth into

Diff(M,σ) and thus gives evolrDiff(M,σ). We take now the right logarithmic derivative

of f(t) in Diff(M,σ) and get a smooth curve in the Lie algebra of Diff(M,σ) which
maps to X(t). Thus, the Lie algebra of Diff(M,σ) is canonically identified with
Xc(M,σ).

Note that this proof of regularity is an application of the method from 38.7 , where

p(f) := f∗σ − σ, p : Diff(M)→ Ω2(M). �

43.13. The regular Lie group of exact symplectic diffeomorphisms. Let us
assume that (M,σ) is a connected finite dimensional separable symplectic manifold
such that the space of exact 1-forms with compact support B1

c (M) on M is a
convenient direct summand in the space Z1

c (M) of all closed forms. This is true if

M is compact, by Hodge theory, as in 43.7 .

In the setting of the last theorem 43.12 we consider the universal covering group

˜Diff(M,σ)→ Diff(M,σ), which we view as the space of all smooth curves c : [0, 1] =
I → Diff(M,σ) such that c(0) = IdM modulo smooth homotopies fixing endpoints.

For each such curve the right logarithmic derivative 38.1 δrc(∂t) : I → Xc(M,σ)
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is given by δrc(∂t|t) = ∂
∂t

∣∣
0
c(t) ◦ c(t)−1. Then i(δrc(∂t))σ is a curve of closed 1-

forms with compact supports since di(δrc(∂t|t))σ = Lδrc(∂t|t)σ = 0. For a smooth
homotopy (s, t) 7→ h(s, t) with h(0, t) = c(t) we have by the left Maurer Cartan

equation dδrh− 1
2 [δrh, δrh] = 0 in lemma 38.1

∂sδ
rh(∂t) = ∂tδ

rh(∂s) + d(δrh)(∂s, ∂t) + δrh([∂s, ∂t])

= ∂tδ
rh(∂s) + [δrh(∂s), δ

rh(∂t)]Xc(M,σ) + 0.

Then we get∫ 1

0

iδrh(∂t|(1,t))σ dt−
∫ 1

0

iδrh(∂t|(0,t))σ dt =

∫ 1

0

∫ 1

0

i∂sδrh(∂t)σ ds dt

=

∫ 1

0

∫ 1

0

i∂tδrh(∂s)+[δrh(∂s),δrh(∂t)]σ ds dt

=

∫ 1

0

∂t

∫ 1

0

iδrh(∂s)σ ds dt+

∫ 1

0

∫ 1

0

i[δrh(∂s),δrh(∂t)]σ ds dt

=

∫ 1

0

iδrh(∂s|(s,1))σ ds−
∫ 1

0

iδrh(∂s|(s,0))σ ds+

∫ 1

0

∫ 1

0

[
Lδrh(∂s), iδrh(∂t)

]
σ ds dt

= 0− 0 +

∫ 1

0

∫ 1

0

Lδrh(∂s)iδrh(∂t)σ ds dt− 0

=

∫ 1

0

∫ 1

0

d iδrh(∂s)iδrh(∂t)σ ds dt+

∫ 1

0

∫ 1

0

iδrh(∂s)Lδrh(∂t)σ ds dt

= d

∫ 1

0

∫ 1

0

σ (δrh(∂t), δ
rh(∂s)) ds dt.

Thus, we get a well defined smooth mapping into the de Rham cohomology with
compact supports

Γ : ˜Diff(M,σ)→ H1
c (M),

Γ([c]) :=

[∫ 1

0

i(δrc(∂t))σdt

]
,

which is a homomorphism of regular Lie groups: the multiplication in ˜Diff(M,σ)
is induced by pointwise multiplication of curves. But note that t 7→ c1(t) ◦ c2(t) is
homotopic to the curve which follows first c2 and then c1( )◦ c2(1). The right log-
arithmic derivative does not feel the right translation, thus the integral Γ([c1].[c2])
equals Γ([c1]) + Γ([c2]).

Note that, under the assumption on M made above, Γ admits a global smooth
section s as follows:

Z1
c (M)

Ψ //

��

C∞(I,Diff(M,σ))

��

H1
c (M)

s // ˜Diff(M,σ),
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where Ψ(ω) = (Flσ
−1ω
t )0≤t≤1 is smooth. Since the canonical quotient mapping

Z1
c (M)→ H1

c (M) admits a section Ψ induces a section of Γ.

Claim. The closed subgroup ker Γ ⊂ ˜Diff(M,σ) is simply connected.

First note that Diff(M,σ) is also a topological group in the the topology described

in 42.2 , thus a fortiori its universal covering ˜Diff(M,σ) is also a topological

group. H1
c (M) is a direct summand in Z1

c (M), which is smoothly paracompact

as a closed linear subspace of Ω1
c(M) by 30.4 . Since it admits a continuous sec-

tion, Γ : ˜Diff(M,σ)→ H1
c (M) is a fibration with contractible basis. The long exact

homotopy sequence then implies that ker(Γ) is simply connected, too.

Theorem. The subgroup ker Γ ⊂ ˜Diff(M,σ) is a splitting regular Lie subgroup with
Lie algebra C∞c (M,R)/H0

c (M).

Proof. Recall from the proof of 43.12 the chart (U, u) of Diff(M,σ) near the

identity, which we consider also as a chart on the universal covering ˜Diff(M,σ). It
is induced by a diffeomorphism T ∗M ⊃ V0 −ρ→ V2 ⊂M ×M satisfying ρ∗(pr∗1 σ −
pr∗2 σ) = σM in the following way. To a symplectic diffeomorphism f near IdM
we first associate its graph, a Lagrange submanifold in (V2,pr∗1 σ − pr∗2 σ), then its
inverse image L under ρ, a Lagrange submanifold in V0, and finally a closed 1-form
u(f) = ω ∈ Ω1

c(M) with ω(M) = L. The form ω is exact if and only if the pullback

of the natural 1-form θM ∈ Ω1(T ∗M) (see 43.9 ) on L is exact. Equivalently,

the form θ1 = (ρ−1)∗θM on V2 pulls back to an exact form on the graph of f ,
or (Id, f)∗θ1 is exact on M . Let ft ∈ U for t ∈ [0, 1] with f0 = IdM , and let
Xt = d

dtft ◦ f
−1
t . Then

Γ(f) = Γ([ft]) =

[∫ 1

0

i(Xt)σ dt

]
,

d
dt (IdM , ft)

∗θ1 = (IdM , ft)
∗L0×Xtθ1 compare 33.19

= (IdM , ft)
∗di0×Xtθ1 + (IdM , ft)

∗i0×Xtdθ1

= d(IdM , ft)
∗i0×Xtθ1 + f∗t iXtσ,

since −dθ1 = pr∗1 σ − pr∗2 σ. Thus, iXtσ is exact for all t if and only if (IdM , ft)
∗θ1

is exact for all t. If ω is exact let ft := u−1(tω), and it follows that Γ(f) = 0.

If conversely f ∈ U ∩ ker Γ ⊂ ˜Diff(M,σ), there exists a smooth curve t 7→ ht in

U ⊂ ˜Diff(M,σ) from IdM to f . Then Γ(ht) is a closed smooth curve in H1
c (M),

which we may lift smoothly to gt ∈ ˜Diff(M,σ). Then g−1
t ◦ ht lies in ker(Γ) for

all t. Thus, for f near IdM in ker(Γ) we may find a smooth curve t 7→ ft ∈ U

which lies in ker(Γ). Then
∫ 1

0
i(Xts)σ ds = t

∫ t
0
i(Xt)σ dt is exact, so i(Xt)σ is

exact, and finally u(ft) is exact in Z1
c (M). Hence, for some smaller U we have

f ∈ U ∩ ker Γ ⊂ ˜Diff(M,σ) if and only if ω = u(f) ∈ u(U) ∩B1
c (M), and ker(Γ) is

a smooth splitting submanifold.

The Lie algebra of ker(Γ) consists of all globally Hamiltonian vector fields: for a
smooth curve ft in ker(Γ) we consider Xt = d

dtft ◦ f
−1
t ; from above we see that
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i(Xt)σ = dht for some ht ∈ C∞c (M,R) and then gradσ(ht) = Xt. Conversely,

Γ([Fl
gradσ(h)
t ]) =

[∫ 1

0

i(gradσ(h))σ dt

]
= [dh] = 0 ∈ H1

c (M).

That ker(Γ) is regular follows from 38.7 , using p = Γ. �

43.14. Remark. In the situation of 43.13 above, the fundamental group π1 =

π1(Diff(M,σ)) is a discrete subgroup of the universal covering ˜Diff(M,σ). Then
Γ(π1) ⊆ H1

c (M) is a subgroup, and we have an induced homomorphism Γ of groups:

˜Diff(M,σ)
Γ //

��

H1
c (M)

��
˜Diff(M,σ)
π1

Diff(M,σ)
Γ // H

1
c (M)

Γ(π1)

Note that H1
c (M)/Γ(π1) is Hausdorff if Γ(π1) is a ‘discrete’ subgroup of H1

c (M) in

the sense of 38.5 , and then Γ is a smooth homomorphism of regular Lie groups.

In any case, the group π1 ∩ ker(Γ) is a ‘discrete’ (in a sense analogous to 38.5 )
central subgroup of ker(Γ), thus ker(Γ) is a regular Lie subgroup of Diff(M,σ) with
universal cover ker(Γ) and with Lie algebra the space of globally Hamiltonian vector
fields.

It is known that Γ(π1) is ‘discrete’ inH1
c (M) ifM is compact and either dim(M) = 2

or M is a Kähler manifold or σ has integral periods on M . There seems to be no
known example where Γ(π) is not discrete, see [Banyaga, 1978] and [Banyaga, 1980].

The next topic is the Lie group of contact diffeomorphisms.

43.15. Contact manifolds. Let M be a smooth manifold of dimension 2n+1 ≥ 3.
A contact form on M is a 1-form α ∈ Ω1(M) such that α∧ (dα)n ∈ Ω2n+1(M)
is nowhere zero. This is sometimes called an exact contact structure. The
pair (M,α) is called a contact manifold.

A contact form can be put into the following normal form: For each x ∈ M there
is a chart M ⊃ U −u→ u(U) ⊂ R2n+1 centered at x such that α|U = u1 dun+1 +

u2 dun+2 + · · ·+un du2n + du2n+1. This follows from proposition 43.18 below, for
a simple direct proof see [Libermann and Marle, 1987].

The vector subbundle ker(α) ⊂ TM is called the contact distribution. It is as
non-involutive as possible, since dα is even non-degenerate on each fiber ker(α)x =
ker(αx) ⊂ TxM . The characteristic vector field Xα ∈ X(M) is the unique
vector field satisfying iXαα = 1 and iXαdα = 0.

Note that X 7→ (iXdα, iXα) is isomorphic TM → {ϕ ∈ T ∗M : iXαϕ = 0} ×R, but
we shall use the isomorphism of vector bundles

(1) TM → T ∗M, X 7→ iXdα+ α(X).α,
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A diffeomorphism f ∈ Diff(M) with f∗α = λf .α for a nowhere vanishing function
λf ∈ C∞(M,R\0) is called a contact diffeomorphism. The group of all contact
diffeomorphisms will be denoted by Diff(M,α).

A vector field X ∈ X(M) is called a contact vector field if LXα = µX .α for a
smooth function µX ∈ C∞(M,R). The linear space of all contact vector fields will
be denoted by X(M,α); it is clearly a Lie algebra. Contraction with α is a linear
mapping also denoted by α : X(M,α) → C∞(M,R). It is bijective since we may
apply iXα to µX .α = LXα = iX dα + d(α(X)) to get µX = 0 + Xα(α(X)), and

since by using ( 1 ) we may reconstruct X from α(X) as

iX dα+ α(X).α = µX .α− d(α(X)) + α(X).α

= Xα(α(X)).α− d(α(X)) + α(X).α.

Note that the inverse f 7→ gradα(f) of α : X(M,α) → C∞(M,R) is a linear
differential operator of order 1.

A smooth mapping f : L → M is called a Legendre mapping if f∗α = 0. If f
is also an embedding and dimM = 2 dimL + 1, then the image f(L) is called a
Legendre submanifold of M .

43.16. Lemma. Let Xt be a time dependent vector field on M , and let ft be
the local curve of local diffeomorphisms with ∂

∂tft ◦ f
−1
t = Xt and f0 = Id. Then

LXtα = µtα if and only if f∗t α = λt.α, where λt and µt are related by ∂tλt
λt

= f∗t µt.

Proof. The two following equations are equivalent:

α =
1

λt
f∗t α,

0 = ∂
∂t

(
1

λt
f∗t α

)
= −

∂
∂tλt

λ2
t

f∗t α+
1

λt
f∗t LXtα =

1

λt
f∗t (−µt.α+ LXtα). �

43.17. Canonical example. Let N be an n-dimensional manifold, let θ ∈
Ω1(T ∗N) be the canonical 1-form, which is given by θ(ξ) = 〈πT∗N (ξ), T (π∗).ξ〉TN ,
and which has the following universal property: For any 1-form ω ∈ Ω1(N), viewed
as a section of T ∗N → N , we have ω∗θ = θ.

Then the 1-form θ−dt = pr∗1 θ−pr∗2 dt ∈ Ω1(T ∗N×R) is a contact form. Note that
T ∗N×R = J1(N,R), the space of 1-jets of functions onN . A section s of T ∗N×R =
J1(N,R) → N is of the form s = (ω, f) for ω ∈ Ω1(N) and f ∈ C∞(N,R). Thus,
s is a Legendre mapping if and only if 0 = s∗(θ − dt) = ω∗θ − f∗dt = θ − df or
s = j1f .

43.18. Proposition. ([Lychagin, 1977]) If L is a Legendre submanifold of a (finite
dimensional) contact manifold (M,α), then there exist:

(1) an open neighborhood U of L in M ,
(2) an open neighborhood V of the zero section 0L in T ∗L× R,
(3) a diffeomorphism ϕ : U → V with ϕ|L = IdL and ϕ∗(θL − dt) = α.
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If all data is real analytic then ϕ may be chosen real analytic, too.

Proof. By 41.14 , there exists a tubular neighborhood N (L) = (TM |L)/TL ⊃
Ũ −ϕ→ U ⊂M of L in M .

Note that ker(dα) is a trivial line bundle, framed by the characteristic vector field
Xα, and that TM = ker(α) ⊕ ker(dα). Thus, for the normal bundle we have the
following chain of natural isomorphisms of vector bundles:

N (L) = (TM |L)/T (L) =
ker(α)

T (L)
⊕ ker(dα)−dα⊕Id

∼= → T ∗(L)× R.

Therefore, we may assume that the tubular neighborhood is given by T ∗L × R ⊃
V −ϕ→ U ⊂ M , where now V is an open neighborhood of the 0-section 0L (which
we identify with L) in T ∗L× R.

Next we consider the contact structure α̃ := ϕ∗α ∈ Ω1(V ). Note that on the
subbundle TL = T (0L) ⊂ TV both contact structures α̃ and α0 := θ − dt vanish.
We will first arrange that both contact structures agree on TV |0L: We claim that
there exists a vector bundle isomorphism γ : TV |0L → TV |0L which satisfies
γ∗dα̃ = dα0, γ∗α̃ = α0, and such that γ|T (0L) = Id. Note that we have two
symplectic vector subbundles (ker α̃, dα̃) and (kerα0, dα0). We first choose a vector
bundle isomorphism γ̃ : kerα0 → ker α̃ with γ̃∗dα̃ = dα0 and γ̃|T (0L) = Id, as in

the proof of the claim in 43.12 , and then we complete γ̃ to γ in such a way that
for the characteristic vector fields we have γ(Xα0

) = Xα̃.

There exists a diffeomorphism ψ : V ′ → V ′′ between two open neighborhoods V ′

and V ′′ of 0L in V such that Tψ|0L = γ, and since γ|T (0L) = Id we even have
ψ|0L = Id. We put α1 := ψ∗α̃ = ψ∗ϕ∗α. Then α0|0L = α1|0L, and we put

αt := (1− t)α0 + tα1,

and since αt|T (0L) = α0|T (0L) = α1|T (0L) the 1-form αt is a contact structure on
an (again smaller) neighborhood V of 0L in T ∗M × R.

Let us now suppose that ft is a curve of diffeomorphisms near 0L which satisfies
T (ft)|T (0L) = IdTV |0L , with time dependent vector field Xt = ( ∂∂tft) ◦ f

−1
t . Then

we have

∂
∂tf
∗
t αt =

(
∂
∂tf
∗
t αs

)∣∣
s=t

+
(
f∗s

∂
∂tαt

)∣∣
s=t

= f∗t LXtαt + f∗t (α1 − α0)

= f∗t (iXt dαt + d iXtαt + α1 − α0) .(4)

We want a time dependent vector field Xt with iXt dαt + d iXtαt + α1 − α0 = 0
near 0L and we first look for a time dependent function ht defined near 0L such
that dht(Xαt) = iXαt (α1 − α0). Since α1 = α0 along 0L and vanishes on T (0L),
the vector field Xαt equals Xα0

along 0L and is not tangent to 0L. So its flow lines
leave 0L and there is a submanifold S of codimension 1 in TM containing 0L which
is transversal to the flow of Xαt for all t ∈ [0, 1], and we may take ht as

ht(Fl
Xαt
s (z)) =

∫ s

0

(α1 − α0)(Xαt)(Fl
Xαt
r (z)) dr for z ∈ S.
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Now we use 43.15.1 and choose the unique time dependent vector field Xt which
satisfies

iXt dαt + αt(Xt).αt = α0 − α1 − d ht + ht.αt.

Then for the curve of diffeomorphisms ft which is determined by the ordinary
differential equation ∂

∂tft = Xt◦f−1
t with initial condition f0 = Id we have ∂

∂tf
∗
t αt =

0 by ( 4 ), so f∗t αt = f∗0α0 = α0 is constant in t. Since (α1 − α0)|T (0L) = 0, also
ht|0L = 0, and dht|T (0L) = 0, the vector field Xt vanishes along 0L, and thus the
curve of diffeomorphisms ft exists for all t near [0, 1] in a neighborhood of 0L in
T ∗L× R. Then f∗1α1 = α0 and f1 ◦ ψ ◦ ϕ is the looked for diffeomorphism. �

43.19. Theorem. Let (M,α) be a finite dimensional contact manifold. Then
the group Diff(M,α) of contact diffeomorphisms is a smooth regular Lie group.
The injection i : Diff(M,α) → Diff(M) is smooth, TIdi maps the Lie algebra of
Diff(M,α) isomorphically onto Xc(M,α) with the negative of the usual Lie bracket,

and locally there exist smooth retractions to i, so i is an initial mapping, see 27.11 .

If (M,α) is in addition a real analytic and compact contact manifold then all as-
sertions hold in the real analytic sense.

Proof. For a contact manifold (M,α) let M̂ = M ×M × (R \ 0), with the con-
tact structure α̂ = t.pr∗1 α − pr∗2 α, where t = pr3 : M ×M × (R \ 0) → R. Let
f ∈ Diff(M,α) be a contact diffeomorphism with f∗α = λf .α. Inserting the char-
acteristic vector field Xα into this last equation we get

(1) λf = iXαλfα = iXα(f∗α) = f∗(if∗Xαα).

Thus, f determines λf , and for an arbitrary diffeomorphism f ∈ Diff(M) we may

define a smooth function λf by ( 1 ). Then λf ∈ C∞(M,R \ 0) if f is near a

contact diffeomorphism in the Whitney C0-topology. We consider its contact

graph Γf : M → M̂ , given by Γf (x) := (x, f(x), λf (x)), a section of the surjective

submersion pr1 : M̂ → M . Note that Γf is a Legendre mapping if and only if f is
a contact diffeomorphism, f ∈ Diff(M,α), since Γ∗f α̂ = λf .α− f∗α.

Let us now fix a contact diffeomorphism f ∈ Diff(M,α) with f∗α = λf .α. By

proposition 43.18 , and also using the diffeomorphism Γf : M → Γf (M) there are:

an open neighborhood U ′f of Γf (M) ⊂ M̂ , an open neighborhood V ′f of the zero

section 0M in T ∗M ×R, and a diffeomorphism M̂ ⊃ U ′f −
ϕf→ V ′f ⊂ T ∗M ×R, such

that the restriction ϕf |Γf (M) equals the inverse of Γf : 0M ∼= M → Γf (M), and
ϕ∗f (θM − dt) = α̂.

Now let Ũf be the open set of all diffeomorphisms g ∈ Diff(M) such that g equals

f off some compact subset of M , Γg(M) ⊂ U ′f ⊂ M̂ , and π ◦ ϕf ◦ Γg : M → M is
a diffeomorphism, where π : T ∗M × R → M is the vector bundle projection. For
g ∈ Ũf and

sf (g) := (ϕf ◦ Γg) ◦ (π ◦ ϕf ◦ Γg)
−1 ∈ C∞c (M ← T ∗M × R)

=: (σf (g), uf (g)) ∈ Ω1
c(M)× C∞c (M,R)

the following conditions are equivalent:
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(2) g is a contact diffeomorphism.

(3) Γg(M) is a Legendre submanifold of (M̂, α̂).
(4) ϕf (Γg(M)) is a Legendre submanifold of (T ∗M × R, θM − dt).
(5) The section sf (g) satisfies sf (g)∗(θM − dt) = 0, equivalently (by 43.17 )

σf (g) = d(uf (g)).

Let us now consider the following diagram:

Diff(M) Ũf?
_oo sf // Ṽf

� � // C∞c (M ← T ∗M × R)

Diff(M,α)
?�

OO

Uf?
_oo uf

∼=
//

?�

OO

Vf
� � //

?�
j

OO

C∞c (M,R).
?�
j linear, splitting

OO

In this diagram we put j(h) := (dh, h), a bounded linear splitting embedding. We

let Ṽf ⊂ C∞c (M ← T ∗M × R) be the open set of all (ω, h) ∈ Ω1
c(M) × C∞c (M,R)

with (ω, h)(M) ⊂ V ′f and such that pr1 ◦ϕ−1
f ◦ (ω, h) : M →M is a diffeomorphism.

We also consider the smooth mapping

wf : Ṽf → Diff(M)

wf (ω, h) := pr2 ◦ϕ−1
f ◦ (ω, h) ◦ (pr1 ◦ϕ−1

f ◦ (ω, h))−1 : M →M,

and let Vf = (wf ◦j)−1Ũf . Then wf ◦sf = Id, and so we may use as chart mappings
for Diff(M,α):

uf : Uf := Ũf ∩Diff(M,α)→ Vf := (wf ◦ j)−1(Ũf ) ⊂ C∞c (M,R),

uf (g) := pr2 ◦(ϕf ◦ Γg) ◦ (π ◦ ϕf ◦ Γg)
−1 ∈ C∞(M,R),

u−1
f (h) = (wf ◦ j)(h) = wf (dh, h).

The chart change mapping uk ◦ u−1
f is defined on an open subset and is smooth,

because uk ◦u−1
f = pr2 ◦sk ◦wf ◦j, and sk and wf are smooth by 42.13 , 43.1 , and

by 42.20 . Thus, the resulting atlas (Uf , uf )f∈Diff(M,α) is smooth, and Diff(M,α)
is a smooth manifold in such a way that the injection i : Diff(M,α) → Diff(M) is
smooth.

Note that sf ◦ wf 6= Id, so we cannot construct (splitting) submanifold charts in
this way.

But there exist local smooth retracts u−1
f ◦ pr2 ◦sf : (pr2 ◦sf )−1(Vf )→ Uf . There-

fore, the injection i has the property that a mapping into Diff(M,α) is smooth if
and only if its prolongation via i into Diff(M) is smooth. Thus, Diff(M,α) is a Lie

group, and from 38.7 we may conclude that it is a regular Lie group.

A direct proof of regularity goes as follows: From lemma 43.16 and 36.6 we see
that TIdi maps the Lie algebra of Diff(M,α) isomorphically onto the Lie algebra
Xc(M,α) of all contact vector fields with compact support. It also follows from

lemma 43.16 that we have for the evolution operator

EvolrDiff(M)|C∞(R,Xc(M,α)) = EvolrDiff(M,α)

so that Diff(M,α) is a regular Lie group. �
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43.20. n-Transitivity. Let M be a connected smooth manifold with dimM ≥ 2.
We say that a subgroup G of the group Diff(M) of all smooth diffeomorphisms acts
n-transitively on M , if for any two ordered sets of n different points (x1, . . . , xn)
and (y1, . . . , yn) in M there is a smooth diffeomorphism f ∈ G such that f(xi) = yi
for each i.

Theorem. Let M be a connected smooth (or real analytic) manifold of dimension
dimM ≥ 2. Then the following subgroups of the group Diff(M) of all smooth
diffeomorphisms act n-transitively on M , for every finite n:

(1) The group Diffc(M) of all smooth diffeomorphisms with compact support.
(2) The group Diffω(M) of all real analytic diffeomorphisms.
(3) If (M,σ) is a symplectic manifold, the group Diffc(M,σ) of all symplectic

diffeomorphisms with compact support, and even the subgroup of all globally
Hamiltonian symplectic diffeomorphisms.

(4) If (M,σ) is a real analytic symplectic manifold, the group Diffω(M,σ) of all
real analytic symplectic diffeomorphisms, and even the subgroup of all globally
Hamiltonian real analytic symplectic diffeomorphisms.

(5) If (M,µ) is a manifold with a smooth volume density, the group Diffc(M,µ)
of all volume preserving diffeomorphisms with compact support.

(6) If (M,µ) is a manifold with a real analytic volume density, then the group
Diffω(M,µ) of all real analytic volume preserving diffeomorphisms.

(7) If (M,α) is a contact manifold, the group Diffc(M,α) of all contact diffeo-
morphisms with compact support.

(8) If (M,α) is a real analytic contact manifold, the group Diffω(M,α) of all real
analytic contact diffeomorphisms.

Result ( 1 ) is folklore, the first trace is in [Milnor, 1965]. The results ( 3 ), ( 5 ),

and ( 7 ) are due to [Hatakeyama, 1966] for 1-transitivity, and to [Boothby, 1969]
in the general case. The results about real analytic diffeomorphisms and the proof
given here is from [Michor and Vizman, 1994].

Proof. Let us fix a finite n ∈ N. Let M (n) denote the open submanifold of all
n-tuples (x1, . . . , xn) ∈ Mn of pairwise distinct points. Since M is connected and
of dimension ≥ 2, each M (n) is connected. The group Diff(M) acts on M (n) by
the diagonal action, and we have to show that any of the subgroups G described
above acts transitively. We shall show below that for each G the G-orbit through
any n-tuple (x1, . . . , xn) ∈ M (n) contains an open neighborhood of (x1, . . . , xn) in
M (n), thus any orbit is open. Since M (n) is connected, there can be only one orbit.

The cases ( 2 ) and ( 1 ). We choose a complete Riemannian metric g on M , and
we let (Yij)

m
j=1 be an orthonormal basis of TxiM with respect to g, for all i. Then

we choose real analytic vector fields Xk for 1 ≤ k ≤ N = nm which satisfy:

|Xk(xi)− Yij |g < ε for k = (i− 1)m+ j,

|Xk(xi)|g < ε for all k /∈ [(i− 1)m+ 1, im],(9)

|Xk(x)|g < 2 for all x ∈M and all k.

Since these conditions describe a Whitney C0 open set, such vector fields exist by

30.12 . The fields are bounded with respect to a complete Riemannian metric, so
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they have complete real analytic flows FlXk , see e.g. [Hirsch, 1976]. We consider
the real analytic mapping

f : RN →M (n),

f(t1, . . . , tN ) :=

(FlX1
t1 ◦ . . . ◦ FlXNtN )(x1)

. . .

(FlX1
t1 ◦ . . . ◦ FlXNtN )(xn)

 ,

which has values in the Diffω(M)-orbit through (x1, . . . , xn). To get the tangent
mapping at 0 of f we consider the partial derivatives

∂
∂tk
|0f(0, . . . , 0, tk, 0, . . . , 0) = (Xk(x1), . . . , Xk(xn)).

If ε > 0 is small enough, this is near an orthonormal basis of T(x1,...,xn)M
(n) with

respect to the product metric g × . . .× g. So T0f is invertible, and the image of f
thus contains an open subset.

In case ( 1 ), we can choose smooth vector fields Xk with compact support which

satisfy conditions ( 9 ).

For the remaining cases we just indicate the changes which are necessary in this
proof.

The cases ( 4 ) and ( 3 ) Let (M,σ) be a connected real analytic symplectic smooth
manifold of dimension m ≥ 2. We choose real analytic functions fk for 1 ≤ k ≤
N = nm whose Hamiltonian vector fields Xk = gradσ(fk) satisfy conditions ( 9 ).

Since these conditions describe Whitney C1 open subsets, such functions exist by
[Grauert, 1958, Proposition 8]. Now we may finish the proof as above.

The cases ( 8 ) and ( 7 ) Let (M,α) be a connected real analytic contact manifold
of dimension m ≥ 3. We choose real analytic functions fk for 1 ≤ k ≤ N = nm

such that their contact vector fields Xk = gradα(fk) satisfy conditions ( 9 ). Since

these conditions describe Whitney C1 open subsets, such functions exist. Now we
may finish the proof as above.

The cases ( 6 ) and ( 5 ) Let (M,µ) be a connected real analytic manifold of di-
mension m ≥ 2 with a real analytic positive volume density. We can find a real
analytic Riemannian metric γ on M whose volume density is µ. We also choose a
complete Riemannian metric g.

First we assume that M is orientable. Then the divergence of a vector field X ∈
X(M) is divX = ∗d∗X[, whereX[ = γ(X) ∈ Ω1(M) (here we view γ : TM → T ∗M
and ∗ is the Hodge star operator of γ). We choose real analytic (m − 2)-forms βk
for 1 ≤ k ≤ N = nm such that the vector fields Xk = (−1)m+1γ−1 ∗ dβk satisfy

conditions ( 9 ). Since these conditions describe Whitney C1 open subsets, such

(m−2)-forms exist by 30.12 . The real analytic vector fields Xk are then divergence
free since divXk = ∗d ∗ γXk = ∗ddβk = 0. Now we may finish the proof as usual.

For non-orientable M , we let π : M̃ → M be the real analytic connected oriented
double cover of M , and let ϕ : M̃ → M̃ be the real analytic involutive covering
map. We let π−1(xi) = {x1

i , x
2
i }, and we pull back both metrics to M̃ , so γ̃ := π∗γ

and g̃ := π∗g. We choose real analytic (m − 2)-forms βk ∈ Ωm−2(M̃) for 1 ≤
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k ≤ N = nm whose vector fields Xβk = (−1)m+1γ̃−1 ∗ dβk satisfy the following
conditions, where we put Y pij := Txpijπ

−1.Yij for p = 1, 2:

|Xβk(xpi )− Y
p
ij |g̃ < ε for k = (i− 1)m+ j, p = 1, 2,

|Xβk(xpi )|g̃ < ε for all k /∈ [(i− 1)m+ 1, im], p = 1, 2,(10)

|Xβk |g̃ < 2 for all x ∈ M̃ and all k.

Since these conditions describe Whitney C1 open subsets, such (m− 2)-forms exist

by 30.12 . Then the vector fields 1
2 (Xβk +ϕ∗Xβk) still satisfy the conditions ( 10 ),

are still divergence free and induce divergence free vector fields Zβk ∈ X(M), so

that LZβkµ is the zero density, which satisfy the conditions ( 9 ) on M as in the
oriented case, and we may finish the proof as above. �

44. Principal Bundles with Structure Group a Diffeomorphism Group

44.1. Theorem. Principal bundle of embeddings. Let M and N be smooth
finite dimensional manifolds, connected and second countable without boundary such
that dimM ≤ dimN .

Then the set Emb(M,N) of all smooth embeddings M → N is an open subman-
ifold of C∞(M,N). It is the total space of a smooth principal fiber bundle with
structure group Diff(M), whose smooth base manifold is the space B(M,N) of all
submanifolds of N of type M .

The open subset Embprop(M,N) of proper (equivalently closed) embeddings is satu-
rated under the Diff(M)-action, and is thus the total space of the restriction of the
principal bundle to the open submanifold Bclosed(M,N) of B(M,N) consisting of
all closed submanifolds of N of type M .

This result is based on an idea implicitly contained in [Weinstein, 1971], it was fully
proved by [Binz and Fischer, 1981] for compact M and for general M by [Michor,
1980b]. The clearest presentation was in [Michor, 1980c, section 13].

Proof. We first show that Emb(M,N) is open in C∞(M,N). Let c : R →
C∞(M,N) be a smooth curve with c(0) an embedding. As in the begining of

the proof of 43.1 it follows that c(t) stays an injective immersion for t near 0. By

42.5 c∨(t, ) stays constant off some compact subset of M , for t near 0. So c(t)
stays an embedding for t near 0. If c(0) is a closed embedding, it is proper, and by

42.5 c(t) stays proper for t near 0.

Let us fix an embedding i ∈ Emb(M,N). Let g be a fixed Riemannian metric on
N , and let expN be its exponential mapping. Then let p : N (i)→M be the normal
bundle of i, defined in the following way: For x ∈ M let N (i)x := (Txi(TxM))⊥ ⊂
Ti(x)N be the g-orthogonal complement in Ti(x)N . Then we have an injective vector
bundle homomorphism over i:

N (i)
ı̄ //

p=pi

��

TN

πN

��
M

i // N.
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Now let U i = U be an open neighborhood of the zero section of N (i) which is so
small that (expN ◦ı̄)|U : U → N is a diffeomorphism onto its image which describes
a tubular neighborhood of the submanifold i(M). Let us consider the mapping

τ = τ i := (expN ◦ı̄)|U : N (i) ⊃ U → N,

a diffeomorphism onto its image, and the open set in Emb(M,N) ⊂ C∞(M,N)
which will serve us as a saturated chart,

U(i) := {j ∈ Emb(M,N) : j(M) ⊆ τ(U i), j ∼ i, p ◦ τ−1 ◦ j ∈ Diff(M)},

where j ∼ i means that j = i off some compact set in M . Then by 41.10 the set
U(i) is an open neighborhood of i in Emb(M,N). For each j ∈ U(i) we define

ϕi(j) : M → U i ⊆ N (i),

ϕi(j)(x) := (τ i)−1(j(x)).

Then ϕi = ((τ i)−1)∗ : U(i)→ C∞(M,N (i)) is a smooth mapping which is bijective
onto the open set

V(i) := {h ∈ C∞(M,N (i)) : h(M) ⊆ U i, h ∼ 0, p ◦ h ∈ Diff(M)}
in C∞(M,N (i)). Its inverse is given by the smooth mapping τ i∗ : h 7→ τ i ◦ h.

We have τ i∗(h◦f) = τ i∗(h)◦f for those f ∈ Diff(M) which are so near to the identity
that h ◦ f ∈ V(i). We consider now the open set

{h ◦ f : h ∈ V(i), f ∈ Diff(M)} ⊆ C∞(M,U i).

Obviously, we have a smooth mapping from this set into C∞c (M ← U i)×Diff(M)
given by h 7→ (h◦ (p◦h)−1, p◦h), where C∞c (M ← U i) is the space of sections with
compact support of U i →M . So if we let Q(i) := τ i∗(C

∞
c (M ← U i)) ⊂ Emb(M,N)

we have

W(i) := U(i) ◦Diff(M) ∼= Q(i)×Diff(M) ∼= C∞c (M ← U i)×Diff(M),

since the action of Diff(M) on i is free. Furthermore, the restriction π|Q(i) : Q(i)→
Emb(M,N)/Diff(M) is bijective onto an open set in the quotient.

We now consider ϕi ◦ (π|Q(i))−1 : π(Q(i)) → C∞c (M ← U i) as a chart for the
quotient space. In order to investigate the chart change, let j ∈ Emb(M,N) be
such that π(Q(i)) ∩ π(Q(j)) 6= ∅. Then there is an embedding h ∈ W(i) ∩ Q(j)
and hence there exists a unique f0 ∈ Diff(M) (given by f0 = p ◦ ϕi(h)) such that
h ◦ f−1

0 ∈ Q(i). If we consider j ◦ f−1
0 instead of j and call it again j, we have

Q(i)∩Q(j) 6= ∅, and consequently U(i)∩U(j) 6= ∅. Then the chart change is given
as follows:

ϕi ◦ (π|Q(i))−1 ◦ π ◦ (τ j)∗ : C∞c (M ← U j)→ C∞c (M ← U i)

s 7→ τ j ◦ s 7→ ϕi(τ
j ◦ s) ◦ (pi ◦ ϕi(τ j ◦ s))−1.

This is of the form s 7→ β ◦ s for a locally defined diffeomorphism β : N (j)→ N (i)
which is not fiber respecting, followed by h 7→ h ◦ (pi ◦ h)−1. Both composants are
smooth by the general properties of manifolds of mappings. Therefore, the chart
change is smooth.

We show that the quotient space B(M,N) = Emb(M,N)/Diff(M) is Hausdorff.
Let i, j ∈ Emb(M,N) with π(i) 6= π(j). Then i(M) 6= j(M) in N for otherwise
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put i(M) = j(M) =: L, a submanifold of N ; the mapping i−1 ◦ j : M → L → M
is then a diffeomorphism of M and j = i ◦ (i−1 ◦ j) ∈ i ◦ Diff(M), so π(i) = π(j),
contrary to the assumption.

Now we distinguish two cases.
Case 1. We may find a point y0 = i(x0) ∈ i(M) \ j(M), say, which is not a
cluster point of j(M). We choose an open neighborhood V of y0 in N and an open
neighborhood W of j(M) in N such that V ∩W = ∅. Let V := {k ∈ Emb(M,N) :
k(x0) ⊂ V } ◦ Diff(M) and W := {k ∈ Emb(M,N) : k(M) ⊂ W}. Then W is
obviously open in Emb(M,N), and V is even open in the coarser compact-open
topology. Both V and W are Diff(M) saturated, i ∈ W, j ∈ V, and V ∩W = ∅. So
π(V) and π(W) separate π(i) and π(j) in B(M,N).

Case 2. Let i(M) ⊂ j(M) and j(M) ⊂ i(M). Let y ∈ i(M), say. Let (V, v) be a
chart of N centered at y which maps i(M)∩V into a linear subspace, v(i(M)∩V ) =

Rm ∩ v(V ) ⊂ Rn, where m = dimM , n = dimN . Since j(M) ⊆ i(M) we conclude
that we also have v((i(M) ∪ j(M)) ∩ V ) = Rm ∩ v(V ). So we see that L :=
i(M) ∪ j(M) is a submanifold of N of the same dimension as M . Let (WL, pL, L)
be a tubular neighborhood of L. Then WL|i(M) is a tubular neighborhood of i(M)
and WL|j(M) is one of j(M). �

44.2. The manifold of immersions and its quotients. Let M and N be
smooth finite dimensional manifolds with dim(M) ≤ dim(N). Let Imm(M,N) be
the set of all immersions i : M → N which is open in C∞(M,N) and is thus a

smooth manifold; see the beginning of the proof of 43.1 for that. The diffeomor-

phism group Diff(M) acts smoothly from the right on Imm(M,N) by 42.13 . An
immersion i : M → N is called free if Diff(M) acts freely on it: i ◦ f = i for
f ∈ Diff(M) implies f = IdM .

Theorem. [Cervera et al., 1991]. Let M and N be smooth finite dimensional
manifolds with dim(M) ≤ dim(N). Then the following holds:

(1) The diffeomorphism group Diff(M) acts smoothly from the right on the mani-
fold Immprop(M,N) of all smooth proper immersions M → N , which is an
open subset of C∞(M,N).

(2) The space of orbits Immprop(M,N)/Diff(M) is Hausdorff in the quotient
topology.

(3) The set Immfree, prop(M,N) of all proper free immersions is open in C∞(M,N)
and is the total space of a smooth principal fiber bundle Immfree,prop(M,N)→
Immfree,prop(M,N)/Diff(M).

(4) Let i ∈ Imm(M,N) be an immersion which is not free. So we have a nontrivial
isotropy subgroup Diff(M)i ⊂ Diff(M) consisting of all f ∈ Diff(M) with
i ◦ f = i. Then the isotropy group Diff(M)i acts properly discontinuously on
M . Thus the projection q1 : M →M1 := M/Diff(M)i is a covering mapping
onto a smooth manifold M1. There exists an immersion i1 : M1 → N with
i = i1 ◦ q1. In particular, Diff(M)i is countable, and is finite if M is compact.
There exists a further covering q2 : M → M1 → M2 and a free immersion
i2 : M2 → N with i = i2 ◦ q2.
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(5) Let M have the property that for any covering M → M1 of smooth mani-
folds, any diffeomorphism M1 → M1 admits a lift M → M ; e.g., M simply
connected, or M = S1. Let i ∈ Imm(M,N) be an immersion which is not
free, i.e., has non trivial isotropy group Diff(M)i, and let q1 : M → M1 :=
M/Diff(M)i be the corresponding covering map. Then in the following com-
mutative diagram the bottom mapping

Immfree(M1, N)
(q1)∗ //

π

��

Imm(M,N)

π

��
Immfree(M1, N)/Diff(M1) // Imm(M,N)/Diff(M)

is the inclusion of a (possibly non Hausdorff) manifold, the stratum of π(i)
in the stratification of the orbit space. This stratum consists of the orbits of

all immersions which have Diff(M)i as isotropy group. See ( 23 ) and ( 24 )
below for a more complete description of the orbit structure near i.

(6) [Swift, 1993] We have a right action of Diff(M) on Imm(M,N)×M which is
given by (i, x).f = (i ◦ f, f−1(x)). This action is is free.

(Imm(M,N)×M,π, (Imm(M,N)×M)/Diff(M),Diff(M))

is a smooth principal fiber bundle with structure group Diff(M) and a smooth
base manifold S(M,N) := (Imm(M,N) ×M)/Diff(M) which might possibly
be non-Hausdorff. If we restrict to the open subset Immprop(M,N) ×M of
proper immersions times M then the base space is Hausdorff.

Proof. Without loss, let M be connected. Fix an immersion i. We will now
describe some data for i which we will use throughout the proof. If we need these
data for several immersions, we will distinguish them by appropriate superscripts.

(7) Setup. There exist sets Wα ⊂ Wα ⊂ Uα ⊂ Uα ⊂ Vα ⊂ M such that (Wα) is
an open cover of M , Wα is compact, and Vα is an open locally finite cover of M ,
each Wα, Uα, and Vα is connected, and such that i|Vα : Vα → N is an embedding
for each α.

Let g be a fixed Riemannian metric on N and let expN be the induced geodesic
exponential mapping. Then let p : N (i) → M be the normal bundle of i, defined
in the following way: For x ∈ M let N (i)x := (Txi(TxM))⊥ ⊂ Ti(x)N be the
g-orthogonal complement in Ti(x)N . Then

N (i)
ī

//

p
��

TN

πN
��

M
i // N

is a vector bundle homomorphism over i, which is fiberwise injective.

Now let U i = U be an open neighborhood of the zero section of N (i) which is so
small that (expN ◦̄i)|(U |Vα) : U |Vα → N is a diffeomorphism onto its image which
describes a tubular neighborhood of the submanifold i(Vα) for each α. Let

τ = τ i := (expN ◦ ī )|U : N (i) ⊃ U → N.
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It will serve us as a substitute for a tubular neighborhood of i(M).

For any f ∈ Diff(M)i = {f ∈ Diff(M) : i◦f = i} we have an induced vector bundle
homomorphism f̄ over f :

N (i)
N (f)

//

p
��

ī
&&

N (i)

p
��

ī
// TN

πN
��

M
f // M

i // N

(8) Claim. Let i ∈ Imm(M,N) and let f ∈ Diff(M) have a fixed point x0 ∈ M
and satisfy i ◦ f = i. Then f = IdM .

Namely, we consider the sets (Uα) for the immersion i of ( 7 ). Let us investigate
f(Uα) ∩ Uα. If there is an x ∈ Uα with y = f(x) ∈ Uα, we have (i|Uα)(x) =
((i ◦ f)|Uα)(x) = (i|Uα)(f(x)) = (i|Uα)(y). Since i|Uα is injective we have x = y,
and

f(Uα) ∩ Uα = {x ∈ Uα : f(x) = x}.
Thus f(Uα) ∩ Uα is closed in Uα. Since it is also open and since Uα is connected,
we have f(Uα) ∩ Uα = ∅ or = Uα.

Now we consider the set {x ∈ M : f(x) = x}. We have just shown that it is open
in M . Since it is also closed and contains the fixed point x0, it coincides with M .

Claim ( 7 ) follows.

(9) Claim. If for an immersion i ∈ Imm(M,N) there is a point in i(M) with only
one preimage, then i is a free immersion.

Let x0 ∈M be such that i(x0) has only one preimage. If i ◦ f = i for f ∈ Diff(M)

then f(x0) = x0 and f = IdM by claim ( 8 ).

Note that there are free immersions without a point in i(M) with only one preimage:
Consider a figure eight which consists of two touching circles. Now we may map
the circle to the figure eight by going first n times around the upper circle, then m
around the lower one with n,m ≥ 2.

(10) Claim. Let i be a free immersion M → N . Then there is an open neighborhood
W(i) in Imm(M,N) which is saturated for the Diff(M)-action and which splits
smoothly as

W(i) = Q(i)×Diff(M).

Here Q(i) is a smooth splitting submanifold of Imm(M,N), diffeomorphic to an
open neighborhood of the zero section in C∞c (M ← N (i)). In particular the space
Immfree(M,N) is open in C∞(M,N).

Let π : Imm(M,N)→ Imm(M,N)/Diff(M) = Bimm(M,N) be the projection onto
the orbit space, which is equipped with the quotient topology. Then the mapping
π|Q(i) : Q(i) → π(Q(i)) is bijective onto an open subset of the quotient. If i runs
through Immfree,prop(M,N) of all free and proper immersions these mappings define
a smooth atlas for the quotient space, so that

(Immfree,prop(M,N), π, Immfree,prop(M,N)/Diff(M),Diff(M))

is a smooth principal fiber bundle with structure group Diff(M).
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The restriction to proper immersions is necessary because we are only able to show

that Immprop(M,N)/Diff(M) is Hausdorff in ( 11 ) below.

For the proof of claim ( 10 ), we consider the setup ( 7 ) for the free immersion i.
Let

Ũ(i) := {j ∈ Imm(M,N) : j(W
i

α) ⊆ τ i(U i|U iα) for all α, j ∼ i},
where j ∼ i means that j = i off some compact set in M . Then by 41.10 the set

Ũ(i) is an open neighborhood of i in Imm(M,N). For each j ∈ Ũ(i) we define

ϕi(j) : M → U i ⊆ N (i),

ϕi(j)(x) := (τ i|(U i|U iα))−1(j(x)) if x ∈W i
α.

Note that ϕi(j) is defined piecewise on M , but the pieces coincide when they
overlap. Therefore a smooth curves through j is mapped to a smooth curve and so
ϕi : Ũ(i)→ C∞(M,N (i)) is a smooth mapping which is bijective onto the open set

Ṽ(i) := {h ∈ C∞(M,N (i)) : h(W
i

α) ⊆ U i|U iα for all α, h ∼ 0}

in C∞(M,N (i)). Its inverse is given by the smooth mapping τ i∗ : h 7→ τ i ◦ h. Now
we consider the open subsets

V(i) : = {h ∈ Ṽ(i) : p ◦ h ∈ Diffc(M)} ⊂ Ṽ(i)

U(i) : = τ i∗(V(i)) ⊂ Ũ(i)

and the diffeomorphism ϕi : U(i)→ V(i). For h ∈ V(i) we have τ i∗(h◦f) = τ i∗(h)◦f
for those f ∈ Diff(M) which are near enough to the identity so that h ◦ f ∈ V(i).

And if τ i ◦ h ◦ f = τ i ◦ h then h ◦ f = h by the construction of N (i) in ( 7 ), and

then f = IdM since i is a free immersion; see the second diagram in ( 7 ).

We consider now the open set

{h ◦ f : h ∈ V(i), f ∈ Diff(M)} ⊆ C∞(M,U i).

Consider the smooth mapping from it into C∞c (M ← U i) × Diff(M) given by
h 7→ (h◦ (p◦h)−1, p◦h), where C∞c (M ← U i) is the space of sections with compact
support of U i → M . So if we let Q(i) := τ i∗(C

∞
c (M ← U i) ∩ V(i)) ⊂ Imm(M,N)

we have

W(i) := U(i) ◦Diffc(M) ∼= Q(i)×Diff(M) ∼= (C∞c (M ← U i) ∩ V(i))×Diff(M),

since the action of Diff(M) on i is free and by the argument above. Conse-
quently Diff(M) acts freely on each immersion in W(i), so Immfree(M,N) is open
in C∞(M,N). Furthermore

π|Q(i) : Q(i)→ Immfree(M,N)/Diff(M)

is bijective onto an open set in the quotient.

We now consider ϕi ◦ (π|Q(i))−1 : π(Q(i)) → C∞c (M ← U i) ⊂ C∞c (N,N (i))
as a chart for the quotient space. In order to investigate the chart change let
j ∈ Immfree(M,N) be such that π(Q(i))∩π(Q(j)) 6= ∅. Then there is an immersion
h ∈ W(i) ∩ Q(j), so there exists a unique f0 ∈ Diff(M) (given by f0 = p ◦ ϕi(h))
such that h ◦ f−1

0 ∈ Q(i). If we consider j ◦ f−1
0 instead of j and call it again j, we



484 Chapter IX . Manifolds of Mappings 44.2

have Q(i) ∩ Q(j) 6= ∅ and consequently U(i) ∩ U(j) 6= ∅. Then the chart change is
given as follows:

ϕi ◦ (π|Q(i))−1 ◦ π ◦ (τ j)∗ : C∞c (M ← U j)→ C∞c (M ← U i)

s 7→ τ j ◦ s 7→ ϕi(τ
j ◦ s) ◦ (pi ◦ ϕi(τ j ◦ s))−1.

This is of the form s 7→ β ◦ s for a locally defined diffeomorphism β : N (j)→ N (i)
which is not fiber respecting, followed by h 7→ h ◦ (pi ◦ h)−1. Both composants are
smooth by the general properties of manifolds of mappings. So the chart change is
smooth.

We have to show that the quotient space Immprop,free(M,N)/Diff(M) is Hausdorff.

(11) Claim. The orbit space Immprop(M,N)/Diff(M) of the space of all proper im-
mersions under the action of the diffeomorphism group is Hausdorff in the quotient
topology.

This follows from ( 18 ) below. We want to point out that we believe that the whole
orbit space Imm(M,N)/Diff(M) is Hausdorff, but that we were unable to prove
this.

(12) Claim. Let i and j ∈ Immprop(M,N) with i(M) 6= j(M) in N . Then their
projections π(i) and π(j) are different and can be separated by open subsets in
Immprop(M,N)/Diff(M).

We suppose that i(M) * j(M) = j(M) (since proper immersions have closed

images). Let y0 ∈ i(M) \ j(M), then we choose open neighborhoods V of y0 in N
and W of j(M) in N such that V ∩W = ∅. We consider the sets

V := {k ∈ Immprop(M,N) : k(M) ∩ V 6= ∅} and

W := {k ∈ Immprop(M,N) : k(M) ⊆W}.

Then V and W are Diff(M)-saturated disjoint open neighborhoods of i and j,
respectively, so π(V) and π(W) separate π(i) and π(j) in Immprop(M,N)/Diff(M).

(13) Claim. For a proper immersion i : M → N and x ∈ i(M) let δ(x) ∈ N
be the number of points in i−1(x). Then the mapping δ : i(M) → N is upper
semicontinuous, i.e., {x ∈ i(M) : δ(x) ≤ k} is open in i(M) for each k.

Let x ∈ i(M) with δ(x) = k and let i−1(x) = {y1, . . . , yk}). Then there are pairwise
disjoint open neighborhoods Wn of yn in M such that i|Wn is an embedding for each
n. The set M \(

⋃
nWn) is closed in M , and since i is proper the set i(M \(

⋃
nWn))

is also closed in i(M) and does not contain x. So there is an open neighborhood U
of x in i(M) which does not meet i(M \ (

⋃
nWn)). Then obviously δ(z) ≤ k for all

z ∈ U .

(14) Claim. We consider two proper immersions i1 and i2 ∈ Immprop(M,N) such

that i1(M) = i2(M) =: L ⊆ N . Then we have mappings δ1, δ2 : L→ N as in ( 13 ).
If δ1 6= δ2 then the projections π(i1) and π(i2) are different and can be separated by
disjoint open neighborhoods in Immprop(M,N)/Diff(M).

Let us suppose that m1 = δ1(y0) 6= δ2(y0) = m2. There is a small connected open
neighborhood V of y0 in N such that i−1

1 (V ) has m1 connected components and
i−1
2 (V ) has m2 connected components. This assertions describe Whitney C0-open
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neighborhoods in Immprop(M,N) of i1 and i2 which are closed under the action of
Diff(M), respectively. Obviously these two neighborhoods are disjoint.

(15) Assumption. We assume now that we are given two immersions i1 and

i2 ∈ Immprop(M,N) with i1(M) = i2(M) =: L such that the functions from ( 14 )
are equal: δ1 = δ2 =: δ.

Let (Lβ)β∈B be the partition of L consisting of all pathwise connected components
of level sets {x ∈ L : δ(x) = c}, c some constant.

Let B0 denote the set of all β ∈ B such that the interior of Lβ in L is not empty.
Since M is second countable, B0 is countable.

(16) Claim.
⋃
β∈B0

Lβ is dense in L.

Let k1 be the smallest number in δ(L) and let B1 be the set of all β ∈ B such

that δ(Lβ) = k1. Then by claim ( 13 ) each Lβ for β ∈ B1 is open. Let L1 be the

closure of
⋃
β∈B1

Lβ . Let k2 be the smallest number in δ(L \L1) and let B2 be the

set of all β ∈ B with β(Lβ) = k2 and Lβ ∩ (L \ L1) 6= ∅. Then by claim ( 13 )

again Lβ ∩ (L \L1) 6= ∅ is open in L so Lβ has non empty interior for each β ∈ B2.
Then let L2 denote the closure of

⋃
β∈B1∪B2

Lβ and continue the process. If δ(L)

is bounded, the process stops. If δ(L) is unbounded, by claim ( 13 ) we always find
new Lβ with non empty interior, we finally exhaust L and the claim follows.

Let (M1
λ)λ∈C1 be a suitably chosen cover of M by subsets of the sets i−1

1 (Lβ) such
that (i) each i1| intM1

λ is an embedding for each λ, and (ii) the set C1
0 of all λ with

M1
λ having non empty interior is at most countable. Let (M2

µ)µ∈C2 be a cover chosen

in a similar way for i2; but we also want that (iii) for each pair (µ, λ) ∈ C2
0 × C1

0

the open sets i2(int(M2
µ)) and i1(int(M1

λ)) in L are either equal or disjoint. Note

that the union
⋃
λ∈C1

0
intM1

λ is dense in M and, consequently,
⋃
λ∈C1

0
M1
λ = M ;

similarly for the M2
µ.

(17) Procedure. Given immersions i1 and i2 as in ( 15 ) we will try to construct
a diffeomorphism f : M → M with i2 ◦ f = i1. If we meet obstacles to the
construction this gives enough control on the situation to separate i1 from i2.

Choose λ0 ∈ C1
0 ; so intM1

λ0
6= ∅. Then i1 : intM1

λ0
→ Lβ1(λ0) is an embedding,

where β1 : C1 → B is the mapping satisfying i1(M1
λ) ⊆ Lβ1(λ) for all λ ∈ C1.

Now we choose µ0 ∈ β−1
2 β1(λ0) ⊂ C2

0 such that f := (i2| intM2
µ0

)−1 ◦ i1| intM1
λ0

is

a diffeomorphism intM1
λ0
→ intM2

µ0
; this follows from (iii). Note that f is uniquely

determined by the choice of µ0, if it exists, by claim ( 8 ). So we will repeat the

following construction for every µ0 ∈ β−1
2 β1(λ0) ⊂ C2

0 .

Now we try to extend f . We choose λ1 ∈ C1
0 such that M

1

λ0
∩M1

λ1
6= ∅.

Case a. Only λ1 = λ0 is possible. So M1
λ0

is dense in M since M is connected and
we may extend f by continuity to a diffeomorphism f : M →M with i2 ◦ f = i1.

Case b. We can find λ1 6= λ0. We choose x ∈M1

λ0
∩M1

λ1
and a sequence (xn) in

M1
λ0

with xn → x. Then we have a sequence (f(xn)) in M .

Case ba. y := lim f(xn) exists in M . Then there is µ1 ∈ C2
0 such that y ∈

M
2

µ0
∩M2

µ1
.
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Let U1
α1

be an open neighborhood of x in M such that i1|U1
α1

is an embedding

and let similarly U2
α2

be an open neighborhood of y in M such that i2|U2
α2

is an

embedding. We consider now the set i−1
2 i1(U1

α1
). There are two cases possible.

Case baa. The set i−1
2 i1(U1

α1
) is a neighborhood of y. Then we extend f to

i−1
1 (i1(U1

α1
) ∩ i2(U2

α2
)) by i−1

2 ◦ i1. Then f is defined on some open subset of

intM1
λ1

and by the situation chosen in ( 15 ) and by (iii), the diffeomorphism f

extends to the whole of intM1
λ1

.

Case bab. The set i−1
2 i1(U1

α1
) is not a neighborhood of y. This is a definite

obstruction to the extension of f .

Case bb. The sequence (xn) has no limit in M . This is a definite obstruction to
the extension of f .

If we meet an obstruction we stop and try another µ0. If for all admissible µ0 we
meet obstructions we stop and remember the data. If we do not meet an obstruction
we repeat the construction with some obvious changes.

(18) Claim. The construction of ( 17 ) in the setting of ( 15 ) either produces a
diffeomorphism f : M →M with i2 ◦ f = i1 or we may separate i1 and i2 by open
sets in Immprop(M,N) which are saturated with respect to the action of Diff(M)

If for some µ0 we do not meet any obstruction in the construction ( 17 ), the
resulting f is defined on the whole of M and it is a continuous mapping M → M
with i2◦f = i1. Since i1 and i2 are locally embeddings, f is smooth and of maximal
rank. Since i1 and i2 are proper, f is proper. So the image of f is open and closed
and since M is connected, f is a surjective local diffeomorphism, thus a covering
mapping M → M . But since δ1 = δ2 the mapping f must be a 1-fold covering, so
a diffeomorphism.

If for all µ0 ∈ β−1
2 β1(λ0) ⊂ C2

0 we meet obstructions we choose small mutually
distinct open neighborhoods V 1

λ of the sets i1(M1
λ). We consider the Whitney C0-

open neighborhood V1 of i1 consisting of all immersions j1 with j1(M1
λ) ⊂ V 1

λ for
all λ. Let V2 be a similar neighborhood of i2.

We claim that V1 ◦ Diff(M) and V2 ◦ Diff(M) are disjoint. For that it suffices
to show that for any j1 ∈ V1 and j2 ∈ V2 there does not exist a diffeomorphism
f ∈ Diff(M) with j2 ◦ f = j1. For that to be possible the immersions j1 and j2
must have the same image L and the same functions δ(j1), δ(j2) : L→ N. But now
the combinatorial relations of the slightly distinct new sets M1

λ, Lβ , and M2
µ are

contained in the old ones, so any try to construct such a diffeomorphism f starting
from the same λ0 meets the same obstructions.

Statements ( 2 ) and ( 3 ) of the theorem are now proved.

(19) Claim. For a nonfree immersion i ∈ Imm(M,N), the nontrivial isotropy
subgroup Diff(M)i = {f ∈ Diff(M) : i ◦ f = i} acts properly discontinuously on M ,
so the projection q1 : M → M1 := M/Diff(M)i is a covering map onto a smooth
manifold on M1. There is an immersion i1 : M1 → N with i = i1 ◦q1. In particular
Diff(M)i is countable, and is finite if M is compact.

We have to show that for each x ∈ M there is an open neighborhood U such that

f(U) ∩ U = ∅ for f ∈ Diff(M)i \ {Id}. We consider the setup ( 7 ) for i. By the
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proof of ( 8 ) we have f(U iα)∩U iα = {x ∈ U iα : f(x) = x} for any f ∈ Diff(M)i. If f

has a fixed point then f = Id, by ( 8 ), so f(U iα)∩U iα = ∅ for all f ∈ Diff(M)i\{Id}.
The rest is clear.

The factorized immersion i1 is in general not a free immersion. The following is an
example for that: Let

M0 −α→M1 −β→M2 −γ→M3

be a sequence of covering maps with fundamental groups 1 → G1 → G2 → G3.
Then the group of deck transformations of γ is given by NG3(G2)/G2, the normal-
izer of G2 in G3, and the group of deck transformations of γ ◦β is NG3(G1)/G1. We
can easily arrange that NG3

(G2) * NG3
(G1), then γ admits deck transformations

which do not lift to M1. Then we thicken all spaces to manifolds, so that γ ◦ β
plays the role of the immersion i.

(20) Claim. Let i ∈ Imm(M,N) be an immersion which is not free. Then there
is a submersive covering map q2 : M → M2 such that i factors to an immersion
i2 : M2 → N which is free.

Let q0 : M0 → M be the universal covering of M and consider the immersion

i0 = i ◦ q0 : M0 → N and its isotropy group Diff(M0)i0 . By ( 19 ) it acts properly
discontinuously on M0 and we have a submersive covering q02 : M0 → M2 and an
immersion i2 : M2 → N with i2 ◦ q02 = i0 = i ◦ q0. By comparing the respective
groups of deck transformations it is easily seen that q02 : M0 → M2 factors over
q1 ◦ q0 : M0 → M → M1 to a covering q12 : M1 → M2. The mapping q2 :=
q12 ◦ q1 : M → M2 is the looked for covering: If f ∈ Diff(M2) fixes i2, it lifts to a
diffeomorphism f0 ∈ Diff(M0) which fixes i0, so f0 ∈ Diff(M0)i0 , so f = Id.

Statement ( 4 ) of the theorem follows from ( 19 ) and ( 20 ).

(21) Convention. In order to avoid complications we assume now that M is such
a manifold that

• For any covering M → M1, any diffeomorphism M1 → M1 admits a lift
M →M .

If M is simply connected, this condition is satisfied. Also for M = S1 the condition
is easily seen to be valid. So what follows is applicable to loop spaces.

Condition ( 21 ) implies that in the proof of claim ( 20 ) we have M1 = M2.

(22) Description of a neighborhood of a singular orbit. Let M be a manifold

satisfying ( 21 ). In the situation of ( 19 ) we consider the normal bundles pi :
N (i) → M and pi1 : N (i1) → M1. Then the covering map q1 : M → M1 lifts
uniquely to a vector bundle homomorphism N (q1) : N (i)→ N (i1) which is also a
covering map, such that τ i1 ◦ N (q1) = τ i.

We have M1 = M/Diff(M)i and the group Diff(M)i acts also as the group of deck
transformations of the covering N (q1) : N (i) → N (i1) by Diff(M)i 3 f 7→ N (f),
where

N (i)
N (f)

//

��

N (i)

��
M

f // M
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is a vector bundle isomorphism for each f ∈ Diff(M)i; see the end of ( 7 ). If
we equip N (i) and N (i1) with the fiber Riemann metrics induced from the fixed
Riemannian metric g on N , the mappings N (q1) and all N (f) are fiberwise linear
isometries.

Let us now consider the right action of Diff(M)i on the space of sections C∞c (M ←
N (i)) given by f∗s := N (f)−1 ◦ s ◦ f .

From the proof of claim ( 10 ) we recall now the sets

C∞(M,N (i)) V(i)? _oo U(i)
ϕioo

C∞c (M ← N (i))
� ?

OO

C∞c (M ← U i)? _oo Q(i)
ϕioo

� ?

OO

Both mappings ϕi are diffeomorphisms. But since the action of Diff(M) on i is not
free we cannot extend the splitting submanifold Q(i) to an orbit cylinder as we did

in the proof of claim ( 10 ). Q(i) is a smooth transversal for the orbit though i.

For any f ∈ Diff(M) and s ∈ C∞c (M ← U i) ⊂ C∞c (M ← N (i)) we have

ϕ−1
i (f∗s) = τ i∗(f

∗s) = τ i∗(s) ◦ f.

So the space q∗1C
∞
c (M ← N (i1)) of all sections of N (i) → M which factor to

sections of N (i1) → M1, is exactly the space of all fixed points of the action of
Diff(M)i on C∞c (M ← N (i)); and they are mapped by τ i∗ = ϕ−1

i to such immersions
in Q(i) which have again Diff(M)i as isotropy group.

If s ∈ C∞c (M ← U i) ⊂ C∞c (M ← N (i)) is an arbitrary section, the orbit through
τ i∗(s) ∈ Q(i) hits the transversal Q(i) again in the points τ i∗(f

∗s) for f ∈ Diff(M)i.

Statement ( 5 ) of the theorem is now proved.

(23) The orbit structure. We have the following description of the orbit structure
near i in Imm(M,N): For fixed f ∈ Diff(M)i the set of fixed points Fix(f) := {j ∈
Q(i) : j ◦ f = j} is called a generalized wall. The union of all generalized walls is
called the diagram D(i) of i. A connected component of the complement Q(i)\D(i)
is called a generalized Weyl chamber. The group Diff(M)i maps walls to walls and
chambers to chambers. The immersion i lies in every wall.

We shall see shortly that there is only one chamber and that the situation is rather
distinct from that of reflection groups.

If we view the diagram in the space C∞c (M ← U i) ⊂ C∞c (M ← N (i)) which is
diffeomorphic to Q(i), then it consist of traces of closed linear subspaces, because
the action of Diff(M)i on C∞c (M ← N (i)) consists of linear isometries in the
following way. Let us tensor the vector bundle N (i) → M with the natural line
bundle of half densities on M , and let us remember one positive half density to
fix an isomorphism with the original bundle. Then Diff(M)i still acts on this new
bundle N1/2(i)→M and the pullback action on sections with compact support is
isometric for the inner product

〈s1, s2〉 :=

∫
M

g(s1, s2).
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We consider the walls and chambers now extended to the whole space in the obvious
manner.

(24) Claim. Each wall in C∞c (M ← N1/2(i)) is a closed linear subspace of infi-
nite codimension. Since there are at most countably many walls, there is only one
chamber.

From the proof of claim ( 19 ) we know that f(U iα) ∩ U iα = ∅ for all f ∈ Diff(M)i

and all sets U iα from the setup ( 7 ). Take a section s in the wall of fixed points of

f . Choose a section sα with support in some U iα and let the section s be defined
by s|U iα = sα|U iα, s|f−1(U iα) = −f∗sα, 0 elsewhere. Then obviously 〈s, s′〉 = 0 for
all s′ in the wall of f . But this construction furnishes an infinite dimensional space
contained in the orthogonal complement of the wall of f .

(25) The action of Diff(M) on Imm(M,N)×M . Proof of ( 6 ). Here we will

consider the the right action (i, x).f = (i◦f, f−1(x)) of Diff(M) on Imm(M,N)×M .

This action is free: If (i◦f, f−1(x)) = (i, x) then from lemma 1.3 we get f = IdM .

Claim. Let (i, x) ∈ Imm(M,N)×M . Then there is an open neighborhood W(i, x)
in Imm(M,N) × M which is saturated for the Diff(M)-action and which splits
smoothly as

W(i, x) = Q(i, x)×Diff(M).

Here Q(i, x) is a smooth splitting submanifold of Imm(M,N) ×M , diffeomorphic
to an open neighborhood of (0, x) in C∞(N (i)).

Let π : Imm(M,N) ×M → (Imm(M,N) ×M)/Diff(M) = S(M,N) be the pro-
jection onto the orbit space, which we equip with the quotient topology. Then
π|Q(i, x) : Q(i, x) → π(Q(i, x)) is bijective onto an open subset of the quotient.
If (i, x) runs through Imm(M,N)×M these mappings define a smooth atlas for the
quotient space, so that

(Imm(M,N)×M,π, (Imm(M,N)×M)/Diff(M),Diff(M))

is a smooth principal fiber bundle with structure group Diff(M).

If we restrict to the open subset Immprop(M,N) ×M of proper immersions times
M then the base space is Hausdorff.

By claim ( 19 ), the isotropy subgroup Diff(M)i = {f ∈ Diff(M) : i ◦ f = i} acts
properly discontinuously on M , so q1 : M →M/Diff(M)i =: M1 is a covering. We
choose an open neighborhood Wx of x in M such that q1 : Wx →M1 is injective.

Now we adapt the second half of the proof of theorem 1.5 and use freely all the
notation from there. We consider the open set

{(h ◦ f, f−1(y)) : h ∈ V(i), y ∈Wx, f ∈ Diff(M)} ⊂
⊂ C∞(M,U i)×M ⊂ C∞(M,N (i))×M.

We have a smooth mapping from it into C∞c (M ← U i) ×Wx × Diff(M) which is
given by (h, y) 7→ (h ◦ (p ◦ h)−1, (p ◦ h)(y), p ◦ h), where C∞c (M ← U i) is the space
of sections with compact support of U i →M . We now put

Q(i, x) := τ i∗(C
∞
c (M ← U i) ∩ V(i))×Wx ⊂ Imm(M,N)×M.
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Then we have

W(i, x) : = {(h ◦ f, f(y)) : h ∈ U(i), y ∈Wx, f ∈ Diff(M)}
∼= Q(i, x)×Diff(M) ∼= (C∞c (M ← U i) ∩ V(i))×Wx ×Diff(M),

since the action of Diff(M) is free. The quotient mapping π|Q(i) : Q(i) →
Immfree(M,N)/Diff(M) is bijective onto an open set in the quotient. We now use
(ϕi×IdWx

)◦(π|Q(i, x))−1 : π(Q(i, x))→ C∞c (M ← U i)×Wx as a chart for the quo-
tient space. In order to investigate the chart change let (j, y) ∈ Imm(M,N)×M be
such that π(Q(i, x))∩π(Q(j, y)) 6= ∅. Then there exists (h, z) ∈ W(i, x)∩Q(j, y), so
there exists a unique f ∈ Diff(M) (given by f = p◦ϕi(h)) such that (h◦f−1, f(z)) ∈
Q(i, x). If we consider (j◦f−1, f(y)) instead of (j, y) and call it again (j, y), we have
Q(i, x) ∩ Q(j, y) 6= ∅ and consequently U(i) ∩ U(j) 6= ∅. Now the first component

of the chart change is smooth by the argument in the end of the proof of 1.5 , and
the second component ist just IdWx∩Wy

.

The result about Hausdorff follows from claim ( 11 ).

The fibers over Imm(M,N)/Diff(M) can be read off the following diagram:

M
insi //

��

Imm(M,N)×M
pr1 //

π
��

Imm(M,N)

π
��

M

Diff(M)i
// Imm(M,N)×M

Diff(M)
// Imm(M,N)

Diff(M)

�

44.3. Theorem (Principal bundle of real analytic embeddings). [Kriegl and
Michor, 1990, section 6]. Let M and N be real analytic finite dimensional manifolds,
connected and second countable without boundary such that dimM ≤ dimN , with
M compact. Then the set Embω(M,N) of all real analytic embeddings M → N is an
open submanifold of Cω(M,N). It is the total space of a real analytic principal fiber
bundle with structure group Diffω(M), whose real analytic base manifold Bω(M,N)
is the space of all real analytic submanifolds of N of type M .

Proof. The proof of 44.1 is valid with the obvious changes. One starts with
a real analytic Riemannian metric and uses its exponential mapping. The space
of embeddings is open, since embeddings are open in C∞(M,N), which induces a
coarser topology. �

44.4. The nonlinear frame bundle of a fiber bundle. [Michor, 1988], [Michor,
1991]. Let now (p : E →M,S) be a fiber bundle, and let us fix a fiber bundle atlas

(Uα) with transition functions ψαβ : Uαβ × S → S. By 42.14 we have

C∞(Uαβ ,C
∞(S, S)) ⊆ C∞(Uαβ × S, S)

with equality if and only if S is compact. Let us therefore assume from now on
that S is compact. Then we assume that the transition functions ψαβ : Uαβ →
Diff(S, S).
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Now we define the nonlinear frame bundle of (p : E → M,S) as follows. We
consider the set Diff{S,E} :=

⋃
x∈M Diff(S,Ex) and equip it with the infinite di-

mensional differentiable structure which one gets by applying the functor Diff(S, )
to the cocycle of transition functions (ψαβ). Then the resulting cocycle of transition
functions for Diff{S,E} induces the structure of a smooth principal bundle over M
with structure group Diff(M). The principal action is just composition from the
right.

We can now consider the smooth action ev : Diff(S) × S → S and the associated

bundle Diff{S,E}[S, ev] = Diff{S,E}×S
Diff(S) . The mapping ev : Diff{S,E} × S → E

is invariant under the Diff(S)-action and factors therefore to a smooth mapping
Diff{S,E}[S, ev]→ E as in the following diagram:

Diff{S,E} × S
pr //

ev

��

Diff{S,E}×S
Diff(S)

E Diff{S,E}[S, ev].oo

The bottom mapping is easily seen to be a diffeomorphism. Thus, the bundle
Diff{S,E} may in full right be called the (nonlinear) frame bundle of E.

44.5. Let now Φ ∈ Ω1(E;TE) be a connection on E, see 37.2 . We want to lift
Φ to a principal connection on Diff{S,E}, and for this we need a good description

of the tangent space T Diff{S,E}. With the method of 42.17 one can easily show
that

T Diff{S,E} =
⋃
x∈M
{f ∈ C∞(S, TE|Ex) : Tp ◦ f = one point in TxM

and πE ◦ f ∈ Diff(S,Ex)}.

Starting from the connection Φ we can then consider ω(f) := T (πE ◦ f)−1 ◦Φ ◦ f :
S → TE → V E → TS for f ∈ T Diff{S,E}. Then ω(f) is a vector field on S, and
we have:

Lemma. ω ∈ Ω1(Diff{S,E};X(S)) is a principal connection, and the induced
connection on E = Diff{S,E}[S, ev] coincides with Φ.

Proof. The fundamental vector field ζX on Diff{S,E} for X ∈ X(S) is given by
ζX(g) = Tg ◦X. Then ω(ζX(g)) = Tg−1 ◦Φ◦Tg ◦X = X since Tg ◦X has vertical
values. Hence, ω reproduces fundamental vector fields.

Now let h ∈ Diff(S), and denote by rh the principal right action. Then we have

((rh)∗ω)(f) = ω(T (rh)f) = ω(f ◦ h) = T (πE ◦ f ◦ h)−1 ◦ Φ ◦ f ◦ h
= Th−1 ◦ ω(f) ◦ h = AdDiff(S)(h

−1)ω(f). �

44.6. Theorem. Let (p : E →M,S) be a fiber bundle with compact standard fiber
S. Then connections on E and principal connections on Diff{S,E} correspond to

each other bijectively, and their curvatures are related as in 37.24 . Each principal
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connection on Diff{S,E} admits a global parallel transport. The holonomy groups
and the restricted holonomy groups are equal as subgroups of Diff(S).

Proof. This follows directly from 37.24 and 37.25 . Each connection on E is
complete since S is compact, and the lift to Diff{S,E} of its parallel transport is
the global parallel transport of the lift of the connection, so the two last assertions
follow. �

44.7. Remark on the holonomy Lie algebra. Let M be connected, let ρ =
−dω− 1

2 [ω, ω]X(S) be the usual X(S)-valued curvature of the lifted connection ω on
Diff{S,E}. Then we consider the R-linear span of all elements ρ(ξf , ηf ) in X(S),
where ξf , ηf ∈ Tf Diff{S,E} are arbitrary (horizontal) tangent vectors, and we call
this span hol(ω). Then by the Diff(S)-equivariance of ρ the vector space hol(ω) is
an ideal in the Lie algebra X(S).

44.8. Lemma. Let f : S → Ex0 be a diffeomorphism in Diff{S,E}x0 . Then
f∗ : X(S)→ X(Ex0) induces an isomorphism between hol(ω) and the R-linear span
of all g∗R(CX,CY ), X, Y ∈ TxM , and g : Ex0

→ Ex any diffeomorphism.

The proof is obvious.

44.9. Gauge theory for fiber bundles. We consider the bundle Diff{E,E} :=⋃
x∈M Diff(Ex, Ex) which bears the smooth structure described by the cocycle of

transition functions Diff(ψ−1
αβ , ψαβ) = (ψαβ)∗(ψβα)∗, where (ψαβ) is a cocycle of

transition functions for the fiber bundle (p : E →M,S).

44.10. Lemma. The associated bundle Diff{S,E}[Diff(S), conj] is isomorphic to
the fiber bundle Diff{E,E}.

Proof. The mapping A : Diff{S,E} × Diff(S) → Diff{E,E}, given by A(f, g) :=
f ◦g◦f−1 : Ex → S → S → Ex for f ∈ Diff(S,Ex), is Diff(S)-invariant, so it factors
to a smooth mapping Diff{S,E}[Diff(S)]→ Diff{E,E}. It is bijective and admits
locally over M smooth inverses, so it is a fiber respecting diffeomorphism. �

44.11. The gauge group Gau(E) of the finite dimensional fiber bundle (p : E →
M,S) with compact standard fiber S is, by definition, the group of all principal
bundle automorphisms of the Diff(S)-bundle (Diff{S,E} which cover the identity

of M . The usual reasoning 37.17 gives that Gau(E) equals the space of all smooth

sections of the associated bundle Diff{S,E}[Diff(S), conj] which by 44.10 equals
the space of sections of the bundle Diff{E,E} →M . We equip it with the topology

and differentiable structure described in 42.21 .

44.12. Theorem. The gauge group Gau(E) = C∞(M ← Diff{E,E}) is a regular
Lie group. Its exponential mapping is not surjective on any neighborhood of the
identity. Its Lie algebra consists of all vertical vector fields with compact support
on E (or M) with the negative of the usual Lie bracket. The obvious embedding
Gau(E)→ Diff(E) is a smooth homomorphism of regular Lie groups.
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Proof. The first statement has already been shown before the theorem. A curve
through the identity of principal bundle automorphisms of Diff{S,E} → M is a
smooth curve through the identity in Diff(E) consisting of fiber respecting map-
pings. The derivative of such a curve is thus an arbitrary vertical vector field with
compact support. The space of all these is therefore the Lie algebra of the gauge
group, with the negative of the usual Lie bracket.

The exponential mapping is given by the flow operator of such vector fields. Since
on each fiber it is just conjugate to the exponential mapping of Diff(S), it has all
the properties of the latter. Gau(E) → Diff(E) is a smooth homomorphism since

by 40.3 its prolongation to the universal cover of Gau(E) is smooth. �

44.13. Remark. If S is not compact we may circumvent the nonlinear frame
bundle, and we may define the gauge group Gau(E) directly as the splitting closed
subgroup of Diff(E) which consists of all fiber respecting diffeomorphisms which
cover the identity of M . The Lie algebra of Gau(E) consists then of all vertical
vector fields on E with compact support on E. We do not work out the details of
this approach.

44.14. The space of connections. Let J1(E) → E be the affine bundle of
1-jets of sections of E → M . We have J1(E) = {` ∈ L(TxM,TuE) : Tp ◦ ` =
IdTxM , u ∈ E, p(u) = x}. Then a section of J1(E) → E is just a horizontal lift
mapping TM ×M E → TE which is fiber linear over E, so it describes a connection

as treated in 37.2 , and we may view the space of sections C∞(E ← J1(E)) as the
space of all connections.

44.15. Theorem. The action of the gauge group Gau(E) on the space of connec-
tions C∞(E ← J1(E)) is smooth.

Proof. This follows from 42.13 �

44.16. We will now give a different description of the action. We view a connection
Φ again as a linear fiber wise projection TE → V E, so the space of connections
is now Conn(E) := {Φ ∈ Ω1(E;TE) : Φ ◦ Φ = Φ, Φ(TE) = V E}. Since S
is compact the canonical isomorphism Conn(E) → C∞(E ← J1(E)) is even a
diffeomorphism. Then the action of f ∈ Gau(E) ⊂ Diff(E) on Φ ∈ Conn(E) is
given by f∗Φ = (f−1)∗Φ = Tf ◦ Φ ◦ Tf−1. Now it is very easy to describe the
infinitesimal action. Let X be a vertical vector field with compact support on E
and consider its global flow FlXt .

Then we have d
dt |0(FlXt )∗Φ = LXΦ = [X,Φ], the Frölicher Nijenhuis bracket, by

35.14.5 . The tangent space of Conn(E) at Φ is the space TΦ Conn(E) = {Ψ ∈
Ω1(E;TE) : Ψ|V E = 0}. The “infinitesimal orbit” at Φ in TΦ Conn(E) is {[X,Φ] :
X ∈ C∞c (E ← V E)}.
The isotropy subgroup of a connection Φ is {f ∈ Gau(E) : f∗Φ = Φ}. Clearly, this
is just the group of all those f which respect the horizontal bundle HE = ker Φ.
The most interesting object is of course the orbit space Conn(E)/Gau(E).
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44.17. Slices. [Palais and Terng, 1988] Let M be a smooth manifold, G a Lie
group, G ×M → M a smooth action, x ∈ M, and let Gx = {g ∈ G : g.x = x}
denote the isotropy group at x. A contractible subset S ⊆ M is called a slice at
x, if it contains x and satisfies

(1) If g ∈ Gx then g.S = S.
(2) If g ∈ G with g.S ∩ S 6= ∅ then g ∈ Gx.
(3) There exists a local continuous section χ : G/Gx → G defined on a neighbor-

hood V of the identity coset such that the mapping F : V × S →M, defined
by F (v, s) := χ(v).s is a homeomorphism onto a neighborhood of x.

This is a local version of the usual definition in finite dimensions, which is too
narrow for the infinite dimensional situation. However, in finite dimensions the
definition above is equivalent to the usual one where a subset S ⊆ M is called a
slice at x, if there is a G-invariant open neighborhood U of the orbit G.x and a
smooth equivariant retraction r : U → G.x such that S = r−1(x). In the general
case we have the following properties:

(4) For y ∈ F (V × S) ∩ S we get Gy ⊂ Gx, by ( 2 ).
(5) For y ∈ F (V ×S) the isotropy group Gy is conjugate to a subgroup of Gx, by

( 3 ) and ( 4 ).

44.18. Counter-example. [Cerf, 1970], [Michor and Schichl, 1997]. The right
action of Diff(S1) on C∞(S1,R) does not admit slices.

Let h(t) : S1 = (R mod 1) → R be a smooth bump function with h(t) = 0 for
t /∈ [0, 1

4 ] and h(t) > 0 for t ∈ (0, 1
4 ). Then put hn(t) = 1

4nh(4n(t − (1 − 1
4n )/3))

which is is nonzero in the interval
(
(1− 1

4n )/3, (1− 1
4n+1 )/3

)
, and consider

fN (t) =

N∑
n=0

hn(t)e
− 1

(t− 1
3
)2 , f(t) =

∞∑
n=0

hn(t)e
− 1

(t− 1
3
)2 .

Then f ≥ 0 is a smooth function which in (0, 1
3 ) has zeros exactly at t =

1− 1
4n

3

and which is 0 for t /∈ (0, 1
3 ). In every neighborhood of f lies a function fN which

has only finitely many of the zeros of f and is identically zero in the interval
[(1 − 1

4N+1 )/3, 1/3]. All diffeomorphisms in the isotropy subgroup of f are also
contained in the isotropy subgroup of fN , but the latter group contains additionally
all diffeomorphisms of S1 which have support only on [(1 − 1

4N+1 )/3, 1/3]. This

contradicts 44.17.5 .

44.19. Counter-example. [Michor and Schichl, 1997]. The action of the gauge
group Gau(E) on Conn(E) does not admit slices, for dimM ≥ 2.

We will construct locally a connection, which satisfies that in any neighborhood
there exist connections which have a bigger isotropy subgroup. Let n = dimS,
and let h : Rn → R be a smooth nonnegative bump function, which satisfies
carrh = {s ∈ Rn| ‖s − s0‖ < 1}. Put hr(s) := rh(s0 + 1

r (s − s0)), then carrhr =
{s ∈ Rn| ‖s − s0‖ < r}. Then put hs1r (s) := h(s − (s1 − s0)) which implies
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carrhs1r = {s ∈ Rn| ‖s − s1‖ < r}. Using these functions, we can define new
functions fk for k ∈ N as

fk(s) =
1

4k
hsk‖z‖/2k(s),

where z := s∞−s0
3 for some s∞ ∈ Rn and sk := s0 + z(2

∑k
l=0

1
2l
− 1− 1

2k
). Further

set

fN (s) := e
− 1
‖s−s∞‖2

N∑
k=0

fk(s), f(s) := lim
N→∞

fN (s).

The functions fN and f are smooth, respectively, since all the functions fk are
smooth, on every point s at most one summand is nonzero, and the series is in each
derivative uniformly convergent on a neighborhood of s∞. The carriers are given by

carr fN =
⋃N
k=0{s ∈ Rn| ‖s− sk‖ < 1

2k
‖z‖} and carr f =

⋃∞
k=0{s ∈ Rn| ‖s− sk‖ <

1
2k
‖z‖}. The functions fN and f vanish in all derivatives in all xk, and f vanishes

in all derivatives in s∞.

Let ψ : E|U → U × S be a fiber bundle chart of E with a chart u : U −∼=→ Rm
on M , and let v : V −∼=→ Rn be a chart on S. Choose g ∈ C∞c (M,R) with
∅ 6= supp(g) ⊂ U and dg ∧ du1 6= 0 on an open dense subset of supp(g). Then we

can define a Christoffel form as in 37.5 by

Γ := g du1 ⊗ f(v)∂v1 ∈ Ω1(U,X(S)).

This defines a connection Φ on E|U which can be extended to a connection Φ on
E by the following method. Take a smooth functions k1, k2 ≥ 0 on M satisfying
k1 + k2 = 1 and k1 = 1 on supp(g) and supp(k1) ⊂ U and any connection Φ′ on
E, and set Φ = k1ΦΓ + k2Φ′, where ΦΓ denotes the connection which is induced
locally by Γ. In any neighborhood of Φ there exists a connection ΦN defined by

ΓN := g du1 ⊗ fN (s)∂v1 ∈ Ω1(U,X(S)),

and extended like Φ.

Claim: There is no slice at Φ.
Proof: We have to consider the isotropy subgroups of Φ and ΦN . Since the con-
nections Φ and ΦN coincide outside of U , we may investigate them locally on

W = {u : k1(u) = 1} ⊂ U . The curvature of Φ is given locally on W by 37.5 as

(1) RU := dΓ− 1
2 [Γ,Γ]

X(S)
∧ = dg ∧ du1 ⊗ f(v)∂v1 − 0.

For every element of the gauge group Gau(E) which is in the isotropy group
Gau(E)Φ the local representative over W which looks like γ̃ : (u, v) 7→ (u, γ(u, v))

by 37.5 satisfies

Tv(γ(u, )).Γ(ξu, v) = Γ(ξu, γ(u, v))− Tu(γ( , v)).ξu,(2)

g(u)du1 ⊗ f(v)
∑
i

∂γ1

∂vi
∂vi = g(u)du1 ⊗ f(γ(u, v))∂v1 −

∑
i,j

∂γi

∂uj
duj ⊗ ∂vi .

Comparing the coefficients of duj ⊗ ∂vi we get for γ over W the equations

∂γi

∂uj
= 0 for (i, j) 6= (1, 1),
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g(u)f(v)
∂γ1

∂v1
= g(u)f(γ(u, v))− ∂γ1

∂u1
.(3)

Considering next the transformation γ̃∗RU = RU of the curvature 37.4.3 , we get

Tv(γ(u, )).RU (ξu, ηu, v) = RU (ξu, ηu, γ(u, v)),

dg ∧ du1 ⊗ f(v)
∑
i

∂γ1

∂vi
∂vi = dg ∧ du1 ⊗ f(γ(u, v))∂v1 .(4)

Another comparison of coefficients yields the equations

f(v)
∂γ1

∂vi
= 0 for i 6= 1,

f(v)
∂γ1

∂v1
= f(γ(u, v)),(5)

whenever dg∧du1 6= 0, but this is true on an open dense subset of supp(g). Finally,

putting ( 5 ) into ( 3 ) shows

∂γi

∂uj
= 0 for all i, j.

Collecting the results on supp(g), we see that γ has to be constant in all directions
of u. Furthermore, wherever f is nonzero, γ1 is a function of v1 only and γ has to
map zero sets of f to zero sets of f .

Replacing Γ by ΓN we get the same results with f replaced by fN . Since f = fN

wherever fN is nonzero or f vanishes, γ in the isotropy group of Φ obeys all these
equations not only for f but also for fN on supp fN ∪ f−1(0). On carr f \ carr fN

the gauge transformation γ is a function of v1 only, hence it cannot leave the
zero set of fN by construction of f and fN . Therefore, γ obeys all equations for
fN whenever it obeys all equations for f , thus every gauge transformation in the
isotropy subgroup of Φ is in the isotropy subgroup of ΦN .

On the other hand, any γ with support in carr f \ carr fN which changes only
in the v1 direction and does not keep the zero sets of f invariant, defines a gauge
transformation in the isotropy subgroup of ΦN which is not in the isotropy subgroup
of Φ.

Therefore, there exists in every neighborhood of Φ a connection ΦN whose isotropy

subgroup is bigger than the isotropy subgroup of Φ. Thus, by property 44.17.5
no slice exists at Φ.

44.20. Counter-example. [Michor and Schichl, 1997]. The action of the gauge
group Gau(E) on Conn(E) also admits no slices for dimM = 1, i.e. for M = S1.

The method of 44.19 is not applicable in this situation, since dg ∧ du1 6= 0 is not
possible, any connection Φ on E is flat. Hence, the horizontal bundle is integrable,
the horizontal foliation induced by Φ exists and determines Φ. Any gauge trans-
formation leaving Φ invariant also has to map leaves of the horizontal foliation to
other leaves of the horizontal foliation.

We shall construct connections Φλ
′
near Φλ such that the isotropy groups in Gau(E)

look radically different near the identity, contradicting 44.17.5 .
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Let us assume without loss of generality that E is connected, and then, by replacing
S1 by a finite covering if necessary, that the fiber is connected. Then there exists

a smooth global section χ : S1 → E. By an argument given in the proof of 42.20
there exists a tubular neighborhood π : U ⊂ E → imχ such that π = χ ◦ p|U
(i.e. a tubular neighborhood with vertical fibers). This tubular neighborhood then
contains an open thickened sphere bundle with fiber S1 × Rn−1, and since we
are only interested in gauge transformations near IdE , which e.g. keep a smaller
thickened sphere bundle inside the larger one, we may replace E by an S1-bundle.
By replacing the Klein bottle by a 2-fold covering we may finally assume that the
bundle is pr1 : S1 × S1 → S1.

Consider now connections where the horizontal foliation is a 1-parameter subgroup
with slope λ we see that the isotropy group equals S1 if λ is irrational, and equals
S1 times the diffeomorphism group of a closed interval if λ is rational.

44.21. A classifying space for the diffeomorphism group. Let `2 be the
Hilbert space of square summable sequences, and let S be a compact manifold.

By a slight generalization of theorem 44.1 (we use a Hilbert space instead of a

Riemannian manifold N), the space Emb(S, `2) of all smooth embeddings is an
open submanifold of C∞(S, `2), and it is also the total space of a smooth principal
bundle with structure group Diff(S) acting from the right by composition. The base
space B(S, `2) := Emb(S, `2)/Diff(S) is a smooth manifold modeled on Fréchet
spaces which are projective limits of Hilbert spaces. B(S, `2) is a Lindelöf space in
the quotient topology, and the model spaces admit bump functions, thus B(S, `2)

admits smooth partitions of unity, by 16.10 . We may view B(S, `2) as the space

of all submanifolds of `2 which are diffeomorphic to S, a nonlinear analog of the
infinite dimensional Grassmannian.

44.22. Lemma. The total space Emb(S, `2) is contractible.

Therefore, by the general theory of classifying spaces the base space B(S, `2) is a
classifying space of Diff(S). We will give a detailed description of the classifying

process in 44.24 .

Proof. We consider the continuous homotopy A : `2×[0, 1]→ `2 through isometries
which is given by A0 = Id and by

At(a0, a1, a2, . . .) = (a0, . . . , an−2, an−1 cos θn(t), an−1 sin θn(t),

an cos θn(t), an sin θn(t), an+1 cos θn(t), an+1 sin θn(t), . . .)

for 1
n+1 ≤ t ≤ 1

n , where θn(t) = ϕ(n((n + 1)t − 1))π2 for a fixed smooth function

ϕ : R→ R which is 0 on (−∞, 0], grows monotonely to 1 in [0, 1], and equals 1 on
[1,∞).

Then A1/2(a0, a1, a2, . . .) = (a0, 0, a1, 0, a2, 0, . . .) is in `2even and on the other hand

A1(a0, a1, a2, . . .) = (0, a0, 0, a1, 0, a2, 0, . . .) is in `2odd. The same homotopy makes

sense as a mapping A : R∞ × R → R(N), and here it is easily seen to be smooth:
a smooth curve in R(N) is locally bounded and thus locally takes values in a finite
dimensional subspace RN ⊂ R(N). The image under A then has values in R2N ⊂
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R(N), and the expression is clearly smooth as a mapping into R2N . This is a variant
of a homotopy constructed by [Ramadas, 1982].

Given two embeddings e1 and e2 ∈ Emb(S, `2) we first deform e1 through embed-
dings to e′1 ∈ Emb(S, `2even), and e2 to e′2 ∈ Emb(S, `2odd). Then we connect them
by te′1 + (1− t)e′2 which is a smooth embedding for all t since the values are always
orthogonal. �

44.23. We consider the smooth action ev : Diff(S) × S → S and the associated
bundle Emb(S, `2)[S, ev] = Emb(S, `2)×Diff(S) S which we call E(S, `2), a smooth

fiber bundle over B(S, `2) with standard fiber S. In view of the interpretation of
B(S, `2) as the nonlinear Grassmannian, we may visualize E(S, `2) as the ”univer-
sal S-bundle” as follows: E(S, `2) = {(N, x) ∈ B(S, `2) × `2 : x ∈ N} with the
differentiable structure from the embedding into B(S, `2)× `2.

The tangent bundle TE(S, `2) is then the space of all (N, x, ξ, v) where N ∈
B(S, `2), x ∈ N , ξ is a vector field along and normal to N in `2, and v ∈ Tx`2 such
that the part of v normal to TxN equals ξ(x). This follows from the description

of the principal fiber bundle Emb(S, `2) → B(S, `2) given in 44.1 combined with

42.17 . Obviously, the vertical bundle V E(S, `2) consists of all (N, x, v) with x ∈ N
and v ∈ TxN . The orthonormal projection p(N,x) : `2 → TxN defines a connection

Φclass : TE(S, `2)→ V E(S, `2) which is given by Φclass(N, x, ξ, v) = (N, x, p(N,x)v).
It will be called the classifying connection for reasons to be explained in the
next theorem.

44.24. Theorem. Classifying space for Diff(S).
The fiber bundle (E(S, `2)→ B(S, `2), S) is classifying for S-bundles and Φclass is
a classifying connection:

For each finite dimensional bundle (p : E → M,S) and each connection Φ on E
there is a smooth (classifying) mapping f : M → B(S, `2) such that (E,Φ) is iso-
morphic to (f∗E(S, `2), f∗Φclass). Homotopic maps pull back isomorphic S-bundles
and conversely (the homotopy can be chosen smooth). The pulled back connection
is invariant under a homotopy H if and only if i(CclassT(x,t)H.(0x,

d
dt ))R

class = 0

where Cclass is the horizontal lift of Φclass, and Rclass is its curvature .

Since S is compact the classifying connection Φclass is complete, and its parallel
transport Ptclass has the following classifying property:

f̃ ◦ Ptf
∗Φclass

(c, t) = Ptclass(f ◦ c, t) ◦ f̃ ,

where f̃ : E ∼= f∗E(S, `2) → E(S, `2) is the fiberwise diffeomorphic which covers
the classifying mapping f : M → B(S, `2).

Proof. We choose a Riemannian metric g1 on the vector bundle V E → E and
a Riemannian metric g2 on the manifold M . We can combine these two into the
Riemannian metric g := (Tp| ker Φ)∗g2 ⊕ g1 on the manifold E, for which the
horizontal and vertical spaces are orthogonal. By the theorem of [Nash, 1956], see
also [Günther, 1989a] for an easy proof, there is an isometric embedding h : E → RN
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for N large enough. We then embed RN into the Hilbert space `2 and consider
f : M → B(S, `2), given by f(x) = h(Ex). Then

E
f̃=(f,h) //

p

��

E(S, `2)

��
M

f // B(S, `2)

is fiberwise a diffeomorphism, so the diagram is a pullback and f∗E(S, `2) = E.
Since T (f, h) maps horizontal and vertical vectors to orthogonal ones we have
(f, h)∗Φclass = Φ. If Pt denotes the parallel transport of the connection Φ and
c : [0, 1]→M is a (piecewise) smooth curve we have for u ∈ Ec(0)

Φclass ∂
∂t

∣∣
0
f̃(Pt(c, t, u)) = Φclass.T f̃ . ∂

∂t

∣∣
0

Pt(c, t, u)

= T f̃ .Φ. ∂
∂t

∣∣
0

Pt(c, t, u) = 0, so

f̃(Pt(c, t, u)) = Ptclass(f ◦ c, t, f̃(u)).

Now let H be a continuous homotopy M×I → B(S, `2). Then we may approximate
H by smooth mappings with the same H0 and H1, if they are smooth, see [Bröcker
and Jänich, 1973], where the infinite dimensionality of B(S, `2) does not disturb.
Then we consider the bundle H∗E(S, `2) → M × I, equipped with the connection
H∗Φclass, whose curvature is H∗Rclass. Let ∂t be the vector field tangential to all
{x}×I on M×I. Parallel transport along the lines t 7→ (x, t) with respect H∗Φclass

is given by the flow of the horizontal lift (H∗Cclass)(∂t) of ∂t. Let us compute its

action on the connection H∗Φclass whose curvature is H∗Rclass by 37.4.3 . By

lemma 44.25 below we have

∂
∂t

(
Fl

(H∗Cclass)(∂t)
t

)∗
H∗Φclass = − 1

2 i(H∗Cclass)(∂t)(H
∗Rclass)

= −1

2
H∗
(
i(CclassT(x,t)H.(0x,

d
dt ))R

class
)
,

which implies the result. �

44.25. Lemma. Let Φ be a connection on a finite dimensional fiber bundle (p :
E →M,S) with curvature R and horizontal lift C. Let X ∈ X(M) be a vector field
on the base.

Then for the horizontal lift CX ∈ X(E) we have

LCXΦ = ∂
∂t

∣∣
0

(FlCXt )∗Φ = [CX,Φ] = − 1
2 iCXR.

Proof. From 35.14.5 we get LCXΦ = ∂
∂t

∣∣
0

(FlCXt )∗Φ = [CX,Φ]. From 35.9.2
we have

iCXR = iCX [Φ,Φ]

= [iCXΦ,Φ]− [Φ, iCXΦ] + 2i[Φ,CX]Φ

= −2Φ[CX,Φ].
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The vector field CX is p-related to X, and Φ ∈ Ω1(E;TE) is p-related to 0 ∈
Ω1(M ;TM), so by 35.13.7 the form [CX,Φ] ∈ Ω1(E;TE) is also p-related to

0 = [X, 0] ∈ Ω1(M ;TM). So Tp.[CX,Φ] = 0, [CX,Φ] has vertical values, and
[CX,Φ] = Φ[CX,Φ]. �

44.26. A consequence of theorem 43.7 is that the classifying spaces of Diff(S)
and Diff(S, µ0) are homotopy equivalent. So their classifying spaces are homotopy
equivalent, too.

We now sketch a smooth classifying space for Diffµ0
. Consider the space B1(S, `2)

of all submanifolds of `2 of type S and total volume 1 in the volume form induced
from the inner product on `2. It is a closed splitting submanifold of codimension

1 of B(S, `2) by the Nash-Moser inverse function theorem 51.17 . This theorem is

applicable if we use `2 as image space, because the modeling spaces are then tame

Fréchet spaces in the sense of 51.9 . It is not applicable directly for R(N) as image
space.

44.27. Theorem. Classifying space for Diffω(S). Let S be a compact real
analytic manifold. Then the space Embω(S, `2) of real analytic embeddings of S
into the Hilbert space `2 is the total space of a real analytic principal fiber bundle
with structure group Diffω(S) and real analytic base manifold Bω(S, `2), which is
a classifying space for the Lie group Diffω(S). It carries a universal Diffω(S)-
connection.

In other words:
Embω(S,N)×Diffω(S) S → Bω(S, `2)

classifies real analytic fiber bundles with typical fiber S and carries a universal
(generalized) connection.

The proof is similar to that of 44.24 with the appropriate changes to Cω.

45. Manifolds of Riemannian Metrics

The usual metric on the space of all Riemannian metrics was considered by [Ebin,
1970], who used it to construct a slice for the action of the group of diffeomorphism
on the space of all metrics. It was then reconsidered by [Freed and Groisser, 1989],
and by [Gil-Medrano and Michor, 1991] for noncompact M . The results in this
section are largely taken from the last paper and from [Gil-Medrano et al., 1992].

45.1. Bilinear structures. Throughout this section let M be a smooth second
countable finite dimensional manifold. Let ⊗2T ∗M denote the vector bundle of all(

0
2

)
-tensors on M , which we canonically identify with the bundle L(TM, T ∗M). Let

GL(TM, T ∗M) denote the non degenerate ones. For any b : TxM → T ∗xM we let

the transposed be given by bt : TxM → T ∗∗x M−b
∗
→ T ∗xM . As a bilinear structure

b is skew symmetric if and only if bt = −b, and b is symmetric if and only if bt = b.
In the latter case a frame (ej) of TxM can be chosen in such a way that in the dual
frame (ej) of T ∗xM we have

b = e1 ⊗ e1 + · · ·+ ep ⊗ ep − ep+1 ⊗ ep+1 − ep+q ⊗ ep+q;
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b has signature (p, q) and is non degenerate if and only if p+ q = n, the dimension
of M . In this case, q alone will be called the signature.

A section b ∈ C∞(GL(TM, T ∗M)) will be called a non degenerate bilinear struc-
ture on M , and we will denote the space of all such structures by B(M) = B :=
C∞(GL(TM, T ∗M)). It is open in the space of sections C∞(L(TM, T ∗M)) for the
Whitney C∞-topology, in which the latter space is, however, not a topological vec-

tor space, as explained in detail in 41.13 . The space Bc := C∞c (L(TM, T ∗M)) of
sections with compact support is the largest topological vector space contained in
the topological group (C∞(L(TM, T ∗M)),+), and the trace of the Whitney C∞-

topology on it induces the convenient vector space structure described in 30.4 .

So we declare the path components of B = C∞(GL(TM, T ∗M)) for the Whitney
C∞-topology also to be open; these are open in affine subspaces of the form b+Bc
for some b ∈ B and we equip them with the translates of the c∞-topology on Bc.
The resulting topology is finer than the Whitney topology and will be called the

natural topology, similar as in 42.1 .

45.2. The metrics. The tangent bundle of the space B = C∞(GL(TM, T ∗M))
of bilinear structures is TB = B×Bc = C∞(GL(TM, T ∗M))× C∞c (L(TM, T ∗M)).
Then b ∈ B induces two fiberwise bilinear forms on L(TM, T ∗M) which are given by
(h, k) 7→ tr(b−1hb−1k) and (h, k) 7→ tr(b−1h) tr(b−1k). We split each endomorphism

H = b−1h : TM → TM into its trace free part H0 := H − tr(H)
dimM Id and its

trace part which simplifies some formulas later on. Thus, we have tr(b−1hb−1k) =
tr((b−1h)0(b−1k)0)+ 1

dimM tr(b−1h) tr(b−1k). The structure b also induces a volume
density on the base manifold M by the local formula

vol(b) =
√
|det(bij)| |dx1 ∧ · · · ∧ dxn|.

For each real α we have a smooth symmetric bilinear form on B, given by

Gαb (h, k) =

∫
M

(tr((b−1h)0(b−1k)0) + α tr(b−1h) tr(b−1k)) vol(b).

It is invariant under the action of the diffeomorphism group Diff(M) on the space B
of bilinear structures. The integral is defined since h and k have compact supports.
For n = dimM we have

Gb(h, k) := G
1/n
b (h, k) =

∫
M

tr(b−1hb−1k) vol(b),

which for positive definite b is the usual metric on the space of all Riemannian

metrics. We will see below in 45.3 that for α 6= 0 it is weakly non degenerate,
i.e. Gαb defines a linear injective mapping from the tangent space TbB = Bc =
C∞c (L(TM, T ∗M)) into its dual C∞c (L(TM, T ∗M))′, the space of distributional
densities with values in the dual bundle. This linear mapping is, however, never
surjective. So we have a one parameter family of pseudo Riemannian metrics on the
infinite dimensional space B which obviously is smooth in all appearing variables.

45.3. Lemma. For h, k ∈ TbB we have

Gαb (h, k) = Gb(h+ αn−1
n tr(b−1h)b, k),
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Gb(h, k) = Gαb (h− αn−1
αn2 tr(b−1h)b, k), if α 6= 0,

where n = dimM . The pseudo Riemannian metric Gα is weakly non degenerate
for all α 6= 0.

Proof. The first equation is an obvious reformulation of the definition, the sec-
ond follows since h 7→ h − αn−1

αn2 tr(b−1h)b is the inverse of the transform h 7→
h + αn−1

n tr(b−1h)b. Since tr(b−1
x hx(b−1

x hx)t,g) > 0 if hx 6= 0, where `t,g is the
transposed of a linear mapping with respect to an arbitrary fixed Riemannian met-
ric g, we have

Gb(h, b(b
−1h)t,g) =

∫
M

tr(b−1h(b−1h)t,g) vol(b) > 0

if h 6= 0. So G is weakly non degenerate, and by the second equation Gα is weakly
non degenerate for α 6= 0. �

45.4. Remark. Since Gα is only a weak pseudo Riemannian metric, all objects
which are only implicitly given a priori lie in the Sobolev completions of the relevant
spaces. In particular, this applies to the formula

2Gα(ξ,∇αη ζ) =ξGα(η, ζ) + ηGα(ζ, ξ)− ζGα(ξ, η)

+Gα([ξ, η], ζ) +Gα([η, ζ], ξ)−Gα([ζ, ξ], η),

which a priori gives only uniqueness but not existence of the Levi Civita covariant

derivative. We will show that it exists and we use it in the form explained in 37.28 .

45.5. Lemma. For x ∈M the pseudo metric on GL(TxM,T ∗xM) given by

γαbx(hx, kx) := tr((b−1
x hx)0(b−1

x kx)0) + α tr(b−1
x hx) tr(b−1

x kx)

has signature (the number of negative eigenvalues) n(n−1)
2 for α > 0 and has sig-

nature (n(n−1)
2 + 1) for α < 0.

Proof. In the framing H = b−1
x hx and K = b−1

x kx we have to determine the
signature of the symmetric bilinear form (H,K) 7→ tr(H0K0)+α tr(H) tr(K). Since
the signature is constant on connected components we have to determine it only
for α = 1

n and α = 1
n − 1.

For α = 1
n we note first that on the space of matrices (H,K) 7→ tr(HKt) is positive

definite, and since the linear isomorphism K 7→ Kt has the space of symmetric
matrices as eigenspace for the eigenvalue 1 and the space of skew symmetric matrices

as eigenspace for the eigenvalue −1, we conclude that the signature is n(n−1)
2 in

this case.

For α = 1
n − 1 we proceed as follows: On the space of matrices with zeros on

the main diagonal the signature of (H,K) 7→ tr(HK) is n(n−1)
2 by the argument

above and the form (H,K) 7→ − tr(H) tr(K) vanishes. On the space of diagonal
matrices which we identify with Rn the whole bilinear form is given by 〈x, y〉 =
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∑
i x

iyi − (
∑
i x

i)(
∑
i y
i). Let (ei) denote the standard basis of Rn, and put a1 :=

1
n (e1 + · · ·+ en) and

ai :=
1√

i− 1 + (i− 1)2
(e1 + · · ·+ ei−1 − (i− 1)ei)

for i > 1. Then 〈a1, a1〉 = −1 + 1
n , and for i > 1 we get 〈ai, aj〉 = δi,j . So the

signature is 1 in this case. �

45.6. Let t 7→ b(t) be a smooth curve in B. So b : R ×M → GL(TM, T ∗M) is

smooth, and by the choice of the topology on B made in 45.1 the curve b(t) varies

only in a compact subset of M , locally in t, by 30.9 . Then its energy is given by

Ea2a1 (b) := 1
2

∫ a2

a1

Gαb (bt, bt)dt

= 1
2

∫ a2

a1

∫
M

(
tr((b−1bt)0(b−1bt)0) + α tr(b−1bt)

2
)

vol(b) dt,

where bt = ∂
∂tb(t).

Now we consider a variation of this curve, so we assume that (t, s) 7→ b(t, s) is
smooth in all variables and locally in (t, s) it only varies within a compact subset

in M — this is again the effect of the topology chosen in 45.1 . Note that b(t, 0)
is the original b(t) above.

45.7. Lemma. In the setting of 45.6 , we have the first variation formula

∂
∂s |0E(Gα)a1a0(b( , s)) = Gαb (bt, bs)|t=a1t=a0+

+

∫ a1

a0

G(−btt + btb
−1bt +

1

4
tr(b−1btb

−1bt)b−
1

2
tr(b−1bt)bt+

+ α (− tr(b−1btt)−
1

4
tr(b−1bt)

2 + tr(b−1btb
−1bt))b, bs) dt =

= Gαb (bt, bs)|t=a1t=a0+

+

∫ a1

a0

Gα(−btt + btb
−1bt −

1

2
tr(b−1bt)bt +

1

4αn
tr(b−1

t b−1bt)b+

+
αn− 1

4αn2
tr(b−1bt)

2b, bs) dt.

Proof. We may interchange ∂
∂s |0 with the first integral describing the energy in

45.6 since this is finite dimensional analysis, and we may interchange it with the
second one, since

∫
M

is a continuous linear functional on the space of all smooth
densities with compact support on M , by the chain rule. Then we use that tr∗ is
linear and continuous, d(vol)(b)h = 1

2 tr(b−1h) vol(b), and that d(( )−1)∗(b)h =

−b−1hb−1, and partial integration. �



504 Chapter IX . Manifolds of Mappings 45.10

45.8. The geodesic equation. By lemma 45.7 , the curve t 7→ b(t) is a geodesic
if and only if we have

btt = btb
−1bt −

1

2
tr(b−1bt)bt +

1

4αn
tr(b−1btb

−1bt)b+
αn− 1

4αn2
tr(b−1bt)

2b.

= Γb(bt, bt),

where the Gα-Christoffel symbol Γα B × Bc × Bc → Bc is given by symmetrization

Γαb (h, k) =
1

2
hb−1k +

1

2
kb−1h− 1

4
tr(b−1h)k − 1

4
tr(b−1k)h+

+
1

4αn
tr(b−1hb−1k)b+

αn− 1

4αn2
tr(b−1h) tr(b−1k)b.

The sign of Γα is chosen in such a way that the horizontal subspace of T 2B is
parameterized by (x, y; z,Γx(y, z)). If instead of the obvious framing we use TB =
B × Bc 3 (b, h) 7→ (b, b−1h) =: (b,H) ∈ {b} × C∞c (L(TM, TM)), the Christoffel
symbol looks like

Γ
α

b (H,K) =
1

2
(HK +KH)− 1

4
tr(H)K − 1

4
tr(K)H

+
1

4αn
tr(HK) Id +

αn− 1

4αn2
tr(H) tr(K),

and the Gα-geodesic equation for B(t) := b−1bt becomes

Bt = ∂
∂t (b

−1bt) =
1

4αn
tr(BB) Id−1

2
tr(B)B +

αn− 1

4αn2
tr(B)2 Id .

45.9. The curvature. For another manifold N , for vector fields X, Y ∈ X(N)
and a vector field s : N → TM along f : N →M we have

R(X,Y )s = (∇[X,Y ] − [∇X ,∇Y ])s = (K ◦ TK −K ◦ TK ◦ κTM ) ◦ T 2s ◦ TX ◦ Y,

where K : TTM →M is the connector 37.28 , κTM is the canonical flip TTTM →
TTTM 29.10 , and where the second formula in local coordinates reduces to the
usual formula

(1) R(h, k)` = dΓ(h)(k, `)− dΓ(k)(h, `)− Γ(h,Γ(k, `)) + Γ(k,Γ(h, `)),

see [Kainz and Michor, 1987] or [Kolář et al., 1993, 37.15].

45.10. Theorem. The curvature for the pseudo Riemannian metric Gα on the
manifold B of all non degenerate bilinear structures is given by

b−1Rαb (h, k)l =
1

4
[[H,K], L] +

1

16α
(− tr(HL)K + tr(KL)H)+

+
4αn− 3αn2 + 4n− 4

16αn2
(tr(H) tr(L)K − tr(K) tr(L)H)+

+
4α2n2 − 4αn+ αn2 + 3

16αn2
(tr(HL) tr(K) Id− tr(KL) tr(H) Id),

where H = b−1h,K = b−1k and L = b−1l.

Proof. This is a long but direct computation starting from 45.9.1 . �

The geodesic equation can be solved explicitly, and we have
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45.11. Theorem. Let b0 ∈ B and h ∈ Tb0B = Bc. Then the geodesic for the
metric Gα in B starting at b0 in the direction of h is the curve

expαb0(th) = b0e(a(t) Id +b(t)H0),

where H0 is the traceless part of H := (b0)−1h (i.e. H0 = H − tr(H)
n Id), and where

a(t) = aα,H(t) and b(t) = bα,H(t) in C∞(M,R) are defined as follows:

aα,H(t) =
2

n
log

(
(1 +

t

4
tr(H))2 + t2

α−1

16
tr(H2

0 )

)
,

bα,H(t) =


4√

α−1 tr(H2
0 )

arctan

(
t
√
α−1 tr(H2

0 )

4+t tr(H)

)
for α−1 tr(H2

0 ) > 0

4√
−α−1 tr(H2

0 )
artanh

(
t
√
−α−1 tr(H2

0 )

4+t tr(H)

)
for α−1 tr(H2

0 ) < 0

t
1+ t

4 tr(H)
for tr(H2

0 ) = 0.

Here arctan is taken to have values in (−π2 ,
π
2 ) for the points of the base manifold,

where tr(H) ≥ 0, and on a point where tr(H) < 0 we define

arctan

(
t
√
α−1 tr(H2

0 )

4 + t tr(H)

)
=


arctan in [0, π2 ) for t ∈ [0,− 4

tr(H) )
π
2 for t = − 4

tr(H)

arctan in (π2 , π) for t ∈ (− 4
tr(H) ,∞).

To describe the domain of definition of the exponential mapping we consider the
sets

Zh := {x ∈M : 1
α trx(H2

0 ) = 0 and trx(H) < 0},

Gh := {x ∈M : 0 > 1
α trx(H2

0 ) > − trx(H)2 and trx(H) < 0}
= {x ∈M : αγ(h, h) ≶ γα(h, h) ≶ 0 for α ≶ 0, trx(H) < 0},

Eh := {x ∈M : − trx(H)2 = 1
α trx(H2

0 ) and trx(H) < 0}
= {x ∈M : γα(h, h) = 0 and trx(H) < 0},

Lh := {x ∈M : − trx(H)2 > 1
α trx(H2

0 )}
= {x ∈M : γα(h, h) ≷ 0 for α ≶ 0},

where γ(h, h) = trx(H2), and γα(h, h) = trx(H2
0 ) + α trx(H)2, see 45.5 , are the

integrands of Gb0(h, h) and Gαb0(h, h), respectively. Then we consider the numbers

zh := inf

{
− 4

trx(H)
: x ∈ Zh

}
,

gh := inf

{
4
−α trx(H)−

√
−α trx(H2

0 )

trx(H2
0 ) + α tr(H)2

: x ∈ Gh
}
,

eh := inf

{
− 2

trx(H)
: x ∈ Eh

}
,

lh := inf

{
4
−α trx(H)−

√
−α trx(H2

0 )

trx(H2
0 ) + α tr(H)2

: x ∈ Lh
}
,
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if the corresponding set is not empty, with value ∞ if the set is empty. Denote
mh := inf{zh, gh, eh, lh}. Then expαb0(th) is maximally defined for t ∈ [0,mh).

The second representations of the sets Gh, Lh, and Eh clarifies how to take care of
timelike, spacelike, and lightlike vectors, respectively.

Proof. Using X(t) := g−1gt the geodesic equation reads as

X ′ = −1

2
tr(X)X +

1

4αn
tr(X2) Id +

αn− 1

4αn2
tr(X)2 Id,

and it is easy to see that a solution X satisfies

X ′0 = −1

2
tr(X)X0.

Then X(t) is in the plane generated by H0 and Id for all t and the solution has the
form g(t) = b0 exp(a(t) Id +b(t)H0). Since gt = g(t)(a′(t) Id +b′(t)H0) we have

X(t) = a′(t) Id +b′(t)H0 and

X ′(t) = a′′(t) Id +b′′(t)H0,

and the geodesic equation becomes

a′′(t) Id +b′′(t)H0 =− 1

2
na′(t)(a′(t) Id +b′(t)H0)+

+
1

4αn
(na′(t)2 + b′(t)2 tr(H2

0 )) Id +

+
αn− 1

4αn2
(n2a′(t)2) Id .

We may assume that Id and H0 are linearly independent; if not H0 = 0 and b(t) = 0.
Hence, the geodesic equation reduces to the differential equation

a′′ = −n
4

(a′)2 +
tr(H2

0 )

4αn
(b′)2

b′′ = −n
2
a′ b′

with initial conditions a(0) = b(0) = 0, a′(0) = tr(H)
n , and b′(0) = 1.

If we take p(t) = exp(n2 a) it is easy to see that then p should be a solution of p′′′ = 0
and from the initial conditions

p(t) = 1 +
t

2
tr(H) +

t2

16
(tr(H)2 + α−1 tr(H2

0 )).

Using that the second equation becomes b′ = p−1, and then b is obtained just
by computing the integral. The solutions are defined in [0,mh) where mh is the
infimum over the support of h of the first positive root of the polynomial p, if it
exists, and ∞ otherwise. The description of mh is now a technical fact. �
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45.12. The exponential mapping. For b0 ∈ GL(TxM,T ∗xM) and H = (b0)−1h
let Cb0 be the subset of L(TxM,T ∗xM) given by the union of the sets (compare with

Zh, Gh, Eh, Lh from 45.11 )

{h : tr(H2
0 ) = 0, tr(H) ≤ −4},{

h : 0 > 1
α tr(H2

0 ) > − tr(H)2, 4
−α tr(H)−

√
−α tr(H2

0 )

tr(H2
0 ) + α tr(H)2

≤ 1, tr(H) < 0

}
,{

h : − tr(H)2 = 1
α tr(H2

0 ), tr(H) < −2
}
,{

h : − tr(H)2 > 1
α tr(H2

0 ), 4
−α tr(H)−

√
−α tr(H2

0 )

tr(H2
0 ) + α tr(H)2

≤ 1

}closure

,

which by some limit considerations coincides with the union of the following two
sets:{
h : 0 > 1

α tr(H2
0 ) > − tr(H)2, 4

−α tr(H)−
√
−α tr(H2

0 )

tr(H2
0 ) + α tr(H)2

≤ 1, tr(H) < 0

}closure

,

{
h : − tr(H)2 > 1

α tr(H2
0 ), 4
−α tr(H)−

√
−α tr(H2

0 )

tr(H2
0 ) + α tr(H)2

≤ 1

}closure

.

So Cb0 is closed. We consider the open sets Ub0 := L(TxM,T ∗xM) \ Cb0 , U ′b0 :=
{(b0)−1h : h ∈ Ub0} ⊂ L(TxM,TxM), and finally the open sub fiber bundles over
GL(TM, T ∗M)

U :=
⋃{
{b0} × Ub0 : b0 ∈ GL(TM, T ∗M)

}
⊂ GL(TM, T ∗M)×M L(TM, T ∗M),

U ′ :=
⋃{
{b0} × U ′b0 : b0 ∈ GL(TM, T ∗M)

}
⊂ GL(TM, T ∗M)×M L(TM, TM).

Then we consider the mapping Φ : U → GL(TM, T ∗M) which is given by the
following composition

U −]→ U ′ −ϕ→ GL(TM, T ∗M)×M L(TM, TM)−Id×M exp→

−Id×M exp→ GL(TM, T ∗M)×M GL(TM, TM)−[→ GL(TM, T ∗M),

where ](b0, h) := (b0, (b0)−1h) is a fiber respecting diffeomorphism, [(b0, H) := b0H
is a diffeomorphism for fixed b0, and where the other two mappings will be discussed
below.

The usual fiberwise exponential mapping

exp : L(TM, TM)→ GL(TM, TM)

is a diffeomorphism near the zero section on the ball of radius π centered at zero
in a norm on the Lie algebra for which the Lie bracket is sub multiplicative, for
example. If we fix a symmetric positive definite inner product g, then exp restricts
to a global diffeomorphism from the linear subspace of g-symmetric endomorphisms
onto the open subset of matrices which are positive definite with respect to g. If g
has signature this is no longer true since then g-symmetric matrices may have non
real eigenvalues.
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On the open set of all matrices whose eigenvalues λ satisfy | Imλ| < π, the expo-
nential mapping is a diffeomorphism, see [Varadarajan, 1977].

The smooth mapping ϕ : U ′ → GL(TM, T ∗M) ×M L(TM, TM) is given by

ϕ(b0, H) := (b0, aα,H(1) Id +bα,H(1)H0) (see theorem 45.11 ). It is a diffeomor-
phism onto its image with the following inverse:

ψ(H) :=


4
n

(
e

tr(H)
4 cos

(√
α−1 tr(H2

0 )

4

)
− 1

)
Id +

+ 4√
α−1 tr(H2

0 )
e

tr(H)
4 sin

(√
α−1 tr(H2

0 )

4

)
H0 if tr(H2

0 ) 6= 0

4
n

(
e

tr(H)
4 − 1

)
Id otherwise,

where cos is considered as a complex function, cos(iz) = i cosh(z).

The mapping (pr1,Φ) : U → GL(TM, T ∗M) ×M GL(TM, T ∗M) is a diffeomor-
phism on an open neighborhood of the zero section in U .

45.13. Theorem. In the setting of 45.12 the exponential mapping expαb0 for the

metric Gα is a real analytic mapping defined on the open subset

Ub0 := {h ∈ C∞c (L(TM, T ∗M)) : (b0, h)(M) ⊂ U},
and it is given by

expb0(h) = Φ ◦ (b0, h).

The mapping (πB, exp) : TB → B×B is a real analytic diffeomorphism from an open
neighborhood of the zero section in TB onto an open neighborhood of the diagonal
in B × B. Ub0 is the maximal domain of definition for the exponential mapping.

Proof. Since B is a disjoint union of chart neighborhoods, it is trivially a real
analytic manifold, even if M is not supposed to carry a real analytic structure.

From the consideration in 45.12 it follows that exp = Φ∗ and (πM, exp) are just
push forwards by real analytic fiber respecting mappings of sections of bundles. So

by 30.10 they are smooth, and this applies also to their inverses.

To show that these mappings are real analytic, by 10.3 it remains to check that
they map real analytic curves into real analytic curves. These are described in

30.15 . It is clear that Φ has a fiberwise extension to a holomorphic germ since Φ
is fiber respecting from an open subset in a vector bundle and is fiberwise a real

analytic mapping. So the push forward Φ∗ preserves the description 30.15 and
maps real analytic curves to real analytic curves. �

45.14. Submanifolds of pseudo Riemannian metrics. We denote by Mq

the space of all pseudo Riemannian metrics on the manifold M of signature (the
dimension of a maximal negative definite subspace) q. It is an open set in a closed
locally affine subspace of B and thus a splitting submanifold of it with tangent
bundle TMq =Mq × C∞c (M ← S2T ∗M).

We consider a geodesic c(t) = c0e(a(t) Id +b(t)H0) for the metric Gα in B starting

at c0 in the direction of h as in 45.11 . If c0 ∈ Mq then h ∈ Tc0Mq if and

only if H = (c0)−1h ∈ Lsym,c0(TM, TM) is symmetric with respect to the pseudo
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Riemannian metric c0. But then e(a(t) Id +b(t)H0) ∈ Lsym,c0(TM, TM) for all t in
the domain of definition of the geodesic, so c(t) is a curve of pseudo Riemannian
metrics and thus of the same signature q as c0. Thus, we have

45.15. Theorem. For each q ≤ n = dimM the submanifold Mq of pseudo
Riemannian metrics of signature q on M is a geodesically closed submanifold of
(B, Gα) for each α 6= 0.

Remark. The geodesics of (M0, Gα) have been studied for α = 1
n , in [Freed and

Groisser, 1989], [Gil-Medrano and Michor, 1991] and from 45.15 and 45.11 we
see that they are completely analogous for every positive α.

For fixed x ∈ M there exists a family of homothetic pseudo metrics on the finite
dimensional manifold S2

+T
∗
xM whose geodesics are given by the evaluation of the

geodesics of (M0, Gα) (see [Gil-Medrano and Michor, 1991] for more details). When

α is negative, it is not difficult to see, from 45.15 and 45.11 again, that a geodesic

of (M0, Gα) is defined for all t if and only if the initial velocity h satisfies γα(h, h) ≤
0 and trH > 0 at each point of M , and then the same is true for all the pseudo
metrics on S2

+T
∗
xM. These results appear already in [DeWitt, 1967] for n = 3.

45.16. The local signature of Gα. Since Gα operates in infinite dimensional
spaces, the usual definition of signature is not applicable. But for fixed g ∈Mq the
signature of

γαgx(hx, kx) = tr((g−1
x hx)0(g−1

x kx)0) + α tr(g−1
x kx) tr(g−1

x kx)

on Tg(S
2
qT
∗
xM) = S2T ∗xM is independent of x ∈ M and the special choice of

g ∈Mq. We will call it the local signature of Gα.

45.17. Lemma. The signature of the quadratic form of 45.16 is

Q(α, q) = q(q − n) +

{
0 for α > 0

1 for α < 0.

This result is due to [Schmidt, 1990].

Proof. Since the signature is constant on connected components we have to deter-
mine it only for α = 1

n and α = 1
n−1. In a basis for TM and its dual basis for T ∗M

the bilinear form h ∈ S2T ∗xM has a symmetric matrix. If the basis is orthonormal
for g we have (for At = A and Ct = C)

H = g−1h =

(
− Idq 0

0 Idn−q

)(
A B
Bt C

)
=

(
−A −B
Bt C

)
,

which describes a typical matrix in the space Lsym,g(TxM,TxM) of all matrices
H ∈ L(TxM,TxM) which are symmetric with respect to gx.

Now we treat the case α = 1
n . The standard inner product tr(HKt) is positive

definite on Lsym,g(TxM,TxM), and the linear mapping K 7→ Kt has an eigenspace
of dimension q(n− q) for the eigenvalue −1 in it and a complementary eigenspace
for the eigenvalue 1. So tr(HK) has signature q(n− q).



510 Chapter IX . Manifolds of Mappings 45.21

For the case α = 1
n−1 we again split the space Lsym,g(TxM,TxM) into the subspace

with 0 on the main diagonal, where γαg (h, k) = tr(HK) and where K 7→ Kt has
again an eigenspace of dimension q(n− q) for the eigenvalue −1, and the space of

diagonal matrices. There γαg has signature 1 as determined in the proof of 45.5 . �

45.18. The submanifold of almost symplectic structures. A 2-form ω ∈
Ω2(M) = C∞(M ← Λ2T ∗M) can be non degenerate only if M is of even dimension
dimM = n = 2m. Then ω is non degenerate if and only if ω ∧ · · · ∧ ω = ωm is
nowhere vanishing. Usually this latter 2m-form is regarded as the volume form
associated with ω, but a short computation shows that we have

vol(ω) = 1
m! |ω

m|.

This implies mϕ ∧ ωm−1 = 1
2 tr(ω−1ϕ)ωm for all ϕ ∈ Ω2(M).

45.19. Theorem. The space Ω2
nd(M) of non degenerate 2-forms is a splitting

geodesically closed submanifold of (B, Gα) for each α 6= 0.

Proof. We consider a geodesic c(t) = c0e(a(t) Id +b(t)H0) for the metric Gα in B
starting at c0 in the direction of h as in 45.11 . If c0 = ω ∈ Ω2

nd(M) then h ∈ Ω2
c(M)

if and only if H = ω−1h is symmetric with respect to ω, since we have ω(HX,Y ) =
〈ωω−1hX, Y 〉 = 〈hX, Y 〉 = h(X,Y ) = −h(Y,X) = −ω(HY,X) = ω(X,HY ). At
a point x ∈ M we may choose a Darboux frame (ei) such that ω(X,Y ) = Y tJX
where

J =

(
0 Id
− Id 0

)
.

Then h is skew if and only if JH is a skew symmetric matrix in the Darboux frame,

or JH = HtJ . Since (eA)t = eA
t

the matrix ea(t) Id +b(t)H0 then has the same
property, c(t) is skew for all t. Thus, Ω2

nd(M) is a geodesically closed submanifold.
�

45.20. Lemma. For a non degenerate 2-form ω the signature of the quadratic
form ϕ 7→ tr(ω−1ϕω−1ϕ) on Λ2T ∗xM is m2 − m for α > 0 and m2 − m + 1 for
α < 0.

Proof. Use the method of 45.5 and 45.17 . The description of the space of

matrices can be read off the proof of 45.19 . �

45.21. Symplectic structures. The space Symp(M) of all symplectic structures
is a closed submanifold of (B, Gα). For a compact manifold M it is splitting by
the Hodge decomposition theorem. For dimM = 2 we have Symp(M) = Ω2

nd(M),
so it is geodesically closed. But for dimM ≥ 4 the submanifold Symp(M) is not
geodesically closed. For ω ∈ Symp(M) and ϕ, ψ ∈ Tω Symp(M) the Christoffel
form Γαω(ϕ,ψ) is not closed in general.
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46. The Korteweg – De Vries Equation as a Geodesic Equation

This section is based on [Michor and Ratiu, 1998], an overview of related ideas can
be found in [Segal, 1991]. That the Korteweg – de Vries equation is a geodesic equa-
tion is attributed to [Gelfand and Dorfman, 1979], [Kirillov, 1981] or [Ovsienko and
Khesin, 1987]. The curvature of a right invariant metric on an (infinite dimensional)
Lie group was computed by [Arnold, 1966a,b], see also [Arnold, 1978].

46.1. Recall from 44.1 the principal bundle of embeddings Emb(M,N), where
M and N are smooth finite dimensional manifolds, connected and second count-
able without boundary such that dimM ≤ dimN . The space Emb(M,N) of all
embeddings from M into N is an open submanifold of C∞(M,N), which is stable
under the right action of the diffeomorphism group. Then Emb(M,N) is the total
space of a smooth principal fiber bundle with structure group the diffeomorphism
group. The base is called B(M,N), it is a Hausdorff smooth manifold modeled on
nuclear (LF)-spaces. It can be thought of as the ”nonlinear Grassmannian” of all
submanifolds of N which are of type M .

Recall from 44.24 that if we take a Hilbert space H instead of N , then B(M,H)
is the classifying space for Diff(M) if M is compact, and the classifying bundle
Emb(M,H) carries also a universal connection.

46.2. If (N, g) is a Riemannian manifold then on the manifold Emb(M,N) we have
an induced weak Riemannian metric given by

Ge(s1, s2) =

∫
M

g(s1, s2) vol(e∗g).

Its covariant derivative and curvature were investigated in [Binz, 1980] for the case
that N = RdimM+1 with the standard inner product, and in [Kainz, 1984] in the
general case. We shall not reproduce the general formulas here. This weak Rie-
mannian metric is invariant under the action of the diffeomorphism group Diff(M)
by composition from the right, thus it induces a Riemannian metric on the base
manifold B(M,N), which can be viewed as an infinite dimensional non-linear ana-
logue of the Fubini-Study metric on projective spaces and Grassmannians.

46.3. Example. Let us consider the metric on the space Emb(R,R) of all embed-
dings of the real line into itself, which contains the diffeomorphism group Diff(R) as
an open subset. We could also treat Emb(S1, S1), where the results are the same.

Gf (h, k) =

∫
R
h(x)k(x)|f ′(x)| dx, f ∈ Emb(R,R), h, k ∈ C∞c (R,R).

We shall compute the geodesic equation for this metric by variational calculus. The
energy of a curve f of embeddings (without loss of generality orientation preserving)
is the expression

E(f) = 1
2

∫ b

a

Gf (ft, ft)dt = 1
2

∫ b

a

∫
R
f2
t fx dxdt.
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If we assume that f(x, t, s) depends smoothly on one variable more, so that we have
a variation with fixed endpoints, then the derivative with respect to s of the energy
is given by

∂
∂s |0E(f( , s)) = ∂

∂s |0
1
2

∫ b

a

∫
R
f2
t fx dxdt

= 1
2

∫ b

a

∫
R

(2ftftsfx + f2
t fxs)dxdt

= − 1
2

∫ b

a

∫
R

(2fttfsfx + 2ftfsftx + 2ftftxfs)dxdt

= −
∫ b

a

∫
R

(
ftt + 2

ftftx
fx

)
fsfxdxdt,

so that the geodesic equation with its initial data is

ftt = −2
ftftx
fx

, f( , 0) ∈ Emb+(R,R), ft( , 0) ∈ C∞c (R,R)(1)

= Γf (ft, ft),

where the Christoffel symbol Γ : Emb(R,R)× C∞c (R,R)× C∞c (R,R)→ C∞c (R,R)
is given by symmetrization

(2) Γf (h, k) = −hkx + hxk

fx
= − (hk)x

fx
.

For vector fields X,Y on Emb(R,R) the covariant derivative is given by the ex-
pression ∇Emb

X Y = dY (X) − Γ(X,Y ). The Riemannian curvature R(X,Y )Z =
(∇X∇Y −∇Y∇X −∇[X,Y ])Z is then expressed in terms of the Christoffel symbol
by the usual formula

Rf (h, k)` = −dΓ(f)(h)(k, `) + dΓ(f)(k)(h, `) + Γf (h,Γf (k, `))− Γf (k,Γf (h, `))

= −hx(k`)x
f2
x

+
kx(h`)x
f2
x

+

(
h (k`)x

fx

)
x

fx
−

(
k (h`)x

fx

)
x

fx

=
1

f3
x

(
fxxhxk`− fxxhkx`+ fxhkxx`− fxhxxk`+ 2fxhkx`x − 2fxhxk`x

)
(3)

The geodesic equation can be solved in the following way: If instead of the obvious
framing we choose T Emb = Emb×C∞c 3 (f, h) 7→ (f, hf2

x) =: (f,H) then the

geodesic equation becomes Ft = ∂
∂t (ftf

2
x) = f2

x(ftt + 2 ftftxfx
) = 0, so that F = ftf

2
x

is constant in t, or ft(x, t)fx(x, t)2 = ft(x, 0)fx(x, 0)2. Using that one can then use
separation of variables to solve the geodesic equation. The solution blows up in
finite time in general.

Now let us consider the trivialization of T Emb(R,R) by right translation (this is
clearest for Diff(R)), then we have

u : = ft ◦ f−1, in more detail u(y, t) = ft(f( , t)−1(y), t)

ux = (ftx ◦ f−1)
1

fx ◦ f−1
,
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ut = ftt ◦ f−1 − (ftx ◦ f−1)
1

fx ◦ f−1
(ft ◦ f−1) = −3

(
ftxft
fx

)
◦ f−1

ut = −3uxu.(4)

where we used Tf (Inv)h = −T (f−1) ◦ h ◦ f−1.

46.4. Geodesics of a right invariant metric on a Lie group. Let G be a

Lie group which may be infinite dimensional, with Lie algebra g. Recall 36.1 that
µ : G×G→ G denotes the multiplication with µx left translation and µx right trans-

lation by x, and 36.10 that κ = κr ∈ Ω1(G, g) denotes the right Maurer-Cartan

form, κx(ξ) = Tx(µx
−1

).ξ. It satisfies 38.1 the right Maurer-Cartan equation

dκ − 1
2 [κ, κ]∧ = 0. Let 〈 , 〉 : g × g → R be a positive definite bounded inner

product. Then

(1) Gx(ξ, η) = 〈T (µx
−1

).ξ, T (µx
−1

).η〉 = 〈κ(ξ), κ(η)〉

is a right invariant Riemannian metric on G, and any right invariant bounded
Riemannian metric is of this form, for suitable 〈 , 〉.

Let g : [a, b] → G be a smooth curve. The velocity field of g, viewed in the right

trivialization, is right logarithmic derivative δrg(∂t) = T (µg
−1

)∂tg = κ(∂tg) =
(g∗κ)(∂t). The energy of the curve g is given by

E(g) = 1
2

∫ b

a

Gg(g
′, g′)dt = 1

2

∫ b

a

〈g∗κ(∂t), g
∗κ(∂t)〉 dt.

For a variation g(t, s) with fixed endpoints we have then, using the right Maurer-
Cartan equation and integration by parts

∂sE(g) = 1
2

∫ b

a

2〈∂s(g∗κ)(∂t), g
∗κ(∂t)〉 dt

=

∫ b

a

〈∂t(g∗κ)(∂s)− d(g∗κ)(∂t, ∂s), g
∗κ(∂t)〉 dt

=

∫ b

a

(−〈(g∗κ)(∂s), ∂t(g
∗κ)(∂t)〉 − 〈[g∗κ(∂t), g

∗κ(∂s)], g
∗κ(∂t)〉) dt

= −
∫ b

a

〈(g∗κ)(∂s), ∂t(g
∗κ)(∂t) + ad(g∗κ(∂t))

>(g∗κ(∂t))〉 dt

where ad(g∗κ(∂t))
> : g→ g is the adjoint of ad(g∗κ(∂t)) with respect to the inner

product 〈 , 〉. In infinite dimensions one also has to check the existence of this
adjoint. In terms of the right logarithmic derivative u : [a, b]→ g of g : [a, b]→ G,

given by u(t) := g∗κ(∂t) = Tg(t)(µ
g(t)−1

)g′(t), the geodesic equation looks like

(2) ut = −ad(u)>u.
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46.5. The covariant derivative. Our next aim is to derive the Riemannian cur-
vature, and for that we develop the basis-free version of Cartan’s method of moving
frames in this setting, which also works in infinite dimensions. The right trivializa-
tion or framing (κ, πG) : TG → g × G induces the isomorphism R : C∞(G, g) →
X(G), given by RX(x) = Te(µ

x).X(x). For the Lie bracket and the Riemannian
metric we have

[RX , RY ] = R(−[X,Y ]g + dY.RX − dX.RY ),(1)

R−1[RX , RY ] = −[X,Y ]g +RX(Y )−RY (X),

Gx(RX(x), RY (x)) = 〈X(x), Y (x)〉.

Lemma. Assume that for all X ∈ g the adjoint ad(X)> with respect to the inner
product 〈 , 〉 exists and that X 7→ ad(X)> is bounded. Then the Levi-Civita co-

variant derivative of the metric ( 1 ) exists and is given in terms of the isomorphism
R by

(2) ∇XY = dY.RX + 1
2ad(X)>Y + 1

2ad(Y )>X − 1
2ad(X)Y.

Proof. Easy computations shows that this covariant derivative respects the Rie-
mannian metric,

RX〈Y,Z〉 = 〈dY.RX , Z〉+ 〈Y, dZ.RX〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉,
and is torsionfree,

∇XY −∇YX + [X,Y ]g − dY.RX + dX.RY = 0. �

Let us write α(X) : g→ g, where α(X)Y = ad(Y )>X, then we have

(3) ∇X = RX + 1
2ad(X)> + 1

2α(X)− 1
2ad(X)

46.6. The curvature. First note that we have the following relations:

[RX , ad(Y )] = ad(RX(Y )), [RX , α(Y )] = α(RX(Y )),(1)

[RX , ad(Y )>] = ad(RX(Y ))>, [ad(X)>, ad(Y )>] = −ad([X,Y ]g)>.

The Riemannian curvature is then computed by

R(X,Y ) = [∇X ,∇Y ]−∇−[X,Y ]g+RX(Y )−RY (X)(2)

= [RX + 1
2ad(X)> + 1

2α(X)− 1
2ad(X), RY + 1

2ad(Y )> + 1
2α(Y )− 1

2ad(Y )]

−R−[X,Y ]g+RX(Y )−RY (X) − 1
2ad(−[X,Y ]g +RX(Y )−RY (X))>

− 1
2α(−[X,Y ]g +RX(Y )−RY (X)) + 1

2ad(−[X,Y ]g +RX(Y )−RY (X))

= − 1
4 [ad(X)> + ad(X), ad(Y )> + ad(Y )]

+ 1
4 [ad(X)> − ad(X), α(Y )] + 1

4 [α(X), ad(Y )> − ad(Y )]

+ 1
4 [α(X), α(Y )] + 1

2α([X,Y ]g).

If we plug in all definitions and use 4 times the Jacobi identity we get the following
expression

〈4R(X,Y )Z,U〉 = 2〈[X,Y ], [Z,U ]〉 − 〈[Y, Z], [X,U ]〉+ 〈[X,Z], [Y,U ]〉
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− 〈Z, [U, [X,Y ]]〉+ 〈U, [Z, [X,Y ]]〉 − 〈Y, [X, [U,Z]]〉 − 〈X, [Y, [Z,U ]]〉

+ 〈ad(X)>Z, ad(Y )>U〉+ 〈ad(X)>Z, ad(U)>Y 〉+ 〈ad(Z)>X, ad(Y )>U〉

− 〈ad(U)>X, ad(Y )>Z〉 − 〈ad(Y )>Z, ad(X)>U〉 − 〈ad(Z)>Y, ad(X)>U〉

− 〈ad(U)>X, ad(Z)>Y 〉+ 〈ad(U)>Y, ad(Z)>X〉.

46.7. Jacobi fields, I. We compute first the Jacobi equation via variations of
geodesics. So let g : R2 → G be smooth, t 7→ g(t, s) a geodesic for each s. Let again
u = κ(∂tg) = (g∗κ)(∂t) be the velocity field along the geodesic in right trivialization
which satisfies the geodesic equation ut = −ad(u)>u. Then y := κ(∂sg) = (g∗κ)(∂s)
is the Jacobi field corresponding to this variation, written in the right trivialization.
From the right Maurer-Cartan equation we then have:

yt = ∂t(g
∗κ)(∂s) = d(g∗κ)(∂t, ∂s) + ∂s(g

∗κ)(∂t) + 0

= [(g∗κ)(∂t), (g
∗κ)(∂s)]g + us

= [u, y] + us.

From this, using the geodesic equation and 46.6.1 we get

ust = uts = ∂sut = −∂s(ad(u)>u) = −ad(us)
>u− ad(u)>us

= −ad(yt + [y, u])>u− ad(u)>(yt + [y, u])

= −α(u)yt − ad([y, u])>u− ad(u)>yt − ad(u)>([y, u])

= −ad(u)>yt − α(u)yt + [ad(y)>, ad(u)>]u− ad(u)>ad(y)u.

Finally, we get the Jacobi equation as

ytt = [ut, y] + [u, yt] + ust

= ad(y)ad(u)>u+ ad(u)yt − ad(u)>yt

− α(u)yt + [ad(y)>, ad(u)>]u− ad(u)>ad(y)u

ytt = [ad(y)> + ad(y), ad(u)>]u− ad(u)>yt − α(u)yt + ad(u)yt.(1)

46.8. Jacobi fields, II. Let y be a Jacobi field along a geodesic g with right
trivialized velocity field u. Then y satisfies the Jacobi equation

∇∂t∇∂ty +R(y, u)u = 0

We want to show that this leads to same equation as 46.7 . First note that from

46.5.2 we have

∇∂ty = yt + 1
2ad(u)>y + 1

2α(u)y − 1
2ad(u)y

so that we get, using ut = −ad(u)>u heavily:

∇∂t∇∂ty = ∇∂t
(
yt + 1

2ad(u)>y + 1
2α(u)y − 1

2ad(u)y
)

= ytt + 1
2ad(ut)

>y + 1
2ad(u)>yt + 1

2α(ut)y

+ 1
2α(u)yt − 1

2ad(ut)y − 1
2ad(u)yt
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+ 1
2ad(u)>

(
yt + 1

2ad(u)>y + 1
2α(u)y − 1

2ad(u)y
)

+ 1
2α(u)

(
yt + 1

2ad(u)>y + 1
2α(u)y − 1

2ad(u)y
)

− 1
2ad(u)

(
yt + 1

2ad(u)>y + 1
2α(u)y − 1

2ad(u)y
)

= ytt + ad(u)>yt + α(u)yt − ad(u)yt

− 1
2α(y)ad(u)>u− 1

2ad(y)>ad(u)>u− 1
2ad(y)ad(u)>u

+ 1
2ad(u)>

(
1
2α(y)u+ 1

2ad(y)>u+ 1
2ad(y)u

)
+ 1

2α(u)
(

1
2α(y)u+ 1

2ad(y)>u+ 1
2ad(y)u

)
− 1

2ad(u)
(

1
2α(y)u+ 1

2ad(y)>u+ 1
2ad(y)u

)
In the second line of the last expression we use

− 1
2α(y)ad(u)>u = − 1

4α(y)ad(u)>u− 1
4α(y)α(u)u

and similar forms for the other two terms to get:

∇∂t∇∂ty = ytt + ad(u)>yt + α(u)yt − ad(u)yt

+ 1
4 [ad(u)>, α(y)]u+ 1

4 [ad(u)>, ad(y)>]u+ 1
4 [ad(u)>, ad(y)]u

+ 1
4 [α(u), α(y)]u+ 1

4 [α(u), ad(y)>]u+ 1
4 [α(u), ad(y)]u

− 1
4 [ad(u), α(y)]u− 1

4 [ad(u), ad(y)> + ad(y)]u,

where in the last line we also used ad(u)u = 0. We now compute the curvature
term:

R(y, u)u = − 1
4 [ad(y)> + ad(y), ad(u)> + ad(u)]u

+ 1
4 [ad(y)> − ad(y), α(u)]u+ 1

4 [α(y), ad(u)> − ad(u)]u

+ 1
4 [α(y), α(u)] + 1

2α([y, u])u

= − 1
4 [ad(y)> + ad(y), ad(u)>]u− 1

4 [ad(y)> + ad(y), ad(u)]u

+ 1
4 [ad(y)>, α(u)]u− 1

4 [ad(y), α(u)]u+ 1
4 [α(y), ad(u)> − ad(u)]u

+ 1
4 [α(y), α(u)]u+ 1

2ad(u)>ad(y)u

Summing up we get

∇∂t∇∂ty +R(y, u)u = ytt + ad(u)>yt + α(u)yt − ad(u)yt

− 1
2 [ad(y)> + ad(y), ad(u)>]u

+ 1
2 [α(u), ad(y)]u+ 1

2ad(u)>ad(y)u

Finally, we need the following computation using 46.6.1 :

1
2 [α(u), ad(y)]u = 1

2α(u)[y, u]− 1
2ad(y)α(u)u
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= 1
2ad([y, u])>u− 1

2ad(y)ad(u)>u

= − 1
2 [ad(y)>, ad(u)>]u− 1

2ad(y)ad(u)>u.

Inserting we get the desired result:

∇∂t∇∂ty +R(y, u)u = ytt + ad(u)>yt + α(u)yt − ad(u)yt

− [ad(y)> + ad(y), ad(u)>]u.

46.9. The weak symplectic structure on the space of Jacobi fields. Let
us assume now that the geodesic equation in g

ut = −ad(u)>u

admits a unique solution for some time interval, depending smoothly on the choice
of the initial value u(0). Furthermore, we assume that G is a regular Lie group

(see 38.4 ) so that each smooth curve u in g is the right logarithmic derivative

(see 38.1 ) of a curve evolG(u) = g in G, depending smoothly on u. Let us also
assume that Jacobi fields exist on the same time interval on which u exists, de-
pending uniquely on the initial values y(0) and yt(0). So the space of Jacobi fields
is isomorphic to g× g.

There is the well known symplectic structure on the space Ju of all Jacobi fields
along a fixed geodesic with velocity field u. It is given by the following expression
which is constant in time t:

σ(y, z) := 〈y,∇∂tz〉 − 〈∇∂ty, z〉

= 〈y, zt + 1
2ad(u)>z + 1

2α(u)z − 1
2ad(u)z〉

− 〈yt + 1
2ad(u)>y + 1

2α(u)y − 1
2ad(u)y, z〉

= 〈y, zt〉 − 〈yt, z〉+ 〈[u, y], z〉 − 〈y, [u, z]〉 − 〈[y, z], u〉
= 〈y, zt − ad(u)z + 1

2α(u)z〉 − 〈yt − ad(u)y + 1
2α(u)y, z〉.

It is a nice exercise to derive directly from the equation of Jacobi fields 46.7.1 that
σ(y, z) is indeed constant in t: plug in all definitions and use the Jacobi equation
(for the Lie bracket).

46.10. Geodesics and curvature on Diff(S1) revisited. We consider again
the Lie groups Diff(R) and Diff(S1) with Lie algebras Xc(R) and X(S1) where the
Lie bracket [X,Y ] = X ′Y − XY ′ is the negative of the usual one. For the inner
product 〈X,Y 〉 =

∫
X(x)Y (x) dx integration by parts gives

〈[X,Y ], Z〉 =

∫
R
(X ′Y Z −XY ′Z)dx =

∫
R

(2X ′Y Z +XY Z ′)dx = 〈Y, ad(X)>Z〉,

which in turn gives rise to

ad(X)>Z = 2X ′Z +XZ ′,

α(X)Z = 2Z ′X + ZX ′,

(ad(X)> + ad(X))Z = 3X ′Z,

(ad(X)> − ad(X))Z = X ′Z + 2XZ ′ = α(X)Z.
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The last equation means that − 1
2α(X) is the skew-symmetrization of ad(X) with

respect to to the inner product 〈 , 〉. From the theory of symmetric spaces one
then expects that − 1

2α is a Lie algebra homomorphism and indeed one can check
that

− 1
2α([X,Y ]) = [− 1

2α(X),− 1
2α(Y )]

holds. From 46.4.2 we get the same geodesic equation as in 46.3.4 :

ut = −ad(u)>u = −3uxu.

Using the above relations and the curvature formula 46.6.2 the curvature becomes

R(X,Y )Z = −X ′′Y Z +XY ′′Z − 2X ′Y Z ′ + 2XY ′Z ′ = −2[X,Y ]Z ′ − [X,Y ]′Z.

= −α([X,Y ])Z

If we change the framing of the tangent bundle by

X = h ◦ f−1, X ′ =

(
hx
fx

)
◦ f−1, X ′′ =

(
hxxfx − hxfxx

f3
x

)
◦ f−1,

and similarly for Y = k ◦ f−1 and Z = ` ◦ f−1, then (R(X,Y )Z) ◦ f coincides with

formula 46.3.3 for the curvature.

46.11. Jacobi fields on Diff(S1). A Jacobi field y on Diff(S1) along a geodesic g

with velocity field u is a solution of the partial differential equation 46.7.1 , which
in our case becomes

ytt = [ad(y)> + ad(y), ad(u)>]u− ad(u)>yt − α(u)yt + ad(u)yt(1)

= −3u2yxx − 4uytx − 2uxyt,

ut = −3uxu.

Since the geodesic equation has solutions, locally in time, see the hint in 46.3 ,

and since Diff(S1) and Diff(R) is a regular Lie group (see 43.1 ), the space of all

Jacoby fields exists and is isomorphic to C∞(S1,R)2 or C∞c (R,R)2, respectively.

The weak symplectic structure on it is given by 46.9 :

σ(y, z) = 〈y, zt − 1
2uxz + 2uzx〉 − 〈yt − 1

2uxy + 2uyx, z〉

=

∫
S1 or R

(yzt − ytz + 2u(yzx − yxz)) dx.(2)

46.12. Geodesics on the Virasoro-Bott group. For ϕ ∈ Diff+(S1) let ϕ′ :
S1 → R+ be the mapping given by Txϕ.∂x = ϕ′(x)∂x. Then

c : Diff+(S1)×Diff+(S1)→ R

c(ϕ,ψ) :=

∫
S1

log(ϕ ◦ ψ)′d logψ′ =

∫
S1

log(ϕ′ ◦ ψ)d logψ′

is a smooth group cocycle with c(ϕ,ϕ−1) = 0, and S1 × Diff+(S1) becomes a Lie
group S1 ×c Diff(S1) with the operations(

ϕ

a

)
.

(
ψ

b

)
=

(
ϕ ◦ ψ

ab e2πic(ϕ,ψ)

)
,

(
ϕ

a

)−1

=

(
ϕ−1

a−1

)
.
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The Lie algebra of this Lie group turns out to be R×ω X(S1) with the bracket[(
h

a

)
,

(
k

b

)]
=

(
h′k − hk′

ω(h, k)

)
,

where ω : X(S1)× X(S1)→ R is the Lie algebra cocycle

ω(h, k) = ω(h)k =

∫
S1

h′dk′ =

∫
S1

h′k′′dx = 1
2

∫
S1

det

(
h′ k′

h′′ k′′

)
dx,

a generator of the bounded Chevalley cohomology H2(X(S1),R). Note that the
Lie algebra cocycle makes sense on the Lie algebra Xc(R) of all vector fields with
compact support on R, but it does not integrate to a group cocycle on Diff(R). The
following considerations also make sense on Xc(R). Note also that H2(Xc(M),R) =
0 for each finite dimensional manifold of dimension ≥ 2 (see [Fuks, 1984 1986]),
which blocks the way to find a higher dimensional analogue of the Korteweg – de
Vries equation in a way similar to that sketched below. We shall use the following
inner product on X(S1):〈(

h

a

)
,

(
k

b

)〉
:=

∫
S1

hk dx+ a.b.

Integrating by parts we get〈
ad

(
h

a

)(
k

b

)
,

(
`

c

)〉
=

〈(
h′k − hk′

ω(h, k)

)
,

(
`

c

)〉
=

∫
S1

(h′k`− hk′`+ ch′k′′) dx =

∫
S1

(2h′`+ h`′ + ch′′′)k dx

=

〈(
k

b

)
, ad

(
h

a

)>(
`

c

)〉
,

ad

(
h

a

)>(
`

c

)
=

(
2h′`+ h`′ + ch′′′

0

)
,

so that in matrix notation we have (where ∂ := ∂x)

ad

(
h

a

)
=

(
h′ − h∂ 0
ω(h) 0

)
,

ad

(
h

a

)>
=

(
2h′ + h∂ h′′′

0 0

)
,

α

(
h

a

)
= ad

( )>(
h

a

)
=

(
h′ + 2h∂ + a∂3 0

0 0

)
,

ad

(
h

a

)>
+ ad

(
h

a

)
=

(
3h′ h′′′

ω(h) 0

)
,

ad

(
h

a

)>
− ad

(
h

a

)
=

(
h′ + 2h∂ h′′′

−ω(h) 0

)
.
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From 46.4.2 we see that the geodesic equation on the Virasoro-Bott group is(
ut
at

)
= −ad

(
u

a

)>(
u

a

)
=

(
−3u′u− au′′′

0

)
,

so that c is a constant in time, and finally the geodesic equation is the periodic
Korteweg-De Vries equation

ut + 3uxu+ auxxx = 0.

If we use Xc(R) we get the usual Korteweg-De Vries equation.

46.13. The curvature. Now we compute the curvature. Recall from 46.12 the

matrices ad
(
h
a

)>
, α
(
h
a

)
, and ad

(
h
a

)
whose entries are integro-differential operators,

and insert them into formula 46.6.2 . For the computation recall that the matrix is

applied to vectors of the form
(
`
c

)
where c a constant. Then we see that 4R

((
h
a

)
,
(
k
b

))
is the following 2× 2-matrix whose entries are integro-differential operators:

4(h1h
′′
2 − h′′1h2) + 2(a1h

(4)
2 − a2h

(4)
1 )

+(8(h1h
′
2 − h′1h2) + 10(a1h

′′′
2 − a2h

′′′
1 ))∂

+18(a1h
′′
2 − a2h

′′
1)∂2

+(12(a1h
′
2 − a2h

′
1) + 2ω(h1, h2))∂3

−h′′′1 ω(h2) + h′′′2 ω(h1)

2(h′′′1 h
′
2 − h′1h′′′2 )

+2(h1h
(4)
2 − h

(4)
1 h2)

+(a1h
(6)
2 − a2h

(6)
1 )

ω(h2)(4h′1 + 2h1∂ + a1∂
3)

−ω(h1)(4h′2 + 2h2∂ + a2∂
3)

0


.

This leads to the following expression for the sectional curvature:〈
4R
((
h1

a1

)
,
(
h2

a2

))(
h1

a1

)
,
(
h2

a2

)〉
=

=

∫
S1

(
4(h1h

′′
2 − h′′1h2)h1h2 + 8(h1h

′
2 − h′1h2)h′1h2

+ 2(a1h
(4)
2 − a2h

(4)
1 )h1h2 + 10(a1h

′′′
2 − a2h

′′′
1 )h′1h2

+ 18(a1h
′′
2 − a2h

′′
1)h′′1h2

+ 12(a1h
′
2 − a2h

′
1)h′′′1 h2 + 2ω(h1, h2)h′′′1 h2

− h′′′1 ω(h2, h1)h2 + h′′′2 ω(h1, h1)h2

+ 2(h′′′1 h
′
2 − h′1h′′′2 )a1h2

+ 2(h1h
(4)
2 − h

(4)
1 h2)a1h2

+ (a1h
(6)
2 − a2h

(6)
1 )a1h2

+ (4h′1h1h
′′′
2 + 2h1h

′
1h
′′′
2 + a1h

′′′
1 h
′′′
2

− 4h′2h1h
′′′
1 − 2h2h

′
1h
′′′
1 − a2h

′′′
1 h
′′′
1 )a2

)
dx

=

∫
S1

(
− 4[h1, h2]2 + 4(a1h2 − a2h1)(h1h

(4)
2 − h′1h′′′2 + h′′′1 h

′
2 − h

(4)
1 h2)
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− (h′′′2 )2a2
1 + 2h′′′1 h

′′′
2 a1a2 − (h′′′1 )2a2

2

)
dx

+3ω(h1, h2)2.

46.14. Jacobi fields. A Jacobi field y =
(
y
b

)
along a geodesic with velocity field(

u
a

)
is a solution of the partial differential equation 46.7.1 which in our case looks

as follows. (
ytt
btt

)
=

[
ad

(
y

b

)>
+ ad

(
y

b

)
, ad

(
u

a

)>](
u

a

)

− ad

(
u

a

)>(
yt
bt

)
− α

(
u

a

)(
yt
bt

)
+ ad

(
u

a

)(
yt
bt

)
=

[(
3yx yxxx
ω(y) 0

)
,

(
2ux + u∂x uxxx

0 0

)](
u

a

)
+

(
−2ux − 4u∂x − a∂3

x −uxxx
ω(u) 0

)(
yt
bt

)
,

which leads to

ytt = −u(4ytx + 3uyxx + ayxxxx)− ux(2yt + 2ayxxx)(1)

− uxxx(bt + ω(y, u)− 3ayx)− aytxxx,
btt = ω(u, yt) + ω(y, 3uxu) + ω(y, auxxx).(2)

Let us consider first equation ( 2 ):

btt =

∫
S1

(−ytxxxu+ yxxx(3uxu+ auxxx))dx( 2 ’)

Next we consider the disturbing integral term in equation ( 1 ), and using the
geodesic equation for u we check that its derivative with respect to t equals equation
(2’), so it is a constant:

bt + ω(y, u) = bt +

∫
S1

yxxxu dx =: B1 since(3)

btt +

∫
S1

(ytxxxu+ yxxxut) dx = btt +

∫
S1

(ytxxxu+ yxxx(−3uxu− auxxx)) dx = 0.

Note that b(t) can be explicitly solved as

(4) b(t) = B0 +B1t−
∫ t

a

∫
S1

yxxxu dx dt.

The first line of the Jacobi equation on the Virasoro-Bott group is a genuine partial
differential equation and we get the following system of equations:

ytt = −u(4ytx + 3uyxx + ayxxxx)− ux(2yt + 2ayxxx)

+ (3ayx −B1)uxxx − aytxxx,(5)

ut = −3uxu− auxxx,
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a = constant,

where u(t, x), y(t, x) are either smooth functions in (t, x) ∈ I×S1 or in (t, x) ∈ I×R,
where I is an interval or R, and where in the latter case u, y, yt have compact
support with respect to x.

46.15. The weak symplectic structure on the space of Jacobi fields on the
Virasoro Lie algebra. Since the Korteweg - de Vries equation has local solutions
depending smoothly on the initial conditions (and global solutions if a 6= 0), the
space of all Jacobi fields exists and is isomorphic to (R×ω X(S1))× (R×ω X(S1)).

The weak symplectic structure is given by 46.9 :

σ

((
y

b

)
,

(
z

c

))
=

〈(
y

b

)
,

(
zt
ct

)〉
−
〈(

yt
bt

)
,

(
z

c

)〉
+

〈[(
u

a

)
,

(
y

b

)]
,

(
z

c

)〉
−
〈(

y

b

)
,

[(
u

a

)
,

(
z

b

)]〉
−
〈[(

y

b

)
,

(
z

c

)]
,

(
u

a

)〉
=

∫
S1 or R

(yzt − ytz + 2u(yzx − yxz)) dx

+ b(ct + ω(z, u))− (bt + ω(y, u))− aω(y, z)

=

∫
S1 or R

(yzt − ytz + 2u(yzx − yxz)) dx(1)

+ bC1 −B1c−
∫
S1 or R

ay′z′′a dx.
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Complements to Manifolds of Mappings

For a compact smooth finite dimensional manifold M , some results on the topolog-
ical type of the diffeomorphism group Diff(M) are available in the literature. In
[Smale, 1959] it is shown that Diff(S2) is homotopy equivalent to O(3,R). This
result has been extended in [Hatcher, 1983] where it is shown that Diff(S3) is ho-
motopy equivalent to O(4,R). The component group π0(Diff+(Sn)) of the group of
orientation preserving diffeomorphisms on the sphere Sn is isomorphic to the group
of homotopy spheres of dimension n+ 1 for n > 4, see [Kervaire and Milnor, 1963].
If M is a product of spheres then π0(Diff(M)) has been computed by [Browder,
1967] and [Turner, 1969]. For a simply connected orientable compact manifold M
in [Sullivan, 1978] it is shown that π0(Diff(M)) is commensurable to an arithmetic
group, where two groups are said to be commensurable if there is a finite se-
quence of homomorphisms of groups between them with finite kernel and cokernel.
By [Borel and Harish-Chandra, 1962], any arithmetic group is finitely presented,
and by [Borel and Serre, 1973] it is even of finite type, which means that its
classifying space is homotopy equivalent to a CW-complex with finitely many cells
in each dimension.

Two diffeomorphisms f, g of M are called pseudo-isotopic if there is a diffeo-
morphism F : M × I → M × I restricting to f and g at the two ends of M × I,
respectively. Let D(M) be the group of pseudo-isotopy classes of diffeomorphisms of
M , a quotient of Diff(M)/Diff0(M), where Diff0(M) is the connected component.
By [Cerf, 1970], if M is simply connected then π0(Diff(M)) = D(M), whereas for
non simply connected M there is in general an abelian kernel A in an exact sequence

0→ A→ π0(Diff(M))→ D(M)→ 0,

and A has been computed by [Hatcher and Wagoner, 1973] and [Igusa, 1984]. In
particular, A is finitely generated if π0(M) is finite.

In [Triantafillou, 1994] the following result is announced: If M is a smooth compact
orientable manifold of dimension ≥ 5 with finite fundamental group, then D(M) is
commensurable to an arithmetic group. Moreover, π0(M) is of finite type.
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In section 47 we show how to treat direct limit manifolds like S∞ = lim−→Sn or

SO(∞,R) = lim−→SO(n,R) as real analytic manifolds modeled on R∞ = R(N) =⊕
N R. As topological spaces these are often used in algebraic topology, in partic-

ular the Grassmannians as classifying spaces of the groups SO(k). The differential
calculus is very well applicable, and the groups GL(∞,R), SO(∞,R) turn out to
be regular Lie groups, where the exponential mapping is even locally a diffeomor-
phism onto a neighborhood of the identity, since it factors over finite dimensional
exponential mappings.

In section 48 we consider a manifold with a closed 2-form σ inducing an injective
(but in general not surjective) mapping σ : TM → T ∗M . This is called a weak
symplectic manifold, and there are difficulties in defining the Poisson bracket for
general smooth functions. We describe a natural subspace of functions for which
the Poisson bracket makes sense, and which admit Hamiltonian vector fields.

For a (unitary) representation of a (finite dimensional) Lie group G in a Hilbert
space H one wishes to have the infinitesimal representation of the Lie algebra at
disposal. Classically this is given by unbounded operators and offers analytical

difficulties. We show in 49.5 and 49.10 that the dense subspaces H∞ and Hω of
smooth and real analytic vectors are invariant convenient vector spaces on which
the action G × H∞ → H∞ is smooth (resp. real analytic). These are well known
results. Our proofs are transparent and surprisingly simple; they use, however, the

uniform boundedness principles 5.18 and 11.12 . Using this and the results from

section 48 , we construct the moment mapping of any unitary representation.

Section 50 on perturbation theory of operators is devoted to the background and

proof of theorem 50.16 which says that a smooth curve of unbounded selfadjoint
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operators on Hilbert space with compact resolvent admits smooth parameteriza-
tions of its eigenvalues and eigenvectors, under some condition. The real analytic
version of this theorem is due to [Rellich, 1940], see also [Kato, 1976, VII, 3.9], with
formally stronger notions of real analyticity which are quite difficult to handle.
Again the power of convenient calculus shows in the ease with which this result is
derived.

In section 51 we present a version of one of the hard implicit function theorems,
which is applicable to some non-linear partial differential equations. Its origins
are the result of John Nash about the existence of isometric embeddings of Rie-
mannian manifolds into Rn’s, see [Nash, 1956]. It was then identified by [Moser,
1961], [Moser, 1966] as an abstract implicit function theorem, and found the most
elaborate presentations in [Hamilton, 1982], and [Gromov, 1986]. But the original
application about the existence of isometric embeddings was finally reproved in a
very simple way by [Günther, 1989a, 1991], who composed the nonlinear perturba-
tion problem with the inverse of a Laplace operator and then applied the Banach
fixed point theorem. This is characteristic for applications of hard implicit function
theorems: Each serious application is incredibly complicated, and finally a simple ad
hoc method solves the problem. To our knowledge of the original applications only
two have not yet found direct simpler proofs: The result by Hamilton [Hamilton,
1982], that a compact Riemannian 3-manifold with positive Ricci curvature also
admits a metric with constant scalar curvature; and the application on the small
divisor problem in celestial mechanics. We include here the hard implicit function
theorem of Nash and Moser in the form of [Hamilton, 1982], in full generality and
without any loss, in condensed form but with all details.

47. Manifolds for Algebraic Topology

47.1. Convention. In this section the space R(N) of all finite sequences with the
direct sum topology plays a an important role. It is also denoted by R∞, mainly in
in algebraic topology. It is a convenient vector space. We consider it equipped with
the weak inner product 〈x, y〉 :=

∑
xiyi, which is bilinear and bounded, therefore

smooth. It is called weak, since it is non degenerate in the following sense: the
associated linear mapping R(N) → (R(N))′ = RN is injective but far from being

surjective. We will also use the weak Euclidean distance |x| :=
√
〈x, x〉, whose

square is a smooth function.

47.2. Example: The sphere S∞. This is the set {x ∈ R(N) : 〈x, x〉 = 1},
the usual infinite dimensional sphere used in algebraic topology, the topological
inductive limit of Sn ⊂ Sn+1 ⊂ . . .. The inductive limit topology coincides with
the subspace topology since clearly lim−→Sn → S∞ ⊂ R(N) is continuous, S∞ as

closed subset of R(N) with the c∞-topology is compactly generated, and since each
compact set is contained in a step of the inductive limit.

We show that S∞ is a smooth manifold by describing an explicit smooth atlas, the
stereographic atlas. Choose a ∈ S∞ (”south pole”). Let

U+ := S∞ \ {a}, u+ : U+ → {a}⊥, u+(x) = x−〈x,a〉a
1−〈x,a〉 ,
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U− := S∞ \ {−a}, u− : U− → {a}⊥, u−(x) = x−〈x,a〉a
1+〈x,a〉 .

From an obvious drawing in the 2-plane through 0, x, and a it is easily seen that
u+ is the usual stereographic projection. We also get

u−1
+ (y) = |y|2−1

|y|2+1a+ 2
|y|2+1y for y ∈ {a}⊥ \ {0}

and (u−◦u−1
+ )(y) = y

|y|2 . The latter equation can directly be seen from the drawing

using the intersection theorem.

The two stereographic charts above can be extended to charts on open sets in R(N)

in such a way that S∞ becomes a splitting submanifold of R(N):

ũ+ : R(N) \ [0,+∞)a→ a⊥ + (−1,+∞)a

ũ+(z) := u+( z
|z| ) + (|z| − 1)a

= (1 + 〈z, a〉)u−1
+ (z − 〈z, a〉a)

Since the model space R(N) of S∞ has the bornological approximation property by

28.6 , and is reflexive, by 28.7 the operational tangent bundle of S∞ equals the
kinematic one: DS∞ = TS∞.

We claim that TS∞ is diffeomorphic to {(x, v) ∈ S∞ × R(N) : 〈x, v〉 = 0}.
The Xx ∈ TxS

∞ are exactly of the form c′(0) for a smooth curve c : R → S∞

with c(0) = x by 28.13 . Then 0 = d
dt |0〈c(t), c(t)〉 = 2〈x,Xx〉. For v ∈ x⊥ we use

c(t) = cos(|v|t)x+ sin(|v|t) v
|v| .

The construction of S∞ works for any positive definite bounded bilinear form on
any convenient vector space.

The sphere is smoothly contractible, by the following argument: We consider the
homotopy A : R(N) × [0, 1] → R(N) through isometries which is given by A0 = Id

and by 44.22

At(a0, a1, a2, . . .) = (a0, . . . , an−2, an−1 cos θn(t), an−1 sin θn(t),

an cos θn(t), an sin θn(t), an+1 cos θn(t), an+1 sin θn(t), . . .)

for 1
n+1 ≤ t ≤ 1

n , where θn(t) = ϕ(n((n + 1)t − 1))π2 for a fixed smooth function

ϕ : R → R which is 0 on (−∞, 0], grows monotonely to 1 in [0, 1], and equals 1
on [1,∞). The mapping A is smooth since it maps smooth curves (which locally
map into some RN ) to smooth curves (which then locally have values in R2N ).

Then A1/2(a0, a1, a2, . . .) = (a0, 0, a1, 0, a2, 0, . . .) is in R(N)
even, and on the other hand

A1(a0, a1, a2, . . .) = (0, a0, 0, a1, 0, a2, 0, . . .) is in R(N)
odd. This is a variant of a ho-

motopy constructed by [Ramadas, 1982]. Now At|S∞ for 0 ≤ t ≤ 1/2 is a smooth

isotopy on S∞ between the identity and A1/2(S∞) ⊂ R(N)
even. The latter set is

contractible in a chart.

One may prove in a simpler way that S∞ is contractible with a real analytic homo-
topy with one corner: roll all coordinates one step to the right and then contract
in the stereographic chart opposite to (1, 0, . . . ).
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47.3. Example. The Grassmannians and the Stiefel manifolds. The
Grassmann manifold G(k,∞;R) = G(k,∞) is the set of all k-dimensional linear
subspaces of the space of all finite sequences R(N). The Stiefel manifold of
orthonormal k-frames O(k,∞;R) = O(k,∞) is the set of all linear isometries
Rk → R(N), where the latter space is again equipped with the standard weak in-

ner product described at the beginning of 47.2 . The Stiefel manifold of all
k-frames GL(k,∞;R) = GL(k,∞;R) is the set of all injective linear mappings
Rk → R(N).

There is a canonical transposition mapping ( )t : L(Rk,R(N)) → L(R(N),Rk)
which is given by

At : R(N) −incl→ RN =
(
R(N)

)′
−A
′
→ (Rk)′ = Rk

and satisfies 〈At(x), y〉 = 〈x,A(y)〉. The transposition mapping is bounded and
linear, so it is real analytic. Then we have

GL(k,∞) = {A ∈ L(Rk,R(N)) : At ◦A ∈ GL(k)},

since At ◦ A ∈ GL(k) if and only if 〈Ax,Ay〉 = 〈AtAx, y〉 = 0 for all y implies
x = 0, which is equivalent to A injective. So in particular GL(k,∞) is open in
L(Rk,R(N)). The Lie group GL(k) acts freely from the right on the space GL(k,∞).
Two elements of GL(k,∞) lie in the same orbit if and only if they have the same
image in R(N). We have a surjective mapping π : GL(k,∞) → G(k,∞), given by
π(A) = A(Rk), where the inverse images of points are exactly the GL(k)-orbits.
Similarly, we have

O(k,∞) = {A ∈ L(Rk,R(N)) : At ◦A = Idk}.

The Lie group O(k) of all isometries of Rk acts freely from the right on the space
O(k,∞). Two elements of O(k,∞) lie in the same orbit if and only if they have
the same image in R(N). The projection π : GL(k,∞) → G(k,∞) restricts to a
surjective mapping π : O(k,∞) → G(k,∞), and the inverse images of points are
now exactly the O(k)-orbits.

47.4. Lemma. Iwasawa decomposition. Let T (k;R) = T (k) be the group
of all upper triangular k × k-matrices with positive entries on the main diagonal.
Then each B ∈ GL(k,∞) can be written in the form B = p(B) ◦ q(B), with unique
p(B) ∈ O(k,∞) and q(B) ∈ T (k). The mapping q : GL(k,∞) → T (k) is real
analytic, and p : GL(k,∞)→ O(k,∞)→ GL(k,∞) is real analytic, too.

Proof. We apply the Gram Schmidt orthonormalization procedure to the vectors
B(e1), . . . , B(ek) ∈ R(N). The coefficients of this procedure form an upper trian-
gular k × k-matrix q(B) whose entries are rational functions of the inner products
〈B(ei), B(ej)〉 and are positive on the main diagonal. So (B ◦ q(B)−1)(e1), . . . , (B ◦
q(B)−1)(ek) is the orthonormalized frame p(B)(e1), . . . , p(B)(ek). �

47.5. Theorem. The following are real analytic principal fiber bundles:

(π : O(k,∞;R)→ G(k,∞;R), O(k,R)),

(π : GL(k,∞;R)→ G(k,∞;R), GL(k,R)),
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(p : GL(k,∞;R)→ O(k,∞;R), T (k;R)).

The last one is trivial. The embeddings Rn → R(N) induce real analytic embeddings,
which respect the principal right actions of all the structure groups

O(k, n)→ O(k,∞),

GL(k, n)→ GL(k,∞),

G(k, n)→ G(k,∞).

All these cones are inductive limits in the category of real analytic (and smooth)
manifolds. All manifolds are smoothly paracompact.

Proof. Step 1. G(k,∞) is a real analytic manifold.
For A ∈ O(k,∞) we consider the open subset WA := {B ∈ GL(k,∞) : At ◦ B ∈
GL(k)} of L(Rk,R(N)), and we let VA := WA ∩O(k,∞) = {B ∈ O(k,∞) : At ◦B ∈
GL(k)}. Obviously, VA is invariant under the action of O(k) and VAU = VA for
U ∈ O(k). So we may denote Uπ(A) := π(VA). Let P := π(A) = A(Rk) ∈ G(k,∞).
We define the mapping

vA : VA → L(P, P⊥),

vA(B) :=
(
B(AtB)−1At −AAt

)
| P

=
(
(IdR(N) −AAt)B(AtB)−1At

)
| P.

In order to visualize this definition note that A ◦ At is the orthonormal projection
R(N) → P , and that the image of B in R(N) = P ⊕ P⊥ is the graph of vA(B). It is
easily checked that vA(B) ∈ L(P, P⊥) and that vA(BU) = vA(B) = vAU (B) for all
U ∈ O(k). So we may define

uP : UP → L(P, P⊥),

uP (π(B)) := vA(B).

For C ∈ L(P, P⊥) the mapping A+C◦A is a parameterization of the graph of C, it is

inGL(k,∞), and we have (using p from lemma 47.3 ) that u−1
P (C) = π(p(A+CA)),

since for B ∈ VA the image of B equals the graph of C = uP (π(B)), which in turn
is equal to (A+ CA)(Rk) = (A+ CA) q(A+ CA)−1(Rk) = p(A+ CA)(Rk).

Now we check the chart changes: Let P1 = π(A1), P2 = π(A2), and C ∈ L(P1, P
⊥
1 ),

then we have(
uP2
◦ u−1

P1

)
(C) = (IdR(N) −A2A

t
2) p(A1 + C A1)

(
At2 p(A1 + C A1)

)−1
At2 | P2,

which is defined on the open set of all C ∈ L(P1, P
⊥
1 ) for which At2 p(A1 +C A1) is

in GL(k) and which is real analytic there.

Step 2. The principal bundles.
We fix A ∈ O(k,∞) and consider the section

sA : Uπ(A) → VA,

sA(Q) := p(A+ uπ(A)(Q)A)

and the principal fiber bundle chart

ψA : VA → Uπ(A) ×O(k),
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ψA(B) :=
(
π(B), sA(π(B))tB

)
,

ψ−1
A (Q,U) = sA(Q)U.

Clearly, these charts give a principal fiber bundle atlas with cocycle of transition
functions Q 7→ sA2

(Q)t sA1
(Q) ∈ O(k).

The same formulas (for A still in O(k,∞)) give fiber bundle charts ψA : WA →
Uπ(A) ×GL(k) for GL(k,∞)→ G(k,∞).

The injection O(k,∞) → GL(k,∞) is a real analytic section of the real analytic

projection p : GL(k,∞)→ O(k,∞), which by lemma 47.4 gives a trivial principal
fiber bundle with structure group T (k). This fact implies that O(k,∞) is a splitting
real analytic submanifold of the convenient vector space L(Rk,R(N)).

Since R(N) is the inductive limit of the direct summands Rn in the category of
convenient vector spaces and real analytic (smooth) mappings, and since the chart
constructions above restrict to the usual ones on the finite dimensional Grassman-
nians and bundles, the assertion on the inductive limits follows.

All these manifolds are smoothly paracompact. For R(N) this is in 16.10 , so it holds

for L(Rk,R(N)) and for the closed subspace O(k,∞), see 47.3 . Then it follows
for G(k,∞) since O(k,∞) → G(k,∞) is a principal fiber bundle with compact
structure group O(k), by integrating the members of the partition over the fiber.
Then we get the result for GL(k,∞) by bundle argumentation on GL(k,∞) →
G(k,∞), since the fiber GL(k) is finite dimensional, so the product is well behaved

by 4.16 . �

47.6. Theorem. The principal bundle (O(k,∞), π,G(k,∞)) is classifying for
finite dimensional principal O(k)-bundles and carries a universal real analytic O(k)-
connection ω ∈ Ω1(O(k,∞), o(k)).

This means: For each finite dimensional smooth or real analytic principal O(k)-
bundle P → M with principal connection ωP there is a smooth or real analytic
mapping f : M → G(k,∞) such that the pullback O(k)-bundle f∗O(k,∞) is iso-
morphic to P and the pullback connection f∗ω equals ωP via this isomorphism.

For ∞ replaced by a large N and bundles where the dimension of the base is
bounded this is due to [Schlafli, 1980].

Proof. Step 1. The tangent bundle of O(k,∞) is given by

TO(k,∞) = {(A,X) ∈ O(k,∞)× L(Rk,R(N)) : XtA ∈ o(k)}.

We have O(k,∞) = {A : AtA = Idk}, thus TAO(k,∞) ⊆ {X : XtA + AtX = 0}.
Since AtA = Idk is an equation of constant rank when restricted to GL(k, n) for
finite n, we have equality by the implicit function theorem.

Another argument which avoids the implicit function theorem is the following.

By theorem 47.5 the vertical tangent space {AZ : Z ∈ t(k)} at A ∈ O(k,∞)
of the bundle GL(k,∞) → O(k,∞) is transversal to TAO(k,∞), where t(k) is
the Lie algebra of T (k). We have equality since an easy computation shows that
{AZ : Z ∈ t(k)} ∩ {X : XtA+AtX = 0} = 0.
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Step 2. The inner product on Rk and the weak inner product on R(N) induce a
bounded weak inner product on the space L(Rk,R(N)) by 〈X,Y 〉 = Trace(XtY ) =
Trace(XY t), where the second trace makes sense since XY t has finite dimensional
range. With respect to this inner product we consider the orthonormal projection
ΦA : TAO(k,∞)→ VAO(k,∞) onto the vertical tangent space VAO(k,∞) = {AY :
Y ∈ o(k)} of O(k,∞)→ G(k,∞). Its kernel, the horizontal space, turns out to be

{Z ∈TAO(k,∞) : Trace(ZtAY ) = 0 for all Y ∈ o(k)} =

= {Z : ZtA both skew and symmetric}

= {Z ∈ L(Rk,R(N)) : ZtA = 0}

= {Z : Z(Rk)⊥A(Rk)}.

So ΦA : TAO(k,∞) → VAO(k,∞) turns out to be ΦA(Z) = AAtZ = AωA(Z),
where ωA(Z) := AtZ = −ZtA. Then ω ∈ Ω1(O(k,∞), o(k)) is an O(k)-equivariant
form which reproduces the generators of fundamental vector fields of the principal

right action, so it is a principal O(k)-connection 37.19 :

((rU )∗ω)A(Z) = U tAtZU = Ad(U−1)ωA(Z),

ωA(AY ) = Y for Y ∈ o(k).

Step 3. The classifying process.
Let (p : P → M,O(k)) be a principal bundle with a principal connection form
ωP ∈ Ω1(P, o(k)). We consider the obvious representation of O(k) on Rk and the
associated vector bundle E = P [Rk] = P×O(k)Rk with its induced fiber Riemannian
metric gv and induced linear connection ∇.

Now we choose a Riemannian metric gM on the base manifold M , which we pull
back to the horizontal bundle Hor∇E (with respect to ∇) in TE via the fiberwise

isomorphism Tp | Hor∇E : Hor∇E → TM . Then we use the vertical lift vlE :
E ×M E → V E ⊂ TE to heave the fiber metric gv to the vertical bundle. Finally,
we declare the horizontal and the vertical bundle to be orthogonal, and thus we
get a Riemannian metric gE := (Tp | Hor∇E)∗gM ⊕ (vprE)∗gv on the total space
E. By the theorem of [Nash, 1956] (see also [Günther, 1989a] and [Gromov, 1986]),
there is an isometric embedding (which can be chosen real analytic, if all data
are real analytic) i : (E, gE) → RN into some high dimensional Euclidean space
which in turn is contained in R(N). Let j := dvi(0E) : E → R(N) be the vertical
derivative along the zero section of E which is given by dvi(0x)(ux) = d

dt |0i(tux).

Then j : E → R(N) is a fiber linear smooth mapping which is isometric on each
fiber.

Let us now identify the principal bundle P with the orthonormal frame bundle
O(Rk, (E, gv)) of its canonically associated Riemannian vector bundle. Then j∗ :
P 3 u 7→ j ◦ u ∈ O(k,∞) defines a smooth mapping which is O(k)-equivariant and
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therefore fits into the following pullback diagram

P
j∗ //

p

��

O(k,∞)

π

��
M

f // G(k,∞).

The factored smooth mapping f : M → G(k,∞) is therefore classifying for the
bundle P , so that f∗O(k,∞) ∼= P .

In order to show that the canonical connection is pulled back to the given one we
consider again the associated Riemannian vector bundle E →M from above. Note
that Ti(Hor∇E) is orthogonal to Ti(V E) in R(N), and we have to check that this

is still true for Tj, see 37.26 . This is a local question on M , so let E = U × Rn,

then we have as in 29.9

T (U × Rn) = U × Rn × Rm × Rn 3 (x, v; ξ, ω) 7→

−Ti→ (i(x, v), d1i(x, v).ξ + d2i(x, v)ω) ∈ R(N) × R(N)

−Tj→ (d2i(x, 0)v, d1d2i(x, 0)(ξ, v) + d2i(x, 0)ω),

V (U × Rn) 3 (x, v; 0, ω)−Ti→ (i(x, v), d2i(x, v)ω),

−Tj→ (d2i(x, 0)v, d2i(x, 0)ω),

Hor∇(U × Rn) 3 (x, v; ξ,Γx(ξ, v)) 7→ (i(x, v), d1i(x, v).ξ + d2i(x, v)Γx(ξ, v)),

−Tj→ (d2i(x, 0)v, d1d2i(x, 0)(ξ, v) + d2i(x, 0)Γx(ξ, v)),

0 = 〈d2i(x, v)ω, d1i(x, v).ξ + d2i(x, v)Γx(ξ, v)〉 for all ξ, ω.

In the last equation we replace v and ω both by tv and apply ∂t|0 to get the required
result

0 = 〈d2i(x, tv)tv, d1i(x, tv).ξ + d2i(x, tv)Γx(ξ, tv)〉 for all ξ, ω.

0 = 〈d2i(x, 0)v, d2d1i(x, 0).(v, ξ) + d2i(x, 0)Γx(ξ, v)〉 for all ξ, ω. �

47.7. The Lie group GL(∞;R). The canonical embeddings Rn → Rn+1 onto
the first n coordinates induce injections GL(n)→ GL(n+ 1). The inductive limit
is given by

GL(∞;R) = GL(∞) := lim−→
n→∞

GL(n)

in the category of sets or groups. Since each GL(n) also injects into L(R(N),R(N))
we can visualize GL(∞) as the set of all N × N-matrices which are invertible and
differ from the identity in finitely many entries only.

We also consider the Lie algebra gl(∞) of all N × N-matrices with only finitely
many nonzero entries, which is isomorphic to R(N×N), and we equip it with this
convenient vector space structure. Then

gl(∞) = lim−→
n→∞

gl(n)
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in the category of real analytic mappings, since it is a regular inductive limit in the
category of bounded linear mappings.

Claim. gl(∞) = L(RN,R(N)) as convenient vector spaces. Composition is a boun-
ded bilinear mapping on gl(∞). The transposition

A 7→ At = A′ ◦ i : RN → (RN)′′ → (RN)′ = R(N)

on the space L(RN,R(N)) induces a bibounded linear isomorphism of gl(∞) which
resembles the usual transposition of matrices.

Proof. Let T ∈ L(RN,R(N)). Then T ∈ L(RN,RN) =
(
R(N)

)N
and hence is a matrix

with finitely many non zero entries in every line. Since T has values in R(N), there
are also only finitely many non zero entries in each column, since T (ej) ∈ R(N).
Suppose that T is not in gl(∞). Then the matrix of T has infinitely many nonzero

entries, so there are T ikjk 6= 0 for ik ↗ ∞ and jk ↗ ∞ and such that jk is the last
index with nonzero entry in the line ik. Now one can choose inductively an element
(xi) ∈ RN with T (x) /∈ R(N), a contradiction. For both spaces the evaluations

evi,j generate the convenient vector space structure by 5.18 , so the convenient
structures coincide.

Another argument leading to this conclusion is the following: Since both spaces are
nuclear we have for the injective tensor product

L(RN,R(N)) ∼= R(N)⊗̂εR(N).

By the same reason the injective and the projective tensor product coincide. Since
both spaces are (DF), separately continuous bilinear functionals are jointly continu-
ous, so the latter space coincides with the bornological tensor product R(N)⊗̃βR(N),
which commutes with direct sums, since it is a left adjoint functor, so finally we
get R(N×N).

Composition is bounded since it can be written as

L(RN,R(N))× L(RN,R(N))→ L(RN,R(N))× L(RN,RN)−comp→ L(RN,R(N)).

The assertion about transposition is obvious, using L(RN, (RN)′) ∼= L2(RN;R). �

Then the (convenient) affine space

Id +gl(∞) = lim−→
n→∞

(Id +gl(n))

is closed under composition, which is real analytic on it. The determinant is a real
analytic function there, too.

Now obviously GL(∞) = {A ∈ Id +gl(∞) : det(A) 6= 0}, so GL(∞) is an open
subset in Id +gl(∞) and is thus a real analytic manifold, in fact, it is the inductive
limit of all the groups GL(n) = {A ∈ Id∞+gl(n) : det(A) 6= 0} in the category of
real analytic manifolds.

We consider the Killing form on gl(∞), which is given by the trace

k(X,Y ) := tr(XY ) for X,Y ∈ gl(∞).

This is the right concept, since for each n and X,Y ∈ gl(n) ⊂ gl(∞) we have

trR(N)(XY ) = trRn(XY ) = 1
2n

(
trgl(n)(ad(X) ad(Y )) + 2 trR(N)(X) trR(N)(Y )

)
,
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but ad(X)ad(Y ) ∈ L(R(N),R(N)) is not of trace class. We have the following short
exact sequence of Lie algebras and Lie algebra homomorphisms

0→ sl(∞)→ gl(∞)−tr→ R→ 0.

It splits, using t 7→ t
n · IdRn for an arbitrary n, but gl(∞) has no nontrivial abelian

ideal a, since we would have a ∩ gl(n) ⊂ R · Idn for every n. So gl(∞) is only the
semidirect product of R with the ideal sl(∞) and not the direct product.

47.8. Theorem. GL(∞) is a real analytic regular Lie group modeled on R(N)

with Lie algebra gl(∞) and is the inductive limit of the Lie groups GL(n) in
the category of real analytic manifolds. The exponential mapping is well defined,
real analytic, and a local real analytic diffeomorphism onto a neighborhood of the
identity. The Campbell-Baker-Hausdorff formula gives a real analytic mapping
near 0 and expresses the multiplication on GL(∞) via exp. The determinant
det : GL(∞) → R \ 0 is a real analytic homomorphism. We have a real ana-
lytic left action GL(∞) × R(N) → R(N), such that R(N) \ 0 is one orbit, but the
injection GL(∞) ↪→ L(R(N),R(N)) does not generate the topology.

Proof. Since the exponential mappings are compatible with the inductive limits
and are diffeomorphisms on open balls with radius π in norms in which the Lie
brackets are submultiplicative, all these assertions follow from the inductive limit
property. One may use the double of the operator norms.

Regularity is proved as follows: A smooth curve X : R → gl(∞) factors locally in
R into some gl(n), and we may integrate this piece of the resulting right invariant
time dependent vector field on GL(n). �

47.9. Theorem. Let g be a Lie subalgebra of gl(∞). Then there is a smoothly
arcwise connected splitting regular Lie subgroup G of GL(∞) whose Lie algebra is
g. The exponential mapping of GL(∞) restricts to that of G, which is a local real
analytic diffeomorphism near zero. The Campbell-Baker-Hausdorff formula gives a
real analytic mapping near 0 and has the usual properties, also on G.

Proof. Let gn := g∩gl(n), a finite dimensional Lie subalgebra of g. Then
⋃
gn = g.

The convenient structure g = lim−→n
gn coincides with the structure inherited as a

complemented subspace, since gl(∞) carries the finest locally convex structure.

So for each n there is a connected Lie subgroup Gn ⊂ GL(n) with Lie algebra gn.
Since gn ⊂ gn+1 we have Gn ⊂ Gn+1, and we may consider G :=

⋃
nGn ⊂ GL(∞).

Each g ∈ G lies in some Gn and may be connected to Id via a smooth curve there,
which is also smooth curve in G, so G is smoothly arcwise connected.

All mappings exp |gn : gn → Gn are local real analytic diffeomorphisms near 0, so
exp : g → G is also a local real analytic diffeomorphism near zero onto an open
neighborhood of the identity in G. A similar argument applies to evol so that G is
regular. The rest is clear. �

47.10. Examples. In the following we list some of the well known examples of
simple infinite dimensional Lie groups which fit into the picture treated in this
section. The reader can easily continue this list, especially by complex versions.
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The Lie group. SL(∞) is the inductive limit

SL(∞) = {A ∈ GL(∞) : det(A) = 1}
= lim−→
n→∞

SL(n) ⊂ GL(∞),

the connected Lie subgroup with Lie algebra sl(∞) = {X ∈ gl(∞) : tr(X) = 0}.

The Lie group SO(∞,R). is the inductive limit

SO(∞) = {A ∈ GL(∞) : 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ R(N) and det(A) = 1}
= lim−→
n→∞

SO(n) ⊂ GL(∞),

the connected Lie subgroup of GL(∞) with the Lie algebra o(∞) = {X ∈ gl(∞) :
Xt = −X} of skew elements.

The Lie group. O(∞) is the inductive limit

O(∞) = {A ∈ GL(∞) : 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ R(N)}
= lim−→
n→∞

O(n) ⊂ GL(∞).

It has two connected components, that of the identity is SO(∞).

The Lie group. Sp(∞,R) is the inductive limit

Sp(∞,R) = {A ∈ GL(∞) : AtJA = J}
= lim−→
n→∞

Sp(2n,R) ⊂ GL(∞), where

J =


0 1
−1 0

0 1
−1 0

. . .

 ∈ L(R(N),R(N)).

It is the connected Lie subgroup of GL(∞) with the Lie algebra sp(∞,R) = {X ∈
gl(∞) : XtJ + JX = 0} of symplectically skew elements.

47.11. Theorem. The following manifolds are real analytically diffeomorphic to
the homogeneous spaces indicated:

GL(k,∞) ∼= GL(∞)

/(
Idk L(Rk,R∞−k)
0 GL(∞− k)

)
,

O(k,∞) ∼= O(∞)/(Idk ×O(∞− k)),

G(k,∞) ∼= O(∞)/(O(k)×O(∞− k)).

The universal vector bundle (E(k,∞), π,G(k,∞),Rk) is defined as the asso-
ciated bundle

E(k,∞) = O(k,∞)[Rk]
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= {(Q, x) : x ∈ Q} ⊂ G(k,∞)× R(N).

The tangent bundle of the Grassmannian is then given by

TG(k,∞) = L(E(k,∞), E(k,∞)⊥).

Proof. This is a direct consequence of the chart construction of G(k,∞). �

48. Weak Symplectic Manifolds

48.1. Review. For a finite dimensional symplectic manifold (M,σ) we have the

following exact sequence of Lie algebras, see also 45.7 :

0→ H0(M)→ C∞(M,R)−gradσ→ X(M,σ)−γ→ H1(M)→ 0.

Here H∗(M) is the real De Rham cohomology of M , the space C∞(M,R) is
equipped with the Poisson bracket { , }, X(M,σ) consists of all vector fields ξ
with Lξσ = 0 (the locally Hamiltonian vector fields), which is a Lie algebra for the
Lie bracket. Furthermore, gradσ f is the Hamiltonian vector field for f ∈ C∞(M,R)
given by i(gradσ f)σ = df and γ(ξ) = [iξσ]. The spaces H0(M) and H1(M) are
equipped with the zero bracket.

Given a symplectic left action ` : G×M → M of a connected Lie group G on M ,
the first partial derivative of ` gives a mapping `′ : g→ X(M,σ) which sends each
element X of the Lie algebra g of G to the fundamental vector field. Then −`′ is a
Lie algebra homomorphism.

H0(M)
i // C∞(M,R)

gradσ // X(M,σ)
γ // H1(M)

g

χ

ff

`′

99

A linear lift χ : g→ C∞(M,R) of `′ with gradσ ◦χ = `′ exists if and only if γ◦`′ = 0
in H1(M). This lift χ may be changed to a Lie algebra homomorphism if and only
if the 2-cocycle χ̄ : g × g → H0(M), given by (i ◦ χ̄)(X,Y ) = {χ(X), χ(Y )} −
χ([X,Y ]), vanishes in H2(g, H0(M)), for if χ̄ = δα then χ − i ◦ α is a Lie algebra
homomorphism.

If χ : g→ C∞(M,R) is a Lie algebra homomorphism, we may associate the moment
mapping µ : M → g′ = L(g,R) to it, which is given by µ(x)(X) = χ(X)(x) for
x ∈ M and X ∈ g. It is G-equivariant for a suitably chosen (in general affine)
action of G on g′. See [Weinstein, 1977] or [Libermann and Marle, 1987] for all
this.

48.2. We now want to carry over to infinite dimensional manifolds the procedure

of 48.1 . First we need the appropriate notions in infinite dimensions. So let M
be a manifold, which in general is infinite dimensional.

A 2-form σ ∈ Ω2(M) is called a weak symplectic structure on M if the following
three conditions holds:

(1) σ is closed, dσ = 0.
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(2) The associated vector bundle homomorphism σ̌ : TM → T ∗M is injective.
(3) The gradient of σ with respect to itself exists and is smooth; this can be

expressed most easily in charts, so let M be open in a convenient vector space
E. Then for x ∈ M and X,Y, Z ∈ TxM = E we have dσ(x)(X)(Y,Z) =

σ(Ωx(Y,Z), X) = σ(Ω̃x(X,Y ), Z) for smooth Ω, Ω̃ : M × E × E → E which
are bilinear in E × E.

A 2-form σ ∈ Ω2(M) is called a strong symplectic structure on M if it is
closed (dσ = 0) and if its associated vector bundle homomorphism σ∨ : TM →
T ∗M is invertible with smooth inverse. In this case, the vector bundle TM has
reflexive fibers TxM : Let i : TxM → (TxM)′′ be the canonical mapping onto
the bidual. Skew symmetry of σ is equivalent to the fact that the transposed
(σ∨)t = (σ∨)∗◦i : TxM → (TxM)′ satisfies (σ∨)t = −σ∨. Thus, i = −((σ∨)−1)∗◦σ∨
is an isomorphism.

48.3. Every cotangent bundle T ∗M , viewed as a manifold, carries a canonical weak

symplectic structure σM ∈ Ω2(T ∗M), which is defined as follows (see 43.9 for the
finite dimensional version). Let π∗M : T ∗M → M be the projection. Then the
Liouville form θM ∈ Ω1(T ∗M) is given by θM (X) = 〈πT∗M (X), T (π∗M )(X)〉
for X ∈ T (T ∗M), where 〈 , 〉 denotes the duality pairing T ∗M ×M TM → R.
Then the symplectic structure on T ∗M is given by σM = −dθM , which of course
in a local chart looks like σE((v, v′), (w,w′)) = 〈w′, v〉E − 〈v′, w〉E . The associated
mapping σ∨ : T(0,0)(E×E′) = E×E′ → E′×E′′ is given by (v, v′) 7→ (−v′, iE(v)),
where iE : E → E′′ is the embedding into the bidual. So the canonical symplectic
structure on T ∗M is strong if and only if all model spaces of the manifold M are
reflexive.

48.4. Let M be a weak symplectic manifold. The first thing to note is that the
hamiltonian mapping gradσ : C∞(M,R)→ X(M,σ) does not make sense in general,
since σ∨ : TM → T ∗M is not invertible. Namely, gradσ f = (σ∨)−1 ◦ df is defined
only for those f ∈ C∞(M,R) with df(x) in the image of σ∨ for all x ∈ M . A
similar difficulty arises for the definition of the Poisson bracket on C∞(M,R).

Definition. For a weak symplectic manifold (M,σ) let TσxM denote the real linear
subspace TσxM = σ∨x (TxM) ⊂ T ∗xM = L(TxM,R), and let us call it the smooth
cotangent space with respect to the symplectic structure σ of M at x in view of
the embedding of test functions into distributions. These vector spaces fit together
to form a subbundle of T ∗M which is isomorphic to the tangent bundle TM via
σ∨ : TM → TσM ⊆ T ∗M . It is in general not a splitting subbundle.

Note that only for strong symplectic structures the mapping σ̌x : TxM → T ∗xM is
a diffeomorphism onto TσxM with the structure induces from T ∗xM .

48.5. Definition. For a weak symplectic vector space (E, σ) let

C∞σ (E,R) ⊂ C∞(E,R)

denote the linear subspace consisting of all smooth functions f : E → R such that
each iterated derivative dkf(x) ∈ Lksym(E;R) has the property that

dkf(x)( , y2, . . . , yk) ∈ Eσ



538 Chapter X . Further Applications 48.8

is actually in the smooth dual Eσ ⊂ E′ for all x, y2, . . . , yk ∈ E, and that the
mapping

k∏
E → E

(x, y2, . . . , yk) 7→ (σ∨)−1(df(x)( , y2, . . . , yk))

is smooth. By the symmetry of higher derivatives, this is then true for all entries
of dkf(x), for all x.

48.6. Lemma. For f ∈ C∞(E,R) the following assertions are equivalent:

(1) df : E → E′ factors to a smooth mapping E → Eσ.
(2) f has a smooth σ-gradient gradσ f ∈ X(E) = C∞(E,E) which satisfies

df(x)y = σ(gradσ f(x), y).
(3) f ∈ C∞σ (E,R).

Proof. Clearly, ( 3 ) ⇒ ( 2 ) ⇔ ( 1 ). We have to show that ( 2 ) ⇒ ( 3 ).
Suppose that f : E → R is smooth and df(x)y = σ(gradσ f(x), y). Then

dkf(x)(y1, . . . , yk) = dkf(x)(y2, . . . , yk, y1)

= (dk−1(df))(x)(y2, . . . , yk)(y1)

= σ
(
dk−1(gradσ f)(x)(y2, . . . , yk), y1

)
. �

48.7. For a weak symplectic manifold (M,σ) let

C∞σ (M,R) ⊂ C∞(M,R)

denote the linear subspace consisting of all smooth functions f : M → R such
that the differential df : M → T ∗M factors to a smooth mapping M → TσM . In

view of lemma 48.6 these are exactly those smooth functions on M which admit

a smooth σ-gradient gradσ f ∈ X(M). Also the condition 48.6.1 translates to a
local differential condition describing the functions in C∞σ (M,R).

48.8. Theorem. Let (M,σ) be a weak symplectic manifold. The Hamiltonian
mapping gradσ : C∞σ (M,R)→ X(M,σ), which is given by

igradσ fσ = df or gradσ f := (σ∨)−1 ◦ df
is well defined. Also the Poisson bracket

{ , } : C∞σ (M,R)× C∞σ (M,R)→ C∞σ (M,R),

{f, g} := igradσ f igradσ gσ = σ(gradσ g, gradσ f) =

= dg(gradσ f) = (gradσ f)(g)

is well defined and gives a Lie algebra structure to the space C∞σ (M,R), which also
fulfills

{f, gh} = {f, g}h+ g{f, h}.
We equip C∞σ (M,R) with the initial structure with respect to the the two following
mappings:

C∞σ (M,R)−⊂→ C∞(M,R), C∞σ (M,R)−gradσ→ X(M).
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Then the Poisson bracket is bounded bilinear on C∞σ (M,R).

We have the following long exact sequence of Lie algebras and Lie algebra homo-
morphisms:

0→ H0(M)→ C∞σ (M,R)−gradσ→ X(M,σ)−γ→ H1
σ(M)→ 0,

where H0(M) is the space of locally constant functions, and

H1
σ(M) =

{ϕ ∈ C∞(M ← TσM) : dϕ = 0}
{df : f ∈ C∞σ (M,R)}

is the first symplectic cohomology space of (M,σ), a linear subspace of the De Rham
cohomology space H1(M).

Proof. It is clear from lemma 48.6 , that the Hamiltonian mapping gradσ is well

defined and has values in X(M,σ), since by 33.18.6 we have

Lgradσ fσ = igradσ fdσ + digradσ fσ = ddf = 0.

By 33.18.7 , the space X(M,σ) is a Lie subalgebra of X(M). The Poisson bracket
is well defined as a mapping { , } : C∞σ (M,R) × C∞σ (M,R) → C∞(M,R), and
it only remains to check that it has values in the subspace C∞σ (M,R).

This is a local question, so we may assume that M is an open subset of a convenient
vector space E equipped with a (non-constant) weak symplectic structure. So let
f , g ∈ C∞σ (M,R) and X,Y, Z ∈ E then {f, g}(x) = dg(x)(gradσ f(x)), and thus

d({f, g})(x)y = d(dg( )y)(x). gradσ f(x) + dg(x)(d(gradσ f)(x)y)

= d
(
σ(gradσ g( ), y)

)
(x). gradσ f(x) + σ

(
gradσ g(x), d(gradσ f)(x)y

)
We have gradσ f ∈ X(M,σ) and for any X ∈ X(M,σ), Y ∈ X(M), y ∈ E the

condition LXσ = 0 implies, using 48.2.3 ,

0 = (LXσ)(Y, y) = (dσ(X))(Y, y)− σ([X,Y ], y)− σ(Y, [X, y])

= σ(Ω̃(X,Y ), y)− σ([X,Y ], y) + σ(Y, dX(y2)).

Again by 48.2.3 we have

d(σ(gradσ g, y)(gradσ f) =

= dσ(gradσ f)(gradσ g, y) + σ(d(gradσ g)(gradσ f), y)

= σ(Ω̃(gradσ f, gradσ g), y) + σ(d(gradσ g)(gradσ f), y)

Collecting all terms we get

d({f, g})(x)y =

= d
(
σ(gradσ g( ), y)

)
(x). gradσ f(x) + σ

(
gradσ g(x), d(gradσ f)(x)y

)
= σ

(
Ω̃x(gradσ f(x), gradσ g(x)) + d(gradσ g)(x)(gradσ f(x))

+ [gradσ f, gradσ f ](x)− Ω̃x(gradσ f(x), gradσ g(x)), y
)

= σ
(
d(gradσ g)(x)(gradσ f(x)) + [gradσ f, gradσ f ](x), y

)
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So 48.6.2 is satisfied, and thus {f, g} ∈ C∞σ (M,R).

If X ∈ X(M,σ) then diXσ = LXσ = 0, so [iXσ] ∈ H1(M) is well defined, and by
iXσ = σ∨ oX we even have γ(X) := [iXσ] ∈ H1

s i(M), so γ is well defined.

Now we show that the sequence is exact. Obviously, it is exact at H0(M) and at
C∞σ (M,R), since the kernel of gradσ consists of the locally constant functions. If
γ(X) = 0 then σ∨ ◦ X = iXσ = df for f ∈ C∞σ (M,R), and clearly X = gradσ f .
Now let us suppose that ϕ ∈ C∞(M ← TσM) ⊂ Ω1(M) with dϕ = 0. Then X :=
(σ∨)−1 ◦ ϕ ∈ X(M) is well defined and LXσ = diXσ = dϕ = 0, so X ∈ X(M,σ)
and γ(X) = [ϕ].

Moreover, H1
σ(M) is a linear subspace of H1(M) since for ϕ ∈ C∞(M ← TσM) ⊂

Ω1(M) with ϕ = df for f ∈ C∞(M,R) the vector field X := (σ∨)−1 ◦ ϕ ∈ X(M) is

well defined, and since σ∨ oX = ϕ = df by 48.6.1 we have f ∈ C∞σ (M,R) with
X = gradσ f .

The mapping gradσ maps the Poisson bracket into the Lie bracket, since by 33.18
we have

igradσ{f,g}σ = d{f, g} = dLgradσ fg = Lgradσ fdg =

= Lgradσ f igradσ gσ − igradσ gLgradσ fσ

= [Lgradσ f , igradσ g]σ = i[gradσ f,gradσ g]σ.

Let us now check the properties of the Poisson bracket. By definition, it is skew
symmetric, and we have

{{f, g}, h} = Lgradσ{f,g}h = L[gradσ f,gradσ g]h = [Lgradσ f ,Lgradσ g]h =

= Lgradσ fLgradσ gh− Lgradσ gLgradσ fh = {f, {g, h}} − {g, {f, h}},
{f, gh} = Lgradσ f (gh) = (Lgradσ fg)h+ gLgradσ fh =

= {f, g}h+ g{f, h}.
Finally, it remains to show that all mappings in the sequence are Lie algebra homo-
morphisms, where we put the zero bracket on both cohomology spaces. For locally
constant functions we have {c1, c2} = Lgradσ c1c2 = 0. We have already checked
that gradσ is a Lie algebra homomorphism. For X,Y ∈ X(M,σ)

i[X,Y ]σ = [LX , iY ]σ = LX iY σ + 0 = diX iY σ + iXLY σ = diX iY σ

is exact. �

48.9. Symplectic cohomology. The reader might be curious whether there ex-
ists a symplectic cohomology in all degrees extending H1

σ(M) which appeared in

theorem 48.8 . We should start by constructing a graded differential subalgebra
of Ω(M) leading to this cohomology. Let (M,σ) be a weak symplectic manifold.
The first space to be considered is C∞(Lkalt(TM,R)σ), the space of smooth sec-
tions of the vector bundle with fiber Lkalt(TxM,R)σx consisting of all bounded skew
symmetric forms ω with ω( , X2, . . . , Xk) ∈ TσxM for all Xi ∈ TxM . But these
spaces of sections are not stable under the exterior derivative d, one should con-
sider C∞σ -sections of vector bundles. For trivial bundles these could be defined
as those sections which lie in C∞σ (M,R) after composition with a bounded linear
functional. However, this definition is not invariant under arbitrary vector bundle
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isomorphisms, one should require that the transition functions are also in some
sense C∞σ . So finally M should have, in some sense, C∞σ chart changings.

We try now a simpler approach. Let

Ωkσ(M) := M) := {ω ∈ C∞(Lkalt(TM,R)σ) : dω ∈ C∞(Lk+1
alt (TM,R)σ)}.

Since d2 = 0 and the wedge product of σ-dual forms is again a σ-dual form, we get
a graded differential subalgebra (Ωσ(M), d), whose cohomology will be denoted by
Hk
σ(M). Note that we have

{ω ∈ Ωkσ(M) : dω = 0} = {ω ∈ C∞(Lkalt(TM,R)σ) : dω = 0},
Ω0
σ(M) = C∞σ (M,R),

so that H1
σ(M) is the same space as in theorem 48.8 .

Theorem. If (M,σ) is a smooth weakly symplectic manifold which admits smooth
partitions of unity in C∞σ (M,R), and which admits ‘Darboux charts’, then the sym-
plectic cohomology equals the De Rham cohomology: Hk

σ(M) = Hk(M).

Proof. We use theorem 34.6 and its method of proof. We have to check that
the sheaf Ωσ satisfies the lemma of Poincaré and admits partitions of unity. The
second requirement is immediate from the assumption. For the lemma of Poincaré
let ω ∈ Ωk+1

σ (M) with dω = 0, and let u : U → u(U) ⊂ E be a smooth chart of M
with u(U) a disked c∞-open set in a convenient vector space E. We may push σ
to this subset of E and thus assume that U equals this subset. By the Lemma of

Poincaré 33.20 , we get ω = dϕ where

ϕ(x)(v1, . . . , vk) =

∫ 1

0

tkω(tx)(x, v1, . . . , vk)dt,

which is in Ωkσ(M) if σ is a constant weak symplectic form on u(U). This is the
case if we may choose a ‘Darboux chart’ on M . �

49. Applications to Representations of Lie Groups

This section is based on [Michor, 1990], see also [Michor, 1992]

49.1. Representations. Let G be any finite or infinite dimensional smooth real
Lie group, and let E be a convenient vector space. Recall that L(E,E), the space
of all bounded linear mappings, is a convenient vector space, whose bornology
is generated by the topology of pointwise convergence for any compatible locally

convex topology on E, see for example 5.18 . We shall need an explicit topology
below in order to define representations, so we shall use on L(E,E) the topology of
pointwise convergence with respect to the bornological topology on E, that of bE.
Let us call this topology the strong operator topology on L(E,E), since this
is the usual name if E is a Banach space.

A representation of G in E is a mapping ρ from G into the space of all linear
mappings from E into E which satisfies ρ(g.h) = ρ(g).ρ(h) for all g, h ∈ G and
ρ(e) = IdE , and which fulfills the following equivalent ‘continuity requirements’:
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(1) ρ has values in L(E,E) and is continuous from the c∞-topology on G into the
strong operator topology on L(E,E).

(2) The associated mapping ρ∧ : G× bE → bE is separately continuous.

The equivalence of ( 1 ) and ( 2 ) is due to the fact that L(E,E) consists of all
continuous linear mappings bE → bE.

Lemma. If G and bE are metrizable, and if ρ locally in G takes values in uniformly
continuous subsets of L(bE, bE), then the continuity requirements are equivalent to

(3) ρ∧ : G× bE → bE is (jointly) continuous.

A unitary representation of a metrizable Lie group on a Hilbert space H satisfies
the requirements of the lemma.

Proof. We only have to show that ( 1 ) implies ( 3 ). Since on uniformly continu-
ous subsets of L(bE, bE) the strong operator topology coincides with the compact
open topology, ρ is continuous G → L(bE, bE)co. By cartesian closedness of the
category of compactly generated topological spaces (see [Brown, 1964], [Steenrod,
1967], or [Engelking, 1989] ), ρ∧ is continuous from the Kelley-fication k(G × bE)

(compare 4.7 ) of the topological product to bE. Since G × bE is metrizable it is
compactly generated, so ρ∧ is continuous on the topological product, which inci-
dentally coincides with the manifold topology of the product manifold G × E, see

27.3 . �

49.2. The Space of Smooth Vectors. Let ρ : G→ L(E,E) be a representation.
A vector x ∈ E is called smooth if the mapping G → E given by g 7→ ρ(g)x is
smooth. Let us denote by E∞ the linear subspace of all smooth vectors in E. Then
we have an injection j : E∞ → C∞(G,E), given by x 7→ (g 7→ ρ(g)x). We equip

C∞(G,E) with the structure of a convenient vector space as described in 27.17 ,

i.e., the initial structure with respect to the cone C∞(M,E)−c
∗
→ C∞(R, E) for all

c ∈ C∞(R, G).

49.3. Lemma.

(1) The image of the embedding j : E∞ → C∞(G,E) is the closed subspace

C∞(G,E)G = {f ∈ C∞(G,E) : f ◦ µg = ρ(g) ◦ f for all g ∈ G}
of all G-equivariant mappings. So with the induced structure E∞ becomes a
convenient vector space.

(2) The space of smooth vectors E∞ is an invariant linear subspace of E, and
we have j(ρ(g)x) = j(x) ◦ µg, or j ◦ ρ(g) = (µg)∗ ◦ j, where µg is the right
translation on G.

Proof. For x ∈ E∞ and g, h ∈ G we have j(x)µg(h) = j(x)(gh) = ρ(gh)x =
ρ(g)ρ(h)x = ρ(g)j(x)(h), so j(x) ∈ C∞(G,E)G. If conversely f ∈ C∞(G,E)G then
f(g) = ρ(g)f(e) = j(f(e))(g). Moreover, for x ∈ E∞ the mapping h 7→ ρ(h)ρ(g)x =
ρ(hg)x is smooth, so ρ(g)x ∈ E∞, and we have j(ρ(g)x)(h) = ρ(h)ρ(g)x = ρ(hg)x =
j(x)(hg) = j(x)(µg(h)). �
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49.4. Theorem. If the Lie group G is finite dimensional and separable, and if
the bornologification bE of the representation space E is sequentially complete, the
space of smooth vectors E∞ is dense in bE.

Proof. Let x ∈ E, a continuous seminorm p on bE, and ε > 0 be given. Let
U = {g ∈ G : p(ρ(g)x − x) < ε}, an open neighborhood of the identity in G.
Let fU ∈ C∞(G,R) be a nonnegative smooth function with support in U with∫
G
fU (g)dLg = 1, where dL denotes left the Haar measure on G. We consider the

element
∫
G
fU (g)ρ(g)xdLg ∈ bE. Note that this Riemann integral converges since

bE is sequentially complete. We have

p

(∫
G

fU (g)ρ(g)xdLg − x
)
≤
∫
G

fU (g)p(ρ(g)x− x)dLg

≤ ε
∫
G

fU (g)dLg = ε.

So it remains to show that
∫
G
fU (g)ρ(g)xdLg ∈ E∞. We have

j

(∫
G

fU (g)ρ(g)xdLg

)
(h) = ρ(h)

∫
G

fU (g)ρ(g)xdLg

=

∫
G

fU (g)ρ(h)ρ(g)xdLg =

∫
G

fU (g)ρ(hg)xdLg

=

∫
G

fU (h−1g)ρ(g)xdLg,

which is smooth as a function of h since we may view the last integral as having
values in the vector space C∞(G, bE) with a sequentially complete topology. The
integral converges there, since g 7→ (h 7→ fU (h−1g)) is smooth, thus continuous
G→ C∞(G,R), and we multiply it by the continuous mapping g 7→ ρ(g)x, G→ bE.
It is easy to check that multiplication is continuous C∞(G,R)× bE → C∞(G, bE)
for the topologies of compact convergence in all derivatives separately of composites
with smooth curves, which is again sequentially complete. One may also use the
compact C∞-topology. �

49.5. Theorem. The mappings

ρ∧ : G× E∞ → E∞,

ρ : G→ L(E∞, E∞)

are smooth.

A proof analogous to that of 49.10 below would also work here.

Proof. We first show that ρ∧ is smooth. By lemma 49.3 , it suffices to show that

G×C∞(G,E)G → C∞(G,E)G → C∞(G,E)

(g, f) 7→ f ◦ µg

is smooth. This is the restriction of the mapping

G× C∞(G,E)→ C∞(G,E)

(g, f) 7→ f ◦ µg,
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which by cartesian closedness 27.17 is smooth if and only if the canonically asso-
ciated mapping

G× C∞(G,E)×G→ E

(g, f, h) 7→ f(hg) = ev(f, µ(h, g))

is smooth. But this is holds by 3.13 , extended to the manifold G. So ρ∧ is smooth.

By cartesian closedness 27.17 again (ρ∧)∨ : G → C∞(E∞, E∞) is smooth, and
takes values in the closed linear subspace L(E∞, E∞). So ρ : G → L(E∞, E∞) is
smooth, too. �

49.6. Theorem. Let ρ : G→ L(E,E) be a representation of a Lie group G. Then
the semidirect product

E∞ oρ G
from 38.9 is a Lie group and is regular if G is regular. Its evolution operator is
given by

evolrE∞oG(Y,X) =
(
ρ(evolrG(X))

∫ 1

0

ρ(EvolrG(X)(s)−1).Y (s) ds, evolrG(X)
)

for (Y,X) ∈ C∞(R, E∞ × g).

Proof. This follows directly from 38.9 and 38.10 . �

49.7. The space of analytic vectors. Let G now be a real analytic finite or
infinite dimensional Lie group, let again ρ : G→ L(E,E) be a representation as in

in 49.1 . A vector x ∈ E is called real analytic if the mapping G → E given by
g 7→ ρ(g)x is real analytic.

Let Eω denote the vector space of all real analytic vectors in E. Then we have
a linear embedding j : Eω → Cω(G,E) into the space of real analytic mappings,
given by x 7→ (g 7→ ρ(g)x). We equip Cω(G,E) with the convenient vector space

structure described in 27.17 .

49.8. Lemma.

(1) The image of the embedding j : Eω → Cω(G,E) is the space

Cω(G,E)G = {f ∈ Cω(G,E) : f ◦ µg = ρ(g) ◦ f for all g ∈ G}
of all G-equivariant mappings, and with the induced structure Eω becomes a
convenient vector space.

(2) The space of analytic vectors Eω is an invariant linear subspace of E, and
we have j(ρ(g)x) = j(x) ◦ µg, or j ◦ ρ(g) = (µg)∗ ◦ j, where µg is the right
translation on G.

Proof. This is a transcription of the proof of lemma 49.3 , replacing smooth by
real analytic. �

49.9. Theorem. If the Lie group G is finite dimensional and separable and if
the bornologification bE of the representation space E is sequentially complete, the
space of real analytic vectors Eω is dense in bE.
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See [Warner, 1972, 4.4.5.7].

Proof. Let x ∈ E, a continuous seminorm p on bE, and ε > 0 be given. Let
U = {g ∈ G : p(ρ(g)x − x) < ε}, an open neighborhood of the identity in G. Let
ϕ ∈ C(G,R) be a continuous positive function such that

∫
G
ϕ(g)dL(g) = 2, where

dL denotes left Haar measure on G, and
∫
G\U ϕ(g)p(ρ(g)x− x)dL(g) < ε.

Let f ∈ Cω(G,R) be a real analytic function with 1
2ϕ(g) < f(g) < ϕ(g) for all

g ∈ G, which exists by [Grauert, 1958]. Then 1 <
∫
G
f(g)dL(g) < 2, so if we replace

f by f/(
∫
G
f(g)dL(g)) we get

∫
G
f(g)dL(g) = 1 and

∫
G\U f(g)p(ρ(g)x−x)dL(g) < ε.

We consider the element
∫
G
f(g)ρ(g)xdLg ∈ bE. This Riemann integral converges

since bE is sequentially complete. We have

p

(∫
G

f(g)ρ(g)xdLg − x
)
≤
∫
U

f(g)p(ρ(g)x− x)dLg +

∫
G\U

f(g)p(ρ(g)x− x)dLg

≤ ε
∫
G

f(g)dLg + ε < 2ε.

So it remains to show that
∫
G
f(g)ρ(g)xdLg ∈ Eω. We have

j

(∫
G

f(g)ρ(g)xdLg

)
(h) = ρ(h)

∫
G

f(g)ρ(g)xdLg

=

∫
G

f(g)ρ(h)ρ(g)xdLg =

∫
G

f(g)ρ(hg)xdLg

=

∫
G

f(h−1g)ρ(g)xdLg,

which is real analytic as a function of h, by the following argument: We have to
check that the composition with any continuous linear functional on E maps this to
a real analytic function on G, which is now a question of finite dimensional analysis.

We could also apply here the method of proof used at the end of 49.4 , but de-
scribing a sequentially complete compatible topology on Cω(G, bE) requires some
effort. �

49.10. Theorem. The mapping ρ∧ : G× Eω → Eω is real analytic.

We could also use a method analogous to that of 49.5 , but we rather give a variant.

Proof. By cartesian closedness of the calculus 11.18 and 27.17 , it suffices to
show that the canonically associated mapping

ρ∧∨ : G→ Cω(Eω, Eω)

is real analytic. It takes values in the closed linear subspace L(Eω, Eω) of all boun-
ded linear operators. So it suffices to check that the mapping ρ : G→ L(Eω, Eω) is
real analytic. Since Eω is a convenient space, by the real analytic uniform bound-

edness principle 11.12 , it suffices to show that

G−ρ→ L(Eω, Eω)−evx→ Eω
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is real analytic for each x ∈ Eω. Since the structure on Eω is induced by the
embedding into Cω(G,E), we have to check, that

G−ρ→ L(Eω, Eω)−evx→ Eω −j→ Cω(G,E),

g 7→ ρ(g) 7→ ρ(g)x 7→ (h 7→ ρ(h)ρ(g)x),

is real analytic for each x ∈ Eω. Again by cartesian closedness 11.18 , it suffices
that the associated mapping

G×G→ E

(g, h) 7→ ρ(h)ρ(g)x = ρ(hg)x

is real analytic, and this is the case since x is a real analytic vector. �

49.11. The model for the moment mapping. Let now ρ : G → U(H) be a
unitary representation of a Lie group G on a Hilbert space H. We consider the space
of smooth vectors H∞ as a weak symplectic Fréchet manifold, equipped with the
symplectic structure σ, the restriction of the imaginary part of the Hermitian inner

product 〈 , 〉 on H. See section 48 for the general notion of weak symplectic

manifolds. So σ ∈ Ω2(H∞) is a closed 2-form which is non degenerate in the sense
that

σ∨ : TH∞ = H∞ ×H∞ → T ∗H∞ = H∞ ×H∞′

is injective (but not surjective), where H∞
′ = L(H∞,R) denotes the real topological

dual space. This is the meaning of ‘weak’ above.

49.12. Let 〈x, y〉 = Re〈x, y〉+
√
−1σ(x, y) be the decomposition of the Hermitian

inner product into real and imaginary parts. Then Re〈x, y〉 = σ(
√
−1x, y), thus the

real linear subspaces σ∨(H∞) = σ(H∞, ) and Re〈H∞, 〉 of H∞
′ = L(H∞,R)

coincide.

Following 48.4 , we let Hσ
∞ denote the real linear subspace

Hσ
∞ = σ(H∞, ) = Re〈H∞, 〉

of H∞
′ = L(H∞,R), the smooth dual of H∞ with respect to the weak symplectic

structure σ. We have two canonical isomorphisms Hσ
∞
∼= H∞ induced by σ and

Re〈 , 〉, respectively. Both induce the same structure of a convenient vector
space on Hσ

∞, which we fix from now on.

Following 48.7 , we have the subspace C∞σ (H∞,R) ⊂ C∞(H∞,R) consisting of all

smooth functions f : H∞ → R admitting smooth σ-gradients gradσ f , see 48.6 .

Then by 48.8 the Poisson bracket

{ , } : C∞σ (H∞,R)× C∞σ (H∞,R)→ C∞σ (H∞,R),

{f, g} := igradσ f igradσ gσ = σ(gradσ g, gradσ f) =

= (gradσ f)(g) = dg(gradσ f)

is well defined and describes a Lie algebra structure on the space C∞σ (H∞,R).
There is the long exact sequence of Lie algebras and Lie algebra homomorphisms:

0→ H0(H∞)→ C∞σ (H∞,R)−gradσ→ X(H∞, σ)−γ→ H1(H∞) = 0.
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49.13. We consider now like in 49.2 a unitary representation ρ : G→ U(H). By

theorem 49.5 , the associated mapping ρ∧ : G×H∞ → H∞ is smooth, so we have
the infinitesimal mapping ρ′ : g → X(H∞), given by ρ′(X)(x) = Te(ρ

∧( , x))X
for X ∈ g and x ∈ H∞. Since ρ is a unitary representation, the mapping ρ′ has
values in the Lie subalgebra of all linear Hamiltonian vector fields ξ ∈ X(H∞) which
respect the symplectic form σ, i.e. ξ : H∞ → H∞ is linear and Lξσ = 0.

49.14. Lemma. The mapping χ : g → C∞σ (H∞,R) which is given by χ(X)(x) =
1
2σ(ρ′(X)(x), x) for X ∈ g and x ∈ H∞ is a Lie algebra homomorphism, and we
have gradσ ◦χ = ρ′.

For g ∈ G we have ρ(g)∗χ(X) = χ(X)◦ρ(g) = χ(Ad(g−1)X), so χ is G-equivariant.

Proof. First we have to check that χ(X) ∈ C∞σ (H∞,R). Since ρ′(X) : H∞ → H∞
is smooth and linear, i.e. bounded linear, this follows from 48.6.2 . Furthermore,

gradσ(χ(X))(x) = (σ∨)−1(dχ(X)(x)) =

= 1
2 (σ∨)−1 (σ(ρ′(X)( ), x) + σ(ρ′(X)(x), )) =

= (σ∨)−1 (σ(ρ′(X)(x), )) = ρ′(X)(x),

since σ(ρ′(X)(x), y) = σ(ρ′(X)(y), x).

Clearly, χ([X,Y ])−{χ(X), χ(Y )} is a constant function by the long exact sequence.
Since it also vanishes at 0 ∈ H∞, the mapping χ : g → C∞σ (H∞) is a Lie algebra
homomorphism.

For the last assertion we have

χ(X)(ρ(g)x) = 1
2σ(ρ′(X)(ρ(g)x), ρ(g)x)

= 1
2 (ρ(g)∗σ)(ρ(g−1)ρ′(X)(ρ(g)x), x)

= 1
2σ(ρ′(Ad(g−1)X)x, x) = χ(Ad(g−1)X)(x). �

49.15. The moment mapping. For a unitary representation ρ : G → U(H) we
can now define the moment mapping

µ : H∞ → g′ = L(g,R),

µ(x)(X) := χ(X)(x) = 1
2σ(ρ′(X)x, x),

for x ∈ H∞ and X ∈ g.

49.16. Theorem. The moment mapping µ : H∞ → g′ has the following properties:

(1) We have (dµ(x)y)(X) = σ(ρ′(X)x, y) for x, y ∈ H∞ and X ∈ g. Conse-
quently, we have evX ◦µ ∈ C∞σ (H∞,R) for all X ∈ g.

(2) If G is a finite dimensional Lie group, for x ∈ H∞ the image of dµ(x) : H∞ →
g′ is the annihilator g◦x of the Lie algebra gx = {X ∈ g : ρ′(X)(x) = 0} of the
isotropy group Gx = {g ∈ G : ρ(g)x = x} in g′. If G is infinite dimensional
we can only assert that dµ(x)(H∞) ⊆ g◦x.

(3) For x ∈ H∞ the kernel of the differential dµ(x) is (Tx(ρ(G)x))σ = {y ∈ H∞ :
σ(y, Tx(ρ(G)x)) = 0}, the σ-annihilator of the ‘tangent space’ at x of the
G-orbit through x.
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(4) The moment mapping is equivariant: Ad∗(g) ◦ µ = µ ◦ ρ(g) for all g ∈ G,
where Ad∗(g) = Ad(g−1)∗ : g′ → g′ is the coadjoint action.

(5) If G is finite dimensional the pullback operator

µ∗ : C∞(g′,R)→ C∞(H∞,R)

actually has values in the subspace C∞σ (H∞,R). It is also a Lie algebra ho-
momorphism for the Poisson brackets involved.

Proof. ( 1 ) Differentiating the defining equation, we get

(a) (dµ(x)y)(X) = 1
2σ(ρ′(X)y, x) + 1

2σ(ρ′(X)x, y) = σ(ρ′(X)x, y).

From lemma 48.6 we see that evX ◦µ ∈ C∞σ (H∞,R) for all X ∈ g.

( 2 ) and ( 3 ) are immediate consequences of this formula.

( 4 ) We have

µ(ρ(g)x)(X) = χ(X)(ρ(g)x) = χ(Ad(g−1)X)(x) by lemma 49.14

= µ(x)(Ad(g−1)X) = (Ad(g−1)′µ(x))(X).

( 5 ) Take f ∈ C∞(g′,R), then we have

d(µ∗f)(x)y = d(f ◦ µ)(x)y = df(µ(x))dµ(x)y(b)

= (dµ(x)y)(df(µ(x))) = σ(ρ′(df(µ(x)))x, y)

by (a), which is smooth in x as a mapping into H∞ ∼= Hσ
∞ ⊂ H ′∞ since g′ is finite

dimensional. From lemma 48.6 we have that f ◦ µ ∈ C∞σ (H∞,R).

σ(gradσ(µ∗f)(x), y) = d(µ∗f)(x)y = σ(ρ′(df(µ(x)))x, y)

by (b), so gradσ(µ∗f)(x) = ρ′(df(µ(x)))x. The Poisson structure on g′ is given as
follows: We view the Lie bracket on g as a linear mapping Λ2g → g. Its adjoint
P : g′ → Λ2g′ is then a section of the bundle Λ2Tg′ → g′, which is called the
Poisson structure on g′. If for α ∈ g′ we view df(α) ∈ L(g′,R) as an element in g,
the Poisson bracket for fi ∈ C∞(g′,R) is given by {f1, f2}g′(α) = (df1∧df2)(P )|α =
α([df1(α), df2(α)]). Then we may compute as follows.

(µ∗{f1, f2}g′)(x) = {f1, f2}g′(µ(x))

= µ(x)([df1(µ(x)), df2(µ(x))])

= χ([df1(µ(x)), df2(µ(x))])(x)

= {χ(df1(µ(x))), χ(df2(µ(x)))}(x) by lemma 49.14

= σ(gradσ χ(df2(µ(x)))(x), gradσ χ(df1(µ(x)))(x))

= σ(ρ′(df2(µ(x)))x, ρ′(df1(µ(x)))x)

= σ(gradσ(µ∗f2)(x), gradσ(µ∗f1)(x)) by (b)

= {µ∗f1, µ
∗f2}H∞(x). �
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Remark. Assertion ( 5 ) of the last theorem also remains true for infinite dimen-
sional Lie groups G, in the following sense:

We define C∞σ (g′,R) as the space of all f ∈ C∞(g′,R) such that the following

condition is satisfied (compare with lemma 48.6 ):

df : g′ → g′′ factors to a smooth mapping g′ → g−ι→ g′′, where ι : g → g′′ is
the canonical injection into the bidual.

Then the Poisson bracket on C∞σ (g′,R) is defined by {f, g}(α) = α([df(α), dg(α)]),
and the pullback µ∗ : C∞(g′,R) → C∞(H∞,R) induces a Lie algebra homomor-
phism µ∗ : C∞σ (g′,R)→ C∞σ (H∞,R) for the Poisson brackets involved. The proof
is as above, with obvious changes.

49.17. Let now G be a real analytic Lie group, and let ρ : G → U(H) be a
unitary representation on a Hilbert space H. Again we consider Hω as a weak
symplectic real analytic manifold, equipped with the symplectic structure σ, the
restriction of the imaginary part of the Hermitian inner product 〈 , 〉 on H.
Then again σ ∈ Ω2(Hω) is a closed 2-form which is non degenerate in the sense
that σ∨ : Hω → H ′ω = L(Hω,R) is injective. Let

H∗ω := σ∨(Hω) = σ(Hω, ) = Re〈Hω, 〉 ⊂ H ′ω = L(Hω,R)

denote the analytic dual of Hω, equipped with the topology induced by the isomor-
phism with Hω.

49.18. Remark. All the results leading to the smooth moment mapping can
now be carried over to the real analytic setting with no changes in the proofs. So

all statements from 49.12 to 49.16 are valid in the real analytic situation. We
summarize this in one more result:

49.19. Theorem. Consider the injective linear continuous G-equivariant mapping

i : Hω → H∞. Then for the smooth moment mapping µ : H∞ → g′ from 49.16

the composition µ ◦ i : Hω → H∞ → g′ is real analytic. It is called the real analytic
moment mapping.

Proof. It is immediately clear from 49.10 and the formula 49.15 for the smooth
moment mapping, that µ ◦ i is real analytic. �

50. Applications to Perturbation Theory of Operators

The material of this section is mostly due to [Alekseevsky et al., 1998]. We want to
show that relatively simple applications of the calculus developed in the first part
of this book can reproduce results which partly are even stronger than the best
results from [Kato, 1976]. We start with choosing roots of smoothly parameterized
polynomials in a smooth way. For more information on this see the reference above.
Let

P (t) = xn − a1(t)xn−1 + · · ·+ (−1)nan(t)

be a polynomial with all roots real, smoothly parameterized by t near 0 in R. Can
we find n smooth functions x1(t), . . . , xn(t) of the parameter t defined near 0, which
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are roots of P (t) for each t? We can reduce the problem to a1 = 0, replacing the
variable x by the variable y = x − a1(t)/n. We will say that the curve (1) is
smoothly solvable near t = 0 if such smooth roots xi(t) exist.

50.1. Preliminaries. We recall some known facts on polynomials with real coef-
ficients. Let

P (x) = xn − a1x
n−1 + · · ·+ (−1)nan

be a polynomial with real coefficients a1, . . . , an and roots x1, . . . , xn ∈ C. It
is known that ai = σi(x1, . . . , xn), where σi (i = 1, . . . , n) are the elementary
symmetric functions in n variables:

σi(x1, . . . , xn) =
∑

1≤j1<···<ji≤n

xj1 . . . xji .

Denote by si the Newton polynomials
∑n
j=1 x

i
j , which are related to the elementary

symmetric function by

(1) sk − sk−1σ1 + sk−2σ2 + · · ·+ (−1)k−1s1σk−1 + (−1)kkσk = 0 (k ≤ n).

The corresponding mappings are related by a polynomial diffeomorphism ψn, given

by 1 :

σn := (σ1, . . . , σn) : Rn → Rn

sn := (s1, . . . , sn) : Rn → Rn

sn := ψn ◦ σn.

Note that the Jacobian (the determinant of the derivative) of sn is n! times the
Vandermond determinant: det(dsn(x)) = n!

∏
i>j(xi − xj) =: n! Van(x), and even

the derivative itself d(sn)(x) equals the Vandermond matrix up to factors i in
the i-th row. We also have det(d(ψn)(x)) = (−1)n(n+3)/2n! = (−1)n(n−1)/2n!, and
consequently det(dσn(x)) =

∏
i>j(xj−xi). We consider the so-called Bezoutiant

B :=


s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
...

sn−1 sn . . . s2n−2

 .

Let Bk be the minor formed by the first k rows and columns of B. From

Bk(x) =


1 1 . . . 1
x1 x2 . . . xn
...

...
...

xk−1
1 xk−1

2 . . . xk−1
n

 ·


1 x1 . . . xk−1
1

1 x2 . . . xk−1
2

...
...

...
1 xn . . . xk−1

n


it follows that

(2) ∆k(x) := det(Bk(x)) =
∑

i1<i2<···<ik

(xi1 − xi2)2 . . . (xi1 − xin)2 . . . (xik−1
− xik)2,

since for n × k-matrices A one has det(AA>) =
∑
i1<···<ik det(Ai1,...,ik)2, where

Ai1,...,ik is the minor of A with the indicated rows. Since the ∆k are symmetric we

have ∆k = ∆̃k ◦ σn for unique polynomials ∆̃k, and similarly we shall use B̃.
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50.2. Result. [Sylvester, 1853 1904, pp.511], [Procesi, 1978] The roots of P are all

real if and only if the matrix B̃(P ) ≥ 0. Then we have ∆̃k(P ) := ∆̃k(a1, . . . , an) ≥ 0

for 1 ≤ k ≤ n. The rank of B̃(P ) equals the number of distinct roots of P , and its
signature equals the number of distinct real roots.

50.3. Proposition . Let now P be a smooth curve of polynomials

P (t)(x) = xn − a1(t)xn−1 + · · ·+ (−1)nan(t)

with all roots real and distinct for t = 0. Then P is smoothly solvable near 0.

This is also true in the real analytic case and for higher dimensional parameters,
and in the holomorphic case for complex roots.

Proof. The derivative d
dxP (0)(x) does not vanish at any root, since they are

distinct. Thus, by the implicit function theorem we have local smooth solutions
x(t) of P (t, x) = P (t)(x) = 0. �

50.4. Splitting Lemma . Let P0 be a polynomial

P0(x) = xn − a1x
n−1 + · · ·+ (−1)nan.

If P0 = P1 ·P2, where P1 and P2 are polynomials with no common root. Then for P
near P0 we have P = P1(P )·P2(P ) for real analytic mappings of monic polynomials
P 7→ P1(P ) and P 7→ P2(P ), defined for P near P0, with the given initial values.

Proof. Let the polynomial P0 be represented as the product

P0 = P1.P2 = (xp − b1xp−1 + · · ·+ (−1)pbp)(x
q − c1xq−1 + · · ·+ (−1)qcq).

Let xi for i = 1, . . . , n be the roots of P0, ordered in such a way that for i = 1, . . . , p
we get the roots of P1, and for i = p + 1, . . . , p + q = n we get those of P2. Then
(a1, . . . , an) = φp,q(b1, . . . , bp, c1, . . . , cq) for a polynomial mapping φp,q, and we get

σn = φp,q ◦ (σp × σq),
det(dσn) = det(dφp,q(b, c)) det(dσp) det(dσq).

From 50.1 we conclude∏
1≤i<j≤n

(xi − xj) = det(dφp,q(b, c))
∏

1≤i<j≤p

(xi − xj)
∏

p+1≤i<j≤n

(xi − xj)

which in turn implies

det(dφp,q(b, c)) =
∏

1≤i≤p<j≤n

(xi − xj) 6= 0,

so that φp,q is a real analytic diffeomorphism near (b, c). �
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50.5. For a continuous function f defined near 0 in R let the multiplicity or
order of flatness m(f) at 0 be the supremum of all integers p such that f(t) =
tpg(t) near 0 for a continuous function g. If f is Cn and m(f) < n then f(t) =
tm(f)g(t) where now g is Cn−m(f) and g(0) 6= 0. If f is a continuous function on
the space of polynomials, then for a fixed continuous curve P of polynomials we
will denote by m(f) the multiplicity at 0 of t 7→ f(P (t)).

The splitting lemma 50.4 shows that for the problem of smooth solvability it is
enough to assume that all roots of P (0) are equal.

Proposition . Suppose that the smooth curve of polynomials

P (t)(x) = xn + a2(t)xn−2 − · · ·+ (−1)nan(t)

is smoothly solvable with smooth roots t 7→ xi(t), and that all roots of P (0) are
equal. Then for (k = 2, . . . , n)

m(∆̃k) ≥ k(k − 1) min
1≤i≤n

m(xi).

m(ak) ≥ k min
1≤i≤n

m(xi).

This result also holds in the real analytic case and in the smooth case.

Proof. This follows by 50.1.2 for ∆k and by ak(t) = σk(x1(t), . . . , xn(t)). �

50.6. Lemma . Let P be a polynomial of degree n with all roots real. If a1 = a2 = 0
then all roots of P are equal to zero.

Proof. From 50.1.1 we have
∑
x2
i = s2(x) = σ2

1(x)− 2σ2(x) = a2
1 − 2a2 = 0. �

50.7. Multiplicity lemma. For an integer r ≥ 1 consider a Cnr curve of
polynomials

P (t)(x) = xn + a2(t)xn−2 − · · ·+ (−1)nan(t)

with all roots real. Then the following conditions are equivalent:

(1) m(ak) ≥ kr for all 2 ≤ k ≤ n.

(2) m(∆̃k) ≥ k(k − 1)r for all 2 ≤ k ≤ n.
(3) m(a2) ≥ 2r.

Proof. We only have to treat r > 0.

(1) implies (2): From 50.1.1 we have m(s̃k) ≥ rk, and from the definition of

∆̃k = det(B̃k) we get (2).

(2) implies (3) since ∆̃2 = −2na2.

(3) implies (1): From a2(0) = 0 and lemma 50.6 it follows that all roots of the
polynomial P (0) are equal to zero and, then, a3(0) = · · · = an(0) = 0. There-
fore, m(a3), . . . ,m(an) ≥ 1. Under these conditions, we have a2(t) = t2ra2,2r(t)
and ak(t) = tmkak,mk(t) for k = 3, . . . , n, where the mk are positive integers and
a2,2r, a3,m3

, . . . , an,mn are continuous functions, and where we may assume that
either mk = m(ak) <∞ or mk ≥ kr.
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Suppose now indirectly that for some k > 2 we have mk = m(ak) < kr. Then we
put

m := min
(
r, m3

3 , . . . ,
mn
n

)
< r.

We consider the following continuous curve of polynomials for t ≥ 0:

P̄m(t)(x) := xn + a2,2r(t)t
2r−2mxn−2

− a3,m3
(t)tm3−3mxn−3 + · · ·+ (−1)nan,mn(t)tmn−nm.

If x1, . . . , xn are the real roots of P (t) then t−mx1, . . . , t
−mxn are the roots of P̄m(t),

for t > 0. So for t > 0, P̄m(t) is a family of polynomials with all roots real. Since

by theorem 50.2 the set of polynomials with all roots real is closed, P̄m(0) is also
a polynomial with all roots real.

By lemma 50.6 , all roots of the polynomial P̄m(0) are equal to zero, and for those

k with mk = km we have nr−mk ≥ kr−mk ≥ 1, thus ak,mk is Cnr−mk ⊆ C1 and
ak,mk(0) = 0, therefore m(ak) > mk, a contradiction. �

50.8. Algorithm. Consider a smooth curve of polynomials

P (t)(x) = xn − a1(t)xn−1 + a2(t)xn−2 − · · ·+ (−1)nan(t)

with all roots real. The algorithm has the following steps:

(1) If all roots of P (0) are pairwise different, P is smoothly solvable for t near 0

by 50.3 .
(2) If there are distinct roots at t = 0 we put them into two subsets which splits

P (t) = P1(t).P2(t) by the splitting lemma 50.4 . We then feed Pi(t) (which
have lower degree) into the algorithm.

(3) All roots of P (0) are equal. We first reduce P (t) to the case a1(t) = 0 by
replacing the variable x by y = x− a1(t)/n. Then all roots are equal to 0, so
m(a2) > 0.

(3a) If m(a2) is finite then it is even since ∆̃2 = −2na2 ≥ 0, m(a2) = 2r, and by

the multiplicity lemma 50.7 ai(t) = ai,ir(t)t
ir (i = 2, . . . , n) for smooth ai,ir.

Consider the following smooth curve of polynomials

Pr(t)(x) = xn + a2,2r(t)x
n−2 − a3,3r(t)x

n−3 + · · ·+ (−1)nan,nr(t).

If Pr(t) is smoothly solvable and xk(t) are its smooth roots, then xk(t)tr are
the roots of P (t), and the original curve P is smoothly solvable, too. Since
a2,2m(0) 6= 0, not all roots of Pr(0) are equal, and we may feed Pr into step 2
of the algorithm.

(3b) If m(a2) is infinite and a2 = 0, then all roots are 0 by 50.6 , and thus the
polynomial is solvable.

(3c) But if m(a2) is infinite and a2 6= 0, then by the multiplicity lemma 50.7 all
m(ai) for 2 ≤ i ≤ n are infinite. In this case we keep P (t) as factor of the
original curve of polynomials with all coefficients infinitely flat at t = 0 after
forcing a1 = 0. This means that all roots of P (t) meet of infinite order of

flatness (see 50.5 ) at t = 0 for any choice of the roots. This can be seen as
follows: If x(t) is any root of P (t) then y(t) := x(t)/tr is a root of Pr(t), hence

by 50.9 bounded, so x(t) = tr−1.ty(t) and t 7→ ty(t) is continuous at t = 0.
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This algorithm produces a splitting of the original polynomial

P (t) = P (∞)(t)P (s)(t),

where P (∞) has the property that each root meets another one of infinite order at
t = 0, and where P (s)(t) is smoothly solvable, and no two roots meet of infinite
order at t = 0, if they are not equal. Any two choices of smooth roots of P (s) differ
by a permutation.

The factor P (∞) may or may not be smoothly solvable. For a flat function f ≥ 0
consider:

x4 − (f(t) + t2)x2 + t2f(t) = (x2 − f(t)).(x− t)(x+ t).

Here the algorithm produces this factorization. For f(t) = g(t)2 the polynomial is

smoothly solvable. There exist smooth functions f (see 25.3 or [Alekseevsky et al.,

1998, 2.4]) such that x2 = f(t) is not smoothly solvable, in fact not C2-solvable.

50.9. Lemma. For a polynomial

P (x) = xn − a1(P )xn−1 + · · ·+ (−1)nan(P )

with all roots real, i.e. ∆̃k(P ) = ∆̃k(a1, . . . , an) ≥ 0 for 1 ≤ k ≤ n, let

x1(P ) ≤ x2(P ) ≤ · · · ≤ xn(P )

be the roots, increasingly ordered.

Then all xi : σn(Rn)→ R are continuous.

Proof. We show first that x1 is continuous. Let P0 ∈ σn(Rn) be arbitrary. We have
to show that for every ε > 0 there exists some δ > 0 such that for all |P − P0| < δ
there is a root x(P ) of P with x(P ) < x1(P0)+ε and for all roots x(P ) of P we have
x(P ) > x1(P0)− ε. Without loss of generality we may assume that x1(P0) = 0.

We use induction on the degree n of P . By the splitting lemma 50.4 for the

C0-case, we may factorize P as P1(P ) · P2(P ), where P1(P0) has all roots equal
to x1 = 0 and P2(P0) has all roots greater than 0, and both polynomials have
coefficients which depend real analytically on P . The degree of P2(P ) is now
smaller than n, so by induction the roots of P2(P ) are continuous and thus larger
than x1(P0)− ε for P near P0.

Since 0 was the smallest root of P0 we have to show that for all ε > 0 there exists
a δ > 0 such that for |P − P0| < δ any root x of P1(P ) satisfies |x| < ε. Suppose
there is a root x with |x| ≥ ε. Then we get a contradiction as follows, where n1 is
the degree of P1. From

−xn1 =

n1∑
k=1

(−1)kak(P1)xn1−k

we have

ε ≤ |x| =
∣∣∣ n1∑
k=1

(−1)kak(P1)x1−k
∣∣∣ ≤ n1∑

k=1

|ak(P1)| |x|1−k <
n1∑
k=1

εk

n1
ε1−k = ε,

provided that n1|ak(P1)| < εk, which is true for P1 near P0, since ak(P0) = 0.
Thus, x1 is continuous.
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Now we factorize P = (x − x1(P )) · P2(P ), where P2(P ) has roots x2(P ) ≤ · · · ≤
xn(P ). By Horner’s algorithm (an = bn−1x1, an−1 = bn−1 + bn−2x1,. . . , a2 =
b2 + b1x1, a1 = b1 +x1), the coefficients bk of P2(P ) are continuous, and so we may
proceed by induction on the degree of P . Thus, the claim is proved. �

50.10. Theorem. Consider a smooth curve of polynomials

P (t)(x) = xn + a2(t)xn−2 − · · ·+ (−1)nan(t)

with all roots real, for t ∈ R. Let one of the two following equivalent conditions be
satisfied:

(1) If two of the increasingly ordered continuous roots meet of infinite order some-
where then they are equal everywhere.

(2) Let k be maximal with the property that ∆̃k(P ) does not vanish identically for

all t. Then ∆̃k(P ) vanishes nowhere of infinite order.

Then the roots of P can be chosen smoothly, and any two choices differ by a per-
mutation of the roots.

Proof. The local situation. We claim that for any t0, without loss of generality
t0 = 0, the following conditions are equivalent:

( 1 ) If two of the increasingly ordered continuous roots meet of infinite order at
t = 0 then their germs at t = 0 are equal.

( 2 ) Let k be maximal with the property that the germ at t = 0 of ∆̃k(P ) is not

0. Then ∆̃k(P ) is not infinitely flat at t = 0.

(3) The algorithm 50.8 never leads to step (3c).

( 3 ) ⇒ ( 1 ) Suppose indirectly that two of the increasingly ordered continuous

nonequal roots meet of infinite order at t = 0. Then in each application of step ( 2 )
these two roots stay with the same factor. After any application of step (3a) these
two roots lead to nonequal roots of the modified polynomial which still meet of
infinite order at t = 0. They never end up in a factor leading to step (3b) or

step ( 1 ). So they end up in a factor leading to step (3c).

( 1 )⇒ ( 2 ) Let x1(t) ≤ · · · ≤ xn(t) be the continuous roots of P (t). From 50.1.2
we have

(4) ∆̃k(P (t)) =
∑

i1<i2<···<ik

(xi1 − xi2)2 . . . (xi1 − xin)2 . . . (xik−1
− xik)2.

The germ of ∆̃k(P ) is not 0, so the germ of one summand is not 0. If ∆̃k(P ) were
infinitely flat at t = 0, then each summand was infinitely flat, there were two roots
among the xi which met of infinite order, thus by assumption their germs were
equal, so this summand vanished.

( 2 ) ⇒ ( 3 ) Since the leading ∆̃k(P ) vanishes only of finite order at zero, P

has exactly k different roots off 0. Suppose indirectly that the algorithm 50.8

leads to step (3c). Then P = P (∞)P (s) for a nontrivial polynomial P (∞). Let
x1(t) ≤ · · · ≤ xp(t) be the roots of P (∞)(t) and xp+1(t) ≤ · · · ≤ xn(t) those of

P (s). We know that each xi meets some xj of infinite order and does not meet
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any xl of infinite order, for i, j ≤ p < l. Let k(∞) > 2 and k(s) be the number of
generically different roots of P (∞) and P (s), respectively. Then k = k(∞) + k(s),
and an inspection of the formula for ∆̃k(P ) above leads to the fact that it must
vanish of infinite order at 0, since the only non-vanishing summands involve exactly
k(∞) many generically different roots from P (∞).

The global situation. From the first part of the proof we see that the algorithm

50.8 allows to choose the roots smoothly in a neighborhood of each point t ∈ R,
and that any two choices differ by a (constant) permutation of the roots. Thus, we
may glue the local solutions to a global solution. �

50.11. Theorem. Consider a curve of polynomials

P (t)(x) = xn − a1(t)xn−1 + · · ·+ (−1)nan(t), t ∈ R,
with all roots real, where all ai are of class Cn. Then there is a differentiable curve
x = (x1, . . . , xn) : R→ Rn whose coefficients parameterize the roots.

That this result cannot be improved to C1-roots is shown in [Alekseevsky et al.,
1998, 2.4].

Proof. First we note that the multiplicity lemma 50.7 remains true in the Cn-
case for n > 2 and r = 1 in the following sense, with the same proof:
If a1 = 0 then the following two conditions are equivalent

(1) ak(t) = tkak,k(t) for a continuous function ak,k, for 2 ≤ k ≤ n.
(2) a2(t) = t2a2,2(t) for a continuous function a2,2.

In order to prove the theorem itself, we follow one step of the algorithm. First we
replace x by x+ 1

na1(t), or assume without loss of generality that a1 = 0. Then we
choose a fixed t, say t = 0.

If a2(0) = 0 then it vanishes of second order at 0, for if it vanishes only of first order

then ∆̃2(P (t)) = −2na2(t) would change sign at t = 0, contrary to the assumption

that all roots of P (t) are real, by 50.2 . Thus, a2(t) = t2a2,2(t), so by the variant

of the multiplicity lemma 50.7 described above we have ak(t) = tkak,k(t) for
continuous functions ak,k, for 2 ≤ k ≤ n. We consider the following continuous
curve of polynomials

P1(t)(x) = xn + a2,2(t)xn−2 − a3,3(t)xn−3 · · ·+ (−1)nan,n(t).

with continuous roots z1(t) ≤ · · · ≤ zn(t), by 50.9 . Then xk(t) = zk(t)t are
differentiable at 0 and are all roots of P , but note that xk(t) = yk(t) for t ≥ 0, but
xk(t) = yn−k(t) for t ≤ 0, where y1(t) ≤ · · · ≤ yn(t) are the ordered roots of P (t).
This gives us one choice of differentiable roots near t = 0. Any choice is then given
by this choice and applying afterwards any permutation of the set {1, . . . , n} which
keeps the function k 7→ zk(0) invariant .

If a2(0) 6= 0 then by the splitting lemma 50.4 for the Cn-case we may factor
P (t) = P1(t) . . . Pk(t), where the Pi(t) have again Cn-coefficients, and where each
Pi(0) has all roots equal to ci, and where the ci are distinct. By the arguments
above, the roots of each Pi can be arranged differentiably. Thus P has differentiable
roots yk(t).
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But note that we have to apply a permutation on one side of 0 to the original roots,
in the following case: Two roots xk and xl meet at zero with xk(t)−xl(t) = tckl(t)
with ckl(0) 6= 0 (we say that they meet slowly). We may apply to this choice an
arbitrary permutation of any two roots which meet with ckl(0) = 0 (i.e. at least of
second order), and we get thus every differentiable choice near t = 0.

Now we show that we can choose the roots differentiable on the whole domain R.
We start with the ordered continuous roots y1(t) ≤ · · · ≤ yn(t). Then we put

xk(t) = yσ(t)(k)(t),

where the permutation σ(t) is given by

σ(t) = (1, 2)ε1,2(t) . . . (1, n)ε1,n(t)(2, 3)ε2,3(t) . . . (n− 1, n)εn−1,n(t),

and where εi,j(t) ∈ {0, 1} will be specified as follows: On the closed set Si,j of all t
where yi(t) and yj(t) meet of order at least 2 any choice is good. The complement
of Si,j is an at most countable union of open intervals, and in each interval we
choose a point, where we put εi,j = 0. Going right (and left) from this point we
change εi,j in each point where yi and yj meet slowly. These points accumulate
only in Si,j . �

50.12. Theorem. The real analytic case. Let P be a real analytic curve of
polynomials

P (t)(x) = xn − a1(t)xn−1 + · · ·+ (−1)nan(t), t ∈ R,

with all roots real.

Then P is real analytically solvable, globally on R. All solutions differ by permuta-
tions.

By a real analytic curve of polynomials we mean that all ai(t) are real analytic in t,
and real analytically solvable means that we may find xi(t) for i = 1, . . . , n which
are real analytic in t and are roots of P (t) for all t. The local existence part of this
theorem is due to [Rellich, 1937, Hilfssatz 2], his proof uses Puiseux-expansions.
Our proof is different and more elementary.

Proof. We first show that P is locally real analytically solvable near each point
t0 ∈ R. It suffices to consider t0 = 0. Using the transformation in the introduction
we first assume that a1(t) = 0 for all t. We use induction on the degree n. If n = 1
the theorem holds. For n > 1 we consider several cases:

The case a2(0) 6= 0. Here not all roots of P (0) are equal and zero, so by the

splitting lemma 50.4 we may factor P (t) = P1(t).P2(t) for real analytic curves of
polynomials of positive degree, which have both all roots real, and we have reduced
the problem to lower degree.

The case a2(0) = 0. If a2(t) = 0 for all t, then by 50.6 all roots of P (t) are 0,
and we are done. Otherwise 1 ≤ m(a2) < ∞ for the multiplicity of a2 at 0, and

by 50.6 all roots of P (0) are 0. If m(a2) > 0 is odd, then ∆̃2(P )(t) = −2na2(t)

changes sign at t = 0, so by 50.2 not all roots of P (t) are real for t on one side of 0.
This contradicts the assumption, so m(a2) = 2r is even. Then by the multiplicity
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lemma 50.7 we have ai(t) = ai,ir(t)t
ir (i = 2, . . . , n) for real analytic ai,ir, and we

may consider the following real analytic curve of polynomials

Pr(t)(x) = xn + a2,2r(t)x
n−2 − a3,3r(t)x

n−3 · · ·+ (−1)nan,nr(t)

with all roots real. If Pr(t) is real analytically solvable and xk(t) are its real analytic
roots then xk(t)tr are the roots of P (t), and the original curve P is real analytically
solvable too. Now a2,2r(0) 6= 0 and we are done by the case above.

Claim. Let x = (x1, . . . , xn) : I → Rn be a real analytic curve of roots of P on an
open interval I ⊂ R. Then any real analytic curve of roots of P on I is of the form
α ◦ x for some permutation α.

Let y : I → Rn be another real analytic curve of roots of P . Let tk → t0 be a con-
vergent sequence of distinct points in I. Then y(tk) = αk(x(tk)) = (xαk1, . . . , xαkn)
for permutations αk. By choosing a subsequence, we may assume that all αk are
the same permutation α. But then the real analytic curves y and α ◦ x coincide on
a converging sequence, so they coincide on I and the claim follows.

Now from the local smooth solvability above and the uniqueness of smooth solutions
up to permutations we can glue a global smooth solution on the whole of R. �

50.13. Now we consider the following situation: Let A(t) = (Aij(t)) be a smooth
(real analytic, holomorphic) curve of real (complex) (n× n)-matrices or operators,
depending on a real (complex) parameter t near 0. What can we say about the
eigenvalues and eigenfunctions of A(t)?

In the following theorem 50.14 the condition that A(t) is Hermitian cannot be
omitted. Consider the following example of real semisimple (not normal) matrices

A(t) :=

(
2t+ t3 t
−t 0

)
,

λ±(t) = t+
t2

2
± t2

√
1 + t2

4 , x±(t) =

(
1 + t

2 ± t
√

1 + t2

4

−1

)
,

where at t = 0 we do not get a base of eigenvectors.

50.14. Theorem. Let A(t) = (Aij(t)) be a smooth curve of complex Hermitian
(n×n)-matrices, depending on a real parameter t ∈ R, acting on a Hermitian space
V = Cn, such that no two of the continuous eigenvalues meet of infinite order at
any t ∈ R if they are not equal for all t.

Then the eigenvalues and the eigenvectors can be chosen smoothly in t, on the whole
parameter domain R.

Let A(t) = (Aij(t)) be a real analytic curve of complex Hermitian (n×n)-matrices,
depending on a real parameter t ∈ R, acting on a Hermitian space V = Cn. Then
the eigenvalues and the eigenvectors can be chosen real analytically in t on the whole
parameter domain R.

The condition on meeting of eigenvalues permits that some eigenvalues agree for
all t — we speak of higher ‘generic multiplicity’ in this situation.
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The real analytic version of this theorem is due to [Rellich, 1940]. Our proof is
different.

Proof. We prove the smooth case and indicate the changes for the real analytic
case. The proof will use an algorithm.

Note first that by 50.10 (by 50.12 in the real analytic case) the characteristic
polynomial

P (A(t))(λ) = det(A(t)− λI)(1)

= λn − a1(t)λn−1 + a2(t)λn−2 − · · ·+ (−1)nan(t)

=

n∑
i=0

tr(ΛiA(t))λn−i

is smoothly solvable (real analytically solvable), with smooth (real analytic) roots
λ1(t), . . . , λn(t) on the whole parameter interval.

Case 1: distinct eigenvalues. If A(0) has some eigenvalues distinct, then one
can reorder them in such a way that for i0 = 0 < 1 ≤ i1 < i2 < · · · < ik < n = ik+1

we have

λ1(0) = · · · = λi1(0) < λi1+1(0) = · · · = λi2(0) < · · · < λik+1(0) = · · · = λn(0).

For t near 0 we still have

λ1(t), . . . , λi1(t) < λi1+1(t), . . . , λi2(t) < · · · < λik+1(t), . . . , λn(t).

For j = 1, . . . , k + 1 we consider the subspaces

V
(j)
t =

ij⊕
i=ij−1+1

{v ∈ V : (A(t)− λi(t))v = 0}.

Then each V
(j)
t runs through a smooth (real analytic) vector subbundle of the

trivial bundle (−ε, ε)×V → (−ε, ε), which admits a smooth (real analytic) framing

eij−1+1(t), . . . , eij (t). We have V =
⊕k+1

j=1 V
(j)
t for each t.

In order to prove this statement, note that

V
(j)
t = ker

(
(A(t)− λij−1+1(t)) ◦ . . . ◦ (A(t)− λij (t))

)
,

so V
(j)
t is the kernel of a smooth (real analytic) vector bundle homomorphism B(t)

of constant rank (even of constant dimension of the kernel), and thus is a smooth
(real analytic) vector subbundle. This together with a smooth (real analytic) frame
field can be shown as follows: Choose a basis of V , constant in t, such that A(0)
is diagonal. Then by the elimination procedure one can construct a basis for the
kernel of B(0). For t near 0, the elimination procedure (with the same choices)
gives then a basis of the kernel of B(t); the elements of this basis are then smooth
(real analytic) in t for t near 0.

From the last result it follows that it suffices to find smooth (real analytic) eigen-
vectors in each subbundle V (j) separately, expanded in the smooth (real analytic)
frame field. But in this frame field the vector subbundle looks again like a constant
vector space. So feed each of these parts (A restricted to V (j), as matrix with
respect to the frame field) into case 2 below.
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Case 2: All eigenvalues at 0 are equal. So suppose that A(t) : V → V is

Hermitian with all eigenvalues at t = 0 equal to a1(0)
n , see 1 .

Eigenvectors of A(t) are also eigenvectors of A(t)− a1(t)
n I, so we may replace A(t) by

A(t)− a1(t)
n I and assume that for the characteristic polynomial 1 we have a1 = 0,

or assume without loss that λi(0) = 0 for all i, and so A(0) = 0.

If A(t) = 0 for all t we choose the eigenvectors constant.

Otherwise, let Aij(t) = tA
(1)
ij (t). From 1 we see that the characteristic polynomial

of the Hermitian matrix A(1)(t) is P1(t) in the notation of 50.8 , thus m(ai) ≥ i

for 2 ≤ i ≤ n, which also follows from 50.5 .

The eigenvalues of A(1)(t) are the roots of P1(t), which may be chosen in a smooth

way, since they again satisfy the condition of theorem 50.10 . In the real analytic

case we just have to invoke 50.12 . Note that eigenvectors of A(1) are also eigen-
vectors of A. If the eigenvalues are still all equal, we apply the same procedure
again, until they are not all equal: we arrive at this situation by the assumption of
the theorem in the smooth case, and automatically in the real analytic case. Then
we apply case 1.

This algorithm shows that one may choose the eigenvectors xi(t) of Ai(t) in a
smooth (real analytic) way, locally in t. It remains to extend this to the whole
parameter interval.

If some eigenvalues coincide locally then on the whole of R, by the assumption. The
corresponding eigenspaces then form a smooth (real analytic) vector bundle over
R, by case 1, since those eigenvalues, which meet in isolated points are different
after application of case 2.

So we we get V =
⊕
W

(j)
t where the W

(j)
t are real analytic sub vector bundles of

V ×R, whose dimension is the generic multiplicity of the corresponding smooth (real
analytic) eigenvalue function. It suffices to find global orthonormal smooth (real
analytic) frames for each of these; this exists since the vector bundle is smoothly
(real analytically) trivial, by using parallel transport with respect to a smooth (real
analytic) Hermitian connection. �

50.15. Example. (see [Rellich, 1937, section 2]) That the last result cannot be
improved is shown by the following example which rotates a lot:

x+(t) :=

(
cos 1

t
sin 1

t

)
, x−(t) :=

(
− sin 1

t
cos 1

t

)
, λ±(t) = ±e−

1
t2 ,

A(t) := (x+(t), x−(t))

(
λ+(t) 0

0 λ−(t)

)
(x+(t), x−(t))−1

= e−
1
t2

(
cos 2

t sin 2
t

sin 2
t − cos 2

t

)
.

Here t 7→ A(t) and t 7→ λ±(t) are smooth, whereas the eigenvectors cannot be
chosen continuously.
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50.16. Theorem. Let t 7→ A(t) be a smooth curve of unbounded self-adjoint oper-
ators in a Hilbert space with common domain of definition and compact resolvent.
Then the eigenvalues of A(t) may be arranged increasingly ordered in such a way
that each eigenvalue is continuous, and they can be rearranged in such a way that
they become C1-functions.

Suppose, moreover, that no two of the continuous eigenvalues meet of infinite order
at any t ∈ R if they are not equal. Then the eigenvalues and the eigenvectors can
be chosen smoothly in t on the whole parameter domain.

If on the other hand t 7→ A(t) is a real analytic curve of unbounded self-adjoint
operators in a Hilbert space with common domain of definition and with compact
resolvent. Then the eigenvalues and the eigenvectors can be chosen to be real ana-
lytic in t, on the whole parameter domain.

The real analytic version of this theorem is due to [Rellich, 1940], see also [Kato,
1976, VII, 3.9] the smooth version is due to [Alekseevsky et al., 1998]; the proof
follows the lines of the latter paper.

That A(t) is a smooth curve of unbounded operators means the following: There is
a dense subspace V of the Hilbert space H such that V is the domain of definition
of each A(t) and such that A(t)∗ = A(t) with the same domains V , where the
adjoint operator A(t)∗ is defined by 〈A(t)u, v〉 = 〈u,A(t)∗v〉 for all v for which the
left hand side is bounded as functional in u ∈ V ⊂ H. Moreover, we require that
t 7→ 〈A(t)u, v〉 is smooth for each u ∈ V and v ∈ H. This implies that t 7→ A(t)u is

smooth R→ H for each v ∈ V by 2.3 . Similar for the real analytic case, by 7.4 .

The first part of the proof will show that t 7→ A(t) smooth implies that the resolvent
(A(t)− z)−1 is smooth in t and z jointly, and mainly this is used later in the proof.
It is well known and in the proof we will show that if for some (t, z) the resolvent
(A(t)− z)−1 is compact then for all t ∈ R and z in the resolvent set of A(t).

Proof. We shall prove the smooth case and indicate the changes for the real
analytic case.

For each t consider the norm ‖u‖2t := ‖u‖2 + ‖A(t)u‖2 on V . Since A(t) = A(t)∗

is closed, (V, ‖ ‖t) is also a Hilbert space with inner product 〈u, v〉t := 〈u, v〉 +
〈A(t)u,A(t)v〉. Then t 7→ 〈u, v〉t is smooth for fixed u, v ∈ V , and by the multilinear

uniform boundedness principle 5.18 , the mapping t 7→ 〈 , 〉t is smooth and

into the space of bounded bilinear forms; in the real analytic case we use 11.14

instead. By the exponential law 3.12 the mapping (t, u) 7→ ‖u‖2t is smooth from

R×(V, ‖ ‖s)→ R for each fixed s. In the real analytic case we use 11.18 instead.
Thus, all Hilbert norms ‖ ‖t are equivalent, since {‖u‖t : |t| ≤ K, ‖u‖s ≤ 1}
is bounded by LK,s in R, so ‖u‖t ≤ LK,s‖u‖s for all |t| ≤ K. Moreover, each
A(s) is a globally defined operator (V, ‖ ‖t) → H with closed graph and is thus

bounded, and by using again the (multi)linear uniform boundedness principle 5.18

(or 11.14 in the real analytic case) as above we see that s 7→ A(s) is smooth (real
analytic) R→ L((V, ‖ ‖t), H).
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If for some (t, z) ∈ R×C the bounded operator A(t)−z : V → H is invertible, then
this is true locally and (t, z) 7→ (A(t) − z)−1 : H → V is smooth since inversion is
smooth on Banach spaces.

Since each A(t) is Hermitian the global resolvent set {(t, z) ∈ R×C : (A(t)−
z) : V → H is invertible} is open, contains R× (C \ R), and hence is connected.

Moreover (A(t)− z)−1 : H → H is a compact operator for some (equivalently any)
(t, z) if and only if the inclusion i : V → H is compact, since i = (A(t) − z)−1 ◦
(A(t)− z) : V → H → H.

Let us fix a parameter s. We choose a simple smooth curve γ in the resolvent set
of A(s) for fixed s.

(1) Claim. For t near s, there are C1-functions t 7→ λi(t) : 1 ≤ i ≤ N which
parameterize all eigenvalues (repeated according to their multiplicity) of A(t)
in the interior of γ. If no two of the generically different eigenvalues meet of
infinite order they can be chosen smoothly.

By replacingA(s) byA(s)−z0 if necessary we may assume that 0 is not an eigenvalue
of A(s). Since the global resolvent set is open, no eigenvalue of A(t) lies on γ or
equals 0, for t near s. Since

t 7→ − 1

2πi

∫
γ

(A(t)− z)−1 dz =: P (t, γ)

is a smooth curve of projections (on the direct sum of all eigenspaces corresponding
to eigenvalues in the interior of γ) with finite dimensional ranges, the ranks (i.e.
dimension of the ranges) must be constant: it is easy to see that the (finite) rank
cannot fall locally, and it cannot increase, since the distance in L(H,H) of P (t) to
the subset of operators of rank ≤ N = rank(P (s)) is continuous in t and is either
0 or 1. So for t near s, there are equally many eigenvalues in the interior, and we
may call them µi(t) : 1 ≤ i ≤ N (repeated with multiplicity). Let us denote by
ei(t) : 1 ≤ i ≤ N a corresponding system of eigenvectors of A(t). Then by the
residue theorem we have

N∑
i=1

µi(t)
pei(t)〈ei(t), 〉 = − 1

2πi

∫
γ

zp(A(t)− z)−1 dz,

which is smooth in t near s, as a curve of operators in L(H,H) of rank N , since 0
is not an eigenvalue.

(2) Claim. Let t 7→ T (t) ∈ L(H,H) be a smooth curve of operators of rank N
in Hilbert space such that T (0)T (0)(H) = T (0)(H). Then t 7→ tr(T (t)) is
smooth (real analytic) (note that this implies T smooth (real analytic) into

the space of operators of trace class by 2.3 or 2.14.4 , (by 10.3 and 9.4
in the real analytic case) since all bounded linear functionals are of the form

A 7→ tr(AB) for bounded B, see 52.33 , e.g.

Let F := T (0)(H). Then T (t) = (T1(t), T2(t)) : H → F ⊕ F⊥ and the image of
T (t) is the space

T (t)(H) = {(T1(t)(x), T2(t)(x)) : x ∈ H}
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= {(T1(t)(x), T2(t)(x)) : x ∈ F} for t near 0

= {(y, S(t)(y)) : y ∈ F}, where S(t) := T2(t) ◦ (T1(t)|F )−1.

Note that S(t) : F → F⊥ is smooth (real analytic) in t by finite dimensional
inversion for T1(t)|F : F → F . Now

tr(T (t)) = tr

((
1 0

−S(t) 1

)(
T1(t)|F T1(t)|F⊥
T2(t)|F T2(t)|F⊥

)(
1 0

S(t) 1

))
= tr

((
T1(t)|F T1(t)|F⊥

0 −S(t)T1(t)|F⊥ + T2(t)|F⊥
)(

1 0
S(t) 1

))
= tr

((
T1(t)|F T1(t)|F⊥

0 0

)(
1 0

S(t) 1

))
, since rank = N

= tr

(
T1(t)|F + (T1(t)|F⊥)S(t) T1(t)|F⊥

0 0

)
= tr

(
T1(t)|F + (T1(t)|F⊥)S(t) : F → F

)
,

which visibly is smooth (real analytic) since F is finite dimensional.

From the claim ( 2 ) we now may conclude that

m∑
i=−n

λi(t)
p = − 1

2πi
tr

∫
γ

zp(A(t)− z)−1 dz

is smooth (real analytic) for t near s.

Thus, the Newton polynomial mapping sN (λ−n(t), . . . , λm(t)) is smooth (real an-
alytic), so also the elementary symmetric polynomial σN (λ−n(t), . . . , λm(t)) is
smooth, and thus {µi(t) : 1 ≤ i ≤ N} is the set of roots of a polynomial with

smooth (real analytic) coefficients. By theorem 50.11 , there is an arrangement
of these roots such that they become differentiable. If no two of the generically

different ones meet of infinite order, by theorem 50.10 there is even a smooth ar-

rangement. In the real analytic case, by theorem 50.12 the roots may be arranged
in a real analytic way.

To see that in the general smooth case they are even C1 note that the images of
the projections P (t, γ) of constant rank for t near s describe the fibers of a smooth
vector bundle. The restriction of A(t) to this bundle, viewed in a smooth framing,

becomes a smooth curve of symmetric matrices, for which by Rellich’s result 50.17

below the eigenvalues can be chosen C1. This finishes the proof of claim ( 1 ).

(3) Claim. Let t 7→ λi(t) be a differentiable eigenvalue of A(t), defined on some
interval. Then

|λi(t1)− λi(t2)| ≤ (1 + |λi(t2)|)(ea|t1−t2| − 1)

holds for a continuous positive function a = a(t1, t2) which is independent of
the choice of the eigenvalue.
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For fixed t near s take all roots λj which meet λi at t, order them differentiably near
t, and consider the projector P (t, γ) onto the joint eigenspaces for only those roots
(where γ is a simple smooth curve containing only λi(t) in its interior, of all the
eigenvalues at t). Then the image of u 7→ P (u, γ), for u near t, describes a smooth
finite dimensional vector subbundle of R×H, since its rank is constant. For each u
choose an orthonormal system of eigenvectors vj(u) of A(u) corresponding to these
λj(u). They form a (not necessarily continuous) framing of this bundle. For any
sequence tk → t there is a subsequence such that each vj(tk)→ wj(t) where wj(t)
is again an orthonormal system of eigenvectors of A(t) for the eigenspace of λi(t).
Now consider

A(t)− λi(t)
tk − t

vi(tk) +
A(tk)−A(t)

tk − t
vi(tk)− λi(tk)− λi(t)

tk − t
vi(tk) = 0,

take the inner product of this with wi(t), note that then the first summand vanishes,
and let tk → t to obtain

λ′i(t) = 〈A′(t)wi(t), wi(t)〉 for an eigenvector wi(t) of A(t) with eigenvalue λi(t).

This implies, where Vt = (V, ‖ ‖t),

|λ′i(t)| ≤ ‖A′(t)‖L(Vt,H)‖wi(t)‖Vt‖wi(t)‖H

= ‖A′(t)‖L(Vt,H)

√
‖wi(t)‖2H + ‖A(t)wi(t)‖2H

= ‖A′(t)‖L(Vt,H)

√
1 + λi(t)2 ≤ a+ a|λi(t)|,

for a constant a which is valid for a compact interval of t’s since t 7→ ‖ ‖2t is
smooth on V . By Gronwall’s lemma (see e.g. [Dieudonné, 1960, (10.5.1.3)) this

implies claim ( 3 ).]

By the following arguments we can conclude that all eigenvalues may be numbered
as λi(t) for i in N or Z in such a way that they are C1, or C∞ under the stronger
assumption, or real analytic in the real analytic case, in t ∈ R. Note first that by

claim ( 3 ) no eigenvalue can go off to infinity in finite time since it may increase
at most exponentially. Let us first number all eigenvalues of A(0) increasingly.

We claim that for one eigenvalue (say λ0(0)) there exists a C1 (or C∞ or real
analytic) extension to all of R; namely the set of all t ∈ R with a C1 (or C∞ or
real analytic) extension of λ0 on the segment from 0 to t is open and closed. Open

follows from claim ( 1 ). If this interval does not reach infinity, from claim ( 3 ) it
follows that (t, λ0(t)) has an accumulation point (s, x) at the the end s. Clearly x

is an eigenvalue of A(s), and by claim ( 1 ) the eigenvalues passing through (s, x)

can be arranged C1 (or C∞ or real analytic), and thus λ0(t) converges to x and
can be extended C1 (or C∞ or real analytic) beyond s.

By the same argument we can extend iteratively all eigenvalues C1 (or C∞ or real

analytic) to all t ∈ R: if it meets an already chosen one, the proof of 50.11 shows

that we may pass through it coherently. In the smooth case look at 50.10 instead,

and in the real analytic case look at the proof of 50.12 .
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Now we start to choose the eigenvectors smoothly, under the stronger assumption
in the smooth case, and in the real analytic case. Let us consider again eigenvalues
{λi(t) : 1 ≤ i ≤ N} contained in the interior of a smooth curve γ for t in an open
interval I. Then Vt := P (t, γ)(H) is the fiber of a smooth (real analytic) vector
bundle of dimension N over I. We choose a smooth framing of this bundle, and

use then the proof of theorem 50.14 to choose smooth (real analytic) sub vector
bundles whose fibers over t are the eigenspaces of the eigenvalues with their generic

multiplicity. By the same arguments as in 50.14 we then get global vector sub bun-
dles with fibers the eigenspaces of the eigenvalues with their generic multiplicities,
and thus smooth (real analytic) eigenvectors for all eigenvalues. �

50.17. Result. ([Rellich, 1953 1969, page 43], see also [, , II, 6.8] ). Let A(t) be a
C1-curve of (finite dimensional) symmetric matrices. Then the eigenvalues can be
chosen C1 in t, on the whole parameter interval.

This result is best possible for the degree of continuous differentiability, as is shown
by the example in [Alekseevsky et al., 1998, 7.4]
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51. The Nash-Moser Inverse Function Theorem

This section treats the hard implicit function theorem of Nash and Moser following
[Hamilton, 1982], in full generality and in condensed form, but with all details. The
main difficulty of the proof of the hard implicit function theorem is the following:
By trying to use the Newton iteration procedure for a nonlinear partial differential
equation one quickly finds out that ‘loss of derivatives’ occurs and one cannot reach
the situation, where the Banach fixed point theorem is directly applicable. Using
smoothing operators after each iteration step one can estimate higher derivatives
by lower ones and finally apply the fixed point theorem.

The core of this presentation is the following: one proves the theorem in a Fréchet
space of exponentially decreasing sequences in a Banach space, where the smooth-
ing operators take a very simple form: essentially just cutting the sequences at some
index. The statement carries over to certain direct summands which respect ‘boun-
ded losses of derivatives’, and one can organize these estimates into the concept
of tame mappings and thus apply the result to more general situations. However
checking that the mappings and also the inverses of their linearizations in a certain
problem are tame mappings (a priori estimates) is usually very difficult. We do not
give any applications, in view of our remarks before.

51.1. Remark. Let f : E ⊇ U → V ⊆ E be a diffeomorphisms. Then differenti-
ation of f−1 ◦ f = Id and f ◦ f−1 = Id at x and f(x) yields using the chain-rule,
that f ′(x) is invertible with inverse (f−1)′(f(x)) and hence x 7→ f ′(x)−1 is smooth
as well.

The inverse function theorem for Banach spaces assumes the invertibility of the
derivative only at one point. Openness of GL(E) in L(E) implies then local in-
vertibility and smoothness of inv : GL(E) → GL(E) implies the smoothness of
x 7→ f ′(x)−1.

Beyond Banach spaces we do not have openness of GL(E) in L(E) as the following
example shows.

51.2. Example. Let E := C∞(R,R) and P : E → E be given by P (f)(t) :=
f(t)−t f(t) f ′(t). Since multiplication with smooth functions and taking derivatives
are continuous linear maps, P is a polynomial of degree 2. Its derivative is given
by

P ′(f)(h)(t) = h(t)− t h(t) f ′(t)− t f(t)h′(t).

In particular, the derivative P ′(0) is the identity, hence invertible. However, at the
constant functions fn = 1

n the derivative P ′(fn) is not injective, since hk(t) := tk

are in the kernel: P ′(fn)(hk)(t) = tk − t · 0 · tk − t · 1
n · k · t

k−1 = tk · (1− k
n ).

Let us give an even more natural and geometric example:

51.3. Example. Let M be a compact smooth manifold. For Diff(M) we have
shown that the 1-parameter subgroup of Diff(M) with initial tangent vector X ∈
TId Diff(M) = X(M) is given by the flow FlX of X, see 43.1 . Thus, the exponen-

tial mapping Exp : TId Diff(M)→ Diff(M) is given by X 7→ FlX1 .
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The derivative T0 exp : TeG = T0(TeG)→ Texp(0)(G) = TeG at 0 of the exponential
mapping exp : g = TeG→ G is given by

T0 exp(X) := d
dt |t=0 exp(tX) = d

dt |t=0 FltX(1, e) = d
dt |t=0 FlX(t, e) = Xe.

Thus, T0 exp = Idg. In finite dimensions the inverse function theorem now implies
that exp : g→ G is a local diffeomorphism.

What is the corresponding situation for G = Diff(M)? We take the simplest
compact manifold (without boundary), namely M = S1 = R/2π Z. Since the
natural quotient mapping p : R → R/2πZ = S1 is a covering map we can lift

each diffeomorphism f : S1 → S1 to a diffeomorphism f̃ : R → R. This lift
is uniquely determined by its initial value f̃(0) ∈ p−1([0]) = 2πZ. A smooth

mapping f̃ : R → R projects to a smooth mapping f : S1 → S1 if and only if
f̃(t + 2π) ∈ f̃(t) + 2πZ. Since 2πZ is discrete, f(t + 2π) − f(t) has to be 2πn for

some n ∈ Z not depending on t. In order that a diffeomorphism f̃ : R→ R factors
to a diffeomorphism f : S1 → S1 the constant n has to be +1 or −1. So we finally
obtain an isomorphism {f ∈ Diff(R) : f(t + 2π) − f(t) = ±1}/2πZ ∼= Diff(S1). In
particular, we have diffeomorphisms Rθ given by translations with θ ∈ S1 (In the
picture S1 ⊆ C these are just the rotations by with angle θ).

Claim. Let f ∈ Diff(S1) be fixed point free and in the image of exp. Then f is
conjugate to some translation Rθ.
We have to construct a diffeomorphism g : S1 → S1 such that f = g−1 ◦ Rθ ◦ g.
Since p : R → R/2πZ = S1 is a covering map it induces an isomorphism Ttp :
R → Tp(t)S

1. In the picture S1 ⊆ C this isomorphism is given by s 7→ s p(t)⊥,

where p(t)⊥ is the normal vector obtained from p(t) ∈ S1 via rotation by π/2.
Thus, the vector fields on S1 can be identified with the smooth functions S1 → R
or, by composing with p : R → S1 with the 2π-periodic functions X : R → R.
Let us first remark that the constant vector field Xθ ∈ X(S1), s 7→ θ has as flow

FlX
θ

: (t, ϕ) 7→ ϕ+ t · θ. Hence exp(Xθ) = FlX
θ

1 = Rθ.

Let f = exp(X) and suppose g ◦ f = Rθ ◦ g. Then g ◦ FlXt = FlX
θ

t ◦g for t = 1.
Let us assume that this is true for all t. Then differentiating at t = 0 yields
Tg(Xx) = Xθ

g(x) for all x ∈ S1. If we consider g as diffeomorphism R → R this

means that g′(t) ·X(t) = θ for all t ∈ R. Since f was assumed to be fixed point free
the vector field X is nowhere vanishing. Otherwise, there would be a stationary

point x ∈ S1. So the condition on g is equivalent to g(t) = g(0) +
∫ t

0
θ

X(s) ds. We

take this as definition of g, where g(0) := 0, and where θ will be chosen such that

g factors to an (orientation preserving) diffeomorphism on S1, i.e. θ
∫ t+2π

t
ds
X(s) =

g(t+ 2π)− g(t) = 1. Since X is 2π-periodic this is true for θ = 1/
∫ 2π

0
ds
X(s) . Since

the flow of a transformed vector field is nothing else but the transformed flow we

obtain that g(FlX(t, x)) = FlX
θ

(t, g(x)), and hence g ◦ f = Rθ ◦ g. �

In order to show that exp : X(S1) → Diff(S1) is not locally surjective, it hence
suffices to find fixed point free diffeomorphisms f arbitrarily close to the identity
which are not conjugate to translations. For this consider the translations R2π/n

and modify them inside the interval (0, 2π
n ) such that the resulting diffeomorphism
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f satisfies f(πn ) /∈ 3π
n + 2πZ. Then fk maps 0 to 2π, and thus the induced diffeo-

morphism on S1 has [0] as fixed point. If f would be conjugate to a translation,
the same would be true for fk, hence the translation would have a fixed point and
hence would have to be the identity. So fk must be the identity on S1, which is
impossible, since f(πn ) /∈ 3π

n + 2πZ.

Let us find out the reason for this break-down of the inverse function theorem. For
this we calculate the derivative of exp at the constant vector field X := X2π/k:

exp′(X)(Y )(x) = d
ds |s=0 exp

(
(X + sY )(x)

)
= d

ds |s=0 FlX+sY (1, x) =

∫ 1

0

Y (x+ 2tπ
k ) dt,

where we have differentiated the defining equation for FlX+sY to obtain

∂
∂t

∂
∂s |s=0 FlX+sY (t, x) = ∂

∂s |s=0
∂
∂t FlX+sY (t, x)

= ∂
∂s |s=0(X + sY )(FlX+sY (t, x))

= Y (FlX(t, x)) +X ′(. . . )

= Y (x+ t 2π
k ) + 0,

and the initial condition FlX+sY (0, x) = x gives

∂
∂s |s=0 FlX+sY (t, x) =

∫ t

0

Y (x+ τ
2π

k
) dτ.

If we take x 7→ sin(kx) as Y then exp′(X)(Y ) = 0, so exp′(X) is not injective, and
since X can be chosen arbitrarily near to 0 we have that exp is not locally injective.

So we may conclude that a necessary assumption for an inverse function theorem
beyond Banach spaces is the invertibility of f ′(x) not only for one point x but for
a whole neighborhood.

For Banach spaces one then uses that x 7→ f ′(x)−1 is continuous (or even smooth),

which follows directly from the smoothness of inv : GL(E) → GL(E), see 51.1 .
However, for Fréchet spaces the following example shows that inv is not even con-
tinuous (for the c∞-topology).

51.4. Example. Let s be the Fréchet space of all fast falling sequences, i.e.
s := {(xk)k ∈ RN : ‖(xk)k‖n := sup{(1 + k)n|xk| : k ∈ N} < ∞ for all n ∈ N}.
Next we consider a curve c : R→ GL(s) defined by

c(t)((xk)k) := ((1− h0(t))x0, . . . , (1− hk(t))xk, . . . ),

where hk(t) := (1− 2−k)h(kt) for an h ∈ C∞(R,R) which will be chosen appropri-
ately.

Then c(t) ∈ GL(s) provided h(0) = 0 and supph is compact, since then the factors
1− hk(t) are equal to 1 for almost all k. The inverse is given by multiplying with
1/(1− hk(t)), which exists provided h(R) ⊆ [0, 1].
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Let us show next that inv ◦c : R→ GL(s) ⊆ L(s) is not even continuous. For this
take x ∈ s, and consider

t 7→ c
(

1
k

)−1
(x) = (. . . ;

1

1− hk( 1
k )
xk; . . . ) = (?, . . . , ?; 2kxk; ?, . . . ),

provided h(1) = 1. Let x be defined by xk := 2−k, then ‖c( 1
k )−1(x)−c(0)−1(x)‖0 ≥

1− 2−k 6→ 0.

It remains to show that c : R → GL(s) is continuous or even smooth. Since
smoothness of a curve depends only on the bounded sets, and boundedness in
GL(E) ⊆ L(E,E) can be tested pointwise because of the uniform boundedness

theorem 5.18 , it is enough to show that evx ◦s : R → GL(s) → s is smooth.
Boundedness in a locally convex space can be tested by the continuous linear func-
tionals, so it would be enough to show that λ ◦ evx ◦c : R → GL(s) → s → R is
smooth for all λ ∈ s∗. We want to use the particular functionals given by the coor-
dinate projections λk : (xk)k 7→ xk. These, however, do not generate the bornology,
but if B ⊆ s is bounded, then so is

⋂
k∈N λ

−1
k (λk(B)). In fact, let B be bounded.

Then for every n ∈ N there exists a constant Cn such that (1 +k)n|xk| ≤ Cn for all
k and all x = (xk)k ∈ B. Then every y ∈ λ−1

k (λk(x)) (i.e., λk(y) = λk(x)) satisfies

the same inequality for the given k, and hence
⋂
k∈N λ

−1
k (λk(B)) is bounded as well.

Obviously, λk◦evx ◦c is smooth with derivatives (λk◦evx ◦c)(p)(t) = (1−hk)(p)(t)xk.
Let cp(t) be the sequence with these coordinates. We claim that cp has values in s
and is (locally) bounded. So take an n ∈ N and consider

‖cp(t)‖n = sup
k

(1 + k)n|(1− hk)(p)(t)xk|.

We have (1−hk)(p)(t) = 1(p)−(1−2−k)kph(p)(kt), and hence this factor is bounded
by 1+kp‖h(p)‖∞. Since (1+kn)(1+‖h(p)‖∞kp)|xk| is by assumption on x bounded
we have that supt ‖cp(t)‖n <∞.

Now it is a general argument, that if we are given locally bounded curves cp : R→ s
such that λk ◦ c0 is smooth with derivatives (λk ◦ c0)(p) = λk ◦ cp, then c0 is smooth
with derivatives cp.
In fact, we consider for c = c0 the following expression

λk

(
1

t

(
c(t)− c(0)

t
− c1(0)

))
=

1

t

(
λk(c(t))− λk(c(0))

t
− λk(c1(0))

)
,

which is by the classical mean value theorem contained in { 1
2λk(c2(s)) : s ∈

[0, t]}. Thus, taking for B the bounded set { 1
2c

2(s) : s ∈ [0, 1]}, we conclude

that
(
(c(t)− c(0))/t− c1(0)

)
/t is contained in the bounded set

⋂
k∈N λ

−1
k (λk(B)),

and hence c(t)−c(0)
t → c1(0). Doing the same for c = ck shows that c0 is smooth

with derivatives ck.

From this we conclude that in order to obtain an inverse function theorem we
have to assume beside local invertibility of the derivative also that x 7→ f ′(x)−1 is
smooth. That this is still not enough is shown by the following example:

51.5. Example. Let E := C∞(R,R) and consider the map exp∗ : E → E given by
exp∗(f)(t) := exp(f(t)). Then one can show that exp∗ is smooth. Its (directional)



570 Chapter X . Further Applications 51.7

derivative is given by

(exp∗)
′(f)(h)(t) = ∂

∂s |s=0e
(f+sh)(t) = h(t) · ef(t),

so (exp∗)
′(f) is multiplication by exp∗(f). The inverse of (exp∗)

′(f) is the multi-
plication operator with 1

exp∗(f) = exp∗(−f), and hence f 7→ (exp∗)
′(f)−1 is smooth

as well. But the image of exp∗ consists of positive functions only, whereas the curve
c : t 7→ (s 7→ 1− ts) is a smooth curve in E = C∞(R,R) through exp∗(0) = 1, and
c(t) is not positive for all t 6= 0 (take s := 1

t ).

So we will need additional assumptions. The idea of the proof is to use that a
Fréchet space is built up from Banach spaces as projective limit, to solve the inverse
function theorem for the building blocks, and to try to approximate in that way an
inverse to the original function. In order to guarantee that such a process converges,
we need (a priori) estimates for the seminorms, and hence we have to fix the basis
of seminorms on our spaces.

51.6. Definition. A Fréchet space is called graded, if it is provided with a
fixed increasing basis of its continuous seminorms. A linear map T between graded
Fréchet spaces (E, (pk)k) and (F, (qk)k) is called tame of degree d and base b
if

∀n ≥ b ∃Cn ∈ R ∀x ∈ E : qn(Tx) ≤ Cnpn+d(x).

Recall that T is continuous if and only if

∀n ∃m ∃Cn ∈ R ∀x ∈ E : qn(Tx) ≤ Cnpm(x).

Two gradings are called tame equivalent of degree r and base b if and only
if the identity is tame of degree r and base b in both directions.

51.7. Examples. Let M be a compact manifold. Then C∞(M,R) is a graded
Fréchet space, where we consider as k-th norm the supremum of all derivatives
of order less or equal to k. In order that this definition makes sense, we can
embed M as closed submanifold into some Rn. Choosing a tubular neighborhood
Rn ⊇ U → M we obtain an extension operator p∗ : C∞(M,R) → C∞(U,R), and
on the latter space the operator norms of derivatives fk(x) for f ∈ C∞(U,R) make
sense.

Another way to give sense to the definition is to consider the vector bundle Jk(M,R)
of k-jets of functions f : M → R. Its fiber over x ∈ M consists of all “Taylor-
polynomials” of functions f ∈ C∞(M,R). We obtain an injection of C∞(M,R)
into the space of sections of Jk(M,R) by associating to f ∈ C∞(M,R) the section
having the Taylor-polynomial of f at a point x ∈ M . So it remains to define a
norm pk on the space C∞(M ← Jk(M,R)) of sections. This is just the supremum
norm, if we consider some metric on the vector bundle Jk(M,R)→M .

Another method of choosing seminorms would be to take a finite atlas and a par-
tition of unity subordinated to the charts and use the supremum norms of the
derivatives of the chart representations.

A second example of a graded Fréchet space, closely related to the first one, is the
space s(E) of fast falling sequences in a Banach space E, i.e.

s(E) := {(xk)k ∈ EN : ‖(xk)k‖n := sup{(1 + k)n‖xk| : k ∈ N} <∞ for all n ∈ N}.
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A modification of this is the space Σ(E) of very fast falling sequences in a Banach
space E, i.e.

Σ(E) := {(xk)k ∈ EN : ‖(xk)k‖n :=
∑
k∈N

enk‖xk‖ <∞ for all n ∈ N}.

51.8. Examples.
(1). Let T : s(E)→ s(E) be the multiplication operator with a polynomial p, i.e.,
T ((xk)k) := (p(k)xk)k.
We claim that T is tame of degree d := deg(p) and base 0. For this we estimate as
follows:

‖T ((xk)k)‖n = sup{(1 + k)np(k)‖xk‖ : k ∈ N}

≤ Cn sup{(1 + k)n+d‖xk‖ : k ∈ N} = Cn‖(xk)k‖n+d,

where d is the degree of p and Cn := sup{ |p(k)|
(1+k)d

: k ∈ N}. Note that Cn < ∞,

since k 7→ (1 + k)d is not vanishing on N, and the limit of the quotient for k →∞
is the coefficient of p of degree d.

This shows that s(E) is tamely equivalent to the same space, where the seminorms
are replaced by

∑
k(1 + k)n‖xk‖. In fact, the sums are larger than the suprema.

Conversely,
∑
k(1+k)n‖xk‖ ≤

∑
k(1+k)−2(1+k)n+2‖x‖k ≤

(∑
k(1+k)−2

)
‖x‖n+2,

showing that the identity in the reverse direction is tame of degree 2 and base 0.

(2). Let T : Σ(E) → Σ(E) be the multiplication operator with an exponential
function, i.e., T ((xk)k) := (akxk)k.
We claim that T is tame of some degree and base 0. For this we estimate as follows:

‖T ((xk)k)‖n =
∑
k∈N

enkak‖xk‖ =
∑
k∈N

e(n+log(a))k‖xk‖

≤
∑
k∈N

e(n+d)k‖xk‖ = ‖(xk)k‖n+d,

where d is any integer greater or equal to log(a). Note however, that T is not well
defined on s(E) for a > 1, and this is the reason to consider the space Σ(E).

Note furthermore, that as before one shows that one could equally well replace the
sum by the corresponding supremum in the definition of Σ(E), one only has to use
that

∑
k∈N e

−k = 1
1−1/e <∞.

(3). As a similar example we consider a linear differential operator D of degree
d, i.e., a local operator (the values Df depend at x only on the germ of f at x)

which is locally given in the form Df =
∑
|α|≤d gα ·

∂|α|

∂xα f , with smooth coefficient

functions gα ∈ C∞(M,R) on a compact manifold M .
Then D : C∞(M,R) → C∞(M,R) is tame of degree d and base 0. In fact, by the
product rule we can write the k-th derivative of Df as linear combination of partial
derivatives of the gα and derivatives of order up to k + d of f .

(4). Now we give an example of a non-tame linear map. For this consider T :
C∞([0, 1],R)→ C∞([−1, 1],R) given by Tf(t) := f(t2). It was shown in the proof

of 25.2 that the image of T consists exactly of the space C∞even([−1, 1],R) of even
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functions. Since (Tf)(n)(t) = f (n)(t2)(2t)n+
∑

0<2k≤n c
n
kf

(n−k)(t2)tn−2k with some
cnk ∈ Z, we have that T is tame of order 0 and degree 0. But the inverse is not

tame since (Tf)(2n)(0) is proportional to f (n)(0), hence in order to estimate the
n-th derivative of T−1g we need the 2n-th derivative of g.

51.9. Definition. A graded Fréchet space F is called tame if there exists some
Banach space E such that F is a tame direct summand in Σ(E), i.e. there are tame
linear mappings i : F → Σ(E) and p : Σ(E)→ F with p ◦ i = IdF .

Our next aim is to show that instead of Σ(E) we can equally well use s(E). For
this we consider a measured space (X,µ) and a measurable positive weight function
w : X → R and define

L1
Σ(X,µ,w) :=

{
f ∈ L1(X,µ) : ‖f‖n :=

∫
X

enw(x)|f(x)| dµ(x) <∞
}
.

51.10. Proposition. Every space L1
Σ(X,µ,w) is a tame Fréchet space.

Proof. Let Xk := {x ∈ X : k ≤ w(x) < k + 1}. Then the Xk form a countable
disjoint covering of X by measurable sets. Let χk be the characteristic function of
Xk, and let R : L1

Σ(X,µ,w) → ΣL1(X,µ) and L : ΣL1(X,µ) → L1
Σ(X,µ,w) be

defined by Rf := (χk · f)k and L((fk)k) :=
∑
k χk · fk. Then obviously L ◦R = Id.

The linear map R is well-defined and tame of degree 0 and base 0, since

‖Rf‖n =
∑
k

enk‖χkf‖1 =
∑
k

∫
Xk

enk|f | dµ ≤

≤
∑
k

∫
Xk

ew(x)n|f(x)| dµ(x) =

∫
X

ew(x)n|f(x)| dµ(x) = ‖f‖n.

Finally, L is a well-defined linear map, which is tame of degree 0 and base 0, since

‖L((fk)k)‖n =

∫
X

enw(x)
∣∣∣∑
k

χkfk(x)
∣∣∣ dµ(x) =

∑
k

∫
Xk

enw(x) |fk(x)| dµ(x)

≤
∑
k

∫
Xk

en(k+1) |fk(x)| dµ(x) ≤
∑
k

∫
Xk

en(k+1) |fk(x)| dµ(x)

= en
∑
k

enk‖fk‖1 = en‖(fk)k‖n. �

51.11. Corollary. For every Banach space E the space s(E) is a tame Fréchet
space.

Proof. This result follows immediately from the proposition 51.10 above, if one

replaces L1
Σ(X,µ,w) by the vector valued function space L1

Σ(X,µ,w;E) and simi-
larly the space L1(X,µ) by the Banach space L1(X,µ;E). �

Now let us show the converse direction:

51.12. Proposition. For every Banach space E the space Σ(E) is a tame direct
summand of s(E).
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Proof. We define R : Σ(E) → s(E) and L : s(E) → Σ(E) by R((xk)k) :=
(yk)k, where y[ek] := xk and 0 otherwise, and L((yk)k) := (y[ek])k. The map R
is well-defined, linear and tame, since ‖(yk)k‖n :=

∑
k(1 + k)n‖yk‖ =

∑
j(1 +

[ej ])n‖xj‖ ≤
∑
j(2e

j)n‖xj‖ = 2n‖(xj)j‖n. The map L is well-defined, linear and

tame, since ‖(xk)k‖n :=
∑
k e

kn‖xk‖ =
∑
k e

kn‖y[ek]‖ ≤
∑
k(1 + [ek])n‖y[ek]‖ ≤∑

j(1 + j)n‖yj‖ = ‖y‖n. Obviously, L ◦R = Id. �

51.13. Definition. A non linear map f : E ⊇ U → F between graded Fréchet
spaces is called tame of degree r and base bif it is continuous and every point
in U has a neighborhood V such that

∀n ≥ b ∃Cn ∀x ∈ V : ‖f(x)‖n ≤ Cn(1 + ‖x‖n+r).

Remark. Every continuous map from a graded Fréchet space into a Banach space
is tame.
For fixed x0 ∈ U choose a constant C > ‖f(x0)‖ and let V := {x : ‖f(x)‖ < C}.
Then V is an open neighborhood of x0, and for all n and all x ∈ V we have
‖f(x)‖n = ‖f(x)‖ ≤ C ≤ C(1 + ‖x‖n).

Every continuous map from a finite dimensional space into a graded Fréchet space
is tame.
Choose a compact neighborhood V of x0. Let Cn := max{‖f(x)‖n : x ∈ V }. Then
‖f(x)‖n ≤ Cn ≤ Cn(1 + ‖x‖).
It is easily checked that the composite of tame linear maps is tame. In fact

‖f(g(x))‖n ≤ C(1 + ‖g(x)‖n+r)

≤ C(1 + C(1 + ‖x‖n+r+s)) ≤ C(1 + ‖x‖n+r+s)

for all x in an appropriately chosen neighborhood and n ≥ bf and n+ r ≥ bg.

51.14. Proposition.The definition of tameness of degree r is coherent with the
one for linear maps, but the base may change.

Proof. Let first f be linear and tame as non-linear map. In particular, we have
locally around 0

‖f(x)‖n ≤ C(1 + ‖x‖n+r) for all n ≥ b.
If we increase b, we may assume that the 0-neighborhood is of the form {x :
‖x‖b+r ≤ ε} for some ε > 0. For y 6= 0 let x := ε

‖y‖b+r y, i.e., ‖x‖b+r = ε.

Thus, ‖f(x)‖n ≤ C(1 + ‖x‖n+r). By linearity of f , we get

‖f(y)‖n = ‖f(x)‖n
‖y‖b+r
ε

≤ C
(
‖y‖b+r
ε

+ ‖x‖n+r
‖y‖b+r
ε

)
= C

(‖y‖b+r
ε

+ ‖y‖n+r

)
.

Since ‖y‖b+r ≤ ‖x‖n+r for b ≤ n we get

‖f(y)‖n ≤ C
(1

ε
+ 1
)
‖x‖n+r.
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Conversely, let f be a tame linear map. Then the inequality

‖f(x)‖n ≤ C‖x‖n+r ≤ C(1 + ‖x‖n+r) for all n ≥ b
is true. �

Definition. For functions f of two variables we will define tameness of bi-degree
(r, s) and base b if locally

∀n ≥ b ∃C ∀x, y : ‖f(x, y)‖n ≤ C(1 + ‖x‖n+r + ‖y‖n+s);

and similar for functions in several variables.

51.15. Lemma.Let f : U × E → F be linear in the second variable and tame of
base b and degree (r, s) in a ‖ ‖b+r × ‖ ‖b+s-neighborhood. Then we have

∀n ≥ b ∃C : ‖f(x)h‖n ≤ C(‖h‖n+s + ‖x‖n+r‖h‖b+s)
for all x in a ‖ ‖b+r-neighborhood and all h.
If f : U × E1 × E2 is tame of base b and degree (r, s, t) in a ‖ ‖b+r × ‖ ‖b+s ×
‖ ‖b+t-neighborhood. Then we have

‖f(x)(h, k)‖n ≤ C(‖h‖n+s‖k‖b+t + ‖h‖b+s‖k‖n+t + ‖x‖n+r‖h‖b+s‖k‖b+t)
for all x in a b+ r-neighborhood and all h and k.

Proof. For arbitrary h let h̄ := ε
‖h‖b+sh. Then

‖f(x)h̄‖ ≤ C(1 + ‖x‖n+r + ‖h̄‖n+s).

Therefore

‖f(x)h‖n =
‖h‖b+s
ε
‖f(x)h̄‖n ≤

‖h‖b+s
ε

C

(
1 + ‖x‖n+r +

ε

‖h‖b+s
‖h‖n+s

)
≤ C‖h‖b+s

ε
+
C‖h‖b+s

ε
‖x‖n+r + C‖h‖n+s

≤ C
(

1

ε
+ 1

)
‖h‖n+s +

C

ε
‖x‖n+r‖h‖b+s.

The second part is proved analogously. �

51.16. Proposition. Interpolation formula for Σ(E).

‖x‖n · ‖x‖m ≤ ‖x‖n−r · ‖x‖m+r for 0 ≤ r ≤ n ≤ m.

Proof. Let us first consider the special case, where n = m and r = 1. Then

‖x‖n−1·‖x‖n+1 − ‖x‖2n =

=
∑
k

e(n−1)k‖xk‖
∑
l

e(n+1)l‖xl‖ −
∑
k

enk‖xk‖
∑
l

enl‖xl‖

=
∑
k=l

(e(n−1)ke(n+1)k − e2nk)‖xk‖2

+
∑
k<l

(e(n−1)ke(n+1)l + e(n+1)ke(n−1)l − 2en(k+l))‖xk‖‖xl‖.

In both subsummands the expression in brackets is positive, since
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e(n−1)ke(n+1)l + e(n+1)ke(n−1)l − 2en(k+l) =

= 2en(k+l)(el−k + ek−l − 2) = 4en(k+l)(cosh(l − k)− 1) ≥ 0.

By transitivity, it is enough to show the general case for r = 1. Without loss of
generality we may assume x 6= 0. Then this case is equivalent to

‖x‖n
‖x‖n−1

≤ ‖x‖m+1

‖x‖m
for n ≤ m.

Again by transitivity it is enough to show this for m = n. �

51.17. The Nash-Moser inverse function theorem. Let E and F be tame
Fréchet spaces and let f : E ⊇ U → F be a tame smooth map. Suppose f ′ has a
tame smooth family Ψ of inverses. Then f is locally bijective, and the inverse of f
is a tame smooth map.

The proof will take the rest of this section.

51.18. Proposition. Let E and F be tame Fréchet spaces and let f : E ⊇ U → F
be a tame smooth map. Suppose f ′ has a tame smooth family Ψ of linear left
inverses. Then f is locally injective.

51.19. Proposition. Let E and F be tame Fréchet spaces and let f : E ⊇ U → F
be a smooth tame map. Suppose f ′ has a tame smooth family Ψ of linear right
inverses. Then f is locally surjective (and locally has a smooth right inverse).

By a tame smooth mapping f we will for the moment understand an infinitely
often Gâteaux differentiable map, for which the derivatives f (n)(x) are multilinear
and are tame as maps U × En → F .

By a tame smooth family of (one-sided) inverses of f ′ we understand a family
(Ψ(x))x∈U : F → E of (one-sided) inverses of (f ′(x))x∈U , which gives a tame
smooth map Ψ∧ : U × F → E.

Let us start with some preparatory remarks for the proofs. Contrary to good
manners the symbol C will almost never denote the same constant even not in the
same inequality. This constant may depend on the index of the norm n but not on
any argument of the norms.

For all three proofs we may assume that the initial values are f : 0 7→ 0 (apply
translations in the domain and the codomain).

Claim. We may assume that E = Σ(B) and F = Σ(C).

First for 51.18 . In fact, E and F are direct summands in such spaces Σ(B) and

Σ(C). We extend f to a smooth tame mapping f̃ : Σ(B) ⊇ Ũ → Σ(B × C) ∼=
Σ(B) × Σ(C), by setting Ũ := p−1(U), where p : Σ(B) → E is the retraction,

and f̃ := (Id−p, f ◦ p). Note that (Id−p) preserves exactly that part which gets

annihilated by f ◦ p. More precisely injectivity of f̃ implies that of f . In fact,
f(x) = f(y) implies x = p(x), y = p(y), and hence (Id−p)(x) = 0 = (Id−p)(y), and

so f̃(x) = f̃(y). Since f̃ ′(x̃)(h̃) = ((Id−p)(h̃), f ′(p(x̃)) · p(h̃)), let Ψ̃(x̃) := (Id−p) ◦
pr1 +Ψ(p(x̃))◦pr2. Then Ψ̃(x̃)◦f̃ ′(x̃) = (Id−p)◦(Id−p)+Ψ(p(x̃))◦f ′(p(x̃))◦p = Id.
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Now for 51.19 . Here we extend f to a smooth tame mapping f̃ : Σ(B × C) ∼=
Σ(B) × Σ(C) ⊇ Ũ → Σ(C), by setting Ũ := p−1(U) × Σ(C) and f̃ := (f ◦ p) ⊕
(Id−q), where p : Σ(B) → E and q : Σ(C) → F are the retractions. Since

f̃ ′(x̃, ỹ) = f ′(p(x̃)) ◦ p ⊕ (Id−q) let Ψ̃(x̃, ỹ) : Σ(C) → Σ(B) × Σ(C) be defined

by Ψ̃(x̃, ỹ)(k̃) := (Ψ(p(x̃))(q(k̃)), (Id−q)(k̃)), i.e. Ψ̃(x̃, ỹ) := (Ψ(p(x̃)) ◦ q, (Id−q)).
Then

f̃ ′(x̃, ỹ) ◦ Ψ̃(x̃, ỹ) = ((f ◦ p)′(x̃)⊕ (Id−q)′(ỹ)) ◦ (Ψ(p(x̃)) ◦ q, (Id−q))
= f ′(p(x̃)) ◦ p ◦Ψ(p(x̃))︸ ︷︷ ︸

Ψ(p(x̃))

◦q + (Id−q) ◦ (Id−q)

= q + (Id−2q + q2) = Id .

Claim. We may assume that x 7→ f(x), (x, h) 7→ f ′(x)h, (x, h) 7→ f ′′(x)(h, h) and
(x, k) 7→ Ψ(x)k satisfy tame estimates of degree 2r in x, of degree r in h and 0 in
k (for some r) and base 0 on the set {‖x‖0 ≤ 1}.
Consider on Σ(B) the linear operators ∇p which are defined by (∇px)k := epkxk.
Then ‖∇px‖n = ‖x‖n+p. If f satisfies ‖f(x)‖n ≤ C(1 + ‖x‖n+s) on ‖x‖a ≤ δ

for n ≥ b then f̃ := ∇q ◦ f ◦ ∇−p satisfies ‖f̃(x)‖m = ‖f(∇−px)‖m+q ≤ C(1 +
‖∇−px‖m+q+s) = C(1 + ‖x‖m+q+s−p) on ‖x‖a−p ≤ δ for m ≥ b− q.
Choosing q and p sufficiently large, we may assume that f , f ′, f ′′, and Ψ satisfy
tame estimates of base 0 (choose q large in comparison to b) on {x : ‖x‖0 ≤ δ}
(choose p large in comparison to a). Furthermore, we may achieve that (x, k) 7→
Ψ(x)k is tame of order 0 (since by linearity we don’t need p for the neighborhood,
which is now global, but we have to choose it so that m+ q+ s− p ≤ m) in k (but
we cannot achieve that this is also true for f ′). Now take r sufficiently large such
that the degrees are dominated by 2r and r, and finally replace f by x 7→ f(cx) to
obtain δ = 1.

Claim. On ‖x‖2r ≤ 1 we have for all n ≥ 0 a Cn > 0 such that

‖f(x)‖n ≤ Cn‖x‖n+2r,

‖f ′(x)h‖n ≤ Cn(‖h‖n+r + ‖x‖n+2r‖h‖r),
‖f ′′(x)(h1, h2)‖n ≤ Cn(‖h1‖n+r‖h2‖r + ‖h1‖r‖h2‖n+r + ‖x‖n+2r‖h1‖r‖h2‖r),

‖Ψ(x)k‖n ≤ Cn(‖k‖n + ‖x‖n+2r‖k‖0).

The 2nd, 3rd and 4th inequality follow from the corresponding tameness and 51.15 ,
since the neighborhood is given by a norm with index higher then base + degree.
For the first inequality one would expect ‖f(x)‖n ≤ C(1 + ‖x‖n+2r), but since
f(0) = 0 one can drop the 1, which follows from integration of the second estimate:

‖f(x)‖n =
∥∥∥f(0) +

∫ 1

0

f ′(tx)x dt
∥∥∥
n
≤ C(‖x‖n+r + 1

2‖x‖n+2r‖x‖r).

Since ‖x‖n+r ≤ ‖x‖n+2r and ‖x‖r ≤ ‖x‖2r ≤ 1 we are done.

Proof of 51.18 . The idea comes from the 1-dimensional situation, where f(x) =
f(y) implies by the mean value theorem that there exists an r ∈ [x, y] := {tx+ (1−
t)y : 0 ≤ t ≤ 1} with f ′(r) = f(x)−f(y)

x−y = 0.
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51.20. Sublemma. There exists a δ > 0 such that for ‖xj‖2r ≤ δ we have
‖x1 − x0‖0 ≤ C‖f(x1) − f(x0)‖0. In particular, we have that f is injective on
{x : ‖x‖2r ≤ δ}.

Proof. Using the Taylor formula

f(x1) = f(x0) + f ′(x0)(x1 − x0) +

∫ 1

0

(1− t)f ′′(x0 + t(x1 − x0))(x1 − x0)2dt

and Ψ(x0) ◦ f ′(x0) = Id, we obtain that x1 − x0 = Ψ(x0)(k), where

k := f(x1)− f(x0)−
∫ 1

0

(1− t)f ′′(x0 + t(x1 − x0)) (x1 − x0)2 dt.

For ‖xj‖2r ≤ 1 we can use the tame estimates of f ′′ and interpolation to get

‖f ′′(x0 + t(x1 − x0))(x1 − x0)2‖n ≤

≤ C
(
‖x1 − x0‖n+r‖x1 − x0‖r + (‖x1‖n+2r + ‖x0‖n+2r)‖x1 − x0‖2r

)
≤ C

(
‖x1 − x0‖n+2r‖x1 − x0‖0 + (‖x1‖n+2r + ‖x0‖n+2r)‖x1 − x0‖2r‖x1 − x0‖0

)
≤ C

(
(‖x1‖n+2r + ‖x0‖n+2r)‖x1 − x0‖0 + (‖x1‖n+2r + ‖x0‖n+2r)2δ‖x1 − x0‖0

)
≤ C(‖x1‖n+2r + ‖x0‖n+2r)‖x1 − x0‖0.

Using the tame estimate

‖Ψ(x0)k‖0 ≤ C‖k‖0(1 + ‖x0‖2r) ≤ C‖k‖0,
we thus get

‖x1 − x0‖0 = ‖Ψ(x0)k‖0 ≤ C‖k‖0 ≤
≤ C

(
‖f(x1)− f(x0)‖0 + 1

2C(‖x1‖2r + ‖x0‖2r)‖x1 − x0‖0
)

≤ C (‖f(x1)− f(x0)‖0 + ‖x1 − x0‖2r)
≤ C (‖f(x1)− f(x0)‖0 + ‖x1 − x0‖2r · ‖x1 − x0‖0).

Now use ‖x1 − x0‖2r ≤ ‖x1‖2r + ‖x0‖2r ≤ 2δ to obtain

‖x1 − x0‖0 ≤ C(‖f(x1)− f(x0)‖0 + 2δ‖x1 − x0‖0).

Taking δ < 1
2C yields the result. �

51.21. Corollary. Let ‖xj‖2r ≤ δ with δ as before. Then for n ≥ 0 we have

‖x1 − x0‖n ≤ C
(
‖f(x1)− f(x0)‖n + (‖x1‖n+2r + ‖x0‖n+2r) ‖f(x1)− f(x0)‖0

)
.

Proof. As before we have

‖f ′′(x0 + t(x1 − x0))(x1 − x0)2‖n ≤ C(‖x1‖n+2r + ‖x0‖n+2r)‖x1 − x0‖0.
Since Ψ is tame we obtain now

‖x1 − x0‖n =
∥∥∥Ψ(x0)

(
f(x1)− f(x0)

−
∫ 1

0

(1− t)f ′′(x0 + t(x1 − x0))(x1 − x0)2
)∥∥∥

n
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≤
∥∥∥Ψ(x0)

(
f(x1)− f(x0)

)∥∥∥
n
+

+
∥∥∥Ψ(x0)

(∫ 1

0

(1− t)f ′′(x0 + t(x1 − x0))(x1 − x0)2
)∥∥∥

n

≤ C
(
‖f(x1)− f(x0)‖n + ‖x0‖n+2r · ‖f(x1)− f(x0)‖0

)
+

+ C
(∥∥∥∫ 1

0

(1− t)f ′′(x0 + t(x1 − x0))(x1 − x0)2
∥∥∥
n
+

+ ‖x0‖n+2r ·
∥∥∥∫ 1

0

(1− t)f ′′(x0 + t(x1 − x0))(x1 − x0)2
∥∥∥

0

)
≤ C

(
‖f(x1)− f(x0)‖n + (‖x1‖n+2r + ‖x0‖n+2r)‖f(x1)− f(x0)‖0

+ (‖x1‖n+2r + ‖x0‖n+2r) ‖x1 − x0‖0︸ ︷︷ ︸
≤C‖f(x1)−f(x0)‖0

+ (‖x1‖n+2r + ‖x0‖n+2r) · (‖x1‖2r + ‖x0‖2r)︸ ︷︷ ︸
≤2δ

‖x1 − x0‖0︸ ︷︷ ︸
C‖f(x1)−f(x0)‖0

)
≤ C

(
‖f(x1)− f(x0)‖n + (‖x1‖n+2r + ‖x0‖n+2r) ‖f(x1)− f(x0)‖0

)
. �

Proof of 51.19 . As in 51.18 we may assume that the initial condition is f :
0 7→ 0 and that E = Σ(B) and F = Σ(C).
The idea of the proof is to solve the equation f(x) = y via a differential equation
for a curve t 7→ x(t) whose image under f joins 0 and y affinely. More precisely we
consider the parameterization t 7→ h(t) y of the segment [0, y], where h(t) := 1−e−ct
is a smooth increasing function with h(0) = 0 and limt→+∞ h(t) = 1. Differentiation
of f(x(t)) = h(t) y yields f ′(x(t)) · x′(t) = h′(t) y and (if f ′(x) is invertible) that
x′(t) = cΨ(x(t)) · e−cty. Substituting e−ct y = (1− h(t)) y = y − f(x(t)) gives

x′(t) = cΨ(x(t)) · (y − f(x(t))).

In Fréchet spaces (like Σ(B)) we cannot guarantee that this differential equation
with initial condition x(0) = 0 has a solution. The subspaces Bt := {(xk)k ∈
Σ(B) : xk = 0 for k > t} however are Banach spaces (isomorphic to finite products
of B), and they are direct summands with the obvious projections. So the idea is
to modify the differential equation in such a way that for finite t it factors over Bt
and to prove that the solution of the modified equation still converges for t → ∞
to a solution x∞ of f(x∞) = y. Since t is a non-discrete parameter we have to
consider the spaces Bt as a continuous family of Banach spaces, and so we have to
find a family (σt)t∈R of projections (called smoothing operators). For this we take
a smooth function σ : R → [0, 1] with σ(t) = 0 for t ≤ 0 and σ(t) = 1 for t ≥ 1.
Then we set σt(x)(k) := σ(t− k) · x(k).

We have to show that σt → Id, more precisely we

Claim. For n ≥ m there exists a cn,m such that ‖σtx‖n ≤ cn,me
(n−m)t‖x‖m and

‖(1− σt)x‖m ≤ cn,me(m−n)t‖x‖n.
Recall that ‖x‖n :=

∑
k e

nk‖xk‖. Since ‖(σtx)k‖ ≤ ‖xk‖ for all t and k and
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(σtx)k = 0 for t ≤ k and ((1− σt)x)k = 0 for t ≥ k + 1 we have

‖σtx‖n =
∑
k

enk‖(σtx)k‖

≤
∑
k≤t

enk‖xk‖ ≤
∑
k≤t

e(n−m)kemk‖xk‖ ≤ e(n−m)t‖x‖m,

‖(1− σt)x‖m ≤
∑
k≥t−1

emk‖xk‖ ≤
∑
k≥t−1

e(m−n)kenk‖xk‖ ≤ en−m e(m−n)t‖x‖k.

Now we modify our differential equation by projecting the arguments of the defining
function to Bt, i.e.

x′(t) = cΨ(σt(x(t))) · (σt(y − f(x(t)))) with x(0) = 0.

Thus, our modified differential equation factors for finite t over some Banach space.
The following sublemma now provides us with local solutions

51.22. Sublemma.If a function f : F ⊇ U → F factors via smooth maps over a
Banach space E – i.e., f = g ◦ h, where h : F ⊇ U →W ⊆ E and g : E ⊇W → F
are smooth maps – then the differential equation y′(t) = f(y(t)) has locally unique
solutions depending continuously (smoothly) on the initial condition y0 ∈ U .

F
f //

h

��

F

R

y
??

x // E

g

??

Proof. Suppose y is a solution of the differential equation y′ = f ◦ y with initial

condition y(0) = y0, or equivalently y(t) = y0+
∫ t

0
f(y(s)) ds. The idea is to consider

the curve x := h ◦ y in the Banach space E. Thus,

x(t) = h
(
y0 +

∫ t

0

g(h(y(s))) ds
)

= h
(
y0 +

∫ t

0

g(x(s)) ds
)
.

Now conversely, if x is a solution of this integral equation, then t 7→ y(t) := y0 +∫ t
0
g(x(s)) ds is a solution of the original integral equation and hence also of the

differential equation, since x(t) = h(y0 +
∫ t

0
g(x(s)) ds) = h(y(t)), and so y(t) =

y0 +
∫ t

0
g(x(s)) ds = y0 +

∫ t
0
g(h(y(s))) ds = y0 +

∫ t
0
f(y(s)) ds.

In order to show that x exists, we consider the map

k : x 7→
(
t 7→ h

(
y0 +

∫ t

0

g(x(s)) ds
))

and show that it is a contraction.
Since h is smooth we can find a seminorm ‖ ‖q on F , a C > 0 and an η > 0 such
that

‖h(y1)− h(y0)‖ ≤ C ‖y1 − y0‖q for all ‖yj‖q ≤ η.
Furthermore, since g is smooth we find a constant C > 0 and θ > 0 such that

‖g(x1)− g(x0)‖q ≤ C‖x1 − x0‖ for all ‖xj‖ ≤ θ.



580 Chapter X . Further Applications 51.22

Since we may assume that h(0) = 0, that ‖g(0)‖q ≤ C and that θ ≤ 1. So we
obtain

‖h(y)‖ ≤ C ‖y‖q for all ‖y‖q ≤ η and ‖g(x)‖q ≤ 2C for all ‖x‖ ≤ θ.

Let Ũ := {y0 ∈ F : ‖y0‖q ≤ δ}, let Ṽ := {x ∈ C([0, ε], E) : ‖x(t)‖ ≤ θ for all t},
and let k : F × C([0, ε], E) ⊇ Ũ × Ṽ → C([0, ε], E) be given by

k(y0, x)(t) := h
(
y0 +

∫ t

0

g(x(s)) ds
)
.

Then k is continuous with values in Ṽ and is a C2ε-contraction with respect to x.

In fact, ‖y0 +
∫ t

0
g(x(s)) ds‖q ≤ ‖y0‖q + ε sup{‖g(x(s))‖q : s} ≤ δ + 2C ε ≤ η for

sufficiently small δ and ε. So ‖k(y0, x)(t)‖ ≤ C η ≤ θ for sufficiently small η. Hence,

k(y0, x) ∈ Ṽ . Furthermore,

‖k(y0, x1)(t)− k(y0, x0)(t)‖ ≤ C
∥∥∥∥∫ t

0

g(x1(s))− g(x0(s)) ds

∥∥∥∥
q

≤ C ε sup{
∥∥g(x1(s))− g(x0(s))

∥∥
q

: s}
≤ C εC sup{‖x1(s)− x0(s)‖ : s}.

Thus, by Banach’s fixed point theorem, we have a unique solution x of x = k(y0, x)

for every y0 ∈ Ũ and x depends continuously on y0. As said before, it follows that

y := y0 +
∫ t

0
g(x(s)) ds solves the original differential equation. �

Let k(t) := y− f(x(t)) be the error we make at time t. For our original differential
equation the error was k(t) = e−cty, and hence k was the solution of the homo-
geneous linear differential equation k′(t) = −c k(t). In the modified situation we
have

Claim. If x(t) is a solution, k(t) := y−f(x(t)), and g(t) is defined by (f ′(σt ·xt)−
f ′(xt))x

′(t) then

k′(t) + c σt · k(t) = g(t).

From x′(t) = cΨ(σt(x(t))) · (σt(y − f(x(t)))) = cΨ(σt(x(t))) · (σtk(t)) we conclude
that f ′(σtxt) · x′(t) = c σtkt, and by the chain rule d

dtf(x(t)) = f ′(xt) · x′(t) we get

k′(t) + cσtk(t) = (f ′(σtx(t))− f ′(x(t))) · x′(t) =: g(t).

In order to estimate that error k, we now consider a general inhomogeneous linear
differential equation:

Sublemma. If the solution k of the differential equation k′(t) + c σt k(t) = g(t)
exists on [0, T ] then for all p ≥ 0 and 0 < q < c we have∫ T

0

eqt‖k(t)‖p dt ≤ C‖k(0)‖p+q + C

∫ T

0

(
eqt‖g(t)‖p + ‖g(t)‖p+q

)
dt

Proof. If k is a solution of the equation above then the coordinates kj are solutions
of the ordinary inhomogeneous linear differential equation

k′j(t) + cσ(t− j)kj(t) = gj(t).
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The solution kj of that equation can be obtained as usual by solving first the ho-
mogeneous equation via separation of variables and applying then the method of
variation of the constant. For this recall that for a general 1-dimensional inhomo-
geneous linear differential equation k′(t) +σ(t)k(t) = g(t) of order 1, one integrates

the homogeneous equation dkh(t)
kh(t) = −σ(t)dt, i.e., log(kh(t)) = C −

∫ t
0
σ(τ)dτ or

kh(t) is a multiple of e−
∫ t
0
σ(τ)dτ . For vector valued equations this is no longer

a solution, since σ(t) does not commute with
∫ t

0
σ(τ)dτ in general, and hence

d
dte
−
∫ t
0
σ(τ)dτ need not be −σ(t) · e−

∫ t
0
σ(τ)dτ . But in our case, where σ is just

a multiplication operator it is still true. For the inhomogeneous equation one
makes the ansatz k(t) := kh(t)C(t), which is a solution of the inhomogeneous
equation g(t) = k′(t) + σ(t)k(t) = k′h(t)C(t) + kh(t)C ′(t) + σ(t) kh(t)C(t) =
−σ(t) kh(t)C(t) + kh(t)C ′(t) + σ(t) kh(t)C(t) = kh(t)C ′(t) if and only if C ′(t) =

kh(t)−1 g(t) = e
∫ t
0
σ(τ)dτ g(t) or C(t) = C(0) +

∫ t
0
e
∫ ρ
0
σ(τ) g(t)dτ dρ. So the solution

of the inhomogeneous equation is given by

k(t) = kh(t)C(t) = e−
∫ t
0
σ(τ)dτ

(
C(0) +

∫ t

0

g(ρ) e
∫ ρ
0
σ(τ)dτ dρ

)
.

In particular we have k(0) = C(0), and using a(t, s) := e−
∫ t
s
σ(τ) dτ we get k(t) =

a(0, t)k(0) +
∫ t

0
a(ρ, t)g(ρ) dρ. We set aj,s,t := exp(−c

∫ t
s
σ(τ − j)dτ). Then

kj(t) = aj,0,tkj(0) +

∫ t

0

aj,τ,tgj(τ)dτ.

We claim that ectaj,s,t ≤ ec(ecs + ecj) for 0 ≤ s ≤ t ≤ T .
For t ≤ j + 1 this follows from aj,s,t ≤ 1. Let now t > j + 1. If s ≥ j + 1 then

σ(τ − j) = 1 for τ ≥ s, and so aj,s,t = e−c(t−s) and ectaj,s,t = ecs. If otherwise
s ≤ j + 1 then

aj,s,t ≤ exp
(
−c
∫ t

j+1

σ(τ − j) dτ
)

= e−c(t−j−1).

So ectaj,s,t ≤ ec(j+1) = ececj , and the claim holds.

Next we claim that for 0 < q < c we have
∫∞
s
eqtaj,s,tdt ≤ C(eqj + eqs).

For j ≤ s ≥ t we have aj,s,t ≤ Cec(s−t) by the previous claim and∫ ∞
s

eqtaj,s,tdt ≤ Cecs
∫ ∞
s

e(q−c)tdt = Cecs
e(q−c)t

q − c

∣∣∣∣∞
t=s

≤ Ceqs

using q < c. For s < j we split the integral into two parts. From aj,s,t ≤ 1 we

conclude that
∫ j
s
eqtaj,s,tdt ≤

∫ j
s
eqtdt ≤ Ceqj , and from aj,s,t ≤ Cec(j−t) (by the

previous claim) we conclude that
∫∞
j
eqtaj,s,tdt ≤ Cecj

∫∞
j
e(q−c)tdt ≤ Ceqj , which

proves the claim.

Now the main claim. We have∫ T

0

eqt‖k(t)‖p dt =

∫ T

0

∑
j

eqtepj‖kj(t)‖dt ≤
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≤
∫ T

0

∑
j

eqtepj
(
aj,0,t‖kj(0)‖+

∫ t

0

aj,s,t‖gj(s)‖ds
)
dt.

The first summand is bounded by∑
j

epj
(∫ T

0

eqtaj,0,t

)
dt‖kj(0)‖ ≤ C

∑
j

e(p+q)j‖kj(0)‖ ≤ C‖k(0)‖p+q

and the second by∫ T

0

∑
j

epj
(∫ T

s

eqtaj,s,tdt
)
‖gj(s)‖ds ≤

∫ T

0

∑
j

epj(eqj + qqs)‖gj(s)‖ds

≤ C
∫ T

0

‖g(s)‖p+q + eqs‖g(s)‖pds. �

We will next show that the domain of definition is not finite and that the limit
limt→+∞ x(t) =: x∞ exists and is a solution of f(x∞) = y. For this we need the

Sublemma.If x is a solution and ‖y‖2r is sufficiently small then for n ≥ 2r and
q ≥ 0 we have

‖x(T )‖n+q ≤
∫ T

0

‖x′(t)‖n+q dt ≤ Cn,qeqT ‖y‖n.

Proof. Using the inequality for smoothing operators we get for n ≥ 0 and q ≥ 0
that

‖x′(t)‖n+q = ‖cΨ(σtx(t)) · σtk(t)‖n+q ≤ C‖σtkt‖n+q + C‖σtx(t)‖n+q+2r‖σtk(t)‖0

≤ Ceqt
(
‖kt‖n + ‖x(t)‖n+2r‖kt‖0

)
.

We will from now on assume that ‖x(t)‖2r ≤ 1. Later we will show that this is
automatically satisfied. Then

‖x′(t)‖q ≤ ‖k(t)‖0(1 + ‖x(t)‖2r)︸ ︷︷ ︸
≤2

Ceqt,

and hence

‖x(t)‖q ≤
∫ t

0

‖x′(s)‖qds ≤ C
∫ t

0

eqs‖k(s)‖0 ds.

Using the estimates for k given by the sublemma, we have to estimate norms of

g(t) = (f ′(σtx(t))− f ′(x(t))) · x′(t) = −b(x(t), σtx(t))((1− σt)x(t), x′(t)),

where b(x0, x1)(h0, h1) :=
∫ 1

0
f ′′(x0 + t(x1−x0))(h0, h1) dt. Obviously, b is smooth,

is bilinear with respect to (h0, h1), and satisfies a tame estimate of degree 2r with
respect to x0, x1 and degree r in h0 and h1 with base 0, i.e.

‖b(x0, x1)(h0, h1)‖n ≤ C
(
‖h0‖n+r‖h1‖r + ‖h0‖r‖h1‖n+r

+ (‖x0‖n+2r + ‖x1‖n+2r)‖h0‖r‖h1‖r
)
.
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From this and ‖xt‖2r ≤ 1 we obtain

‖g(t)‖n ≤ C
(
‖(1− σt)xt‖n+r︸ ︷︷ ︸
≤Ce−rt‖xt‖n+2r

‖x′(t)‖r︸ ︷︷ ︸
≤Cert‖kt‖0

+ ‖(1− σt)xt‖r︸ ︷︷ ︸
≤Ce−(n+r)t‖xt‖n+2r

‖x′(t)‖n+r︸ ︷︷ ︸
≤Ce(n+r)t‖kt‖0

+ (‖xt‖n+2r + ‖σtxt‖n+2r)︸ ︷︷ ︸
≤‖xt‖n+2r+C‖xt‖n+2r

‖(1− σt)xt‖r︸ ︷︷ ︸
≤Ce−rt‖xt‖2r

‖x′(t)‖r︸ ︷︷ ︸
≤Cert‖kt‖0

)
≤ C‖xt‖n+2r‖kt‖0.

In order to estimate ‖x(t)‖q, we need the following estimate using the sublemma
giving an estimate for the solution k′(t) + cσ(t)k(t) = g(t) for c > 2r∫ T

0

eqt‖kt‖p dt ≤ C
(
‖k(0)‖p+q +

∫ T

0

(
eqt ‖g(t)‖p︸ ︷︷ ︸
≤‖xt‖p+2r‖kt‖0

+ ‖g(t)‖p+q︸ ︷︷ ︸
≤‖xt‖p+q+2r‖kt‖0

))
≤

≤ C
(
‖k(0)‖p+q +

∫ T

0

(
eqtC

∫ t

0

e(p+2r)s‖ks‖0 ds+ C

∫ t

0

e(p+q+2r)s‖ks‖0 ds︸ ︷︷ ︸
≤Ceqt

∫ t
0
e(p+2r)s‖ks‖0 ds

)
‖kt‖0 dt

)

≤ C
(
‖k(0)‖p+q +

∫ T

0

eqt‖kt‖0 dt ·
∫ T

0

e(p+2r)s‖ks‖0ds
)
.

This inequality is of recursive nature. In fact, for p = 0 and q = 2r it says

KT :=
∫ T

0
e2rt‖kt‖0 dt ≤ C‖y‖2r + CK2

T and hence KT (1 − CKT ) ≤ C‖y‖2r. If

KT ≤ 1
2C then 1−CKT ≥ 1

2 and hence KT ≤ 2C‖y‖2r. Thus, KT /∈ (2C‖y‖2r, 1
2C ].

Therefore, choosing ‖y‖2r < 1
4C2 makes this a nonempty interval, and continuity of

T 7→ KT and K0 = 0 shows that∫ T

0

e2rt‖kt‖0dt = KT ≤ 2C‖y‖2r for all ‖y‖2r ≤ δ.

Let us now show that the requirement ‖x(t)‖2r ≤ 1 is automatically satisfied.
Suppose not, then there is a minimal t0 > 0 with ‖x(t0)‖2r ≥ 1 since x(0) = 0.
Thus, for 0 ≤ t < t0 we have ‖x(t)‖ < 1, and hence the above estimates hold on
the interval [0, t0]. From ‖x′(t)‖2r ≤ Ce2rt‖k(t)‖0 we obtain by integration that

‖x(t)‖2r ≤
∫ T

0
‖x′(t)‖2r ≤

∫ t
0
Ce2rt‖k(t)‖0dt ≤ 2C‖y‖2r. Thus, if ‖y‖2r ≤ δ with

Cδ < 1 then ‖x(t0)‖2r < 1, a contradiction. Note that this shows at the same time
that the sublemma is valid for q = 0 and n = 2r.

Now we proceed to show that∫ T

0

eqs‖ks‖0 ds ≤ C‖y‖q for q ≥ 2r.

In fact, q = 2r and q = 2r + 1 will be sufficient, and hence we have a common C.
The above estimate for p = 0 gives∫ T

0

eqt‖ks‖0 dt ≤ C
(
‖ k(0)︸︷︷︸

y

‖q +

∫ T

0

eqt‖kt‖0 dt ·
∫ T

0

e2rs‖ks‖0 ds︸ ︷︷ ︸
≤C‖y‖2r≤C

)
.
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Thus

(1− c‖y‖2r) ·
∫ T

0

eqt‖ks‖0 dt ≤ C‖y‖q and

∫ T

0

eqt‖ks‖0 dt ≤ C‖y‖q

Now for q ≥ p+ 2r∫ T

0

eqt‖ks‖p dt ≤ C
(
‖k(0)‖p+q +

≤C‖y‖q︷ ︸︸ ︷∫ T

0

eqt‖kt‖0 dt ·

≤C‖y‖p+2r︷ ︸︸ ︷∫ T

0

e(p+2r)s‖ks‖0ds
)

≤ C(‖y‖p+q + ‖y‖p+q · ‖y‖2r︸ ︷︷ ︸
≤1

) ≤ C‖y‖p+q.

Now we prove the main claim by induction on n = p+2r. For p = 0 we have shown
it already. Next for n+ 1 = p+ 1 + 2r: Using the inequality at the very beginning
of the proof of the sublemma for n replaced by p and q by 1 + 2r + q∫ T

0

‖x′(t)‖p+1+2r+q dt ≤
∫ T

0

Ce(1+2r+q)t
(
‖kt‖p + ‖x(t)‖p+2r‖kt‖0

)
dt

≤ CeqT
∫ T

0

(
e(1+2r)t‖k(t)‖p + e(1+2r)t ‖x(t)‖p+2r︸ ︷︷ ︸

≤C‖y‖p+2r

·‖kt‖0
)
dt

≤ CeqT
(
C‖y‖p+2r+1 + C‖y‖p+2r‖y‖2r+1+

+ ‖y‖p+2rC‖y‖2r+1

)
≤ CeqT

(
‖y‖p+2r+1 + ‖y‖p+2r‖y‖2r+1

)
.

For ‖y‖2r ≤ δ ≤ 1 we get by interpolation that

‖y‖p+2r‖y‖2r+1 ≤ C‖y‖p+2r+1‖y‖2r ≤ C‖y‖p+1+2r,

which eliminates the last summand and completes the induction.

Claim. For sufficiently small ‖y‖2r the solution x exists globally, limt→+∞ x(t) =:
x∞ exists and solves f(x∞) = y. Moreover, we have ‖x∞‖n ≤ cn‖y‖n.

Furthermore, ‖x(t)‖n ≤
∫ t

0
‖x′(s)‖nds ≤ C‖y‖n for n > 2r and ‖y‖2r ≤ δ using the

main claim for q = 0.

Suppose x exists on [0, ω) with ω chosen maximally. Since
∫ T

0
‖x′(t)‖ndt ≤ C‖y‖n

with C independent on T < ω we have
∫ ω

0
‖x′(t)‖ndt ≤ C‖y‖n < ∞, and hence

limt→ω
∫ ω
t
‖x′(τ)‖dτ = 0. Thus, we obtain ‖x(s) − x(t)‖n ≤

∫ s
t
‖x′(r)‖dr → 0 for

s, t→ ω. Hence, x(ω) := limt↗ω x(t) exists and ‖x(ω)‖2r ≤ 1.

Thus, we can extend the solution in a neighborhood of ω, a contradiction to the
maximality of ω. Then by the same argument as before x∞ := limt↗∞ x(t) exists
and ‖x∞‖2r ≤ 1 and ‖x∞‖n ≤ C‖y‖n for all n ≥ 2r. Since x′(t) = cΨ(σ(t)x(t)) ·
(σ(t)(y−f(x(t)))) we have that limt→∞ x′(t) = cΨ(x∞)(y−f(x∞)) exists, and since∫∞

0
‖x′(t)‖ndt ≤ C‖y‖n < ∞ we have that (x∞)(y − f(x∞)) = limt↗∞ x′(t) = 0.

So we get y − f(x∞) = 0, hence we have obtained an inverse. �
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Proof of the inverse function theorem. By what we have shown so far, we
know that f is locally bijective and ‖f−1y‖n ≤ C‖y‖n for all n ≥ 2r. Furthermore,

‖f−1y1 − f−1y0‖n ≤ C
(
‖y1 − y0‖n + (‖f−1y1‖n+2r + ‖f−1y0‖n+2r)‖y1 − y0‖0

)
,

which shows continuity and Lipschitzness of the inverse, and the inverse f−1 is
tame and locally Lipschitz.

We next show that f−1 is Gâteaux-differentiable with derivative as expected, i.e.

(f−1)′(y)(k) = f ′(f−1y) · k.

For this let c(t) := f−1(y+ t k), x := c(0) = f−1(y) and ` := Ψ(x) := f ′(f−1(y))−1.

Then c is locally Lipschitz, and we have to show that c(t)−c(0)
t → ` · k for t → 0.

Now

c(t)− c(0)

t
− `(k) = (` ◦ f ′(x))

(c(t)− c(0)

t

)
− `(k)

= `
(
f ′(x)

(
c(t)− c(0)

t

)
− f(c(t))− f(c(0))

t

)
= `

(∫ 1

0

f ′(x)− f ′(x+ s(c(t)− x))︸ ︷︷ ︸
=:g(t,s)

ds ·
(c(t)− c(0)

t

))
.

Since t 7→ c(t) is locally Lipschitz, the map (t, s) 7→ f ′(x) − f ′(x + s(c(t) − x)) is
locally Lipschitz, and hence in particular continuous. Therefore, g(t, s) → g(0, s)

for t→ 0 uniformly on all s ∈ [0, 1]. Thus,
∫ 1

0
g(t, s)ds→

∫ 1

0
g(0, s)ds =

∫ 1

0
0 ds = 0

in L(E,F ), and since c(t)−c(0)
t stays bounded, this proves the claim.

Thus, we have for the Gâteaux-derivative of the inverse function the formula

(f−1)′ = inv ◦f ′ ◦ f−1 = Ψ ◦ f−1.

Since Ψ and f−1 are tame, so is (f−1)′. By induction, using the chain rule for
differentiable and for tame maps we conclude that (f−1) is a tame smooth map,
since Ψ was assumed to be so. Note that in order to apply the chain-rule it is
not enough to have Gâteaux-differentiability, but because of tameness (or local
Lipschitzness) of the derivative we have the appropriate type of differentiability
automatical. In fact, we have to consider d(f−1) := ((f−1)′)∧ = Ψ∧ ◦ (f−1 × Id)
and apply induction to that. �

Let us finally show that it is enough to assume that Ψ is a tame continuous in order
to assure that it is a tame smooth map.

51.23. Lemma. Let Φ : E ⊇ U → GL(F ) be a tame smooth map and Ψ, defined
by Ψ(x) := Φ(x)−1, be a continuous tame map. Then Ψ is a tame smooth map.

Proof. For smoothness it is enough to show smoothness along continuous curves,
so we may assume that E = R = U , and so Φ is a curve denoted c. Then

c(t)−1 − c(s)−1

t− s
= − comp(inv(c(t)),

c(t)− c(s)
t− s

, inv(c(s)))
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and hence is locally bounded, i.e., c is locally Lipschitz. Now let s be fixed. Then

t 7→ − comp(inv(c(t+ s)),
c(t+ s)− c(s)

t
, inv(c(s)))

is locally Lipschitz, since t 7→ c(t+s)−c(s)
t =

∫ 1

0
c′(s+ rt)dr is smooth. In particular,

1

t

(
c(t+ s)−1 − c(s)−1

t
+ inv(c(s)) ◦ c′(s) ◦ inv(c(s))

)
is locally bounded, and hence inv ◦c is differentiable with derivative

(inv ◦c)′(s) = − inv(c(s)) ◦ c′(s) ◦ inv(c(s)).

Thus, inv ◦c is smooth by induction, and

Ψ′(x)(y) = −Ψ(x) ◦ Φ′(x)(y) ◦Ψ(x).

Tameness of Ψ∧ follows since the differential of Ψ∧ is given by

dΨ∧(x, h; y, k) = Ψ′(x)(y)(h) + Ψ(x)′(h)(k) = Ψ′(x)(y)(h) + Ψ(x)(k)

= (−Ψ(x) ◦ Φ′(x)(y) ◦Ψ(x))(h) + Ψ(x)(k)

= Ψ∧(x, k)−Ψ∧(x, ∂1Φ∧(x, y)(Ψ∧(x, h))). �
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52. Appendix: Functional Analysis

The aim of this appendix is the following. This book needs prerequisites from
functional analysis, in particular about locally convex spaces, which are beyond
usual knowledge of non-specialists. We have used as unique reference the book
[Jarchow, 1981]. In this appendix we try to sketch these results and to connect
them to more widespread knowledge in functional analysis: for this we decided to
use [Schaefer, 1971].

52.1. Basic concepts. A locally convex space E is a vector space together
with a Hausdorff topology such that addition E×E → E and scalar multiplication
R × E → E (or C × E → E) are continuous and 0 has a basis of neighborhoods
consisting of (absolutely) convex sets. Equivalently, the topology on E can be
described by a system P of (continuous) seminorms. A seminorm p : E → R
is specified by the following properties: p(x) ≥ 0, p(x + y) ≤ p(x) + p(y), and
p(λx) = |λ|p(x).

A set B in a locally convex space E is called bounded if it is absorbed by each
0-neighborhood, equivalently, if each continuous seminorm is bounded on B. The
family of all bounded subsets is called the bornology of E. The bornolo-
gification of a locally convex space is the finest locally convex topology

with the same bounded sets, which is treated in detail in 4.2 and 4.4 . A lo-
cally convex space is called bornological if it is stable under the bornologifi-

cation, see also 4.1 . The ultrabornologification of a locally convex
spaceultrabornologification is the finest locally convex topology with the
same bounded absolutely convex sets for which EB is a Banach space.

52.2. Result. [Jarchow, 1981, 6.3.2] & [Schaefer, 1971, I.1.3] The Minkowski
functional qA : x 7→ inf{t > 0 : x ∈ t.A} of a convex absorbing set A containing
0 is a convex function.

A subset A in a vector space is called absorbing if
⋃
{rA : r > 0} is the whole

space.

52.3. Result. [Jarchow, 1981, 6.4.2.(3)] For an absorbing radial set U in a locally
convex space E the closure is given by {x ∈ E : qU (x) ≤ 1}, where qU is the
Minkowski functional.

52.4. Result. [Jarchow, 1981, 3.3.1] Let X be a set and let F be a Banach space.
Then the space `∞(X,F ) of all bounded mappings X → F is itself a Banach space,
supplied with the supremum norm.

52.5. Result. [Jarchow, 1981, 3.5.6, p66] & [Schaefer, 1971, I.3.6] A Hausdorff
topological vector space E is finite dimensional if and only if it admits a precompact
neighborhood of 0.

A subset K of E is called precompact if finitely many translates of any neighbor-
hood of 0 cover K.



588 Chapter X . Further Applications 52.8

52.6. Result. [Jarchow, 1981, 6.7.1, p112] & [Schaefer, 1971, II.4.3] The absolutely
convex hull of a precompact set is precompact.

A set B in a vector space E is called absolutely convex if λx + µy ∈ B for
x, y ∈ B and |λ| + |µ| ≤ 1. By EB we denote the linear span of B in E, equipped
with the Minkowski functional qB . This is a normed space.

52.7. Result. [Jarchow, 1981, 4.1.4] & [Horváth, 1966] A basis of neighborhoods
of 0 of the direct sum C(N) is given by the sets of the form {(zk)k ∈ C(N) : |zk| ≤
εk for all k} where εk > 0.

The direct sum
⊕

iEi, also called the coproduct
∐
iEi of locally convex spaces

Ei is the subspace of the cartesian product formed by all points with only finitely
many non-vanishing coordinates supplied with the finest locally convex topology for
which the inclusions Ej →

∐
iEi are continuous. It solves the universal problem

for a coproduct: For continuous linear mappings fi : Ei → F into a locally convex
space there is a unique continuous linear mapping f :

∐
iEi → F with f ◦ inclj = fj

for all j. The bounded sets in
⊕

iEi are exactly those which are contained and
bounded in a finite subsum. If all spaces Ei are equal to E and the index set is Γ,
we write E(Γ) for the direct sum.

52.8. Result. [Jarchow, 1981, 4.6.1, 4.6.2, 6.6.9] & [Schaefer, 1971, II.6.4 and
II.6.5] Let E be the strict inductive limit of a sequence of locally convex vector spaces
En. Then every En carries the trace topology of E, and every bounded subset of E
is contained in some En, i.e., the inductive limit is regular.

Let E be a functor from a small (index) category into the category of all locally
convex spaces with continuous linear mappings as morphisms. The colimit colimE
of the functor E is the unique (up to isomorphism) locally convex space together
with continuous linear mappings li : E(i) → colimE which solves the following
universal problem: Given continuous linear gi : E(i) → F into a locally convex
space F with gj◦E(f) = gi for each morphism f : i→ j in the index category. Then
there exists a unique continuous linear mapping g : colimE → F with g ◦ li = gi
for all i.

i

f

��

E(i)

E(f)

��

li ''

gi

,,
colimE

g // F

j E(j)

lj

77

gj

33

The colimit is given as the locally convex quotient of the direct sum
∐
iE(i)

by the closed linear subspace generated by all elements of the form incli(x) −
(inclj ◦E(f))(x) for all x ∈ E(i) and f : i → j in the index category. Compare
[Jarchow, 1981, p.82 & p.110], but we force here inductive limits to be Hausdorff.
A directed set Γ is a partially ordered set such that for any two elements there
is another one that is larger that the two. The inductive limit is the colimit of a
functor from a directed set (considered as a small category); one writes lim−→j

Ej for
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this. A strict inductive limit is the inductive limit of a functor E on the di-
rected set N such that E(n < n+1) : E(n)→ E(n+1) is the topological embedding
of a closed linear subspace.

The dual notions (with the arrows between locally convex spaces reversed) are called
the limit limE of the functor E, and the projective limit lim←−j Ej in the case

of a directed set. It can be described as the linear subset of the cartesian product∏
iE(i) consisting of all (xi)i with E(f)(xi) = xj for all f : i → j in the index

category.

52.9. Result. [Jarchow, 1981, 5.1.4+11.1.6] & [Schaefer, 1971, III.5.1, Cor. 1]
Every separately continuous bilinear mapping on Fréchet spaces is continuous.

A Fréchet space is a complete locally convex space with a metrizable topology,
equivalently, with a countable base of seminorms. See [Jarchow, 1981, 2.8.1] or
[Schaefer, 1971, p.48].

Closed graph and open mapping theorems. These are well known if Banach
spaces or even Fréchet spaces are involved. We need a wider class of situations
where these theorems hold; those involving webbed spaces. Webbed spaces were
introduced for exactly this reason by de Wilde in his thesis, see [De Wilde, 1978]. We
do not give their (quite lengthy) definition here, only the results and the permanence
properties.

52.10. Result. Closed Graph Theorem. [Jarchow, 1981, 5.4.1] Any closed
linear mapping from an inductive limit of Baire locally convex spaces into a webbed
locally convex space is continuous.

52.11. Result. Open Mapping Theorem. [Jarchow, 1981, 5.5.2] Any continu-
ous surjective linear mapping from a webbed locally convex space into an inductive
limit of Baire locally convex spaces vector spaces is open.

52.12. Result. The Fréchet spaces are exactly the webbed spaces with the Baire
property.

This corresponds to [Jarchow, 1981, 5.4.4] by noting that Fréchet spaces are Baire.

52.13. Result. [Jarchow, 1981, 5.3.3] Projective limits and inductive limits of
sequences of webbed spaces are webbed.

52.14. Result. The bornologification of a webbed space is webbed.

This follows from [Jarchow, 1981, 13.3.3 and 5.3.1.(d)] since the bornologification
is coarser that the ultrabornologification, [Jarchow, 1981, 13.3.1].

52.15. Definition. [Jarchow, 1981, 6.8] For a zero neighborhood U in a locally

convex vector space E we denote by Ẽ(U) the completed quotient of E with the
Minkowski functional of U as norm.

52.16. Result. Hahn-Banach Theorem. [Jarchow, 1981, 7.3.3] Let E be a
locally convex vector space and let A ⊂ E be a convex set, and let x ∈ E be not in
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the closure of A. Then there exists a continuous linear functional ` with `(x) not
in the closure of `(A).

This is a consequence of the usual Hahn-Banach theorem, [Schaefer, 1971, ,II.9.2]

52.17. Result. [Jarchow, 1981, 7.2.4] Let x ∈ E be a point in a normed space.
Then there exists a continuous linear functional x′ ∈ E∗ of norm 1 with x′(x) =
‖x‖.

This is another consequence of the usual Hahn-Banach theorem, cf. [Schaefer, 1971,
II.3.2].

52.18. Result. Bipolar Theorem. [Jarchow, 1981, 8.2.2] Let E be a locally
convex vector space and let A ⊂ E. Then the bipolar Aoo in E with respect to the
dual pair (E,E∗) is the closed absolutely convex hull of A in E.

For a duality 〈 , 〉 between vector spaces E and F and a set A ⊆ E the polar
of A is Ao := {y ∈ F : |〈x, y〉| ≤ 1 for all x ∈ A}. The weak topology σ(E,F )
is the locally convex topology on E generated by the seminorms x 7→ |〈x, y〉| for all
y ∈ F .

52.19. Result. [Schaefer, 1971, IV.3.2] A subset of a locally convex vector space
is bounded if and only if every continuous linear functional is bounded on it.

This follows from [Jarchow, 1981, 8.3.4], since the weak topology σ(E,E′) and the
given topology are compatible with the duality, and a subset is bounded for the
weak topology, if and only if every continuous linear functional is bounded on it.

52.20. Result. Alaoğlu-Bourbaki Theorem. [Jarchow, 1981, 8.5.2 & 8.5.1.b]
& [Schaefer, 1971, III.4.3 and II.4.5] An equicontinuous subset K of E′ has compact
closure in the topology of uniform convergence on precompact subsets; On K the
latter topology coincides with the weak topology σ(E′, E).

52.21. Result. [Jarchow, 1981, 8.5.3, p157] & [Schaefer, 1971, III.4.7] Let E be
a separable locally convex vector space. Then each equicontinuous subset of E′ is
metrizable in the weak∗ topology σ(E′, E).

A topological space is called separable if it contains a dense countable subset.

52.22. Result. Banach Dieudonné theorem. [Jarchow, 1981, 9.4.3, p182] &
[Schaefer, 1971, IV.6.3] On the dual of a metrizable locally convex vector space E
the topology of uniform convergence on precompact subsets of E coincides with the
so-called equicontinuous weak∗-topology which is the final topology induced by the
inclusions of the equicontinuous subsets.

52.23. Result. [Jarchow, 1981, 10.1.4] In metrizable locally convex spaces the
convergent sequences coincide with the Mackey-convergent ones.

For Mackey convergence see 1.6 .

52.24. Result. [Jarchow, 1981, 10.4.3, p202] & [Horváth, 1966, p277] In Schwartz
spaces bounded sets are precompact.
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A locally convex space E is called Schwartz if each absolutely convex neigh-
borhood U of 0 in E contains another one V such that the induced mapping
E(U) → E(V ) maps U into a precompact set.

52.25. Result. Uniform boundedness principle. [Jarchow, 1981, 11.1.1]
([Schaefer, 1971, IV.5.2] for F = R) Let E be a barrelled locally convex vector
space and F be a locally convex vector space. Then every pointwise bounded set of
continuous linear mappings from E to F is equicontinuous.

Note that each Fréchet space is barrelled, see [Jarchow, 1981, 11.1.5].

A locally convex space is called barrelled if each closed absorbing absolutely
convex set is a 0-neighborhood.

52.26. Result. [Jarchow, 1981, 11.5.1, 13.4.5] & [Schaefer, 1971, IV.5.5] Montel
spaces are reflexive.

By a Montel space we mean (following [Jarchow, 1981, 11.5]) a locally convex
vector space which is barrelled and in which every bounded set is relatively compact.
A locally convex space E is called reflexive if the canonical embedding of E into
the strong dual of the strong dual of E is a topological isomorphism.

52.27. Result. [Jarchow, 1981, 11.6.2, p231] Fréchet Montel spaces are separable.

52.28. Result. [Jarchow, 1981, 12.5.8, p266] In the strong dual of a Fréchet
Schwartz space every converging sequence is Mackey converging.

The strong dual of a locally convex space E is the dual E∗ of all continuous
linear functionals equipped with the topology of uniform convergence on bounded
subsets of E.

52.29. Result. Fréchet Montel spaces have a bornological strong dual.

Proof. By 52.26 a Fréchet Montel space E is reflexive, thus it’s strong dual E′β
is also reflexive by [Jarchow, 1981, 11.4.5.(f)]. So it is barrelled by [Jarchow, 1981,
11.4.2]. By [Jarchow, 1981, 13.4.4] or [Schaefer, 1971, IV.6.6] the strong dual E′β
of a metrizable locally convex vector space E is bornological if and only if it is
barrelled and the result follows. �

52.30. Result. [Jarchow, 1981, 13.5.1] Inductive limits of ultrabornological spaces
are ultrabornological.

Similar to the definition of bornological spaces in 4.1 we define ultrabornolog-
ical spaces, see [Jarchow, 1981, 13.1.1]. A bounded completant set B in a
locally convex vector space E is an absolutely convex bounded set B for which
the normed space (EB , qB) is complete. A locally convex vector space E is called
ultrabornological if the following equivalent conditions are satisfied:

(1) For any locally convex vector space F a linear mapping T : E → F is contin-
uous if it is bounded on each bounded completant set. It is sufficient to know
this for all Banach spaces F .
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(2) A seminorm on E is continuous if it is bounded on each bounded completant
set.

(3) An absolutely convex subset is a 0-neighborhood if it absorbs each bounded
completant set.

52.31. Result. [Jarchow, 1981, 13.1.2] Every ultra-bornological space is an induc-
tive limit of Banach spaces.

In fact, E = lim−→B
EB where B runs through all bounded completant absolutely

convex sets in E. Compare with the corresponding result 4.2 for bornological
spaces.

52.32. Nuclear Operators. A linear operator T : E → F between Banach spaces
is called nuclear or trace class if it can be written in the form

T (x) =

∞∑
j=1

λj〈x, xj〉yj ,

where xj ∈ E′, yj ∈ F with ‖xj‖ ≤ 1, ‖yj‖ ≤ 1, and (λj)j ∈ `1. The trace of T
is then given by

tr(T ) =

∞∑
j=1

λj〈yj , xj〉.

The operator T is called strongly nuclear if (λj)j ∈ s is rapidly decreasing.

52.33. Result. [Jarchow, 1981, 20.2.6] The dual of the Banach space of all trace
class operators on a Hilbert space consists of all bounded operators. The duality is
given by 〈T,B〉 = tr(TB) = tr(BT ).

52.34. Result. [Jarchow, 1981, 21.1.7] Countable inductive limits of strongly nu-
clear spaces are again strongly nuclear. Products and subspaces of strongly nuclear
spaces are strongly nuclear.

A locally convex space E is called nuclear (or strongly nuclear) if each ab-
solutely convex 0-neighborhood U contains another one V such that the induced

mapping Ẽ(V ) → Ẽ(U) is a nuclear operator (or strongly nuclear operator). A
locally convex space is (strongly) nuclear if and only if its completion is it, see [Jar-

chow, 1981, 21.1.2]. Obviously, a nuclear space is a Schwartz space 52.24 since a
nuclear operator is compact. Since nuclear operators factor over Hilbert spaces, see
[Jarchow, 1981, 19.7.5], each nuclear space admits a basis of seminorms consisting
of Hilbert norms, see [Schaefer, 1971, III.7.3].

52.35. Grothendieck-Pietsch criterion. Consider a directed set P of non-
negative real valued sequences p = (pn) with the property that for each n ∈ N
there exists a p ∈ P with pn > 0. It defines a complete locally convex space (called
Köthe sequence space)

Λ(P) := {x = (xn)n ∈ KN : p(x) :=
∑
n

pn|xn| <∞ for all p ∈ P}

with the specified seminorms.
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Result. [Jarchow, 1981, 21.8.2] & [Treves, 1967, p. 530] The space Λ(P) is nuclear
if and only if for each p ∈ P there is a q ∈ P with(

pn
qn

)
n

∈ `1.

The space Λ(P) is strongly nuclear if and only if for each p ∈ P there is a q ∈ P
with (

pn
qn

)
n

∈
⋂
r>0

`r.

52.36. Result. [Jarchow, 1981, 21.8.3.b] H(Dk,C) is strongly nuclear for all k.

Proof. This is an immediate consequence of the Grothendieck-Pietsch criterion

52.35 by considering the power series expansions in the polycylinder Dk at 0. The
set P consists of r(n1, . . . , nk) := rn1+···+nk for all 0 < r < 1. �

52.37. Silva spaces. A locally convex vector space which is an inductive limit of
a sequence of Banach spaces with compact connecting mappings is called a Silva
space. A Silva space is ultrabornological, webbed, complete, and its strong dual is
a Fréchet space. The inductive limit describing the Silva space is regular. A Silva
space is Baire if and only if it is finite dimensional. The dual space of a nuclear
Silva space is nuclear.

Proof. Let E be a Silva space. That E is ultrabornological and webbed follows

from the permanence properties of ultrabornological spaces 52.30 and of webbed

spaces 52.13 . The inductive limit describing E is regular and E is complete by
[Floret, 1971, 7.4 and 7.5]. The dual E′ is a Fréchet space since E has a countable
base of bounded sets as a regular inductive limit of Banach spaces. If E is nuclear
then the dual is also nuclear by [Jarchow, 1981, 21.5.3].

If E has the Baire property, then it is metrizable by 52.12 . But a metrizable Silva
space is finite dimensional by [Floret, 1971, 7.7]. �
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53. Appendix: Projective Resolutions of Identity on Banach spaces

One of the main tools for getting results for non-separable Banach spaces is that of
projective resolutions of identity. The aim is to construct transfinite sequences of
complemented subspaces with separable increment and finally reaching the whole
space. This works for Banach spaces with enough projections onto closed subspaces.
We will give an account on this, following [Orihuela and Valdivia, 1989]. The results
in this appendix are used for the construction of smooth partitions of unity in

theorem 16.18 and for obtaining smooth realcompactness in example 19.7

53.1. Definition. Let E be a Banach space, A ⊆ E and B ⊆ E′ Q-linear
subspaces. Then (A,B) is called norming pair if the following two conditions are
satisfied:

∀x ∈ A : ‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
∀x∗ ∈ B : ‖x∗‖ = sup{|〈x, x∗〉| : x ∈ A, ‖x‖ ≤ 1}.

53.2. Proposition. Let (A,B) be a norming pair on a Banach space E. Then

(1) (Ā, B̄) is a norming pair.
(2) Let A0 ⊆ A, B0 ⊆ B, ω ≤ |A0| ≤ λ, and ω ≤ |B0| ≤ λ for some cardinal

number λ.
Then there exists a norming pair (Ã, B̃) with A0 ⊆ Ã ⊆ A, B0 ⊆ B̃ ⊆ B,

|Ã| ≤ λ and |B̃| ≤ λ.
(3)

x ∈ A, y ∈ Bo ⇒ ‖x‖ ≤ ‖x+ y‖, in particular A ∩Bo = {0}
x∗ ∈ Ao, y∗ ∈ B ⇒ ‖y∗‖ ≤ ‖y∗ + x∗‖, in particular Ao ∩B = {0}.

Proof. ( 1 ) Let x ∈ Ā and ε > 0. Thus there is some a ∈ A with ‖x− a‖ ≤ ε and
we get

‖x‖ ≤ ‖x− a‖+ ‖a‖ ≤ ε+ sup{|〈a, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
≤ ε+ sup{|〈a− x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}

+ sup{|〈x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
≤ ε+ ‖a− x‖+ sup{|〈x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
≤ 2ε+ ‖x‖,

and for ε→ 0 we get the first condition of a norming pair. The second one is shown
analogously.

( 2 ) For every x ∈ A and y∗ ∈ B choose a countable sets ψ(x) ⊆ B and ϕ(y∗) ⊆ A
such that

‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ ψ(x)} and ‖y∗‖ = sup{|〈y, y∗〉 : y ∈ ϕ(y∗)}

By recursion on n we construct subsets An ⊆ A and Bn ⊆ B with |An| ≤ λ and
|Bn| ≤ λ:

Bn+1 := 〈Bn〉Q ∪ {ψ(x) : x ∈ 〈An〉Q}
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An+1 := 〈An〉Q ∪ {ϕ(x∗) : x∗ ∈ 〈Bn〉Q}.

Finally let Ã :=
⋃
n∈NAn and B̃ :=

⋃
n∈NBn. Then (Ã, B̃) is the required norming

pair. In fact for x ∈ An we have that

‖x‖ = sup{|〈x, x∗〉| : x ∈ ψ(x)} ≤ sup{|〈x, x∗〉| : x ∈ Bn+1} ≤ ‖x‖

Note that ϕ(B̃) :=
⋃
b∈B̃ ϕ(b) ⊆ Ã.

( 3 ) We have

‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
= sup{|〈x+ y, x∗〉| : x∗ ∈ B, ‖x∗‖ ≤ 1}
≤ sup{|〈x+ y, x∗〉| : ‖x∗‖ ≤ 1} = ‖x+ y‖

and analogously for the second inequality. �

53.3. Proposition. Let (A,B) be a norming pair on a Banach space E consisting
of closed subspaces. It is called conjugate pair if one of the following equivalent
conditions is satisfied.

(1) There is a projection P : E → E with image A, kernel Bo and ‖P‖ = 1;
(2) E = A+Bo;

(3) {0} = Ao ∩B σ(E′,E)
;

(4) The canonical mapping A ↪→ E ∼= (E′, σ(E′, E))′ → (B, σ(B,E))′ is onto.

Proof. We have the following commuting diagram:

Bo � s

ker δ

%%{0} � s

%%

?�

OO

E // // //

δ

(( ((

(E′, σ(E′, E))′

����

E′

A
?�

OO

//
δ|A
// (B, σ(B,E))′ B

?�

OO

( 1 )⇒( 2 ) is obvious.

( 2 )⇔( 3 ) follows immediately from duality.

( 2 )⇒( 4 ) Let z ∈ (B, σ(B,E))′. By Hahn-Banach there is some x ∈ E with
x|B = z. Let x = a+ b with a ∈ A and b ∈ Bo. Then a|B = x|B = z.

( 4 )⇒( 1 ) By ( 4 ) the mapping δ : A ↪→ E ∼= (E′, σ(E′, E))′ → (B, σ(B,E))′ is

bijective, since A ∩ Bo = {0}, and hence we may define P (x) := δ−1(x|B). Then
P is the required norm 1 projection, since δ : x 7→ x|B has norm ≤ 1 and δA has
norm 1 since (A,B) is norming. �

53.4. Corollary. Let E be a reflexive Banach space. Then any norming pair
(A,B) of closed subspaces is a conjugate pair.
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Proof. In fact we then have

Ao ∩B σ(E′,E)
= Ao ∩B ‖ ‖ = Ao ∩B = {0},

since the dual of (E′, σ(E′, E)) is E and equals E′′ the dual of (E′, ‖ ‖). By
[Jarchow, 1981, 8.2.5] convex subsets as B have the same closure in these two
topologies. �

53.5. Definition. A projective generator ϕ for a Banach space E is a
mapping ϕ : E′ → 2E for which

(1) ϕ(x∗) is a countable subset of {x ∈ E : ‖x‖ ≤ 1} for all x∗ ∈ E′;
(2) ‖x∗‖ = sup{|〈x, x∗〉| : x ∈ ϕ(x∗)};
(3) If (A,B) is norming, with ϕ(B) :=

⋃
b∈B ϕ(b) ⊆ A, then (Ā, B̄) is a conjugate

pair.

Note that the first two conditions can be always obtained.

We say that the projection P defined by 53.3 for (Ā, B̄) is based on the norming

pair (A,B), i.e. P (E) = Ā and ker(P ) = Bo = B̄o.

53.6. Corollary. Every reflexive Banach space has a projective generator ϕ.

Proof. Just choose any ϕ satisfying 53.5.1 and 53.5.2 . Then 53.5.3 is by

53.2.1 and 53.4 automatically satisfied. �

53.7. Theorem. Let ϕ be a projective generator for a Banach space E. Let
A0 ⊆ E and B0 ⊆ E′ be infinite sets of cardinality at most λ.

Then there exists a norm 1 projection P based on a norming pair (A,B) with
A0 ⊆ A, B0 ⊆ B, |A| ≤ λ, |B| ≤ λ and ϕ(B) ⊆ A.

Proof. By 53.2.3 there is a norming pair (A,B) with

A0 ⊆ A, B0 ⊆ B, |A| ≤ λ, |B| ≤ λ.

Note that in the proof of 53.2.3 we used some map ϕ, and we may take the

projective generator for it. Thus we have also ϕ(B) ⊆ A. By condition 53.5.3 of
the projective generator we thus get that the projection based on (A,B) has the
required properties. �

53.8. Proposition. Every WCD Banach space has a projective generator.

A Banach space E is called WCD, weakly countably determined, if and only
if there exists a sequence Kn of weak∗-compact subsets of E′′ such that for every

∀x ∈ E ∀y ∈ E′′ \ E ∃n : x ∈ Kn and y /∈ Kn.

Every WCG Banach space is WCD:
In fact let K be weakly compact (and absolutely convex) such that

⋃
n∈N nK is

dense in E. Note that (E, σ(E,E′)) embeds canonically into (E′′, σ(E′′, E′)). Let
Kn,m := nK + 1

m{x ∈ E′′ : ‖x‖ ≤ 1}. Then Kn,m is weak∗-compact, and for
any x ∈ E and y ∈ E′′ \ E there exists an m > 1/ dist(y,E) and an n with
dist(x, nK) < 1

m . Hence x ∈ Kn,m and y /∈ E + 1/m {x ∈ E′′ : ‖x‖ ≤ 1} ⊇ Kn,m.
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The most important advantage of WCD over WCG Banach spaces are, that they
are hereditary with respect to subspaces.
For any finite sequence n = (n1, . . . , nk) let

Cn1,...,nk := E ∩Kn1
∩ · · · ∩Knk

σ(E′′,E′)
.

Then these sets are weak∗-compact (since they are contained in Knk) and if E is
not reflexive, then for every x ∈ E there is a sequence n : N→ N such that

x ∈
∞⋂
k=1

Cn1,...,nk ⊆ E.

In fact choose a surjective sequence n : N → {k : x ∈ Kk}. Then x ∈ Cn1,...,nk

for all k, hence x ∈
⋂∞
k=1 Cn1,...,nk . If y ∈ E′′ \ E, then there is some k, such that

y /∈ Knk and hence y /∈ Cn1,...,nk ⊆ Knk .

Proof of 53.8 . Because of 53.6 we may assume that E is not reflexive. For
every x∗ ∈ E′ we choose a countable set ϕ(x∗) ⊆ {x ∈ E : ‖x‖ ≤ 1} such that

‖x∗‖ = sup{|〈x, x∗〉 : x ∈ ϕ(x∗)} and

sup{|〈x, x∗〉| : x ∈ Cn1,...,nk} = sup{|〈x, x∗〉| : x ∈ Cn1,...,nk ∩ 〈ϕ(x∗)〉}

for all finite sequences (n1, . . . , nk). We claim that ϕ is a projective generator:

Let (A,B) be a norming pair with ϕ(B) ⊆ A. We use 53.3.3 to show that (Ā, B̄)

is norming. Assume there is some 0 6= y∗ ∈ Ao ∩ B σ(E′,E)
. Thus we can choose

x0 ∈ E with |y∗(x0)| = 1 and a net (y∗i )i in B that converges to y∗ in the Mackey
topology µ(E′, E) (of uniform convergence on weakly compact subsets of E). In fact
this topology on E′ has the same dual E as σ(E′, E) by the Mackey-Arens theorem
[Jarchow, 1981, 8.5.5], and hence the same closure of convex sets by [Jarchow, 1981,
8.2.5]. As before we choose a surjective mapping n : N→ {k : x0 ∈ Kk}. Then

x0 ∈ C :=

∞⋂
k=1

Cn1,...,nk ⊆ E.

and C is weakly compact, hence we find an i0 such that

sup{|y∗i0(x)− y∗(x)| : x ∈ C} < 1
2

and in particular we have

|y∗i0(x0)| ≥ |y∗(x0)| − |y∗i0(x0)− y∗(x0)| > 1− 1
2 = 1

2 .

Since the sets forming the intersection are decreasing, Cn1
is σ(E′′, E′)-compact

and
W := {x∗∗ ∈ E′′ : |x∗∗(y∗i0 − y

∗)| < 1
2}

is a σ(E′′, E′)-open neighborhood of C there is some k ∈ N such that Cn1,...,nk ⊆W ,
i.e.

sup{|y∗i0(x)− y∗(x)| : x ∈ Cn1,...,nk} ≤ 1
2 .

By the definition of ϕ there is some y0 ∈ Cn1,...,nk ∩ 〈ϕ(y∗i0)〉 with |y∗i0(y0)| > 1− 1
2 ,

thus
|y∗(y0)| ≥ |y∗i0(y0)| − |y∗i0(y0)− y∗(y0)| > 1

2 −
1
2 = 0.

Thus y∗(y0) 6= 0 and y0 ∈ 〈ϕ(B)〉 ⊆ A, a contradiction. �
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Note that if P ∈ L(E) is a norm-1 projection with closed image A and kernel Bo,
then P ∗ ∈ L(E′) is a norm-1 projection with image P ∗(E) = kerP o = Boo = B
and kernel kerP ∗ = P (E)o = Ao. However not all norm-1 projections onto B can

be obtained in this way. Hence we consider the dual of proposition 53.3 :

53.9. Proposition. Let (A,B) be a norming pair on a Banach space E consisting
of closed subspaces. It is called dual conjugate pair if one of the following
equivalent conditions is satisfied.

(1) There is a norm-1 projection P : E′ → E′ with image B, kernel Ao;
(2) E′ = B ⊕Ao;
(3) {0} = Bo ∩Aσ(E′′,E′)

;

(4) The canonical mapping B ↪→ E′ −( )|A→ A′ is onto.

Proof. This follows by applying 53.3 to the norming pair (B,A) ⊆ (E′, E′′). �

The dual of definition 53.5 is

53.10. Definition. A dual projective generator ψ for a Banach space E′ is a
mapping ψ : E → 2E

′
for which

(1) ψ(x) is a countable subset of {x∗ ∈ E′ : ‖x∗‖ ≤ 1} for all x ∈ E;
(2) ‖x‖ = sup{|〈x, x∗〉| : x∗ ∈ ψ(x)};
(3) If (A,B) is norming, with ψ(A) :=

⋃
a∈A ψ(a) ⊆ B, then (Ā, B̄) satisfies the

condition of 53.9 .

Note that the first two conditions can be always obtained.

From 53.7 we get:

53.11. Theorem. Let ψ be a dual projective generator for a Banach space E. Let
A0 ⊆ E and B0 ⊆ E′ be infinite sets of cardinality at most λ.
Then there exists a norm 1 projection P in E′ with A0 ⊆ P ∗(E′′), B0 ⊆ P (E′),
|P ∗(E′′)| ≤ λ, |P (E′)| ≤ λ.

53.12. Proposition. A Banach space E is Asplund if and only if there exists a
dual projective generator on E.

Note that if P is a norm-1 projection, then so is P ∗. But not all norm-1 projections
on the dual are of this form.

Proof. (⇐) Let ψ be a dual projective generator for E. Let A0 be a separable

subspace of E. By 53.11 there is a separable subspace A of E and a norm-1
projection P of E′ such that A0 ⊇ A, P (E′) is separable and isomorphic with A′

via the restriction map. Hence A′ is separable and also A′0. By [Stegall, 1975] E is
Asplund.

(⇒) Consider the ‖ ‖-weak∗ upper semi-continuous mapping φ : X → 2{x
∗:‖x∗‖≤1}

given by

φ(x) := {x∗ ∈ E′ : ‖x∗‖ ≤ 1, 〈x, x∗〉 = ‖x‖}.
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By the Jayne-Rogers selection theorem [Jayne and Rogers, 1985], see also [Deville
et al., 1993, section I.4] there is a map f : E → {x∗ ∈ E′ : ‖x∗‖ ≤ 1} with
f(x) ∈ φ(x) for all x ∈ E and continuous fn : E → {x∗ : ‖x∗‖ ≤ 1} ⊆ E′ with
fn(x)→ f(x) in E′ for each x ∈ E. One then shows that

ψ(x) := {f(x), f1(x), . . . }

defines a dual projective generator, see [Orihuela and Valdivia, 1989]. �

53.13. Definition. Projective Resolution of Identity. Let a “long sequence”
of continuous projections Pα ∈ L(E,E) on a Banach space E for all ordinal numbers
ω ≤ α ≤ densE be given. Recall that dens(E) is the density of E (a cardinal
number, which we identify with the smallest ordinal of same cardinality). Let
Eα := Pα(E) and let Rα := (Pα+1 − Pα)/(‖Pα+1 − Pα‖) or 0, if Pα+1 = Pα. Then
we consider the following properties:

(1) PαPβ = Pβ = PβPα for all β ≤ α.
(2) PdensE = IdE .
(3) densPαE ≤ α for all α.
(4) ‖Pα‖ = 1 for all α.

(5)
⋃
β<α Pβ+1E = PαE, or equivalently

⋃
β<αEβ = Eα for every limit ordinal

α ≤ densE.
(6) For every limit ordinal α ≤ densE we have Pα(x) = limβ>α Pβ(x), i.e. α 7→

Pα(x) is continuous.
(7) Eα+1/Eα is separable for all ω ≤ α < densE.
(8) (Rα(x))α ∈ c0([ω,densE]) for all x ∈ E.

(9) Pα(x) ∈ 〈Pω(x) ∪ {Rβ(x) : ω ≤ β < α}〉.

The family (Pα)α is called projective resolution of identity (PRI) if it

satisfies ( 1 ), ( 2 ), ( 3 ), ( 4 ) and ( 5 ).

It is called separable projective resolution of identity (SPRI) if it satisfies

( 1 ), ( 2 ), ( 3 ), ( 7 ), ( 8 ) and ( 9 ). These are the only properties used in

53.20 and they follow for WCD Banach spaces and for duals of Asplund spaces

by 53.15 . For C(K) with Valdivia compact K this is not clear, see 53.18 and

53.19 . However, we still have 53.21 and in 16.18 we don’t use ( 7 ), but only

( 8 ) and ( 9 ) which hold also for PRI, see below.

Remark. Note that from ( 1 ) we obtain that P 2
α = Pα and hence ‖Pα‖ ≥ 1, and

Eα := Pα(E) is the closed subspace {x : Pα(x) = x}.
Moreover, PαPβ = Pβ = PβPα for β ≤ α is equivalent to P 2

α = Pα, Pβ(E) ⊆ Pα(E)
and kerPβ ⊇ kerPα.
(⇒) Pβx = PαPβx ∈ Pα(E) and Pαx = 0 implies that Pβx = PβPαx.
(⇐) For x ∈ E there is some y ∈ E with Pβx = Pαy, hence PαPβx = PαPαy =
Pαy = Pβx. And Pβ(1− Pα)x = 0, since (1− Pα)x ∈ kerPα ⊆ kerPβ .

Note that Eα+1/Eα ∼= (Pα+1 − Pα)(E), since Eα → Eα+1 has Pα|Eα+1
as right

inverse, and so Eα+1/Eα ∼= ker(Pα|Eα+1) = (1− Pα)Pα+1(E) = (Pα+1 − Pα)(E).
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( 5 ) ⇐ ( 9 ), since for x ∈ Eα we have x = Pα(x) and Eω ∪ {Rβ(x) : β < α} ⊆ Eα
for all α.

( 3 ) ⇐ ( 5 ) & ( 7 ) By transfinite induction we get that for successor ordinals
α = β + 1 we have dens(Eα) = dens(Eβ) + dens(Eα/Eβ) = dens(Eβ) ≤ β ≤ α,

since dens(Eα/Eβ) ≤ ω. For limit ordinals it follows from ( 5 ), since dens(Eα) =
dens(

⋃
β<αEβ) = sup{dens(Eβ) : β < α} ≤ sup{β : β < α} = α.

( 6 ) ⇐ ( 4 ) & ( 1 ) & ( 5 ) For every limit ordinal 0 < α ≤ densE and for all
x ∈ E the net (Pβ(x))β<α converges to Pα(x).

Let first x ∈ Pα(E) and ε > 0. By ( 5 ) there exists a γ < α and an xγ ∈ Pγ(E)

with ‖x − xγ‖ < ε. Hence for γ ≤ β < α we have by ( 1 ) that Pβ(xγ) = Pα(xγ)
and so

‖Pα(x)− Pβ(x)‖ = ‖Pα(x− xγ)|+ ‖Pα(xγ)− Pβ(xγ)| − Pβ(xγ − x)‖
≤ (‖Pα‖+ ‖Pβ‖) ‖x− xγ‖ < 2 ε.

If x ∈ E is arbitrary, then Pα(x) ∈ Pα(E), hence by ( 1 )

Pβ(x) = Pβ(Pα(x))→ Pα(Pα(x)) = Pα(x) for β ↗ α. �

( 8 ) ⇐ ( 1 ) & ( 6 ) Let ε > 0. Then the set {β : β < α, ‖Rβ(x)‖ ≥ ε} is finite,
since otherwise there would be an increasing sequence (βn) such that ‖Rβn(x)‖ ≥ ε
and since ‖Pα+1 − Pα‖ = ‖(1 − Pα)Pα+1‖ ≥ 1 also ‖(Pβn+1 − Pβn)(x)‖ ≥ ε. Let
β∞ := supn βn. Then β∞ ≤ α is a limit ordinal and Pβ∞(x) = limβ<β∞ Pβ(x)

according to ( 6 ), a contradiction.

( 9 ) ⇐ ( 6 ) We prove by transfinite induction that Pα(x) is in the closure of the
linear span of {Rβ(x) : ω ≤ β < α} ∪ Pω(x).
For α = ω this is obviously true. Let now α = β + 1 and assume Pβ(x) is in
the closure of the linear span of {Rγ(x) : ω ≤ γ < β} ∪ Pω(x). Since Pα(x) =
Pβ(x) + ‖Pα − Pβ‖Rβ(x) we get that Pα(x) is in the closure of the linear span of
{Rγ(x) : ω ≤ γ < α} ∪ Pω(x).
Let now α be a limit ordinal and let Pβ(x) be in the closure of the linear span

of {Rγ(x) : ω ≤ γ < α} ∪ Pω(x) for all β < α. Then by ( 6 ) we get that
Pα(x) = limβ<α Pβ(x) is in this closure as well.

Proposition. Suppose all complemented subspaces of a Banach space E have PRI
then E has a SPRI.

Proof. We proceed by induction on µ := densE. For µ = ω nothing is to be
shown. Now let (Pα)0≤α≤µ be a PRI of E. For every α < µ we have α+ 1 < µ and
so µα := dens((Pα+1 − Pα)(E)) ≤ dens(Pα+1(E)) ≤ α < µ, hence there is a SPRI
(Pαβ )0≤β<µα of (Pα+1 − Pα)(E). Now consider

Pα,β := Pα + Pαβ (Pα+1 − Pα) = (Pα + Pαβ (1− Pα))Pα+1

for ω ≤ α < µ and ω ≤ β ≤ µα with the lexicographical ordering. This is a
well-ordering and since the cardinality of µ2 is µ and µα < µ it corresponds to the
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ordinal segment [ω, µ). In fact for any limit ordinal α > ω we have

|[ω, α)| =
∑

ω≤β<α

1 ≤
∑

ω≤β<α

|[ω, µα)| ≤ |[ω, α)|2 ≤ |[ω, α)|.

Obviously the Pα,β are projections that satisfy ( 1 ) and ( 3 ).

( 1 ) For Pα,β with the same α this follows from ( 1 ) for Pαβ : Rα(E)→ Rα(E): In
fact

Pα,β Pα,β′ :=
(
Pα + Pαβ (Pα+1 − Pα)

)(
Pα + Pαβ′(Pα+1 − Pα)

)
= P 2

α + Pαβ (Pα+1 − Pα)Pα + PαP
α
β′(Pα+1 − Pα)

+ Pαβ (Pα+1 − Pα)Pαβ′(Pα+1 − Pα)

= P 2
α + 0 + 0 + Pαmin{β,β′}(Pα+1 − Pα)

For different α this follows, since Pα1,βE ⊆ Pα1+1E ⊆ Pα2
and

PαE ⊆ Pα,β ⊆ Pα+1

kerPα ⊇ kerPα,β = ker(Pα + Pαβ (1− Pα))Pα+1 ⊇ kerPα+1

( 3 ) The density of Pα,βE is less or equal to α+ 1.

And clearly they satisfy ( 7 ) as well, since Rα,β = Rαβ (Pα+1 − Pα).

( 9 ) Since this is true for the Pα and the P βα it follows for Pα,β as well.
In fact Pα,β(x) belongs to the closure of the linear span of Pα(x) and the Rα,β′ =
Rαβ′(Pα+1−Pα)(x) for β′ < β by the property of the Pαβ . Furthermore Pα(x) belongs

to the closure of the linear span of Rα′(x) for α′ < α and Pω(x) by the property of

the Pα and Rα′(x) belongs to the closure of the linear span of all Rα
′

β (Rα′x) for all
β < densRα′E.

( 8 ) For x in the linear span of all Rα,βE we obviously have that (Rα,β(x))α,β ∈ c0.

In fact for x :=
∑n
i=1 λ

iRαi,βi(xi), we have that Rαi,βi(x) = λiRαi,βi(xi) and
Rα,β(x) = 0 for all (α, β) /∈ {(α1, β1), . . . , (αn, βn)}.

RαRβ = (Pα+1 − Pα)(Pβ+1 − Pβ) = (1− Pα)Pα+1Pβ+1(1− Pβ) = 0,

if α+ 1 ≤ β or β+ 1 ≤ α, since the factors commute. For general x we find by ( 9 )
a point x̃ in the linear span of the Rα,βx with ‖x− x̃‖ < ε. Then

{(α, β) : ‖Rα,β(x)‖ ≥ ε} ⊆ {(α1, β1), . . . , (αn, βn)}.

Note however that we don’t have ‖Pα,β‖ = 1. �

53.14. Theorem. Let E be a Banach space with projective generator ϕ. Then E
admits a PRI (Pα)α, where each Pα is based on a norming pair (Aα, Bα) with

(1) |Aα| ≤ α, |Bα| ≤ α for all α;
(2) Aβ ⊆ Aα and Bβ ⊆ Bα for all β ≤ α;
(3)

⋃
ω≤β<αAβ = Aα for all limit ordinals α;

(4)
⋃
ω≤β<αBβ = Bα for all limit ordinals α;
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Proof. Choose a dense subset {xα : α < densE}. We construct by transfinite
recursion for every ordinal α ≤ densE a norming pair (Aα, Bα) with

Aα ⊇ {xβ : β < α}, |Aα| ≤ α, |Bα| ≤ α, ϕ(Bα) ⊆ Aα
Aβ ⊆ Aα and Bβ ⊆ Aα for β ≤ α.

For the ordinal ω let A0 := {xα : α < ω} and let B0 be a countable subset of E′

such that
‖x‖ = sup{|〈x, x∗〉 : x∗ ∈ B0} for all x ∈ A0.

By 53.7 there is a norming pair (Aω, Bω) with |Aω|, |Bω| ≤ ω, Aω ⊇ A0, Bω ⊇ B0

and ϕ(Bω) ⊆ Aω.

If α is a successor ordinal, i.e. α = β + 1, then let A0 := Aβ ∪ {xβ} and B0 := Bβ .

Again by 53.7 we get a norming pair (Aα, Bα), such that

A0 ⊆ Aα, B0 ⊆ Bα ⊆ E′, |Aα| ≤ α, |Bα| ≤ α, ϕ(Bα) ⊆ Aα

If α is a limit ordinal, we set

Aα :=
⋃
β<α

Aβ

Bα :=
⋃
β<α

Bβ ⊆ E′.

Then obviously (Aα, Bα) is a norming pair with ϕ(Bα) ⊆ Aα.

Now using the property of the projective generator ϕ we have that there are norm-1
projections Pα ∈ L(E) with Pα(E) = Aα and kerPα = (Bα)o = (Bα)o. Hence

53.13.1 PαPβ = Pβ = PβPα for β ≤ α

53.13.3 densPαE ≤ α, densP ∗α(E′)σ ≤ α,

53.13.5 Pα(E) = Aα =
⋃
β<α

PβE

53.13.4 ‖Pα‖ = 1

and since {xα : α < densE} is dense in E we also have 53.13.2 . Furthermore we
have that Bα is weak∗-dense in P ∗αE

′. �

53.15. Corollary. WCD and duals of Asplund spaces have SPRI. �

53.16. Definition. A compact set K is called Valdivia compact if there exists
some set Γ with K ⊆ RΓ and {x ∈ K : carr(x) is countable} being dense in K.

53.17. Lemma. For a Valdivia compact set K ⊆ RΓ we consider the set E :=
{x ∈ RΓ : carr(x) is countable}. Let µ be the density number of K ∩E. Then there
exists an increasing long sequence of subsets Γα ⊆ Γ for ω ≤ α ≤ µ satisfying:

(i) |Γα| ≤ α;
(ii)

⋃
β<α Γβ = Γα for limit ordinals α;
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(iii) Γµ =
⋃
cup{carr(x) : x ∈ K};

and such that Kα := QΓα(K) ⊆ K, where QΓ′ : RΓ → RΓ′ ↪→ RΓ, i.e.

QΓ′(x)γ :=

{
xγ for γ ∈ Γ′

0 for γ /∈ Γ \ Γ′
.

Thus Kα ⊆ K is a retract via QΓα .

Note that for any Valdivia compact set K ⊆ RΓ we may always replace Γ by⋃
{carr(x) : x ∈ K} =

⋃
{carr(x) : x ∈ K ∩ E}, and then (iii) says Γµ = Γ.

Proof. The proof is based on the following claim: Let ∆ ⊆ Γ be a infinite subset.
Then there exists some subset ∆̃ with ∆ ⊆ ∆̃ ⊆ Γ and |∆| = |∆̃| and Q∆̃(K) ⊆ K.
By induction we construct a sequence ∆ =: ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆k ⊆ · · · ⊆ Γ with
|∆k| = |∆0| and Q∆k

({x ∈ K ∩ E : carr(x) ⊆ ∆k+1}) being dense in Q∆k
(K):

(k+1) Since K ∩E is dense in K, we have that Q∆k
(K ∩E) is dense in Q∆k

(K) ⊆
R∆k × {0} ⊆ RΓ. And since the topology of R∆k has a basis of cardinality |∆k|,
there is a subset D ⊆ K ∩ E with |D| ≤ |∆k| and Q∆k

(D) dense in Q∆k
(K). Let

∆k+1 := ∆k ∪
⋃
x∈D carr(x) then ∆k+1 ⊇ ∆k and |∆k+1| = |∆k|. Furthermore

Q∆k
({x ∈ K ∩ E : carr(x) ⊆ ∆k+1}) ⊇ Q∆k

(D) is dense in Q∆k
(K).

Now ∆̃ :=
⋃
k ∆k is the required set. In order to show that Q∆̃(K) ⊆ K let x ∈ K

be arbitrary. Since Q∆k
(x) is contained in the closure of Q∆k

({xk ∈ K ∩ E :

carr(xk) ⊆ ∆k+1}) and hence in the closed set Q∆k
({xk ∈ K : carr(xk) ⊆ Γ̃}).

Thus there is an xk ∈ K with carr(xk) ⊆ Γ̃ and such that x agrees with xk on ∆k.

Thus K 3 xk → Q∆̃(x), since every finite subset of ∆̃ is contained in some ∆k and

outside ∆̃ all xk and Q∆̃(x) are zero. Since K is closed we get Q∆̃(x) ∈ K.

Without loss of generality we may assume that µ > ω. Let {xα : ω ≤ α < µ} be a
dense subset of K ∩ E. Let Γω := carr(xω). By transfinite induction we define

Γα :=

{
(Γβ ∪ carr(xβ))∼ for α = β + 1,⋃
β<α Γβ for limit ordinals α.

Then the Γα satisfy all the requirements. �

53.18. Corollary. Let K be Valdivia compact. Then C(K) has a PRI.
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Proof. We choose Γα as in 53.17 and set Kα := QΓα(K). Let Qα := QΓα |K .
Then Qα is a continuous retraction.

Kα � r

incl
%%

IdKα // Kα

K

Qα

99 99

C(Kα) C(Kα)
Idoo

lL

Q∗αzz ����
C(K)

incl∗

dddd

Eα_?
oo

We have dens(C(RΓα)) = |α|, since we have a base of the topology of this space of
that cardinality. Hence dens(C(Kα)) ≤ |α|. Let Eα := (Qα)∗(C(Kα)). Then Eα is

a closed subspace of C(K) and 53.13.3 holds. Furthermore Pα := Qα ◦ incl∗Kα is
a norm-1 projection from C(K) to Eα. The inclusion Γα ⊆ Γβ for α ≤ β implies

53.13.1 . To see 53.13.6 and 53.13.5 let ε > 0 and choose a finite covering of
Kα by sets

Uj := {x ∈ RΓα : |xγ − xjγ | < δj for all γ ∈ ∆j},
where xj ∈ RΓα , δj > 0 and ∆j ⊆ Γα is finite and such that for x′, x′′ ∈ Uj ∩K
we have |f(x′)− f(x′′)| < ε. Now choose α0 < α such that Γα0 ⊇ ∆j for all of the
finitely many j. Since the Uj cover Kα, we have x ∈ Kα ∩Uj for some j and hence
Qβ(x) ∈ Kα ∩ Uj for all α0 ≤ β < α. Hence |f(x)− f(Qβ(x))| < ε for all x ∈ Kα

and so ‖Pα(f)− Pβ(f)‖ = ‖(1− Pβ)Pα(f)‖ ≤ ε. Thus we have shown that E has
a PRI (Pα)α, with all Eα ∼= C(Kα) and dens(Kα) ≤ |Γα| ≤ α. �

53.19. Remark. The space C([0, α]) has a PRI given by

Pβ(f)(µ) :=

{
f(µ) for µ ≤ β
f(β) for µ ≥ β

.

However, there is no PRI on the hyperplane E := {f ∈ C([0, ω1]) : f(ω1) = 0} of
the space C[0, ω1]. And, in particular, C[0, ω1] is not WCD.

Proof. Assume {Pα : ω ≤ α ≤ ω1} is a PRI on E. Put α0 := ω0. We may find
β0 < ω1 with

Pα0E ⊆ Eβ0 := {f ∈ E : f(α) = 0 for α > β0},
because for each f in dense countable subset D ⊆ Pα0

E we find a βf with f(α) = 0
for α ≥ βf . Since Eβ0

is separable, there is an α0 < α1 < ω1 such that

Eβ0 ⊆ Pα1E,

in fact D ⊆ Eβ0
is dense and hence for each f ∈ D and n ∈ N there exists an

αf,n < ω1 and f̃ ∈ Pαf,nE such that ‖f − f̃‖ ≤ 1/n. Then α1 := sup{αf,n : n ∈
N, f ∈ D} fulfills the requirements.
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Now we proceed by induction. Let α∞ := supn αn and β∞ := supn βn. Then

Pα∞E =
⋃
n

PαnE = Fβ∞ := {f ∈ E : f(α) = 0 for α ≥ β∞}.

But Fβ∞ is not the image of a norm-1 projection: Suppose P were a norm-1 pro-
jection on Fβ∞ . Let π : E → C(X) be the restriction map, where X := [0, β∞].

It is left inverse to the inclusion ι given by f 7→ f̃ with f̃(γ) = 0 for γ ≥ β∞.

Let P̃ := π ◦ P ◦ ι ∈ L(C(X)). Then P̃ is a norm-1 projection with image

Cβ∞(X) := {f ∈ C[0, β∞] : f(β∞) = 0}. Then C(X) = ker(P̃ ) ⊕ Cβ∞(X).

We pick 0 6= f0 ∈ ker(P̃ ). Since f0 /∈ P̃ (C(X)) = Cβ∞(X) = ker(evβ∞), we
have f0(β∞) 6= 0, and without loss of generality we may assume that f0(β∞) = 1.

For f ∈ C(X) we have that f − P̃ (f) ∈ ker P̃ and hence there is a λf ∈ R
with f − P̃ (f) = λf f0. In fact evaluating at β∞ gives f(β∞) − 0 = λf 1, hence

P̃ (f) = f − f(β∞) f0. Since β∞ is a limit point, there is for each ε > 0 a xε < β∞
with f0(xε) > 1 − ε. Now choose fε ∈ C(X) with ‖fε‖ = 1 = −fε(β∞) = fε(xε).
Then

‖Pfε‖∞ = ‖fε − fε(β∞) f0‖∞
≥ |fε(xε)− fε(β∞) f0(xε)|
≥ 1 + 1(1− ε) = 2− ε.

Hence P̃ ≥ 2, a contradiction.

Note however that every separable subspace is contained in a 1-complemented sep-
arable subspace. �

53.20. Theorem. [Biström, 1993, 3.16] If E is a realcompact (i.e. non-measurab-
le) Banach space admitting a SPRI, then there is a non-measurable set Γ and a
injective continuous linear operator T : E → c0(Γ).

Proof. We proof by transfinite induction that for every ordinal α with α ≤ µ :=
dens(E) there is a non-measurable set Γα and an injective linear operator Tα :
Eα := Pα(E)→ c0(Γα) with ‖Tα‖ ≤ 1.
Note that if E is separable, then there are x∗n ∈ E′ with ‖x∗n‖ ≤ 1, and which are
σ(E′, E) dense in the unit-ball of E′. Then T : E → c0(N), defined by T (x)n :=
1
nx
∗
n(x), satisfies the requirements: It is obviously a continuous linear mapping into

c0, and it remains to show that it is injective. So let x 6= 0. By Hahn-Banach
there is a x∗ ∈ E′ with x∗(x) = ‖x‖ and ‖x∗‖ ≤ 1. Hence there is some n with
|(x∗n − x∗)(x)| < ‖x‖ and hence x∗n(x) 6= 0.

In particular we have Tω0 : Eω0 → c0(Γω0).

For successor ordinals α + 1 we have Eα+1
∼= Eα × (Eα+1/Eα) = Eα × (Pα+1 −

Pα)(E). Let Rα := (Pα+1 − Pα)/‖Pα+1 − Pα‖, let F := (Pα+1 − Pα)(E) and let

T : F → c0 be the continuous injection for the, by 53.13.7 , separable space F with
‖T‖ ≤ 1. Then we define Γα+1 := Γα t N and Tα+1 : Eα+1 → c0(Γα+1) by

Tα+1(x)γ :=

{
Tα(Pα(x)

‖Pα‖ )γ for γ ∈ Gα
T (Rα(x))γ for γ ∈ N

.
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Now let α be a limit ordinal. We set

Γα := Γω t
⊔

ω≤β<α

Γβ+1,

and define Tα : Eα := Pα(E)→ c0(Γα) by

Tα(x)γ :=

{
Tω(Pω(x)

‖Pω‖ ) for γ ∈ Γω

Tβ+1(Rβ(x))γ for γ ∈ Γβ+1

We show first that Tα(x) ∈ c0(Γα) for all x ∈ E. So let ε > 0. Then the set

{β : ‖Rβ(x)‖ ≥ ε, β < α} is finite by 53.13.8 .
Obviously Tα is linear and ‖Tα‖ ≤ 1. It is also injective: In fact let Tα(x) = 0
for some x ∈ Eα. Then Rβ(x) = 0 for all β < α and Pω(x) = 0, hence by
x = Pα(x) = 0.
As card(E) is non-measurable, also the smaller cardinal dens(E) is non-measur-
able. Thus the union Γα of non-measurable sets over a non-measurable index set
is non-measurable. �

53.21. Corollary. The WCD Banach spaces and the duals of Asplund spaces
continuously and linearly inject into some c0(Γ). The same is true for C(K), where
K is Valdivia compact.

For WCG spaces this is due to [Amir and Lindenstrauss, 1968] and for C(K) with
K Valdivia compact it is due to [Argyros et al., 1988]

Proof. For WCD and duals of Asplund spaces this follows using 53.15 . For
Valdivia compact spaces K one proceeds by induction on dens(K) and uses the

PRI constructed in 53.18 . The continuous linear injection C(K)→ c0(Γ) is then

given as in 53.20 for α := dens(K), where Tβ exists for β < α, since Eβ ∼= C(Kβ)
with Kβ Valdivia compact and dens(Kβ) ≤ β < α. �

53.22. Theorem. [Bartle and Graves, 1952] Let T : E → F be a bounded linear
surjective mapping between Banach spaces. Then there exists a continuous mapping
S : F → E with T ◦ S = Id.

Proof. By the open mapping theorem there is a constant M0 > 0 such that for all
‖y‖ ≤ 1 there exists an x ∈ T−1(y) with ‖y‖ ≤ M0. In fact there is an M0 such
that B1/M0

⊆ T (B1) or equivalently B1 ⊆ T (BM0). Let (fγ)γ∈Γ be a continuous
partition of unity on oF := {y ∈ F : ‖y‖ ≤ 1} with diam(supp(fγ)) ≤ 1/2. Choose
xγ ∈ T−1(carr(fγ)) with ‖xγ‖ ≤M0 and for ‖y‖ ≤ 1 set

S0y :=
∑
γ∈Γ

fγ(y)xγ and recursively

Sn+1y := Sny +
1

an
Sn(an(y − TSny)),

where an := 22n .

By induction we show that the continuous mappings Sn : {y : ‖y‖ ≤ 1} → E satisfy

‖y − TSny‖ ≤ 1/an and ‖Sny‖ ≤Mn := M0 ·
∏n−1
k=0(1 + 1/ak).
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(n = 0) Obviously ‖S0y‖ ≤
∑
γ fγ(y)‖xγ‖ ≤M0 and

‖y − TS0y‖ =
∥∥∥∑
γ

fγ(y)(y − Txγ)
∥∥∥ ≤ ∑

γ∈Γy

fγ(y) ‖y − Txγ‖ ≤
1

2
= a0,

where Γy := {γ ∈ Γ : fγ(y) 6= 0}.
(n + 1) For ‖y‖ ≤ 1 and yn := an(y − TSny) we have ‖yn‖ ≤ 1 by induction
hypothesis. Then

‖Sn+1y‖ ≤ ‖Sny‖+
1

an
‖Snyn‖ ≤Mn +

1

an
Mn = Mn+1.

Furthermore

‖y − TSn+1y‖ = ‖y − TSny −
1

an
TSn(an(y − TSny))‖

≤ 1

an
‖yn − TSnyn‖ ≤

1

an
· 1

an
=

1

an+1
.

Now (Sn) is Cauchy with respect to uniform convergence on {y : ‖y‖ ≤ 1}. In fact

‖Sn+1y − Sny‖ ≤
1

an
‖Sn(an(y − TSny))‖ ≤ Mn

an
≤ M∞

an
,

where M∞ := limnMn. Thus S := limn Sn is continuous and ‖y−TSy‖ = limn ‖y−
TSny‖ = 0, i.e. TSy = y. Now S : F → E defined by S(y) := ‖y‖S( y

‖y‖ ) and

S(0) := 0 is the claimed continuous section. �
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Gieraltowska-Kedzierska, M. and Van Vleck, F. Fréchet differentiability of regular locally Lips-

chitzian functions. J. Math. Anal. Appl., 159:147–157, 1991.
Gil-Medrano, O. and Michor, P. W. The Riemannian manifold of all Riemannian metrics. Q. J.

Math. Oxf., 42:183–202, 1991.
Gil-Medrano, O. and Michor, P. W. Pseudoriemannian metrics on spaces of almost hermitian

structures. Isr. J. Math., page 11, 1994. to appear.

Gil-Medrano, O., Michor, P. W., and Neuwirther, M. Pseudoriemannian metrics on spaces of
bilinear structures. Q. J. Math. Oxf., 43:201–221, 1992.

Gillman, L. and Jerison, M. Rings of continuous functions. Van Nostrand, Princeton, 1960.
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Mat., 13:51–57, 1959.

Kadec, M. Letters to the editors. Izv. Vyssh. Učebn. Zaved. Mat., 15:139–141, 1961.
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31:142–, 1960.
Waelbroeck, L. Some theorems about bounded structures. J. Funct. Anal., 1:392–408, 1967a.

Waelbroeck, L. Differentiable Mappings in b-spaces. J. Funct. Anal., 1:409–418, 1967b.

Warner, F. Foundations of differentiable manifolds and Lie groups. Scott Foresman, 1971.
Warner, G. Harmonic analysis on semisimple Lie groups, Volume I. Springer-Verlag, New York,

1972.
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Čech cohomology set 297

chain rule 32

characteristic vector field 471

chart changing mapping 274

– description of functors induced by

C∞-algebras 324

– description of Weil functor 315

– of a foliation, distinguished 282

–, vector bundle 296

–, submanifold 278

Christoffel forms 384

classifying connection 488

– space 488, 490

closed differential forms 360

co-algebras, convenient 255

co-commutative 256

cocurvature of a connection 372

cocycle condition 297, 382, 419

– of transition functions 297, 382

cohomologous transition functions 297, 386

cohomology algebra, De Rham 360

– classes of transition functions 297

co-idempotent 256

colimit 578

commensurable groups 513

commutative algebra 57

comp, the composition mapping 30

compact-open Ck-topology 441

– topology 439

compatible vector bundle charts 296

completant set, bounded 581

complete space, Mackey 14

– space, locally 19

completely regular space 46

completion of a locally convex space 15

complex differentiable mapping 85

complexification MC of manifold M 109,
109

composition, smoothness of 449

–, truncated 436

conjugate pair, dual 589

– pair 586

conjugation 379

connection 372

– form, Lie algebra valued 393

– on a fiber bundle 382

–, classifying 488

–, induced 400, 400

–, linear 402, 403

–, principal 393

connections, space of 483

connector 402

contact diffeomorphism 472

– distribution 471

– form 471

– graph of a diffeomorphism 474

– manifold 471

– structure, exact 471

continuous derivation over eva 286

convenient co-algebras 255
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– C∞-algebra, augmented local 324

– vector space 19

convex function, dual of a 136

convolution 26

coproduct 578

cotangent bundle, kinematic 344

– bundle, operational 344

CO-topology 439

covariant derivative 403

– exterior derivative 398, 404

– Lie derivative 405

covering space, universal 281

COk-topology 441

curvature 372, 404

curve, bornologically real analytic 103

–, differentiable 8

–, holomorphic 85

–, locally Lipschitzian 9

–, smooth 9

–, topologically real analytic 103

D
δ, natural embedding into the bidual 15

d, differentiation operator 32

dnv , iterated directional derivative 25

D
(d)
a E :=

⊕d
j=1D

[j], space of operational

tangent vectors of order ≤ d 287

(D(k))′M , operational cotangent bundle

344

D
[d]
a E, space of operational tangent vectors

of homogeneous order d 287

De Rham cohomology algebra 360

definite integral 16

density of subset of N 21

– number densX of a topological space
157

dentable subset 140

Der(C∞(M,R)), space of operational

vector fields 330

derivation over eva, continuous 286

–, algebraic 365

–, order of a 287

–, graded 364

derivative of a curve 8

–, covariant 403

–, covariant exterior 398, 404

–, covariant Lie 405

–, directional 133

–, left logarithmic 410

–, left trivialized 380

–, Lie 354, 366

–, n-th 60

–, right logarithmic 410

–, unidirectional iterated 64

diffeomorphic manifolds 274

diffeomorphism, contact 472

– group 458

–, F -foliated 282

–, symplectic 464

–, holomorphic 274

–, real analytic 274

difference quotient 12, 123

– quotient, equidistant 123

differentiable curve 8

differential forms 360

– forms, f -related vector valued 372

– forms, horizontal 398

– forms, horizontal G-equivariant

W -valued 407

– forms, vector valued kinematic 365

– group of order k 437

– of a function 295

differentiation operator 32

direct sum 578

directed set 579

directional derivative 133

distinguished chart of a foliation 282

dual conjugate pair 589

– mapping `∗ 8

– of a convex function 136

– of a locally convex space, strong 581

– pair, weak topology for a 580

– space E′ of bounded linear functionals

on E 8

– space E∗ of continuous linear
functionals on E 8

Dunford-Pettis property 210

E
E′, space of bounded linear functionals 8

E∗, space of continuous linear functionals 8

EB , linear space generated by B ⊆ E 11,

578

Eborn, bornologification of E 34

Ê, completion of E 15

embedding of manifolds 279

–, bornological 47

equicontinuous sets 15

equidistant difference quotient 123

equivalent atlas 274

evolution, right 415

exact contact structure 471

– differential forms 360

expansion at x 319

– property 319

exponential law 450

– mapping 378

expose a subset 135

extension of groups 418

– property 47

– property, scalar valued 231

– property, vector valued 231
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–, k-jet 436

exterior algebra 56

– derivative, covariant 398, 404

– derivative, global formula for 349

F
f -dependent 372

f -related vector fields 336

– vector valued differential forms 372

F-evaluating 188

F -foliated diffeomorphism 282

fast converging sequence 17, 17

– falling 17

fiber bundle 382

– bundle, gauge group of a 483

– bundle, principal 386

– of the operational tangent bundle 293

– of the tangent bundle 294

fibered composition of jets 436

final smooth mapping 282

finite type polynomial 62

first uncountable ordinal number ω1 48

flat at 0, infinitely 63

flatness, order of 542

flip, canonical 302

flow line of a kinematic vector field 337

– of a kinematic vector field, local 339

foliation 282

foot point projection 293

formally real commutative algebra 314

frame bundle 481

– bundle, nonlinear 481

Fréchet space 579

– space, graded 560

– space, tame graded 562

–-differentiable 133

Frobenius theorem 338, 338

Frölicher space 248

–-Nijenhuis bracket 367

functor, smooth 299

fundamental theorem of calculus 16

– vector field 381, 382

G
G-atlas 386

G-bundle 386

G-bundle, homomorphism of 390

G-bundle structure 386

GL(k,∞;R), Stiefel manifold of k-frames

518

Gâteaux-differentiable 133

gauge group of a fiber bundle 483

– transformations 392

general curve lemma 122

generating set of functions for a Frölicher

space 248

germ of f along A 284

germs along A of holomorphic functions 96

global resolvent set 552

globally Hamiltonian vector field 465

graded derivation 364

graded Fréchet space 560

– Fréchet space, tame 562

–-commutative algebra 56

graph topology 440

Grassmann manifold G(k,∞;R) 517

group, diffeomorphism 458

–, holonomy 430

–, Lie 376

–, reduction of the structure 387

–, regular Lie 415

–, restricted holonomy 430

–, smooth 437

groups, extension of 418

H
H(U, F ) 94

Hamiltonian vector field 464

Hausdorff, smoothly 275

Hölder mapping 134

holomorphic atlas 274

– curve 85

– diffeomorphism 274

– mapping 87

– mapping, initial 278

– vector bundle 296

holonomy group 430

homogeneous operational tangent vector of
order d 287

homomorphism of G-bundles 390

– of principal fiber bundles 387

– of vector bundles 298

– over Φ of principal bundles 387

homotopy operator 362

horizontal bundle 383

– differential forms 398

– G-equivariant W -valued differential
forms 407

– lift 383

– projection 383

– space of a connection 372

– vectors of a fiber bundle 383

I
induced connection 400, 400

inductive limit 579

infinite polygon 17

infinitely flat at 0 63

initial mapping 278

inner automorphism 379

insertion operator 348, 405
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integral curve of a kinematic vector field

337

– mapping 141

–, definite 16

–, Riemann 15

interpolation polynomial Pm
(t0,...,tm)

237

invariant kinematic vector field 376

involution, canonical 302

isomorphism, bornological 8

– of vector bundles 299

J
jets 436

K
k-jet extension 436

k-jets 436

kE 37

K′, set of accumulation points of K 148

Kelley-fication 37

Killing form on gl(∞) 523

kinematic 1-form 344

– cotangent bundle 344

– differential forms, vector valued 365

– tangent bundle 293

– tangent vector 286

– vector field 329

– vector field, flow line of a 337

– vector field, left invariant 376

– vector field, local flow of a 339

Köthe sequence space 75, 583

L
`∗, adjoint mapping 8, 8

`∞(X,F ) 20

`1(X) 50

L(E,F ) 32

L(E∗equi,R) 15

L(E1, ..., En;F ) 52

Lipk-curve 9

Lipk-mapping 122

Lipkext(A,E), space of functions with

locally bounded difference quotients
239

LipkK , space of Ck-functions with global

Lipschitz-constant K for the k-th
derivatives 164

Lipkglobal, space of Ck-functions with k-th

derivatives globally Lipschitz 164

Lagrange submanifold 465

leaf of a foliation 283

left invariant kinematic vector field 376

– logarithmic derivative 410

– Maurer-Cartan form 411

– trivialized derivative 380

Legendre mapping 472

– submanifold 472

Leibniz formula 53

Lie bracket of vector fields 331

– derivative 354, 366

– derivative, covariant 405

– group 376

– group, regular 415

lift, horizontal 383

–, vertical 302

limit 579

–, inductive 579

–, projective 579

linear connection 402, 403

– mapping, bounded 8

Liouville form 527

Lipschitz bound, absolutely convex 17

– condition 9

– mapping 134

Lipschitzian curve, locally 9

local addition 446

– flow of a kinematic vector field 339

locally complete space 19

locally convex space 577

– convex space, barrelled 581

– convex space, bornological 577

– convex space, bornologification of a 577

– convex space, bornology of a 8, 577

– convex space, completion of a 15

– convex space, nuclear 582

– convex space, reflexive 581

– convex space, Schwartz 581

– convex space, strong dual of a 581

– convex space, strongly nuclear 582

– convex space, ultrabornologification of

a 577

– convex space, weakly realcompact 205

– convex topology, bornologification of a

13

– convex vector space, ultra-bornological
582

locally Hamiltonian vector field 464

– Lipschitzian curve 9

– uniformly rotund norm 152

logarithmic derivative, left or right 410

M
m-evaluating 188

m-small zerosets 215

MC, complexification of the manifold M

109

µ-converging sequence 35

M -convergence condition 39

M -convergent net 12

M -converging sequence 35

Mackey adherence 48, 50

– adherence of order α 48

– approximation property 74
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– complete space 14

– convergent net 12

– convergent sequence 11

–, second countability condition of 164

–-Cauchy net 14

–-closure topology 19

Mackey’s countability condition 246

manifold 274

– structure of C∞(M,N) 444

–, contact 471

–, natural topology on a 275

–, pure 275

–, symplectic 464

mapping, bornological 18

–, bounded 18

–, tame smooth 563, 565

– between Frölicher spaces, smooth 248

–, 1-homogeneous 33

–, biholomorphic 274

–, bounded linear 8

–, carrier of a 157

–, complex differentiable 85

–, exponential 378

–, final 282

–, Hölder 134

–, holomorphic 87

–, initial 278

–, integral 141

–, Legendre 472

–, Lipschitz 134

–, nuclear 141

–, proper 450

–, real analytic 106

–, smooth 29

–, support of a 157

–, transposed 333

–, zero set of a 157

Maurer-Cartan form 379

– formula 384

maximal atlas 274

mean value theorem 10

mesh of a partition 15

Minkowski functional 11, 577

modeling convenient vector spaces of a
manifold 275

modular 1-form 345

modules, bounded 65

monomial of degree p 62

Montel space 581

multiplicity 542

N
n-th derivative 60

n-transitive action 476

natural bilinear concomitants 374

– topology 491

– topology on a manifold 275

net, Mackey convergent 12

–, Mackey-Cauchy 14

–, M -convergent 12

Nijenhuis tensor 374

–-Richardson bracket 366

nonlinear frame bundle of a fiber bundle
481

norm, locally uniformly rotund 152

–, rough 140

–, strongly rough 162

–, uniformly convex 214

normal bundle 443

–, smoothly 170

norming pair 585

nuclear locally convex space 582

– mapping 141

– operator 582

O
O(k,∞;R), Stiefel manifold of orthonormal

k-frames 518

Ωk(M), space of differential forms 359

Ωk(M,V ), space of differential forms with

values in a convenient vector space V
359

Ωk(M ;E), space of differential forms with

values in a vector bundle E 359

ω1, first uncountable ordinal number 48, 48

ω-isolating 213

one parameter subgroup 377

operational 1-form 344

– 1-forms of order ≤ k 345

– cotangent bundle 344

– tangent bundle 293

– tangent vector 286

– tangent vector of order d, homogeneous
287

– vector field 329

operator, differentiation 32

–, homotopy 362

–, insertion 348, 405

–, nuclear 582

–, strongly nuclear 582

–, trace class 582

–, trace of an 582

order of a derivation 287

– of flatness 542

ordinal number ω1, first uncountable 48

P
Pm
(t0,...,tm)

, interpolation polynomial 237

Polyp(E,F ), space of polynomials of degree

≤ p 63

paracompact, smoothly 170

parallel transport on a fiber bundle 385
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partition of unity 170

plaque of a foliation 282

Poincaré lemma, relative 465

– lemma 357

polar Uo of a set 580

polynomial 62

–, finite type 62

power series space of infinite type 76

precompact 578

PRI, projective resolution of identity on a

Banach space 590

principal bundle 386

– bundle of embeddings 478

– connection 393

– right action 386

product of manifolds 274

– rule 53

projection of a fiber bundle 382

– of a vector bundle 296

–, foot point 293

–, horizontal 383

–, vertical 302, 383

projective generator 587

– limit 579

– resolution of identity 590

– resolution of identity, separable 590

proper mapping 450

pseudo-isotopic diffeomorphisms 513

pullback 383

– of vector bundles 299

pure manifold 275

R
R(c,Z, ξ), Riemann sum 15

radial set 35

Radon-Nikodym property of a bounded
convex subset of a Banach space 141

real analytic atlas 274

– analytic curve, bornologically 103

– analytic curve, topologically 103

– analytic diffeomorphism 274

– analytic mapping 106

– analytic mapping, initial 278

– analytic vector bundle 296

realcompact locally convex space, weakly
205

–, smoothly 188

reduction of the structure group 387

reflexive convenient vector space 73

– locally convex space 581

regular Lie group 415

–, completely 46

–, smoothly 158

relative Poincaré lemma 465

representation 531

resolution of identity, projective 590

resolvent set, global 552

restricted holonomy group 430

Riemann integral 15

– sum 15

right action, principal 386

– evolution 415

– invariant kinematic vector field 376

– logarithmic derivative 410

rotund norm, locally uniformly 152

rough norm 140

– norm, strongly 162

S
Sn, group of permutations 57

S-boundedness principle, uniform 67

S-functions 157

S-normal space 170

S-paracompact space 170

S-partition of unity 170

S-regular space 158

sE sequentially generated topology on E 37

scalar valued extension property 231

scalarly true property 11

scattered topological space 151

Schwartz locally convex space 581

second countability condition of Mackey
164

– countable, has countable base of
topology 305

section of a vector bundle 302

seminorm 577

–, smooth 135

separable topological space 580

– projective resolution of identity 590

sequence space, Köthe 75, 583

–, fast converging 17, 17

–, Mackey convergent 11

–, M -converging 35

–, µ-converging 35

sequential adherence 40

Silva space 176, 583

slice 484, 484

smooth atlas 274

– curve 9

– curves in C∞(M,N ) 447

– function of class S 157

– functor 299

– group 437

– mapping 29

– mapping between Frölicher spaces 248

– mapping, final 282

– mapping, initial 278

– mapping, tame 563, 565

– seminorm 135

– structure 248

smoothly Hausdorff 275
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– normal space 170

– paracompact space 170

– realcompact space 188

– regular space 158

smoothness of composition 449

space of bounded linear mappings 32

– of bounded n-linear mappings 52

– of holomorphic mappings 94

– of real analytic curves 106

– of real analytic mappings 106

– of smooth mappings 29

– of connections 483

– of germs of real analytic functions 109

– of real analytic functions 109

special curve lemma 17

splitting submanifold 278

SPRI, separable projective resolution of

identity 590

standard fiber of a fiber bundle 382

– fiber of a vector bundle 296

stereographic atlas 516

Stiefel manifold GL(k,∞;R) of k-frames

518

– manifold O(k,∞;R) of orthonormal

k-frames 518

strict inductive limit 579

strong dual of a locally convex space 581

– operator topology 531

– symplectic structure 527

strongly expose a subset 135

– nuclear locally convex space 582

– nuclear operator 582

– rough norm 162

submanifold 278

– chart 278

–, Lagrange 465

–, Legendre 472

–, splitting 278

subordinated partition of unity 170

super-reflexive Banach space 214

support of a mapping 157

– of a section 302

symmetric algebra 57

symmetrizer sym 57

symplectic diffeomorphism 464

– form 464

– manifold 464

– structure, strong 527

– structure, weak 526

– vector field 464

symplectomorphism 464

T
tame equivalent gradings of degree r and

base b 560

– graded Fréchet space 562

– linear mapping of degree d and base b

560

– non-linear mapping 563

– smooth mapping 563, 565

tangent bundle, kinematic 293

– bundle, operational 293

– hyperplane 135

– vector, kinematic 286

– vector, operational 286

tensor algebra 56

– product, bornological 54

topologically real analytic curve 103

topology on a manifold, natural 275

–, compact-open 439

–, graph 440

–, Mackey-closure 19

–, natural 491

–, strong operator 531

–, wholly open 439

trace class operator 582

– of an operator 582

transition function for vector bundle charts
296

– functions of a fiber bundle 382

transposed mapping 333

truncated composition 436

tubular neighborhood 443

U
Uo, polar 15

ultrabornological locally convex space 582

ultrabornologification 577

unidirectional iterated derivative 64

uniform boundedness principle 63

– S-boundedness principle 67

uniformly convex norm 214

universal covering space 281

– vector bundle 525

V
Valdivia compact space 594

Vandermonde’s determinant 26

vector bundle 296

– bundle, universal 525

– field, characteristic 471

– field, flow line of a kinematic 337

– field, fundamental 381, 382

– field, globally Hamiltonian 465

– field, integral curve of a kinematic 337

– field, kinematic 329

– field, left invariant kinematic 376

– field, local flow of a kinematic 339

– field, locally Hamiltonian 464

– field, operational 329

– field, right invariant kinematic 376

– field, symplectic 464
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– fields, f -related 336

– fields, Lie bracket of 331

vector space, arc-generated 38
– space, convenient 19

– valued extension property 231

– valued kinematic differential forms 365
vertical bundle 301

– bundle of a fiber bundle 382
– lift 302

– projection 302, 383

– space of a connection 372

W
WCD, weakly countably determined space

588
WCG, weakly compactly generated Banach

space 140

weak symplectic structure 526
– topology for a dual pair 580

weakly Asplund space 141

– realcompact locally convex space 205
Weil algebra 314

– functor 317
Whitney Ck-topology 441

wholly open topology 439

WO-topology 439
WO0-topology 440

WOk-topology 441

X
X(M), space of kinematic vector fields 329

Z
zero section 302

– set of a mapping 157
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