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THE FLOW COMPLETION OF THE BURGERS EQUATION

Boris A. Khesin, Peter W. Michor

Abstract. For a manifold equipped with vector field there exists the universal com-
pletion consisting of a (possibly non-Hausdorff) manifold with a complete vector

field on it. We describe the universal completion of the partial differential equations
ut + F (u)ux = 0 viewed as vector fields on infinite dimensional manifolds.

1. Introduction

For a pair (M,X) consisting of a smooth manifold M and a vector field X on
it there exists the universal completion (M̄, X̄), a possibly non-Hausdorff manifold
M̄ with a complete vector field X̄, where (M,X) is embedded equivariantly as an
open subspace. In this note we describe the universal completion of some partial
differential equations viewed as vector fields on infinite dimensional manifolds. The
equations are ut + f(u)ux = 0 where u = u(x, t) : Rn × R → R

n, and f : Rn → R
n

is some smooth map. A special case is the inviscid Burgers equation ut +3uux = 0
(also called the Hopf equation). The universal completion gives some insight at how
solutions of these equations develop shocks. Namely, in the universal completion
the solutions are uniquely extended beyond the shocks, and become multivalued
functions with infinite derivatives.

Recall that the inviscid Burgers equation can be regarded as the geodesic equa-
tion on the infinite dimensional group of diffeomorphisms of Rn (cf. e.g. [1, 9]).
Such a derivation of the geodesic equation in the one-dimensional case, on the man-
ifold of all embeddings Emb(R,R), is reminded below, following [7]. The universal
completion described in this note requires the consideration of multivalued velocity
fields. These fields are solutions in the phase space of the system. In the config-
uration space, the completion corresponds to an extension of the diffeomorphism
group to the semigroup of polymorphisms.
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2. The universal flow completion

2.1. Vector fields on infinite dimensional manifolds. Let M be a con-
nected smooth manifold of possibly infinite dimension, modeled on convenient vec-
tor spaces (see [5], section 27 for necessary definitions). Let us assume that M is
smoothly Hausdorff, i.e., the global smooth functions on M separate points. Let X
be a smooth (kinematic) vector field on M . We say that X admits a local flow, if
there exists a smooth mapping

M × R ⊃ D(X) −−→
FlX

M

defined on a C∞-open neighborhood D(X) of M × 0 such that

(1) D(X) ∩ ({x} × R) is a connected open interval.

(2) If FlXs (x) exists then FlXt+s(x) and FlXt (FlXs (x)) exist simultaneously and
are equal to each other.

(3) FlX0 (x) = x for all x ∈ M .

(4) d
dt

FlXt (x) = X(FlXt (x)).

It is shown in [5], 32.14, that then for each integral curve c of X we have c(t) =

FlXt (c(0)) (see [5], 32.14 for the proof, as well as for counterexamples against exis-
tence, uniqueness, etc. of integral curves for more general X). Thus there exists a

unique maximal flow. Furthermore, X is FlXt -related to itself, i.e., T (FlXt ) ◦X =

X ◦ FlXt .

2.2. Theorem. Let X ∈ X(M) be a smooth vector field on a (connected) smooth,
possibly infinite-dimensional, manifold M modeled on convenient vector spaces. Let
us assume that the vector field X admits a local flow.

Then there exists a universal flow completion j : (M,X) → (M̄, X̄) of (M,X).
Namely, there exists a (connected) smooth not necessarily Hausdorff manifold M̄ ,
a complete vector field X̄ ∈ X(M̄), and an embedding j : M → M̄ onto an open
submanifold such that X and X̄ are j-related: Tj ◦X = X̄ ◦ j. Moreover, for any
other equivariant morphism f : (M,X) → (N,Y ) for a manifold N and a complete
vector field Y ∈ X(N) there exists a unique equivariant morphism f̄ : (M̄, X̄) →
(N,Y ) with f̄ ◦ j = f . The leaf spaces M/X and M̄/X̄ are homeomorphic.

An equivariant morphism f : (M,X) → (N,Y ) is a smooth mapping f : M → N

satisfying Tf ◦X = Y ◦ f . It follows that then f ◦ FlXt = FlYt ◦f wherever FlXt is
defined.

Sketch of Proof. The finite dimensional version of this theorem is due to Palais [8].
The formulation here is from [4] and the proof given in [4] goes through in the
infinite-dimensional case as well.

Since we shall need the construction, we sketch it here: Consider the manifold
R×M with a coordinate function s on R, the vector field X̃ := ∂s×X ∈ X(R×M),

and let M̄ := R×X̃ M be the orbit space (or leaf space) of the vector field X̃. We

consider the flow mapping FlX̃ : D(X̄) → R×M given by FlX̃t (s, x) = (s+t,FlXt (x)).
For each s ∈ R we have the injective mapping

js : M
inst−−→ {s} ×M ⊂ R×M

π
−→ R×X̃ M = M̄
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which is a homeomorphism on its open image js(M) in M̄ in the quotient topology.
We use the mappings js : M → M̄ as charts. The chart change for r < s are then
(js)

−1 ◦ jr = FlXs−r restricted to (js)
−1(jr(M)) ⊂ M .

The flow (t, (s, x)) 7→ (s+ t, x) on R×M commutes with the flow of X̃ and thus
induces a flow on the leaf space M̄ = R ×X̃ M . Differentiating this flow we get a
vector field X̄ on M̄ .

The construction (M,X) 7→ (M̄, X̄) is a functor from the category of smooth
convenient smoothly Hausdorff manifolds with vector fields admitting local flows
and smooth mappings intertwining the vector fields into the category of possibly
non-Hausdorff manifolds with smooth vector fields with global flows and smooth
mappings intertwining these fields. For a pair (M,X) with a complete vector field
X the flow completion (M̄, X̄) is equivariantly diffeomorphic to (M,X) since then
any of the charts js : M → M̄ is also surjective. From this the universal property
follows. �

2.3. Example. Consider M = R, X = −x2∂x. The solutions of the ordinary
differential equation ẋ = −x2 are x(t) = 1/(t + 1/x(0)) which are all incomplete,
and 0. The foliation in R × M is given by the graphs of the functions x(t) =
1/(t+ 1/x(0)). Consider the following illustration of R×M and its foliation.

Fig. 1. The flow of the field ẋ = −x2. The embeddings jt are
induced by the vertical slices. The completion is M̄ = R, the

identification is given by the inclined line, for example.

Note that this incompleteness of a quadratic field is similar to the incomplete-
ness of the Burgers equation described below. Examples leading to non-Hausdorff
completions can be found in [4].

2.4. Remark on Hamiltonian systems. Suppose that M is a symplectic or
Poisson manifold and that Xf is the Hamiltonian vector field of a smooth function
f . Then there exists a unique symplectic or Poisson structure on the flow completion
M̄ and a unique smooth function f̄ such that X̄ is again the Hamiltonian vector
field of f̄ . Moreover, if f = f1, . . . , fn is a maximal Poisson commuting set of
smooth function such that (M,Xf ) is a completely integrable system, then there

are unique extensions f̄1, . . . , f̄n to M̄ such that the flow completion (M̄,Xf ) is
again a completely integrable system.
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In the infinite-dimensional symplectic case (M,ω) should be a weak symplectic
manifold and all (possibly, infinitely many) functions fi have to be taken in the
space C∞

ω (M,R) of smooth functions with a smooth ω-gradient, see [5], section 48.
All this is an easy consequence of the fact that the symplectic or Poisson structures
and the conservation laws fi are invariant under the flow ofXf , and that restrictions
of this flow are the chart transfer mappings for the atlas used to define the flow
completion.

3. The Burgers equation as a geodesic equation

3.1. The principal bundle of embeddings. LetM and N be smooth connected
finite-dimensional manifolds without boundary, such that dimM ≤ dimN . The
space Emb(M,N) of all embeddings (immersions which are homeomorphisms on
their images) from M into N is an open submanifold of C∞(M,N) which is stable
under the right action of the diffeomorphism group of M . Here C∞(M,N) is a
smooth manifold modeled on spaces of sections Γc(f

∗TN) with compact support.
In particular, the tangent space at f is canonically isomorphic to the space of vector
fields along f with compact support in M . If f and g differ on a non-compact set
then they belong to different connected components of C∞(M,N).

Then Emb(M,N) is the total space of a smooth principal fiber bundle whose
structure group is the diffeomorphism group of M . Its base, denoted by B(M,N),
is a Hausdorff smooth manifold modeled on nuclear (LF)-spaces. It can be thought
of as the ”nonlinear Grassmannian” of all submanifolds of N which are of type M .
If we take a Hilbert space H instead of N , then B(M,H) is the classifying space
for Diff(M) if M is compact, and the classifying bundle Emb(M,H) carries also a
universal connection, see details in [5], sections 42-44.

3.2. A geodesic equation. Consider the convenient manifold Emb(R,R) of all
embeddings of the real line into itself, which contains the diffeomorphism group
Diff(R) as an open subset. Each connected component is a free orbit of the dif-
feomorphism group Diff(R) for the action of composition from the right. The tan-
gent bundle is trivial, T Emb(R,R) = Emb(R,R)× C∞

c (R,R), tangent vectors are
smooth functions with compact support. For our purposes, we may restrict atten-
tion to the space of orientation-preserving embeddings, denoted by Emb+(R,R).
The case S1 is treated in a similar fashion and the results are also valid in this
situation, where Emb(S1, S1) = Diff(S1).

Following V.Arnold’s approach to Euler equations on diffeomorphism groups, we
define the weak Riemannian metric on Emb+(R,R) by the formula:

Gf (h, k) =

∫

R

h(x)k(x)|f ′(x)| dx, f ∈ Emb(R,R), h, k ∈ C∞

c (R,R).

It is invariant under the right action of the diffeomorphism group. The energy of a
curve f of embeddings is

E(f) = 1

2

∫ b

a

Gf (ft, ft)dt =
1

2

∫ b

a

∫

R

f2
t fx dxdt.

Consider smooth variations of f(x, t) with fixed endpoints. Then variational cal-
culus provides the following form of the geodesic equation with its corresponding
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initial data:

ftt = −2
ftftx
fx

,

where
f(. , 0) ∈ Emb+(R,R), ft(. , 0) ∈ C∞

c (R,R).

The geodesic equation has the following conservation law: if instead of the obvious
framing we change variables to T Emb = Emb×C∞

c ∋ (f, h) 7→ (f, hf2
x) =: (f,H)

then the geodesic equation becomes Ht =
∂
∂t
(ftf

2
x) = f2

x(ftt + 2 ftftx
fx

) = 0, so that

H = ftf
2
x is constant in t.

3.3 The geodesic property of the Burgers equation. We restrict our at-
tention from the whole space Emb(R,R) to the open subset Diff(R). Consider
the trivialization of T Diff(R) by right translation. The derivative of the inversion
Inv : g 7→ g−1 is given by

Tg(Inv)h = −T (g−1) ◦ h ◦ g−1 =
h ◦ g−1

gx ◦ g−1
for g ∈ Diff(R), h ∈ C∞

c (R,R).

Defining u := ft ◦ f−1, or, in more detail, u(x, t) = ft(f( , t)−1(x), t), we
have

ux = (ft ◦ f
−1)x = (ftx ◦ f−1)

1

fx ◦ f−1
=

ftx
fx

◦ f−1,

ut = (ft ◦ f
−1)t = ftt ◦ f

−1 + (ftx ◦ f−1)(f−1)t

= ftt ◦ f
−1 + (ftx ◦ f−1)

1

fx ◦ f−1
(ft ◦ f

−1)

which, by the geodesic equation of 3.2 becomes

ut = ftt ◦ f
−1 −

(

ftxft
fx

)

◦ f−1 = −3

(

ftxft
fx

)

◦ f−1 = −3uxu.

The geodesic equation on Diff(R) in right trivialization, that is, in Eulerian formu-
lation, is hence

ut = −3uxu

which is just the inviscid Burgers equation. Similarly, one obtains the derivation in
the n-dimensional case.

4. The flow completion of some hyperbolic systems

4.1 A partial differential equation. Let f = (f1, . . . , fk) : R
n → R

k be smooth
and consider the partial differential equation

ut + (f(u) · ∇)u = 0

or, which is the same,

ut + f1(u)ux1
+ · · ·+ fk(u)uxk

= 0, R
k × R ⊇ U

u
−→ R

n,
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where U is an open neighborhood of Rk×0 in R
k×R

n, and u is a smooth R
n-valued

function on U . This type of equations are called hyperbolic conservation laws in
physics, see [2].

We consider now the manifold C∞(Rk,Rn) of all smooth R
n-valued functions

on R
k with the manifold structure described in [5], section 42. The tangent bundle

is trivial, and the space C∞

c (Rk,Rn) of functions with compact support serves as
the fiber. Note that C∞

c (Rk,Rn) is an open connected component in C∞(Rk,Rn).
We consider the characteristic vector field

X(u) = (f(u) · ∇)u.

It is a vector field on C∞(Rk,Rn) if X(u) has compact support for each u. This is
the case if u has compact support. In the general case one has to leave the realm
of manifolds with charts. (See [6] for a setting for infinite dimensional manifolds
based on curves instead of charts, which is applicable in this situation.)

For the sake of simplicity, let us restrict attention to C∞

c (Rk,Rn). There, flow
lines of the vector field X are given by solutions of the above partial differential
equation (where one has to adapt the domain of definition). We may thus consider
(C∞

c (Rk,Rn), X) as smooth convenient manifolds with vector fields admitting local
flows.

4.2. Characteristics and solutions. To describe the universal completion of
the quasilinear equation ut + (f(u) · ∇)u = 0 we apply the characteristic method
(see e.g. [3] or [1], where in particular, the case of the Burgers equation is treated).

In the space R
k+n with coordinates (x, y) consider the vector field Y (x, y) =

(f(y), 0) = f1(y)∂x1 + · · ·+ fk(y)∂xk with differential equation ẋ = f(y), ẏ = 0. It

has the complete flow FlYt (x, y) = (x+ tf(y), y).
Let now u(x, t) be a curve of functions. We ask when the graph of u can be

reparametrized in such a way that it becomes a solution curve of the push forward
vector field Y∗ : f 7→ Y ◦ f on the space of embeddings Emb(Rk,Rk+n). Thus
consider a time dependent reparametrization z 7→ x(z, t), i.e., x ∈ C∞(Rk+1,Rk).
The curve t 7→ (x(z, t), u(x(z, t), t)) in R

k+n is an integral curve of Y if and only if

(

f ◦ u ◦ x
0

)

= ∂t

(

x
u ◦ x

)

=

(

xt

ut ◦ x+ (∇u ◦ x) · xt

)

⇐⇒

{

xt = f ◦ u ◦ x

0 = (ut + (f ◦ u) · ∇u) ◦ x

This implies that the graph of u(·, t), namely the curve t 7→ (x 7→ (x, u(x, t))),
may be parameterized as a solution curve of the vector field Y∗ on the space of
embeddings Emb(Rk,Rk+n) starting at x 7→ (x, u(x, 0)) if and only if u is a solution
of the partial differential equation ut + (f(u) · ∇)u = 0. The parameterization
z 7→ x(z, t) is then given by xt(z, t) = f(u(x(z, t), t)) with x(z, 0) = z ∈ R

k.
For k = n the characteristics have a simple physical meaning. Consider freely

flying particles in R
n, and trace a trajectory x(t) of one of the particles. Denote

the velocity of a particle at the position x at the moment t by u(t, x), or rather, by
f(u(x, t)) := ẋ(t). (For the inviscid Burgers equation, u(x, t) := ẋ(t).) Due to the
absence of interaction, the Newton equation of any particle is ẍ(t) = 0.
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Example. The inviscid 1D Burgers equation (see [1]). Consider the equation ut+
3uux = 0 with k = n = 1 and f(u) = 3u. There the flow of the vector field Y = 3u∂x
is tilting the plane to the right with constant speed. The illustration shows how a
graph of an honest function is moved through a shock (when the derivatives become
infinite) towards the graph of a multivalued function; each piece of it is still a local
solution.

Fig.2. The characteristic flow of the
inviscid Burgers equations tilts the plane.

We also refer to [2] for a treatment of more general equations ut + A(u)ux = 0
(where A is matrix valued with all eigenvalues distinct) as the limits of equations
with ”viscous” right hand side ǫ∆u.

We now interpret the characteristics in the space of graphs of functions. Given
a function u0 ∈ C∞

c (Rk,Rn) with compact support we consider the graph of u0

as the submanifold Γ(u0) = {(x, u0(x)) : x ∈ R
k} of Rk+n. Let pr1 : Rk+n → R

k

and pr2 : Rk+n → R
n be the projections. Consider the interval of all t ∈ R such

that pr1 |FlYt (Γ(u0)) : FlYt (Γ(u0)) → R
k is a diffeomorphism for all t′ ∈ [0, t] or

t′ ∈ [t, 0], respectively. Then

u(x, t) = pr2(pr1 |FlYt (Γ(u0)))
−1(x)

is a solution of equation 4.1 with initial value u(x, 0) = u0(x). Thus the vector field
X on C∞

c (Rk,Rn) admits a local flow.

4.3. The flow completion. Now one can see that after some time graphs of
functions become graphs of multivalued functions. This explains the following
construction of the completion.

We consider the principal bundle of all proper smooth embedded k-surfaces
in R

k+n which deviate from R
k × 0 only in a compact set, with projection π :

EmbRk(Rk,Rk+n) → BRk(Rk,Rk+n) onto the convenient manifold of k-dimensional
submanifolds of Rk+n which deviate from R

k × 0 only in a compact set. The struc-
ture group is the group of Diffc(R

k) of diffeomorphisms with compact support. We
have the graph embedding, a smooth mapping

γ : C∞

c (Rk,Rn) → EmbRk(Rk,Rk+n), γ(u)(x) = (x, u(x)).
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Let us assume now that f(0) = 0. Then the flow FlYt (x, y) = (x + tf(y), y) of
the vector field Y (x, y) = f1(y)∂x1 + . . . fk(y)∂xk on R

k+n acts on parameterized

k-surfaces in EmbRk(Rk,Rk+n) by (FlYt ◦(c1, c2))(x) = (c1(x) + tf(c2(x)), c2(x))
and is the flow of the vector field Y∗ on EmbRk(Rk,Rk+n) given by Y∗(c1, c2) =
(f1 ◦ c2)∂x1 + · · ·+ (fk ◦ c2)∂xk = (f ◦ c2, 0). The vector field Y∗ is invariant under
the principal right action of g ∈ Diffc(R

k) which is given by (c1, c2) 7→ (c1◦g, c2◦g).
Thus Y∗ induces a smooth vector field Z on the base manifold BRk(Rk,Rk+n) whose

flow is again FlYt applied to closed submanifolds of Rk+n.
We consider now the space G of all closed non-compact k-dimensional submani-

folds N ∈ BRk(Rk,Rk+n) such that for some t ∈ R the mapping pr1 ◦Fl
Y
t |N : N →

R
k is a diffeomorphism. By the choice of topology on BRk(Rk,Rk+n) the space G

is open, and obviously invariant under the flow of the vector field Z.

Proposition. Let f(0) = 0. Then the flow completion C∞

c (Rk,Rn) of the infinite
dimensional manifold with vector field (C∞

c (Rk,Rn), X) is diffeomorphic to (G, Z).

The mapping jt : (C
∞

c (R,Rn), X) → G is given by jt = FlZt ◦π ◦ γ.

Proof. In the proof of theorem 2.2 we have seen that the completion C∞

c (Rk,Rn)
can be described by taking the pieces jt(C

∞

c (R,Rn)) which are all diffeomorphic

to C∞

c (R,Rn) and gluing them via the smooth mappings (js)
−1 ◦ jr = FlXs−r for

r < s. But this is realized in the open subset G ⊂ BRk(Rk,Rk+n) by the global flow

FlZ . Thus we reconstructed the atlas describing the completion in 2.2 as a smooth
manifold. �
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