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ABSTRACT. A topological space X is called A-real compact, if every
algebra homomorphism from A to the reals is an evaluation at some
point of X, where A is an algebra of continuous functions. Our main
interest lies on algebras of smooth functions. In [AdR] it was shown
that any separable Banach space is smoothly real compact. Here we
generalize this result to a huge class of locally convex spaces including
arbitrary products of separable Fréchet spaces.

In [KMS] the notion of real compactness was generalized, by defin-
ing a topological space X to be A-real-compact, if every algebra ho-
momorphism « : A — R is just the evaluation at some point a € X,
where A is a some subalgebra of C'(X,R). In case A equals the alge-
bra C(X,R) of all continuous functions this condition reduces to the
usual real-compactness. Our main interest lies on algebras A of smooth
functions. In particular we showed in [KMS] that every space admit-
ting A-partitions of unity is A-real-compact. Furthermore any product
of the real line R is C'*°-real-compact. A question we could not solve
was, whether /! is C*°-real-compact, despite the fact that there are no
smooth bump functions. [AdR] had already shown that this is true not
only for ¢!, but for any separable Banach space.

The aim of this paper is to generalize this result of [AdR] to a huge
class of locally convex spaces, including arbitrary products of separable
Fréchet spaces.
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Convention. All subalgebras A C C(X,R) are assumed to be real
algebras with unit and with the additional property that for any f € A
with f(z) # 0 for all z € X the function % lies also in A.

1. Lemma. Let A C C(X,R) be a finitely generated subalgebra of con-
tinuous functions on a topological space X. Then X is A-real-compact.

Proof. Let a: A — R be an algebra homomorphism. We first show that
for any finite set F C A there exists a point x € X with f(z) = a(f)
for all f € F.

For f € Alet Z(f) == {z € X : f(x) = a(f)}. Then Z(f) =
Z(f — a(f)1), since a(f — a(f)1) = 0. Hence we may assume that all
[ € F are even contained in kera = {f : a(f) = 0}. Then (. Z(f) =
Z(Zfe}- f?). The sets Z(f) are not empty, since otherwise f € ker a and
f(z) # 0 for all z, so % € A and hence 1 = f% € ker «, a contradiction
to (1) = 1.

Now the lemma is valid, whether the condition “finitely generated”
is meant in the sense of an ordinary algebra or even as an algebra with
the additional assumption on non-vanishing functions, since then any
f € A can be written as a rational function in the elements of F. Thus
« applied to such a rational function is just the rational function in the
corresponding elements of a(F) = F(z), and is thus the value of the
rational function at . 0O

2. Corollary. Any algebra-homomorphism o : A — R is monotone.

Proof. Let f1 < fo. By 1 there exists an € X such that a(f;) = fi(x)
for i =1,2. Thus a(fi) = fi(z) < fo(z) = a(fy). O

3. Corollary. Any algebra-homomorphism o : A — R is bounded, for
every convenient algebra structure on A.

By a convenient algebra structure we mean a convenient vector space
structure for which the multiplication A x A — A a bilinear bornological
mapping. A convenient vector space is a separated locally convex vector
space which is Mackey complete, see [FK].

Proof. Suppose that f,, is a bounded sequence, but |a( f,,)| is unbounded.
Replacing f,, by f2 we may assume that f,, > 0 and hence also a( f,,) > 0.
Choosing a subsequence we may even assume that a(f,) > 2". Now
consider ) 2% fn- This series converges in the sense of Mackey, and
since the bornology on A is complete the limit is an element f € A.
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Applying « yields

Mo 1 N 1
a(f):a ZQinf"—i_ZQinf” :Zﬁa(fn)""a Zﬁfﬂ >
n=0

n>N n=0 n>N
N Al
> Z ?a(fn) +0= Z 27O‘(fn)7
n=0 n=0

where we applied to the function ) . v 2% fn = 0 that « is mono-

tone. Thus the series ZQLO %a( fn) is bounded and increasing, hence
converges, but its summands are bounded by 1 from below. This is a

contradiction. 0O

4. Definition. We recall that a mapping f : E — F between conve-
nient vector spaces is called smooth (C'* for short), if the composite
foc:R — F is smooth for every smooth curve ¢ : R — E. It can be
shown that under these assumptions derivatives f®) : E — LP(E, F)
exist. See [FK].

A mapping is called C2°, if in addition all derivatives considered as
mappings dP f : E x EP — F are continuous.

Now we generalize Lemma 5 and Proposition 7 of [AdR] to arbitrary
convenient vector spaces.

5. Definition. Let A C C(X,R) be a set of continuous functions on
X. We say say that a space X admits large carriers of class A, if for
every neighborhood U of a point p € X there exists a function f € A
with f(p) =0 and f(z) #0 for all z ¢ U.

Every A-regular space X admits large A-carriers, where X is called
A-regular if for every neighborhood U of a point p € X there exists a
function f € A with f(p) > 0 and f(z) = 0 for x ¢ U. The existence of
large A-carriers follows by using the modified function f := f(a) — f.

In [AdR, Proof of theorem 8] it is proved, that every separable Banach
space admits large C¢°-carriers. The carrying functions can even be
chosen as polynomials as shown in lemma 7 below.

6. Lemma. Let E be a convenient vector space, {z, : n € N} C E’
be bounded, (\,) € (*(N) Then the series (z,y) — > oo Al (z)x), (y)
converges to a continuous symmetric bilinear function on E X E.

Proof. Clearly the function converges pointwise. Since the sequence
{z!.} is bounded, it is equicontinuous, hence bounded on some neighbor-
hood U of 0, so there exists a constant M € R such that |x],(U)| < M for
all n € N. For z,y € U we have | Y7 | Azl (z)2), (y)| < Y07, [ M2,
which suffices for continuity of a bilinear function. [
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7. Lemma. Let FE be a Banach space which is separable or whose dual
is separable for the topology of pointwise convergence. Then E admits
large carriers for continuous polynomials of degree 2.

Proof. If E is separable there exists a dense sequence (z,,) in E. By the
Hahn-Banach theorem [J, 7.2.4] there exist a], € E’ with &}, (x,) = |2,|
and |z}, | < 1.

Claim: sup,, |z} (z)| = |z|
Since |x],| < 1 we have (<). For the converse direction let § > 0 be
given. By denseness there exists an n € N such that |z, — z| < g. So
we have:

2] < |am] + |2 — z0] < |27, (20)] + § <
< Jan (@)] + [ (@ — 20)| +3 <
—_———

<\:v7:rn\<g

< |zl (x)| + 6.

If the dual E’ is separable for the topology of pointwise convergence,
then let =/, be a sequence which is weakly dense in the unit ball of E’.
Then |z| = sup,, |2}, (x)].

In both cases the continuous polynomials of lemma 6

— 1
e _\2
x»—>§ n2zn(x a)
n=1

vanish exactly at a. O

8. Lemma. Let a: A — R be an algebra homomorphism and assume

that some subset Ay C A exists and a point a € X such that o(fy) =

fo(a) for all fo € Ag and such that X admits large carriers of class Ag.
Then a(f) = f(a) for all f € A.

Proof. Let f € A be arbitrary. Since X admits large Ap-carriers there
exists for every neighborhood U of a a function fy € Ay with fy(a) =0
and fy(x) # 0 for all z € U. By lemma 1 there exists a point ay
such that a(f) = f(ay) and a(fy) = fu(ay). Since fy € Ap, we have
fulay) = a(fv) = fu(a) =0, hence ay € U. Thus the net ay converges
to a and consequently f(a) = f(limy ay) = limy f(ay) = limy o(f) =
a(f) since f is continuous. O

Now we generalize proposition 2 and lemma 3 of [BBL]. Let for every
convenient vector space E a subalgebra A(F) of C(E,R) be given, such
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that for every f € L(E,F) the image of f* on A(F) lies in A(E).
Examples are Cg°, C*NC, C¥ :=CNCY, C“NC, where C* denotes
the algebra of real analytic functions in the sense of [KM], and suitable
algebras of functions of inite differentiability like Lip™ (see [FK]) or CZ".

9. Theorem. Let E; be A-real-compact spaces that admit large carriers
of class A. Then any closed subspace of the product of the spaces F;,
and in particular every projective limit of these spaces, has the same
properties.

Proof. First we show that this is true for the product E. We use lemma
8 with A(FE) for A and the vector space generated by |J,{f opr; : f €
A(E;)} for Ag, where pr; : E = [[; E; — E; denotes the canonical
projection. Let the finite sum f = ). f; o pr; be an element of Ay.
Since aopr; * : A(E;) — A(F) — R is an algebra homomorphism, there
exists a point a; € F; such that a(f;opr;) = (aopr; *)(fi) = fi(a;). Let
a be the point in E with coordinates a;. Then

alf) =a(}_ fiopr) =3 alfiopr)

=" i) = 3 (fiepri)(a) = f(@)

K2

Now let U be a neighborhood of a in E. Since we consider the prod-
uct topology on E we may assume that a € [[U; C U, where U; are
neighborhoods of a; in F; and are equal to F; except for ¢ in some finite
subset F' of the index set. Now choose f; € A(E;) with f;(a;) = 0 and
fi(@;) # 0 for all 2; ¢ U;. Consider f = Y, p(fi o pr;)? € Ap. Then
fa) =Y ;cp fi(a;)* = 0. Furthermore = ¢ U implies that z; ¢ U; for
some i, which turns out to be in F, and hence f(x) > f;(x;)®> > 0. So
we may apply lemma 8 to conclude that «(f) = f(a) for all f € A(E).

Now we prove the result for a closed subspace FF C E. Again we want
to apply lemma 8, this time with A(F’) for A and {f|r : f € A(E)} for
Ap. Since aoincl® : A(E) — A(F) — R is an algebra homomorphism
there exists an a € E with o(f|r) = f(a) for all f € A(E). Now let
U be a neighborhood of a in E then there exists an fy € A(F) with
fu(a) =0and fy(xz) #0 for all z ¢ U. By lemma 1 there exists a point
ay € F such that fy(ay) = a(fulr) = fu(a) = 0. Hence ay is in U,
and thus is a net in F' which converges to a. In particular a € F', since
F is closed in E. If V is a neighborhood of a in F' then there exists a
neighborhood U of a in E with U N F C V and hence an f € Ag with
f(a) =0 and f(z) # 0 for all z ¢ U. So again 8 applies. O



6 A. KRIEGL, P. W. MICHOR

10. Remark. Theorem 9 shows that a closed subspace of a product of
certain A-real-compact spaces is again A-real-compact. Of course the
natural question arises, whether the result remains true for arbitrary
A-real-compact spaces.

It is even open, whether the product of two A-real-compact spaces
is A-real-compact, or whether a closed subspace of an .A-real-compact
space is A-real-compact, or whether a projective limit of a projective
system of A-real-compact spaces is A-real-compact.

11. Corollary. Let E be a separable Fréchet space (e.g. a Fréchet-
Montel space), then every algebra homomorphism on C*°(E,R) or on
CP(E,R) is a point evaluation. The same is true for any product of
separable Fréchet spaces.

Proof. Any Fréchet space has a countable Basis U of absolutely con-
vex 0-neighborhoods, and since it is complete it is a closed subspace of

the product ], ., E_(\U/) . The Ey are the normed spaces formed by
E modulo the kernel of the Minkowski functional generated by U. As

quotients of E the spaces E() are separable if E is such. So the com-
pletion E(\U/) is a separable Banach space and hence by [AdR, Theorem

8] E(\U/) is Cg°-real-compact and admits large Cg°-carriers. By theorem
9 the same is true for the given Fréchet space. So the result is true for
C(E,R). Since E is metrizable this algebra coincides with C*°(E,R),
see [K, 82].

Now for a product E of metrizable spaces the two algebras C>°(FE,R)
and C°(E,R) again coincide. This can be seen as follows. For every
countable subset A of the index set, the corresponding product is sepa-
rable and metrizable, hence C'*°-real-compact. Thus there exists a point
Z 4 in this countable product such that a(f) = f(x4) for all f which fac-
tor over the projection to that countable subproduct. Since for A7 C A,
the projection of x4, to the product over A; is just x4, (use the coordi-
nate projections composed with functions on the factors for f), there is
a point x in the product, whose projection to the subproduct with index
set A is just x4. Every Mackey continuous function, and in particular
every C'°°-function, depends only on countable many coordinates, thus
factors over the projection to some subproduct with countable index set
A, hence a(f) = f(za) = f(x). This can be shown by the same proof
as for a product of factors R in [FK, Theorem 6.2.9], since the result of
[M, 1952] is valid for a product of separable metrizable spaces. O
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