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Abstract. A topological space X is called A-real compact, if every

algebra homomorphism from A to the reals is an evaluation at some
point of X, where A is an algebra of continuous functions. Our main

interest lies on algebras of smooth functions. In [AdR] it was shown

that any separable Banach space is smoothly real compact. Here we
generalize this result to a huge class of locally convex spaces including

arbitrary products of separable Fréchet spaces.

In [KMS] the notion of real compactness was generalized, by defin-
ing a topological space X to be A-real-compact, if every algebra ho-
momorphism α : A → R is just the evaluation at some point a ∈ X,
where A is a some subalgebra of C(X,R). In case A equals the alge-
bra C(X,R) of all continuous functions this condition reduces to the
usual real-compactness. Our main interest lies on algebras A of smooth
functions. In particular we showed in [KMS] that every space admit-
ting A-partitions of unity is A-real-compact. Furthermore any product
of the real line R is C∞-real-compact. A question we could not solve
was, whether `1 is C∞-real-compact, despite the fact that there are no
smooth bump functions. [AdR] had already shown that this is true not
only for `1, but for any separable Banach space.

The aim of this paper is to generalize this result of [AdR] to a huge
class of locally convex spaces, including arbitrary products of separable
Fréchet spaces.
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Convention. All subalgebras A ⊆ C(X,R) are assumed to be real
algebras with unit and with the additional property that for any f ∈ A
with f(x) 6= 0 for all x ∈ X the function 1

f lies also in A.

1. Lemma. Let A ⊂ C(X,R) be a finitely generated subalgebra of con-
tinuous functions on a topological space X. Then X is A-real-compact.

Proof. Let α : A → R be an algebra homomorphism. We first show that
for any finite set F ⊂ A there exists a point x ∈ X with f(x) = α(f)
for all f ∈ F .

For f ∈ A let Z(f) := {x ∈ X : f(x) = α(f)}. Then Z(f) =
Z(f − α(f)1), since α(f − α(f)1) = 0. Hence we may assume that all
f ∈ F are even contained in kerα = {f : α(f) = 0}. Then

⋂
f∈F Z(f) =

Z(
∑
f∈F f

2). The sets Z(f) are not empty, since otherwise f ∈ kerα and
f(x) 6= 0 for all x, so 1

f ∈ A and hence 1 = f 1
f ∈ kerα, a contradiction

to α(1) = 1.
Now the lemma is valid, whether the condition “finitely generated”

is meant in the sense of an ordinary algebra or even as an algebra with
the additional assumption on non-vanishing functions, since then any
f ∈ A can be written as a rational function in the elements of F . Thus
α applied to such a rational function is just the rational function in the
corresponding elements of α(F) = F(x), and is thus the value of the
rational function at x. �

2. Corollary. Any algebra-homomorphism α : A → R is monotone.

Proof. Let f1 ≤ f2. By 1 there exists an x ∈ X such that α(fi) = fi(x)
for i = 1, 2. Thus α(f1) = f1(x) ≤ f2(x) = α(f2). �

3. Corollary. Any algebra-homomorphism α : A → R is bounded, for
every convenient algebra structure on A.

By a convenient algebra structure we mean a convenient vector space
structure for which the multiplication A×A → A a bilinear bornological
mapping. A convenient vector space is a separated locally convex vector
space which is Mackey complete, see [FK].

Proof. Suppose that fn is a bounded sequence, but |α(fn)| is unbounded.
Replacing fn by f2

n we may assume that fn ≥ 0 and hence also α(fn) ≥ 0.
Choosing a subsequence we may even assume that α(fn) ≥ 2n. Now
consider

∑
n

1
2n fn. This series converges in the sense of Mackey, and

since the bornology on A is complete the limit is an element f ∈ A.
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Applying α yields

α(f) = α

(
N∑
n=0

1
2n
fn +

∑
n>N

1
2n
fn

)
=

N∑
n=0

1
2n
α(fn) + α

(∑
n>N

1
2n
fn

)
≥

≥
N∑
n=0

1
2n
α(fn) + 0 =

N∑
n=0

1
2n
α(fn),

where we applied to the function
∑
n>N

1
2n fn ≥ 0 that α is mono-

tone. Thus the series
∑N
n=0

1
2nα(fn) is bounded and increasing, hence

converges, but its summands are bounded by 1 from below. This is a
contradiction. �

4. Definition. We recall that a mapping f : E → F between conve-
nient vector spaces is called smooth (C∞ for short), if the composite
f ◦ c : R → F is smooth for every smooth curve c : R → E. It can be
shown that under these assumptions derivatives f (p) : E → Lp(E,F )
exist. See [FK].

A mapping is called C∞c , if in addition all derivatives considered as
mappings dpf : E × Ep → F are continuous.

Now we generalize Lemma 5 and Proposition 7 of [AdR] to arbitrary
convenient vector spaces.

5. Definition. Let A ⊆ C(X,R) be a set of continuous functions on
X. We say say that a space X admits large carriers of class A, if for
every neighborhood U of a point p ∈ X there exists a function f ∈ A
with f(p) = 0 and f(x) 6= 0 for all x /∈ U .

Every A-regular space X admits large A-carriers, where X is called
A-regular if for every neighborhood U of a point p ∈ X there exists a
function f ∈ A with f(p) > 0 and f(x) = 0 for x /∈ U . The existence of
large A-carriers follows by using the modified function f̄ := f(a)− f .

In [AdR, Proof of theorem 8] it is proved, that every separable Banach
space admits large C∞c -carriers. The carrying functions can even be
chosen as polynomials as shown in lemma 7 below.

6. Lemma. Let E be a convenient vector space, {x′n : n ∈ N} ⊂ E′

be bounded, (λn) ∈ `1(N) Then the series (x, y) 7→
∑∞
n=1 λnx

′
n(x)x′n(y)

converges to a continuous symmetric bilinear function on E × E.

Proof. Clearly the function converges pointwise. Since the sequence
{x′n} is bounded, it is equicontinuous, hence bounded on some neighbor-
hood U of 0, so there exists a constant M ∈ R such that |x′n(U)| ≤M for
all n ∈ N. For x, y ∈ U we have |

∑∞
n=1 λnx

′
n(x)x′n(y)| ≤

∑∞
n=1 |λn|M2,

which suffices for continuity of a bilinear function. �
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7. Lemma. Let E be a Banach space which is separable or whose dual
is separable for the topology of pointwise convergence. Then E admits
large carriers for continuous polynomials of degree 2.

Proof. If E is separable there exists a dense sequence (xn) in E. By the
Hahn-Banach theorem [J, 7.2.4] there exist x′n ∈ E′ with x′n(xn) = |xn|
and |x′n| ≤ 1.

Claim: supn |x′n(x)| = |x|
Since |x′n| ≤ 1 we have (≤). For the converse direction let δ > 0 be
given. By denseness there exists an n ∈ N such that |xn − x| < δ

2 . So
we have:

|x| ≤ |xn|+ |x− xn| < |x′n(xn)|+ δ
2 ≤

≤ |x′n(x)|+ |x′n(x− xn)|︸ ︷︷ ︸
<|x−xn|<

δ
2

+ δ
2 <

< |x′n(x)|+ δ.

If the dual E′ is separable for the topology of pointwise convergence,
then let x′n be a sequence which is weakly dense in the unit ball of E′.
Then |x| = supn |x′n(x)|.

In both cases the continuous polynomials of lemma 6

x 7→
∞∑
n=1

1
n2
x′n(x− a)2

vanish exactly at a. �

8. Lemma. Let α : A → R be an algebra homomorphism and assume
that some subset A0 ⊂ A exists and a point a ∈ X such that α(f0) =
f0(a) for all f0 ∈ A0 and such that X admits large carriers of class A0.

Then α(f) = f(a) for all f ∈ A.

Proof. Let f ∈ A be arbitrary. Since X admits large A0-carriers there
exists for every neighborhood U of a a function fU ∈ A0 with fU (a) = 0
and fU (x) 6= 0 for all x ∈ U . By lemma 1 there exists a point aU
such that α(f) = f(aU ) and α(fU ) = fU (aU ). Since fU ∈ A0, we have
fU (aU ) = α(fU ) = fU (a) = 0, hence aU ∈ U . Thus the net aU converges
to a and consequently f(a) = f(limU aU ) = limU f(aU ) = limU α(f) =
α(f) since f is continuous. �

Now we generalize proposition 2 and lemma 3 of [BBL]. Let for every
convenient vector space E a subalgebra A(E) of C(E,R) be given, such
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that for every f ∈ L(E,F ) the image of f∗ on A(F ) lies in A(E).
Examples are C∞c , C∞∩C, Cωc := C∞c ∩Cω, Cω ∩C, where Cω denotes
the algebra of real analytic functions in the sense of [KM], and suitable
algebras of functions of inite differentiability like Lipm (see [FK]) or Cmc .

9. Theorem. Let Ei be A-real-compact spaces that admit large carriers
of class A. Then any closed subspace of the product of the spaces Ei,
and in particular every projective limit of these spaces, has the same
properties.

Proof. First we show that this is true for the product E. We use lemma
8 with A(E) for A and the vector space generated by

⋃
i{f ◦ pri : f ∈

A(Ei)} for A0, where prj : E =
∏
iEi → Ej denotes the canonical

projection. Let the finite sum f =
∑
i fi ◦ pri be an element of A0.

Since α◦pri ∗ : A(Ei)→ A(E)→ R is an algebra homomorphism, there
exists a point ai ∈ Ei such that α(fi ◦pri) = (α◦pri ∗)(fi) = fi(ai). Let
a be the point in E with coordinates ai. Then

α(f) = α(
∑
i

fi ◦ pri) =
∑
i

α(fi ◦ pri)

=
∑
i

fi(ai) =
∑
i

(fi ◦ pri)(a) = f(a)

Now let U be a neighborhood of a in E. Since we consider the prod-
uct topology on E we may assume that a ∈

∏
Ui ⊂ U , where Ui are

neighborhoods of ai in Ei and are equal to Ei except for i in some finite
subset F of the index set. Now choose fi ∈ A(Ei) with fi(ai) = 0 and
fi(xi) 6= 0 for all xi /∈ Ui. Consider f =

∑
i∈F (fi ◦ pri)2 ∈ A0. Then

f(a) =
∑
i∈F fi(ai)

2 = 0. Furthermore x /∈ U implies that xi /∈ Ui for
some i, which turns out to be in F , and hence f(x) ≥ fi(xi)2 > 0. So
we may apply lemma 8 to conclude that α(f) = f(a) for all f ∈ A(E).

Now we prove the result for a closed subspace F ⊂ E. Again we want
to apply lemma 8, this time with A(F ) for A and {f |F : f ∈ A(E)} for
A0. Since α ◦ incl∗ : A(E) → A(F ) → R is an algebra homomorphism
there exists an a ∈ E with α(f |F ) = f(a) for all f ∈ A(E). Now let
U be a neighborhood of a in E then there exists an fU ∈ A(E) with
fU (a) = 0 and fU (x) 6= 0 for all x /∈ U . By lemma 1 there exists a point
aU ∈ F such that fU (aU ) = α(fU |F ) = fU (a) = 0. Hence aU is in U ,
and thus is a net in F which converges to a. In particular a ∈ F , since
F is closed in E. If V is a neighborhood of a in F then there exists a
neighborhood U of a in E with U ∩ F ⊂ V and hence an f ∈ A0 with
f(a) = 0 and f(x) 6= 0 for all x /∈ U . So again 8 applies. �
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10. Remark. Theorem 9 shows that a closed subspace of a product of
certain A-real-compact spaces is again A-real-compact. Of course the
natural question arises, whether the result remains true for arbitrary
A-real-compact spaces.

It is even open, whether the product of two A-real-compact spaces
is A-real-compact, or whether a closed subspace of an A-real-compact
space is A-real-compact, or whether a projective limit of a projective
system of A-real-compact spaces is A-real-compact.

11. Corollary. Let E be a separable Fréchet space (e.g. a Fréchet-
Montel space), then every algebra homomorphism on C∞(E,R) or on
C∞c (E,R) is a point evaluation. The same is true for any product of
separable Fréchet spaces.

Proof. Any Fréchet space has a countable Basis U of absolutely con-
vex 0-neighborhoods, and since it is complete it is a closed subspace of
the product

∏
u∈U Ẽ(U). The E(U) are the normed spaces formed by

E modulo the kernel of the Minkowski functional generated by U . As
quotients of E the spaces E(U) are separable if E is such. So the com-
pletion Ẽ(U) is a separable Banach space and hence by [AdR, Theorem
8] Ẽ(U) is C∞c -real-compact and admits large C∞c -carriers. By theorem
9 the same is true for the given Fréchet space. So the result is true for
C∞c (E,R). Since E is metrizable this algebra coincides with C∞(E,R),
see [K, 82].

Now for a product E of metrizable spaces the two algebras C∞(E,R)
and C∞c (E,R) again coincide. This can be seen as follows. For every
countable subset A of the index set, the corresponding product is sepa-
rable and metrizable, hence C∞-real-compact. Thus there exists a point
xA in this countable product such that α(f) = f(xA) for all f which fac-
tor over the projection to that countable subproduct. Since for A1 ⊂ A2

the projection of xA2 to the product over A1 is just xA1 (use the coordi-
nate projections composed with functions on the factors for f), there is
a point x in the product, whose projection to the subproduct with index
set A is just xA. Every Mackey continuous function, and in particular
every C∞-function, depends only on countable many coordinates, thus
factors over the projection to some subproduct with countable index set
A, hence α(f) = f(xA) = f(x). This can be shown by the same proof
as for a product of factors R in [FK, Theorem 6.2.9], since the result of
[M, 1952] is valid for a product of separable metrizable spaces. �
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