Characters on Algebras of Smooth Functions

A. KRIEGL, P. MICHOR AND W. SCHACHERMAYER

Abstract

For a huge class of spaces it is shown that the real characters on the algebra of differentiable functions are exactly the evaluations at points.

Introduction

"Milnor and Stasheff's exercise" [17] says that for a smooth manifold M each algebra homomorphism $C^{\infty}(M) \to \mathbf{R}$ is given by evaluation at some point of M. Although the classical proof of this statement depends heavily on locally compactness arguments we were able to extend it to a wide class of spaces M. In fact, the existence of partitions of unity is sufficient, even in the infinite dimensional situation. We use a setting which hopefully encompasses all existing notions of "differentiable spaces" and within which we identify the statement above as a completeness property (smoothly real-compactness) of M.

1. General Setting

1.1 Definition: A smooth space is a pair (M, \mathcal{S}) where M is a set and \mathcal{S} a set of real valued functions on M which separates points and has the following properties:

1. The set \mathscr{S} is closed under composition with C^{∞} -functions: For any f_1, \ldots, f_n in \mathscr{S} and F in $C^{\infty}(U, \mathbb{R})$, where U is open in \mathbb{R}^n , such that $(f_1, \ldots, f_n)(M) \subseteq U$, we have $F \circ (f_1, \ldots, f_n) \in \mathscr{S}$.

2. If \mathscr{F} is a subset of \mathscr{S} such that the family of carriers carr $(f) := \{x \in M : f(x) \neq 0\}$ of functions $f \in \mathscr{F}$ is locally finite in the initial topology induced by \mathscr{S} , then $\sum_{f \in \mathscr{F}} f$ is in \mathscr{S} .

Note that condition 1 implies in particular that \mathscr{S} is a C^{∞} -algebra in the sense of [18]. The converse is not true: let M be the open unit intervall and let \mathscr{S} be the set of restrictions of global smooth functions; then \mathscr{S} is a C^{∞} -algebra but does not satisfy 1.

In the following we will always equip M with the initial topology with respect to \mathcal{S} without further notice, and we will call it the \mathcal{S} -topology.

1.2 We may also remark that an important class of smooth spaces may be described in the following manner: A Hausdorff topological space M together with a sheaf of C^{∞} -algebras consisting of continuous functions such that the topology is initial for the global sections. Given (M, \mathscr{S}) as in 1.1 and U open in M let $\mathscr{S}(U)$ be the set of all real functions f on U such that for each $x \in U$ there is an open neighborhood U_x of x and an $f_x \in \mathscr{S}$ with $f \mid U_x = f_x \mid U_x$. Then $\mathscr{S}(M)$ contains \mathscr{S} and we have equality in the most important cases.

1.3 Examples of smooth spaces:

1. Any completely regular topological space M, with the algebra of continuous functions \mathcal{S} .

2. Finite dimensional manifolds of class C^k , $k < \omega$, with C^k -functions.

3. Locally convex vector spaces with all standard notions of C^k -functions on them. In particular we consider C_c^{∞} in the sense of [7] and C^{∞} in the sense of [3], [9,10] (attention: the topologies generated by these smooth maps are in general not the locally convex ones, in the latter case it might be even incompatible, since C^{∞} -maps need not be continuous with respect to the locally convex topology).

4. Manifolds with charts modelled on open subsets of locally convex vector spaces using one of the C^k notions mentioned in 3 (in particular manifolds of mappings, see [14].

5. Vector sets of [11], smooth structures in the sense of [3], differential spaces in the sense of [19], and "manifolds" in the sense of [16].

2. Smoothly Real Compact Spaces

2.1 Definition: A smooth space (M, \mathcal{S}) is called *smoothly real-compact* iff any algebra homomorphism $\mathcal{S} \to \mathbf{R}$ is an evaluation at a point of M, i.e. iff the canonial map ev: $M \to \text{Alg}(\mathcal{S}, \mathbf{R})$, ev $(x): f \mapsto f(x)$ is a bijection onto the set Alg $(\mathcal{S}, \mathbf{R})$ of algebra homomorphisms.

So we require that the conclusion of "Milnor and Stasheff's exercise" is true.

If M is a completely regular topological space, then the smooth space (M, C(M)) is smoothly real-compact if and only if it is real-compact in the usual sense. See [6].

2.2 Lemma: Let (M, \mathscr{S}) be a smooth space and consider the mappings $\iota: M \to \prod_{f \in \mathscr{S}} \mathbf{R}$, $\iota(x)_f := f(x)$ and $ev: M \to Alg(\mathscr{S}, \mathbf{R})$, $ev(x): f \mapsto f(x)$.

The set Alg (\mathscr{S} , **R**) can be considered as a subset of $\prod_{f \in \mathscr{S}} \mathbf{R}$ and the map ev composed with

this inclusion gives 1. The map 1 is topological embedding and the closure of its image $\iota(M)$ is Alg (\mathscr{S} , **R**).

Proof: That ev composed with the inclusion of Alg (\mathscr{S} , **R**) into $\prod_{\mathscr{S}}$ **R** gives ι is obvious.

This map ι is an embedding, since the topology of M is by definition initial with respect to the maps $f \in \mathscr{S}$ and that of $\prod \mathbf{R}$ is initial with respect to pr_f for $f \in \mathscr{S}$ and $\operatorname{pr}_f \circ \iota = f$.

Let $\varphi: \mathscr{S} \to \mathbf{R}$ be an algebra homomorphism. We claim that φ considered as the point $x_{\varphi} \in \prod_{\mathscr{S}} \mathbf{R}$ with coordinates $(x_{\varphi})_f = \varphi(f)$ is in the closure of $\iota(M)$. For $f \in \mathscr{S}$ let Z_f be the set $\{x \in M: f(x) - \varphi(f) = 0\}$. The sets Z_f are not empty for otherwise

87

 $f - \varphi(f) \cdot 1$ is invertible in \mathscr{S} but $\varphi(f - \varphi(f) \cdot 1) = 0$. Since $Z_f \cap Z_g$ = $Z_{(f-\varphi(f))^{2+}(g-\varphi(g))^2}$, the family $\{Z_f: f \in \mathscr{S}\}$ has the finite intersection property. For any finite subset $\mathscr{F} \subseteq \mathscr{S}$ and $x_{\mathscr{F}} \in \bigcap_{f \in \mathscr{F}} Z_f$ we have $\iota(x_{\mathscr{F}})_f = (x_{\varphi})_f$ for all $f \in \mathscr{F}$. So $\iota(x_{\mathscr{F}})$ converges to x_{φ} in $\prod_{\alpha} \mathbf{R}$.

Let conversely $\iota(x_{\alpha})$ be a net that converges to x_{∞} in $\prod_{\mathscr{S}} \mathbf{R}$. We have to show that the map $\varphi \colon \mathscr{S} \to \mathbf{R}$ which corresponds to x_{∞} is an algebra homomorphism. Since $\iota(x_{\alpha})$ corresponds to the algebra homomorphism ev (x_{α}) and the net ev (x_{α}) converges pointwise to φ on f for all $f \in \mathscr{S}$, the limit point φ is also an algebra homomorphism. \Box

2.3 Corollary: Let (M, \mathcal{S}) be a smooth space. Then M is smoothly real-compact if and only if $\iota(M)$ is closed in $\prod_{\mathcal{S}} \mathbf{R}$. Furthermore, the algebra $\operatorname{Alg}(\mathcal{S}, \mathbf{R})$ of algebra homomor-

phisms can be made into a smooth space which is smoothly real-compact and is the universal solution for extending smooth functions.

Proof: The space M is by definition smoothly real-compact iff the map ev is onto, and this corresponds via lemma (2.2) to the statement that the map i has closed image.

Every $f \in \mathscr{S}$ defines a map f^{\sim} : Alg $(\mathscr{S}, \mathbf{R}) \to \mathbf{R}$ by $\varphi \mapsto \varphi(f)$. We consider as structure on Alg $(\mathscr{S}, \mathbf{R})$ the family $\{f^{\sim}: f \in \mathscr{S}\} = : \mathscr{S}^{\sim}$. \mathscr{S}^{\sim} is point separating since different $\varphi \in \text{Alg}(\mathscr{S}, \mathbf{R})$ differ at least at one $f \in \mathscr{S}$.

The initial topology induced on Alg (\mathscr{S} , **R**) by the family \mathscr{S}^{\sim} is just the trace topology inherited as a subset of $\Pi_{\mathscr{S}} \mathbf{R}$. In particular M is dense in Alg (\mathscr{S} , **R**).

 \mathscr{S}^{\sim} satisfies condition 1: Let $f^{\sim} \in \mathscr{S}^{\sim}$, $(f_1^{\sim}, ..., f_n^{\sim})$ (Alg $(\mathscr{S}, \mathbf{R})$) $\subseteq U$, $F: U \to \mathbf{R}$ smooth. Then $(f_1, ..., f_n)$ (M) $\subseteq U$ hence $F \circ (f_1, ..., f_n) \in \mathscr{S}$, and since M is dense in Alg $(\mathscr{S}, \mathbf{R})$, we have $F \circ (f_1^{\sim}, ..., f_n^{\sim}) = (F \circ (f_1, ..., f_n))^{\sim}$.

 \mathscr{S}^{\sim} satisfies condition 2: Let $\mathscr{F}^{\sim} \subseteq \mathscr{S}$ such that {carrier $f^{\sim}: f^{\sim} \in \mathscr{F}^{\sim}$ } is locally finite, then {carrier $f: f \in \mathscr{F}$ } is locally finite and hence $\sum f \in \mathscr{S}$, i.e. $(\sum f)^{\sim} \in \mathscr{S}^{\sim}$ and by density of M in Alg $(\mathscr{S}, \mathbf{R})$ we have $(\sum f)^{\sim} = \sum f^{\sim}$.

(Alg $(\mathscr{G}, \mathbf{R}), \mathscr{G}^{\sim}$) is smoothly real compact: Let $\varphi^{\sim}: \mathscr{G}^{\sim} \to \mathbf{R}$ be an algebra homomorphism, then $\varphi: \mathscr{G} \to \mathbf{R}$ defined by $\varphi f:=\varphi^{\sim}f^{\sim}$ is an algebra homomorphism, hence $\varphi \in \text{Alg }(\mathscr{G}, \mathbf{R})$ and $\varphi^{\sim}f^{\sim} = \varphi f = f^{\sim}\varphi$. \Box

2.4 Corollary: If a smooth space (M, \mathcal{S}) is smoothly real-compact, then the \mathcal{S} -topology on M is real-compact.

Proof: By the previous corollary a smoothly real-compact space is embedded as a closed subspace of $\prod \mathbf{R}$, hence it is real-compact, see [6] or [2, p. 154].

2.5 Remark: If one defines a map $\varphi: M_0 \to M_1$ between smooth spaces (M_0, \mathscr{S}_0) and (M_1, \mathscr{S}_1) to be smooth iff $f \circ \varphi \in \mathscr{S}_0$ for all $f \in \mathscr{S}_1$, then the following can be said:

1. The smooth space Alg $(\mathcal{S}, \mathbf{R})$ with the structure $\{ev_f: f \in \mathcal{S}\}$ defined in (2.3) is the universal solution for extending smooth maps into smoothly real-compact spaces.

2. Smoothly real-compact spaces are completely determined by the algebra Alg (\mathscr{S} , **R**), since ev: $M \to \text{Alg}(\mathscr{S}, \mathbf{R})$ is for these spaces a diffeomorphism.

3. If for two smoothly real-compact spaces (M_0, \mathscr{S}_0) and (M_1, \mathscr{S}_1) the algebras Alg $(\mathscr{S}_0, \mathbf{R})$ and Alg $(\mathscr{S}_1, \mathbf{R})$ are isomorphic, then the smooth spaces are diffeomorphic.

3. The Main Theorem

3.1 Lemma: For a smooth space (M, \mathcal{S}) the following four conditions are equivalent:

1. Let $f: M \to \mathbf{R}$ be continuous in the \mathscr{G} -topology and a < b. Then there is some $g \in \mathscr{G}$ with $g|_{\{x: f(x) \le a\}} = 0$, $g|_{\{x: f(x) \ge b\}} = 1$.

2. For any continuous function f and a < b there is some $g \in \mathcal{G}$ such that $\{x \in M : f(x) \le a\} \subseteq \{x \in M : g(x) = 0\} \subseteq \{x \in M : f(x) < b\}.$

3. The algebra \mathcal{G} is dense in the set of all continuous functions in the topology of uniform convergence.

4. The bounded functions in \mathcal{S} are dense in the space of all bounded continuous functions on M with respect to the sup-norm.

Proof: $(2 \Rightarrow 4)$ We want to apply the Stone-Weierstrass theorem to the Stone-Čech compactification βM of M and the algebra of bounded functions in \mathscr{S} . So let $x, y \in \beta M$. Then there is a bounded continuous f with f(x) < f(y). Choose a smooth g according to (2) for a := f(x) and b := f(y). Make it bounded and non-negative by composing with a suitable real function. Then g(x) = 0 and g(y) > 0. Thus the algebra of bounded functions in \mathscr{S} separates points in βM and hence is by the Stone-Weierstrass theorem dense in the algebra $C(\beta M)$ of continuous functions on βM . But $C(\beta M)$ is the algebra of continuous bounded functions on M.

 $(4 \Rightarrow 1)$ Choose a $g \in \mathscr{S}$ with $|g - f| < \frac{b - a}{3}$. Then $g(x) \leq \frac{2a + b}{3}$ for $f(x) \leq a$ and $g(x) \geq \frac{a + 2b}{3}$ for $f(x) \geq b$. By composing with a smooth function one obtains everything needed.

 $(1 \Rightarrow 3)$ Let f be continuous, without loss of generality we may assume $f \ge 0$ (decompose $f = f_+ - f_-$). Let $\varepsilon > 0$ and choose smooth g_k with image in [0, 1] and $g_k(x) = 0$ for x with $f(x) \le k\varepsilon$ and $g_k(x) = 1$ for x with $f(x) \ge (k + 1)\varepsilon$. Then the sum $g := \sum_{k \in \mathbb{N}} \varepsilon g_k$ is locally finite and $|f - g| < 2\varepsilon$.

 $(3 \Rightarrow 2)$ Choose a $g \in \mathscr{S}$ with $|g - f| < \frac{b - a}{2}$ and an appropriate map $\varrho \in C^{\infty}(\mathbf{R}, \mathbf{R})$. Then $\varrho \circ \left(g - \frac{a + b}{2}\right)$ satisfies (2). \Box

3.2 Theorem: Let (M, \mathcal{S}) be a smooth space such that:

- 1. M is real-compact in the *S*-topology.
- 2. The (equivalent) properties of 3.1 hold.
- Then (M, \mathcal{S}) is smoothly real-compact.

First Proof: Let φ be an algebra homomorphism. Then $I := \ker \varphi$ is an ideal in \mathscr{S} .

Step 1: If $f_1, \ldots, f_n \in I$ and $g \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ with g(0) = 0, then $g \circ (f_1, \ldots, f_n) \in I$, because $g(x) = \int_0^1 \sum_{i=1}^n \frac{\partial g}{\partial x^i}(tx) dt \cdot x^i =: \sum h_i \cdot x^i$ and $g \circ (f_1, \ldots, f_n) = \sum h_i(f_1, \ldots, f_n) \cdot f_i \in I$. Step 2: For $f \in \mathscr{S}$ let again $Z_f := \{x: f(x) = \varphi f\}$. Then $\mathscr{Z} := \{Z_f : f \in \mathscr{S}\}$ = $\{Z_f : f \in I\}$, since $Z_f = Z_{f-\varphi f \cdot 1}$ and $f - \varphi f \cdot 1 \in I$.

 \mathscr{Z} has the finite intersection property (see the proof of 2.2). We claim that it has the countable intersection property. If not there is a sequence $(f_n)_{n \in \mathbb{N}}$ with $\bigcap Z_{f_n} = \emptyset$ and we may assume that $Z_{f_n} \supseteq Z_{f_{n+1}}$ and $f_n \in I$ for all n.

Step 3: Put $U_n := \{x \in M : |f_i(x)| < \frac{1}{n} \text{ for } i < n \text{ and } f_n(x) \neq 0\}$. We claim that $\{U_n : n \in \mathbb{N}\}$ is a locally finite cover of M: Let $x \in M$. There is a minimal n with $f_n(x) \neq 0$, so $x \in U_n$. Let $V := \{y \in M : |f_n(y) - f_n(x)| < \frac{1}{2} |f_n(x)|\}$. Then $V \cap U_m = \emptyset$ if m > n and $\frac{1}{m} \leq \frac{1}{2} |f_n(x)|$.

Step 4: Choose $\varrho_n \in C^{\infty}(\mathbb{R}^n, [0, 1])$ such that $\varrho_n(t_1, \ldots, t_n) > 0$ iff $|t_i| < \frac{1}{n}$ for i < n and $t_n \neq 0$.

By step 1 we have that $\varrho_n \circ (f_1, ..., f_n) =: g_n \in I$ and carr $(g_n) = U_n$. Let $g := \sum_{n=1}^{\infty} \frac{1}{2^n} g_n$. Then $g \in \mathscr{S}$ by 1.1.2, and g(x) > 0 for all $x \in M$. Hence $\frac{1}{g} \in \mathscr{S}$ and $\alpha := \varphi\left(\frac{1}{g}\right) > 0$. Let $2^n > \alpha$. Hence there exists a point $x_0 \in Z_{g_1} \cap ... \cap Z_{g_n} \cap Z_{g^{-1}-\alpha} \neq \emptyset$. Therefore $0 = g_1(x_0) = ... = g_n(x_0)$ and $\frac{1}{\alpha} = g(x_0) = \sum_{k>n} \frac{1}{2^k} g_k(x_0) \leq \frac{1}{2^n}$ yields a contradiction. Hence \mathscr{X} has the countable intersection property.

Step 5: Let now $x_{\infty} \in \bigcap_{Z \in \mathscr{X}} Z^{\beta M}$, where βM denotes the Stone-Čech compactification. We claim that $x_{\infty} \in M$: Otherwise the real-compactness of M implies the existence of a function $f \in C(\beta M, I)$ with $f|_{M} > 0$ and $f(x_{\infty}) = 0$ (vide [2, p. 152]). Since M is assumed to have the property of the lemma above there exists a smooth $f_i \in \mathscr{S}$ with $\left\{ x \in M : f(x) \leq \frac{1}{i+1} \right\} \subseteq \left\{ x \in M : f_i(x) = 0 \right\} \subseteq \left\{ x \in M : f(x) < \frac{1}{i} \right\}$. Consider $Z_i \coloneqq \left\{ x \in M : f_i(x) = 0 \right\}$. $Z_i \in \mathscr{X}$ since $f_i - \varphi f_i \cdot 1 \in \text{Ker } \varphi$ and $Z_{f_i - \varphi f_i \cdot 1} \cap Z_i \neq \emptyset$ because $\left\{ x \in \beta M : f(x) < \frac{1}{i+1} \right\} \subseteq Z_i$ has non empty intersection with $Z_{f_i - \varphi f_i \cdot 1}$ as neighborhood of x_{∞} . But this implies that $\varphi(f_i) = 0$, i.e. $Z_{f_i} = Z_i$. Hence by the countable intersection property $\emptyset \neq \bigcap Z_i$. Which is contradicted by the fact that $x \in Z_i$ implies $0 < f(x) < \frac{1}{i}$.

Step 6: The point x_{∞} is in $\bigcap_{Z \in \mathscr{Z}} Z$. Therefore $x_{\infty} \in Z$ for all $Z \in \mathscr{Z}$, i.e. for all $f \in \mathscr{S}$ we have $fx_{\infty} - \varphi f \cdot 1 = 0$ or $\varphi f = fx_{\infty}$. \Box

Second Proof: Condition 3.1.3 implies that the uniformity generated by the continuous maps and that generated by the smooth maps is equal. (For a continuous f and

an $\varepsilon > 0$ choose a smooth g with $|g - f| < \varepsilon$. Then $\{(x, y): |g(x) - g(y)| < \varepsilon\} \subseteq \{(x, y): |f(x) - f(y)| < 3\varepsilon\}$.)

M real-compact implies that the uniformity generated by the family of continuous mappings is complete, hence the uniformity generated by \mathscr{S} is complete, i.e. $\iota(M)$ is closed in $\prod_{\mathscr{S}} \mathbf{R}$ and hence *M* is smoothly real-compact. \Box

3.3 Corollary: Let (M, \mathcal{S}) be a smooth space with smooth partitions of unity (i.e. to every open covering U of M there is a family $\mathcal{F} \subseteq \mathcal{S}$ such that all $f \in \mathcal{F}$ are non negative and the family $\{x: f(x) > 0\}_{f \in \mathcal{F}}$ is a locally finite covering subordinated to U and $\sum_{f \in \mathcal{F}} f = 1$), then M is smoothly real-compact.

Proof: Since *M* admits smooth partitions of unity, *M* is paracompact and therefore real-compact (see [2, p. 337]). This corollary depends on the set-theory: beware of measurable cardinals!). Furthermore *M* has the property (1) of the lemma, since $A_0 := \{x: f(x) \leq a\}$ and $A_1 := \{x: f(x) \geq b\}$ are disjoint closed subsets hence by partition of unity there is an $f_0 \in \mathscr{S}$ with $f_0|_{A_0} = 0$, $f_0|_{A_1} = 1$. \Box

3.4 Remark:

1. For finite dimensional paracompact manifolds this gives the classical "Exercise of Milnor and Stasheff".

2. Every paracompact manifold modelled on a locally convex space with smooth partitions of unity has itself smooth partitions of unity, hence is smoothly real-compact. This applies especially to the NLF-manifolds considered by [15], as well as to paracompact manifolds modelled on arbitrary Hilbertspaces or $c_0(\Gamma)$ with any set Γ (see [20]).

3. Results for finite order differentiability can be obtained along similar lines. We are content with the arche-typical C^{∞} -case.

3.5 Proposition: Any product of real lines with the smooth functions in the sense C_c^{∞} of [7] and C^{∞} of [3] and [9, 10] is smoothly real-compact.

Proof: First for C^{∞} : Any continuous map $f: \prod \mathbf{R} \to \mathbf{R}$ factorizes over $\prod_{A} \mathbf{R}$ with A countable (see [2]) this is even true for sequentially continuous maps provided the index set of the product has a non-real-measurable cardinal (see [13]) and for Mackey sequentially continuous maps by a similar proof. Since every smooth map in the sense of C^{∞} is continuous with respect to Mackey converging sequences (cf. [10]) it is thus continuous with respect to the product topology, and hence the initial topology induced by the smooth maps is just the product topology. Obviously $\prod \mathbf{R}$ is real-compact. So it remains to verify condition (2) of the lemma. Let $f: \prod \mathbf{R} \to \mathbf{R}$ be continuous. Then f can be factorized into $f \circ pr_A$ for some countable A. Thus we have to verify the property (2) only for smooth functions on $\mathbf{R}^{\mathbf{N}}$, but this is obvious, since this space is a nuclear Frechet space and hence has smooth partitions of unity.

Now for C_c^{∞} : We proceed directly, so let $\varphi: C_c^{\infty}(\mathbf{R}^{\Gamma}) \to \mathbf{R}$ be an algebra homomorphism.

Step 1: Consider the restriction of φ to the linear subspace $C_c^{\infty}(\mathbf{R}^{\Gamma}) \supseteq \mathbf{R}^{(\Gamma)} = \bigoplus_{\Gamma} \mathbf{R}$. Being a linear functional this restriction is an element of $(\mathbf{R}^{(\Gamma)})' = \mathbf{R}^{\Gamma}$. Call this point x_{φ} and we have $\varphi(g) = \langle g, x_{\varphi} \rangle$ for every continuous linear g on \mathbf{R}^{Γ} .

Step 2: Let $f \in C^{\infty}(\mathbf{R}^{r}, \mathbf{R})$ be such that $f|_{U} = 0$ for some neighborhood U of x_{φ} . We claim that $\varphi(f) = 0$: Without loss of generality let us assume that $x_{\varphi} = 0$. Then U contains a neighborhood $\{x = (x^i) \in \mathbf{R}^T : |x^i| < \frac{1}{n} \text{ for all } i \in F\}$ where F is a finite subset of Γ . Let $g \in C^{\infty}(\mathbf{R}^F)$ be such that g(0) = 0 and g(t) = 1 for all t with some coordinate $t_i \ge \frac{1}{n}$. $g(u) = \sum_j \int_0^1 \frac{\partial g}{\partial y^j}(ty) \cdot y^j dt = \sum_j h_j(y) y^j$. Then $h := g \circ pr_F$ has the property h(0) = 0 and h(x) = 1 for $x \notin U$. Thus $h \cdot f = f$. So $\varphi(f) = \sum_j \varphi(h_j \circ pr_F) \varphi(pr_j) \varphi(f) = 0$, since pr_j is linear and thus $\mu(pr_j) = 0$.

is linear and thus $\varphi(pr_j) = 0$.

Step 3: Now let $f \in C_c^{\infty}(\mathbf{R}^r, \mathbf{R})$ be arbitrary. We claim that $\varphi(f) = f(x_{\varphi})$:

By step 2, $\varphi(f)$ depends only on $f|_U$ for some neighborhood U of x_{φ} in \mathbf{R}^r and we take U so small that $f|_U$ depends only on finitely many coordinates $(x^i)_{i \in F}$. Then

$$f(x) = f(x_{\varphi}) + \int_{0}^{1} \sum_{i} \frac{\partial f}{\partial x^{i}} (x_{\varphi} + t(x - x_{\varphi})) (x^{i} - x_{\varphi}^{i}) dt \quad \text{for } x \in U$$

and so:

$$f|_{U} = f(x_{\varphi}) \cdot 1 + \sum_{i} h_{i} \operatorname{pr}_{i}(\cdot - x_{\varphi})$$
$$\varphi(f) = \varphi(f|_{U}) = f(x_{\varphi}) \cdot 1 + \sum_{i} \varphi(h_{i}) \varphi(\operatorname{pr}_{i}(\cdot - x_{\varphi})) = f(x_{\varphi}). \quad \Box$$

3.6 Remarks:

1. For a measurable cardinal Γ the smooth functions on \mathbf{R}^{Γ} in the sense of C_c^{∞} and C^{∞} are different.

2. The subspace of an uncountable product of **R**'s given by all vectors with countable support is not smoothly real-compact if structured with the C^{∞} -functions, because it is not real-compact [2, p. 148, 153] although it is a convenient vector space in the sense of [3], [9].

3. An uncountable product $\Pi \mathbf{R}$ does not satisfy the following property stronger than the one in Lemma 3.1: For two closed disjoint subsets $A_i \subseteq \Pi \mathbf{R}$ there is a continuous function $f: \Pi \mathbf{R} \to \mathbf{R}$ with $f(A_1) \cap f(A_2) = \emptyset$.

Hence such a product is neither paracompact nor normal, although the smooth maps do generate the topology.

Proof: Let $A_i := \{x \in \prod_{\Gamma} \mathbb{N}: \text{ for every } j \neq i \text{ there is at most one } s \in \Gamma \text{ with } x_s = j\}$. Clearly the sets A_i are closed and disjoint and $\operatorname{pr}_A(A_1) \cap \operatorname{pr}_A(A_2) \neq \emptyset$ for any countable subset A of Γ . Since any continuous function f depends only on countably many coordinates it cannot separate these two sets. \Box

3.7 Open problems:

1. Is (l^1, C^{∞}) not smoothly real-compact? The C^{∞} -topology on l^1 is coarser than the norm topology. More generally, is any Banach space with rough norm [12] not smoothly real-compact?

2. We suspect that for any smooth space real-compactness and smoothly realcompactness are equivalent.

References

- R. BONIC, J. FRAMPTON: Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877-898.
- [2] R. ENGELKING: Outline of general topology, North Holland 1968.
- [3] A. FRÖLICHER: Smooth structures, in: Springer Lecture Notes 962 (1982), 69-81.
- [4] A. FRÖLICHER, B. GISIN, A. KRIEGL: General differentiation theory, in: Category theoretic methods in geometry Proc., Aarhus (1983), p. 125-153.
- [5] A. FRÖLICHER, A. KRIEGL: Linear spaces and Differentiation Theory, John Wiley & Sons, Chichester 1988.
- [6] L. GILMAN, M. JERISON: Rings of continuous functions, van Nostrand 1960.
- [7] H. H. KELLER: Differential calculus in locally convex spaces. Springer Lecture Notes 417, 1974.
- [8] A. KOCK: Synthetic differential geometry, London Math. Soc. Lect. Notes Series 51, 1981.
- [9] A. KRIEGL: Die richtigen Räume f
 ür Analysis im Unendlich-Dimensionalen, Monatshefte f. Math. 94 (1982), 109-124.
- [10] A. KRIEGL: Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen lokalkonvexen Vektorräumen, Monatshefte f. Math. 95 (1983), 287-309.
- [11] A. KRIEGL: A cartesian closed extension of the category of Banach manifolds, in: Categorical Topology, Proc. Conference Toledo, Ohio, 1983, (1984), p. 323-336.
- [12] E. B. LEACH, J. H. M. WHITFIELD: Differentiable functions and rough norms on Banach spaces, Proc. AMS 33 (1972), 120-126.
- [13] S. MAZUR: On continuous mappings on cartesian products, Fund. Math. 39(1952), 229-238.
- [14] P. MICHOR: Manifolds of differentiable mappings, Shiva Math. Series 3, 1980 Orpington.
- [15] P. MICHOR: Manifolds of smooth mappings IV, Cahiers Top. Geom. Diff. 24 (1983), 57-86.
- [16] P. MICHOR: A convenient setting for differential geometry and global analysis, Cahiers Top. Geom. Diff. 25 (1984), 63 112.
- [17] J. W. MILNOR, J. D. STASHEFF: Characteristic Classes, Ann. of Math. Stud., Princeton Univ. Press, 1974 Princeton.
- [18] I. MOERDIJK, G. E. REYES: C^{∞} -Rings, preprint 1984 Montreal.
- [19] R. SIKORSKI: Differential Modules, Colloq. M. 24 (1971), 45-79.
- [20] H. TORUNZCYK: Smooth partitions of unity on some non-separable Banach spaces, Stud. Math. 46 (1973), 43-51.

A. KRIEGL

P. MICHOR

W. SCHACHMAYER

Mathematisches Institut der Universität Wien Strudlhofgasse 4 A-1090 Vienna

(Received May 5, 1988)