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Abstract. Among all C∞-algebras we characterize those which are algebras of

smooth functions on smooth separable Hausdorff manifolds.

1. C∞-algebras. An R-algebra is a commutative ring A with unit together with
a ring homomorphism R → A. Then every map p : Rn → Rm which is given
by an m-tuple of real polynomials (p1, . . . , pm) can be interpreted as a mapping
A(p) : An → Am in such a way that projections, composition, and identity are
preserved, by just evaluating each polynomial pi on an n-tuple (a1, . . . , an) ∈ An.

A C∞-algebra A is a real algebra in which we can moreover interpret all smooth
mappings f : Rn → Rm. There is a corresponding map A(f) : An → Am, and
again projections, composition, and the identity mapping are preserved.

More precisely, a C∞-algebra A is a product preserving functor from the category
C∞ to the category of sets, where C∞ has as objects all spaces Rn, n ≥ 0, and all
smooth mappings between them as arrows. Morphisms between C∞-algebras are
then natural transformations: they correspond to those algebra homomorphisms
which preserve the intepretation of smooth mappings.

This definition of C∞-algebras is due to Lawvere [2], for a thorough account see
Moerdijk-Reyes [3], for a discussion from the point of view of functional analysis see
[1]. In [1], 6.6 one finds a method to recognize C∞-algebras among locally-m-convex
algebras.
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2. Theorem. Let A be a C∞-algebra. Then A is the algebra of smooth functions
on some finite dimensional paracompact Hausdorff second countable manifold M if
and only if the following conditions are satisfied:

(1) A is point determined ( [3], 4.1), so A can be embedded as algebra into a
power

∏
x∈X R of copies of R. Equivalently the intersection of all ideals of

codimension 1 in A is 0.
(2) A is finitely generated, so A = C∞(Rn)/I for some ideal I ⊂ C∞(Rn).
(3) For each ideal mx of codimension 1 in A the localization Amx is isomorphic

to the C∞-algebra C∞0 (Rm) consisting of all germs at 0 of smooth functions
on Rm, for some m.

Proof. By condition (2) A is finitely generated, A = C∞(Rn)/I; so by [3], 4.2 the
C∞-algebra A is point determined (1) if and only if the ideal I has the following
property:

(4) For f ∈ C∞(Rn), f |Z(I) = 0 implies f ∈ I,

where Z(I) =
⋂
{f−1(0) : f ∈ I} ⊂ Rn. Let us denote by {mx : x ∈ M} the set

of all ideals mx of codimension 1 in A. Then A/mx
∼= R and we write a(x) for the

projection of a ∈ A in A/mx. In particular we indentify the elements of A with
functions on M . Let c1, . . . , cn ∈ A by a set of generators. Then we may view c =
(c1, . . . , cn) : M → Rn as a mapping such that the pullback c∗(f) = f ◦ c = A(f)(c)
is the quotient mapping C∞(Rn)→ C∞(Rn)/I = A. By condition (1) c : M → Rn

is injective, and the image c(M) equals Z(I) =
⋂
{f−1(0) : f ∈ M}, by (4). In

particular, c(M) is closed. The initial topology on M with respect to all functions
in A coincides with the subspace topology induced via the embedding c : M → Rn,
so this topology is metrizable and locally compact.

Let us fix a ‘point’ x ∈ M . The codimension 1 ideal mx is a prime ideal, so the
subset A\mx ⊂ A is closed under multiplication and without divisors of 0, thus the
localization Amx

may be viewed as the set of fractions a
b with a ∈ A, b ∈ A \ mx;

it is a local algebra with maximal ideal m̃x = {a
b : a ∈ mx, b ∈ A \ mx}. Note that

m̃x/m̃2
x
∼= T ∗0 Rm = Rm by condition (3). Now choose a1, . . . , am ∈ mx such that

a1
1 , . . . , am

1 ∈ Amx form a basis of m̃x/m̃2
x = Rm, and choose g1, . . . , gm ∈ C∞(Rn)

with c∗(gi) = ai. Then gi(c(x)) = 0, so gi is in the codimension 1 ideal mc(x) = {f ∈
C∞(Rn) : f(c(x)) = 0}. Since c∗ : C∞(Rn)→ A induces in turn homomorphisms

C∞c(x)(R
n) = C∞(Rn)mc(x) → Amx

Rn = T ∗c(x)R
n = m̃c(x)/m̃2

c(x) → m̃x/m̃2
x = Rm

and since mc(x)
∼= mx ⊕ I as vector spaces, we may find functions gm+1, . . . , gn ∈ I

such that the quotients g1
1 , . . . , gn

1 ∈ C∞c(x)(R
n) map to a basis of m̃c(x)/m̃2

c(x) =
T ∗c(x)R

n. By the implicit function theorem on Rn the functions gm+1, . . . , gn are near
c(x) an equation of maximal rank for c(M) = Z(I), and the functions g1, . . . , gm

restrict to smooth coordinates near c(x) on the closed submanifold c(M) = Z(I) of
Rn, and the number m turns out to be a locally constant function on M . Also the
functions a1, . . . , am restrict to smooth coordinates near x of M . �
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