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P. MICHOR 2

INTRODUCTION

This paper contains a theory of smooth manifolds and vector bun-
dles, which coincides with the existing theories in the finite dimensional
case. The whele theory aims at cartesian closedness from the beginning,
so S(M, Nj, the space of smooth mappings from a manifold M to a mani-
fold N is again a manifold and the equation

S(MXN,P) < S(M,S(N,P))

holds in general.

The general ideas are the following ones :

1. We forget about charts and atlases. There are at least two reasons
for this: In Michor [1, 11.9] it is shown that the natural chart construction
on spaces of smooth mappings does not allow cartesian closedness in gen-
eral. The (topclogical) theory of manifolds modelled on Frechet spaces
shows that these are open subsets of the modelling spaces in the mostim-
portant cases, so they are rather simple objects.

2. We take the structure of smooth curves in a manifold as the basic
notion, instead of charts. Another possible choice would be the structure
of smooth real valued functions, which has been investigated via sheaf
theory, schemes, etc, or a combination of both as Frdlicher [2] proposes.
The smooth curves alone are a «thin» structure, so we need a lot of other
data as well: tangent spaces, differential operators for curves.

3. In view of 2, for vector bundles we do not require local triviality
over open sets, but only triviality along smooth curves. The trivialisation
we require to have some structure, they should be parallel transports along
any smooth curve, depending smoothly on the curve too.

4. Lastly we require a geodesic structure on each manifold. This is

a section for the differential operator for smooth curves in particular.

Our aim has been to construct a class of manifolds as small as
possible such that we get cartesian closedness and get the usual theory
in finite dimensions.

So a manifold M is a set of data (M1)-(M8) as follows:

(M1) Two sets M, TM, and a mapping my: TM-> M such that each

fibre is a locally convex space of a certain type (described in 1).
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 3

(M2) A set S(R,M) of curves in M, closed under C®-reparametriza-
tions and containing all constants.

(M3) For each t¢ R a mapping §¢: S(R, M) » TM such that
Ty 08, = v, 8, (cof)=["(1).8
¢ = constant if ‘o‘z c =0 for all ¢.

(M4) A mapping PtTM =p;. S(R,M)XR>L(TM, TM) such that:
Pt(c,t).‘TC M»TC

ftey €

(0) (z)M is linear and continuous,

Pt(c,0)=1d, Pt(c,[(t))=Pt(cof,t).Pt(c,f(0)).

(M5) ¢t | Pi(c, t)'l.(Stc) is a C®-curve in the l.c.s. Tc(O)M'
(MG) A mapping GeoM = Geo: TM » S(R, M) such that

Geo(t.v)(s)= Geo(v)(ts), 3t(Geou) =Pt(Geo(v),t). v,
Geo(StGeo(v))(s) = Geo(v)(t+s).

A set of data like this is called a premanifold. We can show that

TM is again a premanifold, so we have the whole tower of iterated tan-
gent bundles and use them to define smooth mappings between premanifolds:
they should map smooth curves to smooth curves and with a, differentiation
factor over to a tangent mapping, which should satisfy the same conditions,
etc. We have to develop a lot of theory before we can formulate the next
conditions :

(M7) Pt: S(R,M)XR~>L(TM, TM) is smooth.

(M8) Geo: TM > S(R, M) is smooth.

The category of these objects (manifolds) and smooth mappings
turns out to be cartesian closed (7.14). In 8.4 it is shown that the differen-
tiable structure of a manifold does not change if we change the parallel
transport to another one which is smooth and has a connection.

A manifold is called regular if the smooth real valued functions
separate points (in a strounger sense, 8.7) on it. Regular manifolds with
finite dimensional fibres for the tangent bundle turn out to be usual finite

dimensional C™-manifolds (with charts), and conversely.

The theory developped here gives a cartesian closed (convenient)
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P. MICHOR 4

category of manifolds containing all finite dimensional ones and some of
the usual infinite dimensional ones (e. g. Hilbert manifolds); and all mani-
folds in there have a lot of geometric structure (parallel transport, covariant
derivative, geodesics, connections). By cartesian closedness it seems to
be a good setting for variational calculus. Some of its drawbacks are: no
chance for an Implicit Function Theorem. Not a good setting for infinite
dimensional Lie groups (the general linear group of a locally convex space
is not a smooth group in general). But the theory of principal fibre bundles
might work, where the (smooth) monoid of all continuous endomorphisms
takes the role of the group of isomorphisms. We do not go into this here.

We also leave out the de Rham cohomology of manifolds and curvature.

In comparison with Synthetic Differential Geometry (see Kock, e. g.)
there are po infinitesimal manifolds and we do not have a topos (nosub-
object classifier). On the other hand our manifolds are sets with structure

mappings on them and not sheafs on categories of C*-algebras.

Let us now give a short description of the contents of all sections:
1 is an exposition of Kriegl [2, 3], of a convenient setting for differential
calculus on locally convex spaces. The results later depend heavily on
its special features. Most of the theory later on would remain valid if we
take the only other cartesian closed setting for calculus in the literature,
Seip [1]. The whole content of 1 is due to Kriegl.

2 defines premanifolds and pre-vector bundles and shows that the total
space of a pre-vector bundle is a premanifold again. Using this, in 3 we
can define smooth mappings between premanifolds and we show (3.5, 3.6 )
that the smooth mappings R » M are exactly those in S(R,M) (with a
surprisingly difficalt proof).

In 4 we show that certain structure mappings (like 7, ) are smooth
and treat pullbacks of pre-vector bundles. In 5, the main result is that
smooth sections of a pre-vector bundle form a convenient l.c.s. in the
sense of 1, which is needed later to show that S(M, N) is again a pre-
manifold. In the course of the proof, we need the covariant derivative, so
it is constructed and investigated before.

6 leaves the realm of premanifolds and gives a sort of differentiable
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 5

structure on S(M, N) and the minimum of lemmas and concepts necessary
for 7 where we introduce manifolds and vector bundles and prove carte-
sian closedness. The most difficult part of this is the construction of the
flip mapping xy : T2M > T2M in 7.7.

8 completes the whole set up and shows the relations to the usual

notions of manifolds.

Some remarks to the history of the ideas represented here : The use
of smooth curves instead of charts is due to Seip [2] who treats subsets
of sequentially complete l.c.s. and emplois a sort of weak geodesic struc-
ture to define manifolds and get cartesian closedness. In 1979-81 Kriegl
and the author worked through Seip's paper and discussed the ideas of us-
ing parallel transports, geodesic structure, and the C*-curve final topo-
logy. In his dissertation Kriegl [1] improved Seip's setting with these
ideas, treating subsets of locally convex spaces. A revised version of
Kriegl [1] is to appear in Springer Lecture Notes.This paper contains the
(one ?) embedding free approach which succeeded only after Kriegl 2, 3]
developped the convenient setting for calculus as basis for it.

The main parts of this paper were presented in a lecture course
in 1981/82 in Vienna. I want to thank the audience of this course, Mr. G.

Kainz and A. Kriegl for the very stimulating cooperation and lots of discus-

sion.

1. KRIEGL'S CONVENIENT SETT!NG FOR DIFFERENTIAL CALCULUS
ON LOCALLY CONVEX SPACES.
In this chapter we give a somewhat streamlined account of the set-
ting for differential calculus developped by Kriegl [2, 3]. We leave out
all counterexamples and we only comment on the connections to existing

settings like Keller. For the missing proofs, we refer to Kriegl.

1.1. Bornological locally convex vector spaces.

Let E be a real locally convex vector space (lcs). Let B be an
absolutely convex bounded set in E. Then by Eg we mean the linear
span of B in E, equipped with the Minkowski functional pg of B as

norm, 1. e.
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P. MICHOR 6

pglx) = inf{A>0 | xeX. Bi.
This is a normed space.

Recall that bE, the bornologicalization of E, is given as the loc-
ally convex limit of all the spaces EB , where EB > EB' is a contraction
if BCB':

bE:l_z;m{EBlBCE}.

Clearly b is a functor from the category Ics of locally convex spacesand
linear continuous maps into the full subcategory blcs of bornological Ics.

(In fact blcs is monoreflexivein Ics in the sense of Herrlich - Strecker.)

1.2. LEMMA. Let (xn) be a sequence in a locally convex space E. Then
the following properties are equivalent :
1. There is some B in E with X, > x in EB (i. e. pB(xn -x) > 0)

2. There is a sequence (u,) in R, p ~oo, such that

tp,(x -x) | neN}
is bounded in E.
3. There is a strictly increasing sequence (q,) in R, n >0, M, > .

such that {nn(xn -x)} is bounded in E.

DEFINITION. A sequence satisfying these equivalent conditions is called
Mackey convergent to x. If we want to emphasize the particular sequence
(’In ) in 3, we call (xn) n-falling to x. If x is not relevant, we call (x,)

a Mackey sequence, or p-falling.

1.3, LEMMA. Let x, » x in E, let (tn) be a sequence in R with tnLO
strictly such that

{(xn.xn-l—l )/(tn -tn+1) ' n e N}
is bounded for all k. Then there is a C®-curve c: R » E with c(tn) =x,,

c(0) =x, such that c' is x-flat at each t, and at 0.

’

¢’ is =-flat at r means: the infinite Taylor development of c’
about r is the zero series. A mapping [: R™ s E is called C* iffall
partial derivatives exist and are continuous - this is a concept without

problems.

68



A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 7

For the proof, let ¢: R> R be a C*-mapping, ¢ = 0 locally ab-
out 0 and ¢ == I locally about I, 0< 4 {1 elsewhere. Then put
c(t)=x for t<0, c(t)=xy for ty<t,
o(t) :"rﬁ‘((t’tn+1)/(tn'tn+1))'(xn.xnri-l) RS

fore, ,,<t<y,.

2
1.4. COROLLARY.If ¢> 1 and (x ) is q' -falling to x, then there is a

(®-curve ¢ with c(qg") = x and ¢(0) = x.

1.5. DEFINITION. Let ¢™I7 denote the lcs E equipped with the final

topology with respect to all C*-curves R » E.

1.6. A curve c: R > [ is said to be a Lipschitz curve if the set

[ct)-cls)y 25}y
t-s

is bounded in FE. Let N denote the one-point compactification of N.
With these notions, we have :
LEMMA. The final topologies with respect to the following sets of map~
pings into F coincide :

C™(R, F), Lipschitz curves, Mackey sequences (considered as
mappings N _ » E), n-falling sequences (for any fixed p),

{ EB(" E, B bounded absolutely convex in E },
So, in particular, ¢®E is the topological direct limit of all the

spaces E.

The proof consists of showing that the adherence of a set A in E

U f(closure of f"1(A))
/
is the same for all these mapping classes.

1.7. A circled set U (i.e. x¢U implies [-1,1].xC U) in E is called

bomivorous if U absorbs each bounded set (i.e. each BC A. U for some ).

LEMMA. Let U in E be circled. Then the following properties are equi-

valent :

1. U is bornivorous.
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2. Forall B (asin1.1) UC EB is a zero-neighborhood in EB‘
U absorbs each compact set in E.
U absorbs Mackey sequences.

U absorbs 7-falling sequences (any fixed ).

NV N

U absorbs c([-1,1]) for all Lipschitz curves c.
U absorbs c([1-,1)) forall C*-curves c.

-~

1.8. COROLLARY. Let f: E* 5 F be a k-linear mapping between Ics. Then
the following properties of [ are equivalent: ‘
1. [ is bounded (i. e. maps bounded sets to bounded sets).
2. Forall B in E the mapping E‘Ble - Ek -{F is continuous.
. [ maps compact sets to bounded ones.
. [ maps Macke'y sequences to bounded sets.
. [ maps y-falling sequences to bounded sets.
. [ maps compact pieces of Lipschitz curves to bounded sets.
. [ maps compact pieces of C>*-curves to bounded sets.

. [ maps Mackey sequences to Mackey sequences.

O G0 N AN M B W

. [ maps y-falling sequences to 1 falling sequences.
10. [ maps Lipschitz curves to local Lipschitz curves.

11. f maps C*°-curves to C*-curves.

1.9. COROLLARY. The bornologicalization bE bears the finest locally con-
vex topology with one (bence all) of the following equivalent properties :
1. It bas the same bounded sets as E.
It has the same Mackey sequences as E.
. It bas the same y-falling sequences as E.
. It has the same Lipschitz curves as E.
. It has the same C>*-curves as E.

. It bas the same bounded linear mappings into arbitrary Ics.

NN M A W N

. It bas the same continuous linear mappings from normed spaces to E.

1.10. THEOREM. The category blcs of borological lcs and continuous

linear mappings is a symmetric monoidal closed category with unit R,

i.e. L(E, F) with a bornological topology described below satisfies:
L(E®QF,G)=L(E,L(F,G)),
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 9

EQF =FQE, (EQF)RGC=EQ(F®G), EQR=E,
where EQF is the tensor product, suitably topologized.

L(E,F) is the space of all continuous (= bounded) linear map-
pings from E into F, equipped with the bornologicalization of the top-
ology of uniform convergence on compact pieces of C®-curves. On EQF
we put the following tdpology: consider C®-curves c;: R » E, cy: R+ F;
this gives a curve R > E®F . Each absolutely convex set in E® F absorb-
ing compact pieces of such curves is then a zero neighborhood. This gives

a bornological space, and all the properties hold.

1.11. DEFINITION. A sequence (xn) in E is called a Mackey Cauchy
sequence if there is some bounded set BC E such that (x,) is a Cauchy

sequence in the normed space E.

LEMMA. Let (xn) be a sequence in a lcs E. Then the following proper-
ties are equivalent :

1. (xn) is a Mackey Cauchy sequence.

2. There is a double sequence (tmn) in R, t., %0, t
that (xm X )/tmn is bounded.

mn > 0, such

3. (x,-x, )mn is Mackey convergent to 0.

1.12. DEFINITION. A lcs E is called C®-complete if each Mackey Cau-

chy sequence has a limit in E.

1.13. THEOREM. The following properties of a lcs E are equivalent:

1. E is C*®-complete.

2. If (x,) is bounded in E and \ = (An) ¢ 11, then the series zknxn
converges in E.

3. If B is bounded, closed, absolutely convex, then EB is a Banach
Space.

4. For any B there is a B' such that BT B' and Ep, is a Banach
space,

5. Any continuous linear mapping from a normed space N into E has
a continuous extension to the completion N of N.

6. The closed absolutely convex bull of a Mackey sequence converg-
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P. MICHOR 10

ing to 0 is compact.

7. Any Lipschitz curve in E is locally Riemann integrable.

8. For any ce CP°(R,E) there is a de C¥(R,E) with d' =c.
(IIxistence of antiderivatives)

9. If E is a topological linear subspace of F, then E is closed in
c>F (cf. 1.5, 1.6).

10. E is a c®-closed linear subspace of a C=-complete Ics.

1.14. REMARKS. 1. Any sequentially complete les is C™-complete (cf.
1.12), but not conversely.

2. E is C™-complete iff its bornologicalization hFE is C™-complete,
since this property depends only on the bounded sets.

3. If E is C®-complete, then bFE is barreled (for itis a direct limit
of Banach spaces then). Then even ([ ,o(E,E")), l.e. E with the weak
topology, is C*-complete, since in barreled spaces weakly bounded sets
are bounded and so b( FE,g(E,E"')) = bE . Now use 2. ‘

4. The full subcategory of C*-complete Ics is epireflexive in lcs and
closed under formation of direct sums and strict inductive limits. The C*-
completion of E is the closure of E in ¢™([7).

5. If E is bornological, then its C™-completion is bornological too.

1.15. THEOREM. Let E be a lcs. Then the following properties are equiv -

alent ;
1. FE is C®-complete.
2.1f {:R" > E is scalarwise Ck-, then [ is (,’k‘ for k> 1.
3. 1f c:R» E is scalarwise C™ then c is differentiable at ().
Here a mapping /: R" » [[ is called ck- if all partial derivatives
up to order k-1 exist and are locally Lipschitz. [ scalarwise C%* means

that Ao/ is a C%function R? > R forall A ¢ E'.

1.16. DEFINITION. Let £, F be lcs. A mapping f: F » F is called C*™
if foce C®(R,F) foreach ce C*(R,E), i.e. if
/. C®(R,E) » C*(R,F)

makes sense.
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 11

Let C*(E, F) denote the space of all C*-mappings from E to F.

Then we have
C*®(E,F)=C>®(bE,bF),

since the C™-curves depend only on the bounded sets (cf. 1.9.5). Cons-
tant maps are C* ; multilinear mappings are C*™ iff they are bounded by
1.8. Clearly composition of C*-mappings gives again a C*-mapping. For
E = R" we get the usual C®-mappings as is shown by the following lem-

ma. Later on, we will see that the differential operator
d:C*(E,F)» C®(E,L(E,F))

exists and is linear and bounded. But C*-mappings need not be contin-
B

uous (they are continuous in the ¢ *-topologies).

1.17. LEMMA. Let f: R® » F, where F is C>*-complete. [ is C™ iff all

A . , a , .
partial derivatives g—‘a_‘l; R"” » F exist und are continuous.
x

This is true if F is not C®-complete, with a more intricate proof.

PROOF. If f: R” » F maps smooth curves to smooth curves, then for all
A ¢ F' the function Ao f: R? » R maps C™-curves to C®-curves. By the
beautiful theorem of Boman this suffices to see that A of is a C*-map-
ping in the usual sense. So f: R” » F is scalarwise C™, hence C™ in

the usual sense by 1.15.2.

. 1.18. Topology on C™® (E, F).

We equip the space C* (R, F) with the bornologicalization of the
topology of uniform convergence on compact sets, in all derivatives separ-
ately. Then we equip the space C*(E, F) with the bornologicalization
of the initial topology with respect to all mappings

c*¥: C®(E,F)» C*(R,F), c*(f)={foc forall c¢e C*(R,E).

1.19. LEMMA. I} F is C>*-complete, then C* (E, F) is C>®-complete too.

The proof is decomposed in the following steps:
1. Let X be a set, let B(X, F) be the linear space of all bounded
mappings X » F (i.e. f(X) is bounded), equipped with the topology of
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P.MICHOR 12

uniform convergence on X. Then B(X, F) is a C*-complete Ics.

2. Any product of C*-complete spaces is C*-complete.

3. C(R,F), the space of all continuous mappings from R to F, is
a closed linear subspace of the product Ezl B([-n,n],F).

4. C®(R,F) is a closed linear subspace in [IC(R,F), via
. n
c b (c(”)).
5. C®(E, F) is a closed linear subspéce of ol C>*(R, F).
ceC(R,E)
1.20. LEMMA. Let E, F be bornological spaces. Then we bave: ]
1. L(E, F), with the topology defined in the proof of 1.10, is a clos-
ed linear subspace of C*(E, F), bornologicalized.
2. If F is C*®-complete, then L(E, F) is C®-complete.
3. If E is C*-complete, then a curve c: R>L(E,F) is C*® iff
tboc(t)(x)isaC™curvein F forall x ¢ E.

1.21. THEOREM. The category of all C>*-complete bornological lcs and
C>-mappings is cartesian closed, i. e. we bave a natural bijection :
C®(EXF,G)= C®(E,C™(F,G)).

PROOF. The natural bijection is defined as follows:

v

C®(EXF,G) C®(E,C®(F,G))

~

where

[7(x)(y)={f(x.y) and g(x,y)=g(x)(y).
This is clearly natural and we have to show that it makes sense. It is first

proved in the case E = R = F. Using this result, the theorem is proved as

follows :

Let f¢ C*(E,C®(F,G)). Then for all Cpe C*(R,E) we have
/OCE:C‘”(R,C“'(F,G)). For all cFeC”(R,F),themapping
C; cC®(F,G)» C>®(R,G)

is linear and continuous by the construction of the topology on C*( F, G ).
socfofocg:R>C™(R,G)is C®. Using the above result, we see that

the mapping

7%



A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 13
(c;ofocE)":/o(cEXCF):Rz—)G
is C>?, so
fo(cgXcp)odiag: R>R?> G
is C*. Each c¢ C¥(R,EXF) is of the form
(cEXcF)oa'iagz(cE,cF),
so we conclude that f: EXF » G is C* .,
On the otherhandlet g ¢ C®(E XF, G). Then for any cge C*(R,E) and
any ¢« C®(R,F) wehave go(cgXcy )e C*(R2,G), so by the above
resule:
(go(cEXcF)) :c{",og ocEeC”(R,C”(R,G))-
So .the mapping

c-:R It C*®(R,G)
E°CE R o (R P (

is C* and has values in the closed linear subspace C*(F, G) (see 1.19).

So gocg:R»C®(F,G) is C7, hence g e C®(E,C>*(F,G)).

1.22. COROLLARY. Let all spaces be C*-complete bornological lcs. Then
the following natural mappings are C* ;

ev: C®(E,F)XE-F, ev(f,x)={f(x),

ins: E> C®(F,EXF), ins(x)(y)=(x,y),

" C®(E,C>®(F.G))» C®(EXF,G),

V:C®EXF,G) s C®E,C®F,G)),

comp: C*°(F,G)XC®FE,F)» C®E,G),

C>*(-,-): C®(F,F")XC®(E'",E)» C®(C*E,F),C*(E", F")
H:HC”(EI.,Fi)a Cw(ﬂEi,ﬂFi).

1.23. COROLLARY.
. C®(E,C®(F,G)) » C®(EXF,G)
is a linear isomorphism of topological vector spaces.

1.24. REMARK. The (bornologicalized) topology on C*( E, F) is uniquely
determined if cartesian closedness is asked for: Let C:°( E, F) be equip-

ped with any locally convex topology such that

C®(R,C®(E,F))=C®(RXE,F)
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P, MICHOR 14

' as sets, then bC;"(E, F)=C™®(E, F). For we have
C”(R,C;"(E, F)) = C*°(RXE,F)= C®(R,C*(E,F)),
so C;"(E, F) and C*(E, F) have the same C*-curves and thus the same

bornologicalizations by 1.9.

1.25. THEOREM. Let E, F be C™-complete bornological lcs. Then the
differential operator d: C®(E,F)» C®(E,L(E,F)) exists and is lin=-

ear and bounded (so continuous), where

“ df(x),v:llm_&.i.wm
t-0 t

PROOE. Consider 4" " C”(E,F)XEXE » F, given by
A (1. x,y)=lim JCxHEY)-f(x) —d | fret1y),
(1 y) t-ﬁﬂ(; t dzlo ! Y
which is well defined.

1. It is first proved that 4°" is C> . Hence, by cartesian closedness:

d*: C®(E,F)XE » C*(E,F)
is C™ .,
2.d(f x): E» F is linear forall ¢ C*(E, F), x¢ E. To prove

this, for v, w ¢ E consider the C*-mapping:

RZ5F: (s,t) b /(x+sv+tw)

and use 1.17 to compute

d(/"‘)(”*’“’)=Z—ti0f(x+tv+zw) =

=0 a. =
aslof(x+sv+0w)+ atlol’(:c+0u+tw)
= d(f.x)(v)+d(f.x)(w),
d(/,x)(rv)z-j—t|0f(x+trv) =’-"§7|0/(x+tv) =r.d(f,x)(v).

So d(f,x)eL(E,F) since it is continuous by 1.8.11.
3. L(E,F) is a closed subspace in C*(E, F) by 1.20.1.

d:C®(E,F)XE » L(E,F) » C®(E,F)

is C*, so c?:C”(E,F)XE-»L(E,F) is C™ since the topology on
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 15

L(F,F) is the bornologized subspace topology from C*(E, F). Then by
cartesian closedness again d: C®(E,F)» C*(E,L(E,F)) is C*.

1.26. PROPOSITION (Chain rule). Let f: E > F, g: F+ G be C*-map-
pings between C>-complete bornological Ics. Then gof is C™ and
d(gof)(x)=dg(f(x))odf(x).
The proof twice uses the following

SUBLEMMA.If c¢ C*(R,E), then foreach [ ¢ C*(F,F) we have
Ly (foc)=df(c(0))(c'(0).
PROOF. I n general we have

(1) -c(0) o (! oris)as
t v '

which is C*™ as a function of t. So the curve
t b df(c(0))(cltl=c(0))
t

is C™ by 1.8.10.
df(e(0))(e'(0))=d[(e(0))( lim c(t)-e(0),
- t
:tli”(l) d}’(c(O)(C_(_flt;i(_Q_)))

= lim lim L

(fle(o)+s€(t)-cl0)y_trcc0))).
t>0 s-0s t

'Note that the last expression is in C*(R?, F) as a function of (s, 1),
for it may be written as
Ta7 7 1
f 3__[_ (t,s.v)dv, where f(t,v) :=f(c(0)+v[ c'(tu)du),
and clearly fe C*®(R?, F). So the double limit of the expression above
can be computed along any curve in R going to 0. We compute it along

(t,t) for t > 0, and we find that it is equal to
tlién %—(f(c(()),u;c_u)_-_%ﬂ))-/(c(on) =
> t

d

dtlo(/oc)(t)~
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1.27. REMARKS. 1. In general a C™”-mapping f: E » F is not continuous.
This cannot be avoided if one wants cartesian closedness. Burt clearly
f:c®E s> c®F 1is continuous, so f: E» F is continuous if ¢ E = F
(e.g. if E is a Fréchet space, or has the property that any sequentially
closed set is closed (sequentially determined)).

2. The notion of differentiability C™ of Kriegl is weakerthan the no-
tion C7 of Keller. Since C°c° is the weakest notion with a chain rule, am-
ong all notions that can be described with the use of limit structures, the
notion of Kriegl cannot be described with the use of convergence struc-
tures. But again if ¢ F = F, then /: E > F is C® iff CZ iff C} in the
sense of Keller.

3. The exposition of Kriegl's theory given here follows Kriegl (2, 3|
closely, with a special emphasis on the results needed later, leaves out
all counterexamples and gives some results only in specialized settings

{we have assumed C*-complete bornological whenever it simplified proofs).

2. PREMANIFOLDS AND PRE-VECTOR BUNDLES.

2.1. DEFINITION. A premanifold M is a set of data as follows:
(M1) Two sets M, TM and a mapping ry : TM > M such that

my (%)= T M

is a C*-complete bornological lcs for each x ¢ M. It follows that 7y is

surjective since 0 ¢ T M for each x in M.

(M2) A subset S(R,M) of MR = Set(R, M) such that co/e¢ S(R,M)
for each ceS(R,M) and [e¢ C”(R,R), containing all constant map-

pings R » M. Elements of S(R, M) are called smooth curves in M.

(M3) For each t ¢ R, a mapping 8, S(R,M)->TM such that:
Ty od,(c)=c(t), ceS(R, M),

5z“°f):§7f“)-5m(c)' ceS(R,M), fe C*(R,R),
St(c) = Oc(z) for all ¢ implies that ¢ is constant.
§,(c) is called the differential at t of the smooth curve c.
(M4) A mapping
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Pt=PT", S(R,M)XR>L(TM, TM) .= U L(TM TM)
x, v eM :
such that

Ptic,t)e L(TC(O)M, Tr:(z)M) for all smooth curves ¢ and all ¢ in R,

Pt(c,0) = IdT M for all smooth curves ¢,
c(0)

Pt(c,f(t))=Ptl(cof, t)oPt(ec,f(0)) for fe C®(R,R),

Here L (T M, TyM) denotes the space of all continuous linear mappings
T M- T),M. The mapping Pt is called parallel transport. It follows that

Pt(c,t): Tc(O)M > TopM is a topological linear isomorphism with in-
verse Pt(c(.+1t),-t).

(M5S) (Soldering) For each ¢ ¢ S(R, M) the mapping
t s Pi(c, 1) 1(B,c) = Pe(c(.41,-t)(5,c): R T oM
is a C*-curve in the bornological lcs Tc(O)M'
(MG) A mapping Geo™ : TM > S(R, M) such that:
GeoM(t. vy )(s)=GeoM(v_)(t.s), 5 GeoMv ) =Pi(GeoM(v ), 1),
M
— M
5, Geo (v, )= Pt(Geo (vx), t)(vx )
M : : . M

Geo (5z (yeoM(ux))(S) = Geo (vx}(s+t).

R EMARK. (MG) implies that 3, : S(R, M)-> TM is surjective, since
BO(Geo(vx)) = Pt(Geo(‘vx), 0)(v ) =v_,
8{((;60(‘11,()(.-[)) :50 Geo(ux )= U

2.2. Let M be a premanifold. The natural topology on M is the final top-

ology with respect to all smooth curves

c:R->M, ceS(R. M),
i.e. the finest topology such that all ¢ are continuous. In general, this

topology is not Hausdorff.

2.3. EXAMPLES. Any paracompact smooth finite dimensional manifold in
the usual sense is a premanifold. For let 7y : TM » M be the tangent bund

le, let S(R,M) be the space of all smooth curves, let
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-4 .
5,fe) "";‘;C-f”‘ TeepM s

then choose a complete Riemannian metric g on M (which exists by the re-
sult of Nomizu-Ozeki or Morrow), let V denote its Levi-Civita covariant

derivative, let Pt be the induced parallel transport,
Geo(vx)(t) = exp(t. vx).
Then (M1)-(MG) are satisfied.

2.4. REMARK. Instead of (M2) consider the following condition :

(M2') There is a subset S(R, M) of MR such that cofe S(R,M)
for all c¢ S(R,M) and f: R > R any affine mapping (polynomial of de-
gree < 1).

Adapt (M3) similarly. This is something to be called a geometric space.
Any complete Riemannian manifold would then be a geometric space, with

S(R,M) the set of all geodesics.

2.5. DEFINITION. Let M be a premanifold. By a pre-vector bundle (E ,p,M)
we mean a set of data as follows:

(VB1) E is a set, p: E > M is a mapping such that p"1(x) = E,
is a C™-complete bornological lcs for each x in M.

It follows that p is surjective, since 0, ¢ pl(x).
(VB2) There is a mapping
E .
Pt - S(R,M)XR-L(E,E)=: U L(E,. Ey)

x,yeM
such that: '

E E =
P: (C.'t)eL(EC(O)'EC(t))’ Pt (c,O)—IdEC(O).

PtE(c,f(t))=PtE(cof,t)oPtE(c, f(0)).

Clearly PtE(c,t): Ec(O) > EC(” is a topological linear isomorphism with

inverse

PtE(c, )l =PE(c(. +1),-t).
Note that / TM, my M) is a pre-vector bundle for each manifold M.

2.6. THEOREM. If "E,p,M) is a pre-vector bundle over a premanifold M

then the total space E is itself a premanifold in a natural way.
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PROOF. (2.7) Define

“const

S o ofRLE) = U C®(R,E_),
xeM x

where the union is disjoint; this is the set of all «vertical» smooth curves
in E. Then consider the following pullback in the category Set of sets

and mappings :

. pry
S(R’M);;Sronsr(R’h) Sconst(R’E)
pry | p

' ev
S(R, M) 0 M

U/se the parallel transport PtE of the pre-vector bundle E to define

E
(2.8) Cart " S(R, M) XS (R,E) -~ Set(R,E)=ER,

const
CarzE(cl,c2)(t) o= PtE(cl,t). o ().

Then the following diagram commutes :

SOR M) XS o0 (RLE) o Set(R,F)
prl Set(R,p)
S(R,M) incl Set(R,M).

Claim: The mapping Cart = CartF is injective. Suppose
Cart(cl , c2) = Cart(d1 , d2),

then €, = dZ by the diagram above, so

PtE(CI,t).cz(t)=PtE(CI,t).d2(t),
hence ¢, (t) = d2(t) for all ¢, since PtE(c] , t) is an isomorphism.
(2.9) We define S(R,E) =: image of Cartf in Set(R,E).

(The name Cart was chosen in order to indicate that it is a sort of «cart-

esian » decomposition of the smooth curves in S(R,FE)).
Claim: Cart{c,, cy)of = Cart(c,of,PtE(c; f(0))ocyof).

So (M2) holds. (We write Pt instead of PtEwhen no confusion arises.)
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Cart(cl,c7)(f(t)):Pt(Cl,/(t))-C2(f(t))=
:Pt(clof,t)oPt(Cl,/(O)),CZ(f(l)):
= Cart(c of, Pt(c;,f(0))ogc, of )(t).
Consider the following equivalence relation on S(R, E) :
Cart(c, . c,) ~ Cart(d ,d,) iff §,c, =3, d., c,(0)=4d,(0),
‘ d

d
—_ 0 __._d O .
P 2( ) It 2( )

(2.10) We define TE :=S(R,E)/~. Then we have mapp.ings
)
S(R,E) O ,S(R,E)/-=TE

KA

E

Put
Bt: S(R,E)->TE, Btc =8O(c(.+t)).
Then clearly TE oSl =ev,.

(2.11) Claim : There is a canonically given bijective mapping

DecE. TE > TMXEXE,
M M

called decomposition, fitting commutatively into the following diagram:

Cart o

S(R,M)ﬁsconst(R,E) S(R,E)
80><50I B
E -
TM;;EXE Dec TE

M /
pr TE
S

Here 5, S (R,E)» EXE is given by

const
5.(c)=tc(t), Le(e)).
t dt
This is seen as follows: By the definition of the equivalence relation in

(2.9) we see that the mapping (3, xéo) o(Cart)! factors over 8y

S(R,E)> TE to an injective mapping Dec = DecE which is surjective
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too. As an immediate application we see that
T, E =ppltu, ) =T Mx{u }xE,
(via Dec) is a C*-complete bornological lcs, as required by (M1).
(2.12) Claim: Dec OBt oCart(cl. c2) =
.:(SZCI,Pt(CI,z).CI(z),Pt(cz,t),%-;c2(t))
= (1d_, XPt(c, , t)XPt(c ,t))o(d, X5, )(¢c, c,).
Dec °5t oCart(r:I,c2) = Dec 080 (Cart(cl,cz)(.+t)) =

= Dec:ob‘o(Pt(cl,t+.).cz(H-.))

Decod, (Pt(c,(t+.),.)oPt(c,.t)c,(t+.)) by (VB2)
0 1 1 2

DeC080 oCart(cl(H-.), Pt(CI,t)cz(t-{n ))

{Soxéo)(cl(t+.), Pi(cpt)ey(t+.)) by (2.11)

1

d
(Bt CI,Pt(cl,t)c2 (t), 'd_;lo Pt(cl,t)c2 (s+t))
= (8, ¢, Pt(c . t)e,(t), Pt(cl,t).%;cz(t)).

By (2.11) the fibre scalar multiplication in the bundle (TE,mg,E) is
given by

t.(Dec)'l(ux,vr,wx):Dec'l(t.ux,vx,t.wx).
(2.13) Claim: For f¢ C*(R,R) and ¢ ¢ S(R,E) we have
5,(cof) = g—;f(t).b‘/(”(c)‘
If ¢ =Cart(c;, cy) =Pt(c;, . )ocy(.), then
cof=Cart(c, c,)of = Cart(c of Pt(cy [(0))oc,0f)
by (2.9),
Dec o8, (cof)=Decod oCart(c;of Pt(c; . [(0))ocyof)

:(BE(CIOf)’ Pt(Clof,)’)oPt(rl,/(()))oc‘zo/(t),

Pi(cof ). L {Pr(e [(0)) 3 ([(£))})

= (f7(8).8,0,y(cq ) Pe(ey f() ey (f(0), [ (1) Peq. f(£)). c([(1))
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oo <))

(2.14) Claim : Let ¢ ¢ S(R, E) be such that Slc = Oc(‘) for all ¢ in

= Dec(/'(t).(B/(t)Cart(Cl,62))) =Dec(f'(t).8

R. Then ¢ = constant. Let ¢ = Cart(cy, ¢, ). Then

— d
Decob‘toCart(c],c))m(Stc]. Pt(c],t)cg(t), Pt(C]'t)ZC_?(”)

:Oc(l):(Ocz(t)'Pz(Cl'”'C.?(t)'oc](t))'
So 81 €, = Ocl(t) for all ¢, so ¢, = const. by (M3) for M, and

d———C7(I):0

for all ¢,
dt

51(0)
so ¢2 = const. in ECI(O)' so finally ¢ = const.
All requirements of (M 3) are satisfied now.

(2.15) Define

Pt C = pUTE g E). S(R,E)XR » U (L(T, E.T,E) =L(TE, TE)
by : o
Dec(PtTE(Carz(cl,c2),t).(Dec,)'I(ux,vx,u‘x)) P =
= (Pt™(c 1) u , Pt(c; t).cy(t), Pt(c, . t). w )
:(’P:TM(CI,r).ux,Carr(cl,cz)(z),Pz(cz,t).wx).
Claim: PtTE , so defined, satisfies all requirements of (M4).

PtTE( c,t): Tc(O) E > Tc(” E is linear and continuous by construction.

PtTE(c,O),Dec'l(ux,ux,wx):
:DeC'I(PtTM(cI,O).ux,c(()):vx,Pt(cl,()).wx)

= Dec-](ux,vx,wx).

PtTE ¢ f(1)). Dec ! (ug, vyiw, ) =

=Dec L (Pt™™(c  f04)) u . c(f(1)), Pi(c (e, )

i

-1 TM ™
Dec (Pt (epofit). Pt (c;, f(0)). u,,c(f(t)),

Pt(ciof t). Pt(cy, f(0)). w, )

il

PtTE(clo[.z).DeC'I(PrTM(C] f(0)).u, ,c(f(0)),Pt(c 2 f(0)). w,)

=Pt e, of 1) PtTE (e f(0)). Dect(u, v ).
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Claim : PtTE satisfies (MS).
DeCOBt(c) :DGCOSIOC(JT[(CI,C2) =
=(8,¢,. Pt(c  1). ¢, (), Pt(c, ,t).idi_tcz(t))
by (2.12).
DeCOPtTE(C(. +1), —t).b‘t c =
= DeCOPtTE(Cart(rl(.+l), Pt(cp t).cy( +t)),=t).
(8¢, Pty ). e, (1), P(c,, t).g_tcz(t))
:(PtTM(CI (cHL)i=t). B ey Prle (4 t),~1). Ptc L) cqlt i),

Pi(e (. + t),-t).Pz('cl,z).g_tcz(t))
= (P (e 00T (5cp). e (0)=c(0), 8 c, (1)),

This is a C*™-curve in the bornological lcs
TC(O)E:TCI(O)MX{C(O)}XE
by (M5) for M.
(2.16) Define Geo = GeoE : TE » S(R,E) by the formula
GeoDec'l(u v ,w _)(t)=Cart(GeoM(u_) v +.w )(t)=
— M
=Pt (Geo (ux),t).(vx-{—th).

Claim: Geo, so defined, satisfies all requirements of (MG).
(;eo(t.Dec'l(ux, Vo W, ))(s) = Geo(Dec’l(t. U VbW ))(s)=
= Pi(GeoM(t.u_), s). (v +stw )= Pt(GeoM (u ), st). (v, +stw )

— -1
= Geo(Dec (ux,vx,wx))(St)~
DecorSto Geo o(Dec)'I(ux,vx,wx)=DecoﬁzoCarz(GeoM(ux).vx+‘wx)

= (5,GeoM(u ), Pt(GeoM (u ), t)(v +tw ), Pt(Gedl(u ), t). v )
by (2.12)
= Dec o PtTE(Cart((}eoM(ux),ux+.wx), t). Dec'l(ux, voow,)

= DeCoPtTE(Geo(Dec'I(ux UL w ) t). Dec'l(ux, vow, ).
Geo(d, Geo(Decl(u v, ,w_)(s) =
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= Geo(Dec" 1o Dec 0d, oGeo oDecl (u v w ))(s)
= Geo(Dec'I(5, GeoM(u ), Pt(GeoM(u_), t)(v_+tw ),
Pt(GeoM(u ), t). w )(s)
where we used the computation above,
:Pt(GeoM(b‘tGeoM(ux),s)A(Pt(GeoM(ux),t)(vx+th)
(Pr(GeoM(u ), t)(v_+tw )+ s.Pt(GeM(u ), 1) w )
=Pt(GeoM(ux)(' + t),s).Pt(GeoM(ux),t).(vx-1—th+swx)
:Geo(Dec‘I(ux,vx,wx))(s+t).

QED

2.17. COROLL ARY. For any premanifold M the tangent bundle is a pre-
vector bundle (TM,my, M), so TM is itself apremanifold. In tum we

get the whole sequence of iterated tangent bundles :

- TPy > T"M 5 wee > TM —— TM — M.
m 7 ITM

™M ™

3. SMOOTH MAPPINGS.

3.1. DEFINITION. Let M, N be premanifolds. A mapping /: M » N is cal-

led smooth if there is a sequence of mappings
(T"[),5, with TOf=f and T"[:T"M > T"N

such that for each n the following diagram makes sense and commutes :

(),
S(R,T"M) S(R, T"N)
(a) 5 5
Tntly Tﬂ+1/ THH N

Note that

T _n o1y = Tnfofr'n
T"M T™M

by the following commutative diagram (b), in which the two triangles com-

mute by (M3), so that the bottom rectangle commutes since 80 surjective.
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(T"f),
S(R, T"™M) S(R, T"N)
8y o
(b)y %/ Trtly Ty TN\ ey
%”M "y
T"M " f T"N

Note too that for any smooth mapping /M > N and any ¢¢ R the following

diagram commutes :

(T*),
S(R,T"M) S(R, T"M)
(c) 3, lb‘z
Tn+1M Tn+1f T”+1N

since
8, (T foc)=8,(T " foc(.+t))=T"T1fog,(c(. +1))=T" {05, c.
Note finally that each T"f: T"M > T® N is uniquely determined
by f (since all 0, are surjective) and are again smooth with
TR(TRf) = Th*n)
3.2. LEMMA. Any composition of smooth mappings between premanifolds

is again smooth, each identity mapping is smooth. So we bhave a category

whose objects are premanifolds and whose morphisms are smooth mappings.

This category of premanifolds will be denoted by pM/f.

3.3. LEMMA. If f: M > N is smooth, then T [:T M-> T/(UN is contin-
uwous and linear as a mapping between two C> -complete bornological lcs.
PROOF. Note first that T [ is homogeneous of degree 1:

(T _f)(t.u)

I

(Txf)(l.BOC) for some c ¢ S(R, M) with Soczux,
:(Txf)'ﬁo(f(t-)) by (M3)
:Bof*(c(t.)) by 3.1

i

8o (foc(t.))=t.8y(foc)=1t.(8p0/f (c))=
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=1 (T, [)(8,c) =t (T, [)(u,).
Since T/ is again smooth the mapping T_f: T M~ T/(x)N is C*, by
the results cited in Section 1. Now the Taylor expansion at 0 of T, [ re-
duces to the linear term since the mapping is homogeneous, so T, fis
linear. Since it maps C>-curves to C™-curves, it is bounded, so contin-

uous, since the spaces are bornological. QED
3.4. DEFINITION. Let us denote by S(M, N) the space of all smooth map-
pings from M to N, where M, N are premanifolds.

We already introduced the notation S(R,M) in (M2). That we now

defined the same space is shown by the next lemma.

3.5. LEMMA. Let M be a premanifold. Then the set S(R, M) of (M2)is
exactly the space of all smooth mappings in the sense of Definition 3.1

from the manifold R (cf Example 2.3) into M.
PROOF. Let c: R » M be a smooth mapping in the sense of 3.1. Then
¢, S(R,R)=C>*(R,R)» S(R, M)

makes sense, so ¢ = co IdR = ck(IdR) is an element of S(R, M).

Now suppose conversely that c¢ S(R,M). We have to construct a
sequence of mappings ¢ = T%¢, Tlc, T2¢, ... satisfying 3.1. Let [ be
in S(R,R)=C>®(R,R), then c(f)=cofeS(R, M) by (M2) and

Bgoc () =8y (cof)=["(0).(8,4,¢).
So if we define Tc =T, c: TR - R? 5 TM by

- - . -.d
(Tc)(xl,x2) —xz.(lec) —SO(L(xZ+,x2) = 571|Oc(x1+y1x2 ,
then the following diagram commutes : .
c
S(R,R) L S(R, M)
TR Le M

For the next step we need results and notation from Lemma 3.6 below. Sup-

pose that
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f=(fi.[2)eS(R,TR) = C*(R,R?).
Then the mapping
t b Te(f, (t).fz(t))=§;-io clf (t)+yly(t))
1

isin S(R,TM) by Lemma 3.6 below, and by the same lemma we have

_o 2
5, o(Tc),(f) ~-é—t|05-y-1|0c(/1(z)+y1/2(t))
:%210%710c(/1(0)+y2/;(0)+y1/2(0)+y,y2f_,'(0))
So if we define T2f: T2R =Ré > T2M by

2 -9 | d_. ¢
(T c)(xl,xz,xB,x4) 35,097 |Oc(x1+y1 12+y2x3+y1 y2x4)

then the following diagram commutes:

(Tc)
S(R,TR) * S(R.TM)
(b) 5, 5,
T2R T?c T2M

I f=(f; by I3,/ )¢ S(R,T?R)= C®(R,R%), then

> 2 :(9 d
t l (T<c)(f(t)) 5;;!05;;'05(f](t)+}’1 f_;(t)"‘)’__g /3(f)+}’1 )’2/;(7-‘))

isin S(R,T2M) by Lemma 3.6 below, and
Bgo(T2c)(f) =

- d d d

—'é';lo (9_}’;105;’:1 0 C(/l(t)+)/1 fz(t) +y2 /3(t)+y] }’2 f4(t))

:Q.._. 0_- Q__. 0 . ! ’ 4
7, loay_,lo ayIIO cfp(0) 4y, [1{0) +y [,(0)+ 5 ¥ ['(0)

So we may define T3c: T3R = R85 T3M by

(T2c)((x;)8 =9 9 | @

37,047,097, 10 F1 T T2 P R X F Y2

Ty K T Y Yy Xe YoV Xa Y Yy Y% )

and continue as above. QED
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3.6. LEMMA. Let M be a premanifold. If c¢ S(R,M) and f¢ C®(RF,R)
then the following hold :

%3 b8y (cof( ,x_;_,...,xk)):,.g_x_ cof(O,x2,...,x
1

k)
isin S(R,TM) and depends only on
d
c, [(O.xz,...,xk), b_.i_(o,xz,...,xk).
a_d
x3[-)5-;2:§-1 c°/(0,0,x3,...,x

isin S(R, T2M) and depends only on

L)

ol
c, f(O,O.xB,...,xk), 5£(O,O,x2,x3,...,xk),
1
2
91 (0,0,%5, ... x5), 8L (0,0, x35,.... x4).
ax2 (})xl,r_?x2
.9 k
S .2 cof(0,....0)¢ T M depends only on ¢, f(0),
9%, 9%
!
91 (0,..,0) for 1<I<k, 1<i;<ungij<k.
Jx. ...0x. -7 -t T T

i i

This lemma means the following: If f, ge¢ C™ (R* ,R) and

PROOF. (1) First we put

¢ =Pi(c(.+t),-t)5, c =Pt(c,t)]§, c.
Then § ¢ = Cart/c,c ). Here and below Pt means always PtTM and Cart
;TM

is Car , and a running variable is indicated by an empty place like in

¢! +1) instead of c¢(.+¢t) (to avoid confusion with ...).

(2) O cof(0,xy.ixy) =B (cof( %y .,y )]
ax, 2
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- d
'El() ftixy, oox, ). Sf(O,x_?.....xk)(C) by (M3)
:%ﬁ-(o x2 ‘xk)'(af')O/(O.x2, "k):

1
:ié(o,xz, wxy ). Cart(c, E)([(0, %y, . %)) by (1)
:%(O,xz,.:.,xk).Pt(c,f(O,xz,...,x D). [0, %, x,))

0
= Pt(c, /(o,x2,...,xk)).{%é(o,xz,...,xk). EO/0, %y %))}

=Pt(cof(0, ,x3,...,xk),x2).Pt(c,f(O,O,xB,...,xk)).{...}

=Pt(cof(0, ,x3,...,xk),x2).Pt(CO/(O.O, ,x4....,xk),x3).
.Pl(c,f(O,O.O,x4,.“,xk_)).(...}

=Pt(cof(0, ,x3,...),x2).Pt(co[(0,O, .x4,...),x3),...

a -
..Pt(cof(0,...,0, ),xk).Pt(c,/(O)).{é_i(O,xz ) B[00, %y, )]

( 3) For short we put

Ptf'k(cof,xj,xj+1,..A,xk) o=
:=Pt(cof(0,....0, ,xl.+1,...,xk),xl.)...Pt(co/(O,...,O, ).xk).
(4)cl(xz,...,xk),»:Pt(c,/(O)).{%I(o,x2 ..... x, ). 0100, %, ..., x5, DL,
Then c,: R¥-1 - T )M is a C*-mapping. By (2) we have
(s) g—;]Cof(O,xZ,...,xk)ZPtz'k(co/,xz,...,xk).Cl(xz,...,xk)
=Pt(cof(0, x5 . %), %,) PO *(cof xy, i imy)ci(n, %)

Cart(co (0, X3, cea Xy ), Pt3,k(co / Xgyis X k) c; (, Xgpiis X k))(x2).
So we have proved the first claim of the lemma. We continue:

6y 9_ 9_ CO/(o,o,x3,...,xk)=50(g_x Cof(0, %5 %))

9%, dx 1
:SO° Cart(co [(0, X3 ...,xk), Ptj'k(c.*o/,x3,...,xk).c1(,x3, ...,xk))
= Dec'? o (8, X8y J(co[(0,  %5....), P R(cof, %5000 € (1%g000))
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=Dec’I(5y(cof(0. ,x ....)), PP *(cofixg, ...).c;(0,x3,...),

,17'23’"a cof, R ..5- 0,%5,...)).
(cof x3 ) ('1_( 3
Looking at (2) we see that

(7) 30(00[(0, ,xa,...,xk))rg_;2co/(O,O,xj,...,xk)

— a —
=Pi3kcof x ... P:(c,/(O)).a_i (0,0, % ... ). E([(0,0,%,,...)).

2
(8) Put
2 - - af ¢ o))
cl(xs,...,xk) Pt(c,/(O)).a_x2(O,0,x3,...).r.(/(O,O,xB, ))
Then c? : Rk-2, Tc(O)M is a C*-mapping and we have by (6):
Jd_4d ' -
(9) Dec(_a.;za_’;] cof(0,0,%,,...,%,)) =

3.k 3,k
=(Pt” (cof, xs,,..).c‘?(xj,...), PU (cof xgi)cy (0,55, .. ),

3,k 9
P VX, ). 2 0,x, ,...
14 (Cof XB ) axz C]( x3 ))

=(Pt(cof(0,0, % ,..), x,). Pt4'k(c:>f,x4 ,...).cf(xj,... )
 P(csf(0,0,,x,,...), %), Prék(cof, o) (0,%5,.00),

. Pt(eof(0.0,,x,, ...),x3).Pz4'k(c(:f,x4,...).g_; €100, %5,...))

2
= Dec'1 Pt (Cart(co (0,0, Xy ) Pék(cof, Koo s € (04, %/,000)), x5
.Dec1(Pt4k( ¢ of %), cg(xj, ) PR o, K)o (0,0,%, .0 ),

4,k
, Pt X )9 e (0%, .,
(cof x, G (0 )

2 ?)

where Pt, =PtT"M and where we used Definition (2.15) for Pt T°M
But note that

(10)Cart(cof(0,0,,x,,...), Pté¥(co [oxgoe)iep (0, x00))(%y)

=Pt(cof(0,0, P % ,...),xa ). Pt4.k(¢o/,x4 b ) cI(O,xg, o)

= PzS,k(cO/, Xgien ). ¢, (O,x3 peer ) = Pt2,k((~o/, 0,x3,... )'CI (O,xa.,,.)

:%;l cof(0,0,x5,...,x,) by (5).
Putting (10 into (9) we get:

92



A CONVENIENT SETTING FOR DIFF ERENTIAL GEOMETRY 31

(11)@.. 3__._ cof(0,0,xa,.,.,xk)

% 0%
= mg(%;lco/(o,o, cxy ) xg). Decl (Prhikicof, x ). c2(x,.),
PHER(Cof x ). e (0,05, Prik(cs [,x4,...).g_;2cl(0,x3,...))
= Pt2(g_x_]t70/(0, 0, %, )% ),

Pt (Cart(cof(0,0,0, ,xj,...),Pt5'k(c<>/,x5,...).61(0,0, X)) %)
-1 5,k
. Dec 1 (P¢ (co/,x5,...).cf(x3,...).
5.k
Pt (Cc;/,x)_,..‘).cl(O,0,0,365,...),
PtSk(cof,x.,..).9_ ¢ (0,x,..)) by(2.15)
5 axz 1 3

— d d
= Ptz(;‘]co/(o,o, ,x4,...),x3)APtZ(E?ICO/(O,O,O, ,xj,...),x4).

.Dec'I(Pt5'k(c°f,x5,...). L21(x3,...),

5.k
Pt (cof,xj,...).cl(O,(),O,xs,...),

PtSk(co/, xj,,..).l%Z c,(0.%5,...)) by (10)

— 0 d
= Pt2(5_’_c_1c<:f(0,0. ,x4,...),x3).Pz2(é_}1c 0f(0,0,0, .x5,...),x4)...

d <102 9 :
,,.Ptz(alcof(o,...,o, ),xk).Dec (Cl(xB"")' r:](O),a_’_c.ch(O,xa,...))
by recursion

_p, ok -1 9
= Pt (g;ICof,xa,...,xk).Dec (c;’(xs,,‘.),c1(0),5—2c1(0,x3,.4.)).

. T2M . ],k
Here we have used convention (3) for Pt2 = Pt to define P22 .
(12) Put

. - -1 d '
¢, (x5,...,%,) = Dec (c?(xB,A..),CJ(0),5;26‘1(0,2%,...)),
then ¢, Rk-2 , T, (O)TM is a C*-mapping. Using this in (11) we get:
1

d_d '

(13) r Ty co/(O,O,x3,...,xk)
2 1
k

:Ptg' (%_. cof( x3,...,xk).c2(x3,...,xk))
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- 0 4, k0

= Ptz(axICO/(o, 0, ,x4,,,,),x3).Pt (a--xICc.f,x4,...).c2(x3,...)

=Cart (_‘9 cof(0,0, , x 4’1&(6
2 a o » P}

3 e P g

1C0/, x4,..4). 02(,x4,...))(x3),

which is a smooth curve in the parameter X3, depending only on ¢,

2
/ 3 9/ il
1(0.0.%,...), gél(o,o,x},...), ax2’0’0"‘3"")' g7 3%, (0 055 ).

So we have proved the second claim of the formula. In the formula above

2
Cart2: Cart T°M

(14) Now we put down the general recursion formulas:

¢ (%, %)= Pi(c, /(O)).%é(o,x2,...,xk).E(/’(O,xz,‘..,xk)),
1

[ . —

ch(x v x )= Pi(c, [(0)), % (0,...,0,

l xl+1""'xk)'

'E(/(O""'O'xl+1""'xk))'
for [ =2,3,...,k-1, and

ck=Pi(e,f(0)). 9L (0).8(f(0))e T
dx,
Define ¢ c; forj=2,...,k, l=7+1,...,k by

C(/(O))M'

ci(x],+1,...,xk)

i

Dec, -I(ci g
ec,_l (Cf°1(xf+1' 'xk)'cj.](o)'-é-;.C,‘_](O'xi+1n---:xk))n

[ -
Ci(xf+1""’xk)—

H

-1 J_ .
Dec_ (cf.] (%py g% )ie; (0), alfvi_](o,...,o,xlﬂ,...)),

— - k .
c, = Dec, ;1(ck e, (0, g?kck_l(on.

Then ¢, c’z, cReD TC;‘-J(O) T1*IM are all C®-mappings.

(15) Claim: With the formulas of (14 ) we have
d

d_d cof(0 0, x x, )=
9.9 .2 e 0% xy ) =
9% ax.; ax AL
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— pit+lk,d d )

_pzl (6x71“<§;1 of, xj+1... x)c(xr_i_],.u,xk)
- 0 ad

_Cdrti(g.;j-l...5;160/(0,.‘.,0. ’xi+1""’x/€)’

,Pz;+2.k(§;j.1 , (327‘16 of  Xjpom s %) € (0 Ky gn oo %) (g 1)
This claim proves inductively the lemma (by (3) the expression involving
F'zt;:"'“Z'la depends only on the terms indicated in the lemma). The claim it-
self may be proved by induction. The proof of the induction step is essen-

tially the same as the proof of the second step ((6)-(13)). QED

4. SMOOTHNESS OF CERTAIN STRUCTURE MAPPINGS.

4.1. THEOREM. Let (M Jaed be a family of premanifolds, then aHAM

is a premanifold in a natural way,

T(maumM,)=0 TM,,
aeA ¢ aeA

and each projection prB : HA M, > MB is smooth. Furthermore the couple
ac

( I M_.,pr ) isaproductin the category pMf.
aeA a'ta

PROOF. (M1) Define

T M = ™™
( Ty m

0 M @
acA ¢
Then

-1
)= T M,
vﬂMa (%)) aeA *a

is a C®-complete bornological lcs (at least if card(A) is smaller than
the least inaccessible cardinal number by Section 1 and the theorem of

Mackey-Ulam; if not, one has to take first the bornological locally con-

vex topology on the product).

(M2) Define S(R,IIM ) as the set IS(R,M_); i.e. c=(c, ):
q a o a a
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Ro>MIM_ isin S(R,IIM ) iff each coordinate ¢, is in S(R, M, ).
a
If fisin C*(R,R), then
ro/:(ca)o[:(raof)
is in S(R,HMa) again.

(M3) Define

S(R nM, IS(R, M)
| \ /

8,: 3,
|/ \

T(HMu

Then we have for ¢ and f as above:
§(cof)=§,(c, °H:(Sz(cacf)):(/'(”‘a/(z) €ol
=1 (B yqyey )= 18 By (cg) = [7(1)- By

If b‘tc :Oc(z) for all ¢, then Stca =0 for all t, g, so each .= const

hence ¢ = constant.

(M4) Define

M M M
Per a(c,t):Ptn a((ca),t):.HPt “(ca.z) =

ar, = Topg) (M) > T (M, ) =0T M,

(0) od Ca(t) a

This mapping is continuous and linear. The functional equations of (M4)

are easily seen to be satisfied.

(M5) This can be checked component-wise.
(MG) Put

GeoﬂMa/(u ))(t)=(G Yy
((u, =(Geo “(u )(t))ellM,
then
(‘eoﬂMa((u )) = Ma =
;  )) =(Geo (ua))gHS(R,Ma)_-S(R,[IMQ).
The functional equations for Geo Mo can be checked component-wise.

So 11 M, is a premanifold in a natural way.
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Claim : brg: l'IMa > MB is smooth.

S(R, M) (brg)e S(R,Mg)
5| 5,
|
T 4
(M) (g ) THg
T

So T(prB) «=» prﬂ, and we may iterate.
Claim: (IIM_ . pr ) is a productin pM/f.

Consider smooth mappings f, : P » M., where P is a premanifold.
Since (IIM_, pra) is a product in Set, there is a mapping (f,): P> [IM_,
such that prB o(fa )= /B . We have to check whether (fa) is smooth.

To see this we use the following diagram:

TP
T((f, )

T(HMa)

|
e\ |

S(RTMg) ) TMg

So T(([,)) «=>» (T{,) and we may iterate to get the whole sequence

T"((fg))- QED

4.2. PROPOSITION. Let M be a premanifold, let (E;, p,, M) be pre-vector
bundles over M for i =1, 2: Then the fibre product E, ;(152 is a pre-

vector bundle over M in a canonical way.

REMARK. We are not yet in a position to show that pr,: E, ﬁ E, > E; is
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smooth.
PROOF. (VB1)
(Ep% E,), =(E ) X(Ey)
is a C*-complete bornological lcs.
(VB2) Put

EI 57
sz (c,t)=Pt *(c,t)X Pt “(c.,t):
1 XE2

(Eero)*(Eleqoy = (Er 35 E2)eco) (B3 E2leqy) = (Ep )y (Ex)eey)

which is continuous and linear. The functional equations are easily check-

ed. QED

4.3. PROPOSITION. Let (E,p. M) be a pre-vector bundleand let N be an-
other premanifold, let [: M > N be a smooth mapping. Then the pullback
(f¥E,{*p.N) is a pre-vector bundle over N in a canonical way.

eE p*f E

f*p 12

N

=

PROOF. (VB1)
-1
(1*E), = (f*0) (n)=E,,

is a C®-complete bornological les.
(VB2) Put

f¥E _ p,E . _ _
Pt (c,t)=Pt (foc,t).Efrc(o))_(f*E)cm)»(f*‘E)C(t)—Ef(C(t)).

This is linear and continuous, and the functional equations are easily

checked. QED

4.4. Note that yet we do not know whether certain canonical mappings like
the projection p: E » M of a pre-vector bundle or Dec are smooth -a scan-
dal! It is not so easy to show that these are smooth without a circle con-

clusion, since they are interwoven into the differentiable structure them-
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selves. In order to treat this rigourously we give the following definition :

DEFINITION. Let M, N be premanifolds, let f: M > N be a mapping. We
say that [ is of class ST if / : S(R,M)> S(R,N) makes sense and if
there is a mapping T/: TM » TN such that 8 o/* =Tfody,.

Note that any Sl-mapping is continuous in the natural topologies
of the premanifolds and that T/ is uniquely determined by / and is homo-
geneous on each fibre (to conclude that it is linear as in 3.1 we need mo-

re). Furthermore for any Sl-mapping [ and any t in R we have
8,0/, =Tf0b,.
This can be proved as the same assertions in 3.1.

Let us say inductively that f: M > N is of class s2 if [ is of class
ST and T/ is of class S! too, and that [ is S if / is SI and T/ is
sk*1 | for each finite k. Let Sk(M,N) denote the set of allS’imappings
of M into N. Clearly composites of Sk-mappings .are again sk , so we have

a category pM[k of premanifolds and Sk-mappings.

Note that S is not an analogue of the usual notion CI: an §!
M oQ
mapping has to map smooth curves on smooth curves; on a C™-complete

bornological lcs a S -mapping is already C*; it might well be that in gen-

eral S? equals smooth.

4.5. LEMMA. If (E?, b M) are pre-vector bundles over the premanifold
M, then pr, ,-Elﬁ E2 E, is of class St fori=1,2.

PROOF.
S(RM)XS R,EI)xS R,E2) ———= TMX EIx Elx E2x E2
M const( )M COﬂ.S't( 50X80 X80 M M M
p vy 4
S(R,M)XS (R,EIxE?) 50X % TMX(EIXE?)x(Elx E?)
Oy eonsETT T Y MM My M
e xEg? Elxg2
Cart M 5 Dec M
S(R,ElﬁEz) 0 T(E]MEZ)
(Tory), 5 17’(;"1)
S(R-El) 0 TF! .1 f’r1,23
T CartE! SOX é TDecI:
N 71 0 SYIVECN
SRAM)X S onsiRET) T™y L E
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This diagram commutes :
I.g2
((pry), »Cart M (cpcyies))(t)=
Elxg2
= pr, (Pt M (cl,t).(cz(t),CB(t))))

2
= pr (PEE () t) cy(0), PEE (cp 1) c5(t))

1
:PtEl(cl,t).cz(t)z (CartE OPrI.Z(CI'CZ'CB))(t)'

The rest is clear. So pr is SI. The same for 208 QED

4.6. LEMMA. If (E,p. M) is a pre-vector bundle, then p: E » M is st

PROOF. )
89% 8y
S(R,M)sznst(R,E) TMﬁEﬁE
CartE TDecE
Y N
11\ S(RE) 20 LTE [P
by Tp
59
S(R,M) M

QED

4.7. LEMMA. Let (E?, p;» M) be pre-vector bundles over a premanifold M,

then we have a canonical bijection

T(E!xE?) —~, TE! x TE2,
M (Tp, TM. Tp,)
given by the following diagram : :

T(E! x  E?) TE! X TE?

(05, M.0,) (To; . TM,Tp,)

1

Dec UDecE XDecEz
TMX(El x E2)x(EIx E2) (TMXEIXEI)x (TMXE2X E2)

M~ M MM M M 'TM MM

flit 5 s

TMx Elx EIx E2x E?
M M M M

Look at the diagram in 4.5 to see that this diagram makes sense.

4.8. LEMMA. If (E*, p;» M) are pre-vector bundles over a premanifold M ,

4100



A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 39

Elx g2 b1y £l
(a) PTZ | pl
¥

is a pullback in the category pM/I of premanifolds and Sl-mappz'ngs.

PROOF. Note first that (a) is a diagram in the category prI by T.emmas
4.4 and 4.6. Now let N be a premanifold and consider a diagram of the fol-

lowing form in pM/I :

X 4
oo
‘®) Flx g2 El
N\ M Ty
(b) & N\
\[”’2 ?;
E2 ¥ - M

Since diagram (a) is a pullback in Set there is a mapping (f, g) fitting

commutatively into the diagram. It remains to show that (f, g) is sT,

S(R,N)
\\ \\
! N 1 2 1
S(R’M);;Sconst(R’E )ﬁsconst(R’E )WS(R’M";; Sconst(R’E )
Cart lCart
>0 S(R,EBCE?) S(R,EL)
| 80
H TE!
TN — /p’
. T(p, )
g ! /
T
TE? —— =22, TM :
(el . gk
,E S(R,M)
. TCarl
S(R,M)XS,_ TR, E?)
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Here we used the fact that the innermost square is a pullback by 4.7. Note

that this diagram shows that

S(R,EIXE?) = S(R,E!) x S(R,E?
( % ) ( )S(R,M) ( )

holds. QED
4.9. LEMMA. Let (Ef, p; M) be pre-vector bundles over a premanifold

M, let (Fi, q;» N) be pre-vector bundles over N. Let {: M > N, g E‘ > F?
be S1. mappings such that

El i . Fi
M ! N

commutes for i = 1, 2. Then the mapping

X g, EIxXE2 , Flx F2
. . 8;° 8, M N
is §t.

Use Lemmas 4.5 and 4.8 for the mappings
g obr;: ElﬁEz - El 5 F!

to prove this result.
4.10. LEMMA. Let (E,p, M) be a pre-vector bundle, let N be a premani-

fold and let [: N> M be a S]-mapping (only). Then ({*E,[*p,N)is a

pre-vector bundle in a canonical way, and the diagram

*
[*E ) E
(a) [*p p
N f M

is a pullback in the category pM/I.

PROOF. First we show that (f*E, [¥p,N) is a pre-vector bundle.
(VB1) (f*E), = E/(n) is a C*-complete bornological Ics.
(VB2) For c ¢ S(R,N ) define

Pt/*E(c, 1) = P4E
(Cot) =P Toct) (%) o) = Eyreray) » Egeqryy =(M*Edopy,
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as in 4.3. The functional equations are easily checked.

So by Theorem 2.6, f*E is a premanifold and by 4.6 the projections p and

[*p are Sl-mappings. It remains to check that p*f is SI.

look at the following diagram (b):

To see this

S(R,N()/oevox,M,p)sconst(RvE)%
) "
SR, NDXS, o, (R, 107 ) (0L, SR, MYXS oo (R E)
Cartf*E CartE
S(R,[*E) (2*f), S(RE)
50 XBo| BopBy |8 5o 8o %8,
1
T(f*E)—_— _T*) ___ . TE
Dec/*E DecE\
TNX[*Ex[*E  LIX(B*)X(0*) TMxEXE
/N N M M
TN ></ EXE///T//XI;’;M/,J
(for M,p) M

Now we know that diagram (a) is in pM/I . We show that it is a pullback

in this category. So let P be another premanifold and consider a diagram

of the following form in pM/I :

F= b
F ~
\&’,éj\/‘kﬁ Pk/ E
(c) g
\ f*p p
N f M

Here g, b are Sl-mappings. Since diagram (a) is a pullback in Set by

construction, there is a mapping (g, h): P » [*E fitting commutatively

into diagram (c). We claim that (g, b) is ST, We use the following dia-

gram (d), in which we employ twice the universal property of pullbacks

and we indicate in the diagram why the squares are pullbacks.
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& .
AN y o >
\ S(R,;V)ﬁSconst(R,/'r-E)—!————,kx.(pk/)* S(R,M)MSCMS[(R,I.)
\ {Cart!*E N
;Cart (pk/) \\
S(R,f*E) L S(R,E)
5 A\
\ |
TN EXE
(f*e), (fomMp) M Tfx1dx1Id
\ / “ « * /5
\ 4 TNX[*Ex[*E __TIXP X0 TuxExE|/ ©0
N N M M
\" ‘/ ’ /"_—‘_l%\'rb DelcE
re=- ' T 1
N g s TO/FE) ~TE b,
8, \ .
(T ) Tp
Tg “ A
TN T/ ™
5 , PN |
S(R,N) ¥ ~ S(R,M)
For further reference, we note that
T(f*E)=TN X TE, S(R,[*E)=S(R,N) X S(R,E)
(Tf, TM, Tp) ([, S(R,M).p.)

QED
4.11. REMARK. If (E,p, M) is a pre-vector bundle, then the mapping
DecE. TE » TMﬁEZ;E is an isomorphism between the following two pre-
vector bundles:

DecE: (TE,ng E) > (TMXEXE, pry, E).

In fact we used it to define the vector bundle structure on (T E, mg. E) in
the proof of Theorem 2.6. Clearly the following two pre-vector bundles

coincide

[ TM> EXE 7Y = M - o)
;I‘M&EML,pr_,,E)~(p 7,Mgp“E,p*p_p*‘nM,1:),
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the second pre-vector bundle being given in 4.2. But TM;<4E[>& E is a pre-

vector bundle over M too, applying 4.2 twice. We now want to show that

DecE s actually a diffeomorphism between the two premanifolds.

4.12. LEMMA. Consider TM>A§ E;}F as a pre-vector bundle over M by 4.2,
so it has a canonical premanifold structure by 2.6. Consider on TE the
premanifold structure induced from the pre-vector bundile (TE, wg E). Then
DecE: TE > TMXEXE is a Sl-di/[eomorpbism (isomorphism in the cat-
egory pMf?). §
PROOF. Look at the diagram on page 44. Most of it is trivially seen to co-
mute (all squares involving 8y or 50 ). It remains to check that the poly-

gon on the left hand side commutes. So let

(R,E)

const const

(CI’C2’C3'C4)ES(R’M)ﬁsconst(R’TM)ﬁS (R,E);S

Then writing
Dec = DecE, Cart = CarntE, Pt=pPiE |
we have
((Dec), o CartTE of CartXlso)olso(cy, cyicy.c ))(t)
= ((Dec), oCartTEo( Cartxiso)((c), c5).(cyuc500), ¢, )(t)
= ((Dec) o Cart"E(Cart(c;, c5), Dec'l oy e5(0), e, ))(1)
:Dec(PtTE(Cart(cl.c3),t).Dec'1(c2(t),c3(0),c4(t)))
:(PtTM(cl,t).cz(t),Pt(cl,t).cs(t), Pt(c;.t).c(t)).

On the other hand we have

TMXEXE

Cart M M oIso(CI,cz,c3,64))(t)

TMXEXE .
= Cart(cp (cy ez )(t)=Pt MM (o t) (cy(t), c50t), ¢ (1))

= (PzTM(cz, t).cy (1), Pr(cy ). cy(t), Pt(c . t).c (t)).

QED

4.13. THEOREM. If (E,p, M) is a pre-vector bundle over a premanifold
M, then p: E » M is smooth and
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Dec = DecE: TE = p*TM Xp*E » TMXEXE
E M M
is smooth with smooth inverse.

PROOF. By Lemma 4.12, Dec is sT and Dec'! is s!. Looking at the
diagram in 4.12 we see that
TMXEXE
T(Dec) = Dec ™ M Isoolsoo IsoofDecXDecXDec) o DecT E
By the Lemmas 4.5, 4.8, 4.9, all the mappings called Iso are sT and all
Dec's are SI too, so T(Dec) is sl , so Dec is $2 . The same argument
applies for (Dec) 1. By Lemma 4.6, p: E> M is sT and Tp =pryoDec,
so Tp is S! and p is $2.
By Lemma 4.5, pry. E!xE2,E is ST and
M ElxE?
T(pr;) = DecE1 °opry o3 olsooDec M
which is again s! ”"1.2,3 is s! by 4.5 and 4.8 or 4.9), so by is §2 .
Now consider the situation of Lemma 4.8: if f, g are 52, then ([, g)is
s and T(f,g)=(Tf Tg) via some identifications along Dec and pr
in 4.7 ; since all these identifications are 52 already we see that T(f, g)
is $2. So by Lemma 4.8 itself, (/. g) is §?. So Lemma 4.8remains true
for S‘?, also its Corollary 4.9. But then all components in T(Dec) in
4.12 are 5‘2, so Dec is §3.
But then p: E> M is §3 and we can repeat the argument ad infinitum.

QED

4.14. THEOREM. Let (E,p, M), (F, g, M) be pre-vector bundles and let
[: N> M be smooth. Then the following two diagrams are pullbacks in the
category pM[ of premanifolds and smooth mappings.

EXF bro F fvE__ 0 E

bry 9 f*p 14

E___ b u N f M

PROOF. This was established in the course of the proof of Theorem 4.13
and can directly be read of the diagrams in the proofs of Lemmas 4.10 and

4.8. QED
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4.15. THEOREM. Let (E,p, M) be a pre-vector bundle. Then (TE, Tp, TM)
is a pre-vector bundle too and is isomorphic (via DecE ) to the pre-vector

bundle (TM?:!E;(‘E,prJ, ™).

PROOF. PATE To.TM) g oiven, for

ce S{R,TM) and (u ,v ,w )e TMXEXE
*oxox M M
with c(0)=u_ by the formula:

PecEo Pe(TE T TM) (¢, t)o(DecE) (u =c(0). 4, u,)

=(c(t),PtE(;7M oc,t).vx,PtE(qM oc, t).w)).

This satisfies all requirements. QED
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