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RESUME. On développe une théorie des variétés différentiables
et des espaces fibrés vectoriels, ol les courbes différentiables
prennent la place des cartes et atlas, de sorte que la catégorie
correspondante soit cartésienne fermée. Dans le cas de dimen-
sion finie, on retrouve les variétés usuelles.
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5. PRE-VECTOR BUNDLES IN MORE DETAIL.

5.1. Lemma. Let (E, p, M) be a pre-vector bundle, let Oz : M ~E denote
the zero-section, Og(x) = 0, € E, . Then 0 = Og is smooth.
Proof. Consider the following diagram :

S(R, M)xS_ (R, E
(1d, 0o ev,) Ry M3 consel Ro &)

lCarI:E
SR, M) . Oy S(T, E)
5 5
(a) 0 l 0
™ 10 TE

\ ‘,DeCE
(Id, Qo Ty, O Ty) ™ xME %E
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P. MICHOR 48

So, 0 is §1,
T(0) = (DecB™L o (Id, 0 o Ty,0 o Ty)

is again $! by Theorem 4.13, so 0 is S, sa TO is S2,s0 0is & and by
recursion 0 is smooth. QED

5.2.Lemma. Let (E, p, M), (F, g, N) be pre-vector bundles and consider
a commuting diagram of the form

f
E F
! .

! .
M g N

such that g is smooth and f is fibrewise a C® -mapping between
C*® -complete bornological Ics and commutes with the parallel transports.
Then f is smooth.

Proof. fcommutes with the parallel transports means that, for all ge R,
fe S(R, M), we have

f o = P F (-] o f N F
lEc(O} PtE(c, t) t(g o ¢ t) kc(O) Ecro) ™ qolth

Now consider the following diagram :

gy X fy
S(R, M) % Socpe(R, E) SRy N) xScanst (R, F)
1CartE !CartF
SR, E) £ S(R, F) )
(a) 8gx So ldo 160 Sox 8o
TE Lis TF
[ Dec® lDe

TN XF x F
TMEEEE Tg x (f o pro, d'f oPrz,JiNM M

The first line makes sense because f is fibrewise C”, so
fo : CP(R,E) »C(R, F)
makes sense. The top quadrangle commutes :
CartRg oc;s f o Ut) = Ptflg oq, t)o flcy(t)
= f o PtHcy, t)cyft)} = (F o CartE(cs, cI)).
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 49
So the second line in the diagram makes sense. By d% we mean the "ver-
tical" derivative of f, given by
dF(vys Wi = dIF 2 )V (w,).

It is clear that the outermost quadrangle commutes. So f is §¢ . Now con-
sider the following diagram :

Tf
TE - TF
(b) DecE ™ Tg ™ 3/\ Dec?
™ ﬁEﬁE Ta, (Fo pp, df o pry 3 TN[‘?F);{F
We see that

TF : (TE, Tp, TM) ~(TF, Tq, TN;

is a fibre-respecting mapping which is fibrewise C*® and we claim that it
commutes with the parallel transports : For

ceSIRR M, teR and (w, wge E X E
where x = ¢(0), we have
P:F(g o Cy t) o de(VX, WX) = PCF((_‘i o C,y t) °c C’(f ‘FX)(\«()(WX) =
= d(PtHg oc, t) o f |- Jvd(wy) = difl o PtE(c, D)vi)(w =
e cft)
=d(f |- WP, BV )PtEC, t).w,).
" Bt x “
If we now take ce (R, TM) with
c(0) = uc e TyM and (uy, vy w,) €TM }45 ﬁE’

then we have :

Dect o TF o PEITETD M t) o (DeF ) ux, ve W) =
= DecF o TF o (DecE)Uc(t), PE(To ¢, vy PEG o ¢, thwy) =
= (Tg o clt), f o PE( o ¢, )y, dHPLEm 5 ¢, by, PE(M o ¢ thwy))=
= (Tg oc(t), PLFIg o T o C t) o flvd, Pgom s o ) 5 d'flvg, w)) =
= (Tg o c(t), Pt oTg o ¢, t) o flvy, P o Tg o ¢, t) o dFly, wx)) =
= DecF o PUTF.TQ, M) (Tg , ¢, t) o (DecEIL(Tg o c(0), Fvy), d'Flwe, W) =
=DecF o PL(TF,Tq,IN) (Tq o ¢, t) » TFf o (Dec® Huy, v, )
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P. MICHOR 50

So Tf commutes with the parallel transports, so we may apply the arg-
ument above to show that TFf is SI; but then f is S2and in the same to-
ken Tf is S2, so f is S3 and so on. QED

5.3. Corollary. Let (E, p, M) be a pre-vector bundle. Then the fibre addi-
tion +ﬁ : E x E—E and the fibre scalar multiplication mp: R x E ~E are
smooth.

Proof. +, is fibrewise linear and continuous and commutes with the paral-
lel transport, since the parallel transport is fibrewise linear. So by 5.2,
b is smooth. The same argument applies to

mp
R x E

POIXK\M/

5.4. Let F be a functor from the category BCS of bornological C**com-
plete lcs and linear mappings into BCS , of one or several variables, even
infinitely many (but less than the least inaccessible cardinal), co- or con-
travariant.

E

QED

Examples. Let V, W etc. denote objects in BCS.

L(V, W), the space of continuous linear mappings, with the bor-
nological topology described in §1, is a contra- covariant bifunctor.

V& W, the bornological projective tensor product, described in
§1, is a co-covariant bifunctor.

The last two functors describe the cartesian closed category BCS.

V"= L(V, R), the bornological dual space, is a contravariant
functor.

8 V, the n-fold bornological tensor product, is a covariantn-
functor.

nNv , the n-fold bornological ext%rior product, i.e., the closed sub-
space of all antisymmetric elements in & V, is a covariant n-functor.

Definition. A functor as described above is called a Cm-functor, if for all
objects the mappings

L(V, W) > L(F(V), F(W)), F }—F(f)

(here expressed for a functor F with one covariant variable) are
C” in the sense of §1, i.e., map C®curves to CZcurves.

All the examples above are C”-functors, since the morphism-map-
pings are bounded multilinear mappings or polynomial mappings derived
from bounded multilinear mappings.

C®-functors will play an important role for the theory of vector
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 51

bundles. For pre-vector bundles just functors suffice.

5.5. Theorem. Let F be a functor on the category BCS as described above
in 5.4. Let (ELi, p;, M) be pre-vector bundles over a fixed premanifold M,
one for each variable of F. Then (F(EL); c1), p, M) is a pre-vector bundle
in a canonical way, where the fibre

FEY) ey = F(E e )se1)-
Proof. For the sake of simplicity and clearness let us assume that F has

two variables, one contra- and one covariant, F(V, W), contravariant in
V. Then we put

1 2)- U 1 F2
FEEL E2) = U F(EL, £3),

so each fibre is a bornological C*complete space. So (VB1) holds. Now,
define the parallel transport by

] _
peFEL ) oy = FPE (e, 7L, P, 1) -
1 _ 1 2 1 2 1 22
FEY, E)ero) = F(ELo)p Eoto)) > F(EL ey EXve) = FIEL ED ey
Clearly we have

F(EL, E2)

Pt (c, 0) = F(Id, Id) = Id

and for f e C*(R, R) :
rEl B9 L -1 . E?
Pt ‘ (c, f(t)) = F(Pt™ (c, f(t) ™", Pt~ (c, f(t) =
s FPEe o £, 1) oPETe, L PEc e £, 1) o PE (e, FO) =
- FPEY e, 1)L o PEE o £, 7L, PEC o f, t) o PE(c, F(O) =
FPE (e o £, 2, PEc o f, 1)) o F(PE C, F(O)L PtEc, FO) =
PeF(EL B (oo £, 1) o PLFE B) (o, F(0).  QED

5.6. Example. Consider the functor C(R, ) : BCS + BCS, assigning toeach
bornological space V the space C*(R, V) of all C*-curves in V. This is a
Cefunctor. Let (E, p, R) be a pre-vector bundle. Applying the functor
C™(R, ) to this vector bundle we get the vector bundle

(Sconst (Rs E)y py M)
with the parallel transport
S (R, E)
pt const (c, t) = Pt (c, t),

const(R’ E) 0) = C(R EC(O) ) »CHR, Ec(t)) = Sconst(R: E)c(t)-
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P. MICHOR 52

More generally, we may take any C*-complete bornological space instead
of R to get the bundles (S_ . (V, E), p, M).

5.7. Theorem. Let F be a functor on the category BCS as described in

5.4. Let (EL pj, M;) be pre-vector bundles, one for each variable of F.
Then

(FUE ) ;ep) (p gy JM )

is a pre-vector bundle in_a canonical way, where for x = (x;) the fibre
is given by F((E*))y = F((E,l(l. ).

Proof. Let us assume that F is purely covariant here. Note first that the
product iel'ErMi is a premanifold by 4.1. ce SR, ieHIMi) is given by

C = (Cl-), Ci € S(R, Ml) for all i.
Define parallel transport by
ptFIEY) (¢, 1) = F(PE ey, D)y ©

then by the functor property of F it is clear that (YB2) is satisfied.
(VB1) is clear by construction. If F has contravariant variables too, then

we put PtEi(c , tJ'1 into each contravariant variable. QED
5.8. Example. Let (E%, p;, M;) be pre-vector bundles for i = 1, 2, and
consider the functor L(V, W). Then we get the vector bundle
(L(EL, E2), (p1, p2)s My xM3),

the fibre over (x; xJ being given by

LEL Erx,, xy) = LIEF, EZ),
and the parallel transport being given by

. 2 L - .
ptL(EL, E2) (c)5 &) 00 = P (cy, t) o g o Pt¥(ey, ) e -'-(Eél(t)’ Egz(t))

for ge L(Eéi(o), EgQ(O) )2

5.9. Lemma. Let (E, p, M) be a pre-vector bundle, then
(E (p,M,f)rpr L(E, E), (p, p)y M xM)

is a pre-vector bundle again, since it can be written as a pullback in the
form

pry* EMEE[«}‘(E’ E)
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A CONVENIENT SETTING FOR DIFFERENTIAL GEOMETRY 53

(cf. 5.8, 4.3, 4.2). So it Is a premanifold by 2.6. Then the mapping

ev: E >ML(E~, E)> E
is smooth.

Proof.

ev
E(p,M,ﬁrpp)L(E’ E) —————»F

Is]
pry
Mx M M

and in this fibration ev is fibrewise bilinear and continuous (note that on
each fibre Eux L(Exq,) Ey) we have the bornologicalization of the product
topology), so a C = -mapping. We claim that ev commutes with the paral-
lel transports. For let (cj cy)e S(R, MxM),

ExL(E, E)
B ((cj,co)y v, &) =

ev o Pt
= ev(Ptic,, thv, PtYcpt) o ko Pte, )7 =
= PtB(cy, t) o Ao PtE(q, t71 o PtE(cy, t)v =
= PtE(Cz, BO.v) = PI:E(pr2o (Cl, c2), t) o eviv, N.
So we may use Lemma 5.2 to conclude that ev is smooth. The form of
T(ev) can be read off the diagrams in 5.2. QED
5. 10. Lemma. If (E7, p;» M) are pre-vector bundles for i = 1, 2, 3, then:
(L(El, EJ) ;!(2L(E2, EJ, (b1, p2 Py M1 x Max M3)
is again a pre-vector bundle since we may write it in the form :
pry3 L(EL, EZ)Mlxﬁlzfor?,J* L(E?, E).
Then the composition

L(EL, E?) X L(E2 Ed)~ L(E, B)
is smooth. 2

Proof.

L(E1, E2) JL(E% E3) comp L(EL B
2

Myx Myx M3 P13 - Mpx M3
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commutes and in this fibration comp is fibrewise bilinear and continuous,

so C®. A computation similar to that in the proof of 5.9 shows that comp

commutes with the parallel transports. So by Lemma 5.2 comp is smooth.
QED

5. 11. The covariant derivative. Let (E, p, M) be a pre-vector bundle, let
s: N =+ E be a smooth mapping and put f:=p °s. Then we have the
following commutative diagram

E
(a) > P
N f M

Consequently s is called a section over f. From this we get the following
commutative diagram :

TE

Ts
Tf

e —————eei
(b) TN ™

Y

N M

Definition. In the situation above the covariant derivative of s is defined
by :

Vs := pr3 , DecE ,Ts : TN - E.
Then for u, e T,N we have
DecETs.uy) = (Tr.uy, s(x), Vs.uy).

Of course s ¢ TXN - Ef( is linear and even continuous, since it

x)
is smooth, so maps C ®-curves into C ®-curves, so is bounded by §1. This

notion of covariant derivative of course depends heavily on the parallel
transport of E.

5.12. Lemma. V has all the properties of the classical linear covariant
derivative, as there are :

1. Let s;, s N *E be two sections over f : N *M. Then
s 2'7 s ¢ N *E

is again a section over f by 5.2 and we have
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'\7(5_Z 552) = VsltDVsZ

2. If s is a section over f and ge S(N, R), then g.s = mp(s, g) is
again a section over f by 5.3 and we have

¥g.s) = dg.s + g. Vs, where dg = pr, o Tg: TN >TR= RxR+> R .

3. Vs : TN =+ E induces a continuous linear mapping TN > Exry)
for each x e N.

Proof. 1. Writing Dec = DecZ, we have
V(sy +s)) = pryo Dec o T(s; +s)) = pryo Dec o T(+p) o T(s,, s))
= pryo (dx (+))x (e Dec B T(sy, 5,)
4.=7(+p) o (pr 3xpr3) o (Dec x Dec)(Ts;, Tsy) = Vs; + Vs,
2. V(g.s) = pr3 o Deco T(g.s) = pr3 o Dec o T(m, o (s, g)
= pryoDec o T(mp) o (Ts, Tg)5f3pr3c A o (Decx Id) o(Ts, Tg)
5.5 Pr3 e A(Tp oTs, s oMy, Vs, g o Ty, dg)
s5Pr3o (Tp o Ts, (9.5) oMy, (g o M) s +dg.(s o Tp))
= (g oMy s +dg.(s o Ty = g.Vs+ dg.s

for short. Here, A is given by Dec » T(mp) = Ao (Dec x Id). See 5.2 for
the form of A.

3 has already been proved in 5.11. | QED
5. 13. Let c e S(R, E), then

¢ = Cart(cy c,) for (cj, c3) e SR, M) x S.ppedRs E)

. ODS'!
i.e.,
o(t) = Ptlc,, t).cy(t).

Let 3/3t = (t, 1) denote the unit tangent vector att in R.
Lemma.

Ve.d) =v(Carticy, eN@) = Ptlcy, HIc,(t) = Cartlcs, cy(t)

‘at)’ 1’231)’ I Yqc2 15 Colt).
Proof.
3 )
Ve(z) =V(Cartlq, (57 =

= pr3o Dec o T(Cart(cy, ©2)) o Sldy) = pryo Dec o 84 o Cart(c), o), (Id )=

= pr3o Dec o 8¢o Cart(e, c3) =
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2.5 Pr( 8. ¢ Ptcy By (t), Pt(cy, t). dtcz(t))

= Pt(c;, t).ci(t) = Cart(cy, ch(t).
QED

5.14. Lemma. If s : N~ E is a section over f : N+ M and g : P> N is a
smooth mapping, then %s. g) = Vs 5 Tg.

Proof.
V(ssg)=pry cDece T(s o g) = pr3o Dec o Ts o Tg = Vs o Tg.

QED

5.15. Corollary. If s : N ~E is a section over f : N =M, then for any ¢
in S(R, N), we have

Ts(pc) = SlPt(r o <, et .se().
This is a convenient mean to compute covariant derivatives.

Proof.
VS.(éoc) = Vs o TC-(O, 1) = V(s oC)-(O, 1)

by 5.14 above. Put
coft) == PL(F o ¢, t)L.s(e(t),
Then ¢, R~ Ef(c{o)) . Since

VCart(fo C, Cz): S o CE S(R’ E)’

<, is a C*-curve. Then by 5.13 we have :

Vs o 00, 1) = Us o () = V(Cart(f o ¢, @(55]) =

V Cart(f c2)(0) = c2(0)

T
QED

5.16. Theorem. Let (E, p, M) be a pre-vector bundle with parallel trans-
port Pt and covariant derivative = VE. Then for any ce SR, M) and
vy € E, with x = c(0) the smooth curve

t P> Pt(c, t)v, = Cart(c, const(y))(t)

in SR, E) is the unique solution of the "ordinary differential equation'
q q !

pos=c¢c, s(0=v , Vs=0=0gz coTg
for s € S(R, E).

Definition. Let us call a smooth section s : N+ E over f : N>M paral-
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lel with respect to Pt iff
VS:O:OEofoTTN;

then this theorem says that ¢ |'°>Pt(c, t).v, is the unique parallel section
over ¢ with initial value v,.

Proof.

VPe(e, Jv)(5,) = WCart(c, const(y () =
= Cart(c, const(Q))(t) = Pt(c, £).0, = Q)
by 5.13. So t} Pt(c, t).v, is a solution. Now suppose that s e S(R, E)

is any other solution. Since pos = ¢ we have s = CartE(c, & for unique
¢ e S(R, Ey). But then we have

Oce) = Ts-(52) = T(Cartle, ON(L) = Prce, 1. 5ew

by 5.13 again. But then '(c]l—"té(t) = 0 in Ex for all t, since each Pt(c, t) is an
isomarphism. So

€ =const = ¢(0) = s(0) = vy, so s(t) = Pt(c, vy .
QED

Remark. This theorem might one lead to suspect that the condition

Pt(c, f(t)) = Pt(c o f, t) o Pt(c, £(0))
in (VB2) is equivalent to the following weaker condition :

Pt(c, t + s) = Pt(c(. + t), s) o Pt(c, t)
for all s, t in R. But we have used the stronger condition in the
.given proof of Theorem 2.6 in a very essential way (in 2.9 and 2.13) and
the whole differential structure on E depends on this.
5.17. Définition. Let (E, p, M) be a pre-vector bundle. Denote by

NE) = T(E, p, M)

the space of all smaoth sections of p, i.e.,

(E, p, M) ={s €S(M, E) : po s = Idy) .
Likewise denote by THE) = TE(E, p, M) the space of all s™sections of p-

Lemma. If (E, p, M) is a pre-vector bundle, then TXE, p, M), the space
of all Sl-sections of p, is a bornological C% -complete Ics in the point-
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linear structure and with a naturally given topology.

Proof. By Lemmas 5.1, 5.2, 5.3, the space TYE) is a vector space in the
pointwise linear topology Now we put a topology on TYE). For each
c e S(R, M) consider the linear mapping

B(c) : THE) ~ C®™(R, E¢p) given by  B(c)(s)(t) = Pt(e, t) Ls(c(t)).
Since s © ¢ is in S(R, £ ) and
Cart(c, B(c)(s)) = s o ¢

we see that B(c) (s) is, indeed, a C®-curve in Ecrp). Now equip T 1(E)
with the initial topology with respect to all mappings :

B(c) : THE) ~C "R, E_s) for all ce S(R, M).

This topology is not bornological in general, so we take the associated
bornological topology. The initial topology is locally convex smce all the
mappings B(c) are linear and the topologies an the spaces C* (R, E /¢)
are locally convex. It remains to show that TZ(E) is C%-complete. let
sp be a Mackey Cauchy sequence in Il (E) . Then s, is a Mackey Cauchy
sequence in the initial topology too, since any locally convex topology and
its bornologicalized topology have the same Mackey sequences (see §1).
Since all the mappings B(c) are bounded, they map s, to Mackey sequen-
ces. For ¢ = const(x), x € M,

B(c)(s) = const(sn(x))

in E, , so sn(x) is a Mackey Cauchy sequence in E and converges to some
element s(x) in E, , because E, is C® -complete. Clearly s: M ~E is a
section.

Claim. For c e S(R, M), so c e S(R, E).
For B(c)(sy) is a Mackey Cauchy sequence in C%(R, E crp) J, so it con-
verges uniformly on compacts in R, in each derivative separately, and it
converges to

B(c)(s) = Pt(c, .) Ls(c(.)

since it converges to this limit in the weaker topology of pointwise con-
vergence. S0

B(c)(s) e C (R, Ep)
and the claim is proved.
Dec o 8¢, o €) = (§x8p) o (Cart)™(s o) =
= (§p8o)(c, Ptlc, ) Uspo o)) = (8 P(c, Ble)s ) =
= (80 ¢, Be)(5,)(0), (B(C)(s)0)
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So this last expression depends only on §pc, since the sequence above

depends only on §pc (all sn are $1). But this means exactly that s

is S, and an element of TZ(E). By a standard argument s, - s converges

to O in the initial topology and is even a Mackey sequence in the

initial topology, so it is a Mackey sequence in the bornologicalized top-

ology of TL(E) ; so s, - s converges to 0 in r{E) ,sos_-sin IL(E).
QED n

5.18. Lemma. If (E, p, M) is a pre-vector bundle, then the space T'(E, p, M
of all smooth sections of p is a bornological, C%-complete lIcs in
the pointwise linear structure and a canonically given topology.
Proof. By 5.1 - 5.3, T'(E) is a vector space in the pointwise linear struc-
ture.
Claim. The mapping
T:T(E, p, M) ~T(TE, Tp, TM), s |+ Ts,
is linear and injective. Injective is clear.
Tpo Ts = T(po s) = T(ldy) = Idy, so Ts e I'(TE, Tp, TM).
Note that (TE, Tp, TM) is a pre-vector bundle, it is isomorphic (via Dec )
v (TM xMExME, py, TM) = mE ijn,q‘E =T (E XME)'
For any s e I'(E, p, M) we have
Dec o Ts(uy) = (uy,s(x), Vs.ux)
by 5.11. So
Dec o T(sl b 52) = (Id 4 (s, *p 55) 0 T, V(s +p s2) =
= (Idpy, S;oTy + Sy 0Ty, Vsg + U, =
= (ldppysp o Ty Vsph +pp(ldyys 550w Vsy) = Dec(Tsy +py, Tso)
by 5.2 (a) and the claim follows. Now consider the mappings
T(E, py M)~ I(FPE, 17, TAM) <= TATTE, Tnp, TM),

which give a linear embedding

T (E, p, M) + ﬂlFl(T"E, T, TIM).
n:

The latter space is a bornological c” -complete lcs by Lemma 5.17 above
and the categorical properties of §1. We equip T (E) with the subspace
topology induced by this embedding. This need not be bornological in gen-
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eral, so we consider the bornologicalized topology. It remains to show
that it is C®complete. So let s, be a Mackey-Cauchy sequence in T'(E) ;
then it is a Mackey-Cauchy sequence in the weaker subspace topology,
but this means that T7Msp) is a Mackey-Cauchy sequence in

rL(T"E, T%p, T™\) for each m.

By 5.17 T™s,) converges to an element T in TI(TPE, TMp, T7M) for each m
and from the proof of 5.17 it follows that

T(T™) = T™*!s  for all m.

So s is smooth, is in T(E) . By the same argument as in the end of the
proof of 5.17 we see that s, converges to s in T (E). QED

5.19. Lemma. Let (E, p, M), (F, g, M) be pre-vector bundles over the
same premanifold M. Let f : E~> F be a fibre respecting mapping which
is fibrewise linear and continuous and which commutes with the respec-
tive parallel transports (i.e., ‘

f o Ptlc, t) = PE(c, t)o f,
for all ¢ and t). Then the induced mapping
fo : T(E, p, M) = I(F, q, M)

is linear and continuous.

Proof. Let c e S(R, M). Then B(c) : T(F) + C® (R, Fx) is one of the gener-
ating mappings for the I'Z-topology, where x = ¢(0). For s e I'(E) we have

(B(c)o Fu(s)(t) = PE(c, )7 Lo fo s 0c(t) =
=fo Ptlc, tJ1 o so c(t) = (fy o B(C)(s))L),
where

fo : CT(R, E)> C*(R, F,)

is clearly linear and continuous. So the following diagram commutes for
all ce S(R, M) :

B(c)

rie) C®(R, E)
B(c)

rtF) — C*(R, Fy)

This implies that fy : T1(E) > TX(F) is continuous.
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Now by Lemma 5.2, f : E » F is smooth and a glance at the diagrams
in 5.2 shows that

T
TE - TF
Tpl qu
™ ld ™

is again fibre respecting, fibrewise linear and continuous, and commutes
with the respective parallel transports (given in 4.15). So by the first
part of the proof we conclude that

(Tf), : TYTE, Tp, TM) ~ TYTF, Tq, TM)

is linear and continuous. The following diagram obviously commutes :

I(E, p, M) T r4(TE, Tp, TM)
F, | (Tp),
I (F, q, M) T I (TF, Tq, TM).

We can repeat the last argument and conclude by recursion that
fo :T(E)>T (F)

is continuous indeed. QED

5.20. Corollary. Let (E, p, M) be a pre-vector bundle. Then the covariant
derivative is a linear and continuous mapping

V :T(E, p, M) > T (my*E, mgp, TM).
Proof. Vs =pr3 o Dec oTs, so
V=(pr3 oDec), o T : T(E, p, M) ~ I(TE, Tp, TM) » T(m§E, my*p, TM).

T is linear and continuous by the definition of the topology on T(E, p, M
in 5.18, (pr3 . Dec), is linear and continuous by Lemma 5.19 above, since

Dec pr3
TE TM % E % B ————m}E
|
(a) Tp pr TP
Y
™ ™ ™

is fibrewise linear and continuous and commutes with the respective par-
allel transports. Note that
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(TTM*E, T.fM*p, ™) = (TM ﬁ E, Pr ™)

and the mapping pr; above is actually pry 3 . This comes from the fact
that Vs : TM ~E is a section over Ty, but we look at Vs as a section of
the pre-vector bundle Ty*£E using a universal pullback property. QED

5.21. Lemma. Let (E, p, M), (F, g, N) be pre-vector bundles and let f :
P +M, g: @~ N be smooth mappings, where P, Q are premanifolds. Then
we have an (parallel transport respecting) isomorphism of pre-vector.bun-
dles over P x Q : )

Proof. All three sets are pre-vector bundles over P x Q , they coincide

fibrewise, and they have the same parallel transports by 5.7. By
Lemma 5.2 it follows that the identity mapping is then smooth. QED

5.22. Lemma. Let

£ f F
| i
pl lq
M 9 ~ N

be smooth mappings, f fibre linear, where (E, p, M) and (F, q, N) are pre-
vector bundles. Define the mapping

FiM>LE F) by Fx)=tlg, e LG, Fyx)
Then f is smooth.

Proof. Let
A(C)t) = Ptilgo ¢, t)71o (F |Ec(o} o Pt(c, t)
for ce S(R, M).
Claim. For ce S(R, M), A(c) € Sonst(R, L(E, F)).
By §1 it suffices to show that for each v e E o) the mapping
t | AlE)(V)
is in Cm(R, Fgc(O) ). But this is the case since we have :
A@XE(V) = PE(go o, )™ o F o PE(c, t)v =
= Ptflg o o, tJ1 o Fo Cart(e, const(V)(L).

So the top triangle of the following diagram makes sense :
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SO M) ) Soonse( R, LIE, F))
W’ lCa”L(E, F)
S(R, M (e | SR, LE, F)
& So l l‘so 8y 8,
™_ _ TL(E, F)
\\B\\\ lDeCL(E, F)

(TM TN)MxxNL(E’ F)Mxﬁ L(E, F)

We claim that a mapping B fits commutingly into this diagram.
Let c e S(R,M). Then we have :

DectE: F) gy o () () = (& xBo N(c, g o o), A)) =
= (S0c, Ta-(S90); AC0), | AL,
(2 AN = | (AQOW) =] (PE(g o c, 078 o T o Pie, DV
s=15 VF(80(PE(c, )-v) ¢ 11 5 515" F o (DecJ Boc, v, Qo))

So o .
DeCL”"" F) o 80 o (f)*(c) -

= ((8oc, Tg.(& ), F(c(O), Vf o (DecS (8o ¢, -, Ocro)),
which depends only on §gc. Now put
h:=V fo(DecS? o (Idpy xIdy, O o p) : TM g E = € > F,

then we have a commuting diagram

h
™ mE :TTM*E —_— F
(b) prll q
™ 9o™ L N

of smooth mappings such that h is fibre linear in the fibration given by
the diagram. We can write B as the following sequence of mappings :

(F: i;y Tg)

™ L(E, F) w3y LMy*E, F) % TN

I by Lemma 5.21 above
L(E, F) g (TM % L(E, F)) ><NTN

(TM x TN) oy L(E, F) L(E, F) .
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So we see by diagram (@) that f is s The mapj)mg B (and so T(f) ) is
again st since its components f, h are, so f is S¢ and so on. QED

5.23. Corollary. Let (Ei, pj» M;) be pre-vector bundles for i = 1, 2, 3. Let

f
E' 2 —_— E 3
le lpj
M2 ? M;

be smooth mappings with f fibre linear. Then the mapping

L(EL, )

L(EL ED L(EL, E5)

is smooth.

Proof. The followmg diagram clearly commutes, so by Lemma 5.22 and
5.10 the mapping L(EL, f) is smooth.

(d g1, £2)> F o po)

L(EL ED — L(E!, B2) xL(E2, E3)
L(EL, 1) comp
L(E, )

QED

5.24. Lemma. 1. Let (f, g) : N - E ﬁL(E E) be a smooth mapping, where
N is a premanifold and (E, p, M) is a pre-vector bundle. Then

¥ (q.f) = VHE Blgp 4 qvEf,

2. Let (f, g) : N~ L(E, E2) x L(EZ E’) be a smooth mapping,

where N is a premanifold and (E%, pl, M) are pre-vector bundles for i =
1, 2, 3, then we have

vHEL B (g p) 4 (vHE, B) yUEL, B2 4

ghf + g

Proof. By 5.9 and 5.2 we have the following commutative diagram :
T(ev)

T(Eé L(E, E))
EYL(E, E) |

~TE

Dec lDec
(TMxTM)If (ExL(E E))M%EXL(E )b L TMm 8 ExyE
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where
= (pr2, ev o pr g,d"(ev) o pr3 g 56)
and dv is the vertical derivative. Thus

. ExL(E, E)
VE (ev) = pr3 o Dec® T(ev) =dV(ev) o pr3 4 56 « Dec - .

So for
(ags by 5 Vs xhy 3 Wy k)
we have
(VEeV)(DecEﬁL(E’ E)J”l (@axs by i v, xhy 5 wxs xky) =

= d¥ev)(vy, Sy s %o xK) = k%) +xhy(wx)

since ev is fibrewise bilinear and bounded. Now consider the smooth map-
pings :

N

“9 L exiE B

T~}

Mx M

Dec® oTf = (Th, fo Ty, VEf): TN ~TM xE xE
and
DecL(E: E) Tg = (Th, Tk ; g o T E B g):
TN > (TM 3¢ TM) % L(E, E) 5 L(E, E).

So we can compute as follows :

VE(g.f) = VE(ev o (f, g) = VE(ev) o T(f, q) 7
EX(E, E) EX(E, E) )
I‘ﬁ‘ I‘f{ o T(f; 9) =

EX/(E, E) _ £ )
= VE(QV) s (Dec % ) l-(Th, Tk ; f oy, Go Ty s VOF, VL(E', E) g)

= VE (ev) - (Dec )7L, Dec
= (VHE B ) tfomg) + (go ) (FEF) = VHEE) g p g vFF

in short hand. So assertion 1 is proved. Assertion 2 is completely similar.
QED

5.25. Corollary. Let f : N » L(E, E) be a smooth mapping, N a premani-
fold, (E, p, M) a pre-vector bundle. Suppose furthermore that f(n) is in-
vertible in L(Eplf(n)’ Epzf(n)) for each n e N, and that the mapping

inv f: N~ L(E, E), inv f(n) = f(n) ",

is again smooth. Then we have :
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VEE E (iny £) = -(inv £).(7HE B ) (inv 1),
or
VHE Einy £ ) = ~F(n) "L 9 M B Epgu). f(n)

Proof.
(inv £)(n).£(n) = Idp,s(n) = (1d5S" (pg(n)
in the notation of 5.22.
v B 1)~ op e Pl =, W5 BdE) o Tlpye N(y) =
B -1
= VE(ldE) o (Dect) (Tpy o F)(uy), -, Oplr(n))

ttjgetggnp;{gg; 21fa5.2ii; t(;us is anselement in L(Eplf(n,p, Eplrfn)) which equals
' PPING ¥ p £(n)* 20

] VL(E, E)([dE'," °opjo f) = OL(E, E)° (pl, p2) o f.
0

0= VHE B ((iny f.) = THEE (iny f.r « (iny 1) VHEE)
by 5.24.2, and

vL(E, E) (in\/ f) - -(inV f)~vL(E’ E)f.(in\/ f).
QED

6. FIRST STEPS TOWARDS CARTESIAN CLOSEDNESS.
6.1. Proposition. [f M, N are premanifolds, then S(M, N), the set of all
smooth mappings from M to N, satisfies axioms (M1)-(M3) in a natural

way.

Proof. Put
TS(M, N) = S(M, TN)

(a) T‘S(M,N( ,ﬁM’ W) = Ty
S(M, N)
Then it remains to prove that
-1 B -1 _
T, )L (0 = ()5 () =
={se SM, TN) | 105 = £y o= &M, TN),

. . 3 oo
the space of all sections over f, is a bornological C -complete les. But
we have a canonical isomorphism

SAM, TN) = T (FFTN, f*r,, M)
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induced by the universal property of the pullback :

L I — N

(b) f*TTN T[N

M - N

I'(F*TN, f*my, M) is a bornological C* -complete lcs by 5.18, and we car-
ry its structure over to S¢(M, TN) - the pointwise linear structures co-
incide. So we have proved that (M1) holds.

(M2) Let S(R, S(M, N)) consist of all mappings ¢ : R+ S(M, N) such
that the associated mapping

¢:R x M~ N given by &, m) = c(t)(m)

is in S(R xM, N). So we have bijections :

~

S(R, S(M, N)) S(R xM, N)

7

given by
&(t, m) = c(t)(m) and ¢t)m) = glt, m).

For fe CY(R, R) we have
(g% F(E))(m) = g(f(t))(m) = g(f(t), m) = go (F x Idy)(t, m),
S0

cof =(Co(fxldy) e S(R, S(M, N)).

Here R x M bears the premanifold structure of 4.1. SR, S(M, IN)) cont-
ains all constant mappings, since far g € SM, N) we have :

const(g) = (g o pr.) , where g ,pro € S(RxM, N).
M3 For t e R put
Ap:M> TR xM) = TRx TM = R* xTM, A.(m) = (t, 1 ; Oy,

. A= (const(t, 1) ; 0p) : M > TR xTM.
Then Ag eS(M, TR xTM). Then define

§(c) := TE o Ay € S(M, TN) = TS(M, N),
for ¢ e S(R, S(M, N)).

Claim : HS(M,N)(‘StC) = c(t).

Tsiw, afSeedm) = ()E.Xm) =1 o TE A (M) = Comp, yo A(m)
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= &(t, m) = c(t)(m).
Claim : If fe C(R, R) and c € S(R, S(M, N)), then
Splco ) = FU(E).8p)c.
Brlco AIm) = Tllco £)) o Ac(m) = T(E o (F x Id)t, 1 ; Oy =
= T¢ o(TF xId p)(t, 1 ; Oy = TE(F(E), F'(t) ; Oy =
= TE(F'(E).(F(t), 1 ; Oy)) = FI(E).TC(F(t), 1 ; Oy =
= FU()(TE o Agry) (m)) = (F'(t). Sgre) c)(m).

Claim : If c € S(R, S(M, N)) with 8 ,c = O for all t, then c is
constant.

Oc(t, = (§,clm) = Téo A (m) = Té(Gt(ins(m))),
= § (¢ o (ins(m))),
where ins (m) : R+ R xM is given by ins(m)(t) = (t, m). Now
¢o (ins(m)) e S(R, N), (& o (ins(m)))(t) = &(t, m).
So by (M3) far the premanifold N we conclude that
Co (ins(m)) = const in N, i.e., &(t, m) = C o (ins(m))(t)
does not depend on t. So c(t) does not depend on ¢,
c =const in S(R, S(M, N)). QED
6.2. If M, N are premanifolds, then TS(M, N) = S(M, TN) is again of the
form S(M, P) , so it satifies (M1)-(M3) too. Therefore we may continue
and get the whole sequence of iterated tangent bundles :

cem T S(My N) —— TS(M; N) eee = TS(M, N) —— S(M, N)

u u |

e mSMM, T ON) L S(M, TPN) ... S(M, TN)
So we may speak of smooth mappings between objects of the form S(M,N)
for premanifolds M, N, by just using Definition 3.1.
6.3. Lemma. If M, N, P are premanifolds, then the set S(M, N) x P sat-

isfies (M1)-(M3) in a canonical way, and

T(S(M, N) xP) = S(M, TN) x TP
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is of the same form.

Proof. Look at the proof of Theorem 4.1 and proceed in the same manner.
6.4. Lemma. If M, N, P are premanifolds and f € S(M, N) then the follow-
ing two mappings are smooth in the sense of 6.2 :

£*

S(f, P) : S(N, P) > S(M, P), gl g of,

F, = S(P, £): S(P, M)> S(P, N), qb fo g.

I

Proof. Consider the following diagram :

S(R xN, P) Sdx f, P) ~ S(Rx M, P)
S(R, S(N, P)) S(h Py — SR, S(M, P))
(a) T( )O.A 0 1(50 ldg T()oA 0
TSN, P) — — — — s,P ~TS(M, P
T |

S(N, TP) — S(M, TP)
This diagram commutes :
(8g o S(f, P)(c))m) = T(¢ o (Idg xf)) o Adm) = TC o (Idg xTF)O, 1 ; Q)
= T&(0, 1 ; Ogrp) = TE o Ag(F(m)) = (S(F, TP) o & (c))m).

Therefore Ts(f, P) = S(f, TP) and we may iterate and conclude that
S(f, P) is smooth. Now consider the following diagram :

S(Rx P, X) Fx S(?XP, Y)
b) SR, S(P, X)) 5P, B, ~S(R, S(P, Y))
T( JoAg 150 150 T( JoAo
TS(P, x)______Ti('i’_Q _______ > ISP, Y)
| S, TF) ”

S(P, TX) ~S(P, TY)

Let us check that (b) commutes :
SOGS(P, f)*(C) =‘50((fo 6 )) = T(f o 6) o A{) =

= TF o Tés Ap = TFoSpc = (TF) (8 ).
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Therefore TS(P, f) = S(P, Tf), and by recursion we see that S(P, f)
is smooth. QED
6.5. Lemma. If M, N are premanifolds, then the insertion mapping
ins : M+ S(N, M x N), ins(m)(n) = (m, n)
is smooth.

Proof. We use the diagram :
__»S(Rx N, Mx N)

ins

S(R, M) - X - SR, SN, M x N)

50‘ 150
(a) i
° ™o ] Tns) ____. ~TS(N, M x N)
k‘ns 0

S(N, TM x N) > SN, TM x TN)
This diagram commutes : (ins o ¢)"= ¢ x Idy ,
( 8dins ())(n) = T((ins o ©)7) o Ay(n) = T(c x Idy)(0, 1 ; Q)
= (Te x1Id )0, 15 0) = (Te (0, 1), Q) = (8¢, 0

= ((Id gy x 0y o ins( 8, (c))(n).

Therefore ins isS' and
T(ins) = S(N, Idpy x0y) o ins

is again st by 6.3 and induction, so we may iterate and conclude that

ins is smooth. QED

6.6. Lemma. If M, N are premanifolds, then for any me M the mapping
evp ¢ S(M, N) ~N is smooth in the sense of 6.2.

Proof. Consider the following diagram :
S(R x M, N)

?‘ (ov S(ins(m), N)
S(R, S(M, N)) m’x > S(R, N)
(@ TC)kAt s, 8t
TS(M, N)
S(M, TN) : €Vm N
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Let us check that this diagram commutes :
8t o (evyd(c) =& (evyo ) = & ((, m) = & (€ o ins(m))
= 8 ¢ o Culins(m)) = T oy (ins(m)) = T&(t, 1 ; 0,) = TE o Ac(m)
= ev,(TE o Ap) = ev o & (c).
Note that we used only ins(m): R = Rx M and not ins, and 6.4. If

we putt =0 in (a) we see that ev, is S and T(ev,) = ev,. So by recur-
sion ev,, is smooth. QED

6.7. Lemma. Let M, N be premanifolds, and let (E, p, M) be a pre-vector
bundle. Then for any n e N the space

S(N, M)(evn, XM/ p) E

satisfies (M1)-(M3) in a canonical way, and the tangent space is of the
same form.

Proof. (M1l) Put

(evn, M, p) (T(evn),f)fM, Tp) TE = S(N, TM))

lev,, xm, :/p)TE
i S(N, my) x g
S(N, M) Xy E
Then fevn, M, p)
T4 (F, ve(n)) = (SN, ) x 1e)L(F, vern) =
= {(g, w)e Se(N, TM) x TuE | ewa(g) = Ty(pw } ,

where v = vg(p). This is a closed linear subspace of SAN, TM) x T,E ,
since it is the kernel of the linear continuous mapping

€Vnpo pri - Typ o pr2 : SAN, TM) x T E + Tgp)M.

So it is a bornological C® -complete vector space with the bornologized
subspace topology.

(M2)+(M3) We choose the following setting :

S(R, S(N, M = R N, M S E) = S N, M)xSR,E.
( ( ev“),) >i D SR, (S((evn)*,) (R,);"!) ,p(s’ ) R?ius(n)’zi(sfg,l‘d},p*)
St l5t xS ¢ (T( )oA: )x 8¢
T(S(N, M) x E) = TS(N, M) x TE = SN, TM) x TE
(evn, M, p) (T(ev,), M, 1p) (ev,, ™, Tp)
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It is easy to check that all requirements of (M2) and (M3) are satisfied.
QED

Remark. Since the tangent space is of the same form again we have the
whole tower of iterated tangent bundles and the notion of smooth map-
pings makes sense, as in 6.2.

Note that the proof of (M1l) does not work for a general smooth
f: S(N, P)> M instead of evyp , since we do not know that Tf is fibre
linear (8 surjective depends on Geo in 2.1 and was used in 3.1).

6.8. Lemma. In the setting of Lemma 6.6 the fibred product

S(N, M)(EVn, XM' p) E
has the universal property of a pullback with respect to smooth mappings.
Proof. Let X be a premanifold or of the form S(N, M), or even itself a

fibred product as above, and consider smooth mappings f, g in the situa-
tion of the following diagram :

X
\\ (g’ f) f
AN

“S(N, M) x E pr2 E

(evn, M, p)

(a)

g P P
S(N, M) €Vn - M

Now look at diagram (b) below. It shows that the projections pr; , pry,
and (g, f) are of class S and their tangent mappings are of the
same form. So by recursion all these mappings are smooth. QED

6.9. Lemma. Let (E, p, M) be a pre-vector bundle. Then the mapping

L(TM, TM)pe,L(E, E) — T ((TM 5 E, TM 4 E)

M xM M x M

given by (f, g) b f x g, is smooth.

Proof. J is fibrewise continuous and linear, so fibrewise a C* -mapping,
and clearly commutes with the parallel transports. So we may use 5.2.
QED

6.10. Lemma. Let M, N, P, Q be premanifolds. Let f : P >~ Q be
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smooth. Then the mapping
(. xf): S(M, N) > S(MxP, NxQ)
is smooth.

Proof. Consider the following diagram :

SR x M, N)—(xF) SR xMxP, N xQ)
(a) n A
T()Ao0 SR, s, Ny X P SR, stmxP, Nx Q)
T fo} A
ﬁol léo | T()s A0
(- X Og\. f)

S(M, TN) ~ S(M xP, TNxTQ)

A little computation shows that this diagram commutes. Then (. x f) is
S* and
T(.x f) = (.x Ogo 1)

which is §' too, so (. x ) is S and so on. QED

7. Manifolds, Vector bundles and cartesian closedness.

7.1. Definition. A premanifold M is called a mani&old, if its defining pa-
rallel transport Pt T# and geodesic structure Ged satisfy the following
further requirements (besides (M1)-(M6) of 2.1) :

M7) Pth S(R, M) x R+~L(TM, TM) is smooth.
(M8) Geo" : TM +S(R, M) is smooth.

Condition (M8) is equivalent to either one of the two following
conditions :

expM= ey o Geo¥: TM +M  and (Geol : TM x R>M

are smooth.

The mapping exp = exp! is called the exponential mapping for the
geodesic structure Geo = Geo.

Proof. If Geo is smooth, then by the formula above exp is smooth, and in
turn

(Geo)" = exp oM™ : TM xR +TM > M
is smooth, since by (Mé) we have

(Geo) (v, t) = Geolw)(t) = Geol(t.\)(1) = exp o m My, t).

On the other hand
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Geo = S(R, (Geo))o ins : TM > S(R, TMxR) + S(R, M)

so Geo is smooth if (Geo)” is it. QED

7.2. Definition. A pre-vector bundle (F, p, M) is called a vector bundle
if M is a manifold and the following condition holds for the defining par-
allel transport of the pre-vector bundle :

(VB3) Ptf: SR, M)x R~+L(E, E) is smooth.
Remark. We have shown in 5.16 that
t PtZ(e, trv (o)
is the unique smooth solution in E of the ordinary differential equation

Vs = 0. This may be a way to show that some premanifolds are already
manifolds. I have no results in this direction.

7.3. Theorem. Let (E, p, M) be a vector bundle over a manifold M. Then
the total space E (with its premanifold structure from 2.6) is actually a
manifold.

Proof. (M1)-(Mé6) hold by Theorem 2.6.
(M7) Ptf : SR, M) x R~ L(E, E)

is smooth by (VB3) for (E, p, M). Define

Bt¥: S(R, M) x R xE~ E
(evp,M, p)

by ~
PtHc, t, voro) = PE(, o) -
Then 5tE is smooth in the sense of 6.7, since
PE = ev o (PLExldE) SR, M) xR wE~>L(E, E) )jIIE->E
and the fibre linear evaluation is smooth by Lemma 5.9. Likewise
pPt™: (R, M) x R x TM > TM
is smooth. By (2.15) we have

Igtm(c, t, w) =
= (DecETiPt™ (o c, t, prye Ded(w)), c(t), PtE(p oc, t, pryo Def(w)),
p i 3

so PtTE is smooth and we have the diagram :
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5. 1E
S(R,E)xRxETE TE
(a) pri,2 g
SR, E) x R ev E

Pt is fibre linear in the fibration given by (a). Note that diagram (a)
implies that ev : S(R, E) x R ~E is smooth for

ev = TTE o ﬁtm ° (IdS(R,E)XR N OZF o eVOo prl)

and the mapping (Id, Oz o evpo prj) is smooth by Lemma 6.8.

It is rather complicated to show that smoothness of PHE implies
smoothness of Pt F directly. Consider the isomorphism of pre-vector
bundles and differentiable structures

(TE, 1y E) = (TM % E );4E, pry, E).
This implies an isomorphism of pre-vector bundles over £ x E:

(L(TE, TE), (g, Tg), EXE) =

= (E L(TMx E, TM x E, E, pr , E x E).
(p,M.p;) (TMx, E, M )(pz,;;,p) Pl1,4 s

By (2.15) the parallel transport on TE is given by the following
sequence of mappings :

S(R, E)
(evpo pry, Pt™, (p, x Idg, Pt o (p, x Idg), ev)
E ﬁ(L(TM, TM)JXLM(E, E)) %E
Idgx J x Idg (ev is smooth, see above, evgis
£ @L(TM % Es TM><[4E)>54E smooth by 6.5, J is smooth by 6.8)
1150
L(TE, TE)

So Pt TE is smooth.
(M8) Geo® : TE = S(R, E) is given by (2.16),

GeoE((DecE)'l(qc, Vys W (E) = PtE(Geo[?ux, t)(y + tow) =
= PtEGeo M(uy), t, w + towg).

The Mlast expression is smooth in all appearing variables, since P£ and
Geo “are smooth and by 5.3. So
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(GeoE)s (DecE)™ L x Id )

is smooth and thus (Gedf) : TE x R > E too. By the Lemma in 7.1 this
suffices. QED

7& Proposition. Let (E p, M) be a vector bundle. Then the space
C®(R, T(E)) of all C*-curves in the bornological C *-complete space
T (E) corresponds exactly to the space Spr(Rx M, E) of all smooth map-
pings g : R xM >E with p o g(t, x) = x.

Proof. Let g : R~ T'(E) be a C®-curve. Then
g: RxM ~E, §(t, x) = g(t)(x),

is a mapping satisfying p - §(t, x) = x.

Claim : § is smooth Let ce SR, M), put c(0) = x . Consider the
mapping B(c) : T(E) ~C*(R, E) from the proof of 5.17 -this is one of
the generating mappings for the i -topology. So B(c) is linear and contin-
uous. For s € T(E) we had

(B)(s)(t) = PtE(c, e (s(c(e).
> B(c) og : R > CY (R, Ey)
is a C®-curve in C®(R, EX), given by
r b (¢ > PE(c, ) HO)(e(t)).
But now we are in the setting of §1, and by the cartesian closedness of

the category of C®-mappings and bornological C®-complete vector
spaces the mapping

(r, ) b PtHe, ) Xg()(c(t)
is a C*-mapping R* ~ E_.Thus the mapping

H:S(R, R) x S(R, M) > S(R, M) xS, R, E)
given by
H(f, c) = (c, t PtE(c, trig(f(t))(c(t)

makes sense. Now consider the following diagram (a) on page 78, in which
the mapping R is given by

R(a, b ; u,) = (uy, G(a, x), b.g'(a)(x) +V(g(a).uy).
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SR, R) xS(R,M H S(R, M) % Seopse( Ry E)
// n L CartE
(a) /" S(R, R xM) 9, SR, E)
t
8ox8p ‘501 150 8px 8y
TR xTM T TE
R Dec®
4
V4
™ % E % E

A little computation shows that this diagram commutes. So § is $. By 5.
20 the mapping

V:T(E) »T(ngE)
is linear and continuous, so
Vaog:R > T(ngE)

is again a C®-curve. If we apply the argument above to the curve Vog
we see that the mapping

R x TM—E, (a, u) P> Y(g(a).y, ,

is §. Likewise g' : R + I'(E) is a C®-curve, so by the argument above,
the mapping

RxM=>E, (a, x) g'(a)x)
is SL So all the ingredients of the mapping R are 51 so Ris S and Tg
is SI. Now by the whole argument above the two critical mappings in R

turn out to be 52, so g is 53. This can be repeated, so g is smooth and the
claim is proved.

Conversely, let h: R x M > E be smooth with p o h = pr. Then
h'(t) = h(t, ) = h o ins(t) :M>Mx R>M=>E

is smooth, so h”(t) € T(E) . We have to show that h¥: R +T(E) is a C° -
curve. Let ¢ € S(R, M), put again x = c(0). Then

(BB (W(r) = PtE(c, r71h"(E)c(s)) = PtEe(. +s), -s, h(t, c(s)) € E,.

The last expression, viewed as a function of s, t, is smooth R*~+ E
(the mapping
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t el +t), R—SR, M),

is smooth, since it coincides with
S(R, ¢ o+) o ins : R—=SR, R x R)— SR, M))

and takes its values only in the fibre E,. So it maps C®-curves in R? to
smooth curves in £ lying in the fibre Ey, but these latter are exactly the
C®-curves in E4 by the definition of Cartf in 2.8. By §1 this suffices to
see that

(t, ) f> B (E))(r)
is a C®-mapping R? » E,. This means that

(B(c) «h)":RZ2~+ E
is C ®. By cartesian closedness the mapping

B(e)oh” : R+C*(R, E)
is C% then. So h": R+T(E) is C™ if T'(E) bears the initial topology
with respect to all mappings of the form B(c) , and is C* too if we bor-
nologize this topology. So h¥: R~ T'L(E) is C % Now finally
T ohY :R » [(E) = TXTE, Tp, TM)
coincides with the mapping
(Th o (0gxIdy) : R > TLTE, Tp, TM),

which is C® by the argument above. This can be repeated and shows that
h¥: R » T(E) is C®. QED
7.5. Lemma. Let M be a premanifold, let N be a manifold. Then S(M, N)

is a premanifold.

Proof. (M1)-(M3) have been checked in 6.1.
(M&) Construction of the parallel transport for S(M, N). For
c e S(R, S(M, N)) we define
PLTS(M, N) (¢, t) : Sorg) (M, TN) Sgrg)(M, TN)

b
Y (Pt TS(M, N) (¢, t).s)(m) = Pt™NE( ,m), t).s(m),

s € S cofM, TN), m e M.
Claim. For s € Sg(M, TN) we have
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PETSIM, Wlie, ths € Sy (M, TN).
Pt IS(M, N) (¢, t).s = PtTN, (&, const(t), s) : M+ S(R, N) x R KTN > TN.
That PtT¥ is smooth was shown in the proof of Theorem 7.3.
¢:M +S5R, N) given by &(m)t) = c(t)(m) = c(t, m)
is smooth since
T = (&, flip) = SR, &, flip) o ins : M >S(R, Mx R)~ S(R, N),

and all components are smooth by 6.4 and 6.5. The claim follows.

Claim.
ps(M, N) (c, t): Sc(O)(M’ TN)+ SC(U(M’ TN)

is continuous and linear, where
SAM, TN) = T (F*TN, f*my, M)
as bornological C®-complete vector spaces.

PtIS(M, ¥, t) is clearly linear since the linear structure
is the pointwise ona. To show that it is continuous (= bounded) it suffices
to show that it maps C* -curves ta C” -curves by §1. By Proposition 7.4

C®(R, SAM, TN)) = CT(R, T (f*TN)) = S¢.pr, (R xM, TN).

Soletg : R>S,y,(M, TN) be a C%-curve, then § : R x M — TN is
smooth, and :

(PtTS(M, NJ (c, t) o g(s)(m) = PEN(E(, m), t).g(s)(m) =
Pt™(&(m), t, §(s, m) = Pt™ o (€ o pra, const(t), §)(s, m) ;
this is a smooth function of (s, m). So
PETS(M, W) (¢, £) o g tR > S (M, TN)

is a C®-curve.
Claim. PtT™™, N) (¢, 0) = Id.

(PETSM, N) (¢, 0).s)(m) = PEN(E(, m), 0).s(m) = s(m).
Claim. For fe C®(R, R) we have
PEIS(M, N) (¢, F(t) = PtTS(M, N) (¢ £, t) , PtTS(M, N) (¢, £(0)).

(PtTS(M, N) (o, £(t)).s)(m) = PETNE( , m), f(t)).s(m) =
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=PtIV@EE( ), m), £) o PENE( , m), F(0)).s(m) =
= (PEIS(M, N)(c o f, t) o PEES(M, N) (¢, £(0)).s)(m).

All requirements of (M4) are satisfied.
(M5) Let c e S(R, S(M, N)). We have that

ptISMM, V) (o 1yl 8 ¢

as a function of t is in C(R, Sc(O)S(M’ TN)). By Proposition 7.4 it
suffices to show that

(t, m) = (PLTS(M, M) (c, £)° 2. 6 wo)(m)
is a smooth mapping R xM+T N
(Pt M, N) (e, )7L 8, )(m) = PE™@(, m), 71 (6 po)(m) =
= PEN@(.rt, m)y -t) o TEo Ap(m) = PLME(+t, m), -t, TE(L, 1 ; Ofm)).
This last expression is smooth in (t, m) ; that
t, m) b cl+t, m)

is a smooth mapping R x M > S(R, N) can be checked similarly as
smoothness of ¢ at the beginning of this proof.

(M6) We define
GeoSM, N) = TS(M, N) = S(M, TN)~> S(R, S(M, N))
by the formula
(GeoS™, N) (5)(t))(m) = GeoMs(m))(t)

for s e S(M, TN), t e R, me M.
Claim : GeoS™™. N) (5) e S(R, S(M, N)).

(GeoSM, N) (s)(t))(m) = Ged'(s(m))(t) = (Ged) (s(m), t) =
= (GeoM)" o (s x Id)(m, t),

which is a smooth mapping R x M -= TN by (M8) for N. This suffices by
the definition of S(R, S(M, N)) in 6.1.

Claim : GeoSM..N) (t.s)(r) = GeoSM, V) (5)(tr).
(GeoS™M, N) (£.5)(r))(m) = GedV(t.s(m))(r) = GeoMs(m))(tr) =
= GedS™. N (s)(tr))(m).
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Claim : & GeoS/ %N/ (s) = peIS(H. V) (GeoS™. ¥ (s), t).s.
(4. CeoS™ ¥ (s)){m) = ev,.. &(Geo '™ ¥/ (5)) = T(evy) s 8+(Geo S, N (),
since T(ev.) = ev by 6.6,

= & (ev, . GeoSM. N (5)) = 5 (Geo™ ™ N (5)( )(m)) =
= 4GeoMstm)) = P (Ged' (s(m)), t).s(m)
by (M6] for N ‘
= (PtB™M W (GeoS ™ V(s), t).s)(m).
Claim : GeoS™: ¥/ (3 (Geo ™ ¥/(s))) = Geo 5™ ¥/ (s)(.+t) =
(Geo 5™ ¥ (5 (Geo™™ ¥/ (s))())(m) = Geo" (8, (Geo™ M- ¥/ (s))(m))(r)
= Ged"(3, (Geo (s(m)))(r)
as we just saw,
= Geo™s(m)(r +t)
by (Mé) for N, ,
= (Geo S™M N (5)(r + £))(m).

So (Mé) is satisfied. QED
7.6. Remark. If N is a manifold, and if M, P are premanifolds, then
S(P, S(M, N} } satisfies (M1) - (M3) by 6.1 and the tangent space is of
the same form. 5o we may iterate and may consider smooth mappings

from and into S(P, S(M, N} ), as in 6.2. This will be essential for our
next steps.

7.7. Theorem. Let M be a manifold. Then there is a unique mapping

H.M.' T2M d TQM

(called the canonical flip mapping) with the following property :

(1) The following diagram commutes :

S(R, S(R, M))

$

(a) S(R, TM) S(R, TM)
Tipg "M T2m

Furthermore oy is smooth and has the following properties :

(2) If M, N are manifolds, then for any smooth mapping f : M > N we
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have T?fo uy = wyo T2F.
(3) UMo N = Id TQM
(4) wmen = W x wy -
(5) wy is an isomorphism between the two vector bundles

(T2M, T6), TM)  and  (T?M, 1, TM)

(i.e. a fibrewise linear diffeomorphism, not necessarily commuting with
the parallel transports), so in particular we have

o T = Oy TM T?M,  Tly) o %py= Ty, Tomo y = Tliy).
(6) no? T°R » T?R is given by
nRAX1s X535 X35 Xg)= (X}, X35 Xg, Xg)
and for each f € S(RZ, M) we have
My o T2f = T2F o g,
This property characterizes wuy uniquely.
Proof. First of all we recall that
PEM : S(R, M) x Rx TM +TM

is smooth. We saw this in the beginning of the proof of Theorem 7.3.
The following diagram commutes :

St
SR, M) x R xTM Pt ™
(b) PP, 2 My
SR, M)x R ev M

Then ev : S(R, M)x R ~ M is smooth, since
ev ZTI'M o PtTMo (IdS(R, M)xR? OMD eVO o pl_'z)

and the mapping

(I 0 o €V, opfl)

ds(R,M)xR’ M° %

is smooth by 6.6 and 5.1. Note that we know already that S(R,M) is a
premanifold. We will see that smoothness of

ev:SR, M)x R+M

suffices to construct . First we want to investigate T(ev) .
Consider the following commutative diagram (c). We have
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S(RZ, M x S(R, R) — 18 Udr)  _ §R?, M x SR, R?)

o S(R, S(R, M))xSR, R) omposition
O
© ~| SR, S(Ry M)x R (ev), . S(R, M)
<
A -
g T(SCR, M) x R T(ev) . TM

I

S(R, TM) x R
Solev,(c1, ¢2) =89 (E 1 o (idgy c2)) = T(é 1o (idg, c2))(0, 1)) =
= Té; e (idpg, Teo)0, 1) = T&(0, 1 ;8,c) =
= T&0, 15 0c o))+ (0, 0385020 = TG o Aglep(0)+ Tle () o)
= (8 c )(cy(0) + T(e,(OX(Sy cy)
= (evye (idgp ) x TR g, € o (T o SR, Ty) x Idr))(& 1,60 2);

where ev ;: S(R, TM) x R ~TM is smooth by the arqument above ap-
plied to the manifold TM (by 7.3) and where

ev, : S(TR, TM)x TR+ TM

is not known to be smooth. So the smooth mapping T(ev) can be written
- T(ev) = ev ) o (Idgip 1) xTR) #,€v2 o (To S(Rymy) x Idpg).
It follows that

evyo (T o SR, my)x Idpg): S( R, TM) x TR »TM
is smooth. But then

To SR, my) = S(TR, ev, o (T o S(R, my) xIdglo ins :

S(R, TM) > S(TR, S(R, TM) x TR) +S(TR, TM)

is smooth by 7.5 and 6.4. Finally we conclude that
T:S5R, M)~> S(TR, TM)

Is smooth, since

T=(T o SR, my)) o SR, Q) : SR, M)+ S(R, TM) ~ S(TR, TM).
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This implies in turn that for all t e R the mapping & :S(R, M) = TM
is smooth, since
8¢ (c) = Te(0, 1) = (evip 1) o TNC)

and ev(p, 1) is smooth by 6.6.
Now we investigate the following diagram, which clearly commutes :

S(R ™)
(d) ’
| T
SR, TM) =~ TM
8¢ _ — M -
™~
where

: R*TR?, Au(u) =(t, 1;0) e TRxTR
t .
=(,u 1,0 e TR2 as in 6.1

Be: R>TR?, Bi(w) =(u, 0;¢t, 1) e TRxTR
=(u t, 0, 1) e T R2.

We have to show that, in diagram (d), the mapping T(S8¢) factors over

& . We know that 8¢ is surjective (Remark following 2.1). So letc be
in S(R, TM). We have to show that T (6:)(c) depends only on & c. This

will follow by a diagram chase. Consider Geo™ ® /(c) in S(R, S(R, M)),
constructed as in 7.5. Then of course

& (GeoS® ™)) - .
8 o (8:),(Geo™ R M (e)) = 8, (T((Geo SR ™ (0))y o By) =
_ = So(T((Geo™ " o(c x Idg) o flip)o B),
since
(Geo™’s (c x Idg) o flip(t, r) = (Geo™) Ve(r), t) = GeoMc(r)(t) =
= (GeoSR. W ()(t))(r) = (GeoS® M) (o) ¢, ).

So we may continue

&0 (8.)x(GeoS( R M) (¢)) = 6,(T((Ged")) o (Tc x 1d ) T(Flip) (, O 5 ¢, 1))

= &(T((Ged)) o (Tex Idp)(t, 1 ; , 0) = &, (T((Ged) NTc(t, 1) ; , 0)

= T2((Geo™) o 6o ( &c i , 0) = TA(Geo™ ) Op G ) ; 0, O, 1, O
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This last expression depends only on S; c. So we see that in diagram
(d) the mapping T(§, factors over8; to a mapping ®y: T°M ~ T2M
If we put t =0 we get diagram (a). The mapping ¥y is uniquely given
by (1) since it is the unique mapping fitting into diagram (d) (T (&;)
is unique and &;is surjective) for ¢t = 0. It is easy to see that ny fits into
diagram (d) for all t. Note the formula for uy which we derived
above :

# () = TH(Geo™ (0 4; 0, 0, 1, O).

This shows that u p is smooth.
(2) Let f e S(M, N) . Then the following diagram commutes :

S(R, M) SR, ) sRr, N
(e) 8, 150
™ Tf TN

Put
a:=(0,0;1,0;0,1;0,0) = T(4)0, 1) e T2RZ,

and apply the functor S(R, ) to diagrgm (e) to get the following
diagram :

S(R2 M)« L s(r2, N) -
0 (f I &
S(R, 1)< S(R,S(R, 1) Fde s®, SR, N) TSR, NN

<
oy R, S(R, f) I
A S(R, TM) S(R, [8y) iS(R, 8) SR,
(f) SR, TM) —Rs TO_sr 1h)
501 l Sp Sp
= »
s

The outermost quadrangle commutes :
T?F o(T?().a)(g) = Tf o T2g. a= T(TF o Tgla

= TAf o g)a = (T2 ).a)(F (g)).
The mapping
8 S(Ry S(R, M))+ S(R, TM)

is surjective since S(R, M)is a premanifold by 7.5, so the mapping

8po 80 : S(R, S(R, M)) + T2M
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is surjective. Thus we may conclude that the lowest quadrangle in dia-
gram (f) commutes :

T2¢
M — 2N
(g) an l%N
2
T2M L -~ T2N

So (2) holds.

(3) Claim : The following diagram commutes :

S(flip, M)

S(R2, M) S(RZ, M)«
t ) g
(h) R, S(R, M)) S(R, S(R, M))
T( )eBy\_ SR, ?\ A/‘O T( )sAg
~  + S(R, TM)

where

e(t)(r) = c(r)(t).
For we have
GO(E) = T(é o flip) o Ao—’- Té o T(f“p) <] (Oy 1 ; OR()) =

= Té o (OR() ; O: 1) = Té o BO = S(R, 60)((:)-
Now consider the following diagram :

/’_ﬁ\
s, M) _(FIP*  qr2 py _(FIR* op2 )

~ ~

()
SR, S(R, M) S(R, S(R, M)) SR, S(R, M))

S0, S(RSIN_ .~ %o \S(R,Go))/ao

SR, TM) S(R, TM) S(R, TM)

89 lso 160
oM "M T2m M TM
Here

(Flip)* o (flip)* = Id, sO wy o uy=Id

since 8, o §, is surjective.
(4) That ny .= Hy X%y follows from the diagram (j) (on page 88).

(5) Consider the diagram (k) (on page 88). From this diagram it fol-
lows that

T(my) o ny=Tgy -

Since wuy = uy by (3), we conclude that
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S(R2, MxN) S(R2, M) xS(RZ, N)
N X

. s 8
v / SR, &) ,V S(R, &9

S(R, T(MxN)) S(R, TM)xS(R, TN)
S(R, T(MxN)) l ~ S(R, TM)x S(R, TN)
8 1 160
T2(MxN) Co T°M xT2N S0
UM x N ‘t ”m
T2A(MxN) . T2Mx T2N
S(R, S(R, M))
So lS(R, evp) S(R, 8p)
S(R, M)
(k) 8, SR, M) N
SR, TM)~—___ S(R, TM)
T(evo)zevo -
T(my
T2M /ﬂmv Hy T~ 2m

Toygo My = T(My)
So ny is fibre preserving for the two fibrations
(T2M, T, TM), (T2M, T(my), TM).

It remains to show that %y is fibre linear. Isomorphism follows then
since 1y is a diffeomorphism. We consider the following diagram :

S(R, TM) 1) 72Mm

W \ % |
.”S§R, M) T2M
= S(R, m
(R, Ty) w‘ ™
$

0 ™

S(R, M)

Here the top triangle commutes because it is part of diagram (d). From
5.3 we know that

:TM x TM > TM

+.n_M
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is smooth. +
that

. is fibre linear, so a glance at diagram (a) in 5.2 shows

T (+T[M) = +T(7TM)
Let ce S(R,M) and let
cysC2€5(R, TM) =T g, M)-I(C).
T( 60) is fibre linear by 3.3 and 7.5, so we have :
T(S o) = T(8). T(8).
(8p)cy Tor, u) 2 (8p).cy - (Sp)c2
= mSp (c3) iy T & (c).
8plc (+
ofes +“5(R %
= 60 o S(R, +

TR, W) (cy c3))

iy )(Cl» c) = T( +“M) o & (c1, )

= *rmy,) (8o¢ps Spc) = o+ T(TrM)(SO Cy .

So finally we get :

w8 oc1) +TTIM uy(Sog) = T(S )(Cl+‘n SR, M) cy)
= "yo Sp (cp, S(R, M) cp) = mu(Sg cpopp )60 c2)-

So wy is flbre additive. Fibre linearity follows then by fibre continuity
for the C%-curve topology.

(6) wgz: TR - T2R is given by
nplxy 95 X35 Xg) = (x), X3 Xp, Xg)
lsince diagram (a) says in this case :
feCTR?, R)=SR, SR, R2))
% SR, &)
(70, ),2 1(0 ) - (f(, 0), ( 0)

% \/__\
(£(0, 0), (o o), - (0, 0) ax 3 o, o)) N /50

(#(0, 0, 5 0, 0), a L (0, 01,5

(0, 0)
X2

Then
Hy o T2F = T2 o upe

is a special case of 8roperty (2). It remains to show that wy is the only
mapping A : T°M > T2M  with the property
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A o T2f = T2f o M for all fe S(R2, M):

R?

where # g2 is given by the formula above. We will show that any X with
this property fits commutingly into the following diagram, which is dia-
gram (a). So by unigueness in (1) the assertion follows then.

S(RZ, M)

T( )OAO
S(R, S(R, M))

(m) E/ \

SR, TM) S(R, TM)
5) 1%
oM — - - AN _ T

Let ¢ eS(R, S(R, M)).
890 SR, Sp)(c) = 8,(TE o By) = T(TE o B0, 1) = T2& o T(BH)O, 1)
= T28(0,0; 0,131,050, 0 =T28, uz2(0,0;1,0;0,1;0,0)
=AoT2(0,0;1,0;0,1;0,0) = x0T T(ANO, 1) =

= Ao T(TE o A0, 1) =X o 8g o Syl
QED

7.8. Theorem. If M is a premanifold and N is a manifold, then the map-
ping T : S(M, N) =5(TM, TN) is smooth.

Proof. Consider the following diagram :
S(ORX Idz’M ’ TN) o T

/S( Rx M, N) — S(RxTM, TN)
(a) | -\
SR, S(M, N)) S(R, T) S(R, S(TM, TNON
ks
T( b Ap ) So

S(TM, H.N) ) T

S(M, TN) ~ S(TM, T2N)
Let us check that this diagram commutes. Let
c e SR, S(M, N)), EeTM.
(8 o S(R,TIN(E) = T(S(R, T)(c))?) o AYE) =
= T(Té o (O ldpy)) o AN B = T2E o (TORx Id 1) )(0, 1 ; OF)

= Tzé((oy 0 ; 1’ O), OE; )-
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(hy o T(8;eNE) =ny o T(TE o AQNE) =1 yo T28 o TA( &)
by 7'—.'7.1;1\]07—26(0, 150,0;T(0,).8) =T2C0 ng 0, 1;0,0; T(Q).E)
= T28(ug(0, 1 ; 0, 0), ny oT(0O(E) by 7.7.4
= T28(0, 0 ; 1, 0), Op(E)) by 7.7.5 and 6.
So diagram (a) commutes. This says that
T :S(M, N) >S(TM, TN)
is ST and T(T) = (ny) o T, in more detail,
T(S(M, N) —L— s(TM, TN)) A
= (5(M, TN) —L= S(TM, T2N) —C0% — seTm, T2N)).

By 7.3, TN is a manifold again, so we may apply the proof up to now
to see that

T :S(M, TN) +S(TM, T3N)
is S%, but then T : S(M, N) >S(TM, TN) is 52 By induction we see that
T is smooth as claimed. QED
7.9. Theorem. If M is a premanifold and N is a manifold, then the eval-
vation mapping ev : M x S(M, N) —N is smooth.

Proof. Consider the following diagram :

S(R, M) x S(RxM, N) (dg,) x1d | §(R, R xM) x S(Rx M, N)
S(R, M) xS(R, S(M, N)) composition
SR, M (M, M) SR, ev) - SR, N)
8x(T( )vo)dol l%
TM = S(M, TN) T(ev) ~ TN

where we put for T(ev) the mapping
T(ev) = eve (myxldgy o) )+"Nev o (Id 7yxT o S(M, ),
T(ev)(E , s) = s(m) o T(my o S)E,).
We show that diagram (a) commutes. Let

C = (Cl’ Cz} 3 S(R, MXS(M, N)).
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Tlev)(5pc) = Tlev)( Soc;, Teye A) = Té 0 Agfe ) (0))4n T(Myo Ty o Aghsy c1),
where
T(T!No Tez o Ao)(6 Ocl) = T(éz o "RxM ) /%)( 6OC.Z)

= T(é 2 O(O’ IdM))( 60(?1) = T62(O, 0; 60 Cl).
60 oS(R, eV)(C) = 60(62 ) (Id > Cl)) = T(62 o (Id > Cl))(o’ 1)
=T8¢, 0 (1d g,y Tc)(0, 1) = T¢50 (0, 15 8pcy)
= TEZ((O’ 1; OCI(O)) +TTRXM(O’ 0; (SOC.Z)
= T62(O, 1 ,' OCl{O) )+T[N T62(0, O ,' SOC.Z)
= T8, o Agfc £0)) i, T2 (0 05 89 ).

So diagram (a) commutes, so ev is $.. Since TN is again a manifold,
T(ev) is S, so evis §2 and so on. QED
7.10. Lemma. If M, N are manifolds and P is a premanifold, then the
mapping S(P, ) : S(M, N) -~ S(5(P, M), S(P, N)) is smooth.
Proof. By Lemma 7.5, the spaces S(P, M) and S(P, N) are premanifolds

so S(S(P, M), S(P, N)) satisfies (M1)-(M3) by 6.1 and we can talk about
smooth mappings in the sense of 6.2.

Claim : The mapping const : R »S(P, R) is smooth and
T(const) = const : TR~+S(P, TR.
For let fe C*®(R, R), then
8o (const) (f) = Sy(const o f) = T((const x £)7) o A,
= T((const)™ o (F x Id) o A, = Tlpr, o (f x1d ))(0, 1 ; 0p) =
= const(Tf(0, 1)) : P » TR = const(8,f).
Now consider the following diagram

S(S(P, Rx M), S(P, N)

(a) S(P, ) S((const, IdS(P M)), S(P, N))
<0
SR xMy SR x 3P, M), S(P, N)
rCon L SRy SM, N) (5P, Dy S(R, S(S(P, M), S(P,N))
O . aol . L(% T( )DAO
st TN S, ) S(S(P, M) S(P, TN
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The top diagram commutes :
(S((const, Id grp u))s S(P, N)(S(P, E))(t, q)
= S(P, &) o (const, id)(t, g) = S(P, &)(const(t), g) = &(t, g( ))
= ((S(P, ) (c)t, g).
The outer pentagon commutes :
(8go (S(P, ) (c))Ng)p) =
= (T(S(const, Idgp yy)s S(P, ND.S(P, 6)) e Ag(g))(p)
= (T(S(P, &) o (comst, Idg(p ) N0, 1 ; O))(p)
= (S(p, T&) o (T(const), Idpsip ) 10, 15 GI)(P)
= (S(P, T&).(const(0, 1), 0(p) = T&(0, 1 ; Oyp)) = TE o Ay(g(p))

= (8eXg(p)) = ((8g c) o g)p) = (S(P, S c)(g))p).

So diagram (a) commutes, so S(P, ) is 5% and '
T(S(P, ) = S(P, )

is also $1, so S(P, ) is S2and so on. QED

7.11. Lemma. If M, N are manifolds, then the mapping
() 2 SR, S(M, N)) >S(M, S(R, N)),
given by &(m)(t) = c(t)(m), is smooth.
.Proof. For ce S(R, $(M, N)) we have
c = (&, flip)’ = SR, &, flip)o ins :
M— S(R, MxR)— SR, R x M)— S(R, N).
Claim : " : S(R, S(M, N)) *SR xM, N) is smooth.
¢ =evs (c xIdy) :R x M— S(M, N)x M — N,
so we have
"= S(R xM, ev) o (. x Idy) :

S(R, S(M, N)) — S( RxM, S(M, N) x M) — SR xM, N)
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which is smooth by 7.5, 6.10, 7.9 and 6.4.
Claim : ¥ : $(Mx R,N) + S(M, S(R, N)) is smooth.
g = S(R, g) o ins : M-—S(R, M xR)— S(R, N),
so we have
¥ = S(ins, SR, N)) o S(R, ) :
S(Mx R, N)—/=S(S(R, MxR), S(R, N))— S(M, S(R, N))
which is smooth by 7.10, 7.5, 6.5 and 6.4. So finally
" =Y S(flip, N) o " :
S(R, S(M, N)) »S(Rx M, N) + S(M xR, N) ~ S(M, S(R, N))
which is smooth. QED
Note that in this lemma M has to be a manifold : otherwise we can-

not form S(S(R, M xR), S(R, N)) without developing a lot more technic-
al background as in §6.

7.12. Lemma. Let M, P be premanifolds and let (E, p, N) be a vector
bundle (so.N is a manifold). Let f : M + N be a smooth mapping. Then
we have a canonical identification of the following two spaces :

S(P, M) S(P, E) = S(P, M, _x E) = S(P, f¥E).

X
(f,, S(P,N),p,) (£,N,p)

Proof. First note that (S(P, E), p,, S(P, N)) is a pre-vector bundle by 7.5
(or its method of proof), so by 6.7 the space

SP, M)

X S(P, E)
(£,, S(PNJ, p,)

satisfies (M1)-(M3) ; S(P, F*E) does it, by 6.1. So it makes sense to ask
whether the natural identification of the two spaces makes sense.

Claim : In the setting above we have a diffeomorphism
T(f*E) = (TF)*TE
in more detail

M x E)=TM X
(£, N,p) (T£,IN, Tp)

T(f*E) —D;esfz—*TM x F¥E x f¥E = TMx f*¥(E x E) =
M M B M N 7T

TE.

=TM_ x  (TNx E xE) = TM TE = (TH*TE.
(Te,m, pry) WO R (22,28, 1p) = = (TH*TE
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This bijection clearly gives a fibrewise linear and continuous mapping

T(f*E) (TA*TE

(a) \\ /

™

which obviously commutes with the parallel transports of the two
pre-vector bundles over TM, so the identification above is smooth by
Lemma 5.2.

Now we set out to prove the lemma. We have to show that S(P, f*E)
is a pullback. So let X be a premanifold or of the form S(P, Q) and
consider a situation as in the following diagram :

X h

kN

S(P, f¥E) — 3 S(P, E)

(b) Px

sP, M) — Fx  _sp, N

The mapping o exists by the pullback property of f¥E = Mﬁ E and is
given by

a(x) = (g(x), h(x) e S(P, M % E).

We have to show that o is smooth. For that we consider the following
diagram :

S(RxP, M)N E) S(Rx P, E)

/'} \ A p*
(c) 8,7 | S(Rxp, M) o S(RXP, N)
y Y h* I A -~ ?
S(R, XJ- - % . SR, S(P, M xE) S(R, S(P, E))
|
I« L}R, sP, M) —— LSRR, S(P, N)
e 8o &
) o
Th A I L
TXTZ L~ wsp, TMx [E) (Thy 25, TE)
To v (TP)*\JV
s, T™) (T, s(P, TN)
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In diagram (c) the mapping B is given by the same formula as o above,
and clearly ~ o o = R.From the claim above we have

= TE,
T(Mx, E)=TM 1;:/_

so the mapping Y may be constructed in the same manner as o aboye.
The diagram commutes by the universal properties of the pullback§ in-
volved. So a is S and T (a) =y is of the same form as a, so is
too, so o is $2 and so on. QED

Remark. In the beginning of the proof we have used a slightly more gen-
eral version of Lemma 6.7. We used the mapping f, = S(P, f) ipstegd of
ey, - But the main point in 6.7 is that T(ev,)= ev, Iis fibrewise linear
and continuous ;

T(f,) = S(P, Tf)

is it too.

7.13. Theorem. If M, N are manifolds, then the set S(M, N) of all smooth
mappings from M to N is again a manifold.

Proof. (M1)-(Mé) have already been checked in 6.1 and 7.5.
(M7) We have to show that

PESM, N) 2 SR, S(M, N))x R > L(TS(M, N), TS(M, N))
is smooth. Note that by 7.5
(TS(M, N), WS(M, N) s S(M: N)) = (S(My TN)’ (”N)*’ S(Ms N))

Is a pre-vector bundle, so L(TS(M, N), TS(M, N)) is a premanifold and the
question for smoothness makes sense. L et

a :SMx R, N)> SM, N)
be given by
alg) =g(, 0) = S(M, evy) .7 (g)

which is smooth by 7.11. Then consider the pullback

(S(M x R, N) x R S(M, TN), pr; 5, S(Mx R, N) x R)

X
(o, S(MN), (Ty),)
which is a pre-vector bundle since a is smooth, S(M, TN) is a pre-vec-
tor bundle over S(M, N) and all spaces are premanifolds by 7.5. Then
consider the mapping

Ptl: s(M x R, N)x R X SM, TN) > S(M, TN,
(o, stun),my)) " M, TR
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given by

ptig, t, s)m) = PtN(g(, m), t, s(m)) = Pt™, (g% const(t), s)(m).
ptl is smooth since we may write it as the following sequence of smooth
mappings :

StMx R, N) x R S(M, TN)

X
(Q, SMN),(Ty),)
“x const x Idgy 1y) smooth by 7.10, 7.11

[fevy) o SN (M), )
smooth by Lemma 7.12

i
SM, S(R, N) x R X TN)
(evo,N, Ty)

S(M, PtV) smooth by Lemma 6.4

S(M, TN)
Now consider the following mapping :
B: SIM x R, N) x R —> S5(M, N)
given by
B(g, t) = g(, t) = S(M, ev)(g®, const(t)),
which is smooth by 6.4, 7.9 - 7.12, since
B = S(M, ev) o (" x const) :
S(M xR, N) x R »S(M, S(R, N))»> S(M,R) = S(M, S(R, N)x R +~S(M, N),

Then consider the mapping Pt? which is smoothly given by the following
diagram :

L(S(M, TN), S(M, TN,
( ( ’ ), ( ’ T ))(pr2,5?(M,N),0L) S(M X R, N) x R
equal ) \S(M, N) x S(Mx R, N) x R
by 5.21 -

L(S(M, TN), S(M xR, N)x R If(M, TN))

(0, STMNY, 1))

Id x B
smacth L(S(M, TN), Ptl) S(H,N)
by 5.23

!

L(S(M, TN), S(M, TN)) /

S(My N) X S(My N)
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Finally consider the mapping ins as in the following diagram
ing
S(Ry S(My M) x R ——s L(S(M, TN), S(M, TND 1 sy oy SMXR, N)X R

(evp Pty S(rlip, N) o opiy, Prz’\ 1
SM, N) xS(Mx R, N) x R

which is given by

ins(c, t) = Id

Se(o)M, ) € L(SC(O) (M, TN), SC(O)(M, T™N)) ;

the latter space is the fibre of the pre-vector bundle above over
(c(0), ¢ o flip, t). ins is smooth since it may be written as the following
sequence of smooth mappings :

S(R, S(M, N)) x R

(evo o pr,, S(flip, N) o ‘oprl, prz), ' smooth by 7.11
SM, 1) x SIMx R,N) x R

j(!db{,M’m ) 7x 195 e w)xr*I9R

L(S(M, TN), S(M, TN»{pr2,5>fM,N),0L} S(Mx R, N) x R
The mapping

Udgry g ¢ S(M, N) >L(S(M, TN), S(M, TN))
is given by B , »

(IdS(M, TN)} (f) = Ide(M, ™)

as in Lemma 5.22, where we proved that any mapping of this form is
smooth. We have now :

PETSMM, N) — pg2 | jis + S(R, S(M, N))x R
> L(S(M, TN), S(M, TN))('pr2 stHp ) SMX Ry N) x R
> L(S(M, TN), S(M, TN)),

as is easily chéecked, so ptTS(4, N) is smooth as claimed.
(M8) We have to show that

Geo = Geo ™. M) : 5(M, TN) » S(R, S(M, N))
is smooth. In 7.5, (Mé), Geo was defined by the formula
(Geols)(t)(m) = Geo™(s(m))(t)

for se S(M, TN), t e R, me M. We have
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((Geo) (s, t)(m) = (Geo™ (s(m), t) = (Geo ™™ « (s, const(t))(m),
so (Geo)” is given by the following sequence of mappings :

S(M, TN) x R
IdS(M, /X const smooth by 7.10

S(M, TN) x S(M, R)

equal by 7.12
S(M, TN xR)

S(M, (GeoN)“), . smooth by 7.1 and 6.4
S(M, S(R, N))

* ~, smoath by 7.11
S(R, S(M, N))

So (Geo)” is smooth. By the lemma in 7.1 this suffices. QED

7.14 Theorem. The category Mf of manifolds and smooth mappings is
cartesian closed. That means :

S(M, S(N, P)) = S(M x N, P) holds naturally in M, N, P € Mf.

Proof. This is a consequence of the fact that S is an internal hom-func-
tor by 7.13 and 6.4 and thatev and ins are smooth in general. For define

—_—
S(M, S(N, P)) —_— S(M x N, P)
by .
f=evo(fxId):MxN-—S(N, P)xN—*P
and
g” = S(N, g) o ins : M—>S(N, M x N) — S(N, P).

These two mappings are natural and inverse to each other. QED

7.15. Corollary. The. following natural mapbings are smooth :
"1 S(M, S(N, P)) >~ S(M x N, P), : S(M x N, P) »~S(M, S(N, P)),
comp : S(M, N) x S(P M) -*S(P N),
S(, ) :S(M, M) x S(N', N) > S(S(M', N'), S(M, N)),
1 S(Mz, Ni)~ ST My, TTN3).

Prooof. It suffices to check that carefully chosen associated mappings
are smooth, by cartesian closedness.
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() =eve (ev xId) : S(M, S(N, P))x Mx N =+ S(N, P)x N + P,
()" =ev:SMxN, P) xMxN =P,
comp” = evo (S(M, N) xev) : S(M, N) x S(P, M} x P + S(M, N)x M = N,

S(, ) = comp o (S(M, M') x comp) :
S(M, M") xS(N', N} xS(M', N) ~+ 5(M, M') x §(M*, N) > S(M, N)

()~ is given by the universal product property in the following diagram :

IS(M;, Nj))xTIM; ~ =~ — -~ — - =TT N;
prj *prj pr;

QED

8. Miscellany.

8.1. Let F be a smooth functor from the category of C*-complete lac-
ally convex spaces and continuous linear mappings into the same categ-
ory, of one or several variables, even infinitely many, co- or contra-
variant, as described in 5.4. We recall that F is called C”, if

Il L(Vi‘, W;) > L(F((V3)i), FIW;))

isa C* -mapping in the sense of §1 (in this formulation F is assumed to
be purely covariant).

Theorem. Let F be a C® -functor as described above, let (E4, pi» M;) be
vector bundles, one for each variable of F. Then (F((E*);), (p;), IM;) is
a vector bundle.

Proof. First note that IIM; is a manifold, by 4.1 and checking (M7), (M8)

(use 1.21). By 5.7 we get a pre-vector bundle and since F is a C* -func-
tor, the parallel transport described in 5.7 is smooth. QED

8.2. Theorem. Consider the situation

FrE p*f - E
(a) f¥*p P
: f
N — M

If f is smooth, N is a manifold and (E, p, M) is a vector bundle, then
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the pullback (f*E, f*p, N) is again a vector bundle.
Proof. We just have to show that the parallel transport Pt *'E g
smooth. This follows from the diagram :

SR, N) x R fi x Id SR, M)x R

L(f*E, f¥E) ———— [ (E, E)

(evp, ev) J (evp, €v)

N x N fxf Mx M

since
L(F¥E, F*E) = (f x f)*L(E, E)

is a pullback in the category pMf of premanifolds. QED
8.3. Corollary. If in the situation of 8.1 all manifolds M; coincide, we
get a vector bundle (F((E%)}), p, M).

Proof. The pre-vector bundle structure has been described in 5.5. Here
we use a simpler argument :

(F(EL);), py M) = diag*(F((EL);), (p1), TIM).
1 QED

8.4. Theorem. Let (E, p, M) be a vector bundle. Let

Q:S(R’ M)XR_» L(E,E)
be a smooth mapping satisfying all the functional equations of (VB2). In
particular (E, Q) is a pre-vector bundle, called (E, p, M), with the same
fibres as E. Suppose furthermore that

Q: SR, M) x,E * S(R, E)

factors as follows :

S(R, M) E © S(R, E)
(a) 60 X1dg So
c
TMI‘% E —— > TE

Then the identity gives a diffeomorphism J : E~ E.

Remark. 1. In some cases property (a) holds automatically, follows from
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the functional equations of Q. _
In general 1 have only been able to show that the germ of Q(c, v,)

at 0 depends only on the germ of c at O and not onc .

2. This result shows that although the smooth structure Of. a
manifold depends heavily on the parallel transport it is somehow in-
dependent from the particular paralle! transport chosen.

Proof. Q is given by
Qle, v () = Qle, t)(y).
é is clearly smooth.
Claim : ((THEEIQ)Oy o ¢, 0, 1))(V) = (prys DecE o CN Spe, V).
= ((THEEQUO o ¢, 0, 1)V = ((pr 30 Dec o TQ)0y o ¢, 0, 1)(V)
= (ev,o pr3 o Dec o« TQ)Oy o ¢, O, 1)
= (ev, o prys Dec oTQ o 8p)(const(c), Idg)
= (ev, o pry o Dec oSy o Q(const(c), Id) = (ev o pryo Deco & NQ(c, )
= przo(pr, xev, x ev,) o Dec o S(Q(c, ))
= pryc DecE < T(ev,) o&(Qlc, )) = prj o DecZe &(Q(c, )(v)
= pryo DecE oC(S,c, V),
where Dec = DecHEE) | 5o the claim follows. Note that C is smooth,
since
Cluy, vy) = S(Q(Geoluy), Nv,)).
Let (c;, o) e S(R, M) % Sconst(R, E). Then the curve
t = Qleg, 7Py, t) = comp o (Qley(ort), -t), PE(ey, t)
is a smooth curve in L(E, E), and takes values only in the fibre

L(EC_Z(O)’ ECz(O))

so it is a C° -curve in the C* -complete bornological locally convex
space L(Ecl,’G_)’ Ecsz))' By the cartesian closedness proved in §1 the

mapping
t f"*Q(Cl: t)—I-PtE(Cl, t)-Cz(t)

is C* in E, to)- So the following diagram makes sense and the top
quadrangle commutes, where
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Alcy, c)t) = (cp(t), Qlcy, 7 L.PE(cy, thcy(t).
Note that

Sconst(R’ E) = Sconst (R, E)

and that A is invertible, the inverse being given by

A7Hey, colt) = (ct0, PtE(c), )71.Q(cy, t).cy(t)).
SR, M)X Seopse(R, E) A = S(R, M) xS0 (R, E)

Catb\ '/Carté
J

S( R,E) % SR, E)
8% 5, 5| l“o 6% 8,
(b) TE TE
l DecE Dec%
»
TM g EgE—— B _ LTMyExF

We will show that a mapping B fits commutingly into this diagram and
we will compute its form. Let

(c7, ¢ e S(R, M);; S consd R, E).
Then we have :
8o x §oAlcy ¢ = (84c;, Qley, OFL.PtE(c), 0).c,(0),
Ol (Qley rLPERGy, t.cy ()
= (89 ¢y c(0), cH0) - pr3 o DecE , C(8yc;, cx(0))),
since we may compute as follows :
%_E|O (Qlc,, t)_l.PtE(cl, t).c,(t) =

= &rly (0, TLPEE(, b.cf0) +c(0),
since
ev: L(E, E) xE > Ey

is bilinear and bounded, x = c;(0).

d - d ' - _

—a—tlo (Q(c;, t) l.PtE(cJ, t) = EIT[O (PL(EE) (cy const(c;(0)) J.Q(cl, tt))ylg

= VHEE (Q(c,, ) by 5
at'o
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= -Q(c,, 0)"LVHEE (Q(c,, t)).Q(c,, O by 5.25
€y ?t A 1 1

= <(VHEE) Q)0 o, 0, 1) = -pry o Decf o C(8ycy, )

by the claim above. So there is a mapping B fitting commutingly into
diagram (b) and may be written as

Bluy, vy wy) = (U, J(vy), Iwy - prio DecE o Cly,, vy ))).

SoJ is SLand TI"="B iss! too, so Jis $° and by recursion J is smooth.
Note that

B"l(ux, Ve W) = (U, Tl(Vx), f‘z(w_x) *pr3o Ded o Clu, Tl(vx))).
So diagram (b) makes sense with the arrows A J, B inverted and the
standard recursion argument shows that 771 s smooth too. QED
8.5. Proposition. Let V be a C “-complete bornological Ics. Then V is a
manifold in a canonical way, where
=pn :TV=Vx V>V, SR, V)=C%R,V),
S¢c = (e(t), c'(t), Pt™Mc, t)(c(0), v) = (c(t), v), GeoV(v, w)(t) = v + tw.

Furthermore the smooth maps between C*® —comp]ete bornological spaces,
viewed at as manifolds, are exactly the C% -mappings in the sense of §1.

Proof. (M1)-(Mé) is rather trivial. Now we check the last statement :
smooth mappings are clearly C * ; the converse holds by 1.25. Using this
it is clear that PtV is smooth since it respects C*-curves :

PtV : C®(R, V)X R > L(TV, TV) = V x V x L(V, V),
PtTV(c, t) = (c(0), c(t), Idy). QED

8.6. Let M be a manifold. Note that
S(M, R) =T(M x R, pr;, M)
is a C -complete bornological les by 5.18. Consider the mapping :
€: M= SM, R) = L(§(M, R), R), given by <f, e(x)>= f(x).

Lemma. €: M + S(M, R)'is smooth, where S(M, R)' is viewed as a man-
ifold in the sense of 8.5.

Proof. Let ¢ € S(R,M). Then
<f, (€ oC)t)> = flc(t)),
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so '
evro€o c=foceS(R,R) = CAR, R),

so €0 cis a C®-curve in L(S(M, R), R) by 1.20.3. So

g, : SR, M) > C¥(R, S(M, R)")
makes sense.

Claim : Let
df ;= prpo Tf: TM »TR =R x R *R.
Then d : S(M, R) »S(TM, R) is linear and continuous.

S(M, R) —_— I‘(MX R, pr, M)
via f>(Id , f)
(a) d yM xR

S(TM, R) T'(TMx R, pry, TM) =T (y*(Mx R))

It is easy to check that diagram (a) commutes, where VMR comes from
the constant parallel transport, and V*Ris linear and continuous by 5.
20. So the claim follows. Consider the following diagram

M
S(R, M) €7 )y

~ C°(R,S5(M,R)")

(b) ‘SoJ &
™ Ty, d o€™) S(M, R)'x S(M, R)'

We claim that diagram (b) commutes :

So(e(e) = € (c(0), &=| ) e M(c(t)),

<f, %|Oe Mc(t)> = evg Z—t lpeMett) = g?lo (ev e (c(t)),

Q.

=H—t| 0 (f o c)t) = pry (TF(§,c)) = dfSy ) =
= <df, e™(8pc)> = <f, (d's €™M )( §y0)
So diagram (b) commutes, € is S and T (¢ is again &, so e¥ is $? and
by recursion ¢ is smooth. QED
8.7. Definition. A manifold M is called regular, if the mapping
T(M) : TM +S(M, R)’ xS(M, R)’

is injective.
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So we require that the functions in S(M, R) separate points in M and
that
Tx(e): TeM —5(M, R)'

is injective for each xe M. The second condition means : if ce S(R, M)
and for all fe S/M, R) we have (f o ©)'(0) = 0, then §pc = 0p)-

8.8. Theorem. Let M be a finite dimensional C*®-manifold in the usual
sense (with charts), paracompact and Hausdorff. Then M is a regular
manifold in our sense.

Proof. M admits a complete Riemannian metric, so it is a premanifold
(see 2.3). The exponential map is clearly smooth, so Geo™ is smooth.
It is not so easy to check that PtT# is smooth. This is done in Lemma
8.9 below. QED

8.9. Lemma. Let (E, p, M) be a finite dimensional C%-vector bundle in
the usual sense (with charts and locally trivial). If M is paracompact,
then this bundle admits a connection, and the parallel transport PtE
induced by this connection turns out to be smooth :

S(R,M) x R—> L(E, E).

Proof. Let C: TM[% E - TE be any linear connection in the usual
sense, i.e. C is C%,

(Tp, Tz) o C =1d, Cluy, ):Ex~ (Tp)"l(ux)

is linear in the (TE, Tp, TM) vector bundle structure for each uxe TxM
and
Cl , vyt TeM > (172 (vy)

is linear in the (TE, Tz E) vector bundle structure for all vge Ex .
Then the parallel transport PtE corresponding to this connection is un-
iquely given by the following diagram :

StE
S(R, M) yE i S(R, E)
(a) 6'[: x Id (St
™ xE ¢ ~ TE
M

where —
Pt e, t)vero) = Pt E(e, VeroP(E).

For this diagram commutes for all t iff

t |—> P_EE (c, VC(O))
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is a horizontal curve in TE, so
VUPLE (¢, vgp))= 0

for the covariant derivative V€ induced by C. It is well known (and a
standard fact of the theory of solutions of ordinary differential equa-
tions) that PtE maps smooth curves to smooth curves (note that

S(R, S(R, M)) = C®(RZ, M) ).
So we have to construct T(Pt) or rather T(PtE). We do this with a

suitably chosen connection on (TE, Tp, TM). Consider the connection
CZ given by the diagram :

1

M x TE - - - C. - __ -T2

(M, ™,Tp)
uwpx Id l
’ 2

(b) T M(T(nM)’,‘IM,Zp) TE U

| ) |

T(TM %E) - T2E

where wym, wg are the canonical flip mappings which can be given in
local coordinates and so exist and satisfy 7.7. _

It is not so difficult now to show that the parallel transport Pt
given by the connection C_‘_l,is exactly T(PtE). This process can
be repeated and shows that Pt¥ is smooth and by general principles PtE
itself is also smooth. QED

8.10. Theorem. Let M be a regular manifold such that TyM is a
finite dimensional vector space for all x € M. Then M is a C ®-manifold
in the usual sense (with charts) and is Hausdorff.
Proof. The mapping

expM =exp = Geo™ ()(1) : TM »M
is smooth by 7.1. Fix xe M and consider the mapping expy, : T,M +M,

Tolexp ) : {0} x T,M > T,.M

is the identity, since

Tolexp,)ov, = Tolexp, )(Z—t| o(tv)) = Tlexp ,).85 (. v,)

= Splexp, (. v)) = 8, GeoMy,) = v .
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Now consider the mapping
€0 expyt Ty,M ~ S(M, R).

This is smooth between C* -complete bornological lcs, by 8.6, so it is
C® by 8.5. Since M is regular,

d( € cexpH0) = Tofe o expy) = ToeuT (expy) = Tye : TyM > S(M, R)!
is injective. Let vj,..., v, be a basis of T,M, then the elements
w; 1= d(e o expJ(0)(y;)

span an n-dimensional linear subspace of S(M, R ). Choose f; ..., f, in
S(M, R) such that

<fi y W]'>'-‘ KSJJ
{see Schaeffer, 1V,1.1). Put
F = (fryeey £) € S(M, RT);
then we have a C ~-mapping
Foexpy=(eve o € cexpy, « eV o€ oexpy) ! TxM + R”

such that d(F o expe)(0) is invertible (in fact the identity if T,M has
the basis (v;) ). So by the usual inverse function theorem F . exp, is a
diffeomorphism from a convex neighborhood of zero V, in T,M onto
an open neighborhood of F(x) in R”. So in particular

expy| Vit Vy > M
is injective.
, Claim :Letc e S(R,M) with ¢(0) = x. Then there is a piece of a
C “-curve c¢;in V, such that c(t) = expyc,(t) for small t
In particular, expy(Vy) is open in M in the natural topology (2.2),

i.e. the C®-curve final topology.
Given c e S(R, M) with ¢c(0) = x consider the mapping

¢:= expoPENe, 5 ):RxXT,M >TM > M.
We have
ol{o} x v, =exp, ,
S0 € o ® has at least rankn at {O} x Vy C Rx TyM . Repeating the arg-
ument involving w; and f; from above we see that € o ©® has rank 2n in
a convex neighborhood U of {01 x Vg C Rx TyM . We claim that
€ o @ has rank n in U. Suppose naot, then

d€ o @)r, v) : R x .M + S(M, R’
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spans a (n+1)-dimensional subspace of S(M, R)' ; as above choose

gl’ ooy gn+lE S(M, R)
such that
s (evgl, ey evgml) od(e o O)(r, v)
is a linear isomorphism from R x .M onto RA*1 | Then for
G = (g7 «eey 9n+1) e S(M, Rnt1)
we have ntl
Go Q 2 R x 7)‘(M +R

a C*® -mapping which is a diffeomorphism at (r, v), so it is a diffeomor-
phism in a neighborhood W of (r, v) in R x TuM . Choose C®-curves

Cls wees Cpei R > W with Ci(O) =(r, v)
and such that
{(Goeog)O: i=1,..,nel}
is. linear independent in R?*1, Then the curves
Ci=¢Qoc;=exps Pt™M(c, , )o c;
are in S(R, M) and
§ 6% = Tr0) @ -} ()
are linear independent in Tq)(r,v)M by the choice of c¢;. So
dim To(r,v) M2 n+l .

But ™
: t f—*exp Pt (c, tr, tv)

is a smooth curve ¢ with
' c(0) = x and (1) = (r, v),
% Pt (S, 1) : TxM ~ T(p(r,v)M
is a linear isomorphism, so
dim Tcp(r,v) M = dim TuM = n.
Contradiction. Thus € o @ has rank n in U. Now remember the mapping

F e S(M, R ) from above, let fe S(M, R be arbitrary and consider
(f, F) e S(M, R?*1). Then (f, F)o ¢ has rank n in U, so (f, F)oU)
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is an n-dimensional submanifold of RP*1, containing (f, F)o expx (Vx) .,
which is again an n-dimensional submanifold of RA*l by the choice of
F. So

(f, F) o @(U) = (f, F) o expy (V)
near O, so
(fy F)(c(t)) = (f, F) o @(t, 0) = (f, F)o expy (cg(t)

for some cf(t) e V, . Since

F(c(t)) = Fexp, (cgt)

and F is injective on exp, (V,) we see that cdt) does not depend on
the choice of f, so

CAt) = ¢(t) forall fe S(M, R.

So finally
fle(t)) = f o exp o c;(t),
i.e.
<fy, € oc(t)> = <f, € oexpy ocy(t)~
for all f, so
€ oc(t) = € cexp, ¢;(t),
S0
c(t) = exp, c,(t) for small  t.

¢ is C% since
Cl(t) = (Fo EXP VX)—l o(F o C)(t)

So the claim follows.

Now we have constructed the following data : for each x e M a
convex neighborhood of zero V, in M and a mapping Fye S(M, RA(x))
such that

Foo exp,: V, »Ralx)

is a diffeomorphism onto its image.

Claim : The mappings
(expy (V)™ i expy (V) +Vy C TyM

for x e M generate a C*-atlas on M.
Let x # y be such that

exp, (V)N exp y(Vy) = U #£0Q in M.
Then
dim TXM = dim TyM

for we can join x and y by a smooth curve. Put
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U = (exp [VThU), Uy, = (exp |y T

We have to show that

. .
(expy [Vy) o expyi Uy > Uy

is C°. For that consider the mapping

(Fx, Fy) € S(M, R?R),
Then clearly

(Fxy Fy) o €Xp 2 Vi = R21  and (Fy, Fy) cexpy: Vy -~ Ren

have both rank n, are injective, fit together nicely, so they parametrize
a submanifold of R<? , the chart change of which is clearly C%
and coincides with

(expy|V9)_io expy t Uy > U, .

Now any mapping in S(M, R) is a smooth function on M with this C” -
atlas by construction, so the C®-functions separate points, so M is
Hausdorff. Any curve in S(R, M) is a C%-curve in this new atlas by
the claim above, and conversely by the construction of the charts. It
is clear that the identity gives a diffeomorphism between the new M
and the old M. Finally note that M is paracompact since it admits a
connection. QED
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